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ABSTRACT

VAdaptive array antenna syetems are currently the
subject of - intense .interest and investigation /
development for radar and commnnications applications.
The principal reason for the use of adaptive arrays is
in their ability ‘to ‘automatically steer nulls onto
undesired seurces of interference, thereby reducing
output noise ana enhancing the detection of desired
signals. These systems censiet of .an array of antenna
elements andran adaptive receiver processor .which has
feedback control over the element weights. The concept
of the adaptive system works on the principle of
minimizing the eutnut power under the constraineq
response to specified directions.

The present work studies' the behaviour of the
adeptive array 'system depending on the signal power ef
the desired signal and éhe interference sources, and

also on the placement of directional constraints in the

gsystem. A brief theoretical analysis and intensive

(111)



computer simulation on this directional coﬁstr;ined

system are presentéd.; The results qonfirﬁ that the
algorithm used is ;ble~-to_iterativeiy adapt variable
weights on the tap of‘the gensor array to minimize noise
prower at the array output subject to certain constraints
on the mainlobe as well as on the sidelobes of the array
response pattern. A number of interesting observations
regardiﬁg the behaviﬁur.of this adaptivé antenna system
in presence of-the desired signal and interfering noise
of " varying power - levels are glso revealed. Detailed
discussion is held for 'ﬁll types of simulations, and
inferences are drawn about the fespoﬁse of the array
under different signal environment as well as pattern

constraints.
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CHAPTER 1

INTRODUCTION



Signal processing using an array of sensors has
long been ' an attractive solution to hany‘detection and
estimation problems. An array offers +the means of
overcoming the directivity and beam width limita£ions of
a single sensor element thus reducing the vulnerability
of the reception of desired signals in the presence of
interference signals .in radar, sonar, s8seismic and
communication systems. Such conventional arrays are
mostly 5uilt' with fixed_wéights designed to produce a
pattern that is a compromise between resolution, gain
and low 8ide lobes.  The #ersatility of the array
antenna, howeéver, invites fhe'uée'of more sophigsticated
techniques for array weighting. Particularly attractive
are adap£i;e schemes that can sense and réspond to a
time varying env;ronment. Array antennas that
incorporate this characteristic adaptive property of
automatically steering nulls onto undesired sourcés of
interference thereby reducing output noise and enhancing

the capabilit& of detection of desired signal are



called'adaptive antenna arrays.

.Such an adaptive array is a system consisting of an
array of antenna ~elements and a real time adaptive
receiver—prdcessdr which, given a beam steering command,
gahpleé its,current environment and- then automatically
proceeds to ’adjust its element control weights, fhis‘
weight adjustment is‘carried on by means of somg feed
back ‘scheme and all this is done in accordance.with a
selected algorithm. The ultimate .objectivé is, of
.tourse; to improve output signal to noisé ratio.

Conventidnal communications | and radar antenna‘
systems are susceptible to a degradation in SNR
performance céused by undesired "noise" which intrudes

via the antenna side lobes. The noise may consist of

deliberate electroni¢ counter measure (ECM}, frieﬁdly RF

interference (RFI), éluttgr séattgr returns and natural
noise séurces. “This degradation is often aggravated by
movement of the antenna,” poor siting -condii&ons,
multipath, and a changing interference environment.

Adaptive array techniques offer possible solutions to



these serious interference problems via their flexible
capabilities of automatic null steering. . In fact,

adaptive nulling can be considered to be a principal

benefit of adaptive techniques at the present time. For
these reasons, adaptive array antenna systems are
currently the squect of intense invegstigation /

’

development for radar and communications applications.
Immediate advantages of such an array can thus be

grouped as follows [1] :

(i) Automatic adjustment of the anteﬁna reaponse to
give minimum interference.

(ii) No need for an a priori knowledge of the
bearing of the interference.

(iii) Ability to handle multiple Bourees of.
interference ﬁptora limit which can be defined.

{(iv) Ability- to track the changing appafent
direction ;f interference whether resulting from antenna -
movement, source mqvement or propggation effect.

(v} It does not need to gnqw the bearing of the

interference, the array c¢an handle new sources of

<



interference or jamming'not previously predicted , and
“{vi) There_:is no longer a severe mounting and

. tolerance problem.

1.2 BACKGROUND /. HISTORY

Adaptive arrays have théir roots [2} in a number qf
different fields, including retrodirective and self
phasing RF'antenna arrays, sidelobe cancellers, adaptive
filters (31, acoust@c or sonar érrays [4], =and seismic

arrays.

The first real contribution in the RF anfenna field
was_the retrodirective array injented by L.C. Van Atta
in the 1950's. Another major step was the phase-locked
loop theory and practice, whiéh‘ made possible self’

steering arrays.

Then in the early 1860’s, two groupslindependéntly

developed schemes for achieving the key capability of



adaptive interfefence .ndlling..'One group arrived via
radar sidelobe canceller development as represepted by
the patent of P.W. Howells [16] for an IF side-lobe
canceller. Alsubsequent analysis by S.P, hpplebaum [5]

established the associated control law théory, an
algorithm that maxihizes a generalized signal to noise
ratio. The'other groﬁp a?rived largely via self;training
or self-optimizing array proéessor qontrol systgms which
operate upon sampled signals, as described by B. Widrow
in his report on adaptive filters [3]; {17]1. Widrow and
his co-workers [6] subsequently appiied their approach
to adapti?e antenna systems and firmly established the
leagt mean square error algorithm, based upon the method

of steepest descent,

The LﬁS algorithm was developed further by Griffith
and Frost ﬁ?], with the result that one can maintain a
" chosen Vfréquency characteriétic for the array in a
desired direction, while discfiminatiﬁg against noises
.coming from other directions.l Rieglar and éompton [18]

provided timely experimental performance verification,



utilizing a - laboratory array‘gystem which wasloriented
toward communicaﬁions applications,. Comﬁton
[19}] noted a power equqlization phenomenon, which was
also addressed b; Zahml [20] and: shown to pérmit
acquisition of weak signals in’ presence of strong

jamming.

The maximum signal-to-noise (MSN) algorithm was also
developed further, with open literature contributions

primarily by Brennan and Reed [21])-[23].

Other algorithms' and techniques have also been
under invegtigation. Reed et al. t24]-have found that
rapid convergence can be obtaingd in all éases via a
direqt method of adapti?e weight comPutation, based on a
sample covariance matrix of the noise field. Search
techniques [25) combined with simple array pgrformance
moﬁitoring have beeﬁ receiving increasing attention, in
aﬂ_effort to achieve implementations which are less

1

complicated / costly.



Young and Howard [26], ([27] have described a .
parallel-processing array system concept which adapts

optimally on the basis of decision theory.

L]

1.3 THESIS QUTLINE

This thesis is concerned with thg study of the
behaviour of an adaptive array antenna system under .
varying. signal environmenf conditions and response
pgttern constraints. Adaptive array antenna system with
directioqal constfain@s was first put fofward by Takao
et. -al [8]. In this type of adapfivé ébocessor, it is
assuﬁed that there is a‘priori knowledge of the desired
Signalr direction.‘ The algorithm‘iteratively adapts the
element weights and finds the. optﬁmum weigh£s which

steer the respdnse pattern mainf}obe in the desired

signal direction and put  nulls in the noise
{interference): signal directions. This algorithm in
doing so requires a "directional constraint™ to place

the main lobe of the response pattern in the desired



signal direction (look directlon), ;

In our thesis, we use this "dirgctional constraiﬁt"
idea and introduce a number of constralnts on the
response pattern of the adaptive array antenna system to
investigatg its béhaviour under such condition. Apart
from the main lobe, lhere are a number'of-side—lobes in
the response pattern of an ﬁdaptlve array like any other
antenna systemi ~ The set of optimum weights which
controls the main lobe direction ﬁnd level ao not have
any controllon the side—lobe directiong and levels. "For
an array antenna deslgner.it wﬁuld be quite interesting
‘as “well- as important to have more or less complete
~control on the response pattern of the array. In +this
work, we. show that it 1is posslple to 'éontrol the
resﬁonse of the array antenna 'ﬁt these side—lobe
directions by imposing proper side-lobe cdnstraints._The
upper limit of such controllable side-lobes is however
llmited by the degrees of freedom -- =a ﬁhenomena
discusseg elaborately in a late; chap?er. The chief
advantage that we may achieve by éontrolling these side

lobe levels in the response pattern, is apparent by the



fact ﬁhat reduced side lobe levgls tend to Fimprove the
overall output gignal to noise ratio for uﬁaccounted
nbiae and also allow us to exercise‘greéter authority on
the overall antenna response. In this thesis, 'thié side'
lobe | constraint phenomena was giﬁen ar particular
impbrtaﬁce,and its different aspects. were thofoughly

investigated by computer simulation techniques.

The signal environment is the most important factor
forI consideration in adaptive array-antenha processing.
The capgbility of the array antenna ﬁay not be- similar
in any ihput signal to noiae fiﬁterference) ratio
condition. In certain occasions we .may have strong
desired signal condition compared to weak interference /
jammingr‘signals, sometimes it can be otherwigé. The

internal system noise may have considerable effect. on

the overall output SINR (signal +to interference and

system noise ratio). The effect of signal _power
variation i.e. variation in the strength of the desired
gignal, interference signal as well as the effect of

system noise on - the overall behaviour of the adaptive

10



array system is investigated in this thesis.

In cﬁaptef 2 of this thesis, a - general discussion

on the various techniques employed on adﬁptive array

antenna processing is given. Chapter 3 gives in brief
the mathematical tools required for solving the
optimization schemes employed for adaptive arrays.,

Chapter 4 1is devoted to problem formulation and to the
development of the algorithm used. The response patterns
- generated after computer simulation for various signal

environments and conetraints, are embodied in chapter 5.

Finally, a conclusion is drawn based on the various
observations of the behavior of the narrowband adaptive
array antenna for various signal / Jjamming conditions

and sidelbbe constraints.

11



CHAPTER 2
GENERAL . REVIEW ON
ADAPTIVE ANTENNA ARRAY

PROCESSING

12



2.1 INTRODUCTION

This chapte; deals with the general discussions
regarding antenné.arrays, their—capability of ad#ptive,
respbnse to some signal environment, as well ﬁs the
basic principles which give' rise to their adaptive
nature. Some control criteria dependent on 8ignal
guality (e.g., signal strength etc.) are also discussedl
The chapter ends ‘bf citing some methods used for

achieving desired response from adaptive antenna arrays.

2.2 DEFINITION

An adaptive array is an antenna-array system which
édapts to its sigﬁal environment to satisfy some
criteria, such as to maximize the signal to noise ratio.
The set of antenna elements may be evenly or unevenly
spaced.- They may be monopoles, diﬁoles, dipole?arraya,
or feeds into highly directional parabplic reflectors.

They may be placed in a line, on a circle, or even:

13



randomly over a surface or within a.volume of space.iBut
in all ﬁaaeé the arrays _Arel designed so that 'they
‘aptomatically adapt their responses to give low gain to
unwanted signals while main;aining adequate gain to =a

[y

wanted signal.

If  we aaéume an arfay A to consist of L
omnidirecfional elements | and - the cartesian
co—ordiqates (Fig.2.2.1) of the elements té be denoted.
by L triples { x(i), y(i), =z(i), i=1{2,...;,L } then we’
can - have the following définitidna for linear, planar

and general arrays {(9]:-

Linear'array : The. array A is said to be a linear array
if its L points, { x(i), y(i), z(i), i=1,2,....,L } are
collinear. |

Planar array : The array A ias said to be a planar array
if the L points of this array are coplénar bu£ not
collinear. Thus only non—degenerﬁte‘planar ﬁrrays' are

"called planar arrays.

14
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Fig. 2.2.1. : DEFINITION OF CO -~ OQRDINATE SYSTEM.

.

General-array : The array A is a general array if it is

" neither a linear nor a planar array.

The three classes of arrays defined above are

mutually exclusive and exhaustive.

In Fig.2.2.1, i(gb ,0) is called the steering vector

.

which dehotes the direction of the signal s(t) with

angle ® and 9 . The vector T(i) denotes the position
‘of an anienng element. It is to be noted that, for a
15
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linear afray, the direction of the signal source |is
‘- given by the angle 8 taking the axis of the array as
the Z axis and the element position is given by only 2

co-ordinates.

2.3 BASIC PRINCIPLES

In. genergl, the éntenné elements of an adaptive
array have an associated electronic‘ control. unit or
processor. The array itself is illustrated invFig.2.3.1.
The :outputs of the N-elements are weigﬁ£ed (W] to Wn)

and then summed tp give the array output {107].

