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ABSTRACT

Transit time of a Bipolar Junction Transistor (BJT) is an important parameter. It is
required in determining different performance figures of a BJT. In the present work
the current-continuity equations for electrons and holes; expressions for Shockley-
Reed-Hall and Auger recombination are used in obtaining first order differential
equations for voltage and current. These two equations are rearranged in a form
that is analogous to the well-known time-independent Telegraphers' equation of
transmission line analysis. In this thesis transmission line methods have been
employed to construct an iterative procedure to find minority carrier distribution
for a particular electron current density. Integration of this distribution over the
base width will give the total electron charge for a given electron current density.
The ratio of electron charge to current density gives the base transit time. Doping
dependence of mobility, velocity saturation effect and bandgap narrowing effect
within the base are also incorporated in the analysis. The present approach is easier
and conceptually straightforward, in that this work did not lump the RIG's of the
transmission line (base). Instead the base is segmented and classical TL analysis
has been followed for each segment considering RIG's as strictly distributed
element. Thus transmission line model has been employed in a more fundamental
way and this is for the first time minority carrier distribution and base transit time
of BJT's have been computed. Here both uniform and nonuniform base doping
have been considered. Finally many other useful profiles, such as base transit time
with base-emitter voltage (for both uniform and nonuniform doping), electron
charge with current density and base-emitter voltage etc are obtained. It is observed
that base transit time increases strongly with base width, but moderately with peak
base-doping. It decreases with increasing slope of base-doping.

xii



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION
The purpose of this thesis is to introduce a semi-numerical procedure to obtain minority
carrier concentration from which base transit time of a bipolar transistor can be
calculated. The basic process behind the numerical work is the transmission line (TL)
model. In this introductory chapter, bipolar junction transistor, base transit time,
discussions on classical transmission line analysis and review of the published works
are discussed. Objective of the present thesis and a summary have also been discussed.

1.2 BIPOLARJUNCTION TRANSISTOR
The revolution in solid-state electronics occured in 1948 by the invention of the bipolar
junction transistor (BJT) by a research team of the Bell Telephone Laboratories. This
device along with its field-effect counterpart has an enormous impact on virtually every
area of modem life. The action of both electrons and holes are important in BJT, so it is
called a bipolar transistor. After the invention of BJT, the transistor theory has been
extended to include frequency, high power and switching behaviors. Transistors are
now key elements in high-speed computers, space vehicles, satellites and all modern
communication and power systems.

ctor
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Figure 1.1: An n +pn- transistor



Chapter I

The cross sectional view of an npn bipolar junction transistor is shown in fig. 1.1. The
operation of bipolar junction transistors relies on the coupling between two pn diodes,
which share a common n or p-type region called the base. This coupling is due to
minority carriers injected across one of the pn junctions. The minority carrier then
travels through this base and contribute to the current in the other pn diode. The
practical mode of operation, called the active forward mode, is obtained when the pn
diode, which injects minority carriers into the base region, is forward biased. The other
diode is reverse biased so that the current through that diode is primarily due to the
minority carriers, which were injected from the other diode. So the first pn diode
controls the current through both, while the current supplied through the base contact is
small. This causes both voltage and current gain in the device when applying a signal to
the base contact. There are other possible modes of operation, but they are not used in
practice. For example, in saturation mode, both the diodes are forward biased. So no
control of current can be achieved. Again in reverse active mode, the first diode in
reverse biased and the second one is forward biased. This gives very small amplification
and is also impractical. Finally in the cutoff mode, both the diodes are reverse biased
and the transistor doesn't conduct.

The complete expressions of different currents for bipolar junction transistor can be
derived subject to the following assumptions:

• Low level injection.
• The electric field intensity in the bulk region outside the depletion region is so small

that the drift current of minority carriers is negligible.
• No recombination and generation in the depletion region.
• The widths of the emitter and collector regions are greater than the diffusion length

of the minority carriers so that the minority carrier densities have their equilibrium
values at the contacts.

• The collector area is much larger than the emitter area so as to collect all electrons
crossing the collector junction.

• Each of the three bulk regions is assumed to be uniformly doped and both junctions
are considered to be step junctions so that the change in impurity density, from one
region to another, is abrupt.

• The emitter current is made up entirely of electrons; the emitter injection efficiency
is one.

• The active part of the base and two junctions are of uniform cross sectional area;
current flow in the base is essentially one-directional from emitter to collector.

