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ABSTRACT

Propagation of electromagnetic wave through waveguides of

w

arbitrary crosgs section has been analysed for 1N14 mode. Four

- different methods snamely,¥inite difference five point,Finite

-dlffmrenae nine point,Finite element triangular shaped,Finite

clement rectangular shaped,have heen used to caleulate cut-off
frcquenc1es ,Tleld distributions in side the waveguides.Effect of
assumed trial values has been analysed with iteration counts.Eff-
ect of dlscretlzatlonal error has been.tabula+ed by changing the
mesh sizes.These have been calculated and compared for all the
four'above menticned methods for rectangular waveguide of diff-
erent aspect ratios.Tor single ridge and double ridge waveguides
variation of cutoff-frequency wilh channel depth and width vari-
ation have been calculated.

Scattering of electromagnetic wave impinging on alobstacle
has been calculated by direct method.Radar cross section and field
distribution outside the circular cylindrical obstacle have also
been computed for different incident angles and different obstacle
dimensions. A .

Scattering of e]ecfromagnefic waves from the class of cip-
cular cylindrical obstacles have alsc been calceulated by appfoxi“
rate methods, namely,finite elemant and finite difference methods.

Saveral variations of finite element method have been tried for

- those problems,Radar cross sccotions and field distribution cutside

the scatterers have alco been computed ,

-
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 CHAPTER 1

THTRODUCTION

1.1, General _
From the point of view of classical physical theory,the
attering and diffraction of waves from obstacles have long been
fully understood in the sense that the underlying differential
equei'tions and boundary conditions of the relevant variables — are
known. In principle, it is merely necessary to olve the equations s
ub]c::u -0 the houndary conditions apprepriate to any particular
source and obstacle in order to determine the complete picture of
he diffracted field. IN pr'a.otir.:e, this has pr\')ved to be a ver
formidable problem even undey simple and Idealized conditions.

Approximate mathematical solutions and exper dmental. techniques that

serve veyry well in the study of optical phenomena related to  sca-

trering and diffraction are inedequate tc deal with more general
electromagnetic problems that ave encountered, for exanm:le,in radar

Tt is to the investigation of These problems that at'l:en‘tion is

directed, New mathematical techniques and new G‘X[)GI‘LTIL,IT*'EIJ,, methods

are required in order to permit a reduclhion to numbers and graphis

of information that is already implicit in the general wave equ-

-

.

ation and the assoclated boundary con nditions.
le in the path of a plane elec-

The introduction of an obsta

“tromagnetic wave produces mad.uumg. The incident electromagnetic

field induces tims-varying distributions of oscilating charges and

curpents in the obstacle. Thesa 2, in turm maimtain an electromagne-

tic field that is known as the s_ca’tt‘temd ,Jreflected, or reradiated

Fisld. The soluticns to this seatteréd field, radar cross section,
and the current distribution on scatterers of different geometrical
shapes and sizes have long been the alm of sclentists and emgineefs.
The sterting point fcr the exact so slution of any scattering
problen is Maxwell's Dquations. Fer regions having no diverpence,
these reduce to the scaler wave equaticn. Any admissible solution to
this equation mist satisfy the appropriate boundary conditions along
with Samrerfeld's condition of radiation at infinity. Mereover, in
case of scattere s'wi.th e—dges and sharp cormers, it must also satisfy

Bow«vfkamp—l‘i@j)mer edge cohdition.



From the mathematical point of view, geometrical .ijpllc'lty is not
always synonymous with analytical Sinplici;ty,()f primary importance in yhe
mathematical :F_"“ormﬂha:tion are those aspecls of an obstacle and the fiszid
Cin which it is immersed that determine whether the problem can be reduced
o the scalar rather than the vector weve equations, Insofar as the shapes
of the boundaries arve concerned, any shape which is readily expressed in

“errs-of suitable coordinates is mathematically sinple,especially if the
apprepriate coordinate system is cne in terms of which the wave equation
15 seperable,

Ixact solutions to the wave equa't‘i ong are pO‘:‘”lblc by the classical

method of separeation of variables for only in a very few geometries, such

1 .3 s 5,8
25 clroular Cvli_nde“ .elliptical cylladcr 7Y, parabolic oylinder ,strip )

3,9,10 11 .13 . iy

e e . ) 1
mmfinite '-.'Jedg-a ;sphere”™ ", prolate spheroid™ ™ ,circular plate™ ', and

45

B
L) P .

semiinfinite cone ., The wave equation in two dimensions and three dimen-
siong can be separated in any coordinate system which is a conformal tren-
sform from the rectangular system. They ave separable in all the 11 co-
ordinates, 1isted below rectanguliar,circular cvlinder,elliptic cylinder,
parabolic oylinder,spherical,conical ,parabolic,prolatespheroidal ,oblate
spheraicia_l?ellips-oi_da.]_., and paraboloidal corodinates.Therefore, the nunber
of scattering problems that can be sclved by this classical method is

7

severaly limited. for other configurations, various approximate methods

such as pertubbation,variational ,geometrical and physical optics and the
geonetric theory of diffraction are used. .

The whole class of problems of scatteri ng has been divided acror-

ding to the wavelength of the electromagnetic wave and the dimensions of
the scalterer into three regions: the low frequency op P\ayleigh region,
tha mid-frequency or resonance region and the high-frequency or geoimst-
rical optics region., The regions are not watertight compartments. but are

juat convenient designations. Again no one sol ution, not even the harmo

mie solutd of separation of variables method is satisfactory thmughou.t
ithe whole range of the fregquency spectrum. In the mid-frequency or resonance

regicn, the dimensions of the scatterers arve comparable to the wavelength
of the incident e-m wave. Neither the low-frequency approximations used in

S
I

the Rayleigh region ncr the asymptotic methods used in the high-frequenay
region are quite valid in the mid:»fmqumcy range.With the rapid develop~

mentt in the radar techniques Sﬂ‘d echnology,with an ever growing emphasis



on "weapons systems' d \.,.:l{:.u in which all aspects of the poperational use of
an aircraft or missile are considsred in the conceptual stage and with the
ever-increasing effort in space explorations 18 by sending vehicles inte outer
space, 1t has becomz il the more urgent to find solutions to scaltering
problems not only in the whole of the frequency spectrum but also for sca=
trerers of arbitrary size and shape.The availability of high-speed digital
computers has made possible some revelutionary improvement in the analysis
of scat¥arthg and diffraction problems.

In the electromagnetic theory of light,two distinct disciplines are
often used to find the scattersd field.One is the theory developed from the
Maxasellian field eguations swhich are supposed to be valid for ali frequencies.
The cther is the theory of geometrical optics,valid only for Vary high fre~-
quencies.l.e., for wavelengths that are short compared with the gize of the
chetacle.

The gecmetrical-optics solution of a problem is of imporiance for the
radio engineer in that it represents the high-frequency limit of the more
rigorous field rroblem and offten yields quick approximate answers when more
elaborate methods are unworkable. The basic assunpt JOT'l of gecmetric optics
is that an incident ray is reflected by the scatterer as if the latter's
surface were plane at the reflection point.The diffracted rays are produced
by incident rays which hit cadwecz,corﬂ:er:s,mﬁ vertices of boundary surfaces
or which graze such surfaces,Xeller hes proposed an extension of geometrical

optics which inciudes the diffracted rays in addition to the usuzl rays of

]

seometrical optics.A more general apppoctch to the low-fre nuﬁrf“\fwbcattew_nrr

e

T

iag been proposed by Stevenson.

[

Variaticnal and quasi-static solutions have shown considerable
success for soxtterers of various sh:—mec but these technigues have been
limited to hodies which are smallin comparison with the wavelength or are
on the order of one wavelengih in maxcimum diameten, Larjge scatterers ave han
handied with the aid of physical optics,geometrio optics, end the geometric
tneory of diffiraction.These optical golutions provide reliable data only
when the scatterer has a diameter or width whish is larze in L._OTH"UELT‘J_""‘
with the wavelength. !

The linear-eguaticn technique is valid for scatterers of any convex
or concane shape, and the exacdt solulion can be approached simply by enfor-

cing the boundary conditions at a suffici ently large nurbey of points.The




computation time is least for small scatterers but it is reasonsble even fop bodias
of rescnant size opr large size,dependj_ g on the capacit_-./ of the computer.Sciuticns
can readily be obtained for privfectly condu whind,imperfect Ly L,onducmrrf,alﬂ dielec-

tric bedies. IF the body is placed in the near-zone field of a source,the selution
proceeds in the same straight forward mannep as in the plane~wave cage, Thus, the
lirear-equation solution shows promise for the accy ‘rate,eystematic calovlations
for bodies of any materdial having arbitray 1ze and ‘ghape,

In the past years, wirh the m.despread. availability of high speed digital
compilters ,attention has been given to a distinet approach to the scattering problem.
First, a system of lineap equations is obtained by enforeing the boundary conditions
at many points within the scatterer or on its surface Next wich thw aid of a digital
computer,this system of equations is solved to determine the currverds distribution
- on the swface or the coefficients in the mode expansion for the scattered fie 1d.

Finaliy,the distant scattering pattern can bs canputed.

e

Since its concept: ion,radar has been a use ful tool, helpful in providing
solutions to numerous prc:blemﬁ;,i?ﬁ}ile cne of radar's earliest appiications was that

of simple target detector as used b ‘the m_lu.-- Y. radar has since evolvaed into a
Ty

sophisticated 1ool often used for probing and ]nT.GT‘T‘UF‘LLlC;I‘ remote objects and

seenes. Presently radar is being seriously considered as a potential tool for

vemotely sensing oroplands and foresta Trom satellite.Upon the development of radarp
during World War 1T, radar cross section(RCS) reduction was and continues to be '\3’8“ 2]
a3 @ passive technls e for reducing detecaability.The two major teols used have been
radar absorbent material (RAM) and target shaping.The target can be oriented o as to
minimise the probability of the radar lying along these sensitive angles,target shaping
rem2ins a useful tool and the combinal ion of RAM and shaping can often be explainaed
when neither can satisfy the desird objective alone, '

Radic signals of decameter wavelength resonan antly scattered from waves on the sea
surface are used o measure precisely the wave.length3fxequenczy,and direction of travel
of these waves.These measwements are not only important in themselves, but are also
used to dedice currents, swinds, and par haps wind stress at the sea Sut‘face.Micmwa‘_fe
radars con provide reliable messiupe ment of low wind Speed.An altimeter incorporated

into Skylab programe i being used to deduce the gecld to an acCuwracy approaching

-

1C om by measuring the round trip delay ting of pulee transms Tted from orbiting
satellite to the mwface of ﬂle ccean, A two dimensional image of T.EI"I"d.LIJ can bs

constructed by crogs-track t terporal processing and along-track Doppler precessing of

.