16



oUT PUT
Fig. 2.3.1 ¢ .BASIC ARRAY.

xn(t) o—

’ ' ' Wi ) s(t)
ouUT PUT

| AUTOMATIC CIRCUIT
b—> FOR WEIGHT
-1 ADJUSTMENT

ERROR
SIGNAL

DESIRED
RESPONSE

Fig.2.3.2 : BASIC ADAPTIVE ARRAY.
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The general form of an adaptive systém is shown in
'Fig.2.3.2. Here Xty X2,....,Xn are the input signals to
the array elements. The weights (W,, Wz2,....,Ws) are

determined by a control unit (often called the adaptive

prbcessof). The control unit requires, in most systems,
an input from each of the elements, and in many cases
from ‘the array output. A reference signal which defines

in some way the wanted signal may also be required;

A simple example follows (Fig.2.3.3) whicﬁ

illustrates the existence and calculation of a set of
weights which will cause a signal frqm a desired
direction to be ap;epted while a "noise" “from a
different direction is rejected tS]. Let the signal
arriving from the desired direction 9=Q be cal'le‘d the
"pilot" signal p(t)=Pansin wot; where Py -;s “the
amplitude, Ho = 21+fo and f, is the frequency of the
pilot signal.J The other unwanted ‘signal or noise is

chosen 'as h(t)=Nasin wet ‘and is incident on  the

receiving array at an angle O =T /6 radians. At & point

in space midway between the antenna array elements, the

18



signal and noise are assﬁmed to.be'in phase. ' The omni-
directional array elements are spaced )\0/2 apart. The’
signals received by each glement are fed to two variable
weights, one weiéht being preceded by a quarter wave
fime delay of 1/4f,. . The four weighted signals are'then

~summed to form the array output.

19



Pitot 'signul"
P(t)= Rsinwot -

/ "NOISE~ N (t)=Nsinwgt

w/e
4

i

o ARRAY OUTPUT

'Fig. 2.3.3 ARRAY CONFIGURATION FOR NOISE
ELIMINATION EXAMPLE.
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The ﬁrobleﬁ of obtaining a set of weights to accept
pl(t) and reject n(t} can now be studied. It is +to be
poied that with any set.of nbn—zero weights, the output
is of the form Aasin (woet+% )}, and a numbér of solutions
exist which will make the output be.p(t); However, the
output of the array muét be independent of'the amplitude
and phase of the noise signal’if the array is to be
pegarded as rejecting the noise. Satisfaction of ‘this
constraint. leads to a unique set of weights determined

ag followg.
The array. output due to pilot siénal is :
Pm[(W1+W3)sinw;t‘+ (W2+W4)sin(wot—TT/?)ti.....(2.3.1)
For this output to be equgl to the desired output of
p(t}=Pasinwet (which is ghe pilot signal itself), it is

necessary that:

WI. +W3 =1-...........--...-........._.'..—.._..{2.3.2)

Wz + Wa =0

- 21



With respect to the'mid-point between the antenna
elements, the relative time delayayof the noise at the:
two antenna elements are:

which éorresponds to a phase s8hift of r1m/4 at
frequency fo.. The array output due to the incident noise

at © =1Tr/6 is then:

Nm[W: Sin(wet - T/4) + Wz sin{wot - 3T /4)

+ Wy sin(Wet + T /4)+Ws sin{wot - T /4}]......(2.3.4)

For this response to equal  zero, it is necessary that

W1 +W| 0 o---o,-'r-‘-n-cncoo-n-----c--nanoc.|{2|3-5)

Wz - Wa = O
Thus the set of weights that satisfies the signal
‘and noise response requirements can be found by solving

{2.3.2) and (2.3.5) simultaneously. The solution is

22



Wy = 172, W2 = 1/2, Ws = 1/2, We = -1/2

With these weights, the array will have the
distinctive property of accepting a signal fr;m a
aesired dipeétion. Thus a noise, wﬁich may even be of
'the same.frequehcy fo as the signal, wilL be rejected.
This rejection 1is possible as long as the noise comes

from ﬁ different direction than does the signal.

The directivity pattern, i.e. the rglative
senéitivity of response to s8ignals from various
directions, is plotted in Fig.s 2.3.4, 2.3.5, 2.3.6, and
2.3.7. Each figure is plottéd in a plane over an angularr

range of -1 /2<¢ @ <T1/2 for frequency f,.

Due to introduction of time delay, the directivity
pattern of Fig.2.,3.5 has its main lobe at an angle of b

radians, where

23



~

Wz sin-t {AeS fo/d) = sgin-1 {c§ /d)

1)

and f; frequency of received signal

Ao = waveflength at frequency f,

$ = time delay difference between neighboring;
element outputs

d = spacing between antenna elements

c = signal propagating velocity = A4 f,

The directivity patterh of Fig.2.3.7, gith itg
agsociated weight sets, has .its‘ main lobe almost
unchanged from that shownr in Fig.s 2i3'4 and l2.3.6.
However, the particular gsidelobe that préviously
intercepted a sinuséidal noise in Fié. 2.3.6 has been
shifted so that a‘null is now placed in the direction of

that noise.

24



Y = sin-t (3,8 fo/d) = sin-t {C§/d)

and fo = frequency of received signal
Ao = wave-length at frequency fo N 4
$§ = time delay difference between heighboring

elenent outputs

o
il

spacing between antenna elements

fiNe]

signal propagating velocity = Aefo

The directivity pattern- of Fig.2.3.7, with its

associated weight sets, has its main lobe almost
unchanged from that shown in Fig.s 2.3.4 and 2.3.6.
However, the particular sidelobe that previously

intercepted a sinusoidal noise in Fig. 2.3.6 has been

shifted so that a null is now placed in the direction of

that noise.



ANTENNA
ELEMENTS

ARRAY QUTPUT
SIGNAL

Fig. 2.3.4 : DIRECTIVITY PATTERN FOR A SIMPLE LINEAR ARRAY.

ARRAY OUTPUT
. SIGNAL.

Fig.2.3.5: DIRECTIVITY PATTERN FOR A
LINEAR ARRAY WITH DELAYS ADDED.
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LOOK DIRECTION
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Fig.2.3.6 : DIRECTIVITY PATTERN FOR LINEAR ARRAY
WITH EQUAL WEIGHTING.
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An adﬁptive array system can be either of the
feedback (i.e.,closed loop) type ‘or of the open looé
'type [10];,-In the feedback éystem the array output
{possibly as well as the sigqal from thé array elements)
is required for the processor. Whereas in the open'loop
Qyétem this is not required. In the later case (open
loop system), the required weiéth must be caiéulated
ppecisely from the input wéveforms and then accurately
applied, and thefe is no feedback to confirm that the
correct pgrformance has been achieved. ‘The objection to
the feedback-systems is their limited speed of response.
However‘ the ,#dvantage 'ig that thé weight multipliers
neéd not be accurate, or even ’linegr, because the
feedback nﬁture of the system will set whafever values
‘are needed to obtain the required output. The main
advantage of the open loop system over the feedback
system'is, their fast resﬁonse, but, of course there is
a trade - off between speed of response and degree of
freedom. Because of the high gccuracy required, an open
160p system musé really be impleménted digitally,

whereas a closed 'loop system may be either digital or
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1
analogue. .

2.4 WANTED SIGNAL AND CONTROL CRITERIA

" Adaptive arrays can be configured to receive
narrowband or broadband signal. A narrowband signal may

say fo.

be characterized by its centre frequency,
an array configuration is shown in Fig. 2.4.1.

Such

L

The narrowband signal is received by the aﬁtenna

element and is thus weighted by a complex gain ﬁPctor
Aeﬁ) . Any phase angle

1
B =-tan-1 (W2 /W;) can be chosen

by setting the two weight values, and the magnitudé of

this complek'gdin factor A= ./ ({W. )2 + (Wz)2) can takb on
. _ - \

a wide range of values limited only by -the range
limitations of the two individual weights. Thus this two

tap arrangement in each channél ’of the array’
configuration provide compietg adjustable linear
processing for narrowband signal;‘ ?eceived by eéch
antenna element.
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When one is intergsted-in reéeiving signals over- a
wide range of frequencies (i.e..lbrbgdband signal), gach
of the phase gshifters in ﬁig. 2.4.1 can be replacéd by a
fappea—delay—line nétwork as showq in Fig.2.4.2 . This
tappéd delay line permits adjustment of gain and phase
as dgsired at’'a number of frquencies over the band of

interest.

In our analysis, we will consider a narrowband
s8ignal that can be expressed by its centre frequency and

slowly varying envelope.
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In cases where ﬁhe wanted signal ig of extremelyl
low mean noige power (well below receiver noise level in
ggneral), the control system is designed to minimize the
total output powerl from the_larray [10]), subject of
course, t; a,constraiﬁt‘on the weights to prevent them
all being set to zero. This criteria is specialiy suited

z

for radar sidelobe. cancellation.

However in the communications case, the mean wanted

gignal . power is generally much éreater, and if above
criteria is followed will be - éuscéptible to
cancellation. So the <control criteria is modified to
protect this signal. One approadh is' to use the

constraint (or constraints)} (discussed later] to specify

a fixed gain in the direction of the wanted gignal, if
known., The output power ig then minimized subject to
this constraint, which ensures that the wanted .signal

is still received. This approach, more suitable for open

P

loop systems, requires knowledge of the wanted signal

direction and also of the relationship between the

weight vector and the array gain pattern.
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Another approach, not requiring thia information,’

.is to minimize the array output power excluding the

wanted signai. This can be achieved by preventing the
‘control system from seeing the wanted signal, -so that
there is no tendency to cancel it. This method is

partiéulérly approﬁriate for closed—loop_systems, as it
is only necessary to excludg the wanted signal from the
feedﬁack path. 'This criteria may be broadly terméq a
maximum-signal-to-noise (MSN)'criteriﬁ,‘ becéuse, for =a
nonzero gain to the wanted signdl, Fhe unwanted power is

minimized.

A closely related approach is the minimum-mean-
square-error criteria. Here a reference signal is

provided yhich, ideally, matches the expected wanted
signal. The adaptive system then minimizes the power (or
mean square value) of the error signal defined as the

difference between the reference signalland-the array

"output.
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2.5 GENERAL CONTROL. METHODS

L}

Some generﬁl approaches used to improve the signal,
. to noise ratio (SNR) may be outlined as follows [10]:-

(i) Matrix inversion methods

(ii) ‘Correlation feedback systems.

(1ii) Perturbation or random search

(iv) Gpam—Séhmidt
These methods are briefly described below:-

- {1i) Matrix inversion method: The basic adaptive

array ﬁroblem is to determine and éppiy the get of
weights which optimize the system pérformance according
to the chosen direction. The optiﬁizing condition which
most systems' attempt to meet gives phe set of weighté
{i.e., the weight.vector W ) as the solution of an
equation of' the form R W = b, whefe R is a matrix of
cross correlations of the signals from the array

élements (idealiy excluding the wanted signal). b is a
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vector depending on the "wanted s8ignal gr the array
steered direction. Open loop systems, for which matrix
inversion method (Fié. 2.5.1) 1is. specially suited
calculate th; required weight directly from the eqﬁation
W = R-! b using digital techniques. This results in a
verylswift determination of the désired optimum weight

vector.

i

(ii) Correlation TFeedback Systems : In these

systems (Fig 2.5.2 and 2.5.3) the optimizing weights are
determined' by using correlation between the signals from

the array elements and a feedback signal derived from

the array output. The feedback loops obefate to reduée
the feédback signal power to a‘ iow level, iaeally
approaching zero as . the loop gain is increased. The
Howell-Applebaum MSN processdr [2] maximizes =&

generalized signal/noise ratio in ‘the case where the
wanted signal power is negligible (as in the radar
case)., For communications, the wanted signal may have to

be reduced (indicated by a generalized filter in
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Fig. 2.5.2) in the feedback path to '#he pfocesaor to
prevent it .lbeing cancelied. The LMS sasystem [6]
(Fig.2i5;3) uses such a prdcéésér which minimizes the
power (i.e., obtains the least mean square value) of the
error or difference between the array output and a

reference signal.,

(iii) Perturbation or Random Search : This is also
a feedback system (Fig.2.5.4) but is relgtively simpler.
This does not reqﬁire signals from the array—elemeﬁts‘
and does not perform any cofrelation. The principle ;iS'
that the element weights are aitered (or perturbed),
initially at randoﬁ, by sma;l steps, gnd the effect én
the output power is observed. Logical decisions are made
on the observations, and perturbﬁtions are made to
maintain the 6utput at a low level. Thé performance ;f
thig method is very modest, mainly in speed of reéponée,

which . is very much below the LMS system, let . alone the

DMI system.
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{iv) Gram-Schmidt : This is a sedquential-

decorrelation process where separation of signals is
achieved by certain cascade processor circuits (Fig.

