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ABSTRACT

Solving Pocklington's integral equation for the thin and straight wire
antennas by moment method, the current distributions of a half-wave and
a full- wave dipole have been deduced using semi-orthogonal wavelet
bases that are constructed from the second-order cardinal B-spline. The
results agree well with those obtained by King's Three-term
Approximation and with the measured values of Mack. The current
distributions have been calculated in different scale and with respect to
the computing time, the most efficient scale for analysis has been
determined. The method is then extended for antenna array analysis.
Current distributions on each antenna of a three-element Yagi-Uda array
have been derived and compared with those based on King's Three-term
Approximation. With the corresponding current distribution, the input
impedance and radiation pattern ofthin and straight wire antennas and the
properties of a three-element Yagi-Uda array have been calculated,
compared with theoretical results and found physically significant.
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(1.2.1)

1.1 Antenna

An antenna is a transducer that converts electromagnetic radiations into electrical
currents or vice-versa, depending on whether it is being used for receiving or for
transmitting electromagnetic wave. Antenna is a basic component of any electronic
system which depends on free space as the propagation medium. The official IEEE
definition of an antenna as given by Stutzman and Thiele [I] follows the concept: "The
part of a transmitting or receiving system that is designed to radiate or receive
electromagnetic waves." .

1.2 Why Antennas Radiate

Any charged particle produces an electric field E that is infinite in extent and depending
on the nature of its charge the field can be pointed inward or outward. The only magnetic
field associated with the stationary charged particle is its spin magnetic dipole moment
which can be ignored in this case. Therefore, the E field remains same over time and
stores the particle's electromagnetic energy when no other charged particles are present.
When another charge is present, the field impacts a force on each other and energy is
transferred. As per Coulomb's Law [1780], at a distance r the electric field E for a
charged particle with charge q can be found as-

- ~ 1 q
E = Eslalic '= r 4;r'E

o
r2

where, Eo is the permittivity of the space.

The dynamic E field raises a jj field with magnitude,-

I_I I 1- -I 1 q . I-(v' Ie')
B =~ vxE = 4lrEo 7" [1-(v'le') sinOr'

v sinO

e'
(1.2.3)

Hence, in free space for a moving charged particle with a constant velocity and no
external influences, a stationary observer will observe a constant-magnitude electric and
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magnetic fields are present simultaneously where the B vector is perpendicular to both
the E vector and also to the velocity vector v.

When .a constant voltage source is connected across the length of a wire, the voltage
causes a proportional current, governed by Ohm's law [1827] (I = VIR). The total number
of electrons is equal to the total number of protons in the wire. But as protons are fixed in
the lattice of the wire, the constant current traveling in that wire consists of migrating
electrons only. Although the path of each individual electron is random and complex, the
average movement of the electrons, can be considered as a group, causes a constant drift
of charge. Therefore, at macroscopic level the current can be considered as a fictitious
charge that traveling at a constant velocity. Experiments have confirmed that, constant
current flow in a wire produces only an observable magnetic field jj , but no electric field
E at all. This because the protons produce a static radial E field which is uniform along
the wire and produce no jj field as there is no relative motion with respect to the
observer. On the other hand, the migrating electrons produce both E and jj field. The
electrostatic E field from all the protons and electrons cancel each other and just left the
jj field.

Field lines of particles moving at constant velocities do not bend. But, when a charge
particle accelerates, the lines of the electric field start to bend and the bent field lines of
the charge correspond to radiating energy. Einstein's theory of relativity [1905] helps to
explain the phenomenon. If a charge particle is suddenly created, its field would not
instantly appear everywhere. The field would first appear immediately around the particle
and then extend outward at the speed of light. As a particle moves, the surrounding field
continually updates to its new position, but this information can propagate only at the
speed of light. Points in the space surrounding the particle actually experience the field
corresponding to where the particle used to be. This delay is known as time retardation.
Even a charge moving at constant velocity should cause the field lines to bend due to the
time retardation. The electromagnetic field gets around the delay by predicting where the
particle will be based on its past velocity. So, ifthere is no change in velocity, the lines of
the electric field become curl-free.

The curly field lines of a charge correspond to radiated energy. This phenomenon can be
analyzed from the kinetic-energy perspective. To accelerate a particle, force is needed
and the force transfers energy to the particle increasing its kinetic energy. Similarly, to
accelerate a charged particle, required force accelerate its field and this energy propagates
outwards as a wave. .

When, electrons in an antenna accelerate because ofthe application of some time-varying
electromotive force or voltage to the antenna; each electronic charge q in the antenna
experiences a force, F = q E and therefore accelerates according to F = m ii, where m is
the mass of the electron and ii is the acceleration. Thus we have an alternating current in
the antenna which raises an alternating jj field. The alternating jj field induces an
alternating E field to counteract the change in field producing it; which is known as
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Lenz's effect [1834]. When the current in the wire alternates rapidly enough; the
alternating B field propagates away at speed c before the Lenz effect can cancel it. Thus
both E field and B field are radiated from the antenna. The radiated B field is
perpendicular to the antenna while the E field is parallel to it.

1.3 Background

Analysis of electromagnetic radiation, scattering from material bodies and wave
propagation in a dispersive medium were formulated by James Clerk Maxwell [2] in
1864, which provide the foundation of classical electromagnetism. In 1887 Hertz [3]
experimentally verified the wave phenomena consequent to Maxwell's equations. In
1897 Pocklington [4] extended the insights of Lorentz [5] and Hertz [3] by deducing an
integral equation for the current along a cylindrical conductor. The equation is well
known as Pocklington's integral equation and it forms the basis of linear wire antenna
analysis. But due to the highly singular kernel, no attempt was made till 1937 for
analytical solution of the equation to determine the actual current distribution. Instead, a
convenient sinusoidal distribution was assumed for the half-wave dipole by Carter [6] in
1932 and for an antenna with arbitrary length by Brown [7] in 1937. However, leading to
infinite impedance for an one-wavelength antenna, approximate solutions of the integral
equation have been resolved by L. V. King [8] in 1937, by Hallen [9] in 1938, by King
[IO] in 1965 and continuing to the present. Among the various analytical methods some
permit successive improvement; e.g. iteration method applied by King and Middleton
[II], Fourier series expansion of the current distribution by Duncan and Hinchey [12],
moment method for electrically short antenna by Harrington [13], generalized ray method
for high-frequency analysis by Burkholder [14] and soon. In the moment method using
conventional bases the resultant impedance matrix becomes dense. Hence the inversion
and final solution of the system is very time consuming. To overcome the huge memory
requirement and computation time, wavelet bases was first proposed by Beylkin,
Coifman and Rokhlin [15]. However, using orthogonal wavelet bases the matrix is dense
yet. Thus Chui and Quak [16] used wavelets on a bounded interval; Nevels, Goswami
and Tehrani [17] used semi-orthogonal spline wavelets; Tretiakov and Pan [18] used
discrete wavelet packet to solve Pocklington's equation by moment method. However, in
moment method, the number of unknowns for the sub-domain bases is less than the
wavelet bases. Appropriate scaling ofthe basis function might improve the scenario. But
how to choose such a scaled wavelet basis for a general geometry is still an open
question.

1.4 Objectives of the Thesis

The objectives of the thesis are - to calculate the current distributions along the length of
a center-fed transmitting half-wave, full-wave and a receiving half-wave thin wire dipole
antennas; and along the length of each antenna of a three-element (reflector, active dipole
and director) Yagi-Uda array by solving Pocklington's integral equation using semi-
orthogonal B-spline wavelets in the moment method. To calculate the current function at
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different scales and to choose the appropriate scale with respect to the computing time.
To compare the results with experimental values obtained by Mack [19] and with King's
Three-term theory. To calculate the antenna input. impedance and far-field radiation
pattern of each antenna.

1.5 Thesis Layout

The thesis covers the calculation of the antenna current distribution and determination of
some antenna properties using the calculated current distribution. In chapter - 2, current
distribution of a half-wave linear dipole (both transmitting and receiving) antenna and a
transmitting full-wave dipole antenna have been calculated at different scales.
Appropriate scale for analysis has been chosen and the current distributions at that scale
have been compared with King's Three-term theory and Mack's experimental values. In
chapter - 3, current distribution along the length of each antenna of a three-element Yagi-
Uda array have been calculated at different scale. Results of appropriate scale have been
compared with King's Three~term theoretical values. In chapter - 4, input impedance of
each antenna have been determined and also compared with experimental and theoretical
values. In chapter - 5, radiation pattern of each antenna have been determined and
compared with each other. Finally a general discussion has been presented in chapter - 6.
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CHAPTER-2

CURRENT DISTRIBUTION ALONG A WIRE ANTENNA



2.1 Outline of the Method of Analysis
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Fig. 2.1 Thin-wire model of cylindrical antenna

For a z-directed thin cylindrical wire antenna, as shown in Fig. 2.1 of length I and radius
a, with a current distributioll lei) along its length; the Pocklington's integral equation is
written as-

j77A. II
f
' I.(Z')(~+k') e-Jk~('-")'+a' dz' = E:n(z)

8' . a2 ~ ," •J[ -112 Z (z - z) + a
(2.1.1 )

where, 11= ..J( Jlo I Eo)' k = 2rr.1'ic. Jlo is the permeability, Eo is the permittivity of space and
'ic is the wavelength. Eio(z) is the incident field, which induces the current in the antenna.
For a transmitting antenna, Eio(z) =Vol !'J.z,where Vo is the applied voltage within a short
gap !'J.zof antenna length and for a receiving antenna with a uniform plane wave Eo
incident at a polar angle e, Eio(z) =Eosine eikzcose;where the propagation vectork is co-
planner with the antenna axis. The magnetic vector potential of the antenna will be z-
directed as -

//2 _ jk~(Z_Z,)2 +02

A(r)=zJ!.... fI(z') e . dz'
4 '~ " ,J[ -II' (z-z) +a

Now, to expand the unknown current function 1z(i), semi-orthogonal
constructed from the second-order cardinal B-spline, can be used.