2



Chapter I

The expression for emitter, collector and base currents can be written as:

18 = 1£- Ie = qA Dn[(LlnE+ Llne)tanh( w.)]
Ln 2 Ln

(1.2.1a)

(1.2.1 b)

(1.2.lc)

where, Dn is the diffusion co-efficient for electron, Ln is diffusion length for electron, q
is the charge of electron, WB is base width, A is the cross sectional area in the
perpendicular direction of current flow, LInE and LIne are the minority carrier
concentrations at the base side of base-emitter and base-collector junction respectively.

1.3 BASETRANSIT TIME
In an active npn transistor minority carrier electrons are injected into the base from
emitter. These injected electrons travel towards the collector through the base. The
average time taken by minority carriers to diffuse across the quasi-neutral base or the
average time that an excess electron spends in the base is called the base transit time
(te).

The total charge storage of the injected carriers n(x) in the base per unit area can be
written as [I]

Base transit time (te) is given by [2],

Qn"'s=-
In

WB= -.!L f n(x)dx
In 0

where In is the current density.

3
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Chapter I

The eqn (1.3.2) can be analytically solved for two region of operation of the transistor.
The regions are: low injection region and high injection region.

The low injection region is the region where the concentration of the injected carrier is
far less than the base doping concentration, Le. n(x)« NAx). The high injection region
is the region where the concentration of the injected carrier is greater than the base
doping concentration, Le. n(x»> NAx).

For uniform base doping and low injection eqn (1.3.2) is reduced to [2]:

For uniform base doping and high injection eqn (1.3.2) is reduced to [2]:

w2
T =--.!l..-
B 4Dn

(1.3.3)

(1.3.4)

(iv)
(v)
(vi)
(vii)
(viii)
(ix)

This base transit time is very important in determining different performance parameters
like the maximum frequency of operation ([max), cut-off frequency ([T) and the noise
figure of a bipolar transistor.

The base transit time depends upon many factors such as
(i) Base width.
(ii) Base sheet resistance.
(iii) Various concentration profiles in the base region (uniform, linear,

exponential & complementary error function).
Velocity saturation effect
Collector current density
Quasi-saturation
Built-in electric field in the base region
Mobility
Band gap narrowing.

4



Chapter I

1.4 ESSENTIALS OF CLASSICAL TL ANALYSIS
In this section, the fundamental equations of classical transmission line are described.
They will be frequently referred to in constructing the TL model of a quasi-neutral base.
As shown in figure 1.2a, the TL is often schematically represented as a two-wire line,
since TL's (for TEM wave propagation) always have at least two conductors. The short
piece of line of length t.x of fig. I.Ia can be modeled as a lumped-element circuit, as
shown in fig.I.2b, where R, L, G, C, are per unit length quantities defined as:

R= series resistance per unit length in (lIm.
L= series inductance per unit length in Him.
G= shunt conductance per unit length in S/m.
C= shunt capacitance per unit length in F/m.

i(x,t) ------7
+

V(X,t)

(

(a)

+

i(x, I) i(X+6x, I)

+

vex, I) G/::'x C/::,x v(X+6x, I)

~---------------------~)
6x

(b)

Figure 1.2 Voltage and current definitions and equivalent circuit for an incrcmental
length of transmission line. (a) Voltage and current definitions,
(b) lumped-element equivalent circuit.

5



Chapter 1

The series inductance L represents the total self-inductance of the two conductors, and
the shunt capacitance C is due to the close proximity of the two conductors. The series
resistance R represents the resistance due to the finite conductivity of the conductors,
and the shunt conductance G is due to dielectric loss in the material between the
conductors. Rand G, therefore, represent loss. A finite length of TL can be viewed as a
cascade of sections of the form of fig.1.2b. From the circuit offig.1.2b, KYL gives:

oi(x, I)
v(x,l) - R!!.xi(x,l) - L!!.x--- vex+ !!.x,I) = O.

01 .

Again applying KCL to circuit of fig.I.2b gives:

i(x,l) - G!!.xv(x + !!.x,t) - CAxOv(x ;IAx,I) i(x +Ax,I) = O.

(1.4.1a)

(1.4.1b)

Dividing equations (1.4.1a) and ( 1.4.1b) by Ax and taking the limit as Ax ~ 0 gives the
following system of differential equations:

_Ov_(x_,I_)= -Ri(x I) _ L_o,_'(x_,I_)
ax ' at'

_Ol_'(x_,_t)._-Gv(x,t) _C_Ov_(x_,t_).
ax at

(I.4.2a)

(1.4.2b)

These equations are the time-domain form of the TL. These are known as the
Telegraphers' Equations.