2.5.5), which may then be followed by an MSN or LMS

processor. It consista of a cascade of elementary

éorrelation—loop cancellers, each using two inputs with

one adaptive weight. There dre N-1 cancellers in the

first row of the cascade. (where N is the number of

antenna elements), N-2 in the next, and so on. This
system‘is flexible in that the individual cancelling
units may be either closed or open loop and realized

either in the digital or analogue circuitry.
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In our proBlem formulation and analysis, we use the
g£eneral idea of'thé correlation féedback system coﬁtrol
method. Before going into detail of our approach later,
we discuss briefly in the next chaptér some concepts
about‘ constrained optimization teéhniques relevant to’

our problem.
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CHAPTER 3
CONSTRAINED

OP'I‘IMIZATION TECHNIQUES
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3.1 INTRODUCTION

Antenna array processing with minimization of

- output power with certain constraints make use of

constrained qptimization technique. 1In fhis chapter Qe
deséribe in a general framework, the optimization
problem of convex cost functional oJer a convex set
which is defined by linear constraints. We explain in
general térms the concepts of equality and inequalityr
constraints, their general solution approach, the idea
behind the Lagrange multipliers and tge principle of the

iterative methods wused to solve these dptimizatioﬁ

problems.

3.2 GENERAL APPROACH TO THE DEVELOPMENT OF THE. SOLUTION

TO_ THE OPTIMIZATION PROBLEM

The optimization problem, interpreted from a
general point of view, is to locate from within a given

subset of a vector space that particular vector which
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minimizes a given functional [11}. The partiéular vector
may bé termed - as the optimized quantity and the
minimized .fuﬁctional is the cost 'functional. In
constrained optimizafioh problems, the . suﬁset of
admissible vectors gompeting for éhe optimum is defined
implicitly by a Qet of constraint reiations. ‘These
implicit constraints may again 'be defined by lInear

equality or inequality conditions.

A typical optimization problem with equality

constraint may be defined as follows :

.

\minimize f(x)' . l.Illlllll..ill.."..b'.t.(3'2l1)

subject to H(x) = ©

where f is a real valued functional on a Banacﬂ

space X and H is a mapping from X into a Banach. space Z.
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Problem (3.2.1) can be visualized geometrically in

the space X in terms of +the tangent space of the .

constraint surface. This is shown in Fig. 3.2.1, where
the contours of the cost functional f, as well as the
constraint surface for a single )functional' constraint,
h{x) = O, are drawn.

CONSTRAINT /

SURFACE h({x)=0

OPTIMUM VECTOR.

- CONTOURS OF CONSTANT
FUNCTIONAL

TANGENT PLANE

Fig. 3.2.1 : CONSTRAINED OPTIMIZATION.
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As an example of constrained optimization problem
‘'with inequality constraints, let us consider a basic
problem, which can be referred to as the primal problem,

that requires to :

minimize F(X) ettt nenunerennnonnoneneena(3.2.2)
subject to G(x) £B8 , x € L2
where L) is a convex subset of a vector space X, -f is a

real valued functional on ) , and G is a convex

-mapping from 1 into a normal space Z having positive

.cone P,

In general, these constréined optimization prob;ems
are quite difficult to soive . if some additional
parameters are not used.;And these additional pafametefs
are nothinglother'than'the Lagrange 'multibliers' which
are found to somehow almost . always® unscramble .a

difficult constrained problem. By interpfetingA the

Lagrange multiplier as a hyper plane (discussed in

section 3.3 next), it is natural to expect that its use
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will be elegant and more effective with problem

involving convex functionals.

3.3 INTRODUCTIdN OF LAGRANGE MULTIPLIERS IN CONSTRAINED

OPTIMIZATION PROBLEM

The introduction of Lagrange" multiplier in  the
optimization problem can be wunderstood from the

following discussion [11].
We consider the minimization problem (3.2.2) which
can be analyzed by essentially embedding it in the

following general type of problem

minimize f(x)

subject to Gix)< z, x&€ )

where z is an arbitrary vector in Z.

The solution of this type of problem depends -on Z.
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Let us now define a set .[C Z as

" = {2z : there is an x € {2 with G(x) < z }
It can be shown that the set will be convex.
On the set I° , we define the primal function w

{which may be finite), as

w(z) = inf ( f(x) : x €Ll , G(x)< z )}

The original problem. (3.2.2) can be regarded as
determining. the angle value w(B8). A typical w for z one

-dimensional is shown in Fig.3.3.1.
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Fig. 3.3.1

* THE PRIMAL FUNCTION.
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Conceptually " the iagrange multiplier theorem
follows from the simple observation that, since w is
convex, there 1is a hyper plane tangent to w at z =
and lying bel?w w through out its region of definition.
If one were'to tilt his head so that the tangent hyper
plane became the new horizontal, it would appear that w
was minimized at @, or, said another way, by adding an
appropriate linear functional < z,ze* > to w(z), the
resulting combination w(z)+<z,20.*> is minimized at z=6 .,

The functional 2z.* is the Lagrange multiplier for the

- problem.

To see the use of Lagrange multiplier technique in
the optimization problem defined by (3.2.2) in more
detail, let us consider a problem {11] in two dimensions

having three scalar equations g (x)<£ 0 as constraints.

"Fig.3.332 (a) shows  the  constraint region. In

Fig.3. 3.2(b) where it is assumed that the minimum occurs
at a point x, in the interior of the region, it is
apparent that f{x,)=0., -In Fig.3.3.2(a), where it is

agsumed that the minimum occurs on the boundary g (x)=0,
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it is clear that f{xo) must- be - orthogonal to the
- boundary and point inside. Therefore, in this case,
£ = ‘ 2y > 0. Similarly, i

f(xe )+ A181(%0)=6 for some 1 2 0, Similarly, in
Fig.3.3.2(b), where it is assumed that the minimizing
peint x, satisfies both g; (%6 )=0 and g2(xo.)=0,we must
have

Cf(xe) + Asgiixe) +Aagi(xe) =€ ......i.i......(3.3.1)

‘with 2 2 0, 2,20

All of. these cases can be summarized by the general
statement

) LA - ’ :

f(xo) +% G(XQ) =0 '!ll.lll'l‘ll'l!-tl"....'.(al,alz)

»

where A 2 0O  and XNgi(x.) = 0, i=1,2,3,

"

The equality Ai g (X0 )=O merely says that if g (x4<O,

then the corresponding Lagrange multiplier is absent

from the necessary condition.
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93(x)=0

(a) | (b)

(c) o (d)

Fig. 3.3.2 ¢+ INEQUALITY CONSTRAINTS,
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Equation (5.3.2) is in fact a modified’ version of
the Generalized Kuhn—Tucke? Theorem which is given
below:

Theorem : Let X be é vector space and Z a normed space
having positive cone P which contging an interior ﬁoint.
Let . f be | a GCauteaux differentiable ¥eal—vaiued

functional on X and G a Gauteaux differentiable mapping

from X into Z. Let it be assumed that the Gauteaux

. differentials are linear in their increments. Let it
further be supposed that x, minimizes f subject to

G(x)<£ © ‘and that x,is a regular point of the inequa-

lity G(X) < 6 . Then there is n 2" € Z, Zo* 28O such’

that the Lagranéian
f{x) + < G(x),za‘>

is stationary at x.; furthermoreyi
< G(xXo); 2Zo® > =0

.The proof of this theorem is provided in [11].



3.4 THE STEEPEST DESCENT METHOD EMPLOYED TO ARRIVE AT

THE OPTIMUM VALUE

A direct apprqach for sclving non-linear ~equations
in optimization problems is to iterate in such a way as
to decrease the cost functional contiﬁuously " from one
step to. the next. In this way global convergence,
convgrgence from an arbitra;y starting point, maj be
achieved. As a general frame work for the method, let us
assume that we seek to minimize a funct?onal f and that
an initial point x; is given [11]. The iterations. are
Vcoﬁstructed according to an equation of the form :

Xo+1 = Xn + KnPn ssssarsasrncssereseseneanasas(3.4.1)
where O<n-is a scalar and pq‘is a (direction) vector.

The procedure for selecting the vector pn varies from

technique to techhique but, ideally, . once it is=s chbsen‘

the scalar ™, is selected to minimize f(xn + A Pa),

regarded =as a function of the scalar X . Generally,
things are arrahgéd “(by multiplying ps by -1 if
necessary) so that f{xn + X pn) ¢ f(xn) for small

positive ©& . The scalar X » is then often taken as
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the smallest poéitive root of the equation

d f(xan + KX pa) = 0

dex

In pyactice, of course,. it is rarely possible to

evaluate the minimizing X exactly. Instead some
iterative search or approximation is required; The
essential point, however, is that after an X 5 is
selected, f{(xo + Finpg) is evaluated to verify th;trthe

objective has in fact decreased from f{(xp). If f has not

decreased, a new value of o, is chosen. The Primal

dual method (discussed in section 3.6} was selected as

the above mentioned iterative search method.

The descent process can,.be visualized in the space
X where the functional f is represented by ite contours.

This f is in faet the cost function we-méntioned in

section 3.2. Starting from a point x:, one moves along'

the direction vector Py, until reaching, as illustrated

in Fig., 3.4.1, the first point where the line xi1 + X P,

is tangent to a contour f. AlternatiQely, the method can

be visualiied, as illustrated in Fig.3.4.2, in the space
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R x X, the spacé containing the graph of f [here R is

the real line consisting of points of the form (r,8)].

f INCREASING

X1

Fig. 3.4.1 ! THE DESCENT PROCESS IN X -

R

Fig. 34.2 * THE DESCENT PROCESS IN Rx X.
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If f is bounded below, it is clear that the descent
process defines a bounded decreasing sequence of
functional values and hence the objective values tend

toward a limit f,.

The Primal-Dual method is employed for sclving the
algorithm {(dealt in chapter 4). This iterafive method is
again Eased on the Duality theorem which is describeéed

below.

3.5 DUALITY

There are sevéral duality .principles in
optimizétion theory that relate ﬁ problem expressed ip
£erms of vectors in a space to a problem expressed 1in
terms of hyperplanes in the space. Many of these duality
principles are based on the geometric relation
illustrated in Fié. 3.5.1. The essence ofAduality“can be
" understood from following statement. The shartest

distance from a point to a convex set is equal to the
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maximum of the distances from the point to a hyperplane

separating the point from -the convex set. Thus the
: ¢

original minimization over vectors can be converted to

maximization over hyperplanes.

Fig. 3.5.1 : DUALITY
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3.6 PRIﬁAL—DUAL METHOD EXPLAINED FROM A GENERAL POINT
6F VIEW
Let us consider & dual method for the convex
" problem (referred toc as "the primal problém) given
by [111]:
minimize £(x) o eeeeaieeese e (3.601)
subject to G(x) .ée , x € ﬂ. ‘
Agssuming that the constraint is. regulaf, this

problem is equivalent to

max inf [ f{x) + <« G(x),z; >}f...........:(3.6.2)

z*29 x&€n - |

.or, defin%ng the dual functional

CPzv) = inf { f(x) + < G(x),z->}......}.(3.s.3>
X ELL | |

the problem is‘equivalent to the dual problem

maximize 5?.(2_').................'....'......(3.'6.4)

s.t. z* .28

The duasl problem (3.6.4) haé only the.cqnstraint

z*¥2 0 , hence, assuming that the gradient of ¢ is
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. available, the dual problem can be solved in a rather
routine fashion. Once the dual problem is solved
yielding an oﬁtimal Zo%, the primal problem {3.6.1) can

be solved by minimizing the corresponding Lagrangian.
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CHAPTER 4
PROBLEM FORMULATION
FOR DIRECTIONALLY -
CONSTRATNED ADAPTIVE

ARRAYS
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4.1 INTRODUCTION

This chapter deals witﬁ formulation of +the array
prodegsing optimization problem to be solved under
inequality constraints. A basic linear antenna array is
selected and the sequential steps involved to formulate
the cost functicnal for optimization, as well as the
constraint relations, are shown. Necessary notationé to
deal with the pfoblem mathematically are also introduced

in the process of formulation.

.

4.2 FORMULATION OF THE OPTIMIZATION PROBLEM -

We consider a typical linear antenna array system.
Fig.4.2.1 shows ithé general -configuration of.such an
3 arfay érocessor where for convenience it is assumed that
the K isoffopic antenna elements are locatedl linegrly
and are equally spaced. Eaéh channel is provided with L
tap points. x, ¥y, W and A denote input signal, outpﬁt

signal, weight and time delay respectively.
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GENERAL CONFIGURATION OF ADAPTIVE ARRAYS.
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The weight Wy (k;1,2,...,KL), are usually the gains
of the amplifiers attached to each tap point‘ which is
conérolled By a fee& back circuitry, althoﬁgh the‘latef
is not shown in this ‘figure. .For convenience of
following f&rmulation, weights are treated in a vector
. form as follows

_W_T':(w*,wz, cee s WEL) e ....-..(4.2.15
~which will be called the weight- vector here after.
Here the suberécript T denote31 Lhe 7transpose. The
éighals xk ( k=1,2,...,KL) at each tap Point to which =a
weight 1is connected are also expressed in' a veétor form
as
XT = { X13X2 3000 sXBL )Jovvonannnsnennsnrenss(4.2.2)
Thus y, the output of the array system, can be
expreséed by the inner product of two vectors [8] as
follows |
¥y = XT . W = WT Xt iiinrienanennrneannersarss(4.2.3)
The antenna array system is ;xposgd to a signal
environment created by wanted signal (desired signal)
and a number-of noise signals (unwanted or interfeping

signals). . Consequently, the signals at each .tap point
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consist of a desired signal component and the unwanted
noise signal component,l i.e;, éu,and nu‘regpectively at -

the kth tap point. Thus

Xx = Sk +.nk_, k = 1,2,..., kL. vtisvnnanssa.(4.2,4)

In general the undesiredlnoise compoﬁept consist of
two parts;lthe interference coming from external sogrces
and the intgrhal noise generated in the system.