(2.1.2)

wavelet bases

7
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(2.1.3)

The scaling functions, which are implemented only at the lowest scale (scale = 2), contain
all frequency information about the current.below the scale, are given by -

{

Z2 -q; Z2 E [q,q+ I]
r/J2 =,q 2-(z, -q); Z2 E[q+l,q+2]

where, q = 0, 1 and 2,

And the wavelets are given by-

Zp -q;
4-7(zp ~q}

I -19 + 16(z p - q}
Ifp,q ="6 29 - 16(z p - q}

-17 + 7(zp - q}
3-(zp -q}

zp E[q,q+O.s]
z p E [q + O,S, q + I]
z p E [q + I, q + I.S]
zp Elq+I.S,q+2]
zp E[q+2,q+2,S]
zp E [q + 2,S,q +31

(2.1.4)

where, p is the respective scale (2: 2) and q '= 0, "', 2P -3,

The actual coordinate position 7! is related to zp according to-

zp = 2P[ z' ~1/2]

Hence, the current function can be expressed as -

(2.I.S)

(2.1.6)
,

,

Substituting the current expression in Pocklington's integral equation (2.1.1) we obtain-

2 1/2 p" 2P -3 112

LC"q fZ(z,z') r/J"q(z')dz' + L Ldp,q fZ(z,z') Ifpq(z') dz' = E;"(z) (2.1.7)
q=o -/12 p=2 q=O -/12

where,

(2.1.8)
t,
'\...:.~
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Applying Galerkin's technique in (2.1.7) we have-
2 112 liZ

LC2,q J JZ(z,z') ~2,q(Z') ~2,m(Z) dz'dz
q=O -//2 -//2

p" 21'_3 112 tl2 112

+I Idp•q J Jz(z,z') \f/p,q(z') ~2,m(Z) dz'dz = JE;n(z) ~2,JZ)dz (2.1.9)
p=2 q=O -/12 -/12 -112

where, m E (0, iu -3).
2 1/2 112

IC2,q J JZ(z,z') ~2,q(Z') \f/;,m(Z) dz'dz
q=O -//2 -1/2

PII 21'-3 //2 /12 , 112

+ L Idp,q J JZ(z,z') \f/p,.(z') \f/"m(Z) dz'dz = JE;n(z),\f/;,m(z) dz (2.1.10)
p=24''''0 -/12-//2 -112

where, i E (2, iu), m E (0, tU -3); and

These equations can be written in a compact matrix form as -

Zgoo ZgOI Zgo,n ZgO,21'1I+1+1 CZ,D Ego

Zg10 Zgll Zgln Zgl,2PII+I+1 CZ,1 Eg1

• = (2.1.11)
Zgno Zgnl Zgnn Zgn,2PII+1+1 dp,q Egn

ZgZ1'II+I+l,O ZgZ1'l,+1+11 ZgZPu+I+l n Zg 21'11+1+1,21',,+1 +1 d p",ZPr,+I+l EgZPu+I+1

Solving the matrix the unknown current coefficients can be calculated to deduce the
current distribution lz(z/),

2.2 Current Distribution of a Transmitting Half-wave Dipole Antenna

Let us consider, a z-directed cylindrical half wave dipole antenna driven by a voltage
source and operating at 300 MHz in free space, Therefore -

The permeability, f.1o = 4n x 10.7 HIm
The permittivity, Eo= 8,854 x 10,2 F/m
The characteristics wave impedance, 17 = 376,73.
The wave number, k = 6.283; i.e. koh = n:/2, where, h = half-length of antenna
The antenna radius, a = 7.022 X 10,3A =!1z
The input voltage level, Vo= I Volt.

9
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Now, considering the second-order B-spline, from equation (2.1.3) the scaling functions
at lowest scale (so = 2) become-

tP,.o(z') 8z' +2 - 0.25 ~ z' ~ -0.125

= C' 8z' - 0.125 ~ z' ~ 0

= 0 , elsewhere

tP,.!(z') 8z' +I -0.125 ~ z' ~ 0
1-8z' , o ~z' ~ 0.125

0 elsewhere

tP",(z') 8z' o ~ z' ~ 0.125

= 2-8z' 0.125 ~ z' ~ 0.25

0 elsewhere

(2.2.1 )

(2.2.2)

(2.2.3)

)

,02~

~"'.
-,:';'

". 0"

f •. ,\ ,;

,,'

.;."

"~',--
0\1'5

:tP,o(z'); : tP',1 (z'); -,_._._. : tP'2 (z')

Fig. 2.2 Scale functions of the wavelets at scale = 2
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And from equation (2.104) at lowest scale (so= 2) the wavelet functions become-
Vl2.0(Z') = 1.33z' +0.33 -0.25~ z' ~ -0.1875

= - 9.33z' -1.67 - 0.1875 ~ z' ~ -0.125
= 21.33z' +2.17 -0.125 ~ z' ~ -0.0625
= - 21.33z' - 0.5 - 0.0625 ~ z' ~ 0
== 9.33z' - 0.5 0 ~ z' ~ 0.0625
= -1.33z' + 0.] 7 0.0625 ::;z' ~ 0.125

= 0 elsewhere

(2.204)

Vl2.' (z,) = 1.33z'+0.17
= -9.33z' -0.5
== 21.33z' - 0.5
= -21.33z' +2.17
== 9.33z' -1.67
= -1.33z' + 0.33
= 0

- 0.125 ~ z' ~ -0.0625
- 0.0625 ~ z' ~ 0
o ~ z' ~ 0.0625
0.0625 ~ z' ~ 0.125
0.125 ~ z' ~ 0.1875
0.1875 ~ z' ~ 0.25
elsewhere

(2.2.5)

:...'I(~:--'-
I

: I
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I

\ ;:
\. I:
\ I :
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:-1\
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) .\
I \: .. ,- :: ,,' .( r ..

I: \
(\
I : \:
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I \:
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Hence, as per equation (2.1.6), the current function is-

and the integral equation (2.1.7) becomes-

(2,2,7)

//2 f/2 1/2

C,.O fz(z,z') ~2.0(z')dz' +C2.1 fz(z,z') ~2.'(Z') dz' +C2.' fz(z,z') ~,.2(Z') dz'
-1/2 -lI2 -112

1/2 /12

+d,.o fZ(z,z') \f/2,O(Z')dz' +d", fZ(z,z') \f/",(z') dz' = E;n(z)
-//2 -//2

Now, applying Galerkin's technique in this equation and solving the value of the
integrated matrix elements, the matrix has been constructed, Solving the matrix equation
the current distributions at different scales have been calculated,

. ( : .):~~agi;*........ " .

..... , .

.4

'E
~
5 2
u
"0

'".'''' 0(ij

E
~ .2

8... ..

~~ 6 . , ,,-,', ; :.,
'"'Q.
E:1. 4 .. .. . ,... .. .

10

.6
.0.25,02 ..0.15.0.1 .0:05 0 0.05 0.1 0.15 02 0.25

Axial Distance (z/lamda)

Fig, 2.4 Current distributions along the half-wave transmitting dipole at different scales

Current distributions along the half-wave transmitting dipole at different scales are shown
in figure 2.4, But, the results are so close that the variation with respect to different scale
can not be distinguished, So in next pages, results at each scale have been provide? for
better understanding, (

12.,"~.
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Fig. 2.5 Current distribution along the half-wave dipole at scale = 2
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From figures 2.5-2.8, it is obvious that, the current distribution becomes smoother with
higher scale. That means, higher scales correspond to detailed information of the function
whereas lower scales correspond to non-detailed information of the function.

The comparison of total CPU time for complete analysis of the current
distribution along the half-wave dipole for semi-orthogonal wavelets has given below -
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Fig. 2.9 CPU time for complete analysis of half-wave dipole at different scales

From figure 2.9 it is found that - the computing time increases logarithmically with
respect to the scale of analysis. So, efficient scale should be chosen with optimum level
of information and computing time. From the previous observations, it can be said that -
for the current distribution analysis of a half-wave dipole, scale = 3 is the most efficient
with respect to both function details and time requirement.
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2.3 Current Distribution of a Receiving Half-wave Dipole Antenna

Current distribution along the length of a half-wave receiving dipole antenna operated at
the same frequency (300MHz), with same length and radius has been calculated at
different scale and the results are shown in the following figure.
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Fig. 2.10 Current distributions along the half-wave receiving dipole at scale = 2 & 3

Form the figure 2.10 it is observed that, the current distribution function does not vary
with scale, since it is very difficult to distinguish the results. From the previous
discussion for half-wave transmitting dipole operated at the same frequency and with the
same antenna length and radius, it can be said that - higher scale contains details function
information; except this there is no difference in phase and magnitude between the
results.