5




the radar retwn using synthetic aperture{3AR) with broad beam antennas,
These will enable us to beltter understand oup planet and to obtain tangible
benefits such as routing ships away from damaging seas, and to construct
more reliable long range v cather p;‘:edic"tioﬁ ncdel,

In the line~of-sight radic communication on very shori waves the
field &t receiving point may be broken up into that of the divect ray amd
the ray reflected from the surface of the earth., In the case of a smocth
earth the field may be accurately computed; non‘nally its phase is such that
the total field is diminished by it. The terrain between the terminals of a
commnication path, howsver, is not usually smooth and absznes of a reliable
theory of rough-surface scatterer the field strength at the receiving point
cannot be accurately predicted. If the comminication path lies above the
surface of the sea, the scattering surface will not only be rough, but  in
addition time-varying; the received signal will therefore fade and the
character of the fading will be affected by the form and movement of the
water waves. In tropospheric propagation, very short radio waves are scatter
ed beyond the horizon by the rough layers in the atmosphere; as they are in
‘COITS"EE:U‘L'L“ movement, the instantancous field strength beyond the horizon will
rapidly fluctuate. Similarly, short waves are often scatteved by lrregular-
ities in the lonosrhere F layer instead of being reflected by a smooth
ionosphere, :

| In radio astronomy, the surface roughness of the Moon estimated by
studing *the distortion of the redar pulse badescattered fram the Mocn  to
the Earth . ‘

In acoustics, the sound engineer often endeavours to make acoustie
field diffuse by scattering sound waves from rough surfacesz, Analytically,
the case of sourd wave ic simpler than that of electronagnetic waves because
the field of the latter is given by the solution of the vector wave equation @.
whilst the acoustic field is given bj the solution of a scalar wave equstion

A large nunber of papers have bsen published on the subject of scati~

eping :Specj-a]-—ly in the last 25 oA Momtr mvvreosd soemeemde 1 A L 0 -
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Brief Literature Roeview

On Getober 30, 1861, A. Clebsch, one of the greatest mathe-
naticians of nineteenth century(i833-1872) completed a &8 page
memoiril9 in which he developed the mathematical theory required
to goive by the method of separation of Variables, the olass of
boundary-v&lue problems in which a wave propagating ‘in a elas+tic’

wdium impinges upen a spherical surface. However, the mathematical
ingenuity of this master craftsman was doomed to lie buried within
the pages of one of the leading mathematical journils‘of the middle

cf the nineteenth century. This iz a forerunner To the famous elec-
]

3
tromagnetic theory of Maxwall“a.

In 1871, Lerd Rayleigh (1842~1919) was interested in Tthe zca-
ttering of 1g1t by particles in +the earth's atmosphere, andconceived
of a sphere as being the simplest model for such scatterers. The

croginal studies of Rayleigh,wars based upon the elastic-wave egua-
19

tions, Rayvledigh pointed out the exact solution for the scattering

of sound by a sphere. Soma of +the nathematical toonls which he needed
20

were taken Irom the source.of a paperpubiished lier by Stokes®",

Some of the materials from the 1877 paper were included in the fipst
edition of Theory of Saundzi.This treatise is also important in the
history of the scattering of waves by a circular cylinder. In this
book, Rayleigh lavs the foundation for this geometry by showing how
to szparate the wave'equation in ecircularv~-cylinder co-ordinates.
L.Loventz was a brilliant mathematical physicist whose work in
diffraction thecry is a superb example of the mathematical prowess of
the analysts who tackled problems in mathematical physics during the
last half of the 19 th century. His memcir of 18837 represents .an
attempt to study the propagation of light in concentric spherical
shells, In 1890, the year before his death, he published his classic

memoir 'Upon the reflection and refraction of light by a transparent

R T T 23 . -
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There weére othre scientific workers such as Lamb yThompson
?7,28,29,30

9
31 ... 32 I 3%,35,36

Walker26 NJCNOTSOﬂ »Bromwich™ " ,Mie” " ,Debye JHatson s

00

and White" " *Mie was the first +o compute complete numerical values

from the complex analytical expressions.Debye de veloped the mc*hod

of steepest descent which was earlier originated by Riemann®®.White
extended the method of Watson transformation and obtained a scluticon
in terms of a contour integral containing of the reflected awve plus

a residue sebies which Oon+d1nﬂd that are lmLC” known as the !'Creep~
ing waves'.The classic computations of prouqun,Doodson and Kennedvsg
in the case of a sphere are worth mention because of the superhuman
labour they had to undergo as they did not have access even to a desk-
type caleulator, not to speak of modern high speed computer,which
could do all their calculations in a few saconds.

A very significant study wes conducted on electromagnetic wave
scattering by integral equation method and integral/variational method
by A.M. Putwary 11 his Ph.D,. the81suo which has immensly contributed
to this field.It contains brief literature review on the subject upto
1967 having 13% important references.

A bibliographyui consiste of 1420 refervences from over 275 jour-
nals and other sources in the open literature,and represents contri-
bution from over 1??r authors compiled at the Georgia Institute of
Technology for the tlme period 1857-1964,

During the early fifties, two new developments gave an added
impetus to the sclution of problems in scattering and diffraction.One
of these is the celebrated variational formulation by Levine and
Schwinger, and othey is Kellevr's development of the geometricail theory

of diffraction.The fact that an integral equation can be formulated as

a variational prineiple was stated as early ag 1884 by Vo}terraafbut
it has not been used fop practical calculation in scattering problems
untill when Schwinger discovered that the amplitude of the scattered is
ciosely related to the q antity whose variation has to be considered,
In a serics of paper-s12 ° Levine and Schwinger demonstrated the power

of the variational method in solving the problem of diffraction by an

aperture in an aperture in an infinite plane screen, using veny simple
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trial functions.They expanded the field in a set of functions and
solved the simultaneous Linear equaticns resulting from the vari-
ational principle for the coefficients. Their variational solurion
of the circular aperture problem agrees quite well with an earlier
exact solutién due to C.J BOQNAAmpl“. Following Levine and Schwin~
ger's formulation, Huang et alls gave a variaticnal soluticn for

. LE I
circular and elliptical apertures. In 1850, Papa published his
paper on diffraction by an infinitely long circular cylinderusing
variational méthod. The most extensive work on circular conducting

=
. . . .o 47,48
cylinders has been dene by Xodis using variational method ' %,

. .. H9,50 . . ; ) .
Kouyonmijian ? used a variational method to determine an apnpiro-
5 J : : BT

ximate formula for the back-scattering cross-seetions of the thin
C
, , 51 , ‘ S . .
wire loops, In 1855, Cohen found out that solution in scactering

problems using the stationary property of the 'Reaction Concept!'.

One of the earliest and perhaps easiest method of computing
the scattered field and scattering cross-section of objects that
are large compared to the wavelength, is the method of geometric
optic552’53; It makes use of veflected and refracted rays in des-

cribing the behaviour of electromagnetic waves. The basic assump-

ticn of geometric cptics is that

Al

n incident ray is reflected by
the scatterer as if the latter's surface were plane at the veflec~
tion point. The diffracted rays are produced by incident rays which
hit edges,corners, or vertices of boundary surfaces or which graze
uch surfaces., Schens edd obtained two covrection terms of the
Luneberngline series in axial backscatter from a perfectly cen-

. . . . ; . 51 . ab
ducting semi-infinite body of reveiution. Bremmer ,S9ilegal et al

(41

and others have utilized physical optics approximaticn to solve

several diffraction problems at high frequency end of the spectium.
57
T . - s s 1
Keller™' has proposed an extension of geometrical optics which

includes the diffracted rays in addition to the usual rays of gen
matrical optics. The geometvical-optics solution of a problem igs of
importance for the radic engineer in that it represents the High-

frequency limit of more rigorous field problem and often yields

‘quick approximate answers when more elaborate methods are ynworlk-

able. A more general approach to the Low- frequency problem has been

58
proposed by Stevenson™ .
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In the last two decades,the widespread availability of high
speed digital computers revolutionized the method and scope of hand-
ling scattering problems. The scattering problrms for scatterers of
arbitrary shape and size,and an accurate solution for the mid~frequ-
ency range which were thought to be beyond thé range of exasct theo-

ritical analysis,can now be numerically solved substantially in an

.exact manner, using integral equation techniques. In 1863 Mei and

Van qudei59 50 cuiated the surface current dsnsity and scattepin

cross-section of perfectly conducting infinilely long rectangular

- ., b1 W s . L
ylinders. Banaugh and Goldsmit solved the problem of diffraction

of steady acoustic waves by surfaces of arbitrary shape using integ~
oo .
. - - \ - o +
ral equaticn method, In 1864, Andreasen ©° gave a numerical solu-
ion for the associated preblems of e.m. wave scattering by infinite

. . . . . G4 .
parallel cylinders of arbitltrary cross cection. Rishmond obtained
solutions for arrays of

l'
calculated®” the field distribution induced in a dilectric cylinder

infinitely long thin parallel wires and alsc

P R . 56 .
of infinite length using numerical methods. Waterman has publisghed

a matrix formulation of electromagnetinc scattering for solving the
surface current density and the scattered field of a smooth perfectl:
conducting azially symmetric obstacle. In electromagnetics,the dis-
cretization for transforming an integral aquation to a matrix equa~
N . _ . - . . . e ; . 69,70 -
tion is comnonly accomplished using pulse function as a basis .

lwo new methods termed 'plane-wave correction' and cylindrical-cell

correction' are developed for improving the convergence of moment-

method sciution in eleﬁtnomag etil csli. Mull Ln,gandbnrg and VellineTT
calculated the monostatic and bistatic eross~section For perfectly
conducting infinite cylinders of arbitrary shape using point match-
ing technique.They obtained a fourier series expansion of the sca-
ttered field in terms of Hankel functions, and then satisfied the
appropriate boundary conditions at a finite number of peints. The
Fourier coesfficients were then obtained by matrix inversion.

There are several numerical méthods available for the problem
of scattering by dieclectric bodies of arbitrary ShapcJu 68.Ambng
these methods the extended boundary condition (EBC) method 72 ori-
ginally developed by Watevman is particularly effective when applied
to a homogenzous and isotropic dielectric object of convex and rela-

Fy

tively smooth surface, Barber has applied the EBC method to an inves-
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tigation of the differential sec cattering characteristics 7O,and the
internal resonance absorptlon off dielactric bodies!u. Az for the
cylindrical dielectric objects, the relatively simple integral
equations can be obtained from the usual surface boundary conditions
New integral equations developed by prwt*IS 76 which is applicable

in the exterior region of the circumscribed cirvcle.Radiation patterr

. . X 77,78 79 .
from dielectric rod antennas' '?’ ; composite dielectric bodies 5 NG
. g- 80
leossy multilaver bodies have Dbeen investigated.

a
Electromagnetic sc attering from a moving body generally is
very difficult problem to solve. Due to the motion of the scattarer,
the constitutive relationships at a fixed position in space will
then vary with time, thus introducing medulation in the scattered
fields., To make thing worse, the boundary conditions for a moving
bedy ars more cemplicated than thosa encountered in problems invel-
ving stationary bodies only. The scaftering of linearly polarized
electromagnetic waves by a slowly rotating rectangular metal plate
is investigated theoratica 1ly and eﬁrerlmcn+ally Recently, similar
problems have been discussed from the point of view of radar signa-
ture appliications. Back scattering of electromagnetic sienals by
rotating or vibrating short wives are discuased-theoretically 81’82,
Limited theoretical and experimental results on bistatio and mono-
staiié scattering of plane electromagnetic waves by a slowly rota-
ting conductin ng wire of longer length have been “ophrieu': . The
scattering of el ectromagnetic waves by linearly oscillating conduc-
ting ‘objects is analyzedau. As long age as World War IT, signal
modulation by the “oLdtlng blades of an aircraft were observed and
studied experimentally Q, Recently a& quasi-staticnary methed in
coenjunction with geometrical theory of diffraction (GTD) techniques

i1s used for caiculating the backscattered field from a large vrota-
. . Qo - e . 86
ting conducting cylinder with arDLTrary cress section o,

ASyMDtOti” approximation is very useful tool in studing the

scattering and diffraction of an electromagnetic wave, since it is

rather insensitive to +the shape of the scatterer, its expression is
usually uzmple easy 1o evaluate numerically, and it sometimes admits
simple physical int erpretation. Zitron and Karpﬁ/ proposes a higher

crder approximation method in muitiple

CFJ

cattering by two cylindrical

obstacle with an arbitrary cross section (ZK method) . Complete



asymptotic expansion, which is a convergent series, was given by
Twersky88 and was applied by Young and EerflsrandBg for two circular
cylinders. Another method to derive an approximate golution for
muitiple scattering has been developed by Karp and Russak ( KR

ethod ) 90'. It is found from the numerical results for the sca-
ttering cross section for E-polarization, the ZK method gives very
precise results even for rather large ka and small kd, where a is
the radlus of the cylinder,and the KR method is extremely accurate
when applied to a thin scatterer, and can only be significantly
improved by the ZX methodgi. |

The records of these years is something to be proud of in

scientific applications, in engineering and in business enterprise.
After all, we were able to build well on the foundations of Hertz
and Maxwell. Thetechnical papers demonstrated that great stride
have been made in theApast vears and provided a clear picture of
how varicus infant aspects of microwave technology have matured. At
the same time, however, they also illustrated the enormity of work
that yet remain. In effect, old challenges have been met and
congquered, but new cnes ave censtantly being created. One may

congider this situatlon as the existence of a 'Technical Medusa'.



