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ABSTRACT

Adaptive array antenna systems are currently the

subject of intense .interest and investigation I

development for radar and communications applications.

The principal reason for the use of adaptive arrays is

in their ability to "automatically steer nulls onto

undesired sources of interference, thereby reducing

output noise and enhancing the detection of desired

signals. These systems consist of an array of antenna

elements and an adaptive receiver processor which has

feedback control over the element weights. The concept

of the adaptive system works on the principle of

minimizing the output power under the constrained

response to specified directions.

The present work studies the behaviour of the

adaptive array system depending on the signal power of

the desired signal and the interference sources, and

also on the placement of directional c6nstraints ,in the

system. A brief theoretical analysis and intensive
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computer simulation on this directional constrained

system are presented. The results confirm that the

algorith~ used is able. to iteratively adapt variable

weights on the tap of the sensor array to minimize noise

power at the array output subject to certain constraints

on the mainlobe as well as on the sidelobes of the array

response pattern. A number of interesting observations

regardin~ the behaviour of this adaptiv~ antenna iystem

in presence of the desired signal and interfering noise

of varying power levels are also revealed. Detailed

discussion is held for all types of simulations and

inferences are drawn about the response of the array

under different signal environment as well as pattern

constraints.
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ADAPTIVE ANTENNA ARRAY PROCESSING

Signal processing using an array of sensors has

long been an attractive solution to many detection and

estimation problems. An array offers the means of

overcoming the directivity and beam width limitations of

a single sensor element thus reducing the vulnerability

of the reception of desired signals in the presence of

interference signals ,in radar, sonar) seismic and

communication systems. Such conventional arrays are

mostly built with fixed,weights designed to produce a

pattern that is a compromise between resolution, gain

and low side lobes .. The versatility of the array

antenna, however, invites the ,use of more sophisticated

techniques for array weighting. Particularly attractive

are adaptive schemes that can sense and respond to a

time varying environment. Array antennas that

incorporate this characteristic adaptive property of

automatically steering nulls onto undesired sources of

interference thereby reducing output noise and enhancing

the capability of detection of desired signal are

2



called adaptive antenna arrays.

Such an adaptive array isa system consisting of an

array of antenna elements and a real time adaptive

receiver-processor which, given a beam steering command,

samples its current environment and then automatically

proceeds to adjust its element control weights. This

weight adjustment is carried on by means of some feed

back scheme and all this is done in accordance with a

selected algorithm. The ultimate objective is, of

.course; to improve output signal to noise ratio.

Conventional communications and radar antenna

systems are susceptible to a degradation in SNR

performance caused by undesired "noise" which iritrudes

via the antenna side lobes. The noise may consist of

deliberate. electroni6 counter mea~ure (ECM), friendly RF

interference (RFI), clutter scatter returns and natural

noise sources. This degradation is often.aggravated by

movement of the antenna,'
. ,

poor siting. conditions,

multipath. and a changing interference envfronment.

Adaptive array techniques offer possible solutions to

3



these seriousinterferenc~ problems via their fle*ible

capabilities of automatic null steering. -In fact,

adaptive nulling can be considered to be a principal

benefit of adaptive technique~ at the present time. For

these reasons, adaptive array antenna systems are

currently the subject of intense investigation /

development for radar and communications applications.

Immediate advantages of such an array can thus be

grouped as follows [1]

(i) Automatic adjustment of the antenna response to

give minimum interference.

(ii) No need for an a priori knowledge of the

bearing of the interference.

(iii) Ability to handle multiple sources of

interference upto a limit which can be defined.

(iv) AbIlity - to track the changing apparent

direction of interference whether resulting from antenna-

movement, source movement or propagation effect.

(v) It does not need to know the bearing of the

in~erference, the array can handle new sources of

4



interference or jamming not previously predicted ; and

'(vi) There. is no longer, a severe mounting and

tolerance problem.

1.2 BACKGROUND I HISTORY

Adaptive arrays have their roots [2] in a number of

different fields, including retrodirective and self

phasing RF antenna arrays, sidelobe cancellers, adaptive

filte~s [3].

arrays.

acoustic or sonar arrays [4], and seismic

The first real contribution in the RF antenna field

was the retrodirective array invented by L.C. Van Atta

in the 1950's. Another major step was the phase-locked

loop theory and practice, which made possible self

steering arrays.

Then in the early 1960's, two groups. independently

developed schemes for achieving the key capability of

5



adaptive interference nulling. One group arrived via

radar sidelobe canceller development as represented by

the patent of P.W. Howells [16] for an IF side-lobe

canceller. A subsequent analysis by S.P. Applebaum [5]

established the associated control law theory, an

algorithm that maximizes a generalized signal to noise

ratio. The other group arrived largely via self-training

or self-optimizing array processor control systems which

operate upon sampled signals, as described by B. Widrow

in his report on adaptive filters [3],[17]. Widrow and

his co-workers [6] subsequently applied their approach

to adaptive antenna systems and firmly established the

lea~t mean square error algorithm, based upon the method

of steepest descent.

The LMS algorithm was developed further by Griffith

and Frost [7], with the result that one can maintain a

chosen frequency characteristic for the array in a

desired direction, while discriminating against noises

coming from other directions. Rieglar and Compton [18]

provided timely experimental performance verification,

6



utilizing a- laboratory array system which was oriented

toward communications applications. Compton

[19] noted a power equalization phenomenon, which was

also addressed by Zahm [20] and shown to permit

acquisition of weak signals in presence of strong

jamming.

The maximum signal-to-noise (MSN) algorithm was also

developed further, with open literature contributions

primarily by Brennan and Reed [21]-123].

Other algorithms and techniques have also been

under investigation. Reed et al. [24]-have found that

rapid convergence can be obtained in all cases via a

direct method of adaptive weight computat~on, based on a

sample covariance matrix of the noise field. Search

techniques [25] combined with simple array performance

monitoring have been receiving increasing attention in

an effort to achieve implementations which are less

complicated / costly.

7



Young and Howard [26], [27] have described a

"--',. .
".) .'

parallel-processing array system concept which adapts

optimally on the basis of decision theory.

1.3 THESIS OUTLINE

This thesis is concerned with the study of the

behaviour of an adaptive array antenna system under.

varying. signal environment conditions and response

pattern constraints. Adaptive array antenna system with

directional constraints was first put forward by Takao

et. .al [8]. In this type of adaptive processor, it is

assumed that there is a priori knowledge of.the desired

signal direction. The algorithm iteratively adapts the

element weights and finds the opt'imum weights which

steer the response pattern main-lobe in the desired

signal direction and put nulls in the noise

(interference)' signai directions. This algorithm in

doing so requires a "directional constraint" to place

the main lobe of the response pattern in the desired

.8



signal direction (look direction). ,,'

In our thesis, we use this "directional con~traint"

idea and introduce a number of constraints on the

response pattern of the adaptive array antenna system to

investigate its behaviour under such condition.' Apart

from the main Jobe, there are a number'of side-lobes in

the response pattern of an adaptive array like any other

antenna system. The set of optimum weights which

controls the main lobe direction and level do not have

any control on the side-lobe directions and levels. For

an array antenna designer it would be quite interesting

"as well as important to have more or less complete

control on the response pattern of the array. In this

work, we, show that it is possi9le to control the

response of the array antenna at these side-lobe

directions by imposing proper side-lobe constraints. The

upper limit of such controllable side-lobes is however

limited by the degrees of freedom a phenomena

discussed elaborately in a later chapter. The chief

advantage that we may achieve by controlling these side

lobe levels in the response pattern,

9
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fact that reduced side lobe levels tend to improve the

overall output signal to noise ratio for unaccounted

noise and also allow us to exercise greater authority on

the overall antenna response. In this thesis, .this side

lobe constraint phenomena was given a particular

importa~ce and its different aspects were thoroughly

investigated by computer simulation techniques.

The signal environment is the most important factor

for, consideration in adaptive array antenna processing.

The capability of the array antenna may not be- similar

in any input signal to noise (interference) ratio

condition. In certain occasions we may have strong

desired signal condition compared to weak interference /

jamming signals, sometimes it can be otherwise. The

internal system noise may have considerable effect on

the overall output SINR (signal to interference and

system noise ratio). The effect of signal power

variation i.e. variatfon in the strength of the desired

signal, interference signal as well as the effect of

system noise on the overall behaviour of the adaptive

10
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array system is investigated in this thesis.

In chapter 2 of this thesis, a.generaldiscussion

on the various techniques employed on adaptive array

antenna processing is,given. Chapter 3 gives in brief

the mathematical tools required for solving the

optimization schemes employed for adaptive arrays.

Chapter 4 is devoted to problem formulation and to the

development of the algorithm used. The response patterns

generated after computer simulation for various signal

environments and constraints, are embodied in chapter 5,'

Finally, a conclusion is drawn based on the various

observations of the behavior of the narrowband adaptive

array antenna for various signal/jamming conditions

and sidelobe constraints.

11
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CHAFT.ER 2

GENERAL. REVIEW ON

ADAJ?'TIVE ANTENNA ARRAY

PROCESSING

12

\



2.1 INTRODUCTION

This chapter deals with the general discussions

regarding antenna arrays, their capability of adaptive

response to some signal. environment, as well as the

basic principles which give rise to their adaptive

nature. Some control criteria dependent on signal

quality (e.g., signal strength etc.) are also discussed.

The chapter ends by citing some methods used for

achieving desired response from adaptive antenna arrays.. . .

2.2 DEFINITION

An adaptive array is an antenna-array system which

adapts to its signal environment to satisfy some

criteria, such as to maximize the signal to noise ratio.

The set of antenna elements may be evenly or unevenly

spaced. They may be monopoles, dipoles, dipole-arrays,

or feeds into highly directional parabolic reflectors.

They may be placed in a line,

.13
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randomly over a su~face or within a volume of space. But

in all cases the arrays are designed so that they

automatically adapt their responses to give low gain to

unwanted signals while maintaining adequate gain to a

wanted signal.

If we assume an array A to consist of L

omnidirectional elements and, the cartesian

co-ordinates (Fig.2.2.1) of the elements to be denoted

by L triples ( x(i), y(i), z(i), i=1,2, .... ,L} then we'

can' have the following definitions for linear, planar

and general arrays [9]:-

Linear array : The array A is said to be a linear array

if its L points,

collinear.

( xli), y(i), z(i), i=1,2, ..•. ,L } are

Planar array : The array A is said to be a planar array

if the L points of this array are coplanar but not

collinear. Thus only non-degenerate planar arrays are

called planar arrays.

14
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Fig. 2.2.1 DE FINITION OF CO- ORDINATE SYSTEM.

General array : The array A is a general array if it is

neither" a linear nor a planar array.

The three classes of arrays defined above are

mutually exclusive and exhaustive.

In Fig.2.2.1, y(~,e) is called the steering vector

which denotes the direction of the signal sIt) with

angle e and ~. The vector ~(i) denotes the position

of an antenna element. It is to be noted that, for a

15
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linear array, the direction of the signal source is

given by the angle e taking the axis of the array as

,the Z axis and the element position is given by only Z

co-ordinates.

2.3 BASIC PRINCIPLES

In, general, the antenna elements of an adaptive

array have an associated electronic control unit or

processor., The array itself is illustrated in Fig.2.3.1.

The outputs of the N'elements are weighted (W, to W.)

and then summed to give the array output [101.