Nevels, Goswami and Tehrani [17] used semi-orthogonal spline wavelets and
they analyzed the current distribution along a half-wave receiving dipole. The analyzed
result has been compared with their result in the next page.
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From the figure 2.11 it is clear that - the result at scale = 3 is not the true current
distribution along the antenna. Significant result was obtained at scale = 4. But in our
analysis we have obtained the proper result at the lowest scale, i.e. scale = 2. With respect
to this, it can be said that - our approach is superior to them. To reduce the computing
time, they applied threshold technique to make the matrix sparse. But in our analysis we
have found that - threshold is not required at all, since the matrix equation can be solved
within few milliseconds (generally within 75 ms); when the total computation" time is
spent to find out the matrix elements. "
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Fig. 2.12 Comparison of transmitting (Tx) and a receiving (Rx) half-wave dipole current

If the current distribution along a center-fed transmitting half-wave dipole and a receiving
half-wave dipole of the same length and operating frequency will be compared,
noticeable difference in imaginary part of current distribution is found at center of the
antenna length. In case of receiving antenna, the imaginary part of current distribution is
maximum at the center of the antenna; when for transmitting antenna the current reaches
at peak outside the centered delta-gap. The difference is obtained due to the difference in
E-fieId that has considered in the analysis. For receiving antenna the current induced by a
plane wave incident from broadside. i.e. the antenna experienced a constant E-field along
its length. On the other hand, for transmitting antenna the induced E-field exists only in
the delta-gap.
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2.4 Comparison with Mack's and King's Values for Half-wave Dipole
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Fig. 2.13 Comparison of current distributions for the half-wave dipole at scale = 3

In figure 2.13, analyzed current distribution is compared with the measured values of
Mack and the theoretical current distribution as per King's Three-term approximation.
Relative error of the result with Mack's measurement is 10.59% for real part and 9.55%
for imaginary part, when with respect to King's approximation the error is 8.42% and
11.22% respectively. Relative error for King's distribution with Mack's values is found
6.98% for real part and 11.37% for imaginary part. Therefore, accuracy of the analyzed
result is comparatively acceptable.

19
.~

'•.
(



2.5 Current Distribution of a Full-wave Transmitting Dipole

Current distribution along the length of a full-wave transmitting dipole antenna
(i.e. koh = Jr, where h = half-length of antenna) operated at the same frequency
(300MHz), driven by the same EMF (Vo =I volt) and with same antenna radius (a =

7.022 X 10-3A = Liz) has been calculated at different scale and the results are shown in
the following figure.

1.5

.' .~
<5<: 0.5'"~.,
c- OE
~
c: -0.5
~
::>
<:> -1-0.,
.~

'" -1.5
E
0z -2 .........

-2.5 .....

. Re~1Part •

0.50.3 0.4-3
-0.5-0.4 -0.3 -0.2 '0.1 0 0 1 .0.2

Axial Distance (z/Iamda)

Fig. 2.14 Current distributions along the full-wave transmitting dipole at different scales

Current distributions along the full-wave dipole at different scale are shown in figure
2.14. But, the results are to close to distinguish the variation with respect to different
scales. So in next page, results at each scale have been provided for better understanding.

20



.,

",til; "io'4' '-0:3' ,:42' ,~n,"d. ,c~r".''02
>Axial;Distance (z/lamda)

:Real; ------ :Irnag.; ---.-.-. :Abs.

05:

Fig. 2.15 Current distribution along the full-wave dipole at scale = 2

0.3

. 25 [ilQt
:21 '

'-.0:3-;02. :0:1',0 . ;0'1 . Xl,2
Axi~Lbis\anc.(tiramda)

:Real; :lmag.; -.-.--_.

04

:Abs.

0:5:

Fig. 2.16 Current distribution along the full-wave dipole at scale = 3
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Fig. 2.17 Current distribution along the full-wave dipole at scale = 4

From figures 2.15-2.17, it is obvious that, the current distribution becomes smoother with
higher scale. That means. higher scales correspond to detailed information of the function
whereas lower scales correspond to non-detailed information of the function.
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The comparison of total CPU time for complete analysis of the current distribution along
the full-wave dipole for semi-orthogonal wavelets has given below -
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Fig. 2.18 CPU time for complete analysis of full-wave dipole at different scales

From figure 2.18 it is found that - the computing time increases logarithmically with
respect to the scale of analysis. So, efficient scale should be chosen with optimum level
of information and computing time. From the previous observations, it can be said that -
for the analysis of a full-wave dipole current distribution, scale = 4 is the proper scale
which gives the optimum information with optimum computation time.
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2.6 Comparison with Mack's and King's Values for Full-wave Dipole

.." .

0.5

0.45

0.4

:< 0.35
'N~ 0.3"us::
'" 0.25-.~
Cl
tii 0.2
'R
~

0.15

0.1

0.05

.".... "./
• • •• • ""=

]?E"['l\{'
!: : : : :', :RealPctrti'" .•.........:.' : ........•.........: ~ :'" .
\T .: ..: :.... ., .
....."........•........•.......... :.........•........•........•.........•........

:. ,.Imaginary part., : : :

:'F".J~,.~.J.~Jr
'. '.. '.o

.2.5 .2 .1.5 .1 .0.5 0 0.5 1
Normalized Current (MilliamperesfVolt)

1.5 2

:Analyzed; : Mack; _._._._. : King

Fig. 2.19 Comparison of current distributions for a full-wave dipole at scale = 4

In figure 2. J 9, analyzed current distribution is compared with the measured values of
Mack and the theoretical current distribution as per King's Three-term approximation.
Relative error of the result with Mack's measurement is 4.12% for real part and 24.89%
for imaginary part, when with respect to King's approximation the error is 7.12% and
23.57% respectively. Relative error for King's distribution with Mack's values is found
4.28% for real part and 9.48% for imaginary part. Imaginary part of the analyzed result
deviate much from Mack's measured result for zlA = 0.25 to 0.5. Though the error is
much higher than King's, it follows the measured data comparatively better for zlA= 0 to
0.25. Therefore, accuracy of the analyzed result is relatively acceptable.

•
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2.7 Discussion

From the analysis it is found that - the most efficient scale is three, for current
distribution analysis along a half-wave dipole and along a full-wave dipole it is four. The
accuracy of the result is also acceptable comparing to Mack's measured value and King's
Three-term approximation. It is also observed that - with respect to computation time,
this method is faster to analyze electrically short antennas; for electrically large structure
it takes higher computation time. In our analysis we have taken the operating frequency
as 300 MHz and corresponding antennalength for half-wave dipole is 0.5 meter and I
meter for full-wave dipole. But practically, it should be 0.475 meter and 0.95 meter
respectively; as the velocity of the wave along the antenna is slower than that in free
space. In fact, for most antennas the velocity is 95% of 'c'. We have also considered zero
current at the ends of the finite length wire, which is the usual practice when enforcing
the boundary condition. If it is not considered, boundary wavelets and scaling functions
should also be included in calculation; which will ultimately increase the computation
time further. Enforcing zero current at the antenna end can be explained by visualizing
the current flow in the antenna. For example, if the frequency of the voltage source is
increased so that the wavelength is approximately equal to or less than the length of the
wire, the current points in different directions at different locations of the antenna. These
opposing currents cause destructive interference and will appear to be a standing wave.
The maximum current will be seen at the center of the wire and no current will be at the
ends. This occurs because the electrons flowing out to the ends reflect back toward the
center where they meet the next wave and the current is reinforced there.
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CHAPTER-3

CURRENT DISTRIBUTION OF A WIRE IN A YAGI-UDA ARRAY

,



3.1 General Formulation

For an arbitrary array of parallel linear antennas the current distribution on each antenna
will be effected by mutual couplings between the antennas. In the case of N parallel
dipoles in side-by-side arrangement with centers at position (xn, Yn),and driving voltages,
lengths and radii Vn, In, an where n = 1,2, ... ,N; the magnetic vector potential of the
antenna array with respect to an observation point (x, y, z) is given as [20].

. n=N( '../2 -jk~(,-,')'+(x-x ••)'+(y-y.,)' J
:4(P)= i.E- L f I. (z') e dz'

4n n=1 -/ •./2'" ~(Z-Z')2 +(X-Xn)' +(Y- Yn)'
(3.1.1 )

Let us consider a Yagi-Uda array of three z-directed parallel dipoles with centers at
locations (0, 0, 0), (0, d'2, 0) and (0, d13 = d12+ d23, 0) as shown in Fig. 3.1. The second
or active dipole is center-driven by a voltage generator V2 and the other two dipoles, i.e.
reflector and director are parasitic. Let Ij(z), h(z) and1](z) are the currents induced on the
dipoles; 1(, hand h are the antenna lengths; a" a2, a] are their radii respectively.

z . .- d12 ~
Z = !I/2'

Reflector

x

/,

: z= h/2
",,,.,,,,,,
"J -'_._~'

~-,.