1.3 CCNTENT OF THE THESIS

This thesis contains com puter sclutions of microwave

problems. Under the heading of microwave problems two most common

o,
4]

phenomenon had been discussed. Cne is the electromagnetic wave

-
=~

propagation through waveguide of different uniform hollow
waveguide of arbitrary cross section . The other one is ‘the
scattering of electromagnetic wave illuminating a cylindrical
cbetacle of different radius and having different incident
angles of the impinging e.m. waves.

Chapter 2 describes concisely the scalar wave equation
starting from Maxwell's equdtions <Applying proper boundary
conditions e equation for the scattered field has been formulated.
lhese simultaneous squations are convenien ljirepresented by
the matrix.This matrix has been solved by Gaussian method of
elimination, Solving that matrix we obtained the cocefficients
of the Hankel series.From fhgf series Radar cross section and
field pattern outside the scatterer has bean obtained for
direet methed. _

Chapter.B-contains the gcattering problem using finite
element method of different Fforms and the finite diffevence method.
There we have founﬁ the radar crcss section variation with the
incident angles,nature of variation of Hankel's coefficient
with the length of the Hankel series.TField variation in space
outside the obstacle arve shown with phases and amplitudes.

In chapter U waveguide problems had been discussed by
different methods namnely 8 point finite difference method,5 point
finite difference method,finite element method trianguilar shaped
and finite element nethoed rectangular shaped.Here effect of mech
glze, iteraltion number,initial values ave comparad for rectangular

shapead wavevlLip of diffevent aspect ratios.These are also calc
lated for single ridge waveguide and double ridge waveguide for
all those four methods.

‘Chapter &

Chapler & contains the biblicgraphy.

o

contains the conclusions and recommendations and
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CHAPTER 2 SOLUTION OF SCATTERING FROM INFINITE
CIRCULAR CYLINDERS BY DIRECT METHODS

2.1 Preliminaries

Bigtatic radar cross section has been calculated for perfectly
conducting circular cylinders with different diameter and variocus
incident angles of the impinging electromagnetic wave.The two=dimen-

sional scalar wave equation is derived starting from Maxwell's equ-

ations. A set of linear equations is then obtained by setting proper

boundary conditions.The matrix is solved by Gawss elimination methoc
to find the coefficients of the Hankel series.Then radar cross-sec-
tion and electromagnetic field pattern outside the scatterer 1s
calculated . '

7.2 Deprivation of the Scalar Wave Equation

The starting point for the golution of any electromagnetic

boundary value problem is the Maxwell's equations.These are given D:

-3 B/ dt | ¢ 2.1)

yxE =

vxH ==~3D/ 3t +J (2.2
v.D = P ( 2.3)
v.EB o= G " | C 2.4 )

where E 1s the Clectric field intensity, H is the Magnetic field

intensity, D is the electric displacement, B is the magnetic induc-

U

tien, J is the current density. v x and V. are respectively the
curl and divergence operators. All field quantities are considered

~jwt

0 be varying sinuseoidally in time according to e where w=2 7f

f being the frequency, t, the time and 3 is the imaginary unit

vector, has..the property that i2: ~-1. The term e-th igs suppressed
butlis unde}stood throughout. It is further assumed that the para-
meter, .y and ¢ , are respectively the permeability and the permit-

tivity of the medium are independent of time. Further assuming, a



free space with zerc conductivity and constitutive parameters u,

e are independent of position.Thus,2quation(2.1) to (2.4) reduces tc¢

L2 B (2.5)

= k2 H | (2.8)

1]

VxVx

VuVx

= it

where k is the propagation constant, has the property k =w/c =
ew/Ax =/ w?ue for free-space propagation.

The sclution of general scatteving problems consists in solv-
ing equations ( 2.6 ) and ( 2.5 } , together with the appropriate
boundary conditions on the surface of the scaltterer. The solution
mist also satisfy_Sommeffeld's radiatiocn condition at ihfini}y for
proper behaviocur. The Dboundary conditions for perfectly conducting
scatterers are given by ' ‘

At the Junction between two medila, the boundary conditions”are,for
an E wave In the absence of surface magnetic currents, .

1. et continuous
2. C 1/u ) ( ahtfan }  continuous

At the surface of a perfect conductor, the bbundary condition redu=-
ces to eg © 0. Then the surface carries a z-oriented electric
current under time-harmonic conditions.

The boundary condition for an H wave at the surface of a per-
fect conductor produced by transverse electric currents are, for
time~harmonic phenomena, the external field satisfies the condition
3l /on = 0,

n

2.2 Scalar wave equation in two=dimensions

A two-dimensional problem is defined to be one in which there
is no variation in one coordinate direction.The geometry of the
scatterers under consideration is shown in Fig.2.1l. The ,eylinder

is infinitely long and the axis of the cylinder coincide with the

[

~axis, Under these assumptions,therefore, there is no variation

in z~direction, i.e.,



BB A _ (2.7

and the reduced wave equation for two dimensiconal problem is

given by

Vt2¢ + k¢ = 0. ' _ o (2.8)
wherelvt is the two-dimensional Laplacian operator. Hence forward,
we shall drop the subscript 't' from v, - for the sake of simplicity

t
The part of the boundary condition which is common to all
scattering problems is that, at large distances from the scatter-
ing reglon, the scattered field auproaches a wave diverging from.
a point source located in the scattering region. And this Sommer-
feld's radiation conditieon for two-dimensional problem reduces to
3¢

1im /Rl Yy ik | = 0 ‘ { 2.9 )
R0

2.3 Formulation for the Scattered Fields

When a plane eleétromagnetic wave Impinges cn a. scattering
body, the simple relation between the electric and magnetic fields
of the plane wave in free space is modified due to currents inducec
in the scattering body. These induced currents will radiate scatt=~
ered_fields both interior to .and exterior to the body, in such a
way that the well known boundary condition for the tangential
‘electric and magnetic fields -at the surface of the scattering body
will be satisfied. ' ' o '

f Considering an incident elébtromagnetic wave Ezl impinging on-
the closed, perfectly conducting surface r of Fig.2.2 in otherwise
free space,it is assumed throughout that r is sufficiently regular
that Green's theorem is applicable, and that r possesses a contl—
nuous, single-valued normal E_ at each point.
' For paraliel polar17atlon. all field components can be gene-

rated from the electric field EZ along the cylinder axis. This



el6

field component must satisfy the homogeneous scalar wave equation
{ 2.8 ) with Dirichlet boundary conditiongEZ = 0 con the contour of
the scattering cylinder. Since the dylinder is assumed te be infi-
nitely long in the z~direction and perfectly cbnducting, the con-
seqguent scattered electric field has also only a z~directed compo-
nent, EZS . Therefore, the nature of the field is scalar.The total
fieldg Ezt at any pecint on the scattering contour or outside is

given by

L = B+ E° B ('2.10 )

where Ezi and EZS are, respectively,the incident and scattered
fields. At any peoint ( r,¢ ) on the contour of the cylinder or
outside ( Fig. 2.2 ) , the incident field for a unit plane wave
is given by, ' '

E = e ¢ 2,11 )

i ko Cos(¢+¢o)
- ,

Its circumscribing circle fbuching the conducting cylinder is

identical with-its contour. We can obtain an infinite expansion
for the scattered'field‘EZs, valid on the circumscribing circle
and outside -it, in terms of Hankel functions of the first kind

]

and exponential functions as follows

b0

s ~ (1 3 '
£% = 5 3 BY (kpy ed09 ( 2.12 )
"z Neee DD
'Y
This expansion guarantees that the correct radiation condition

at infinite is satisfied, and that EZS

also satisfies the scalar
wave equation ( 2.8 ).
Now the total scattered field is
+ o
+ X

nz -

Jk Cos(¢+wo)

(kp)e ™ (2.13)

Ezt (r,4) = e 7 54

n'n

From the Dirichlet boundary condition EY:O on the centour. of the

s

conducting cylinder, we get
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Rk

N=12
AP =15

fig. 2.6 INCIDENT ELECTROMAGNETIC WAVE
ON A CONDUCTING [NFINITE CIRCULAR
CYLINDRICAL OBSTACLE.



: P is

. ' + @ ' . ' -
St yLadkr Cos(P W ) o — (1), in® 4
E, (ro,qb)uv o D o rn:maéan (kr _Je’" p =0 (2.13)

Solving the linear equation (2.13) for different pointsﬁé' on the

o]

boundary we can complete the Fourier. expansion coefficients in
equation ¢ 2.13 }. But to solve these infinite numbers of unknown
coefficients we have to solve a matrix of infinite dimension. For
practical purpose we can truncate the infinite series and thus
making that matrix equaticn less complex, requiring less memory

and computing time.

| 3 N, :
o t(r ,(%)-e]{r Coa(q%+q))+ v 3 H(l)(kr )e]nc% . (2.44)
7 s ~N+1 ©

In this way some evror is being introduced but the éonverging
nature of the series introduces reasonable amount of error depen-
ding upon the shape and size of the scaltterer and the number .

To solve this 2N unknown complex coefficients we nesd to
sclve 2N numbers of complex equations, that is we have to +talke 2N
numbers of peints on the contour ¢ of the scatterer. Solving this
complex matyrix of order 2N x ZN we can find the complex coeffici-
ents of the fourier coefficients of the Hankel function.