16



Fig. 2.3. 1

XI (t)
•••

Xi (t)
•••

xn(t)

•••

OUT PUT

: .BASIC ARR,AY.

Wn

5 It )

OUT PUT

,
"

Fi g. 2.3.2

AUTOMATIC CIRCUIT
FOR WEIGHT
ADJUSTMENT

BASIC ADAPTIVE ARRAY.
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The general form of an adaptive syst~m is shown in

Fig. 2.3.2. Here Xl. X2' •••• ,Xn are the input signals to

the array elements. The weights (WI, W2' •••• ~Wn) aTe

determined by a c6ntrol unit (often called the adaptive

pr'ocessor). The control unit requires. in most systems,

an input from each of the elements, and in many cases

fr,om'the array output. A reference signal which defines

in some way the wanted signal may also be required.

A simple example follows (Fig.2.3.3) which

illustrates the existence and calculation of a set of

weights which will cause a signal from a desired

direction to be accepted while a "noise" ,from a

diff~rent direction is rejected [6]. Let the signal

arri ving from the desired direction e =0 be cal'led the

"pilot" signal p(t)=P ••sin wot; where Pllis the

ampli tude. wo = 21T f0 and fo is the frequency of the

pilot signal.' The other unwanted signal or noise is

chosen. as h(t)=N.sin wotand is incident on the

receiving ar'ray at an angle e =IT /6 radians. At a: point

in space midway between the antenna array elements, the

18



signal and noise are assumed to be'in phase. The omni-

directional array elements are spaced ~./2 apart. The

signals re~eived by each element are fed to two variable

weights, one weight being preceded by a quarter wave

time delay 'of 1/4f•. ,The four weighted signals are then

summed to form the array output.

19
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" • • JIPIlot. sIgnal
P(t)= p..sinwot

. /.NOISE'N(t)=~inwot

~-l ...
i ~ . .
I I
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I I

I
I .
1 I

..L
4fo

ARRAY OUTPUT

Fig; 2:3.3 ARRAY CONFIGURATION FOR NOISE
ELIMINATION EXAMPLE.
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The problem of obtaining a set of weights to accept

p(t) and reject n(t) can now be studied. It is to be

noted that with any set of non-~ero weights, the output

is of the form Allsin (wot+ 'P), and a number of solutions

exist which will make the output be p(t). However, the

output of the array must be independent of the amplitude

and phase of the noise signal if the array is to be

regarded as rejecting the noise. Satisfaction of this

constraint leads to a unique set of weights determined

as follows.

The array. output due to pilot signal is

PII [(WI+W3 )sinwo t + (W.+W. )sin(wo t-1T /2)t] .•.•• (2.3.1)

Fpr this output to be equal to the desired .output of

p(t)=Pmsinwot (which is the pilot signal itself), it is

necessary that:

Wi + W3 =1 ••••••••••••.••••••••••••••.• -•••• (2.3.2)

W. + W. =0

21



With respect to the mid-point between the antenna

elements, the relative time delays of the noise at the

two antenna elements are:

![(l/4f.)]sin Tr/6 = :t(l/8f.) =:!:>../(8c)•... (2.3.3)

which corresponds to a phase shift of :!:1T/4 at

frequency f•. ,The array output due to the incident noise

at e=1T"/6isthen:

Nm[W, sin(w.t - 11/4) + W. sin(l.,.t- 3Tf/4)

+ W3 sin(w.t + Tf/4)+W. sin(w.t - ,11/4)]••.... (2.3.4)

For this response to equal zero, it is necessary that

W, + W. = 0

W. W3 = 0

•••• ' ..; " •••••••••••••••••••••••• ( 2 • 3 • 5 )

Thus the set of we~ghts that satisfies the signal

and noise response requirements can be found by solving

(2.3.2) and (2.3.5) simultaneously. The solution is

22



Wi = 1/2, W. = 1/2, W3 = 1/2, W. = -1/2

With these weights, the array will have the . ,

distinctive property of accepting a signal from a

desired direction. Thus a noise, which may even be of

the same frequency f. as the signal, will be rejected.

This rejection is possible as long as the noise comes

from a different direction than does the signal.

The directivity pattern, i Ie. t' the relative

sensitivity of response to signals from various

directions, is plotted in Fig.s 2.3.4, 2.3.5, 2.3.6, and

2.3.7. Each figure is plotted in a plane over an angular

range of -TT /2< e '<TT/2 for frequency f•.

Due to introduction' of time delay, the directivity

pattern of Fig.2.3.5 has its main lobe at an angle of ~

radians, where

23
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'¥ = sin-1 lAoS fold} = sin-1 Ic & /d}

and fo = frequency of received signal

A. = wave-length at frequency f.

b = time delay difference between neighboring

element outputs
>,

( I,

d = spacing between antenna elements I I

Isignal propagating velocity :lIo foc = = !

The directivity pattern of Fig.2.3.7, with its

associated weight sets, has its main lobe almost

unchanged from that shown in Fig.s 2.3.4 and 2.3.6.

However, the particular sidelobe that previously

intercepted a sinusoidal noise in Fig. 2.3.6 has been

shifted so that a null is now placed in the direction of

that noise.

24



\l" = sin- 1 {?\o 0 fo /d} = sin- 1 {e.s /d}

and fo = .frequency of received signal

Ao = wave-length at frequency fo

b = time delay difference between neighboring

element outputs

d = spacing between antenna elements

i
I,

n/ __C.~ signal propagating velocity = Aofo

The directivity pattern of Fig.2.3.7, with its

associated weight sets, has its main lobe almost

unchanged from that shown in Fig.s 2.3.4 and 2.3.6.

However, the particular sidelobe that previously

intercepted a sinusoidal noise in Fig. 2.3.6 has been

shifted so that a null is now placed in the direction of

that noise.
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ARRAY OUTPUT
SIGNAL

Fig. 2.3.4 : DIRECTIVITY PATTERN FOR A SIMPLE LINEAR ARRAY.

"'d

ARRAY OUTPUT
SIGNAL.

Fig. 2.1. S : DIRECTIV IT Y PA TT ERN FOR A
LINEAR ARRAY WIT H DELAYS ADDED.
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DIRECTIVITY
PATTERN

d

LOOK DIRECTION

NOISE DIRECTION
/
/

./

//(NOISE AT FRE~-ro)
/.

d

WEIGHTS

. ARRAY OUTPUT
SIGNAL.

Fig.2 •.3.6 : DIRECTIVITY PATTERN FOR LINEAR ARRAY
WITH EQUAL WEIGHTING.
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ARRAY OUTPUT
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Fi!. 2.3.7 DIRECTIVITY PATTERN OF LINEAR ARRAY WITH
WEIGHTING FOR NOISE ELIMINATION.
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An adaptive array system can be either of the

feedback (i.e.,closed loop) type or of the open loop

type [10]. In the feedback system the array output

(possibly as well as the signal from the array elements)

is required for the processor. Whereas in the open-loop

system this is not required. In the later case (~pen

loop system), the required weights must be calculated

precisely from the input waveforms and then accurately

applied, and there is no feedback to confirm that the

correct performance has been achieved. The objection to

the feedback systems is their limited speed of response.

However the advantage is that the weight multipliers

need not _be accurate, or even linear, because the

feedback nature of the system will set whatever values

are needed to obtain the required output. The main

advantage of the open loop system over the feedback

system is, their fast response, but, of course there is

a trade - off between speed of response and degree of

freedom. B~cause of the high accuracy required, an open

loop system must really be implemented digitally,

whereas a closed loop system maybe either digital or

28



analogue. ,
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2.4 WANTED SIGNAL AND CONTROL CRITERIA

. Adaptive arrays can be configured to 'lreceive

narrowband or broadband signal. A narrowband sig'nal may

be characterized by its centre frequency, say f. '. Such

an array configuration is shown in Fig. 2:4.1 .

•

The narrowband signal is received by the antenna
,

element and is thus weighted by a complex gain f,actor
I, \

,

AeJ~j . Any phase angle e =-tan-' (W,/W,) can be chosen

29

antenna element.

limitations of the two individual weights. Thus this two

array

linear

theof

adjustable

channel

complete

each

provide
\

processing for narrowband signals received by each

by setting the two weight values, and the magnitud~ of

configuration

this complex gain factor, A= -VI (W,)' + (W,)') can tak'~ on
\

a wide range of values limited only by .the range

tap arrangement in



When one is intetested in receiving signals over a

wide range of frequencies (i.e., broadband signal), each

of the phase shifters in Fig. 2.4.1 can be replaced by a

tapped-delay-line network as shown in Fig.2.4.2. This

tapped delay line permits adjustment ot gain and phase

as desired at'a number of frequencies over the band of

interest.

In our analysis, we will consider a narrowband

signal that can be expressed by its centre frequency and

slowly varying envelope.
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In cases where the wanted signal is of extremely

low mean noise power (well below receiver noise level in

general), the control system is designed to minimize the

total output power from the array [10l, subject of

course, to a constraint on the weights to preven~ them

all being set to zero. This criteria is specially suited

for radar sidelobe cancellation.

However in the communications case, the mean"wanted

signal power is generally much greater, and if above

criteria is followed will be susceptible to

cancellation. So the control criteria is modified to

protect thi's signal. One approach is to use the

loop systems, requires knowledge of the wanted signal

direction and also of the relationship between the

weight vector and the array gain pattern.
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Another approach, not requiring this information,.

is to minimize the array output power excluding the

wanted signal. This can be achieved by preventing the

control system from seeing the wanted signal, .so that

there is no tendency to cancel it. This method is

particularly appropriate for closed-loop systems, as it

is only necessary to exclude the wanted signal from the

feedback path. This criteria may be broadly terme4 a

maximum-signal-to-noise (MSN) criteria, because, for a

nonzero gain to the wanted signal, the unwanted power is

minimized.

A closely related approach is the minimum-mean-

square-error criteria. Here a reference signal is

provided which, ideally, matches the expected wanted

signal. The adaptive system then minimizes the power (or

mean square value) of the error signal defined as the

difference between the reference signal.and the array

output.
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2.5 GENERAL CONTROL METHODS

Some general approaches used to improve the signal

to noise ratio (SNR) may be outlined as follows [10):-

(i) Matrix inversion methods

(ii) Correlation feedback systems

(iii) Perturbation or random search

(iv) Gram-Schmidt

These methods are briefly described below:-

...,

. (i) Matrix inversion method: The basic adaptive

array problem is to determine and apply the set of

weights which optimize the system per.formance according

to the chosen direction. The optimizing condition which

most systems attempt to meet gives the set of weights

(i.e. I the weight vector li as the solution of an

equation of the form H W = Q, where H is a matrix of

cross correlations of the signals from the array

elements (ideally excluding the wanted signal). Q is a
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vector depending on the wanted signal or the array

steered direction. Open loop systems, for which matrix

inversion method (Fig. 2.5.1) is specially suited

calculate the required weight directly from the equation

W = R-I ~ using digital techniques. This results in a

very swift determination of the desired optimum weight

vector.

, /.

I i

,,.,

, ,

(ii ) Correlation Feedback Systems In these
\, ,

i, ,

systems (Fig 2.5.2 and 2.5.3) th~ optimizing weights are

determined'by using correlation between the signals from

the array elements and a feedback signal derived from

the' array output. The feedback loops operate to reduce

the feedback signal power to a low level, ideally

app,roaching zero as, the loop gain is increased. The

Howell-Applebaum MSN processor [ 2] maximizes a

generalized signal/noise ratio in the case where the

wanted signal power is negligible (as in the radar

case). For communications, the wanted signal may have to

be reduced (indicated by a generalized filter in

36



Fig. 2.5.2) in the feedback path to the processor to

prevent it being cancelled. The LMS system [6)

(Fig.2.5.3) uses such a processor which minimizes the

power (i.e., obtains the least mean square value) of the

error or difference between the array output and a

reference signal.