.---- ..

z = h/2'

Active
Dipole

, ------' ..

y

Director

",;".""'- ..

Fig. 3.1 Three-element Yagi-Uda array
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Therefore, the Pocklington's integral equation for the m-th antenna can be generalized
into -

(3.1.2) .

where, dmn when m i- n
when m=n

and Einw(z)= 0;
=V2/!!.Z;

forn = 1,3.
for n = 2

The unknown current function Izn(i) of each antenna can be expanded using semi-
orthogonal wavelets. Applying Galerkin's technique for the respective antenna's basis
function in respective antenna equation and solving the impedance matrix, the current
distribution on each antenna can be derived.

3.2 Current Distributions of a Three-element Yagi-Uda Array

Let us consider an Yagi-Uda array operating at 300MHz, has a reflector, an active dipole
and one. director of length, I,= 0.51A, I.= 0.5A and ld = O.4Arespectively and radius of
each element is 0.00337A. The spacing between reflector and active dipole is 0.25A and
between director and active dipole is 0.3A. .

Now applying the semi-orthogonal wavelets as basis the current function can be
constructed at different scale. As the dipoles are approximately equal to the half-wave
dipole, we have analyzed the current distribution at scale = 3. The results have been
shown in next pages.
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Fig. 3.2 Current distribution along the active dipole at scale = 3

The figure shows the current distribution along the active dipole of the three-element
Yagi-Uda array, From the analyzed current distribution it is noted that - the magnitude of
the current has been reduced for real part, but increased for imaginary part with respect to
single half-wave transmitting dipole of the same. That means at Yagi-Uda arrangement
the mutual coupling between the antenna plays significant impact on each antenna
characteristic.
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Fig. 3.3 Current distribution along the reflector at scale = 3

The figure shows the current distribution along the reflector element of the three-element
Yagi-Uda array. From the analyzed current distribution it is found that - both the real and
imaginary part of the current exists in the same side, i.e. has positive values. The
magnitude of the real part is comparatively less than that of imaginary.

30



......; .

0'A5

4

,4'
.02 ;'>1'~\,:1.;1 .. , '?

_.C'

. ,<".,.: ,; •..•... ,:.

;i:l"l'(tOS:O 0,0501'
~AxiaLJ;i;stat)8 e.,(illa rnd'a)

:Real; :Imag.; ~.-.-.-. :Abs.

0.2

Fig. 3.4 Current distribution along the director at scale = 3

The figure shows the current distribution along the director element of the three-element
Yagi-Uda array. From the analyzed current distribution it is found that - the current is
totally out of phase with respect to the active dipole current. Moreover, the magnitude of
the real part is comparatively higher than that of imaginary.,
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3.3 Comparison with King's Three-term Approximation

Analyzed current distribution along each antenna element of the three-element Yagi-Uda
array has been compared with the King's Three-term approximation for a ten-element
Yagi-Uda array [21] to check the accuracy level.
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Fig. 3.5 Comparison of current distributions for the active dipole at scale = 3

Figure 3.5 shows the comparison between analyzed current distribution and King's result
for active dipole of the three-element array. Relative error between the results is 5.28%
for real part and 19.95% for imaginary part. Real part is much closer to King's
approximation than imaginary part of the current. The imaginary part differs significantly
because King's approximation was for ten-element array rather than three as analyzed
here.
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Fig. 3.6 Comparison of current distributions for the reflector at scale = 3

Figure 3.6 shows the comparison between analyzed current distribution and King's result
for reflector element of the three-element array. Relative error between the results is
4.94% for real part and 9.28% for imaginary part. Real part is much closer to King's
approximation than imaginary part of the current.
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Fig. 3.7 Comparison of current distributions for the director at scale = 3

Figure 3.7 shows the comparison between analyzed current distribution and King's result
for active dipole of the three-element array. Relative error between the results is 2.63%
for real part and 55.47% for imaginary part. Result is too close for real part but differs
significantly for imaginary part of the current. Result has been compared with ten-
element array, which has eight directors. But the analyzed array has only one director.

3.4 Discussion

To calculate the current distributions on each element of the Yagi-Uda array, it has taken
total 534.587 seconds at scale = 3 (for scale = 2 it has taken 15035 seconds). We
compared the result at scale = 3, since the function information is optimum at this scale.
From the comparison it has been verified that the current distribution is close to the
theoretical estimation in most cases, though the estimation is for a ten-element Yagi-Uda
array.
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CHAPTER-4

INPUT IMPEDANCE OF THE WIRE ANTENNA



(4.1.1)

4.1 General Formulation

The input impedance of a linear wire antenna can be calculated by evaluating the n
field on the surface of the antenna. Hence, the impedance is-

J . 1/2'

Z = ---, fE(z) l(z) dz
. 11(0)1 -1/2

For a transmitting antenna - .

E(z) = J;{
= 0

_!!.z/ < z < !!.z/12 - - 72
.; elsewhere

(4.1.2)

If Va = 1 volt and !!.z= a then-

1 al2 .J
z= 2 f1(z) dz=-( ),when 1(-a/2) = 1(a/2) = 1(0)

aI1(0)1 -012 1 0

4.2 Impedance of the Linear Wire Antenna and Array

(4.1.3)

The calculated input impedance of the half-wave dipole is (90.0667 + j 29.0237) n;
where according to King's Three-tenn approximation it is (83.3333 + j 41.6667) n and as
per Mack's measurement it is (94.6746 + j 39.4477) n.
For full-wave dipole, the calculated input impedance is (251.8 - j 449.99) n; where
according to King's Three-term approximation and Mack's measurement it is (506.04 - j
512.26) nand (337.84 - j 472.97) n respectively.

The input impedance of the three-element Yagi-Uda array is found (77.2734 + j 76.1564)
n; when as per King's Three-term approximation for ten-element array it is (88.3281 + j
69.4) n.

4.3 Discussion

The input impedance of a straight wire antenna has been calculated using the current
distribution obtained in Chapter -2 and Chapter -3. The results have been compared with
those obtained by King's Three-term approximation and with the measured values
reported by Mack. In case of half-wave dipole, the .analyzed resistance is lower than
measured value but higher than theoretical value; when the reactance is lower from both
reactances. For full-wave dipole, both the resistance and reactance is lower. In case of
three-element Yagi-Uda array the result is lower for resistance but higher in reactance
compared to theoretical value for ten-element array. It is noted that - antenna impedance
varies with the antenna arrangement. Input impedance of the same half-wave dipole has
been reduced in resistance and increased in reactance in presence of other parasitic
elements. This represents - for specific arrangement of antenna array, the power stored in
the near field increases; when the power associated with radiation and dielectric &
conducting losses reduces.
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CHAPTER-5

FAR-FIELD RADIATION PATTERN OF THE WIRE ANTENNA



5.1 General Formulation

At far-field condition (r » 2I'/A) the magnetic vector potential of a z - directed linear,
antenna can be approximated as -

- jkr

A (r) = zI.Le F.
41r r •

where, F = z F, = r cos B F, - i} sin B F, is known. as the radiation vector.

For a single linear antenna-
1/2

F, = fI(z') el' oo,B,' dz'
-1/2 '

For an array of linear antennas along y-axis the radiation vector is -

n=N ('''/2 JF: = LeJk sinO sinlJSy" Jln(Z') elk cosf}:'dz'

n=1 -1,,/2

(5.1.1) .

(5.1.2)

(5.1.3)

In terms of the radiation vector F, (B,r/J), the radiation intensity of the linear wire antenna

becomes-

17 k' 1- I' 17 k'i I'U(B,r/J) = --, F (B,r/J) = --, sin B F,
321r 321r

and the normalized power gain is -

g(B,r/J) = U(B,r/J)
Umax

5.2 Far-field Radiation Pattern for the Linear Wire Antenna

From the basic definition of integral formula we have-

h k=n

fi(x) dx = lim,..,ooLi(x;) t>x
a k=l

b-a • [ 1where, t>x= -- andx, = a + k t>x,when x, E x,_"x,
n

(5.1.4)

(5.1.5)

(5.2.1)
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Now, for the linear wire antenna the radiation vectorIF(II,I"~ = IsinII F, (II~. Hence, using
this definition of equation (5.2.1) in equation (5.1.4) we have-

1] k' ,
U(II,I") = 32Jr' [sinII F,(II~ (5.2.2)

U(II,I")will be maximum at II= Jr/2. Therefore, as per equation (5.1.5) the normalized
power gain can be expressed as -

(5.2.3)
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Fig. 5.1 Azimuthal pattern [polar plot of g(e,<j»]of the half-wave dipole in absolute units
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Fig. 5.2 Azimuthal pattern [polar plot ofg(e,~)] of the full-wave dipole in absolute units

5.3 Far-field Radiation Pattern for the Antenna Array

For the discussed three-element Yagi-Uda array -

/1/2 '2/2

F;:(O,fjJ) = JII (z') eJ k cosO z'dz' + ei k sinO sin~ d12 Il2 (z') eJ k cosO z'dz'
-fll2 -/2/2

I) 12
j k sinO sinf dn JI (,) j k cosO z'd '+e ,Z e Z

~IJ!2

= [~Il(z~J eJ k ",0 ('~")]Liz;

+['II,(Z~,) eJ k [,0,0 (,~,,},,,, 0 s". dnl]Liz;
m",1

(5.3.1)

'~1
\, __.J

(5.3.2)

+ [~I3(Z~') eJ k ["sO (,:",)",,0 s". dDJ]Liz;

U(B,qI)will be maximum at B = :r/2 for azimuthal or E-plane pattern and at qI= :r/2 for
H-plane pattern.