Once these coefficients can be obtained we can calculate
scattered field distribution outside the scatterer. Now we <an
alsc calculate scattering cross section of the cbstacle in any
direction , for any incidence angle of incident field\FO.The

back scattering or monostatic cross section,CTB is given by

BN . .
- Wl - W

o, = — | = a (¢) eIttt e o’ | : (2.156)
el B '
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2.5 Development of the Matrix

Approximaticn of the operator Y over a finlte set of points
at which the field is to be computed as in finite differences o
approximation of the field estimate as in variational methods, or
in direct method, causes the problem to be modeled by simultaneous

equaticns. These eguations are convenilently repr egenlted by matrices.

o

pasically we obtained a 2N x 2N complex matrix to solve the problem,
It was converted to UN x 4N real matrix by sepavating real and ima-
ginary components of the fourier aoefficients and also separating

real and imaginary part of the linear equations.
2.6 Solution of the Matrix

To obtain a solution, we must employ a process that produce
the required accuracy in & finite number of steps performed in a
finite time upon machines having finite word length and store,There
are various methods for solving a matrix equation in a digital
computer.They can be DPO&GL] classified into two categories: direc
and indirect m@tnods.Among the direct methods, there are Gaussian
method ,method of principal'elements, inversion of matrix, square
root method, scheme of Khaletsky and many otherd..ﬁmong the- -ite-
rative methdéds, we can name Jacobi iterative, Gauss- Scﬁd:l, maethod
of successlive over relaxaticon and many others.For this particular
problem, the Gaussian method of elimination has been used to solve
the problem,

This is one of the most popular algorithms, a seguence of

mathematical pbrationsﬁ fer the solution of systems of linear

equations .It cosists of two parts ~ eliminaticon or traingulariza-
tion and back substitution. In this methed only n”/3 multiplica-

tions are required to solve a system of n real, linear equations.
This simple procedure glosses aver certain difficulties that may
occasionally occur. If one of the pivots is zerc, it is impossible
to employ it in clearing out a column. The dure is tc rearrange

the segquance of equations such that the pivot is non zero . One

can appreciate that even if the pivot is nonzero, but is very small
by comparison with other numbers in its column,numerical problems.
will cause error in'the solution because of the limited word-~length

‘atrmra



TABLE -2

ation of Radar Cross-3ecticn with Obstacle radius

Vaxi

o N= 6 N= 6 N= §
i o180 T0=0° 70= 90° 70= 0"
3.0 1.05212 1.05149 1,05135 1,03025
35 1.04738 - 1.04525  1.04547  1.04015
4,0 0.94272 0.55336 0.95263 1,11838
4.5 0.086453 0.66491 0.06464 1.014G7
5,0 0,77365 0.77356 0.,77402 1,0112¢
5.5 1.01232 1,01149 1.01025 1,0387¢6
5.0 1.71422 1,71408 1.71403 1,12021
6.5 2.60604 2,60464 2,60194 1,16106
7.0 3.16102 3.16586 3.164506 1.07939
7.5 3.05555 3.06151 3.G54963 0.70421
5.0 2,34831 2,35207 2,35059 0.30042
5.5 1.41745 1,41927 1,41852 G.33726
6.9 0.56046 0.67115 6.66942 1.,.0582G
9.5 0.25536 G.26520 G.28520 2,2526%
10,0 0.18568 ©.15114 0.15221 3.40503
10.5 U,17066 G.170%% ¢6.17071 3.959490
11,0 0.11550 0.12062 ¢.12617 3. 05347
11.5 G.04738 ¢. 04711 G. 04734 3.,22306
12,0 ¢.03703 0.03744 0.03765 2.54730
12,5 0.13138 G.13114 ¢.13129 2.1415%
13,0 ¢.27720 0.27723 0,27724 2.0v1:85
13.5 6.30656 0.35054% 0, 306GAL 1.97112
14,6 0.,42175 G.4212y G.42142 1.76276
14,5 0.43400 0.43312 G.43352  1,41172
15.0 6.51286 G.511473 0.512731 X
15.5 0.,70137 G.70074 V.70127 G.63415
16.¢ C.95654 0.9569% 0.95717 x
1505 1,18561 1,13501 " 1.1:57%5 0.40103
17.0 i.31680 1.31571 1.31668 0.3573¢ .
17.5 1,355G3 1.35625 1.35564

ne 6

G.26256

ST,



Variation of Ladar Crosgs Bection with

e
To= 0°

U.57231
1.06251
G, 90421
1,02736
1,02563
1,01245
G.95400
C.9U081
1.G4319
1,22993
1.42955
1.36255
0.93015
G.35043
G.0576%

047567

1.4%4014
2.538430
3. 35200
5.53377
3.24500
X
2.63166
2.53066
1.954%25
2.938636
2.53584
2.0252¢
1.59525
1,35y82

TADLE - 2.1

Ne 10
0 = ¢¢

1.03419

-1,064013

1.01575
U.40212
3.24800
1.01307%
1.017u3
1.61733
i1.00u20y
C.9451¢

0.90757

1,01041
1.3356¢
1,74792
1,89351
1.52425
C.7930%
0.14541
G, OA556
G.5796G5
1.40353
2,2087¢
:
2.580516
X
2.83993
3.247570
3.60374
3.46762
3.34540

( Continued )

1.89369
1.01263
1,3347¢9
1.3945¢
1,40665
1.60771
1,013%40
1.61%4¢
1,01232
1,02261
1.63860

1,01309

G.87254
U, 77658
U.ug271
1.37415
2.08504

2,48450.
2.3451¢4 .

1.562251
G.73072
0.08792
oxmém
C.46754
V. 96042
1.27040
1.5121¢
1.545%0

2,78728

Ubstacle raiins

1.03234
1.00465
0.92494
0.95280
2,0622yy
1,211
1.01754
1.006861:
G.97254
1.00186
1,02517
1.04506
1,67661 .
1.62803 .
0.64103
0.57766
G.67564
1.22604
2.13931
3.13336
3.30704
2.6502¢
1.665685
G.701473
0.11738
0.02139
©.11709
X

X



Ay

T/DLE ~2.2

Variation of ltadar Cross Section withrihcidence for RK=3. ,N=6

ot BSC ot . BsC ot BSC -

0 1.05137 35 1.0ko87 75 1.03631
5 1.04936 40 O 1,08074 GO 1.05135
10 1.04115 45 C1.03638 105 1.03660
15 1.03575 50 1,63502 120 1.65113
20 1.03866 55 1.04675 135 103355
25 1.04550 66 1.65161 150 1.04016
30 1.05111 ' ' 160 1.05212

i, Co I ,
e 1s the incidence angle in depgree

B3C is the lladar Crsss Becticon

- TABLE «2:3

Variation of Ladar Cross Section with N » Tor BX = 3.0

N ei= 0o ei=90°

6 1.05137  1.¢5135
7 1.04772 1.04551
g 1.03625 . 1,c5251
G 0.97231 0. 94052
16 o 1.0341% 1,08841
11 1..89369 1.19673
12 ' 1..0%234 1,01411

1nei dent

8" and N identifies mesh angle and the Yinit of Hankel series

97



Hankel coefficients for RE=5, with incidence angle -1,

o

& P
o = o

o]

N

o]
e

ol

o

[

()

joi]

-~J

o

[ae}

Hankel coefficients for:RK=4. with

P oo

o
]

A

4"
-

o

18]

]

[

Pp @
oo~

]

(o]

alO

a

a

=0

i1
i2

TABLE - 1.4

Inaginary part

Real part
G.24500 ‘ao ~0.43277
G.49627 1 Gi90146 a; C.76433
¢.119491 ao ~0.10677° a, -0.03762
0.22038 8_3 -0, 46341 a U.90176
-(.52593 a_, -0.22695 a 4 0.35099
-0.36152 e_g -0.11639 a 5 -0.34460
¢.01756G a_g  =U.U7933 3, -0.17736
0.03451 a_o . =0.03701 a, -0, 03161
-G.06001 ag -0.,0019¢
TABLE - 2.4

Heal ﬁartr
0.21016 7
U.83845 a_y 035616

-0.23101 a_g C.567GC83
0.28702 2_3 -0.32436

=0, 40804 a_, ~t.80092

~0.86132 _5 ~G.62012

~0.11708 a_g -0.36007
G.11622 7 —O.i6?15
0. 05066 a_gy  =0.05006
G.0u919 2 g =U. 00914
G.00u50 10 -—06.006079
G.00L03 a_jq =0.00002
0.006049

Imaginary part

G.41321

0.009G4
G.65019
¢.15186
G.87356
-(.,18277
-0.48569
~-0.14974
-0, 00609
G.0U359
0, 00696
0.00G13
0.00002

8_10

a

-11

radians and N= §

~0.1333%4
-0. 05612
=G.00434
=0, 86808
—054857¢
-0,15972
-0, 02796

incidence angle 1. raljan ani

-0.76379.

~0.268u6
-G, 05419
-U. 53314
~G.6224%
=0, 34645
-0.093566
~G. 00505
¢. 00368

0, 60104

U, 00014

N=

12

23



-0 e

T/BLE - 2.5

General data for Hadar Cross Section

. . i, .
Incident ZAngle ¢ in radians

H N 0.0 0.5 Lo -05 - 1.0

3.0 6 1.651%7  1.04 1,04 1.65110  1,c5472

3.0 & 1.04416  1.048405  1.04716 1.05250  1.04456

3.0 12 1.05010  .1,04247  1,03794 1.04318  1.c4601

3.0 16 1.12700  1.14640. 1.07490  1,60700  1.04001.
4.0 & U.96397  6.968551  1,01641 0.9671%  1.60158

4.0 g 1.03951  1.023%¢ 1.03044 1.01954 1 G200

4.C 12 1.03660  1.03461  1.02995 1.01915  1,02%92

4,0 16 - 1.02856 1.02262  1.02176  1.02110 1,02651

5.G. 6 G.77351  0.89965  G.73367 G.62674 C.7420

5.0 3 1.01217  1,630673  1,02693 1.061556 1,62567
5.0 .16 L.07389  ©,90692 . 6.56068 © o.6605G G.56547
6.6 & 1.71377  1.5¢ 1.68.

6.0 G 1.11686  6.85766 0.459%1 G.964552 G.95733
6.0 12 1.01250 1,01626  0,99964 1.0162g 1,01435
6.0 1% 1.02301  1.61357  0.98757 1.02714 1.01652

4 is the obstacle radias in terms of wavelength and

N identifies mesh angle and the linit of the Hankel series ,
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Fig.2-7 . Phase and ._Flm}pliiu:!;g of Sield variohon

ovutside the scotfterer.



2,8 Discussiocn

Radar cross sections calculated by Direct method are very
much satisfactory.These results are shown in Table 2.4 .Variation
" of radar crosz section with incidence engle is shown in Table.?2.2..
There it can be observed that, radar cross section does not vary
with incidence angle which is true from thooretical point of view.
Variation of radar cross section with the number of Hankel series
upper limitation taken, does not vary much,which is also reasonable
for convergihg solutions.These are shown in Table.2.3.Converging
nature of Hankel series is shown in Table.?.4.Variation of field
amplitude and its phase angle in for different incident angles
and different scatterer's radius are also had been calculated.
Some of these are shown in Fig.2.1 <o Fig.2.4 .These results are
very much satisfactory.Variation of radar cross section with sca-
tterer's radius are shown in .Table 2,.4,Table 2.5, and Fig. 2.5 .
Here it can be observed that for larger scatterer's radius the
result is oscillating in nature, but when higher number of Hankel
series was taken steady state zone increased and peak variation
reduced.But we could not calculate with a Hankel series larger
than 16 as the memory capacity of IBM system 360 in Statistics
Bureau exceeded.And also for higher order» of Hankel functions
for smaller argument,Neumann function increases exponsntially.,
this -increases the errcr in computation because of finite word
length.Using Double Precision mode in computer this error can
be minimized,but it will require double memory space.We can con-
clude that, within limited computer capacity and facility,this
method of finding scattered field and radar cross section for

circular cylindrical obstacles is very much satisfactory.