(iii) Perturbation or Random Search: This is also

a feedback system (Fig.2.5.4) but is relatively simpler.

This does not require signals from the array-elements

and does not perform any correlation. The principle is

that the. element weights are altered (or perturbed),

initially at random, by small steps, and the effect on

the output power is observed. Logical decisions are made

on the observations, and perturbations are made to

maintain the output at a low level. The performance of

this method is very modest, mainly in speed of response,

which is very much below the LMS system,

DMI system.
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(i v) Gram-Schmidt This is a sequential-

~','--'

decorrelation process where separation of signals is

achieved by certain cascade processor circuits (Fig.

2.5.5), which may then be followed by an MSN or LMS

processor. It consists of a cascade of elementary

correlation-loop cancellers, each using two inputs with

one adaptive weight. There are N-l cancellers in the

first row of the cascada (where N is the number of

antenna elements), N-2 in the next, ~ndso on. This

system is flexible in that the individual cancelling

units may be either closed or open loop and realized

either in the digital or analogue circuitry.
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CANCELLER

~=

N Elements
N-I Rows.

ELEMENTARY
FINAL OUTPUT

Fig. 2.5.5: GRAM-SCHMIDT OR SEQUENTIAL DECORRELATION."

In our problem formulation and analysis, we use the

general idea of the correlation feedback system control

method. Before going into detail of our approach later,

we discuss briefly in the n~xt chapter some concepts

"
about constrained optimization techniques relevant to

our problem.
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3.1 INTRODUCTION

Antenna array processing with minimization of

output power with certain constraints make use of

constrained optimization technique.

describe in a ge~eral framework,

In this chapter we

the optimization

problem of convex cost functional over a convex set

which is defined by linear constraints. We explain in

general terms the concepts of equality and inequality

constraints, their general solution approach, the idea

\

behind the Lagrange multipliers and the principle of the

iterative methods used to solve these optimization

problems.

3.2 GENERAL APPROACH TO THE DEVELOPMENT OF THE.SOLUTION

TO THE

The

OPTIMIZATION PROBLEM

optimization problem, interpreted from a

, general point of view, is to locate from within a given

subset of a vector space that particular vector which
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minimizes a given functional ~111 ..The particular vector

may be termed as the optimized quantity and the

minimized functional is the cost functional. In

constrained optimization problems, the subset of

admissible vectors competing for the optimum is defined

implicitly by a set of constraint relations. These

implicit constraints may again "be defined by linear

equality or inequality conditions.

A typical optimization problem with equality

j. constraint may be defined as follows

minimize f(xl"

subject to H(xl = e
.......................... (3.2.1)

where f is a real valued functional on a Banach

space X and H is a mapping from X into a Banach space Z.
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constraint,

Problem (3.2.1) can be visualized geometrically in

the space X in terms of the tangent space of the

constraint surface. This is shown in Fig. 3.2.1, where

the contours of the cost functional f, as well as the

constraint surface for a single )functional

h(x) = 0, are drawn.

.'

CONSTRAINT
SURFACE h ('.x) ••• 0

-;
/

OPTI MUM VECTOR

COI'UOURS OF CONSTANT
FUNCTIONAL

,
-,

Fig, 3.2.1 CONSTRAINED OPTI MIZATION.
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As an examp,le of constrained optimization problem

with in~quality constraints, let us consider a basic

problem, which can be referred to as the primal problem,

that requires to :

minimize f(x) (3.2.2)

subject to G(x) ~a x en

where n is a convex subset of a vector space X, .f is a

real valued functional on n and G is a convex

\,

mapping from n into a.normal space Z having posi tive

.cone P.

In .general, these constrained optimization problems

are quite difficult to solve if some additional

parameters are not used ..And these additional parameters

are nothing other than'the Lagrange multipliers' which

are found to somehow almost always' unscramble a

difficult constrained problem. By interpreting the

Lagrange multiplier as a hyper plane (discussed in

section 3.3 next), it is natural to expect that its use
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.,

will be elegant and more effective with problem

involving convex functionals.

,
3.3 INTRODUCTION OF LAGRANGE MULTIPLIERS IN CONSTRAINED

OPTIMIZATION PROBLEM

The introduction of Lagrange' multiplier in the

optimization problem can be understood from the

following discussion [11].

We consider the minimization problem (3.2.2) which

can be analyzed by, essentially embedding it in the

following general ,type of problem:

minimize

subject to

f(x)

G(x) ~ z, x E n

where z is an arbitrary vector in Z.

The solution of this type of problem depends on Z.

46
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Let us now define a set. rC Z as

r = (z there is an x € n. with G(x) ~ z

It can be shown that the set will be con,vex.

On the ,set r we define the primal function w

(which may be finite), as

w(z) = inf ( fIx) x en G(x)~ z I

1

,

The original problem (3.2.2) can be regarded as.
determining, the angle value w(e). A typical w for zone

dimensional is shown in Fig.3.3.1.

47



9

Fig. 3.3.1 : THE PRIMAL FUNCTION.
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"
Conceptually the Lagrange multiplier theorem

follows, from the simple observation that, since w is

convex, there is a hyper plane tangent to w at z = e

and lying below w through out its region of definition.

If one were to tilt his head so that the tangent hyper

plane became the new horizontal, it would appear that w

was minimized at e, or, said another way, by adding an

appropriate linear functional < z,zo' > to w (z) , the

resulting combination w(.)+<z,zo'> is minimized at z=e .

The functional zoo

'problem.

is the Lagrange multiplier for the

To see the use of Lagrange multiplier technique in

the optimization problem' defined by (3.2.2) in more

detail, let us consider a problem [11] in two dimensions

having three scalar equations gl (x) ~ 0 as constraints.

Fig. 3 .3 •.2 (a) shows the ,constraint region. In

Fig.3.3.2(b) where it is assumed that the minimum occurs

at a point xo in the interior of the region, it is

apparent that f1xo):::o.-In Fig.3.3.2(a), where it is

assumed that the minimum occurs on the boundary g, (x)=O,
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it is clear that , '

f (xo )

, ,

must' be' orthogonal to the

boundary and point inside. Therefore, in this case, .',

f'(Xo )+ Al g" (xo )=e for some ~~ ~ 0,' Similarly, in

Fig.3.'.2(b), where it is assumed that the minimizing

point xo satisfies both g, (xo )=0 and g. (xo )=O,we must

have

Ail of, these cases can be summarized by the general

statement
, ",",f (xo) + '" G (xo) =0 ........•. ~ .•............• ( 3 .'3 . 2 )

where
.. '

A ~ e andA~gl (Xo) = 0, i= 1,2,3.

The equalitY~igl (xo )=0 merely says that if gl (xd<O,

then the corresponding Lagrange multiplier is absent

from the necessary condition.
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9Z:(x)=O

( a )

,
112

(c)

( b)

,
lI'

(d)

I ,~Jv' -.

Fig. 3.3.2 : INEQUALITY CONSTRAINTS.
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Equation (3.3.2) is in fact a modified version of

the Generalized Kuhn-Tucker Theorem which is given

below:

Theorem : Let X be a vector space and Z a normed space

having positive cone P which contains an interior point.

"

Let .f be a Gauteaux differentiable real-valued

functional on X and G a Gauteaux differentiable mapping

from X into Z. Let it be assumed that the Gauteaux

differentials are linear in their increments. Let it

further be supposed that Xo minimizes f subject to

•

G(x) ~e and that Xo is a reg.ular point of the inequa-

lity G(X) ~ El • Then there is a zoo ~ Z, zo'.>'-e such.

that the Lagrangian

f (x) +. < G (x ) • zo ' >

is stationary at Xo; furthermore,

< G (xo ); zo' > =0

.The proof of.this theorem is provided in [11].
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3.4 THE STEEPEST DESCENT METHOD EMPLOYED TO ARRIVE AT

THE OPTIMUM VALUE

A direct approach for solving non-linear .equations

in optimization problems is to iterate in such a way as

to decrease the cost functional continuously from one

step to the next. In this way global convergence,

convergence from an arbitrary starting point, may be

achieved. As a general frame work for the method, let us

assume that we seek to minimize a functional f and that

an initial point XI is given [11]. The iterations are

constructed according to an equation of the form :

Xa + 1 = Xa + ()(a pn •••••••••••••••••••••••••••• ( 3 . 4 .. 1 )

where 0<.. is a scalar and p. ,is a (direction) vector.

The procedure for selecting the vector p. varies from

technique to technique but, ideally, ,once it is chosen'

the scalar 0(. is selected to minimize f(x. + . 0<. p.),

regarded as a function of the scalar 0<. Generally,

things are arranged -(by multiplying p. by -1 if

necessary) so that f(xn + 0< p.) < f(x.) for small

positive 0( The scalar 0<. is then often taken as
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the smallest positive root of the equation

d f (x. + 0< P.) = 0
d.O<

In p,;actice, of course, it is rarely possible to

evaluate the minimizing exactly. Instead some

iterative search or approximation is required. The

essential point, however, is that after an 0< • 1's

selected, fIx. + O<.P.) is evaluated to verify that the

objective h~s in fact decreased from f(x.)~ If f has not

decreased, a new value of 01.. is chosen. The Primal

dual method (discussed in section 3.6) was selected as

the above mentioned iterative search method.

The descent process can.be visualized in the space

X where the functional f is represented by its contours.

This f is in fact the uost function we-mentioned in

section 3.2. Starting from a point x" one moves, along

the direction vector P" until reaching, as illustrated

in Fig. 3.4.1, the first point where the line Xl + 0< P,

is tangent to a contour f. Alternatively, the method can

be visualized, as illustrated in Fig.3.4.2, in the space
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.Xl

R x X, the space containing the graph of f [here ,R is

the real line consisting of points of the form (r;6l].

" INCREASING

Fig.3.4.1 : THE ,DESCENT PROCESS IN ~

R

Fig. 3\4.2 : THE DESCENT PROCESS IN Rx X.



If f is bounded below, it is clear that the descent

process defines a bounded decreasing sequence of

functional values and hence the objective values tend

toward a limit fo•

The Primal-Dual method,is employed for solving the

algorithm (dealt in chapter 4). This iterative method is

again based on the Duality theorem which is described

below.

3.5 DUALITY

There are several duality principles in

optimization theory that relate a problem expressed in

terms of vectors in a space to a problem expressed in

terms of hyperplanes in the space. Many of these duality

principles are based on the geometric ~elatioh

illustrated in Fig. 3.5.1. The essence of duality can be

understood from following statement. The shortest

distance from a point to a convex set is equal to the
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maximum of the distances from the point to a hy.perplane

separating the point from the convex set. Thus the,
original minimization over vectors can be converted to

maximization over hyperplanes.

Fig. 3.5.1 : DUALITY
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3.6 PRIMAL-DUAL METHOD EXPLAINED FROM A GENERAL POINT

OF VIEW

Let us consider a dual method for the convex

problem (referred to as -the primal problem) given

by [11]:

minimize fIx) ................ (3.6.1)

subject to G(x) ~ e , x € .n.
Assuming that the constraint is regular, this

problem is equivalent to

max inf ( f(x) + < G(x),z' » ••••••••••••• ' ( 3.6.2)

z'~9 x~.t1.