40

'- ,-- .•.••••,.



90

o..~..... :'"

60

300

.........

...........: .

180 .

270

Fig. 5.3 E-plane pattern [polar plot ofg(ll,<j>l]of the Yagi-Uda array in absolute units.

"

Fig. 5.4 Magnified rear view of the E-plane pattern of the Yagi-Uda array
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Fig. 5.5 H-plane pattern [polar plot of g(e,~)] of the Yagi-Uda array in absolute units
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Fig. 5.6 Magnified rear view of the H-plane pattern of the Yagi-Uda array
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5.4 Discussion

Comparison between azimuthal far-field radiation patterns of different antennas is given
in the following figure.

90
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,,' '1"') . ; .{.. ;.' . . J. ...i\I)::o;B;OB

180 ..... :~... :;.: ... :)l:.\<: )....,.....0
...... )."( ..... :...•. \. 'I' .

.: ': 1 " .';"f.': .i ..(--, .' I : .. : 1 "
'..:'\ : I (....
: ..\1,..... ,... J/' •..

. . I .
'240 '-\: .~/ . 300

270
:YagiUda; :FuIiWave.; -.-._.-. :HalfWave

Fig. 5.7 Comparison for azimuthal pattern of the half-wave, full-wave and Yagi-Uda
array

From the figure 5.7, it is found that the radiation pattern of the full-wave dipole is
narrower than that of half-wave dipole. It represents that the full-wave dipole is more
directive than the half-wave dipole antenna. Comparing the radiation pattern of a dipole
antenna with that of a Yagi-Uda array we can say that the Yagi-Uda array can be used to
direct radiated power towards a desired angular sector. The radiation pattern of Yagi-Uda
array has only one lobe, when both the full-wave and half-wave dipole has symmetrical
two lobes. The most basic property of the array is that, the relative displacements of the
antenna elements with respect to each other introduce relative phase shifts in the radiation
vectors, which can then add constructively in some directions or destructively in others.
Radiation pattern for receiving antenna has not been calculated here, considering the
reciprocity property.
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6.1 General Discnssion

The current distributions for a half-wave, a full-wave dipole antenna and a three-element
Yagi-Uda antenna array have been calculated by solving Pocklington's integral equation
using wavelet bases in moment method. The calculation has been followed at different
scales to select the appropriate scale for analysis. From the results it is found that - for
analysis of half-wave dipole current distribution, scale equals to three is the most efficient
considering the computation time and information detail of the calculated current
distribution. Similarly, for full-wave dipole, the analysis is most efficient at fourth scale
with respect tothe calculation time and shape of the current function. Determined current
distributions at efficient scale have been compared with theoretical and experimental
data. The accuracy level is comparatively acceptable, even at the lowest scale. For the
three-element Yagi-Uda array, the computation time is higher. Current distributions on
each antenna element have been calculated and also verified with the theoretical values
based on King's Three-term approximation for a ten-element array. The results are found
acceptable in most cases. From the corresponding current distribution, two basic antenna
properties, i.e. antenna input impedance and far-field radiation pattern have been
determined. In most cases, the analyzed antenna input impedances are found very close to
the experimental result and theoretical estimation. Calculated far-field radiation patterns
are found also physically significant. In the analysis it is noted that - this method is more
efficient for electrically small antennas and it takes longer time to analyze the full-wave
dipole than half-wave antenna. It demands higher computation power as antenna length
increases.

6.2 Further Scope of Work

In this method, the computation time is relatively higher (43 to 107 times) than the time
required in case of Numerical Electromagnetic Code (NEC). NEC is a widely used public
domain program for modeling antennas and other structures. NEC solves Pocklington's
equation using a spline-like sinusoidal basis and a set of delta functions as weighting
functions. In this analysis Galerkin's technique has been followed, i.e. same wavelet
bases have been used as both basis and weighting function. Though Galerkin's technique
is more complicated from computational perspective, it enforces the boundary condition
more rigorously than the point matching technique. However, from the analysis it has
been observed that - approximately the total computation time has been used to
determine the matrix element. The matrix equation has been solved within a very short
time (generally 75 milliseconds). Therefore, to reduce the computation time significantly,
more efficient method should be implemented to evaluate the matrix element. Quadrature
methods (e.g. Gauss-Legendre, Gauss-Kronrod etc.) should be implemented more
efficiently to reduce the computation time to the NEC level.
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APPENDIX - A.I Physical Constants

I .. Quantity- .• Svmbol .. -Vill.ue Unit J- -- ...•.. ~- - .
Speed oflight in free space 299792458 -I

C ms

Permittivity offree space Eo 8.854187817 X 10.12 Fm-I

Permeability offree space flo 411:X 10-7 H m-I

Characteristic impedance of 17 376.730313 461 Q
free space

.

Propagation constant in free
k. 211:/"-0 rad m-I

space

Electron charge e 1.602 176462 X 10-19 C

Electron mass m, 9.109381 887 X 10,31 kg

APPENDIX - A.2 Relative Error

The.relative error of I, with respect 10
is defined by-

EWM = IIIMa'k - IW~d",112 xl 00%

1110- I,ll, xIOO%
IIIMackll,

E fof, =
11/011, Il/King - Iwa",,,,II, 10

EWK = x 0%

~[~Uo- 1,)2] .
Il/Kingll,

= n-I X 100% IItMa'k - IKing 112 001 n=N ,N~/O EKM = x I %.'III Ma,k 112 I .,
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APPENDIX - B. Computer Programs

List of Routines

Routine' , F.unetioil
function TX.m To determine the current distribution of

a transmitting antenna

function RX.m To determine the current distribution of
a receiving antenna

function_Yagi_Uda.m To determine the current distribution of
each antenna of a Yagi-Uda array

find scale.m' Sub-routine to find scale

find k.m Sub-routine to find k-value

scale cof.m Sub-routine to determine scale function
co-efficient

scalef.m Sub-routine to construct scale function

wavelet cof.m

wavelet.m

basef.m

krnll.m

TwoD.m

plot IZ.m

Sub-routine to determine wavelet
function co-efficient

Sub-routine to construct wavelet
function

Sub-routine to determine the matrix
elements

Sub-routine to calculate the kernel value

Sub-routine for quadrature (Copyright
2008 : Lawrence F. Shampine)

Sub-routine to plot antenna current
distribution

In the thesis, to calculate the current distribution of the wire antenna, following resources
have been used -

Programming Software

CPU Clock Speed

RAM Capacity

Matlab 7.6.0 (R2008a)

Celeron 1.7 GHz

256MB



yes

[at, cJ = scale_cof(Ld,z,k)
FT(i)=0.25 {scalef(Ld,(-Rd/2),k)

+scalef(Lo, (R,/2) ,k)}
+0.5 scalef(Lo,O,k)

INPUT
scale, fo, rf

meu, eps, C, lamda
Rd, Lo, U

z= ZL+Cm

Zu= zL+Ls

if(n=4)

fo = Operating Frequency
rf = Antenna Length/(Wavelength/2)

no

[at, cJ = wavelet_cof(s,Lo,z,k)
FT(i)=0.25 {wavelel(s,Lo,(-Rd/2),k)

+wavelel( s,Lo,(Rd/2), k)}
+0.5 wavelel(s,Lo,O,k)

Fig.B.] Flow Chart to calculate Current Distribution of Wire Antenna (Start)' .

\
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Atemp(j,P) = basef(fo,Rd,Ld,p,U,at,Ct,Zu,ze)

temp = 0

tem p = tem p + A"mp(j,p)

A(i,p )=tem p

"

F = FT'

~',,-
Fig.B.2 Flow Chart to calculate Current Distribution (Continued ... ) \

r
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fori=1:u

for j=1:u

tem pn=A(j,i)
A(i,j)=tem pn

[L U] = lu(A)
Y = inv (L)

Z = YF
W=inv(U)

X = WZ

l(z)=X(1 )scalef(1)
+X(2)sca lef(2)
+X(3)scalef(3)

+X(4)wavelet(1 )
+

+X(u )wave let(u-3)

END

Fig.B.3 Flow Chart to calculate Current Distribution (End)

()
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"""""""""""""""""""""""""""""""""'"% Function for I(z) of a center-feed delta gap transmitting antenna %"""""""""""""""""""""""""""""""""'"
%Inputs
scale=3i
fO~3e8;
rf=l;

tic:

meu=(4e-7)*pi:
eps~8.854e-12;
c~l/(sqrt(meu*eps));
lamda~c/fO;

Rd~(7.022e-3)*lamda;
Ld~(rf*lamda)/2;

u=3;
for i=2:scale

u~u+(2'i)-2;
end

Aternp=zeros(6,u):
A=zeros (u, u) ;
FT=zeros (I, u) ;

for i=!:u
s=find scale(i,u}:
k~find_k(i,u) ;

%Seale of analysis
%Operating frequency in Hertz
%Antenna Length/Half-wavelength ratio

%Permeability of space (Him)
%Perrnittivity of space (Firn)
%Velocity of the wave in space (m/s)
%Wavelength

%Radius of cylindrical linear antenna
%Length of cylindrical linear antenna

Ls~Ldl (2'(s+1));
cm~Ls/2;
zL~ ((k*Ld) I (rs)) - (Ld/2);

if(i<4)
n=4:

else
n=6;

end
II;

for j=l:n
Z=ZL+Cffii
zu=zL+Lsi

if (n~~4)
[at,ct]=scale_cof(Ld,z,k);
FT (i)~O. 25* (scalef (Ld, (-Rd/2) ,k)+scalef (Ld, (Rd/2), k))...