Again vector symbols are emp;oyed as folléws

8T = { Si,Sz,---,SKL)--.;--.i-..-.---..--;.(4.2.5)
NT = ( nz,nz,...fnxg).... .........;...(....(4.2.6)'

Thus {(4.2.4) can be written in a vector form as

§.=.§+H_oocl.iolto.olooo ooal.o-a-otooollol(402b7)

It should be noted that though the signal component
xx may contain, in theory, more than one desired signal
but it is rare in practice. On the other hand, the

unwanted noise signals are usually more than one in

number.

Under the assumption that +the desired signal is
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uncorrelated with the noise signal, we can define the
expected cross spectral density matrix or correlation
matrix as it is usually called, of X as :
E=E[§X-T} .I..I...‘I..ll‘.lllll.l'lll;l'..'(4.2.8)
=E [ §§T ] + E [ NNT ] -O.l..ll.'llllll‘l(4l2l9)

where the operator E[] represent the expectation.

It.is to be noted that [12] R is a pqsitive
semidefinite rgal symmetric matrix having KL X KL
dimension for a K element array with L 'tap points in
each channel. That is,

RT = R

®
3
[N
X
L]
I

E)o ‘¥E.'...l'..l..‘l...lIllllli(4l2l10)
From equation (4.2.8) and (4.2.9), the correlation

matrixf has the form

RX.I =R3.5 +Rﬂﬂ '-u'---.o.---cuo ----- l-t‘.lilll(402011)
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- where :

81 8
82 81

ﬁss =1

SgL81
L

and

n;n;'

nazni

Enn = e

ngin
=

81 82

S2 82

SgL 82

ninz

‘nz2na2

Ngtnz

Twes 831 8K 1L

e e SIKLSIL_J

s v+ S18BEL

e ninegt

. na2NxgtL

" e s NNy

e

0..;....!!.‘!!.(4!2.12)

lntn-n-n------c.(4-2¢13).

Finally by adding equations (4.2.13}) and (4.2.14)

we have the correlation matrix as-:
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X1 Xy X1 X2 e 0 r X1XK1L
X2 X X3 X2 v vv X2XKL

-EXZ_ = + -:---un-ol’.ocoooan‘4-2.n1.5)

-ﬁﬂlxl XgLX2 ++0¢ XELXEL

where x1, x2, ++. -y Xgr Are the tap point signal

values consisting of desired gignal values
\’ -

81, S22, ‘e , 8pg1 8nd ‘interference signal values

ngr, Nz, +.. 3 NgL -

s

Finally, from (4.2.3) the array output power hay be
given by : . - ' )
: ET K ET E . 5 8 " B 5 4 ¥ 2 B2 .l " & F a2 9 e w3 .. » % w9 ( 4 'l 2 L] 1 6 )

Thus the expected output power of the array can be

expréssed as
E[yz‘]=_WHTR_w.--....l.......ll....“.lll(4|2.17)
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« In array processing problem, the mnmost straight

forward quantity to be optimized for maximizing the .

desired signal reception and minimizing the noise signal

turns out to be thel array output power [7]. Thus,

equation (4.2.17) gives the expected cost functional of -

our opfimization problem,

4.3 ARRAY PROCESSING OPTIMIZATION WITH DIRECTIONAL

CONSTRAINTS

Any one of the many ﬁardmefers related with antenna
‘array .processor may be chosen as the quantity to be
optimized. For example, instead of considering the
output power, we could have taken signal to noise ratio
as the opfimizing‘quantify. Now, if by opt%mizing the

output power we mean to minimize it, then without the

presence of any cher guiding parameter, we would lose
the desired signal along with the noise; because, the
output power would then be reduced to =zero. Thus to

receive our desired signal with satisfactory power
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lgvel, and at thejsame time rejéct all noise that maylbe
present, a good approach woﬁld be_’£o  0ptimize the
pattern with such a constrﬁint which will enab}e‘the
array to maintain a ppe—aésigned response in the desifed
sigpal direction., Such aﬁ optimization.technique would
then minimize noise power and place nulls in the
response pattern along the noise directions. Since »by
utilizing the a-priori knowledge of the signal directié;
we are assiéning a response pattern in this directioen,
we are in facf making use of a "directional éonstraiﬁt"
in déaling ~with our optimization problem. The
directional constraint we just' talked about -aims to
guarantee phe response of the array system to the
desired signal input that is coming from a specified
.direction at ‘a certain ffequency; i.e., by virtue of
this constraint, the main lobe of'thé antenna reéponse
pdttern is placed along the.desired signql direction. So
it may be termed as the "Main lobe c¢onstraint”. However,
in the procesé of géneratihg the main lobe, a number of

. side lobes are also created in the respbnse ﬁattern of -

the array.The optimization technique, with its minimum

69



oUtpuf power criterion, however, adjusts the side lobes
in such a manner _so that their peaks do not coincide
with any noise ‘'direction., This 1is however," sirictly
" true, as long as the system can successfully utilize the

available "degrees of freedom"” {this term is elaborately

discussed in the néxt chapter) in nullifying all noise.

Now, if +the side lobe levels are of significant

magnitude, then the sgsystem will be vulnerable to any .

"unaccounted for noise” which may coincide with the peak'

of such a side lobe. Thus the arréy system could achieve
greater flexibility ahd'utility if its sidelobe levels
could also be 'éontrolleq; and fortunately this 1is
possible by assigning "sidelobé congtraints". The
mainlose constréint ~must however remain to guarantee
reception of our desired signai. Thus we have a& number
of directidnal constraints which we may use to shape the

response of the array to our advantage. The aim of our

present work is to minimize the cost functional, which

is the output power, by utilizing such directional
constraints which account for the mainlobe as well as

the sidelobes.
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Following [8] we can write the array output
resulting from an incoming narrowband s8ignal of wave
A

length A {frequency f}, direction 6 , and an arraf

element spacing of A /2, as

y ._.;i i W, e=xp [:f WR(B):H- |
Q r=1

Wiy e%P[f(Wh '(.e)- 2w fa)]

AJ%WKexﬂE(%<®—4nFAﬂ+~~ »

+Wn+ (L- L,Ke'xP[a (W ()= (-2amf A]]
st 2 (4.3.)

where

Y (9) = Tr<K+I R) COSB; k=1, 2,!“)K
..... -(4‘37 2)
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q;@)denotesrthe phase of the signal arriving fr;m the
direction © "at Kk-th element with the phase referernce
taken at the centre of the array. The anglé °] "is
considereq with reference to the axis of the array,
i.e., the broadside direction of the array will
bé © =90 degrees.
The phase of the signal Ve {®) can be represented.i;
diffefent ways depénding upon the reference point taken.
For example, if we consider the numbe;‘one element of

the array as our reference, then

Wo8) = T (R-1)C0S0 .. roriiereene. (4.3.3)

R=141, 2, s K

Here and .in our numerical studiea, +the phase expression

£
of {(4.3.2) has been used.

Imposing + constraints on the response y 1in N
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directions is equivalent to enﬁuring that

]
X<

=]

1]

Re [yer ] 2, LI I ) ¥ N

veere.2(4.3.4)

X

Im -[YQE ]

i

n
[
-

¥ N 0010013(4-3:5)

+

After simple manipulation it can be shown that this

can be

rewritten as
Q E : 2 d 2 ° 2w 9 * &k 4 4 » & 2R B .I ® & & 8 3 & 8 & 4 6 B 2 B ( 4 [ ] 3 [ ] 6 )
g E :: B_ L I N B BN .‘ a = ® 3 s 9 s & b 2 & & B .‘ ® 0 % 4 4 0 " B ¥ F S ( 4 - 3 . 7 )

-

.where the N X KL matrices D and B afe defined by

r o - ] t 1 (L-l) kL-t)“
Oy ** am ’ Q'u Qyyr =7 2 Q, vee K1
05 % s Oy QL e Q‘:L-u ALY
D= *
‘
B !: cor Q-K: s al; e a'kln Ty e )0(-::) e K:-U‘
| e  (4.3.9)
where 1
o, = cos[¥i (o) - LA ... @z

L= 0,1, ..., C(L-1)
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b: e bl‘:i ’ b.:' eve b:“ TR ‘ bl‘.Lﬂ)... ,b::"u

Gy Blas By bugs o s B oo Bia |
g: S MRS (4.3.10)
where : |

bﬁj = ‘51”[\"){ (650 — EAJ, P ¢ 1223 1))

=0, 15 cons (Lo 4)
The formulation gives us a constraint matrix which can thus be

expressed in a convealent fashion as ¢

C oz e [ L (4. 3.12)

For example, for a 4 element 2 tap (i.e., K=4 and .L=2) array
with o delay of W/2 (i.e., A =T/2) and a look direction (which is

also the constraint direction), constraint matrix £ is given by:

cosd, €05, cosd, CosP sing sind, —-oind, -oind
C = '
sind, oin®, -%ind, -sing, -€0sd, -cosd, -cos‘@z ~cosd,

where

—_ T
$, = 2T cos 6
ond. ?,_ =1Ti_.' oS 0

Here B8 s the constraint (LooK) direction.
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The desired output vector can be rewritten as :.

e e e e e (4.3.13)

Hence the equality directional constraint is given

by

g‘i- g ----c-c------c---'-an.---o.nooc.noa‘4c3l14)

Note +that the above system constrains the resal and

imaginary parts of Ye BEpafateiy and’ it is normal

practice to set the imaginary part to zero [8]; i.e.,

/u =0.

75



~The desired output vector can be rewritten as

ceeiena.{4.3.13)

=8
"

Hence the equality directional constraint is given

by
QE:Q-I..I'. a ® LI} L ) LN ) ] Il'l.ll.!.(4l3l14)
Note +that the above system constrains the real and
imaginary parts of Yo separately and it is normal

practice to set the imaginary part to zero {8], i.e.,

M =0,

-
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A problem of considerable interest is to

minimize E[y: 1, WeER™ .. ..... c...(4.3.15)

subject to C W = d
The optimum weight vector is given [8] as
Eﬁz E—: gr(g__-R_—I QT ) -1 _d_ l--cnlcu'noc(403-16)

writing the cost functional as
Y2 2 WT X XT W eeennennnneonnnennneennesa(8.3,17)

‘and applying the =standard gradient projection

algorithm we obtain an adaptive algorithm which can be

shown to converge to W under various conditions
t71,181,
W(m+l) = W(m) = (m) P X (m) y {(m) «..oo...(4.3.18)

where

_P_:l-cr (CCT )-1Cu------.----oa.otcoo(4'o3n19)
-and &{m) is a small scalar step and m being the number
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of iteration. In equation (4.3.19), P aﬁd I .are

projection vector and identity matrix respectively.

The following priﬁal~dual algorithm can also be
shown [13] to adaptively find Woept under fairly general

circumstances

W(m+1) =W {m)+ Locm) [ X Cm)y(m) 4+ & (m)]
+++(4.3.20)

Alme)=Almi—x(m [ cwm = d]

e (4.3.21)

where >_\ is the Lagrange multiplier.
The algorithm we describe later in this chapter is

based on the primal-dual idea.
We note in passing .that the weight vector which

solves the mean squared error cost in the well known LMS

algorithm is given by

Wopt = BEELXA]  ceerroereeninnn.(4..3.22)
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where

-xpr d

x:d

np

E . ott---|.q-ni-----t----(4.-3c23)

| xeid |

Herg E{]l] 1is the set of cross correlations between the
input signale and the desired response signal. "The LMS
adaption algorithm which determines Wope is the -simple
gradient algorithm

W(m+1) = W(m) - oX(m)e(m)X(m) ......,...(4.3.24)-
where

g(m) = d{m} - y{(m) ........;..............(4.3.25).

is the error signal.

The algorithm we will present shortly aims at

minimizing E[y2] subject to the inequality directional-
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constraints.

Thus.in our case, the problem (4.3.15) can be
expressed mathematically as

minimize E(y2] WEIRF: ,,............04.3.26).

subject to | C W - djge
and find an’-optimum set of weights to be denoted by,
" 8ay Wopt. Here e is the tolerance band of the desired

response.