CHAPTER 3

SOLUTION OF SCATTERING FROM INFINITE

CIRCULAR CYLINDERS BY FINITE ELEMENT

AND  FINITE = DIFFERENCE METHODS .
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3.4 Preliminaries

Scattered fiéld and rddar cross section of a circular cylin-
a

drical obstacle was calculated by different approximate methods.At
first, Finite element method was tried.Then its simpiigr version
was alSo tried.Next, some different versions were initiated, one
haviﬁg the Hankel variational form and other one ig the concept of

minimizing energy.At last, the finite difference version aws Tried.
s . ’

-

3.2 © Finite Element Method

In finite element methed, the differential operator eguations
which describe the physical probiem are replaced by an appropriate
extremum functional which is variational for the desired quantity
and is written in Fuler density form. A discretised set of linear
algebric equations.is then derived from this variational expression.
In this scheme of grading, a number of vertices is generated and a
set of field values are assigned to these vertices. Within the domain
described by an element, the actuall field function is approximated
by a set of algebric polynomials which are'uhiqﬁely defined over
the particular element under, consideration and which are linearly
dependent on the values of fields assigned to the vert&oes of the
element and which are reduced to zero outside the element.Thus,in
this method, the actual field over the entire domain is approxima-
ted by a finite number of trial sets of algebric functions which
are uniquely defined and differentiable.When the integrations in-
volved in the extremum functional are carried out over each element
"separately, the resulting expression becomes a function of the vér-

tax values of the fields. This is then minimised to the fields at

each of the vertices so as to produce the cptimum values for fields
at the vertices, This type of minimization generates a set of linear
algebric equations which can be written in matrix form.

A triangular shaped subregion or element is considered.This
typical elementl is described by the vertices i , § , m din cylic

order. Let ¢j, ¢j’ P be the values of ¢ at these vertices. Over the
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horor - [N

element 'e' the functional dependence of ¢(x,y) can be written as

*¢e( Xy ) ﬁ o, *ooqgX-t azy (3.1 )

where ao,ai and a are to Ue dpipPNTHPd
N -

/ \\ C'bI'ﬂ

]
vertices i,j,m then the coefficients Cya g and o, be determined from
; :

If ¢ XiaYs ) I G S yj Y and ( X»¥. ) are the co-ordinates of the

the fellowing set of equations.

Substituting for 050 and a, in terms of ¢i°¢j and ¢m we

_ 1 2
obtain
e . _ 1 ) e . - =
¢ (X,yi = A ( a; + bix + ciy)¢i +kdj+bjx+ujy)¢j
e
: : ' e (3.2
+ + X+
( “m bm “m¥’ o
where, a: = x;ym_w ijm
b, = yj - Yy ‘ \ ( 3.3 )_
c; T X, "X 3
and Ay ig the area of the triangular lemenL The equailon can be
wvlTLon in compact form Uolﬂﬂ matrix notation as
6% C,y) = [N 10° (3.4 )

Appling this to wave equation and integrating over the entire

) g1
cross section
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-

1
ra

RS0
<

Vo |2 dx dy -~ k ? $° dx dy} ( 3.5 )
e e

1
T
1]
g

Each element-:contains only three values of b and eaohfﬁi common to
* * .
those elements for which the vertex i is common . If we minimise the

functional J(¢) with respect to each ¢i,

— o (s (‘e 3N, gyfl 1 e,
a(bl é:lk}ﬂe '-LSX l ¢ \ ‘é*;-wj:- +Liy ‘('Pe' ‘“5';1" ) C‘L)C- dy
- ngA ( [NG] [¢e] N, ) ax dy } ( 3.8)

Evaluating +this matrix equation we can get

) ' o .
.. = = ( b.b. + c.c. ) . .
1] YA 1] 173 i (27)
e ) ¢
: : : 1 1
and Ee = Ae oz .2;
' - - (a5)
EREREEY

irespactive of the shape of the triangular elements where

07 = 5% ® - kg' R | o (532)

doe
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Fér fﬁe element number a
bl ¥, T Yy By TV, T Yy b :-yl R
( 3.10 3

= X =X = X, = X co= X=X
S e T 5 Co . -

o
=

v _ 2 .
oo b b, FCI ( Y4 y2) + { X A1)

2]
1§
b
oy
+
0

and so on. Similarly other values can be calculated,

Taking %, = R , X, = R+ 1, X, = R+ 7H Xy 0E Xy = (R+H)Cos &
and y = Yy =Yy, F o, Yg oy F (R+H)Sin 6

Evaluating the whole matrix we can come to the point

|URZ+ BHR + 6HZ - 2(R+H)(2R+2H)Cos e|¢o + | (R+H) (2R+H)Cos 8

-(2R? + 3RH + H®)| §, - 29, - H2¢, + |(R+H)(2R+3H)Cos 8-

( 2R? + 5RH.4+ up? )| dg =0 € 3.11)
From the above equaticon we can compute the field values at four nodes
in term of other ¥ nodes.The field values at nodes 0,1,2,3 are known
in terms of Hankel function with its unknown coefflcients.Applying
the boundary condition to tha computed field value at node we can
cazlculate the unknown Hankel coefficients.Then with computed Hankel
coefficients ,we caleulated the scattered field in the space outside
the scdtterer for different incidence angles and for different

dimension of the scatterers.
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TABLE 3. 1

Bigtatic radar cross. section by Finite element method
(8 point) with DH = .1, '

12

16

12

16

12

1€

12

18

TO in radians

11,61350

O. .5 1. -5 1.
33982 .34952  7.95707  .36747 -36215
7.95854  7.85395  8.06007  7.9463€ 7.88248
_ — 7.99377 - 8.07354
ST BLBBLOB - B.20198  8.52874
_ 'iqm91é44 - - =
10. 00994 15,86497 10.79770  10.79285  10.75671
— ;‘16.95!72 - — 11.00184
- *-'.,, ;‘. - 11022963 11.43346
_ 4.927135} 4;?5110 4,55219 75.09619 5.24127
sel77s - — - -
~ - - - 5. 56006
~ L4553 4.32576  4.97120 4.95748
10.51527 9.95465 90.26036  10.90597  11.09036
10. 35500 1o.45é4p 10.04362  2.98558 10.19745
— . 10.34317 — 10.2?534
10.862%2  — 10.03122 7. 75414

-
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TABLE

A2

Biatatle radar cross section by Finite element method

(5 Point) with DE = .02

12

16

g
e
12
e

16

T0 in Radians

0. .5 1. —5 =1
6.055¥8  8.04956 - - -
7.88510 7.94695 7.96574  7,98888 7. 92665
7.92506  7.86360  7.85003 - 7.94038

— 7.91610 - 7090427  7.91224
10.83409 10.78089 10.72734  10,89261 —
10.66451 10.61567 10.63530 10.61878 10. 65364
10.72848 10,34698 10.25447 ~ 10.86722 10.48604
10,54386 10.5520% 10.53987 10.51884 1051201
4.85107 P 4.576&5 - -

S ass209 s, omsal 9. 52879 7. 74636

~ a i 10.47573  10.53542

Exs
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3.5  Three point Finite element method

Using the simplemost element,3 point Finite element method

hag been tried.

o~ s
P ¢
r‘"‘”‘l" “
! -
LT i,
b e }
e i
! ““‘“\.. } q)
Tl 2
S b, H -~
v
Konwing the field at point ¢1 and ¢? it has been tried to calcu-
late field at ¢ _.0ne of its advantage would be that,it can be appl-
ted to any arbitrary shaped scatterer most effectively because its

simplest shape.In this method, for all radiuvs size and incident

angle the field outside the scatterer and the radar cross sectlon

=
]
L]

was calculated.Whaen the ndd was +he matrix coefficlents became

zero, For this veason some times it was Tthe cause of large errors.

After several atiempt, the column having large number of zeros was

o+

shifted cutside the matrix then to make 1t a sguare matrix some

of the rows wag deleted.

i

Considering the Hankel coefficients as real ,some changed
method was applied to solve the scattering problem.In both of these

methods the matrix was solved by Gauss method of elimination.



_ ' - TABLE -3.5 _ _ .
Hankel ccefficient for 3 point Finite Elenent cetnod, RK =6, , N= 6,
T0 = «1,6 radians and DE = G.1G . : :

’ lieal part Imaginary part

a(¢)  ©.,3039 a{0 G.hé2c

a(l ¢,867¢ a{_1§ 03046 a31 -0.01867 a2_1§ -0.5585
a(2 -0,2401 -2} 1.0072  a(2 1.0983 a{-2) -0.49G3
a(3 ~(L 0133 =3) -0.293%  a(3) -0.2085 a(-3) =u.1560
afh -0.05¢9  a(-%) ~0.7304 a(4; 1.0809 a(-4) -G.pc22
a(3) ~ 1.2626 a(-5) -2.9551 a(s 1.2718 a(-5)  -G,5645
a(6)  -25,0000 ' a(6)  16.3850

: TADLE - 3.4
Hankel coefficients for 3 point Finite Blenent rethod, RE=5., N = 6,
70 = -1.0 radians and DH = 0.10

aio; 0.1414 a{o; ~C.3980 '
a(1 G.5037 ag—l) i,0131  -a(1 0.5730 a(~1) -(,369%
a(2). G.0651  a(-2) -0.066¢ aiQ; -0.0408 a(-2) -0.0343
a(3 0.1550  a(-3) -6.5099 - af3 0.8277 a(-3) -u.9071
a(lt -0, 5455 a{-&} -0.4518 a(4 0.3257 a -4; -G, 0464
a(5 -6.796G  a{-5} 0.9150 a 55 -1.6702  a(-5 0.5368
a(6) 2.0000 a(6 1.5625

T/DLE -3.5

Hankel coefficients for 3 point Finite Rlewernt method, lH=4,, N=8,
T0 = G.5 radian and DH = (.02 PR

lteal part Inaginary part

a{o) G.9956 a afo) *~ -0.0625

a(1) -6.0514  a(-1) 0.2036 a(1) -0.1058 a(-1) -0.113¢
a§2) =0.7637 a(-2) -0.0156 a(2) -¢.3652 a -2) | 0.8463
a(3 U.8345  a(-3) 1.,0236 a3 - 0.0501  a(-3) - o0.2785
a{4 -0,6128 a(-24) ¢.7001 a(l G.46G5 a(-4) -0.3076
a 5{ -0.0231 a(-5) -0.3853 a 5§ 0.1906 a{-5) -0.3248
a%ﬁ 0.609% - (=6) =0.0081 a5 4.0237 al{-5 0.G243
e(7) =0.0000  a(-7) 0.0081  a(7) -0.6222 a(«~7)  ¢.0186
a(a) 0.046G . a(t) -0.1320
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- Ay i e g e i

Raddr . cFess .o-eten obtained by 8 peint finite slement
lothtd uith eanplcm:ﬂanknl qoqffialantc,,dhoulng*ﬂm

laat oﬁef!!oianta ef thcnﬂhnknl sorius

Kl .
i

3:12894 . <2,87 . <0,60
2.93827 = 2,43 <54
15656111 5.0 29,14
93675 b0 ;707
19.40097  -hi0 1186

-
oS

1;57e80

2 o
2 )
52 ifﬁ?ﬂgﬁ
42 | «1:57080

130.77318 . <25, °  10.37
It 0 aee33. 1067,

A

;¥ﬁﬁ»2_ . 1825 ”‘101@}'

.1 ‘—175‘.
.1 ) -ll .

. 1 ;-'\.'-_5 .

a0 e, 3:82398 . . 2.00 1:56
110666 . «i5 = <2.56 .
1:01727 . . 1250 23,25 -
186615 . 237 a1i73
1501996 . '\ 0,069  <.1328 .