+O.5*scalef(Ld,O,k); %Calculated for VO~lVolt and delz~Rd
else

[at,ct]~wavelet_cof(s,Ld,z,k); t~
FT(i)~O.25*(wavelet(s,Ld, (-Rd/2),k)+... \.;)
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wavelet (s,Ld, (Rd/2),k) )+0.5*wavelet (s,Ld, 0,k);
%Calculated for VO~lVolt and delz~Rd

end

for p=l:i
Atemp (j, p) =basef (.fO, Rd, "Ld,p, li, at ,.ct, zu; zL) i

end

z1=zL+Ls:
end

for p=l:i
temp=O;
for j~l:n

temp~temp+Atemp(j,p);
end
A(i,p) =ternp:

end
end

F=FT I;

for i=l:u
for j~l:u

if(j>il
tempn~A(j,i) ;
A(i,j)~tempn;

end
end

end

[L U]~lu (AI;
Y~inv(L) ;
Z=Y*F:
W~inv(U);
X=W*Z:

pf~plot Iz(fO,rf,s,XI; %Plot function to plot current distribution

toe:

.;\,', '
","
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function for I(z) of a uniform plane-wave receiving antenna %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Inputs
scale=3i
fO~3e8;
rf=li

tic;

meu~(4e-7)*pi;
eps~8.854e-12;
c~l/(sqrt(meu*eps));
1amda~c/fO;

Rd~(7.022e-3)*lamda;
Ld~(rf*lamda)/2;

u=3;
for i=2:scale

u~u+(2'i)-2;
end

Atemp~zeros(6,u);
A=zeros(u,u);
FT=zeros (1, u " ;

for i=l:u
s=find scale(i,u);
k~find_k(i,u) ;

%Scale of analysis
%Operating frequency in Hertz
%Antenna Length/Half-wavelength ratio

%Permeabiiityof space (Him)
%Permittivity of space (F/m)
%Velocity of the wave in space (m/s)
%Wavelength

%Radius of cylindrical linear antenna
%Length of cylindrical linear antenna

Ls~Ldl (2'(s+l));
cm~Ls/2; .
zL~ ((k*Ld) I (2's))- (Ld/2);

if(i<4)
n~4;

else
n=6;

end

ftemp~O;
for j~l:n

Z=ZL+CIDi
zu=zL+Lsi

if (n~~4)
[pt,ct]=scale cof(Ld,z,k)i
ftemp~ftemp+O.5*(zu-zL)*(scalef(Ld,zu,k)+scalef(Ld,zL,k));

else .,..-;~'[at,ct]=wavelet_cof{s,Ld,z,k);
ftemp~ftemp+O.5*(zu-zL)*(wavelet(s,Ld,zu,k)+ ...



wavelet(s,Ld,zL,k));

end

for p=l:i
Atemp (j,p) =basef (fa, Rd, Ld, p, u, at, ct, zu, zL);.

end

zL=zL+LSi
end

FT(il~fternp;

for p~l:i
ternp=O;
for j~l:n

ternp~ternp+Aternp(j,p);
end
A(i,p)~ternp;

end
end

F=FT I;

for i=l:u
for j=l:u

if(j>i)
ternpn~A(j,il;
A(i,j)=tempn;

end
end

end

[L Uj ~lu (AI;
Y~inv (L);
Z=Y*F;
W~inv (U);
X=W*Z;

pf=plot Iz(fO,rf,s,X); %Plot function to plot current distribution

toc;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function for I(z) on each antenna of a 3-element Yagi-Uda array %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Inputs
scale=3;
fO~3e8;
ryr~O.5l;
rya~O.5;
dipole
ryd~O.4;

tic;

meu~(4e-7)*pi;
eps~8.854e-12;
c~l/(sqrt(meu*eps));
lamda~c/fO;

Rd~(3.37e-3)*lamda;
na=3;
Lr=ryr*lamda;
La=rya*lamda:
Ld~ryd*lamda;
dar=O.25*lamda;
dad~O.3*lamda;
drd~dar+(na-2)*dad;

u=3:'
for i=2:scale

u=u+(2"'i)-2:
end

A=zeros(na*u,na*u);
F=zeros(na*u,l) ;
Atemp=zeros(6,u) ;
Ac=zeros(u,u) ;
FT=zeros (I,u);

for v=l:na
if(v~~l)

Lt=Lr;
elseif(v~~2)

Lt=La;
else

Lt~Ld;
end

for w=l:na
if (w~~l)

Lb~Lr;
elseif(w~~2)

Lb~La;
else

%Scale of analysis
%Operating frequency in Hertz
%Antenna Length/Wavelength ratio for reflector
%Antenna Length/Wavelength ratio for active

%Antenna Length/Wavelength ratio for director

%Permeability of space (H/m)
%Permittivity of space (F/m)
%Velocity of the wave in space (m/s)
%Wavelength

%Radius of cylindrical linear antenna
%Total number of antenna element
%Length of reflector antenna
%Length of active antenna element
%1ength of director antenna
%Spacing between reflector and active antenna
%Spacing between director and active antenna
%Spacing between reflector and director antenna



end

if Iw~~v)
a=Rdi

elseif I I Iv~~l) &&Iw~~2)) II I Iv~~2) &&(w~~l)))
a=dari

elseif I ((v~~l) &&(w~~3)) I I (Iv~~3) &&(w~~l)))
a=drd;

else
a=dad;

end

%%% Core for Analysis (START) %%%
for i=l:u

s=find_scale(i,u};
k~find_kli,u) ;

Ls~Lt/ 12' (s+1));
cm~Ls/2;
zL~ I (k*Lt) / Irs)) - ILt/2);

ifli<4)
n=4 ;

else
n=6;

end

for j~l:n
z=ZL+CIni
zu="zL+Ls;

if In~~4)
[at,ctJ~scale cof(Lt,z,k);
ifllw~~2)&&lv-~2))

FT(i) ~O. 25* (scalef ILt, (-Rd/ 2) , k) + ...
scalef ILt, (Rd/2), k) ) +0. 5*scalef ILt, 0, k) ;

%Calculated for VO~lVolt and delz~Rd
end

else
[at,ct)=wavelet cof(s,Lt,z,k);
ifl Iw~-2)&&lv~~2))

FT(i)~0.25*(waveletls,Lt, I-Rd/2) ,k)+ ...
wavelet (s, Lt, (Rd/2) , k) ) ...
+O.5*wavelet(s,Lt,O,k) ;

%Calculated for VO-1Volt and delz~Rd
end

end

iflw~~v)
tp=ii

else
tP=Ui

end
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for .p~l:tp
Atemp{j,p}=basef(fO,a,Lb,p,u,at,ct,zu,zL):

end

zL=zL+Lsi
end

for p~l:tp
temp~O;
for j=l:n

temp~temp+Atemp(j,p);
end
Ac(i,p)=ternp:

end

end

if (w~~v)
for i=!:u

for j~l:u
if(j>i)

tempn~Ac(j,i);
Ac(i,j)~tempn;

end
end

end
end
%%% Core for Analysis (END) %%%

rs~(v-l)*u+l;
re=v*ui
cs~(w-l)*u+l;
ce=w*u;

e=1:
for q=rs:re

g~l;
for t=cs:ce

A(q,t)~Ac(e,g) ;
g~g+l; ,

end
if((w~~2)&&(v~~2))

F(q)~FT(e) ;
end
e=e+1;

end

end

end

%%% Final Calculation (START) %%%
[1 UJ~lu (A);
Y~inv(1);
Z=Y*Fi ~

, -A: ~.
.,-

'"
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W~inv(U) ;
X=W*Zi
%%% Final Calculation (END) %%%

Xr~X (1:u) ;
Xa~X( (u+1): 12*u));
Xd~XI I(2*u)+1): (3*u));

figure; pfr=pl-ot_Iz(fO,ryr,scaletXr):
figure: pfa=plot Iz{fO,rya,scale,Xa);
figure; pfd~plot Iz(fO,ryd,scale,Xd);

toe:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function to determine the scale of scale or wavelet functions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Lscale] =find_scale (x,u)
% x= Loop variable
% u= Total number of variable or matrix element

sLirn=3:
for sL=2:u

sLim~(2AsL)-2+sLim;
if(x<=sLim)

scale=sL:
return:

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function to ,find the value of k of' scale or wavelet functions %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[k]~find_k(x,U)
% x= Loop variable
% u= Total number of variable or matrix element

iflx<4)
k=x-l:

else
s=find scale(x,u);
sLim=3:
for sL~2: Is-i)

sLim~sLim+((2AsL)-2);
end
k~(x-l)-sLim;

end
,.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function to determine co-efficient of. scale function at scale =2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[a,c]=scale_cof(L,z,k)
% L= Length of the antenna
% z= z-value
% k= k-value of the scale function

zj~(4/L) * (z+ (L/2));
ifl (zj>~k)&& (zj<~lk+l)))

a~4/L;
c=2-ki

elseif(lzj>~(k+l))&&(zj<~(k+2))}
a~-4/L;
c~k;

else
a=O;
C=Oi

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scale Function at scale=2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[out]=scalef(L,z,k)
% L~ Length of the antenna
% z= z-value
% k= k~value of scale function

zj~(4/L)*(z+(L/2}};
ifllzj>~k)&&(zj<~(k+l}}}

out=zj -ki
elseif ((zj>~ (k+1))&& Izj<~ Ik+2) )}

out~2- (zj-k);
else

out=Oi
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function to determine-eo-efficient of wavelet function %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

functlon[a,c]=wavelet cof(j,L,z,k)
% j= scale of the wavelet function
% L= Length of the antenna
% z= z-value
% k= k-value of the' wavelet function

cw~o .166667;
J~2Aj;
J1~2A Ij-1};
zj~IJ/L}* (z+(L/21 I;
ifl (zj>~kl && (zj<~lk+.5)) 1

a~(cw*JI/L;
c~cw*IJ1-kl;

e1seifl (zj>~(k+.5) )&&(zj<~(k+1)))
a~-(7*cw*J}/L;
c~cw*(17*k)-(7*J1}+41;

e1sei f ((zj>~ Ik+ 1) )&& (zj<~( k+ 1. 5) 1}
a~(16*cw*JI /L;
c~cw*(116*J1)-(16*k)-191;

e1seifl Izj>~(k+1.5) 1&&(zj<~(k+21 11
a~-(16*cw*J)/L;
c~cw* (116*k 1- (16 *J1 )+291 ;

elseif((zj>~(k+211&&(zj<-(k+2.5)))
a-(7*cw*JI/L;
c~cw*( (7*Jl)-17*k}-17);

elseif I(zj>- (k+2 .51 )&& Izj <~ (k+3) ))
a~-(cw*JI/L;
c-cw*(k-Jl+31;

else
a=O;
c=o;

end

%%%%%%%%%%%%%%%%%%%%
% Wavelet Function %
%%%%%%%%%%%%%%%%%%%%

function [wv]=wavelet(j, L, z, k}
% j= scale of the wavelet function
% L~ Length of the antenna
% z= z-value
% k= k-value of the wavelet function

c~O.166667;
J-rj;
zj-IJ/LI*(z+(L/2});
if((zj>-k}&&(zj<~(k+.5111

wv=c*(zj-k);
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elseifl (zj>~(k+.5) )&&(zj<~(k+1)))
wv~c* (4-7* (zj-k));

elseif(lzj>~lk+l))&&(zj<~(k+l.5)))
wv~c*(-19+16*(zj-k));

elseif( (zj>~(k+l.5) )&&(zj<~(k+2)))
wv~c*(29-16*lzj-k));

elseif(lzj>~(k+2))&&(zj<-(k+2.5)))
wv~c*(-17+7*(zj-k));

elseif ((zj>~ (k+2.5) )&& (zj<~.Ik+3)))
wv~c* (3-(zj-k));

else
wv=O;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Base function to determine the matrix elements %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function[out]=basef(fO,a,L,p,u,at,ct,zu,zL)
% fO= Operating frequency in Hertz
% a= Radius of the wire antenna in meter
% L= Length of the wire antenna in meter
% p= Loop variable
% u= Total number of variable or matrix element
% at= Co-efficient of the testing function
% ct= Constant value of the testing function
% zu= Upper limit of the testing function
% zL= Lower limit of the testing function

meu~(4e-7)*pi;
eps~8.854e-12;
eta-sqrt(meu/eps);
c~l/lsqrtlmeu*eps));
kO~(2*pi*fO)/c;
lamda~c/fO;

%Permeability of space (Him)
%Permittivity of space (F/m)
%Intrinsic Impedance
%Velocity of the wave in space (m/s)
%Wave number

cl=-(3*i*eta*lamda*a*a)j(8*pi*pi) ;
c2-(3*eta*lamda*kO*a*a)/(8*pi*pi);
c3~(i*eta*lamda*(2+(lkO*a)"2)))/(8*pi*pi);
c4~-(eta*lamda*kO)/(4*pi*pi); .

s~find_scale(p,u);
k-find_k(p,u) ;

Ls-LI (2"Is+1));
cm~Ls/2;
zpL~ ((k*L)I 12"s))- IL/2) ;
Btemp~O;

if(p<4)
0=4;

else
0=6;

end
o
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for j~l:n
zP=ZpL+Cffii

if (n~~4)
(ab, cb] =scale_cof (L't zp, k);

else
[ab,cb]=wavelet cof(s,L,zp,k};

end

zpu=zpL+Ls;

krnl = @(x,y)krnll(x,y,kO,a,ab,at,cb,ct,cl,c2,c3,c4);
Btemp=Btemp+TwoD(krnl,zL,zu,zpL,zpu);
zpL~zpL+ Ls;

end

out~conj IBtemp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Kernel function of each matrix element %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z = krnll(x,y,kO,a,ab,at,cb,ctrcl,c2,c3,c4)
% x,y = z-values of basis and testing function respectively
% kO= Propagation constant in free-space
% a= Radius of the wi-re antenna in meter
% ab[at= Co-efficents of basis and testing function respectively
% cb,ct= Constants of basis and testing function respectively
% cl,c2',c3,c4= Constants of the kernel

t sqrt(lx-y) .'2 + a*a);
r expl-i*kO*t).1 (t.*t);
P (Icl-/t + c2) ./t + c3) ./t + c4;
z (cb*ct*r + r.*(cb*at*x + ab*ct*y + ab*at*x.*y)) .*P;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot function to plot current distribution of linear dipole %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

funetion[p]=plot_1z(fO,rf,seale,X)
% fO= Operating frequency in Hertz
% rf= Antenna Length/Half-wavelength ratio for dipole antenna
% = Antenna Length/Wavelength ratio for Yagi-Uda arr~y element
% scale= Scale of analysis
% X= Co-efficient matrix of 1(z)

meu~(4e-7) *pi;
eps~8.854e-12;
c~l/(sqrtlmeu*eps));
lamda~clfO;

%Permeability of space (Him)
%Permittivity of space IF/m)
%Velocity of the wave in space Im/s)
%Wavelength
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if(rf<l)
Ld=rf*lamda;

else
Ld~(rf*lamda)/2;

end

u=3;
for i=2:scale

u=u+(2"i)-2i
end

Ls~Ld/12A(scale+l)) ;
cm~Ls/2;
np~(Ld/cm)+l;
zd~-Ld/2;

!=zeros(np,l);
curl=zeros(np,l);
curi=zeros(np,l);
cura=zer.os (np, 1);
xp=zeros(np,l);

for j~l:np
Itenip~O;
for i=l:u

if li<4)
kp~find_kli.u) ;
sf~scalefILd.zd.kp);
Itemp~Itemp+(sf*Xli));

else
sp~find_scaleli.u);
kp~find_k(i.u) ;
wf=wayelet(sp,Ld,zd,kp);
Itemp~Itemp+(wf*X(i));

end
end
I (j)~Itemp;
curl (j)~real (I Ij));
curi(j)~imag(~(j));
cura(j)~abs(I(j));
xp(j)~zd;
zd=zd+Cffi;

end

plot(xp,curl, '-' ,xp,curi, '--' ,xp,cura, '-. ');
xlabel('Axial Distance (z/lamda}')i
ylabel 1'Normalized Current (Amperes/Volt) ');
grid;
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APPENDIX - C Wavelets

Wavelets are building blocks that can be used as the basis of function spaces, i.e. they
allow the description of a function in terms of simple elements (or atoms). Such atomic
decompositions result in an effective representation of complex data and allow an
efficient numerical solution in application. The term 'wavelets' is a literal translation of
the French word 'ondelettes' or 'penlites ondes', that is, 'small waves'. This implies that
wavelets are waves, namely, functions that are localized in frequency around a central
vallie and that are limited in time.

The Wavelet Representation

Wavelets are families of functions that integrate to zero and are produced by scaling and
translating a single function (called mother wavelet). A wavelet is described by the
function Ifa.b(t) which is obtained by dilation and translation (shift) of a function If(t) as

defined by-
. I (t-b)Ifa.b (t) = .r;;. If -----;- (C-I) .

with a > 0, and b E ffi , where ffi is the set of real numbers. Dilation of a function j(t)
means j(kt); when k is some constant.

Wavelet Transformation

The wavelet transform defined by Wj(a,b) of a function Jet) than is expressed as-

Why Use Wavelets?