4.4 ALGORITHM

In order <+to describe the algorithms which will
adaptively determine the optimal tap weight vector Wopt

(13] we rewrite the problem (4.3.26) as

minimize WF R W, WgeREL
S.tc QE—QS_E_ ) o.----co-----c.--(4o4l1).
-CW +d (e

where e is the tolerance band as mentioned before.
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The Lagrangian [{4] for this problem is

A useful algorithm for determining the optimal
weight vector Wep: can be based on the primal-dual idea
established in-chapter 3. Thg algorithm can be derived-
by differentiating the Lagrangian with respect to E,?\L
and %2 and applyiﬁg a constrained steepest descent

procédure as follows :-
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wh = W - ook 3w A, 20"

awe
K+l - K ® K " K '
-"\1 =’m0-)([0, Z\.t"'d %iy;a;yéz-}:[
' 02,
Ket - K
A = max[0, A7 + "L 3w ar, A% 3]
32, :

C . (4.4.3)

The .F:'na_(_ o_l_sor.‘i'{:hm con be w;"rﬁcn o WX
W lK+L) = WCK) -4 R][2 AW+ AL (k]
A k+1) = P A, (R+BKI] C WK~ €3]

Ay (k+1) =P [ 2 (K) —p(kI] S Wk — &3]

cie...(4.4.4)
where
R )
and
A- =7‘1-"‘ A
e =d 4+ e L (4. 4. 6)
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The problem of-ﬁinimizing a convex cost functional
over - a convex éet which 1is defined by some linear
inequality constrains is described in Appendix A. In the
said appéndix, some definitions and results .from the
theory of real finite dimensional consfrained
optimization!problem are represented.

The scalar step ;izes t%& and [bh y used in the
algorithm represéﬁted by (4.4.4.) are subject _tp'
_certain conditions which eﬁsure that these algorithms
converge to Eppt ags K— oo .- The details of thesef

convergence properties are discussed in Appendix B.

Finally in appendix C, the flow chart of +the

algorithm and the corresponding program are provided.
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CHAPTER 5
STMULATION STUDY
THE BEHAVIOUR OF
DIRECTIONALL&
CONSTRAINED

ADAPTIVE ARRAY

ON



5.1 INTRODUCTION

In this chapter we give detailed numerical
simulaéion result§ of our forﬁulatéd prbblem for
directionally constrained antenna array processor. In
the‘ simulatioﬁs we investigate +the behavior of =a
narrowband directionally constrained antenna array
processor with respect to sidelobe constrgints and
siénal'power variatiqns. In tHe process of our study we

first observe the noise cancelling capability of the

narrowband antenna array processor.

Oﬁr analysis of adaptive antenna arrays deals with
phe narrowband type, i.e., one that responds ‘to
narrowband signals which ‘can be expressed by their
centre frequency and slowly varfing envelope. The
antenna system we considered 1is assd&ed to have’_only'
two_ taps fo; ea;h channel [L=2 in Fig.4.2.1], and the
" time delay between them is taken to be a quarter- period
.of the desired signal. The antenna elements are blaced

half wave lengths apart. It should be noted, however,
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that thésé éssumptions are made in order to simplify the
physical meaning of the results, and is not expected to
affect the validity of the analysis. Such a 4-element
narrowband receiving array 1is shown in Fig.5.1.1. In
course of our numerical simulations the element number
ig not always limited to four, but is_rather allowed to

£

vary to higher numbers as well.
The algorithm (4.4.4) is tested on an IBM .personal

computer using FORTRAN. The sections that follow, refer

to the simulated results thus obtained.
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Before beginning discussion on our gimulation

results, we clarify certain’ terms related with the

measurement of power contained in desired signal and in

noise. Two such +terms are SINR and SNR which give an-

idea of the relative power between desired signal and
noise by considering their power ratios. We now discuss
briefly about SINR and SNR since they frequently occur

in our discussions that is to follow shortly.

The SINR stands for "signal to interference plus

system noise ratio" and is defined by

SINR =10 Logm (Ps /Ptn) aooolo'o-noccto.a-(S-l-l)
where
Ps = Total signal power

-and  Pia Tetal noise power

It should be noted, +that the total noise of the

antenna array consists of the interference (or " jammer")

€

signal and the noise that is generated within the
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system. i.e.,

P'n=Pin'+PBn .lll.llllllll._.l;ll.lll.lll(5!1.2)
where
Pian = Interfering signal power

and Psa System noise power

In fact this cafegorization of noise ©power has
given rise to the other form of poﬁér ratio gﬁich is
expressed by

SNR = 10 Log, (Ps / Pan) .........;..;.....(571.3)

where SNR‘ stands for "Signel +to =Hystem .hdise

‘ratio".

If Ps in equ;tion {5.1.1) and (5'1f3) expresses the
gutput signal power, thén the correspon&ing SINR and SﬁR
are' called "Output SINR" and "dutput SNR" respectively.
On the other hand,rif Ps denotes the ’input signal power

then by using this value we can get the "Input SINR" as

well as the "Input SNR",
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Generally at any particular instant both the noise
forms (interference and system noise) are expectedlto be
present in the array system. However, for conv;nience of
our discussion, from now on, we will use the _term
_"Noisé" to indicate the interfering signal only. The
other form of noise will be explicitly denoted by the
¢ .

‘term "System noise" whenever required. Moreover by the‘
term "Signal" from now on wé will uhderstaﬁd the desired
7signal which is coming from the look direction.

-

We now proceed to describe our simulation results.

5.2 SIMULATION RESULTS

The first'simulation was carried out to check the
capability of the algorithﬁ as to whether 'it can
successfully utiliig the degreeé of freedom in ordéf' to
achieve its goal of placing nulls onto noise directions,
and provide pre-assigned'peéponse to the look direction.
" The deggees of freedom mentiongd above is defined [7] to

be equal to the number of antenna elements and the look
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direction is the desired signal direction.

Thus a K elémeﬁt antenne array possesses K degrees
of freedom, but when there is one look direction, one
degree of freedom 1s used for - the look"&irection.
Remaining (K-1) degr;es of freedom, thérefore: are
available to sﬁccesful;y tackle a maximum of (K-1) noise
sources by placing nulls in +the. processor 'respoﬁse
pattern  along the noise_ directions. Thia implies,
however, that other than the mgin—lobe'constraint in the
look direction there is no side-lobe coﬁstraint put in
the antenna response pattern.If Ng represents the number
of noise directions . {where Na < K), then the maximum
number of side-lobe constraints that may be assigned to
this array processor is given by (K-1-Na}. 'Fié.s‘S.é.l
fhrough 5.2.3 rebrésént antenna résponse patterns which
are obtained for a four element'array.antenna, each-with
a  single look -direction at 90 degrees. The noise
directipns are arbitrarily chosen. 1In each case;- the
look .directibn response is found to satiafy the pre-

"assigned constrained desired value taking tolerance into
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account-, and nulls are also placed along the noise
directions. However, with increase of noise directions,

the output SINR is found to decrease. But upto the

previously defined maximum permissible number of noise

gources (=K-1), the degradation of SINR is not very

significant. This is because, as long as the upper limit
of the number ﬁf noise sources is not reached, deep
nulls qould be plaéed in each response pattern aloﬁg the
noise directions;therefore, the numﬂer of noise sources
had 1little influence on the output SINR. This fact is
evident from the curve f;r a‘ "4 element array in

Fig.5.2.13.

.- The same simulation is repeated for 5 and 6 element
arrays and the resulting patterns are given in Fig.5.2.4
through 5.2.12. The curve for ocutput SINR and number of
correspond;ng noise sources for these two type bf arrays

are also given in Fig.5.2.13. It is evident from this

result that increase in number of elements gives more

control on the response pattern thereby increasing the

SINR. - o
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Fig.5.2.3: Response pattern of a 4 element array antenna
with the look direction at 90 degrees and three noise
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0o

180

0.8

0.7

A

\

0.8

0.6

ANTENMMA RESPONSE

i

v

V

S0

80

100

DEGREE

120

140

1680
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with the look direction at 90 degrees and four noise
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Fig.5.2.13: Variation of 6utput SINR with change in number
of noise sources for 4, 5 and 6 element array antenna.
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Before prbceéding on to the next siqulation, we
observe the nature of £he weight values corresponding to
4 element _array having a look direction.at 90 degrees
and a noise direction at 40 degrees. This is shown 1in
phe graph of Fig.5.2.14. Fig;5.2.15 represents weight
values when there aré three noise sources at 0, 40 and
140 degrees with the =signal direction fixed at 90

degrees for tﬁe same array. The weight values can differ

from each other radically depending' on the look

direction and the noise directions. This observation is
evident from Fig.5.2.16 Where the look direction is at

80 degrees with one noise at 120 degrees.
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Our next study is aimed at invéstigating‘the effect
the ‘"distahce" of the noise from thé look direction has
on the output SINR. The "distance" is measured in terms
of the angle which the noise source makes with the
signal soufce. Both the source angleé afe. denoted in
terms of degreés which the respective sources make with
some referehée axis. The }eference axis in our case is
the array axis. Thus the broadside'direction of the
array is'at nipety deérees. For the present éimulations,
thé locok direction for a 4 element array is taken at the
broadside direction. One noise lsqurce is gradually
shifted from =zero degrees towards: the iook diréction.
The variation of output SINR, with distance of ' noise
.from the look direction,. for a 4 element arréy is given
in Fig.5.2.18. It can be seen from tﬁis Fig., +that as
lbngras thehnoise is "outside" the mainlobe, there is. no
significant variation in SINR. Though in these cases,
£here is a slight gradual deéradation' in SINR as the
‘noise moved nearer to the mainlobe. But when the noise

is close enough to the 1look direction, such that it

could be considered to "enter inside" the mainlobe, 'a
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drastic
gradual
noise,

entered

degradatiop in SINR is observed. The rate of the
reduction of SINR, with the nearing of the
is found to be much greater,  after the noise

the mainlobe.

The variation in .weight values coresponding to

distance of noise from the main lobe is plotted in Fig.

5.2.19.

103"



2.0

0.8

. | 110

E 0.5 ' / \ .
S el /
: oo f \
NEREPNEY NS
IO 7 / \ N
4 \ \K
b et e
0 20 40 &0 80 100 120 140 160 180"
DEQREED '

Fig.5.2.17: Response pattern of a 4 element array antenna
with the look direction at 90 degrees and a noise direc-
tion at O degrees. ’
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104 N



MAGNITUDE OF WEIGHTS

T T T T

0 20 40 60 80 90 100
DISTANCE OF NOISE ( DEGREES ). ‘

Fig.5.2.19 : VARIATION OF WEIGHT VALUES WITH DISTANCE
NOISE FOR A &4 ELEMENT ARRAY. |

109




After our obgservation  of noise cancelling
capability of - the antenna d}ray, we .proceed to
investigate the behaviour of the antenna under pattern
constraints. In . our previous simulations we used only
the main-lobe constraint for' achieving the desired
~response pattern in the look direction. Now we:intend fo
put some more coﬁstraints in the side-lobe directions
and bbserve the response pattern.' The s8imulations are
carried out with four, five andrsix element anﬁenna
array with varying number of side—lobe ~constraints in'
eéch case. The results are shown in the responge
patterns plotted in Fig.5.2.20 to 5.2.31 It is observed
from these results that thel algoriﬁhm can geperate
effectively pattern constraints apart from the main-lobe
constraint. Tﬁese gide-lobe constraints are suécessfully
met without any majof ,degradation in _the noise
cencelling capability. Howevef, increase in numbér of
side-lobe constraints sometimes produces somé
degradation in output SINR. This is obviously due to thg
fact that the algorithm is more concerned with meeting

the constraints put rather than minimizing the noise
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pover. Thus in some cases where the side-lobe
conétraints.may be quite stringent,. the array processor
sacrifices' deep null in the noise directions in favour
of satisfying the constrain£s. Note that the numbér of
gside-lobe constraints that panlbe satisfied depends on
the degrees of freedom afﬁilable after considering the
look and the noise directions. 1In Fig. 5.2.22, a four‘
element array utilizes all its degrees of freed;m in the
locok direction, noise direé;ibn and two side-lobe
constraint directions. Similar is the case with a six
element array as shown in Fig.5.2.33 where four side-
lobe constraint directions are met apart from the look
diréction and noise direction utilizing thus all degrees
of freedom. It is interesting to know thgt what happens
if there 4is one more noise direction or one more side-
lobe constraint direction. in Fié.5.2.27 and. Fig.5.2.28
thése_twd cases are shown for a 5 element array.
Y
We also plot here the weight 'values to observe the
changing pattérn in their values. Fig.5.2.34' and