,or, defining the dual functional

~ (z') =, inf ( f(x) + < G(x),z*>) ;.(3.6.3)

x 1:..t1.

the problem is'equivalent td the dual problem :

maximize 1J (z~ ) ~ (3.6.4)

s. to z' ,~e

The dual problem (3.6.4) has only the constraint

z'~ e, hence, assuming that the gradient of
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available, the dual problem can be solved in a rather

routine fashion. Once the dual problem is solved

yielding an optimal zo', the primal problem (3.6.1) can

be solved by minimizing the corresponding Lagrangian.
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c:IIAPTER .4

PROBLEM FORl'1ULA.TION

FOR DIRECTIONALLY -

CONSTRAINED ADAPTIVE

AR.R.AYS
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4. 1 'INTRODUCTION

This chapter deals with formulation of the array

processing optimization problem to be solved under

inequality constraints. A basic linear antenna array is

selected and the sequential steps involve~ to formulate

the cost functional for optimization, as well as the

constraint relations, are shown. Necessary notations to

deal with the problem mathematically are also introduced

in the process of formulation.

4.2 FORMULATION OF THE OPTIMIZATION PROBLEM

We consider a typical linear antenna array system.

Fig.4.2.1 shows the general configuration of such an

array processor where £or convenience it is assumed that

the K isotropic antenna elements are located linearly

and are equally spaced. Each channel is provided with L

tap ,points. x, y, Wand A denote input signal,

signal, weight and time delay respectively.
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6. -- A XK( l-I)+I

2

- ----- A
XK(l-I)+2

K

..--------

6. -------.- A

Fig.,4.2.1 GENERAL CONFIGURATION OF ADAPTIVE ARRAYS.
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The weight Wk (k=1,2, ...,KL), are usually the gains

of the amplifiers attached to each tap point which is

controlled by a feed back circuitry, although the later

is not shown in this figure. For convenience of

following formulation, weights are treated in a veqtor

form as follows

J WKL) ••••.••.••••••••• ~.(4.2.1)

which will be called the weight-vector here after.

Here the superscript T denotes the transpose. The

signals Xk ( k=1,2, ...,KL) at each tap point to which a

weight is connected are also expressed in a vector form

as ..

KT = ( Xl J X2 , ••• ,XIl L ) •••••••••••• -••••••••• (4.2.2)

Thus y, the output of the array system, can be

expressed by the inner product of two vectors [8] as

follows :

y = KT• Ji = liT K •••••.•••••••.••••••.••••.•• ( 4 • 2 • 3 )

The antenna arr,ay system is exposed to a signal

environment created by wanted signal (desired signal)

and a number of noise signals (unwanted or interfering

signals). Consequently, the signals at each .tap point
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bonsist of a desired signal component and the unwanted

noise 'signal component,

the kth tap point. Thus

i.e., Bk ,and nk respectively at'

k = 1, 2 , ..• ,KL •.••••••••••. ( 4 • 2 • 4 )

In general the undesired noise component con~ist of

two parts; the interference coming from external sources

and the internal noise generated in the system.

Again vector symbols are employed as follows

ST = ( si, 82 J ••• , SK L ) •••••••••••••••••••••• (4.2.5)

t!? = ( nt t n2 , ••• , fiR L ) • • •• • •••••••• : •••••••• ( 4 . 2 .6)

Thus (4.2.4) can be written in a vector form as :

................. (4.2.7)

It should be noted that though the signal component

Xk may contain, in theory, more than one desired signal

but it is rare in practice. On the other hand, the

unwanted noise signals are usually more than one in

number.

Under the assumption that' the desired signal is
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uncorrelated with the noise signal, we can define the

expected cross spectral density matrix or correlation

.matrix as it is usually called, of ~ as :

E. = E [ X XT] •..•.••.••••.••••.•••••.....•••. ( 4 • 2 • 8 )

= E [ ~ ~T ] + E [ N NT ] ••••••••••••••••• ( 4 • 2 .9)

where the operator E[] repres~nt the expectation.

It is to be noted that [12] R is a positive

semidefinite real symmetric matrix having KL X KL

dimension for a K element array with L. tap points in

each channel. That is,

!J.T = H.

and !iT H.!i > 0 7i' ~ ••••••••••••••••••• ", •• (4.2.10)

From equation (4.2.8) and (4.2.9),

matrixH. has the form :

the correlation

Rz I = Rs {l + RlJ 12 ' ••.•••••••••••••••••.•.•••••• (4. 2. 11 )

"
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r

where

EBB =

8181

8281

818Z

8a 8z

81 8K L

• •• Sa SIC L

............... (4.2.12)

and

SK L 81 SILSZ ••• SlL81L

D. D. D. Dz D. DR L

En n = •............... (4.2.13)

DR LDz ••• DR LDE L

Finally by adding equations (4.2.13)

we have the correlation matrix as-:
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=

Xl Xl

Xz Xl

Xl Xz

Xli Xz

XIXKL

• •• Xli XK L

••••••••••••••••• ( 4 • 2 • 1.5 )

XI LXI Xg LXli ••• XI LXI L

where x, , x. , ... X~L are the tap point signal

values consisting of desired signal values

s, , s. , SEL and lnterference signal values

nl t nz t ••• t nK L

Finally, from (4.2.3) the array output power may be /

given by

, y' = ( ~T li )'

= !iT ! !T li " " (4 : 2 • 16 )

Thus the expected output power of the array can be

expressed as

E [ y' ] = liT !1li' (4217)..........................
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In array processing problem, the most straight

forward quantity to be optimized for maximizing the

desired signal reception and minimizing the noise signal

turns out to be the array output power [7]. Thus,

equation (4.2.17) gives the expected cost functional of

our optimization problem.

4.3 ARRAY PROCESSING OPTIMIZATION WITH DIRECTioNAL

CONSTRAINTS

Anyone of the many parameters related with antenna

array processor may be chosen as the quantity to be

optimized. For example, instead of considering the

output power, we could have taken si~nal to noise ratio

as the optimizing quantity. Now, if by optimizing the

output power we mean to.minimize it, then without the

presence of any other guiding parameter, we would lose

the desired signal ~long with the noise,' because, the

output power would then be reduced to zero. Thus to

receive our desired signal with satisfactory power
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level, and at the. same time reject all noise that may be

present, a good approach would be. to optimize the

pattern with such a constraint which will enable the

array to maintain a pre-assigned response in the desired

signal direction. Such an optimization technique would

then minimize noise power and place nulls in the

response pattern along the noise directions. Since ~by

utilizing the a-priori knowledge of the signal direction

we are assigning a response pattern in this direction,

we are in fact making use of a "directional constraint"

in dealing with our optimization problem. The

directional constraint we just talked about -aims to

guarantee the response of the array system to the

desired signal input that is coming from a specified

direction at a certain frequency; i.e., by virtue of

this constraint, the main lobe of the antenna response

pattern is placed along the desired signal direction. So

it may be termed as the "Main lobe constraint". However,

in the process of generating the main lobe, a number of

side lobes are also created in the response pattern of

the array.The optimization technique, with its minimum
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output power criterion, however, adjusts the side lobes

in such a manner so that their peaks do not coincide

with any noise 'direction. This is however,' strictly

true, as long as the system can successfully utilize the

available "degrees of freedom" (this term is elaborately

discussed in the next chapter) in nullifyirigall noise.

Now, if the side lobe levels are of significant

magnitude, then the system will be vulnerable to any

"unaccounted for noise", which may coincide with the peak

of such a side lobe. Thus the array system could achieve

greater flexibility and utility if its sidelobe levels

could also be controlled; and fortunately this is

possible by assigning "sidelobe constraints.'. The

mainlobe constraint must however remain to guarantee

reception of our desired signal. Thus we have a number

of directional constraints which we may use to shape the

response of the array to our advantage. The aim of our

present work is to minimize the cost functional, which

is the output power, by utilizing such directional

constraints which account for the mainlobe as well as

the sidelobes.
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Following .[8) we can write the array output

resulting from an incoming narrowband signal of wave

length >.
\

(frequency fl, direction e. and an array

element spacing of >. /2. as

K=L. lW~ e~p Li '-t'~(e)J+/e Po"!

W"'+k e?Cop [ j (\fJ1'\ (a) - 2 TT fA) ]

.'+W~+2Ke'i.p[t ( ~ (e) - 4 n fA)J + ,.. • ••

+W!'\+ (L-l.)Ke'Xp[i C~(e)- (L-l}21Tf~}

- . _._ ..... (4.3.1)

where

~ (e)
......

\
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'P.tCG) denotes the phase of the signal arriving from the

direction e' at k-th element with the phase reference

.'..•.

taken at the centre of the array. The angle e ,is

considered with reference to the axis of the array,

i .e. , the broadside direction of the array will

be e =90 degrees.

The phase of the signal o/~~)can be represented in

different ways depending upon the reference point taken.

For example, if we consider the number one element of

the array as our reference, then

lfll. (9) := TT ( ~ - i) cos e " . . .. .. . ... . . . .. .. (4.3.5)

~ = i, 2, •.• , K

Here and in our numerical studies,

of (4.3.2) has been used.

the phase expression

Imposing constraints on the response y in N
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directions is equivalent to ensuring that

1 = Yi i = 1, 2, • •• t N ••••••• (4.3.4)

1m [Ye l' 1 = ~r( i = 1, 2, ... N (4.3.5)

After simple manipulation it can'be shown that this

can be rewritten as :

.................................. (4.3.6)

••••• : ••••••••••••••••••••••••••• ( 4 • 3 • "7 )

.where the N X KL matrices ~ and ~ are defined by :

wher-e

a.~~ CO5 E, It'.: ((~~) ~ LA] (4. 3.C?»

J. -::. 0, j, .•. ~ (L-1)
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whepe
tb.. _
lJ

D
b~,

, I . lL-I) b;~-&)b ..• , bu' . " b", , .. , bu •••
II

0 0 I , (L-') b (L-I)

b '" b"'2 • b\2 ••• b"'2 , b,2.. '"'2 ... , K"
B=: ......... (4.3.10)

•
•

bK~'
~L-I} (L-J)

bD
,.; ... b '" . . . ." 9•• ••• b

KN
IN "'W' 'II

sin [% (ej) - .£ AJ, (4.;3. II)

J.. =: 0 ~ I, ..• , (L-i)
The formulation gives us a constraint matrix which canthus be

expressed in a convenient fashion as :

c = [ ;.} . . . . . . . .. . . . . . . . . . . . . . . . .. : (•••. 02)

For example, for a 4 element 2 tap (i.e., K=4 andL=2) array
with a delay of lr /2 (L e. , A = "IT/2) and a look direction (whic~ ia
also the constraint direction), constraint matrixC ia given by:

~in4>, ~in 1>2- - .••i.,~z _oIn4>J
-:eose:p -cos4>" -eoscP2 -cos<f,=,

where
31f cos e2""

a.ncl P2. = 1- <!.058

He •...e e .r!:> the eOn&-\:.•...a.;n-t. (LooK) direction.
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The desired output veptor can be rewritten as .