® WV S ®F DB D an

© 402 0
02 i&f

@ o



Rudar crcss section, showlng the offect of =

column hsving large zero coefficients

8. 6. 0 .1 Z. 55462 " .48180

d BCS

TABLE 3,7
N RK TO .DH BCS ' Corpecte
6.3 -5 1 2.05945 1.66623
6 3 o .1 1.85886 . 8i70921
6 3 :1, .1 ' 2.28696 .- T 10
6 4. -5 .02 | -34011 ' 130908
& 5. 0. . .3;584 ~ 3.42163
6 5 ;5-,1'  4.20861 . bs25418
6 5 1. .1 .47936 . 1.887m4
6 5 .5 .1 ~ 1.11255  2.28020
6 6. .5 .1 s201.52754 |
6 . -5 1 2170,41040  12.904i2
5; -;sf .1 , 1,26133 1.626117
8 4. 1. .1 1.95686 l.14312 -
6 4. .5 e 1.19938 R.81145
6 5 0. .1  1.32335 1.84922
6 5 1., .1 4.12202 . .47824
6 5 .5 .1 11.80625 7. 85836
6 6. .5 .1 C 14.87997 1.71%63



Radar cross section, after deleting the eolumn

having large numer of %6ros in 3 point FE Method N =g

TABLIE 3,8

RK TO > DH BsC
4. . 1. ‘sl 1,03215
4 .5 1, 47530
4 ;,5 6.11723
4 1 4.03415
4o —5 L .02 4.96412
4 1. '+ 02 00, 70328
6 _1 ooa02 899.18872
6 5 pee 148.58513
6 1. 02 | 5.é2899
._5 02 163.33885
6 b__ e 881, 87158
5 1 .02 2.39041
5 5 .02 3. 72677
5 1. .02 .31819 .-
5 .5 " .02 21223 -
5 0 w02 12.69241 -
;1. .02 f.74514
z -5 - .02 2. 23640
3 1. .02 1.02213%
3 -5 .02 + 1,09671
3 0. 02 171756



TABLE 3,9

Hankel Function coefficients

H3

in 3 point FE metthod, »fter

deleting columns having large number of zeros

AX(1)
AX(2)
AX(3)
AX(4)

AX(8)

AX(6)

AX(7)
AX(8)
AX(9)
1X(10)

4X(11)

.0083

«3511
;.4212
« 8330
~sR2TT
«2138
0010
h.éGOl
1462
i;£§32

Sidtes

for N =6, T0 = 1,rndian RK = 5 and DH = 02

AX(12)
AX(13)

AX(14)

AX(ls)

AX(18)

AX(17)

: AX(18)

AX(19)

AX(20)

AX(21)

TAX(22)

BSC = 1,02213

TARLE 3,10

4674
;5453
;.6834
3593
-. 4084
.0048
-;;QGI
9374
-;6274
3162

~» 0356

AX(1) .2700 AX(7) -.7289 AX(12) #5259 AX(18) -.4095

AX(2)
AX ()
Ax(1)
AX(=)

AX (8)

~-0544 AX(B) -.8987 AX(13) ".4836

-.2099 AX(9) .6313 AX(14) .1,

4172 T AX(10) i2512 AX(1s) L1016

-.2494 AX(11) 0022  AX(16) .2309

-.0001

AX(17) -.0089 .-

BSC = 1,09671

AX(19) .esov

885 AX(10) @089

AX(21) .0790

AX(22) .oopt



AX(1)
AX(2)
Ax(3)
X (5)

AX(s)
aX(s)

TABLE 3,11

For N=6 TO=1 RK-= DH = .1
«4665 - AX(7) ;,8784 AX(12) . 4541 AX(18) -;,1099
;.3817 AX(8)  .2400 AX(13) -5532  AX(19) .9679
-5578  AX(8)  1.1168 AX(14) 7159 . AX(20) ~e1323
--R992  AX(10) -.3360 AX(15) ..3269 AX(21) -,3171
2337 AX(]I). -.0150 aX(16) ;;4708 AX{(22) -.00%0
L0011 o064

AX(17)

BSC = 1.05924
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Tore .

1 .
Sz & .
L4
. [

st'le. 3.12 A o
fRedar erons lectlon by 3 point finite element nathod with

real Baakel cseffieiemts.showing the aﬂ/é eaefficient

RE . @ . N - Bsc a/2.

%
AT Ve O o ST SRS IR S R QSR 1
i e s i NP _ ) N Do

. B f I . EE I .

N 20.42696 3413
oa.19877
| 233,38860° ~24.20
© 331.95068 ‘
40.43901 1262
36.68184 o
10 243.58777 © 227.00
11 3,12678 o
12, . 46.65254 -12,060

[ ] v
L
L

181,31271 20,40
0.04377 - .
5.29580 <5.63 .
0.82834 o
2.28512 «2.55

: L © 883322 o

o o 10 10,22503 ‘9,01
S ‘- 11 . 2,78335 ’

12 2.,54224  “0.498

557 1.57080 .2

© ® N W



Positlon Fie

' Posltlon

7e4
7.6
7.8
8.0

8.2

8.4

8.8
€i8

2.0

11.2
11,4
11.8
11.8

12.0

space for RK=7, ]\1“‘7 TC=90 degree, DH=(,

2. 00006 -~ 002 12,2
1.88588 3.32 12,4
1.77362 _9.37 12.6
1.65342 13,19 12,8
1.53: 32 16,33 13,0
1.40999 ~1671 13,2
1.29281 -20.18 15,4
1,18343 2067 13,6
1.08554 -20.02 13.8
1;00558 16,08 14,0
04124 _15.30 14,2
.o0114 -11.80 14.
. 88371 7,95 14.8
. 88704 ;4.36 14,8
- 90690 144 15}
. 93800 .56 15,2
97508 1.64" 15.4
1.01346 1.84

1.04927 1.32

1.07958 o2

1.10222 -1,31

1. 11565 517

1.11895 ~5.22

1.11152 7,35 .

1.09333 -9.40

14 zlnmll tude

TABLE 3,13

Phags Angle

Fiald Amp. :
1.06480

1.02663

» 97986

.92628
. 86814
.808#5
75077
,.700&4
.66248
.64312
164609
-67242
71993
78390

85926
. 94094

1.02505

He

“Pha ge Anele

S11.800
~1%.58

- ~14.68.

-15,57

-15.74

-14.98

-13,03

=969
R -
1,02

7.47

13,56

18,54
RR405 -
24.07
24,80

241.46

AR g e e <



3.8 Hankel Variational Form
We can assume the field variation within a small element as

§ =&, H(kr) eI 4 3, HoGke) + 3 H_ (o) &73% (3.

Here only three coefficients are taken as for a triangular shaped

element,only three unknown coefficients can be evaluated.

AN

This equation should aslo satisfy the beoundary conditions on the

thres vertices.

ti

— s b, Lo . - . P
aihl(})g 1T+ aH O +a H (e ~71

@1 -1

.z N dbs e, = - P
A (el®2 e TH (2) + 3 H (21670

L3=2
[
i

H

A H (el 4 T (3) + 7_H_(3)e 193
(N oo ~1"-1

E
Now El can be calculated in terms of 51’52°@3
=z ; ; . "qu
D 4 Ho(l) H_l(l)e .1
o oyeiB,
@2 | H.(2) H j(De 2

&y Ho(8) - E_;(3)e79%3

(1yad® It
Hl‘l)e 1 HO.(l) H_i(i)o 1

H1(2)ej¢2 H (2) H . (2)e 1%
Q -1

H1(3Je3¢3 H (3) H.(3)e 193
: o) -l

Similarly Eo and a 4 can also be caloulated
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Once these coéfficients are calculated then field values at‘any
point inside the element can be calgulated.A programme was made
for this trial function,ran it in IBM System 360 computer for
some arbitrary shaped triéngular.element and after calculation

“wf these coefficients,field values at the middle peint of the
line joining was calculated,lt was found that field values at the
middlepeoint of the line joining two vertices are depends on the
field value of the third vertix.This violates the implied con-~
diticn of Ffinite element formulation,hence this variational form
was discarded.

3.9 Minimizatieon of Energy

Assuming the field variation inside an element as
- i0 — . — o -3¢
- . = - &1 =S - - ~ -] a - - g
E(},Q) alHl(kl) @ +oag ﬂq(kl>‘F _1Hm1(kr}e (3.19

then the energy content. in the element is given by

[¥51

but to*integrate the field over the whole element of an arbitrary
shape,it is required o generate Hankel functicns at every points
within the element,which at present within the limited time and
facilities seems to be involved with too much labour, so this

attempt was also discarded.
e B4 (0,59,
\\ 1 1°71
AN ,
-/ \
/@ _
// \ -
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3.10 Finite Difference Formulation

In order to obtain a finite difference eXpression,we express
.the scalar wave equation (2.8) in circular cylindrical coordinates

as follows

—1—[535 (%— 28 4 2 3k y | +jf§

(V24 x2)% = 1 a 3¢ 3¢
= -%@_j+—%%§5+i— —3%9+k2§=0 (3.17)

where § is a function of only r and¢ . In place of function@r(r,¢)
we now consider the diserete values of at the mesh points only ,
and replace the partial derivatives of equation (3.17) by their
finite difference approximationgz.Figure 3.2 shows the detailed
parameters involved in a five-point finite difference formulation.
Since we sweep in anticlockwise direction,the direction of lncrea~
sing ¢ is indicated by arrow.We obtain the expression for $15 & 93

§3 and §4 in terms of the value @o at nede 0, by means of a Taylor's

series, .

Pl -4 . 2
By = P+ (ag) (B4l 2 e Cag) ¢ %ﬁ)og,,, (3.18)

o 02!

) Ofy L1 . 92 Lysc2®y 4 ...,

g, = 3,* h (ar)o+2{h2(;;%)o ¥ 3lh3(5;?)0 ¥ (3.19)
) BB (8932 375 (agys. 53

@3 = @O _(Ad)) (—BE)O-i—T(W)O--T(gg)O + (3.20)
_ _ 3 h‘z 82 _ ha 3 . .

T h(——§)0+-§-—(—¢io B—(i‘—?)o+ (3.21)

3 oL ar

Adding equations (3.19) and (3.21),

§o+3,-28, = n2(22E) (Zhlavg, | 2hs peg o (3.22)
2y o sr? o kLl ar o b} 316

Again ,substructing equatioens (3.19) and'(3.21), we obtain

) _ ' 2h3 43 2h¥ s
(1‘?'2_'_@4 = 2h(4§—g)o + E-i-—('g—‘?)o'i' W(B_?)O + ALY (3.23)
‘ _ ‘ r - 3
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Neglecting the terms containing third,fourth and higher order deri-
vatives which also involve the product by higher power of mesh size

h, we obtain from equations (3.22) and (3.23).

¢2+¢'|_|_"2¢
I S i o (3.24 )
ap? © n?
) ¢2 - ¢|+
and (gﬁ) — (3.25 )
r o] 2h

 Similarly, adding equations (3.18) and (3.20),we cobtain

, 926 2(apd avy 20008 984
¢ tdg=29, = (4p)" (—) _+ (—) + (—) ©(3.26 )
e 362 ° 1 gt O 61 gyt |

Neglecting fourth and higher order derivatives, we have,

324 . $q t ¢q =2 bq
(EET_)O = ( - | (3.27 )
3¢ )

~Using equations (3.24),(3.25) and (3.27), the finite difference
equivalent of scalar wave equation in (2.8) reduces to the following

in circular cylindrical coordinates;

¢s (142 )+¢u(1h_)+(Ra¢) (%930 = ¢ (2+2(§E$)_ k2h? ) (3.28 )
Any one of the ¢'s can be calculated from the above equation if the
remaining four neighbouring points are known,

- For a circulat cylinder the scatterer perfectly match to the
inner most circle r.Two outer circles rl and r2 are considered with
radius R and R+h.Here the radius of the obstacle is R-h.Here fields

at different mesh points en circle r, and [, are known as

Ezp = e D : ' | (3.29 )
s N (1) . '
E (krp) ejn¢p', . (3.30 )

1"
1™
v






Here for thr different points p both rp and ¢P is known.So in terms
of fields at points 1,2,3 and 0 , fields at point can be calculated.
Then applying the boundary condition on circle T,
t _ i s _

Ezp = Ezp + Ezp = 0 ( 3.30)
a set of linear equations is developed like direct. method.Solving
the matrix,the coefficients of the Hankel function can be obtained.
Once these are known,total field at any point outside the obstacle -

and its radar cross section can be obtained.