Fig.5.2.35 are two such plots drawn for a four element
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and B 8iXx element array.
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Fig.5.2.20: Response pattern of a 4 element array antenna
with the look direction at 60 degrees and a noise direc-.
tion at 120 degrees. No sidelobe constrainta are assigned.
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Fig.5.2.21: Response pattern of a 4 element array antenna
with the lock direction at B0 degrees and a- noise direc-

tion at 120 degrees. A sidelobe constraint level of 0.15 -
{tolerance * .01) is assigned at 140 degrees. -
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Fig.5.2.22: Response pattern of a 4 element array antenna

with the look direction at 60 degrees and the noise direc-
tion at 120 degrees. Two sidelcbe constraint levels of .15
and .05 are assigned at 140 and 105 degrees respectively; )
the tolerance level was assigned % .01 for both the cases.
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Fig.5.2.23: Response pattern of a 5 element array antenna
with the look direction at 40 degrees and the noise direc-
No sidelobe constraint is assigned.

tion at 90 degrees.
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Fig.5.2.24: Response pattern of a 5§ element array antenna
with the look direction at 40 degrees and the noise direc-
tion at 90 degrees. One sidelobe constraint level of .1

(tolerance * .05) is assigned at 130 degrees.
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Fig.5.2.25: Response pattern of a 5 element array antenna
with the look direction at.40 degrees and the noise direc-
Two sidelobe constraints of level 0.1
(tolerance® .05) and .05(tolerance & .01) are agssigned at
130 and 80 degrees respectively.

tion at 90 degrees.
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Fig.5.2.26: Response pattern of a 5 element array antenna
with the look direction at 40 degrees and a noise direct-
ijon at 90 degrees. Three sidelobe constraint levels of .1
(tolerance ¥ .05), .05(tolerance *.01), and .4(tolerance
¥.05) are assigned at 130, 80, and 170 degrees respectively.
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Fig.5.2.27: Response pattern of a 5 element array antenna
with the look direction at 40 degrees and two noise direc-
tions at 90 and 110 degrees. Three sidelobe constraint
levels of .1{tolerance ¥ .05),.06(tolerance * .01) and .4
{tolerance £ .05) are assigned at 130, 80 and 170 degrees
respectively. .
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Fig.S,Z.ZQ: Response pattern of a 5 element array antenna

with the look direction at 40 degrees and a noise direc-

tion at 90 degrees.

(tol.*.05),

are assigned at 130, 80,

0.9

4 sidelobe constraint levels of 0.1

:05(tol. ¥ ,01),

.4{tel. £ .05} and
170 and 110 degrees respectively.

o

.1{tol. x .01}

0.8

A\

0.7 /
0.8

/
el \
Q.4 / \
0.3 - \ /’F .
/N /|
0.1 \ / . N ;//— //
AR Y Y
? Q 20 40 el 80 100 120 140 180

- Fig.5.2.29: Response pattern of a 6 element array antenna
with the look direction at 40 degrees and a noise derec-
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Fig.5.2.30: Response pattern of ma 6 element array antenna

“with the look direction at 40 degrees and a noise direc-

tion at 90 degrees. One sidelobe constraint level of .1
(tolerance ¥ .05) is assigned at 75 degrees.
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Fig.5.2.31: Response pattern of a 6 element array antenna .
with the look direction at 40 degrees and a noise direc-
tion at 90 degrees. Two sidelobe constraint levels of 0.1
{tolerance ¥ .05) and .08(tolerance * .05} are assigned at
75 and 108 degrees respectively.
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Fig.5.2.32: Response pattern of a 6 element array antenna
with the look direction at 40 degrees and a noise direc-
tion at 90 degrees. Three sidelobe constraint levels of .1
(tol £ .05), .08(tol ¥.05), .3{(tol £.05) are assigned at 75
108 and 170 degrees regspectively. :
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-Fig.5.2.33% Response pattern of m 6 element array antenna

with the look direction at 40 degrees and a noise direc-
tion at 90 degrees. Four sidelobe constraint levels of .1
{tol*.05), .08(tol * .05%5), .3(tol * .05) and .4(tol £.02)
are assigned at 75, 108, 170 and 150 degrees respectively.
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Fig.5.2.34: Tap-weight values for a 4 element array

antenna having the look direction at 60 degrees,

a noise direction at 120 degrees and two sidelobe
constraints at 140 and 105 degrees.
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constrainta.
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In all of our side-lobe constraint studies we put '

the desired values in the constraint directions less

-

than the normal response values, We now see that the

algorithm can give a satisfactory response pattern even

-

if we desire a bigger response value than the normal
value in the constrained directions. The corresponding

simulation results' are provided in Fig.5.2.36 through

Fig.5.2.41.
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Fig.5.2.36: Response pattern of a 4 element array antenna
with the look direction at 60 degrees and a noise direc-

tion at 120 degrees,
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thus enhanced to the current value of .3 at 105 degrees.
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Fig.5.2.38: Response pattern of a 5 element array antenns

~with the look ‘directior at 40 degrees and the noise direc-

tion at 90 degrees. No sidelobe constraint is assigned.
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Fig.5.2.39: Response pattern of the same 5 element array
with a sidelobe constraint level of 0.3(tolerance x*.01)
at 130 degrees. The previous response level of 0.2 is
thus enhanced to the. current value of 0.3 .at 105 degrees.
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w}th thg look direction at 40 degrees and a noise derec-
tion at 90 degrees.
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Fig.5.2.41: Response pattern of the same 6 element array
with a sidelobe constraint level of 0.3{tolerance *.01)

assigned at 140 degrees.. The previous response level of

0.2 is thus enhanced to the current value of .25 at 140

degrees.
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The convergence of the algorithm is checked through
somelsimulations. To gccomplish this, fhe_output poyer
(=WTRW) is chosen as the quantity to determine the
amount of convergence. The number of sidelobe
constraints are varied for'a‘apecific number of antenna
elements; The output power 'is then plotted for
corresponding number of iterations with number of
sidelobes as a parameter. Fig.s 5.2.42 through 5.2.44
reprgsent such plots correspopding to four, five and six

element antenna arrays.

It is observed that irrespective of the number of
side-lobe constraints {of course within the degrees of
freedom) &and number of elements in the antenna array,

the algorithm is stable and globally convergent.
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4 element array antenna with 0, 1 and 2 sidelobe cons-
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Fig.5.2.43: Output power vs number of iterations for =a
5 element array antenna with O, 1, 2, and 3 sidelobe
constraints. '
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Fig.5.2.44: Output power vs number of iterations for &
6 element arrey antenna with the number of sidelobes
varying between zero to three.
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Uptil now we were concerned with the behaviour of
the 7 antenna array under pattern .constraints. i.e.,
’putting some constraints on - the sidejlobe_ dipections
apart frop the main—lobe in the response pattérn of the
ahtenna, In our study we intend to look into the antenna
array processor behaviour under varying signal
environment i.e., undér the changing input signal/noise

ratio condition.

The algorithm uséd for simulation is expected t§
produce the aesired response by placing deep nulls in
the noise directions and at the same time maintaining a
pre-assigned level at . the éignal direction or‘look
:direction. However in doing so,'the respoﬁse of array is

expected to be negligibly affected. by the level of input

SINR. Because, due fo the presence of the distinct nulls -

at the noise directions (Fig.5.2.45 to Fig.5.2.47), the

influence of incoming noise power level oﬁ the output
SINR is simply insignificant. Tﬁus,r with both high and

low input SINR s, the output SINR should remain more or

less the same. The simulations that follow are carried ]
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for loﬁ and high inpdt SINR é. <The resulting Eatterns
and theirigorresponding o;tput‘SINR 8 (Fig.5.2.48) are
seen to  tally with our éxpected performance. One
question in this regards however remains éo be anawered.
And this is, "How does low and high input SINR s hffept
the oufput SINR if the actual agignal is slightly
deviated from the assumed signal direction?" | This

phenomena is investigated in a later simulation.
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Fig.5.2. 45: Response pattern of a 4 element array antenna
with the look direction at 60 degrees
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No sidelobe constraints are agsigned.
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Fig.5.2. 47: Reaponse pattern of s 6 element array antenna
with the lcook direction at 40 degreesrand a noise derec-
tion at 90 degrees.
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The simulations that follow are used td-étudy the
situation when the signal arrival -direction _does not
‘match with the assumed constpained-direction of desirgd
signal arrival., We call this misﬁatch of - angles as
"Pointing error" and denote it by § . From the curves
of Fig.5.2.49, it can be seen that in the absence cof any
mismatch between constrained_main—lsbe direction and the
actual direction of the desired signal arrival
{i.e,, when & =0), there is no variation of output SINR
with change in input SINR. This is because, when a deep
null is placed in the response pattern al;ng a noise

direction ({Fig.5.2.50), noise level can have'little or

no effect on the output SINR:

But it can be seen from Fig.5.2.49, that theré is a
significant degradation in output SINR when the pointing.
error has a non-gzero valué.‘ Due to the mismatch between
the actual direction of the de;iréd aignal and the
constrained direction of the main lobe, .the algorithm
treats the signai as another interfering noise and

strives to cancel its influence by placing an additional
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null in its direction. This fact is evident from‘ thei
response pattern of Fig.5.2.b61) which is draﬁn for a 4
element array with the main-lobe constrained direction
at 60 degrees, noise direction at 120 degrees, . and the
actual direction of desired signal arrifal at 59
degrees. In this Fig.‘ it can be seen tﬁat due to a
mismatch of 1 degree, a null is approached at around 59
degrees., However, deep null éould not be achieved due to

the constrained main lobe response at 60 degrees,

It can further be seen from Fig.5.2.49, that in the
presence of angle déviation, the output-SIgﬁ gradually
decreases with the increase of input SINR or with the
‘relative .weakening of the 'noise. This seems to be
puzzling at first sight but is evident from _;he lfact
that, with the decrease of input interference power
lével_ the algorithm attaches lless_ importance in
cancelling it and thus deep null is no loﬁger plﬁced in
this directi;n. '"This can be further vgrified from the
response patterns. of Fig.5.2.51 and 5.2.52 whiph are

drawn for 1 degreé pointing error with interferénce
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levels of 1.0 and 0.01 respectively; the ihterferenqe
direqtion is fixed at .120 degrées for both the cases.
Due to the presence "of a wegker noise.thé'deep null
which is present at 120 degrees in 'Fig.5.2.51 is_-no
longer produced in Fig.5.2.52 Thus the output SINR also
decreases from 15.507 dB to 10.873dB aﬁd 'the
corresponding curve in Fig.5.2.;9 has a downward‘tren&

with increasing input SINR.
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Fig.5.2.50: Response pattern of a 4 element array antenna
with the look direction at 60 degrees and a noise direc-
tion at 120 degrees. No sidelobe constraints are mssigned.
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Fig.5.2.52: Response pattern of the 4 element array

"having look direction at 60 degrees, noise at 120 degrees

with the pointing error being 1 degree. The signal’
power level is 1.0 and the noise power level is 0.01.
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Using the same 4 element, two tap system, we now

"calculate the effect of input SNR i.e., signal to system

ncise ratio, on the output SINR while varying the
pointing'erfor $ . From Fig.5.2.53 it can be seen that,
with a high input SNR, i.e., weak system noise, the

output SINR is sensitiQely affected by the error of the
constraint direction. With stronger system ' noise,
.however, the decrease in output SINR is more or less the

same for various pointing error conditions.

Another obvious fact reveals itself from.the éraph
of Fig.5}2.53 When S:iL. the output SINR isl seen to
continﬁously,increase with the gradual- decrease of input
system ﬁoise. This behaviour is rather.eﬁpeqted,, Binée
due to zero mismatch, the désired signal 1is properly
accepted'by the array and the output SINR shpula improve
o; deteriorate with the decrease or increase of system
noise levei as thé interference signal has already ‘been
réjected due to placement. of deep null in its direction.
This sharp dependenee of output SINR with the systeﬁ

noise level for zero mismatch condition becomes even
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more vivid when we draw a graph having the above two
quantities as ordinate and abscissa respectively. [This

is shown in Fig.5.2.54.
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CHAPTER 6

CONCLUS IONS
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7 In this thesis we conceétrated on Fhe study of . the
behaviour of g2 narrowband adaptive array under some
pattern constraints and varying signai strength
environment. For carrying out our investigation‘werused
a primal-dual algorithm with inequality constraints for
minimizing the outpdtv power so that the antenna array
processor generates: deep nulls in the interference
signal directions and produces desired fesponse in the:
wanted signal direction. This desired response direétion
or. the mainlohe direction as it is ‘ called, is
constrained to £he desired response value, but the
algorithm allows the processor to generate sidelobes
with'uncontrolled levels of response. Our investigation®
thus, is centered around the possibility of infrdducing
some constraints in the pesﬁonse pa£terns of +this
adaptive antenna array in the sidelobe. directions so
that thg response levels at thesé directions.can be

controlled.