Q. = ••• . . " (4.3.13)

Hence the equality directional constraint is giyen

by

cw = ~ ' (4.3.14)

Note that the above system constrai~s the real and

imaginary parts of y~ separately and" it is normal

practice to set the imaginary part to zero [8], i.e.,

~ =0.
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The desired output vector can be .rewritten as

••• ;, •• , •••••• I ••••••••••• 1(4.3.13)

Hence the equality directional constraint is given

by

Q!f = 9:. ••••••.••••.•••••••••••••••••••••• (4.3.14)

Note that the above system constrains the real and

imaginary parts of Ye separately and it is normal

practice to set the imaginary part to zero [8], i.e.,

~ =0.
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A problem of considerable interest is to

minimize E [ y' J, W € JP,KL ••••••••••• ( 4 • 3 • 15 )

subject to Q li.= ~
The optimum weight vector is given [8] as

W = R-1 err e R-1 er ) -1 d-.,... - - - - -

writing the cost functional as

•••••••• "••• ( 4 • 3 • 16 )

y2 = !iT K KT!!. ( 4 . 3 . 17 )

and applying the standard gradient projection

algorithm we obtain an adaptive algorithm which can be

shown to converge to li

[7],[8],

under various conditions

li(m+1) = li(m) - (m) ~ X (m) y. (m) •••••••• (4.3.18)

where

~ = .I. QT rQ QT ) - 1 Q •••••••••••••••••••• ( L 3. 19)

and ~(m) is a small scalar step and m being the number
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of iteration. In equation (4.3.19), E and 1 are

projection vector and identity matrix respectively.

The following primal-dual algorithm can also be

shown [13] to adaptively find ~o •• under fairly general

circumstances

~(m+I)=W(m),+ ~O«m) [lS (m),Y(m) + t;6 (rn)]

. . . .. . . . . . . .. .. • . (4. 3. 2.0)

~ (m+I)= 6 (rn)_ o«m) [, Yf (m) .:....4]
. . . .. . . . . . . .. . (4. ~. 2.1)

where ~ is the Lagrange multiplier.

The algorithm we describe later in this chapter is

based on the primal-dual idea.

We note in passing that the weight vector which

solves the mean squared error cost in the well known LMS

algorithm is given by

•••••••••••••••••• (4 •• 3.22)
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where

. Xl d

x.d
4ElK ~l E

XKtd

• • • • . • • • • • • ;. • • • • • • • • • • ( 4"• 3 • 2 3 )

Here Ell is the set of cross correlations between the

input signals and the desired response signal. The LMS

adapt ion algorithm which determines ~.Pt is the simple

gradient algorithm :

~(m+l) = ~(m) - 0< (m)!:l(m)K(m)

where

...... ~ ... (4.3.24)

.!:l.(m)= ~(m) - ~(m) ;...........•.. (4.3.25)

is the error signal.

The algorithm we will present shortly aims at

minimizing Ely. 1 subject to the inequality directional
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constraints.

Thus in our case, the problem (4.3.15) can be

expressed mathematically as

minimize E [y2 1 !i E IRKL ••••••••••••• (4 • 3 • 26 )

subject to IQ!i -. ~ I~~

and find an optimum set of weights to be denoted by,

say !i.P" Here ~ is the tolerance band of the desired

response.

4.4 ALGORITHM

In order to describe. the algorithms which will

adaptively determine the optimal tap weight vector !i.P'

[131 we rewrite the problem (4.3.26) as :

minimize !iTE!i, !iEIRKL

s .t . Q !i - ~ .~ ~ ................. (4.4.1)
'""

-Q !i + ~ ,~

wllere ~ is the tolerance band as mentioned before. .
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The Lagrangian [14] fo~ this problem is

.;. T
-/-. 2. (~b'~4 + e) (4.4.2)

A useful algorithm for determining the optimal

weight vector ~oPt can be based on the primal-dual idea

established in chapter 3. The algorithm can be derived.

by differentiating the Lagrangian with respect to ~'/\1

and :>-'2, and applying a constrained steepest descent

procedure as follows :-
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K t<
hi 7 ~.l ,

- -ma.X [ 0, K "'L '" K I<. _"z.K110( _0_ (, 'd '. Co.1 1 •••
OA".2 .

.. .. . . . . .. . . . . .. ' (4. 4. 3)

Ih e f "na.l a.lgor-i-thm co...n be written 0-5:

Yf C.K+1) = 'Y C.K) - 0( (K)[2 B k'CI<J + 9T
).._ (K)]

AIZ. (K+1) = p l~2. (K) - ~(K) t S; 'd(K) - e-n
....................... (4.4.4)

where

cind.

,
, otherwi&e

........... (4.4.5)

~- =";>.. - A2,1

+e - c::L + e- -
e =d.. - ~- -

.............................. (4. 4. &)
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The problem of minimizing a convex cost functional

over a convex set which is defined by some linear

inequality constrains is described in Appendix A. In the

said appendix, some definitions and results from the

theory of real finite dimensional constrained

optimization,problem are represented.

The scalar step sizes and " used in the

algorithm represented by (4.4.4.) are subject to

certain conditions which ensure that these algorithms

converge to ~o pt as .. The details of these

convergence properties are discussed in Appendix B.

Finally in appendix C, the flow chart of the

algorithm and the corresponding program are provided.
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CI-IAI?I'.ER 5

SIMULATION STUDY ON

THE BEHAVIOUR OF

DIRECTIONALLY

CONSTRAINED

ADAPTIVE ARR.A.Y



5.1 INTRODUCTION

In this chapter we give detayled numerical

simulation results of our formulated problem for

directionally constrained antenna array processor. In

the simulations we investigate the behavior of a

narrowband directionally constrained antenna array

processor with respect to sidelobe constraints and

signal power variations. In the process of our study we

first observe the noise cancelling capability of the

narrowband antenna array processor.

Our analysis of adaptive antenna arrays deals with

the narrowband type, i.,e .. J one that responds .to

narrowband signals which 'can be expressed by their

centre frequency and slowly varyyng envelope. The

antenna system we considered Iis assumed to have only

two. taps for each channel [L=2 in Fig.4.2.1], and the

time delay between them is taken to be a quarter period

of the desired signal. The antenna elements are placed

half wave lengths apart. It should be noted, however,
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that these assumptions are made in order to .implify the

physical meaning of the results, and is not expected to

affect the validity of the analysis. Such a 4-element

narrowband receiving array is shown in Fig.5.!.!. In

course of our numerical simulations the element number

is not always limited to four, but is rather allowed to

vary to higher numbers as well.

The algorithm (4.4.4) is tested on an IBM .personal

computer using FORTRAN. The sections that follow, refer

to the simulated results thus obt'ained.
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Before beginning discussion on our simulation

results, we clarify certain' terms related with the'

measurement of power contained in desired signal and in

noise. Two such terms are SINR and SNR which give an'

idea of the relative power between desired signal and

noise by cons~dering their power ratios. We now discuss

briefly about SINR and SNR since they frequently occur

in our discussions that is to follow shortly.

The SINR stands for "signal to interferen-ce plus

system noise ratio" and is defined by :

SINR = 10 Log (P. / P••) .....i ••••••••••• (5.1.1)
10

where

P. - Total signal power

and P•• = Total noise power

It should be noted, that the total noise of the

antenna array consists of the interference (or "jammer")

signal and the noise that is generated within the
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system. i.e.,

Pt D = Pi DO + Pa D •••••••••• I ••• o ••••••••••••• ( 5 . 1 . 2 )

where

PI. = Interfering signal power

and Pa• = System noise power

SNR = 10 Log,o (Pa / Pa.) •••••••••••••••••• ( 5 .1.3)

where SNR stands for "Signa"! to system no"ise

'ratio".

If p. in equation (5.1.1) and (5.1.3) expresses the

output signal power, then the corresponding SINR and SNR

are" called "Output SINR" and "Output SNR" respectively.

On the other hand, if Ps denotes the input signal power

then by using this value we can get the "Input SINR'" as

well as the "Input SNR".
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Generally at any particular instant both the noise

forms (interference and system noise) are expected to be

present in the array system. However, for convenience of

our discussion, from now on, we will use the term

"Noise" to indicate the interfering signal only. The

other form of noise will be explicitly denoted by the
r
term "System noise" whenever required. Moreover by the

term "Signal" from now on we will understand the desired

signal which is coming from the look direction.

We now proceed to describe our simulation results.

5.2 SIMULATION RESULTS

The first simulation was carried out to check the

capability of the algorithm as to whether it can

successfully utilize the degrees of freedom in orde~ to

achieve its goal of placing nulls onto noise directions,

and provide pre-assigned response to the look direction.

The degrees of freedom mentioned above is defined [7] to

be equal to the number of antenna elements and the look,
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direction is the desired signal direction.

Thus a K element antenna array possesses K degrees

of freed?m, but when there is one look direction, one

degree of freedom is used for the look direction.

Remaining (K-1) degrees of freedom, therefore, are

available to succesfully tackle a maximum of (K-l) noise

sources by placing nulls in the. processor response

pattern along the noise directions. This implies,

however, that other than the main-lobe constraint in the

look direction there is no side-lobe constraint put in

the antenna response pattern.If N. represents the number

of noise directions (where N. < K), then the maximum

number of side-lobe constraints that may be assigned to

this array processor is given by (K-1-N.). Fig.s 5.2.1

through 5.2.3 represent antenna response patterns which

are obtained for a four element array antenna, each with

a single look direction at 90 degrees. The noise

directions are arbitrarily chosen. In each case,. the

look direction response is found to satisfy the pre-

assigned constrained desired value taking tolerance into
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account. , and nulls are also placed along the noise

directions. However, with increase of noise directions,

the output SINR is found to decrease. But upto the

previously defined maximum permissible number of noise

sources (=K-1), the degradation of SINR is not very

significant. This is because, as long as the upper limit

of the number of noise sources is not reached, deep

nulls could be placed in each response pattern along th~

noise directions;therefore, the number of noise sources

had little influence on the output SINR. This fact is

evident from the curve for a

Fig.5.2.13.

4 element array in

The same simulation is repeated for 5 and 6 element

arrays and the resulting patterns are given in Fig.5.2.4

through 5.2.12. The curve for output SINR and number of

corresponding noise sources for these two type of arrays

are also given in Fig.5.2.13. It is evident from this

result that increase in number of elements gives more

.control on the response pattern. thereby increasing the

S'INR.
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Before proceeding on to the next simulation, we

observe the nature pf the weight values corresponding to

4 element array having a look direction at 90 degrees

and a noise direction at 40 degrees. This is shown in

the graph of Fig.5.2.14. Fig.5.2.15 represents weight

values when there are three noise sources at 0, 40 and

140 degrees with the signal direction fixed at 90

degrees for the same array. The weight values can differ

from each other radically depending on the look

direction and the noise directions. This observation is

evident from Fig.5.2.16 Where the look direction is at

60 degrees with one noise at 120 degrees.
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Our. next study is aimed at investigating the effect

the '"distahce" of the nriise from the look direction has

on the output SINR. The "distance" is measured in terms

of the angle which the noise source makes with the

signal source. Both the source angles are denoted in

terms of degrees which the respective sources make with

some reference axis. The reference axis in our case is

the array axis. Thus the broadside direction of the

array is at ninety degrees. For the present simulations,

the look direction for a 4 element array is taken at the

broadside direction. One noise source is gradually

shifted from zero degrees towards' the look direction.