RK N
] 6
3- 8
4 6
4 8
5 6
5 &
5] 6
6 8

TABLE 3.14

To inaidinace Angle in Radians.

«5

Radar cross section by Fiﬁitg difference method having DH=,1

-1

0. 1. ;.5“n_
66657 74264 . 75854 73829 .gsiz7
14.43606 14,39312  14.20973 . 14.24136 - 14.027748
?6.0332% 25.95175  25,88125. R6.15720 26,29330
2659660 26.5276F  26.60736  26.47316 26, 54422
17.22999 12.85002  12.56574  13.e4329 11,0740t
12.93036 14.00657  14.00024 14, 01364
17.375  16.34 15.183562  18,18452 18,?2'
18.39514 18,88068 18,4015 18, 05283 18, 66745
TABLE 3.15

Radar ceross section by Finite difference method

RK b
3 8
4 6

8

To incidinace Angle in Radiams

having DH = ,(02

-1.

O? +«5 1, . ;._-'5
13.74199 13,69152 1374122 - 13.77714 -
_ <4.43269 R4.34819 , ©4.64073
24.72987 24,69954 24, 71091 24.67633 24, 76247

54
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3.12 Discussion

Radar cross section obtained by Finite element method are shown in

in Table 3.t and 3.2 .In those tables variations of radar cross
section are shown with respect to the scatterer's raaihs,mesh size
incidence angle and radius increment.Finite element method invol-
ving three points had been tried also.Results obtained in this

method are shown in Table 3. .Looking at this table we can observe
that some'of‘the results are satisfactory.Analysing the nature of the
Hankel coefficients we can see that some of -the ccefficients have
large values.These are shown in Table 3.3 and 3.4 and Table 3.5
Later it was found that two columns of the total matrix were zero

cr near zero. Those caused very large coefficients of the Hankel
function.This also introduced some error in the calculation for
radar cross section. At the first attempt radar cross sections were
calculated ignoring the Hankel coefficients for the cclumns which
have large number of zerocs. Table 3.% shows some of those results,
In some cases results were improved but in other cases they dete~
rioted, In the next attempt, we shifted those columns having lavge
number of zeros,cutside the matrix and also simultaneously deleted

a3l

two rows to have a square matrix, Then the matrix was solved. The
results cobtained in this method are shown in Table 3.8 .Here some

of the results are acceptable.but the method i3 not very much sat-
isfactory.Cecefficients of Hankel functions obtained in this method
are shown in Table 3.9 Table 3.0 and Table 2.% .Finally some calcu-
lations were done by considering the Hankel coefficients as rveal.
Results obtained in this method are shown in Table 3. ., Some of the
Hankel coefficients for each case are troubled one.Those are shown at
the righmost cclumn of Table 3, .Fields at different points were
also calculated and those are shown in Fig.3.1 .Then considering
fileld variation inside an elementary area as a series of Hankel
function,a new method was tried to develop.But it failed some basic
boundary conditions.,Another method éonsidering minimization of en-
ergy was thought of.But But it involved continuous Hankel integra-
ticn over an arbitrary shaped element.Considering the amount of
labour énd time.involved for this trial method 1t was shelfed off.

Finite difference method was alsc tried.Results obtained in this meth



are shown in Table 3,44,

| When the scattering obstacle's dimension is comparable with
its wavelength i.e. in the ﬁigh—frequency regibn, electromagnetic
thecory approach is not very much converging in nature.It can be
seen in chapter 2 ,that, with increasing obstacle's radius the
results were more oscillating in naturg.The errcr can be minimized
by taking a larger Hankel series.Thisz is +rue fcr the approximate
methods.Finite difference method has been tried by A.M.Patwary118
using matrix of the order of 200 x 200 to get acceptable results.
For the present work it was not possible to sclve a matrix largern
than 64 -x 64 as larger one exceedéd the memory requirement of

the computer in Statistics® Bereau,
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NUMERICAL SOLUTION OF UNIFORM HOLLOW WAVEGUIDE PROBLEMS

4,1 Introduction

The most fundamental equations those describe the phenomencn
£ electromqgnpilc wave propagation in any mediuir, such as homoge-

neous or inhomogeneous, isotropic or nlaOtPOPJ , are the Maxwell's
equétions. As a result of the rapid growth of telecommunication
engineering, microwaves is becoming an increasingly important field
of study. Modern engineering applications require a clear understan-
ding of the wave pPO?antLon in waveguides of complex shapes.

Hollow conducting waveguides are easily analysed in terms of
tabulated functions when their crcss-sections are rectangular,circu-
lar or elliiptical.Exact solutions to the wave equation are possible
in 11 coordinate systems where Lhe equation is uepara‘ﬂle1E However,
a knowledge of propagation behaviour and characteristics are requirec
for other-shaped cross-sections for considering bandwidih,power-

handling, mechanical and cther reasons.All these problems may be

solved by finite difference, finite element,point matching and integw

.
rai-equation approach,conformal transformation and many others’ 104-10

The objective of this work is to use some of these methceds in
different form for different shaped waveguides and cempare those
results with different parameters.such as initial error, final error

esh size, waveguide size, error limitation, iterations etc.

4.2 Theory

v

We are concerned here with methods of finding numerical solu-

tions te the eguation
R | (u.1)

valid over a region R, the waveguide cross-section subject to

bouhdary conditions

$ = D C ' ¢ 4.2 )
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on C foyr E modes or

ag = 0 ‘ . { 4.3 )
an

on-Z  for H medes, where R is bounded by the closed curve C.
4.3 Finite Difference Method

The finite difference method93 is the oldest and perhaps the
u

T
mest commenly used technique for the solution of boundary value
problems. Its application to waveguides and cavities was shown by
Motzgu, and some 20 vears later95 , was used to develop a computer
programme for waveguides of arbitrary chapes., By the use of auto-
matic mesh halving and estimation of the over relaxation facter,
Tthe computing time is quite short.Since then a lot of work has been
done using finite difference methods?ngg.

For five point finite difference method wave eguation over the
waveguide cross section is approximated in terms of the scalar
field at discrete points. It can be shown thathD

o =.( b * by Fdg 9y )A/(‘m - k2n?) Cu,u )

In the case of nine point finite difference method,the wava

. . 98
equation can be written ag”™

L PR k2h?¢ (4.5 ¥
i=z1
. -'\..,,g
ki 14 iy
3 o \
& 2 B

For detailed discussion on finite difference method for waveguide

problem,reader can be referred teo the referrence 96 and 98 .



4.4  Finite Flement Method

An alternative and almost parallel approach to that of finite

differences is to use a continuous plecewise linear approximation .

' : . . 99,1
This has been &dpplied to the waveguide problem by Zienklem_ezq »100
. 101 L1020 o l1c-116 s
Silvester , Ahmed™ """, and others under .the name cof "Finite

element' and by Harringtoniga, as a particular 'moment' solution
ﬁsing’triaﬁgular function'. The simplest version considers field
values at discrete points, regards the points as vertices of many
adjacent triangles and explicitly takes the field over each triangle
to be the unigque linear interpolation between the three vertex values
This field can be used as a trial fuﬁction in the straight forward
Rayleigh“RifZ procedure. Field values at the vertices become linear
Ritz parameters,;so that the resulting eigenvalue equation has the

following standard matrix form .
g

AX = kPBx ‘ ' | (4.

.y
~—

A and B ‘are both symmetric and positive-definite ( A is semidefinite

for H modes) , so allowing standard methods of scolutiomt

Por triangular shaped elements it can be shown thétlozl
' e 6 : .
L k?h?
2 o (6 ¢ + 5 o, ) C4.7)
AT D °© iz *
, i=1 .
and for square mesh
| . 6 . k?nh? 5 ] 8
SC{JO""Z. by = "“‘"T'“( 8¢O+ 2 % by 32 ¢ ) (4.8)
i=1 7 & 1=1 1=5 ¢

To selve the matrix problem in both Finite difference and.
Finite element Gauss-Seidel iterative method has been uséd:First, a
guess has been made'at all variables Xy and successively corrected
them,using an updated estimate,just as soon as required,and variables

are immediately overwritten in computation.

:l""‘].. cle a.. b‘
m+ 1 . * + i
*y = - p ey T Lo —e T ( 4.9)
i j=zi ii ] N 14111 R Et .

with 1 « 1 <n , m >0, m denctes the iteration count.
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AkL

80
40

16

180

80

3R

186.

1.2

« 32

180

61

TABLE A_1%

5FFD FE Tr.
ITRE ERROR ITRE  ERROR
5 ;.63252 11 ;.63259
8 - 10 ;155134
e -.62081 7 -.62918
6 ;.65041 6 ;b65131
-.63234 5 e 83125
4 A;.62756 4 ;352758
4 ;665473 4 ;a65176
;.63632 4 ;.65262
8 ;.12265 20 2. 42460
11 B 20 1,733108
20 ;102591 17 ;.05175
12 ;.05810 11 ;.Q5668
10 -.06878 10 ‘;.07871
9 ;.08881 9 -.09114
9 -.90033 9 ~. 09307 -
9 -.09264 - 9 -.09526
3 ;.12622 9 -.66619
8 12622 20 2,41613

gL



46 325

18

18

36

36
36
%6
18

18

32
32
32
32
52
32

16

16

16

32

M

18

16

16
16

16

AKL

8.4

1€

32

22

16

1.05064

TARLE 4.3
9 PFD FE Re.

AKL ITRE  ERROR I ITRE-::'ERROR

4,2 3 ~.2.17769 3 2.18025

6.4 5 a2 s ;;47527

4.4 4 -~ 42240 4 ;;45229

8.8 8 +.83880 7 1,16797

4 7 1.06527 7 1.08627

8.8 [ 1;52586' 7 {98746
4.4 7 1.04301 7 " 1i04664

8 7 1.06514 7 1506630

4 4 34904 4 . -.44978

2 4 45176 - 4 =;345139

TABLE 4,2

9 pfU FE Rec..

ITRE ERROR ~ ITRE  ERROR

ME o 1.05064 11 1.05468

11 1.05205 11 105519

11 1,05205 11 1;05656

10 1,05053 10 1.05517

i1 1.08520 11 1.08288

11 1.05351 13 1;05939

11 6.18926 187~ 45790

5 08004 5 .06980

5 429437 5 ";25050

11 1.05353 1" 1.05939

11 “ 11 1;05529

>



9PFD

Effect of mesh on discretiZational error

. TABLE 4.4

for rectangular waveguide for all four methods..