+00 I (t b)
Wj(a,b) =p(t).r;; If : dt (C-2)

Wavelets are the function of two parameters, dilation and translation, whereas the Fourier
methodology has only dilation. The Fourier technique is a useful tool for analyzing and
approximating functions by using an orthonormal set of basis functions, which generally
consist of the polynomials of trigonometric functions. In conventional Fourier technique,

the normalized functions ~ ejn' are used, which are dilated version of e/l. Hence,
,,271:

Fourier series converges in the mean when analyzing functions are periodic. The
convergence is point wise if the function is continuous. However, the approximation
methodology displays the Gibb's phenomenon when the Fourier technique is used to
approximate a discontinuous function. Gibb's phenomenon is a problem of overshooting
(and undershooting) the approximation to a function by an entire domain basis occurring
near the point of discontinuity.
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In wavelet analysis - not only an orthonormal set of functions, but also a
nonorthogonal linearly independent basis and a collection of linearly dependent functions
can be employed. Since wavelets can use discontinuous basis functions, edge effects are
reproduced much better in the methodology. Therefore, wavelets can approximate
discontinuous functions with a fewer number of functions than Fourier technique.

In addition, to observe a time-varying phenomenon (e.g. the fields radiating from
a structure as a function of time), it is required to know the instantaneous bandwidth or
effective change in the frequency content as a function of time. Although the time and
frequency resolution problem is the result of a physical phenomenon known as
'Heisenberg uncertainty principle' (if a signal is strictly time limited, it can not
simultaneously be band limited and vice versa) and exist regardless ofthe transform used,
it is possible to analyze any signal by using wavelet approach of Multi Resolution
Analysis (MRA). In MRA the signal is analyzed at different frequencies with different
resolutions when every spectral component is resolved equally in the Short Term Fourier
Transform (STFT) method.

Wavelets essentially look at the spectrum with a constant Q window. The
parameter Q is defined as the quality of a signal and is related to the relative bandwidth
of the wave shape with respect to its center frequency. A constant Q therefore implies
that the ratio of the center frequency with respect to the bandwidth is constant. Thus,
when the window is translated to a lower frequency, its support becomes smaller,
whereas when the window is moved to a higher frequency region, the window becomes
wider, so that the ratio remains the same. Therefore, the bandwidth of the window is a
function of the center frequency of observation for a wavelet, whereas for Fourier
techniques the observation window is the same irrespective of the center frequency of the
observation. This is a serious limitation of the Fourier technique because it is not
practical to observe the variations in the spectrum of a waveform.

MRA is designed to give good time resolution and poor frequency resolution at
high frequencies and good frequency resolution and poor time resolution at low
frequencies. This approach makes sense especially when the signal at hand has high
frequency components for short durations and low frequency components for long
durations. Fortunately, the signals that are encountered in practical applications are often
of this type.

B-spline Wavelets

So far we talked about general wavelet functions. When we select a family of wavelets it
is necessary to take into account the properties of this particular family which may have
impact on the intended application.

Some important properties of the wavelet function are-

I. Orthogonality
2. Support and Oecay



3. Regularity: smooth basis functions are desired in applications where derivative
are involved.

4. Vanishing Moments
5. Symmetry: is desirable because makes it easier to deal with boundary conditions.

The B-spline wavelets have all the desirable properties listed above.

The Scale

The parameter scale in the wavelet analysis is similarto the scale used in maps. As in the
case of maps, high scales correspond to a non-detailed global view and low scales
correspond to a detailed view. Similarly; in terms of .frequency, low frequencies (high
scales) correspond to a global information of a signal (that usually spans the entire
signal), whereas high frequencies (low scales) correspond to a detailed information of a
hidden pattern in the signal (that usually lasts a relatively short time).

Scaling, as a mathematical operation, either dilates or compresses a signal. Larger
scales correspond to dilated (or stretched out) signals and small scales correspond to
compressed signals. In terms of mathematical functions, if j(t)is a given function j(s.t)
corresponds to a contracted (compressed) version of j(t) if s > I and to an expanded
(dilated) version of j(t) if s < I. However, iri the definition of the wavelet transform, the
scaling term is used in the denominator, and therefore, the opposite of the above
statements is true, i.e., higher scales correspond to detailed information of the function
whereas lower scales correspond to non-detailed information of the function.

. ~/
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APPENDIX - D Moment Method

The integral equations are solved numerically by the method of moments. The basic
procedure for this solution is described in this section.

Outline of the Moment Method

The method of moments applies to a general linear-operator equation,

L 1= e (0-1)

where e is a known excitation, I is an unknown response and L is a linear operator (an
integral operator in the present case). The unknown function I is expanded in a sum of
basis functions J; as-

N

I=La,J;
j=1

(0-2)

and a set of linear equations for the coefficients a} is then obtained by taking the inner

product of equation L 1= e with a set of weighting functions w, as-

(w"L I) = (WI' e) where, i = 1, ..., N.

The inner product is typically defined as-

(I, g) = V(r) g(r) dA

(0-3)

(0-4)

where the integration is over the structure surface. The number of weighting functions is
taken here to be equal to the number of basis functions, so that the number of equations is
equal to the number of unknown coefficients. inI .Oue to the linearity of L, substitution
of I yields-

N . .

La} (w" L I}) = (WI' e) where, i = I, ..., N.
j==l

This set of linear equations can be written in matrix notation as-

(0-5)

[GJ[A 1= [E 1 (0-6)

where, G,} = (w" L I} ), A} = a} and E, =( wI' e). The solution can then be written in

terms of the inverse matrix as-

The choice of basis and weighting functions has an important role in determining the
efficiency and accuracy of the moment-method solution. Each basis function can either
extend over the entire domain of the cUrrent, or a sub-domain. Common choices for the
basis functions are rectangular pulses, piecewise-linear or piecewise-sinusoidal functions,
or polynomials. When w, = J;, the procedure is known as Galerkin's technique. V
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APPENDIX --'E Gauss Quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a
function,. usually stated as a weighted sum of function values at specified points within
the domain of integration. An n -point Gaussian quadrature rule, named after Carl
Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials
of degree 2n - I or less by a suitable choice of the points Xiand weights Wifor i = I, ...,n.
The domain of integration for such a rule is conventionally taken as [- I, I], so the rule is
stated as-

l,f(X) dx ,.,IWi f(x,)
i=l

(E-I)

Change of interval for Gaussian quadrature

An integral over [a, b] must be changed into an integral over [-), I] before applying the
Gaussian quadrature rule. This change of interval can be done in the following way-

(E-2)

(E-3)

After applying the Gaussian quadrature rule, the following approximation is obtained -

r f(x) dx = b-a Iw; f(b-a Xi + a+b)
2 ;=1 2 2

Other forms of Gaussian quadrature

The integration problem can be expressed in a slightly more general way by introducing a
positive weight function 00 into the integrand, and allowing an interval other than [- I, I].

That is, the problem is to calculate - rw(x) f(x) dx, for some choices of a, b, and 00.

For a = - I, b = I, and oo(x)= I, the problem is the same as that considered above and the
adaptive method is known as Gauss-Legendre quadrature.

Gauss-Kronrod Quadrature

An adaptive Gaussian quadrature method for numerical integration in which error is
estimation based on evaluation at special points known as "Kronrod points." By suitably
picking these points, abscissas from previous iterations can be reused as part of the new
set of points, whereas usual Gaussian quadrature would require re-computation of all
abscissas at each iteration. This is particularly important when some specifi~d degree of
accuracy is needed but the number of points needed to achieve this accuracy is not known
ahead of time. Kronrod (1964) showed how to pick Kronrod points optimally from
Legendre-Gauss quadrature, and Patterson (1968, 1969) showed how to compute
continued extensions of this kind. .. r>.
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APPENDIX - F LU Factorization

For any nonsingular matrix [A] on which one can conduct NaIve Gauss Elimination
forward elimination steps, one can always write it as -

[A]=[L][U]

where, [L] = Lower triangular matrix
[U] = Upper triangular matrix

Then if one is solving a set of equations-

(F- j)

then,
[A][x]=[e]

[L] [U] [X] = [e]
[L]-i[L] Iu] [X]=[Lt[e]
[I] [U] [X] = [L]-i[e]
[U] [X] = [L]-i[e]

(F-2)

(F-3)

(F-4)

(F-5)

(F-6)

Let, [L]-i[e]=[z] then [L] [z]=[e] and[U] [X] = [Z]. So we can solve [L]-i[e] first

for [Z] and then use [U]-i[Z] to calculate[X].

Without proof, the computational time required to decompose the [AJ matrix to [L] [U]
form is proportional to n3/3, where n is the number of equations (size of [A] matrix).
Then to solve the[L] [Z]= [e], the computational time is proportional ton'/2. Then to

solve the[U] [X] = [Z], the computational time is proportional ton'/2. So the total
computational time to solve a set of equations by LU decomposition is proportional
to (n3/3)+ n' . The total computational time required to find the inverse of a matrix using

LU decomposition is proportional to (n'/3)+ n (n') = (4n3/3).

Decomposing[A]= [L] [U]:

I. The elements of the [U] matrix are exactly the same as the coeffiCient matrix one
obtains at the end of the forward elimination steps in NaIve Gauss Elimination.

2. The lower triangular matrix [L ]has I in its diagonal entries. The non-zero
elements on the non-diagonal elements in [L] are multipliers that made the
corresponding entries zero in the upper triangular matrix [U] during forfJa
elimination. . .c•.
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