The variation of output SINR, with distance of. noise

.from the look direction,. for a 4 element array is given

in Fig.5.2.18. It can be seen from this Fig., that as

long as the noise is "outside" the mainlobe, there is.no

significant variation in SINR. Though in these cases,

there is a slight gradual degradation in SINR as the

noise moved hearer to the mainlobe. But when the no1se

is close enough to the look direction, such that it

could be considered to "enter inside" the mainlobe, a

1~
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drastic degradation in SINR is observed. The rate of the

gradual reduction of SINR, with the nearing of the

noise, is found to be much greater," after the noise

entered the mainlobe.

The variation in weight values coresponding to

distance of noise from the main lobe 1S plotted in Fig.

5.2.19.
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After our observation of noise cancelling

capability of the antenna array, we proceed to

investigate the behaviour of the antenna under p~ttern

constraints. In our previous simulations we used only

/

the main-lobe constraint for achieving the desired

response pattern in the look direction. Now we intend to

put some more constraints in the side-lobe directions

and observe the response pattern. The simulations are

carried out with four, five and six element antenna

array with varying number of side-lobe constraints in

each case. The results are shown in the response

patterns plotted in Fig.5.2.20 to 5;2.31 It is observed

from these results that the algorithm can generate

effectively pattern constraints apart from the main-lobe

constraint. These side-lobe constraints are successfully

met without any major .degradation in the noise

cancelling capability. However, increase in number of

side-lobe constraints sometimes produces some

degradation in output SINR. This is obviously due to the

fact that the algorithm is more concerned with mee~ing

the constraints put rather than minimizing the noise

1~



power. Thus in some cases where the side-lobe

constraints may be quite stringent, the array processor

sacrifices deep null in the noise directions in favour

of satisfying the constraints. Note that the number of

side-lobe constraints that can be satisfied depends on

the degrees 'of freedom available after considering the

look and the noise directions. In Fig. 5.2.22, a four'

element array utilizes all its degrees of freedom in the

look direction, noise rdirec~ion and two side-lobe

constraint directionw. Similar is the case with a six

element array as shown in Fig.5.2.33 where four side-

lobe constraint directions are met apart from the look

direction and noise direction utilizing thus all degrees

of freedom. It is interesting to know that what happens

if there is one more noise direction or one more side-

lobe constraint direction. In Fig.5.2.27 and Fig.5.2.28

these, two cases are shown for a 5 element array.

. C

We also plot here the weight 'values to observe the

changing pattern in their values. Fig.5.2.34 and

Fig.5.2.35 are two such plots drawn for a four element
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and a six element array.
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. .

In all of our side-lobe con~traint studies we put

the desired values in the. constraint d{rectioni less

than the normal response values. We now see that the

algorithm can give a satisfactory response pattern even

if we desire a bigger response value than the normal

value in the constrained directions. The corresponding

simulation results are provided in Fig.5.2.36 through

Fig.5.2.41.
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The convergence of the algorithm is checked through

some simulations. To accomplish this, the output power

(=WTRW) is chosen as the quantity to determine the

amount of convergence. The number of sidelobe

constraints are varied fora'specific number of antenna

elements; The output power is then plotted for

corresponding number of iterations with number of

sidelobesas a parameter. Fig.s 5.2.42 through 5.2.44

represent such plots corresponding to four, five'and six

element antenna arrays.

It is observed that irrespective of the number of

side-lobe constraints (of course within the degrees of

freedom) and number of elements in the antenna array,

the algorithm is stable and globally convergent.
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Uptil now we were concerned with the behaviour of

the antenna array under pattern .constraints i.e.,

putting some constraints on the side-lobe. directions

apart from the main-lobe in the response pattern of the

antenna. In our study we intend to look into the antenna

array processor behaviour under varying signal

environment i.e.,

ratio condition.

under the changing input signal/noise

The algorithm used for simulation is expected to

produce the desired response by placing deep nulls in

the noise directions and at the same time maintaining a

pre-assigned level at the signal direction or look

'direction. However in doing so, the response of array is

expected to be negligibly affected by the level of input

SINH. Because, due to the presence of the distinct nulls

at the noised~rections (Fig.5.2.45 to Fig.5.2.47), the

influence of incoming noise power level on the output

SINH is simply insignificant. Thus, with both high and

low input SINH s, the output SINH should remain more or

less the same. The simulations that follow are carried
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\
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\J
for low and high input SINR s. The resulting patterns

and their corresponding outpu~ SINR s (Fig.5.2.48) are

seen to. tally with our expected performance. One

question in this regards however remains to be answered.

And this is, "How does low and high input SINR s ~ffect

the output SINR if the actual signal is slightly

deviated from the assumed signal .This

phenomena is investigated in a later simulation.
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The simulations that follow are used to study the

s~tuation when the signal arrival direction does not

match with the assumed constrained direction of desired

signal arrival. We cal~ this mismatch of angles as

"Pointing error" and denote it by 6 From the curves

of Fig.5.2.49, it can be seen that in the a~sence of any

mismatch between constrained.main-Iobe direction and the

actual direction of the desired signal arrival

(Le., when S =0), there is no variation of output SINR

with change in input SINR. This is because, when a deep

null is placed in the response pattern along a noise

direction [Fig.5.2.50l, noise level can have' little or

no effect on the output SINR.

But it can be seen from Fig.5.2.49, that there is a

significant degradation in output SINR when the pointing

error has a non-zero value. Due to the mismatch between

the actual direction of the desired signal and the

constrained direction of the main lobe, the algorithm

treats the signal as another interfering noise and

strives to cancel its influence by placing an additional

128



null in its direction. This fact is evident from the

degrees. In this Fig. it can be seen that due to a

mismatch of 1 degree, a null is approached at around 59

degrees. However, deep null could not be achieved due to

the constrained main lobe respons~ at 60 degrees.

It can further be seen from Fig.5.2.49, that in the

presence of angle deviation, the output SINR gradually

decreases with the increase of input SINR or with the

relative weakening of the ~oise. This seems to be

puzzling at first sight but is evident from the fact

that, with the decrease of input interference power

level the algorithm attaches less importance in

cancelling it and thus deep null is no longer placed in

this direction. 'This can be further verified from the

response patterns of Fig.5.2.51 and 5.2.52 which are

drawn for 1 degree pointing error with interference
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levels of 1.0 and 0.01 respectively; the interference

diredtion is fixed at .120 degrees for both the cases.

Due to the presence of a weaker noise the deep null

which is present at 120 degrees in Fig.5.2.51 is no

longer produced in Fig.5.2.52 Thus the output SINR also

decreases from 15.507 dB to 10.873dB and the

corresponding curve in Fig.5.2.49 has a downward trend

with increasing input SINR.
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Usini the same 4 element, two tap system, we now

calculate the effect of input SNR i.e., signal to system

noise ratio, on' the output SINR while varying the

pointing error b . From Fig.5.2.53 it can be seen that.

with a high input SNR, i.e .• weak system noise, the

output SINR is sensitively affected by the error of the

constraint direction. With stronger system

however, the decrease in output SINR ,is more or less the

same for various pointing error conditions.

Another obvious fact reveals itself from,the graph

of Fig.5.2.53 When .s =0, the output SINR is seen to

continuously increase with the gradual-decrease of input

system noise. This behaviour is rather expected, since

due to zero mismatch, the desired signal is properly

accepted, by the array and the output SINR should improve

or deteriorate with the decrease or increase of system

noise level as the interference signal has already been

rejected due to placement, of ~eep null in its direction.

This sharp dependence of output SINR with the system

noise level for zero mismatch condition becomes even



•

more vivid when we draw a graph having the above two

quantities as ordinate and abscissa respectively. ,This

is shown in Fig.5.2.54.
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CHAF'TER 6

CONCLUSIONS

137



In this thesis we concentrated on the study of the

behaviour of a narrowband adaptive array under some

pattern constraints and varying siimal strength

environment. For carrying out our investigation.we used

a primal-dual algorithm with inequality constraints for

minimizing the output power so that the antenna array

processor generates' deep nulls in the interference

signal directions and produces desired response in the

wanted signal direction. This desired response direction

or the mainlobe direction as it is called, is

constrained to the desired response value, but th~

algorithm allows the processor to generate sidelobes

with uncontrolled levels of response. Our investigation'

thus, is centered around the possibility of intro.ducing

some constraints in the response patterns of this

adaptive antenna array in the sidelobe, directions so

that the response levels at these directions can be

controlled.

In course of our study, we found that the adaptive

antenna array processor can process out the desired
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signal very satisfactorily by placing the response

pattern mainlobe at the desired signal direction and

putting nulls in the interference directions even though

the processor was put under some pattern constraints in

the sidelobe directions. The array processor

-satisfactorily met those sidelobe constraints to their

given desired levels with some tolerance band. It was

found, however, that in some cases, the output SINR

undergoes some degradation due to some stringent

conditions in the constraints. The number of sidelobe

constraints that could be placed was dictated by the

degrees of freedom available as was expected. The \

sidelobe levels could be decreased or increased (as a

matter of fact, increase in sidelobe ievel is not

wanted), showing the controlling capability of the

processor. Finally, the processor was found t~ be stable. '-

and globally convergent in generating a set of optimum

weight values irrespective of the number of array

elements and pattern constraints.

Regarding our study on the effect of
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strength variation, it was observed that the antenna

'array processor behaves equally good in placing nulls in

the interference directions and producing desired

response in the wanted signal direction irrespective to

the variation in the input signal power to interference

power ratio. But this is not true when the constrained

response direction does not match the assumed direction

of the desired signal. The output SINH starts degrading

with increasing input SINH and this degradation is more•

with increasing mismatch. It was observed that with

strong interference signal, the processor does not

notice the signal direction error, but with weaker

interference signal, the processor concentrates more on

the signal
/

direction mismatch. Some interesting

behaviour were observed for the processor when the

system noise varies. The results showed some optimum

value of the system noise when the output' SINH was

maximum for signal direction error. With other values

the output SINH decreases drastically. With perfect

match of the constraine~ direction and the signal

arrival direction, the output SINH increases linearly
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with decreasing value ~f system noise which should be

the obvious behaviour.

Concluding our discussion, we can summarize the

contribution of the investigation as follows:

--A narrow band linear adaptive array antenna

proces?or using primal-dual algorithm with inequality

constraint behaves satisfactorily with pattern

constraints in the sidelobe dir~ctions, the number of

which is, however, restricted by the degrees of freedom.

In Some cases, slight degradation in output SINR is

observed: With pattern constraints, the algorithm

remains globally convergent.

Variation in the strength of the input signal

environment as well as the system noise play a

significant role in determining the behaviour of the

narrowband linear array antenn~, specially when there is

error in assumed signal arrival. direction. The output

SINR is quite dependent on this situation.
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The present work does not complete the

investigation on the behaviour of the adaptive antenna

array.. For example, as a future extension of this work

it would be very interesting as well as important to be

able to control the degradation of the output SINR for

the case when the interference signal is on the

mainlobe. We have observed in our study that in this

situation the output SINR drastically degrades. Another

is the case when there are multipath arrival of the

desired signal making multipath components correlated

with the desired component. The'pattern constraint idea

could be of help in attacking both the problems.
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APPENDIX - A

Here we present some definitions and results

concerning optimization problem relevant to our work.

Since the results are well known [11],[14],[15], the

presentation here is very brief.

Below we consider the optimization problem

minimize f(!:!) , !!E IR (A.l)

subject---tog(g) ~ Q

" "where f:.1R~ 1R is a convex functional of gER and

" ...g: 1R-+ lR is a convex mapping.