Mosh  LITRE FRROR

26
28
30
32

34

8

10
11
13
14
6
18
20
22

24

Iy

~R.34379
;1.12677
:163823
;;40891
;028186
-+ 20562
;.;5255
;;11782
~. 08655
. 06716
:;05210
-.03982
~.03089

-, 02291

L]

o

FE Re

ITRE ERROR
4 ;2n46657
3 ;1n15128
5 ;.64922
6 ;,40938
8 -;.28575
10 . ;<29701
11 ;a15591
13 ;.11890
14 _.08769
16  ..08783
18 -.05255
20 ;.05995
21 - 02537
21 oas
éBCIFié.O;sls
28 _.ola13

JE TV SPFD.
ITRE ERROR  ITRE  ERROR
4 ;2-30775' 4 ;g.ssoés
4 .10880 4 _1}15356
6 ;.65355 6 ;.64005
8 ~.40818 8 -+ 40773
10 -.27984 10 ~.27958
12 -.20121 12 -,20040
14 -.ia847 15 ;.15;18
16 -.11091 17 . -,11296
18 ..08071 19  -.08427
2l -.06229 21  ..06182
25 _.04398 24 -,04851
R6  -.0%201' 26  ..03364
29 ;.02391 29 -.02383

ot



TABLS 4.5

Convergency with iteration for different .
initial trisl values for s Tr method

a2, YL - 8, H = 1,

LTRE 1. 5, 2, 1, .5
1 288,50063 159,334 23.298 4,161 1,236
2, U4 59090 TL474 6,501 61 -,289
3. 05,90072 34.025 1734 =267 - 541
lin 30.20605 14,365 0,054 ~.542 =61

5, 12,8074 5,187 - 403 -.616 . -.637
6. 42641 1166 1,600 631
7. 33998 163 629
8, 25763 L5 |
% ~.55176 -6
1. ~6195  -,631

11, -.63239



TABLE /.3

Convergency with iterationioror different
initial trial values for XCEN=8,YLEI-8,DE=1,

ITiE 10,0 2.0 1.0 5 .25
1. €0.595 54,17 6,293 1436 .85
2. T 18,234 1,263 ~0205 w467
3 20403 6,555 =,03735  -.509 =591
by ~.59% 810 =.405829 ~ 605 T =, 627
5, 632 0.086 -.59673  -.&32 ¢ -
6, - ~ 448 =, 63041 - -
7. - -.593 - . -

+
1
i

80 = s 629



TATLE 4.8

Variation of catorr frequency with channel depth
for'a double ridge wavegnide by finite elemept’
(rectangular) method. X = 16, Y=16, W=18 S =1,
DEL = .9999

D IT - Dev,

1 14 3, 02782
o 13 6. 88527
2 12 , 11.52757
4 11 17.11088
5 11 , ‘22, 81 5O’
6 ) 10 e 32.24316 "
7 . - . 9 K 42.,69005

TABLE 4.9

Variation of cutoff frequency with charnel width for
a double ridge waveguide by finite element, (rectangular)
method X =16, Y =16, W=8, S =1, DEL = .9999

W .o LITRE- . . Doy .

2 1. 12.64248
4 11 11.89491
6 11 5 16.32658
gt T 11 : 17.11044

10 4" 12 ' 17.45450



N
16
.16

18

18

16

16

16

16

16

16

18

16

18

12

20

24

28

32

40

44

Comperrd son between four
frequency in GHz for Ri

Mesh
W

D

.

TARLE

Dimension EPFD

16

18

16

18

16

16

18

16

18

16

.16

16

16

12

10

12

12

16

18

10

11

4.10-

methods for the caleulation of cuteff
dee waveguide,dimension in cm.

9PFD FE Tr, FE Rg?
1.3657  1.3658  1.3657 1.3660
1.4169  1.41¥71  .1.4169 1.4171
1.4789  1.4786  1.4784 1,4787
1,552 1.5527°  1.5524 1.5527
1.8422  1.6426  1.6422 1.6426
17528 1.7535  1,7528 1,7533
1.BOIL  1.8917  1.8012 1.8918
2.0671  2.0688 2.0674 2.0684
1.5572  1.5872 1.5571 1.5572
1.5418  1.5425  1.54418  1.5423
1.52226  1.5233  1.5226 1.5255
1.4024  1.4034 1.4924 1.4934
17.00052 1710860 17,0890 17.110¢44
16. 95025 16.96614 16.93384 16, 97162
17.15727 17.32604 17.15646
'17,18593 17.34555 17,18654
17.20578 17.54805 17, 20561
17.21721  17,34872 -17.31684
17.22380 17.3461% 17,22362
"; “17;55168 17.23660
1752429 17.24174



Compxr rision of
ridge waveguide

* Variableg

TARLE 4,11

time -required for di

&)

fferentﬂmethods to snlvs

problem in terms of iterat'iron rmber.

Methods

Denth Wid th N SPFD 9PFD
1 8 16 18 .. 1g
2 8 T 1 18 15
3 8 16 17 13
4 8 16 16 . 19
5 8 16 16 11
6 8 16 1s 130
7 8 T 1g 14 10
8 g 15. 14 9

4 16 16 16 13
4 € 16 ia- 12
4 4 16 1y lé :
: 2 16 17 12 .
4 8 16 16 12
4 8 12 12 9

4 B 20 1g 12
4 8 R4 21 ¢ 1g..
4 8 R8 26 19,
4 8 32 32 . 23
1 8 36 39 og
4 8 0 . 33
4 8 41 .. 39

FE tr

17

17

16

15

14

13

13

15

15
18
18
15

11

16

21
26
32 .
39
45

53:.

F.'E Rg.’

14
13
12
11
11

10

12
11
11
11

11
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Discussion

£
o

The importance of finite difference lies in the ease with
which many logically comPl Lcated operaticns and functions may be
discretized. Operations are then performed not upcon L01T1puous fune
tions but rather, approxXximately, in terms of values over a discrets
point set. It is hoped that as the distance between points is made
sufficiently small, the approximation becomes increasingly acdurate.
he great advantage of this approach is that operations may be redu-
ced to simple arithmatic Forme and then be conveniently Programmed
for automatic digital tomputation.In short, complexity is exchanged
for Laborv,

Variational melthod ig relatively new, some times, it is rela-

tively easy to formulate the sclution of cevrtain differential and
integral equations in variational terms. The solution is found by
selecting a field which minimi LZes a certain integral. The integral
is often proportional te +he energy contained in the system and so
the method embedies a close correspondence with the real world,
Four separate method has been used to calculate the waveguide
ropagation for Tyil mode in Rezctangular s waveguide, ridge waveguide

Ty
14
Z

and double ridge waveguide., 411 the

O

four methods are aquite satisfac-
tory. Variation of cutoff -fraquercy with ini+tial values,mesh size
has been calculated for rectangular waveguide of different aspect
ratios. It can be concluded +hat whatever be the initial errop in
initial values of k had been assumed, sclution always converges to
the analytical solution. Effect of mesh numbers on the discrétization
error and itevation requived is shown in Table 4.4 and Fig., 4.1 .1t
can be noticed that, increas sing the mesh number the discretization
srror reduces exponentially to zero. But time vequired for finep mesh
problems increases for all metheds. Comparing the four methods we can

say that discretization error for all these methods for a particular

-

L number are more or less same. In this respect they dont have any
comparable advantage over one another.But Itervation or +he time requi-
red to come to a particular error limitatimn for finite element rect-
angular and nine point finite difference are mere or less identical.
And time required by finite element triangular and finite difference

o

5 point are more or less identical but 20-30 % more than previous
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two methods.In some cases time required by 5 PFD is slightly more
than TFETr.Field values and cutoff frequency had been calculated for
ridge waveguide by all four methods.Variation of cutoff frequency
has been shown for varying channel depth and width in Table-u.® and
Table.4.9 and Fig.4.3.The nature of variation are identical for all
metheds,and are quite satisfactory in-nature.Effect of mesh size on
discretization error had been also calculated for all the four
methods and they have identical nature and identical error.But for
this type of waveguide, finite element rectangular method teook least
time for computatiocn followed by nine point finite difference method,

then by finite element triangular shaped element and 5 point finite

o

difference came out last. 5 point finite difference takes 20-50
more time than Finite element rectangular method. Computer solution
was also chtained for double ridge'wavcgulde and its magnetic field
distribution is shown in Fig.u.4 . '

Near singularities, such as the corners of conductors,the usual
finite difference formulas become inaccurate because of the unbounded
nature of the field derivatives in these regions. There is a concen-
tration of energy near the singularity and any inaccuracy in the
appreximating potential function has a relatively serious effect on
the overall energy coirputation. By using a finely but finits ly divided
graded meoh in the v1c1n1ty of the “lnEUlQPLLy, errors due to singu-
larity by finite difference method may be reduced.

+ In the author's opinicn, the difference between finite-element
and finite difference method is very small.One fact that comes to
light from the above analysis is that in general those methods in
which larger number of adjacent points apre utilized for the calcula-
tion of the fields at guccessiﬁe mesh points , better results

are achived .,
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CONCLUSICNS AND RECOMMENDATIONS

Scattering of PlLPchmagneal wave impinging on an obstacle
and propagation of alectromagnetic wave thbough an arbitrary shaped
wavegulde have Deen analysed by different numerical methods in TEM
computer system 360 at Bureau of Statistics,Dacoa,

Four different methods were used to solve the electromagnhetic
wave propagation problems in wectangular wavegulides of different
aspect ratios.Starting with the trial assumed values of field dis-
tor UULLOR and propagation constant »final field dstr¢Lutlon and
cutoff frequencies have been computed.Effects of assumed t»ial
values for the variation of propagation constants withiteration
t have been shown in Tables.Effects of increasing the mesh
nuwsbers for the vaviation of discretizational error had been shown
in a figure.Solutions obtained by all the four methoeds have beer
compa Cuteff frequeﬁcy and field variation for a ridge waveguide
have also been calculated.The effect of increasing the channel
depth and width for a single ridge waveguide or for a double ridge
wavegiide have been computed and those are shown in Tables and

also in in figure.

for the sclution of electromagnetic wave scattering problems
direct method has been applied to find the radar cross sections and
field distributicns in space outside the scatterers.Thesa proklems
have been solved for different incide nt angles,for different obs
cle's dimensions, and varing the length of the Hankel seviet taken.
Lffect of all those variations have been shown in tables and in

Azl -
tigures,

For the solution of electromagnetic wave scattering problems,
for cirvcular cylidr: cal obstacles ,have alsgc been calculated by
different approximate methods.As far as the author's knowlédge ig
concernad, inite element method has Dbeen app11ed for electromagne-
tic wave scattering problems for the firvst time in this werk, T+s

eral variations have been tiried to soive the problems.Finite

[y
r4 -
A.:.

Terence method has alse been tried for these class of problems.
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Sclutions cbhtained for electromagnetic wave propagation prcb-
lems through the waveguides of arbitrary shape and size, for all the
four numerical methods, are very much satisfactory.Among those four
rethods, the finite element Rectangular method reguires least time
for a particular problem and finite difference five point takes the
lengest time for the same problem.Soluticns obtained for the elec-
tromagﬁetic wave scattering problems by direct method were satisfac-
tory.When the obstacle's dimension was very large compared to the
wave léngth of the impinging wave then the results were not vepry
much satisfactory for the poor convergency nature of the Hankel ser-
ies.The range of satisfactery results zone can be extended by taking
a longer Hankel series.Because of the limited memory capacity of
the IBM system 360 ccmputer at Buraau of statistics, the upper limit
of the Hankel series taken was 16.For that preblem , a matrix of
order &4 x 64 was solved. Similarly problems solved by approximate
numerical methods for electromagnetic wave scattering problems,were
limited by memory capacity.Electromagnetic wave scattering problems
were previously solved by AM.Patwary by finite difference method
required matrix order 200 x 200 for good sclutions,

Electromagretic wave progation problems can be solvedfop TE
modes and higher modes for arbitrary shaped waveguide .The. wave-
guides may be hollow or may be filled,its cross section may be uni-
form op tapered These types of practical problems can Le solved by
.different numerical methods.

As now BUET has its own computer IBM system 370 with 160K real
store and BM bytes virtual store,larger matrix problems assocciated
with approximate numerical methcds of scattering problems can be
solved numerically.Here it can be mentioned that,Integral and Integ-
ral/Variational methods are still the most convenient methods Fop
sclving this class of problems.So some important-works can also be

done applying these two methods.
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