In course of our study, " we found that the adaptive

antenna array processor can process out the desired

-
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gignal very satisfactorily by placing the reaponée
pattern mainlobe at the desired signal direction and‘
putting nulls in the.intefferenée directions even though
the processor was put under some pattern constraints in-
the sidelobe directions. The array processor
aatisfactorily met those sidelébe constréints to their
given desired levels with some tolerance band. .It wasg
found, howéver, that in some cases, the output‘ SIﬁR
undergoes gome degfadation due to some stringent
conditions in the constraints. The number ‘of sidelobe
constraints that could be placed was dictated by the
degrees of freedom availabié as was expected. The
sidelobe 1levels could be decreased or increased (as a
matter of - fact, increﬁse in sidelobe lével is hot
wanted), shoving' the controlling ‘capability of the
processor. Finally, the processor.was found to, be atable
and globally convergent in genefating a set of optimum
weight wvalues irrespective' of the number of array

elements and pattern constraints.

Regarding our study on the effect of signal
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strength variation, it was observed tha£ the antenna
‘Array processor behaveé equally good in placing nullé in
the interference directions and producing desired
lresﬁonse in thg wanted signal direction irrespective to
the variation iﬂ'the inpup signal power to interference
power ratio., But this is not true when thé constrained
response direction does not match the assumed direction
of the desired signal. The output SINR gtarts degrading
with igcreABing input SINR and this degradation is more
with increasing mismatch. It was observed that with

strong interfgrence signal, the processor does not

notice the signal direction error, but with weaker
interference signal, the processor concentrates more on
the signal direction mismatch. Some interesting

L4

behayiour were observed lfor the processor when the
system noisg varies. The results showed some optimum
value of the syste@ noise when the output- S;NR was
maximum _for gsignal direétioﬁ error. With other values
the output SINR decreases drastically. With ‘perfect
match of the' constrained diredtion and the signal=

arrival direction, the output SINR increases linearly
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with decreasing value of system noise which should be

the obvious behaviour.

Concluding our discussion, we can summarize the

contribution of the investigation as follows:

——A narrow baﬁd linear adaptive array antenna
processor using primal-dual algorithm with inequality
constraint behaves satisfactorily "'with pattern -
constraints in the sideiobe directions, the number of
which is, however, restricted by the degrees of freedom.
In Some cases, slight degradation in outpuf SINR ;s
observed, ‘With pattern constraints, the algorithm

rémains globally convergent,

-- Variation in the streng£h of the input signal
environment as well as thé system . noise play =a
gsignificant role in determining the behaviour of ‘thel
narrowband linear array antehna{ specially when there is
error 1in =assumed signal arrival-direction. The output

SINR is quite depehdent on this situation.
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The present work does not complete the
investigation on the behaviour of the adaptive antenna
array. For example, as a future extension of this work
it would be very interesting as well as important to be
able to control the degradation of the output SfNR for
the case when the interference gsignal is on  the
mainlobe. We have observed in our study that in this
s;tuation the output SINR drastically degrades. Another
is the case when there are multipath arrival of the
desired signal making multipath components correlated
with the desired component. The pattern constraint idga

could be of help in attacking both the problems.
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APPENDIX - A

Here we present some definitions and results
concerning optimization problem relevant to our work.
Since the results are well known [11],[14],[15], the:

presentation here is very brief.
Below we consider the optimization problem

minimize f(u), UE TR «vivivrnreeereeeo(A])
subject_to g(u) £ O
where f:-lR"-—>1R is a convex functional of geRnand

A

g: R IR is a convex mapping.

Convex function: A function f defined on a convex
set R is -said to be convéx if, for every u, 'g & IR and
everyol ,O$d.<l we have

flat + A=) Y ) € AFW) + (o) £ (0

| If, for everyoa<«<4l and "‘I_,_L:p‘:l/,thére heolds |

FlkUt Umot) V) < AFCL) + Umot) £ CVD

then f is said to be strictly convex.
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Regular Point: Let u* be a point which satisfies

2(u){0 and let J be the set of indicee j for which
g3 (u*)=0. Then u* is a regnlar point of the constraints
if the gradient veetors Vegi(ut), 1$jij<m, JE€J are
linearly independent.

we can define the Lagnangian for problem (A.l1) as

L(u,a =; -FLLL)+7_\'9 (W)t eane ... (A2)

- .
where ?_\GIR is the Lagrange multiplier vector.

The dual function for (A.l) is defined as

PEAE min LCu,a) . .ot (A.)

where ¢ is concave.
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For the problem we consider in this thesis, f is
strictly convex, continuous and differentiable with,.
respect to u. Further f is bounded below, and

f(ujr+oas ufl>+00 , wherelluij =4 u u.

In the case of the constraint function g(u), we

consider the case:

g{u) is of‘t.he form

£ <Py € eY . e (A.4)

where p is linear, continuous and differentiable.

We now consider the problem (A.1)
minimize f(u), u € M"

‘s.t. g{u) S0

where g(u) is of the type £ < Plu) g

Theorem A.1l:. g* e R" solves problem (A.5) if and
only if there exists a Lagrange multiplier
-

L]
vector04A€R such that

L4

(i) X g(ur)

0

(ii) % L{u*, %) = 0
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The prébf of above theorem follows. directly from

standard Kuhn-Tucker theory [11]

Theorem A.2 {(Duality): The Lagrange multiplier

vector in Theorem A.1, O SZ‘-_“ satisfies
(i) PCA") 2 PN s A 20
(ii) min f(u) = max P (A)

M

. g(uy£0 20

The praof of this theorem is provided in (11]

‘Theorem A.3 (Uniqueness): The problem A.5 has =&

unique solution.

Theorem A.4 (Existence); A solution to the problem
{A.b) existas.

Proof of theorem A.3 and A.4 are given in [13]
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APPENDIX-B

Let us define for . convenience the following state
vector comprising the the primal and dual variables of the

algorithm (4.4.4)

I

neErN+N

0
>
x

e (BUY)

I
N
i3}

1y
»

*
D
*

A e e e .............f...(ELQJi

[N

PR
where (W, 2\,,3;) satisfy the saddle point conditions

» »* *%
2) > Ldws; a2, )2

»

-
L(W') Al
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Finally we can define the step matrix

KA " K K g K x .

./..\ =dla'5 Co"""f'o‘n 4 pj.*’ "'qu} )’1; Tt 754 ) (54)
The above definitions allow the algorithm (4.4.3) to

be put in to the slightly more general form:

K+

—

where P(.) 'and g(.) are appropriately defined vector

valued functions

1O

i

Oy W
?lf‘ l'élr

o
Fo

o
b
P

[P®], = | max(o,20;
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After defining algorithm in its more general and
simple form of (B5), the convergence of the algorithm can

~be proved with the help of the following theorems:

Theorem B.l : If the step matrix defined in (é&A) is

K
such that |] A [[<K<0and the following conditions

AH_..__.FK/_\. for f_\)Q ...... ..CBU
where
ad ' ) K\ " }
Y P =0, > (P") Koo for >0
K= . K=l :
then
K ~ . ‘
l_|m r& _-_-_-’5...........................CB.T)‘
K=p oo ' . _

The pfoof of this theorem is given'in 113]
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APPENDIX.C

FLOW CHART OF THE ALGORITHM

Read variables*: NE, NS, NC, D, E,
' P, THETA, THETAl

1

Compute constraint matrix, CMAT

1

Compute correlation matrix, RMAT

Determine: 2L (W, 2, Az) ,
W

AL (W, A1y Az and. L. (w, Ay 2a)
35 LYs 2is 22) -y VIR

Where L(W,2,, »2) is the cost function

Update W, &1, Ha, by: _
WOKH) = WEK) - (k) dL [ wir), A1(R), 22 CKI]

D K]
MK+ = max io; 2K ¢ = k) oL L wdk), 2k, Ag (RS

Az CKHL) e MAXFO s Az (K +0((K)aal_ EKBVCK)J 2K Da J
ry .
where K denotes current iteration number,

o5 is a small scalar incremental step

NO <<f- End of iteratiOé? ::)

;YES

Determine antenna response
pattern by computing CMAT X W

( Stop)

X A description of the variables is given below:

NE Number of antenna elements

NS Number of sources

NC Number ofléonstraints

D Desired response _
E Tolerance of response levels
P Signal and noise power levels

THETA  Signal and noise arrival directions
THETA1 Constraint directiﬁﬁf



C THIS IS THE MAIN PROGRAM TO DESIGN ADAPTIVE ARRAY ANTENNA

DIMENSION W (20), CM (20,20), CMW (10), DM (20,20), SI (20,20)
DIMENSION -BM (20,20), ALAM1 (10), ALAM2 (10), X (20,20}, Y (20)
DIMENSION ALAMP (10), ALAMN (10), TEM1 (20), TEM2 (20), SPROD {(40)
DIMENSION TEM3 (20), GAMA (20,20), R (20,20), F(20), D{(10), E(10)
DIMENSION TOU (10), THETA (10), P (10), THETA1l (10), THETAP (10),
+X1(20,20),Y1(20,20),21(20,20),511(20, 20} Z1W(10),0PMAT(40)
OPEN(6, FILE"DATA )

CALL XREAD{XSZ,YSZ,PI,RAD,LP,JL,NE,NT,NS,NC,J]1,STEP,SIGMA, ,D,E,P,
+THETA, THETA1,ELSPA,OMEGA, GAMA, NCZ NENT, Il NIT)

CALL DISPLY(LP JL,NE,NT,NS5,NC,J1, STEP SIGMA D,E,P,THETA, THETA1,
+ELSPA,OMEGA,NC2)

FREQ=OMEGA/(2*PI)

DELTA=1/{(4*FREQ)

DO 42 I=1,NC2

ALAM1(I)=0.0

42 ALAM2(I)=0.0
CALL CMAT({DM,BM,CM,THETA1l,X,NE,NC,PI,RAD,DELTA)
WRITE(5,’' (50X,A/)’) 'CMAT’

~ WRITE({5,421)((CM(I1,J),J=1,NENT),Ii=1, NCZ)
421 FORMAT(/,2X,8{2X,F10.6),/,2X)
. CALL RMAT(R,TOU,THETA,NS,NT,NE,P,NENT,FREQ, ELSPA,
+OMEGA,RAD,DELTA,SIGMA)
WRITE(5,491)
491- FORMAT(/,50X, 'RMAT’/)
WRITE(S5, 492)((R(I J),J=1,NENT),I=1 NENT)
492 FORMAT(/,2X,8(2X, F10 6),/, ZX)
DO 43 I=1,NENT
43 W(1)=0.,0

Ki=1
AK=0.0
K2=1
44 DO 45 I=1,NC2
ALAMP{I)=ALAM1(I)+ALAM2{(I)
45 ALAMN(I)=ALAM1(I)-ALAM2(1)

IF(JL.EQ.0)GO TO 450
IF(JL.EQ.1)GO TO 451
IF{(JL.EQ.2)GO TO 452
450  ALPHA=STEP
GO TO 460 -
451 ALPHA=STEP/{AK+1.0)
GO TO 460
452  ALPHA=STEP/(AK+5.0)
460 CALL ANUPD(TEM1,TEM2,TEM3,GAMA,ALAMP,ALAMN, CM R,
+W,F,NC2,NENT, ALPHA)
CALL ANDIF(CMW TEM1, TEM2,CM, GAMA ALAM1,ALAM2,ALPHA,
+NC2,NENT,D,E)
IF(LP EQ.0)GO TO 57
CALL CONVRG(K2,NIT,K1,NENT,R,TEM1,11)
IF(K2.EQ.500)GO TO 46
K2=K2+1 \
GO TO 44
46 K2=1
WRITE(3,999)K1
999  FORMAT(2X,'ITER=',12,/)
WRITE(3,47)
47 FORMAT({(/,/,2X, 'WEIGHT VECTOR',/)
DO 48 I=1,NENT S
WRITE(3,49)TEM1(1) A51-



48

49
50
51
.52
53
654

55
56
57

563

20

CONTINUE

FORMAT{2X,F10.6)

WRITE(5,50)

FORMAT ( 2X, ' PRODUCT?, /)

DO 51 I=1,NENT

Y{(I)=0.0

DO 51 J=1,NENT
Y(I})=Y(I)+R{I,J}*TEM1(J)

PROD=0.0

DO 52 I=1,NENT

PROD=PROD+TEM1 (I)xY{1)
SPROD{(K1)=0.0
SPROD(K1)=PROD+SPROD (K1)
WRITE(5,53)PROD

FORMAT(F10.6)

WRITE(5,54)

FORMAT(2X, 'WRITE ALAM1,ALAM2,CMW’/)
DO 55 I=1,NC2
WRITE(5,56)ALAM1(I),ALAM2(1),CMW(I)
CONTINUE '
FORMAT(3(F10.6,2X))

IF(K1.EQ.J1)GO TO 563

Ki1=K1+1

AK=AK+1.0

GO TO 44

CALL ANPAT(X1,Y1,Z1,THETAP,SI1,NE,NC,PI,RAD,DELTA,

+NC2,NENT,Z1W, TEMI DEG}

CALL SINR(TEM] THETA,NS,NT,NE,P,NENT, FREQ ELSPA,OMEGA,
+RAD,DELTA,SIGMA)

STOP

END

SUBROUTINE CMAT(X,Y,Z,ANGLE,SI,NE,IC,PI,RAD,DELTA}
DIMENSION X(20,20),Y(20,20),Z(20,20),ANGLE(10},81(20,20) _
DO 20 I=1,1IC
ANGLE(1)=ANGLE(1I)XxRAD

DO 20 J=1,NE

EX=NE

EJ=J

EXJ={EX+1.0)/2.0

EJ=EJ-EXJ

EJ=PIXEJ
S1(1,J)=COS(ANGLE(I))*EJ
X(I,J)=COS(SI(I,J})
Y{(I,J)=SIN(SI(I,J))
X(I,NE+J)=COS(SI(I,J)+DELTA)
Y(I,NE+J)=SIN(SI(I, J)+DELTA)
Z{I,J)=X(1,J)
Z(1C+1,J)=Y(1,J)
Z{(I,NE+J)=X(I,NE+J) .
Z{IC+I,NE+J)=Y{(I, NE+J)
RETURN

END

SUBROUTINE RMAT{(R, TOU,THETA,NS,NT,NE,P,NENT,
+FREQ, ELSPA,OMEGA,RAD,DELTA,SIGMA) ‘
DIMENSION R(20,20),TOU{(10),THETA(10),P(10}
DO 11 I=1,NENT
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DO 11 J=1,NENT

R(1,J)=0.0

DO 12 L=1,NS.
TOU{L)=ELSPA*COS{THETA(L) *RAD) /FREQ
DO 12 M=1,NT

DO 12 N=1,NT .