Convex function: A function f defined on a convex

set ~ is said to be convex if,

everyo( ,O~co(~l we have

•••for every g, v e ~ and

t \ot ~ + (1- 01,) Y. ) ~ otf(\!-) +(1-«) f ('I.)

If, for every O<c:>!.<;1 and ~ * y, there holds

then f is said to be .strictly convex.



Regular Point: Let ~. be a point which satisfies

g(u)~Q and let J be the set of indices j for which

gj (~. )=0. Then ~'is a regular point of the constraints

if the gradient vectors

linearly independent.

v gj (\!. ) , 1 ~ j ( m, j EJ are

we can define the Lagrangian for problem (A.!) as

L (!:!-.J ~) Aft g.) + 2l'.g (!:!-).. . .. . . . . . ( A.2)

" ,...In'"where A ~ .'" is the Lagrange multiplier vector.

The dual function for (A.!) is defined as

.4> (~) A IYYl in L ( ~ , ~) (A.?:J)

!:!- eo IR
n

where ~ is concave.
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(

For the problem we consider in this thesis, f is

strictly convex, continuous and differentiable with.

respect to g. Further f is bounded below, and

f(gr~.....,asIf g ,,~+"" , where II gil = 1/ u'u.

In the case of the constraint function gIg), we

consider the case:

gIg) is of the form
. ...e- ~ l' (Il) ~ t .- - _ ...• -

where p is linear, continuous and differentiable.

We now consider the problem (A.i)

minimi ze f (g), g E IR"
....................... -.(A. 5)

's.t. gIg) $Q

where gIg) is of the type

.••6 to"Theorem A. 1:.g ,•.•. sol~es problem (A.5) if and

only if there exists a Lagrange multiplier
.••. '"vectorO~~€ IR such that
*, .

. ( i) A g (g*) = 0

••(ii ) 'Yu. L (g* , ~) = 0
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The proof of above theorem follows. directly from

standard Kuhn-Tucker th~ory [11]

Theorem A.2 (Duality): The Lagrange multiplier

••vector in Theorem A. I, Q ~ ~ satisfies

(ii) min f (!!) = max <I> (tl)

The proof of this theorem is provided in [11]

'Theorem A.3 (Uniqueness): The problem A.5 has a

unique solution.

Theorem A.4 (Existence); A solution to the problem

(A.5) exists.

Proof of theorem A.3 and A.4 are given in [13]

146



APPENDIX-B

Let us define for convenience the following state

vector comprising the the primal and dual variables of the

algorithm (4.4.4)

rH' N+N
E IR (6. i)

Thus the optimal solution can be denoted by

*'d.
flo AX = .................. , .(5.2)

.. .• "-where (!Y; ~1J2-2) satisfy the saddle point conditions

'* * * Jl' *L('!Yi ~,' 2l2.) ~ L ('(:f ; ~I , ~2 )~

L (W*~ ~I 7 ~2.)
. . ...•...... . ..... ( B.3)
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Finally we can define the step matrix

.KA K Ie f),lC K I<6 = di":9 (0<1, ... ,0<" ' IWS' "')~ •••-' >'S' ... .1
y"k, )." " (B. 4)

The above definitions allow the algorithm (4.4.3) to

be put in to the slightly more general form:

where f(.) "and !(.) are appropriately defined vector

valued functions

aL
ok\'

<3 -

'Ytla.x(0, :>-..) i

'Y\1a.X C 0, ~2.h
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After defining algorithm in its more general and

simple form of (6.5), the convergence of the algorithm can

be proved with the help of the following theorems:

Theorem B.1 : If the step matrix defined in (6A) is
K

such that 116 1I~I«oO and the following conditions

where

for IS > Q . (E3.~

00

I
1(=1

for I<,

F >0

then

K '/\.
'X. - IX .....•..•••... .. ..... (6.7) .

The proof of this theorem is given in [13]



APPENDIX_C

FLOW CHART OF THE ALGORITHM

Read variables': NEt NS, NC, D, E,
P, THETA, THETA!

Compute constraint matrix, CMAT

Compute correlation matrix, RMAT

Determine: aL ('CI,~,,?:i•.) J
2l~

0S~,( '!!', ~I, ~2) o...nd.. JL (W, AI' A •.)
~ •. - - -

Where L(1i,~I, ~•.) is the cost function

Update W, ~I, ~., by:
~(K +1) =: W (1<)- 0< (K) aL I:. '!:Y(t"'), ~J (K) ,?!•.(,1-<)J

'2)'<l«( K)
~I (K-t-I) = -mGlX to, "2-,(K) -rO\(K) 01- t ~(Io<), ~,<'K)'':;'2.u<')]l

ai\, (K) 11
?\2<.1~+1)- /VYIQ.xso, :>.:>. <.K)+~(l'<.)2>L. t:. ~(K) ..•-!:-1(l<),~•..(.K)~
- t - Zl~2.(K)

where K denotes current 1teration number,
~ is a small scalar incremental step

NO End of iteration?
,(ES

Determine antenna response
pattern by computing CMAT X W

* A description of the variables is given below:

NE
NS
NC
D
E
P
THETA
THETA!

Number of antenna elements
Number of sources
Number of constraints
Desired response
Tolerance of response levels
Signal and noise power levels
Signal and noise arrival directions
Constraint directions
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C THIS IS THE MAIN PROGRAM TO DESIGN ADAPTIVE ARRAY ANTENNA
DIMENSION W (20), CM (20,20), CMW (10),DM (20,20), SI (20,20)
DIMENSIONBM (20,20), ALAM1 (10), ALAM2 (10), X (20,20), Y (20)
DIMENSION ALAMP (10), ALAMN (10), TEM1 (20), TEM2 ('20),SPROD (40)
DIMENSION TEM3 (20), GAMA (20,20), R (20,20), F(20), D(10), E(10)
DIMENSION TOU (10), THETA (10), P (10), THETA1 (10), THETAP (10),
+X1(20,20),Y1(20,20),Zl(20,20),SI1(20,20),ZlW(10),OPMAT(40)
OPEN(6,FILE='DATA')
CALLXREAD(XSZ,YSZ,PI,RAD,LP,JL,NE,NT,NS,NC,J1,STEP,SIGMA,D,E,P,
+THETA,THETA1,ELSPA,OMEGA,GAMA,NC2,NENT,I1,NIT)
CALL DISPLY(LP,JL,NE,NT,NS,NC,J1,STEP,SIGMA,D,E,P,THETA,THETAl,
+ELSPA,OMEGA,NC2)
FREQ=OMEGA/(2*PI)
DELTA=1/(4*FREQ)
DO 42 I=1,NC2
ALAM1(I)=0.0

42 ALAM2(I)=0.0
CALL CMAT('DM,BM,CM,THETA1,X,NE,NC,PI,RAD,DELTA)
WRITE(5,'(50X,A/)') 'CMAT'
WRITE(5,421)«(CM(I,J),J=1,NENT),I=1,NC2)

421 FORMAT(/,2X,8(2X,F10,6),/,2X)
CALL RMAT(R,TOU,THETA,NS,NT,NE,P,NENT,FREQ,ELSPA,
+OMEGA,RAD,DELTA,SIGMA)
WRITE(5,491)

491. FORMAT(/,50X,'RMAT'/)
WRITE(5,492)«R(I,J),J=1,NENT),I=1,NENT)
492 FORMAT(/,2X,8(2X,F10.6),/,2X)
DO 43 I=L,NENT

43 W(I)=O.O
K1=1
AK=O.O
K2=1

44 DO 45 I=l,NC2
ALAMP(I)=ALAM1(I)+ALAM2(I)

45 ALAMN(I)=ALAM1(I)-ALAM2(I)
IF(JL.EQ.O)GO TO 450
IF(JL.EQ.1)GO TO 451
IF(JL.EQ.2)GO TO 452
450 ALPHA=STEP
GO TO 460 ,

451 ALPHA=STEP/(AK+1.0)
GO TO 460

452 ALPHA~STEP/(AK+5.0)
460 CALL ANUPD(TEM1,TEM2,TEM3,GAMA,ALAMP,ALAMN,CM,R,

+W,F,NC2,NENT,ALPHA)
CALL ANDIF(CMW,TEM1,TEM2,CM,GAMA,ALAM1,ALAM2,ALPHA,
+NC2,NENT,D,E)
IF(LP.EQ.O)GO TO 57
CALL CONVRG(K2,NIT,Kl,NENT,R,TEM1,I1)
IF(K2.EQ.500)GO TO 46
K2=K2Tl
GO TO 44

46 K2=1
WRITE(3,999)Kl

999 FORMAT(2X,'ITER=',I2,/)
WRITE(3,47)

47 FORMAT(/,/;2X,'WEIGHT VECTOR',/)
DO 48 I=l,NENT
WRITE(3,49)T.Ml(I) 151-



48 CONTINUE
49 FORMAT(2X,FI0.6}

WRITE(5,50)
50 FORMAT(2X,;PRODUCT',/)

DO 51 1=1, NENT
Y(I)=O.O
DO 51 J=I,NENT

51 Y(I)=Y(I)+R(i,J)*TEMl(J)
PROD=O.O
DO 52 I=I,NENT

.52 PROD=PROD+TEMl(I)*Y(I)
SPROD(Kl)=O.O
SPROD(Kl)=PROD+SPROD(Kl)
WRITE(5,53)PROD

53 FORMAT(FI0.6)
WRITE(5,54)

54 FORMAT (2X, ,WRITE ALAMl, ALAM2, CMW' I)
DO 55 I=I,NC2
WRITE(5,56)ALAMl(I),ALAM2(I),CMW(I)

55 CONTINUE
56 FORMAT(3(FI0.6,2X»
57 IF(Kl.EQ.Jl)GO TO 563

Kl=Kl+l
AK=AK+l.O
GO TO 44

563 CALL ANPAT(Xl,Yl,ZI,THETAP,SIl,NE,NC,PI,RAD,DELTA,
+NC2,NENT,ZIW,TEMl,DE9)
CALL SINR(TEMl,THETA~NS,NT,NE,P,NENT,FREQ,ELSPA,OMEGA,

+RAD, DELTA, SIGMA)
STOP
END

C
C

SUBROUTINE CMAT(X,Y,Z,ANGLE,SI,NE,IC,PI,RAD,DELTA)
DIMENSION X(20,20) ,Y(20,20) ,Z(20,20) ,ANGLE( 10) ,SI(20,20).
DO 20 I=I,IC
ANGLE(I)=ANGLE(I)*RAD
DO 20 J=I,NE
EX=NE
EJ=J
EXJ=(EX+l.0)/2.0
EJ=EJ-EXJ
EJ=PI*EJ
SI(I,J)=COS(ANGLE(I»*EJ
X(I,J)=CoS(SI(I,J»
Y(I,J)=SIN(SI(I,J»
X(I,NE+J)=COS(SI(I,J)+DELTA)
Y(I,NE+J)=SIN(SI(I,J)+DELTA)
Z(I,J)=X(I,J)
Z(IC+I,J)=Y(I,J)
Z(I,NE+J)=X(I,NE+J) .

20 Z(IC+I,NE+J)=Y(I,NE+J)
RETURN
END

C
C

SUBROUTINE RMAT(R, TOU,THETA,NS,NT,NE;P,NENT,
+FREQ,ELSpA,OMEGA,RAD,DELTA,SIGMA)
DIMENSION R(20,20),TOU(10),THETA(10),P(10)
DO 11 1=1, NENT
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DO 11 J=l,NENT
11 R(I,J)=O.O

DO 12 L=l,NS.
TOU(L)=ELSPA*COS(THETA(L)*RAD)/FREQ
DO 12 M=l,NT
DO 12 N=l,NT
DO 12I=l,NE
DO 12 J=l,NE
11= (M-1) *NE+I
J1=(N-1)*NE+J

12 R(I1,J1)=R(I1,J1)+P(L)*COS(OMEGA*«J-I)*TOU(L)+(N-M)*
+DELTA»)
DO 13 I=l,NENT

13 R(I,I)=R(I,I)+SIGMA
RETURN
-END

1~3

C
C

15

. 16

35

30

40

50
60

70

80

C
C

SUBROUTINE ANUPD(TEM1,~EM2,TEM3,GAMA,ALAMP,ALAMN,
+CM,R,W,F,NC2,NENT,ALPHA)
DIMENSION TEM1(20),TEM2(20),TEM3(20),GAMA(20,20),W(20)
DIMENSION ALAMP(10),ALAMN(10),CM(20,20),R(20,20),F(20)
DO.15 I=l,NENT
TEM1(I)=0.0
TEM2(I)=0.0
DO 15 J=l,NC2
TEM1(I)=TEM1(I)+GAMA(J,I)*ALAMP(J)
TEM2(I)=TEM2(I)+CM(J,I)*ALAMN(J)
DO 16 I=l,NENT
TEM3(I)=0.0
DO 16 J=l,NENT
TEM3(I)=TEM3(I)+R(I,J)*W(J)
DO 60 I=l,NENT
IF(W(I).GT.0.001)GO TO 30
IF (W(I).LT.-0.001)GO TO 40
IF«2.0*TEM3(I)+TEM2(I)+TEM1(I»).GT.0.001)GO TO 30
IF«2.0*TEM3(I)+TEM2(I)+TEM1(I).LT.0.001)GO TO 40
.IF(ABS(2.0*TEM3(I)+TEM2(I).LE.TEM1(I»GO TO 50
WRITE(5,35)
FORMAT(2X,'NO SOLUTION IN UPD'/)
GO TO 50
F(I)=TEM1(I)
GO TO 60
F(I)=-TEM1(I)
GO TO 60
F(I)=O.O
CONTINUE
DO 70 I=l,NENT
TEM1(I)=W(I)
DO 80 I=l,NENT
W(I)=W(I)-ALPHA*(2.0*TEM3(I)+TEM2(I)+F(I»
RETURN
END

SUBROUTINE ANDIF(CMW,TEM1,TEM2,CM,GAMA,ALAM1,
+ALAM2,ALPHA,NC2,NENT,D,E)
DIMENSION CMW(10),TEM1(20),TEM2(20),CM(20,20)
DIMENSION GAMA(20,20),ALAM1(10),ALAM2(.10),D(10),E(10)
DO 17 I=l,NENT



17 TEM2(I)=0.0
DO 18 I=1,NC2
CMW (1)=0.0
DO 18 J=l,NENT
CMW(I)=CMW(I)+CM(I,J)*TEM1(J)

18 TEM2(I)=TEM2(I)+GAMA(I,J)*ABS(TEM1(J»)
DO 40 I=1,NC2
ALAM1(I)=ALAM1(I)+ALPHA*(CMW(I)+TEM2(I)-D(I)-E(I»)
IF(ALAM1(I).GT.0.P)GO TO 30
ALAM1(I)=0.0

30 ALAM2(I)'=ALAM2()-ALPHA*(CMW(I)-TEM2(!)-D(I)+E(I»
IF(ALAM2(I).GT.0.0)GO TO 40
ALAM2(I)=0.0

40 CONTINUE
RETURN
END

C
C

SUBROUTINE ANPAT(X1,Y1,Zl,THETAP,SI1,NE,NC,PI,RAD,DELTA,
+NC2,NENT,ZlW,TEM1,DEG) .
DIMENSION X1(20,20),Y1(20,20),Zl(20,20)
DIMENSION SI1(20,20),ZlW(10),TEM1(20),7HETAP(10),DEG(1)
WRITE( 1,110)

110 FORMAT(/,I,2X,'ANTENNA RESPONSE PATTERN',/)
NC1=1
NC12=2, '
DO 11 ITHETA=5,185,5
THETAP(1)=ITHETA-5
DEG(l)=THETAP(l)
CALL CMAT(X1,Y1,Zl,THETAP,SI1,NE,NC1,PI,RAD,DELTA)
DO 13 I=1,NC12
ZlW(I)=O.O
DO 13 J=l,NENT

13 ZlW(I)=Z1W(I)+Z1(I,J)*TEM1(J)
WRITE(l,14)DEG(1),(Z1W(I),I=1,NC12)

11 CONTINUE
14 FORMAT(2X,10(F10.6,lX»)

RETURN
END

C
C

SUBROUTINE XREAD(XSZ,YSZ,PI,RAD,LP,JL,NE,NT,NS,NC,J1,STEP,
+SIGMA,D,E,P,THETA,THETA1,ELSPA,OMEGA,GAMA,NC2,NENT,I1,NIT)
DIMENSION D( 10) ,E(10).,P( 10) ,THETA( 10) ,THETA1 (10) ,GAMA( 20,20)
READ(6,*)NIT,LP,JL,NE,NT,NS,NC
READ(6,*)J1,STEP,SIGMA,ELSPA,OMEGA
READ(6,*)I1,XSZ,YSZ,PI,RAD
NC2=2*NC
NENT=NE*NT
DO 10 I=1,NC2

10 READ(6,*)D(I),E(I)
DO 20 I=1,NS

20 READ (6 ,*)P (1) ,THETA( I )
DO 30 I=l,NC

30 READ(6,*)THETA1(I)
DO 40 I=1,NC2
DO 40 J=1,NENT

40 GAMA(I,J)=O.O
RETURN
END
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C
C

SUBROUTINE DISPLY(LP,JL,NE,NT,NS,NC,Jl,STEP,SIGMA,D,E,P,
+THETA,THETAl,ELSPA,OMEGA;NC2)
DIMENSION D(10),E(10),P(10),THETA(10),THETAl(10)
WRITE(2,36)

36 FORMAT(2X,'DATA READ'/)
WRITE(2,37)LP,NE,NT,NS,NC,Jl,STEP,SIGMA,ELSPA,OMEGA

37 FORMAT(/,2X,'LP=',Il,3X,'NE=',I2,3X,'NT=',I2,3X,
+'NS=' ,I2,3X, 'NC=' ,I2,3X, 'Jl=' ,I5,3X, 'STEP=' ,FI0.6,
+3X,'SIGMA=',FI0.6,3X,'ELSPA=',FI0.6,3X,'OMEGA=',FI0.6,I)
WRITE(2,38)(D(I),I=I,NC2)

38 FORMAT(/,2X,'D=',10(Fl0.6,lX»
WRITE(2,39)(EiI),I=I,NC2)

39 FORMAT(/,2X,'E=',10(Fl0.6,IX»
WRITE(2,40)(P(I),I=l,NS)

40 FORMAT (I ,2X, 'P=' ,10(FlO. 6 ,IX) ) .
WRITE(2,41)(THETA(I),I=1,NS)

41 FORMAT(/,2X,'THETA=',10(Fl0.6,lX»
WRITE(2,410)(THETAl(I),I=I,NC)

410 FORMAT(/,2X,'THETA1=',10(FI0.6,lX»
RETURN
END

C
C

SUBROUTINE SINR(TEM1,THETA,NS,NT,NE,P,NENT,FREQ,ELSPA,OMEGA,
+RAD,DELTA,SIGMA) .. .
DIMENSION RNN(20,20),RSS(20,20),RXX(20,20),Y(20),TEMl(20),
+TOU(10),THETA(10),P(10)
DO 11 I=I,NENT
DO 11 J= 1,NENT

11 .RNN(I,J)=O.O
DO 12 L=I,NS
TOU(L)=ELSPA*COS(THETA(L)*RAD)/FREQ
DO 14 M=I,NT
DO 14 N=I,NT
DO 14.I=I,NE
DO 14 J=l,NE
11= (M-l) *NE+I
Jl=(N-l) *NE+J
RNN(Il,Jl)=RNN(Il,Jl)+P(L)*COS(OMEGA*«J-I)*TOU(L)+(N-M)*DELTA»

14 CONTINUE
IF(L.NE.l)GO TO 12
DO 13 I2=I,NENT
DO 13J2=1,NENT
RSS(I2,J2)=RNN(I2,J2)

13 RNN(I2,J2)=0.0
12 CONTINUE

WRITE(5,*)'RSS IS GIVEN BY FOLLOWING MATRIX:-'
WRITE(5,60)«RSS(I,J),J=1,NENT),I=I,NENT)

60 FORMAT(/,2X,8(2X,FI0.6),I,2X)
DO 15 I=l,NENT

15 RNN(I,I)=RNN(I,I)+SIGMA
DO 16 I=I,NENT
DO 16 J=I,NENT

16 .RXX(I,J)=RNN(I,J)+RSS(I,J)
DO 17 I=l,NENT
Y(I)=O.O
DO 17 J=l,NENT

17 Y(I)=Y(I)+RSS(I,J)*TEM1(J)
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WRITE(5,*")' RSS*W IS GIVEN BY FOLLOWING MATRIX:-'
WRITE(5,70)(Y(I),I=I,NENT)

70 FORMAT(/,2X,8(2X,FI0.6),/,2X)
SPOWER=O,O
DO 18 1=1,NENT

18 SPOWER=SPOWER+TEMl(I)*Y(I)
WRITE(2,75")

75 FORMAT(/,IX,80('*')//)
WRITE(2,*)' SIGNAL POWER=',SPOWER
DO 19 I=I,NENT
Y(I)=O.O
DO 19 J=I,NENT

19 Y(I)=Y(I)+RNN(I,J)*TEMl(J)
XPOWER=O.O
DO 20 I=I,NENT

20 XPOWER=XPOWER+TEMl(I)*Y(I)
WRITE(2,*)' TOTAL NOISE POWER=',XPOWER"
XSINR=SPOWER/XPOWER
YSINR=10.0*ALOGI0(XSINR)
WRITE(2,*)' SIGNAL TO NOISE "RATIO IS GIVEN BY:'
WRITE(2,*)' SINR=',X~INR
WRITE(2,21)YSINR

21 FORMAT(4X,'IN DECIBELS SINR =',F8.3)
RETURN
END

C
C

SUBROUTINE CONVRG(K2,NIT,Kl,NENT,R,TEMl,Il)
DIMENSION Y(20),R(20,20),TEMl(20),OPMAT(40)
IF(Il.NE.l)GO TO 10
NITl=NIT

10 K2NEW=(Kl-l)*500+K2
IF(K2NEW,NE.NITI)GO TO 60
ITNUM=K2NEW
DO 51 1=1,NENT
Y(I)=O.O
DO 51 J=I,NENT

51 Y(I)=Y(I)+R(I,J)*TEMl(J)
PROD=O,O
DO 52"I=I,NENT

52 PROD=PROD+TEMl(I)*Y(I)
OPMAT(11)=PROD
WRITE(7,14)ITNUM,OPMAT(Il)

14 FORMAT(4X,I8,4X,FI0.6)
11=11+1
NITl=NIT*I1

60 RETURN
END
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