DO 12 I=1,NE - .

DO 12 J=1,NE

T1=(M-1)%*NE+1

J1=(N-1)}*NE+J

R(I1,J1)=R{I1, J1)+P(L)tCOS(0MEGA*((J 1) *TOU(L)+(N-M)x
+DELTA))

DO 13 I=1,NENT

R(I,I)=R(I,I)})+SIGMA

RETURN

“END

SUBROUTINE ANUPD(TEM1,TEMZ2,TEM3, GAMA ALAMP, ALAMN,
+CM,R,W,F,NC2,NENT, ALPHA)

DIMENSION TEMI(ZO) TEM2(20),TEM3(20),GAMA(20,20),W(20}
DIMENSION ALAMP(IO),ALAMN(IO),CM(ZO,ZO),R(ZO,ZO),F(ZO)

15

- 16

35

30

40

50

60

70

80

DO.15 I=1,NENT

TEM1{I)=0.0

TEM2(I})=0.0

DO 15 J=1,NC2

TEM1(I)=TEM1(I)}+GAMA(J,I)*ALAMP(J)
TEM2(I)=TEM2(I)+CM(J,I)*ALAMN(J)

DO 16 I=1,NENT

TEM3(1)=0.0

DO 16 J=1,NENT

TEM3(I)=TEM3(I)+R(I,J)*W(J)

DO 60 I=1,NENT

IF{W(I).GT.0.001)GO TO 30

IF (W(I).LT.-0.001)GO TO 40
IF((2.0¥TEM3(I)+TEM2(I)+TEM1(I)).GT.O. 001)G0 TO 30
IF((2.0%*TEM3(I)+TEM2(I)+TEM1(I)}.LT.0.001)GC TO 40

- IF(ABS(2.0*TEM3(I)+TEM2(I))}.LE.TEM1(I}))GO TO 50
. WRITE(5,35)

FORMAT (2X, '"NO SOLUTION IN UPD’/)}
GO TO 50

F(I)=TEM1{(1I)

GO TO 60

F(I)=-TEM1(I)

GO TO 60

F(1)=0.0

CONTINUE

DO 70 I=1,NENT

TEM1(XI)=W(I)

DO 80 I=1,NENT
W(I)=W(I)~ALPHAX(2. 0*TEM3(I)+TEM2(I)+F(I))
RETURN

END

SUBROUTINE ANDIF{CMW TEM1, TEMZ CM, GAMA, ALAM1,

+ALAM2, ALPHA,NC2,NENT,D,E)

DIMENSION CMW{10),TEM1(20),TEM2(20),CM(20,20)
DIMENSION GAMA(20,20) ,ALAM1(10),ALAM2(-10),D(10),E(10}
DO 17 I=1,NENT 153



17 TEM2(I1)=0.0
DO 18 I=1,NC2
CMW(I)=0.0
DO 18 J=1,NENT
CMW{I)=CMW{I)+CM({I,J)}*TEML(J)
18 TEM2 (I)=TEM2(I)+GAMA(I,J)*ABS(TEM1(J))
DO 40 I=1,NC2
ALAM1(I)=ALAM1{I)+ALPHAX(CMW(I)+TEM2(I)~D(I)~E(I})
IF(ALAM1{I).GT.0.0)GO TO 30
ALAM1(I)=0.0
30 ALAM2 (T )=ALAM2(I)~-ALPHA%(CMW(I)-TEM2(I)- D{I)+E(I))
IF(ALAM2(I).GT.0.0)GO TO 40
ALAM2(I1)=0.0

40 " CONTINUE
RETURN
END

C

C

SUBROUTINE ANPAT(XI Y1,Z1,THETAP,SI1,NE,NC,PI,RAD, DELTA,
+NC2,NENT,Z1W,TEM1 ,DEG)
DIMENSION X1(20 20) Y¥1(20,20),21(20,20)
DIMENSION S8I11(20,20),Z1W(10),TEM1(20),THETAP{10),DEG(1)
WRITE(1,110) _

110 FORMAT(/,/,2X, ' ANTENNA RESPONSE PATTERN',/)
NC1=1
NC12=2
DO 11 ITHETA=5,185,5
THETAP(1)=ITHETA-5
DEG{1)=THETAP(1)
CALL CMAT(X1,Y1,Z1,THETAP,S811,NE,NC1,PI,RAD, DELTA)
DO 13 I=1,NC12
Ziw(1)=0. 0
DO 13 J=1,NENT

13 ZIW(I)= ZIW(I)+ZI{I J)*TEMI(J)

. WRITE{1,14)PEG(1),(Z1W(I),I= 1 NC12)

11 CONTINUE

14 FORMAT (2X,10(F10.6,1X)) .
RETURN .

END

SUBROUTINE XREAD(XSZ,YSZ,PI,RAD,LP,JL,NE,NT,NS,NC,J1,STEP,
+SIGMA,D,R,P,THETA, THETAL ,ELSPA, OMEGA, GAMA,NC2 ,NENT,I1,NIT)
DIMENSION D(10),E(10).,P(10),THRETA(10),THETA1(10),GAMA(20,20)
READ(6,*)NIT,LP,JL,NE,NT,NS,NC :
- READ(6,*)J1,STEP,SIGMA,ELSPA,OMEGA

READ(6,%)I1,XSZ,YSZ,PI,RAD
NC2=2%xNC -
NENT=NEXNT
DO 10 I=1,NC2

10 READ(6,%)D(I),E(I)
DO 20 I=1,NS

20 READ(G,*)P(I) THETA(I)

o DO 30 I=1,NC

30 READ(G,*)THETAI(I)

DO 40 I=1,NC2
DO 40 J=1,NENT

40 GAMA{1,J)=0.0
RETURN
END
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SUBROUTINE DISPLY(LP,JL,NE,NT,NS,NC,J1,STEP, SIGMA D,E,P,
+THETA, THETA1, ELSPA,OMEGA, ch)
DIMENSION D(10) E(10),P(10)}, THETA(IO),THETAI(IO)
WRITE(2,36)
36 FORMAT({2X, 'DATA READ'/) '
" WRITE(2,37)LP,NE,NT,NS,NC,J1,STEP,SIGMA,ELSPA,OMEGA
37 FORMAT{(/,2X,'LP=',11,3X,’NE=",12,3X,’NT="',12,3X,
+'NS=',12,3X,'NC=",12,3X,*J1=",15,3X,’STEP=",F10.6,
+3X,'SIGMA=',F10.6,3X,'ELSPA=',F10.6,3X, 'OMEGA=' ,F10.6,/)
WRITE(2,38){D(I}),I=1,NC2)
38 FORMAT(/,2X,'D="'",10(F10.6,1X)}
WRITE(2,39)(E(I),I=1,NC2)
39 FORMAT(/,2X,'E=’',10{F10.6,1X})
WRITE(2,40)(P(I),I=1,NS}
40 "FORMAT(/,2X,'P=’,10{F10.6,1X)) -
WRITE(2,41)(THETA(I),I=1,NS}
41 FORMAT(/,2X, 'THETA=',10(F10.6,1X))’
WRITE(2,410) (THETA1(I),I=1,NC)
410 FORMAT(/,2X, 'THETAl=',10(F10.6,1X})
RETURN
END

SUBROUTINE SINR(TEM1, THETA, NS,NT,NE,P,NENT, FREQ, ELSPA, OMEGA,

+RAD,DELTA,SIGMA)

DIMENSION RNN{20,20),RSS(20,20),RXX(20,20),Y(20),TEM1(20),

+TOU(10),THETA(10),P{10)

DO 11 I=1,NENT

DO 11 J=1,NENT
11 ‘RNN(I,J)=0.0

DO 12 L=1,NS '

' TOU(L)=ELSPA*COS{THETA (L) *RAD)/FREQ

DO 14 M=1,NT

DO 14 N=1,NT

DO 14 .I=1,NE

DO 14 J=1,NE

I1=(M-1)*NE+I

J1=(N-1)*NE+J

RNN(I1,J1)}=RNN(I1, JI)+P(L)*COS(OMEGA*((J ~I)$TOU(L)+(N-M) ¥DELTA))
14 CONTINUE '

IF(L.NE.1)GO TO 12

DO 13 12=1,NENT

DO 13 J2=1,NENT

RSS(I2,J2)=RNN(I2,J2)
13 RNN(I2,J2)}=0.0
12 CONTINUE

WRITE(5,*)'RSS IS GIVEN BY FOLLOWING MATRIX:-

WRITE(5,60) ( (RSS{I,J),J=1,NENT}),I=1, NENT)

60 FORMAT(/,2X,8(2X,F10.6)},/,2X)
DO 15 I=1,NENT
15 RNN(I,I)=RNN{I,I)+SIGMA

DO 16 I=1,NENT
DO 16 J=1,NENT

16 .RXX(I,J)}=RNN(I,J)+RSS(I1,J)
DO 17 I=1,NENT
Y{I)=0.0
DO 17 J=1,NENT

17 Y{(I)=Y(I)+RSS{I,J)*xTEM1(J)
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70

18

75

19

20

21

10

51
52
14

60

WRITE(5,¥%)’ RSS*W IS GIVEN BY FOLLOWING MATRIX:-'

WRITE(5,70)(Y{I),I=1,NENT)
FORMAT(/,2X,8(2X,F10.6),/,2X)
SPOWER=0.0

DO 18 I=1,NENT
SPOWER=SPOWER+TEM1 (I)*Y(1I)
WRITE(2,75)
FORMAT(/,1X,80('%")//)

‘WRITE(2,x)’ SIGNAL POWER=',SPOWER

DO 19 I=1,NENT

Y(I)=0.0

DO 19 J=1,NENT

Y{I}=Y(I)+RNN{I,J}*TEM1(J)

XPOWER=0.0

DO 20 I=1,NENT

XPOWER=XPOWER+TEM1 (I }*Y (I}

WRITE(2,*)’ TOTAL NOISE POWER=',XPOWER
XSINR=SPOWER/XPOWER
YSINR=10.0%ALOG10{XSINR) :
WRITE(2,%x)’ SIGNAL TO NOISE RATIO 1S GIVEN BY:’
WRITE(2,*)* SINR=',XSINR
WRITE(2,21)YSINR -

FORMAT (4X,’IN DECIBELS SINR =',F8.3)
RETURN :

END

SUBROUTINE CONVRG(K2,NIT,X1,NENT,R,TEM1,I1)
DIMENSION Y(20),R(20,20),TEM1(20),0PMAT(40)
IF(I1.NE,1)GO TO 10

NIT1=NIT ‘

K2NEW=(K1-1)*500+K2

IF(K2NEW.NE.NIT1)GO TO &0

ITNUM=KZNEW

DO 51 I=1,NENT

Y{I)=0.0

DO 51 J=1,NENT

Y(I)=Y(I}+R{(I,J)*TEMI1(J)

PROD=0,0 -

DO 52 I=1,NENT .

PROD=PROD+TEM1(I)*Y{(1I)

OPMAT(11)=PROD

WRITE(7,14)ITNUM,OPMAT(I1)

FORMAT (4X,18,4X,F10.6)

T1=11+1

- NIT1=NIT*I1

RETURN
END
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