For the sinusoidal steady-state condition, with cosine-based phasors, equations (1.4.2)
simplify to (puttingjmt in place of a/at):

dV(x) = -(R + jmL)I(x),
dx

dl(x) = -(G + jmC)V(x).
dx

(I.4.3a)

(1.4.3b)

These two equations (1.4.3) can be solved simultaneously to give wave equations for
Vex)and lex):

d'V(x)
dx'

y'V(x) = 0,

6
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d'l(x)
dx'

Chapler I

y'l(x)=O, (1.4.4b)

is the propagation constant, which is a function of frequency.

Travelling wave solutions to equations (1.4.4) are:

( 1.4.5)

( 1.4.6a)

(1.4.6b)

here the exponential term (exp(-p:» represent wave propagation in the +x direction and
exp(p:) term represent propagation in the -x direction. Putting the value of eqn.(I.4.6a)
into eqn.( 1.4.3a) gives the current on the line:

(1.4.7)

Comparison with eqn.(1.4.6b) gives the definition of characteristic impedance, 20:

2 _ R + jwL _
o - y

R + jwL
G + jaJC

(1.4.8)

The voltage and current on the line are also related:

Using eqn.(I.4.9), eqn.(I.4.7) can be rewritten as:

v + V-
lex) = _O-exp(- p:)- -o-exp(p:).

20 20

( 1.4.9)

(1.4.10)

These solutions are for a general TL, including loss effects, and it is seen that the
propagation constant and characteristic impedance are, in general, complex quantities.
In case ofa lossless line, R=G=O and eqn.(1.4.5) gives:

7



Chapter 1

r = a + jfJ = j OJ.,) LC ,

so fJ = OJ.,) LC and a = 0 .

The characteristic impedance (eqn.I.4.8), in loss less case, is:

(1.4.11)

(1.4.12)

which is now a real number. So the general solutions for voltage and current m a
lossless line are (equations 1.4.6):

I(x) = 10+ exp(- jfJx)+ 10- exp(jfJx),

b. 1+ Vo+ d/- Vo-remem ermg: 0 =- an 0 =--.
Zo Zo

(I.4.l3a)

(1.4.13b)

Assume now that the above lossless TL is terminated (at x=O) by an arbitrary load
impedance ZL. The need to introduce this problem is that this will illustrate a unique
property of the TL's, namely the property of wave reflection. As shown in Fig.l.3
below, an incident wave (of the form Vo+exp(-jfJx) is generated from a source atx<O.

V(x), I(x)

~/L

z~f3 ZL

-

I < o

Figure 1.3 A loss less TL terminated in a load-impedance ZL.

8



Chapter I

As the line is terminated in an arbitrary load, the ratio of voltage to current at the load
must be ZL (not Zo). Thus a reflected wave must be excited with the appropriate
amplitude to satisfy this condition. Summing up the incident and reflected voltage will
give the total voltage on the line (eqn.1.4.13a). Similarly the total current on the line is
given by eqn.( IA.13b).

The total voltage and current at the load is related to load impedance, so at x=0, ZL is
given by:

(1.4.14)

and Vo- is given by:

(1.4.15)

The amplitude of the reflected voltage wave normalized to the amplitude of the incident
voltage wave is known as the voltage reflection coefficient, or simply the reflection
coefficient, p:

(1.4.16)

There is also a term known as current reflection coefficient (ratio of reflected current
wave to incident current wave), but this is just the negative of voltage reflection
coefficient. However the equations (1.4.13) can be rewritten in terms of reflection
coefficient (eqn.IA.l6) as:

V(x) = Vo+[exp(- jjJx) + pexp(jjJx)],

J(x) = V; [exp(- jjJx)- pexp(jjJx»).
Zo

(1.4.17a)

(1.4.17b)

The reflection coefficient, expressed in eqn.(1.4.16) at 1=0, can be generalized to any
point 1 on the line. From eqn.(1.4.13a), with x=-I, the ratio of the reflected to the
incident wave gives:

v: - exp(- jjJi) (. )
p(l) = 0 - p(O) exp - 2jjJi ,

Vo+ exp(jjJI)

9
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Chapter 1

here P(O) is the reflection coefficient at x=O as given by eqn.( 1.4.16). The above form is
useful when transforming the effect of a load mismatch down the line. Also the input
impedance at a distance 1 (= -x) from the load looking toward the load is given by either:

or:

2 = V(-l) = 1+ p exp(- 2jPl) 2
'" I(-l) 1- pexp(- 2jpt) 0'

(1.4.19a)

Z ill

=2
0

21.+j20tan pl
20 + j2,. tan pl

(1.4.19b)

The above analysis however holds for a lossless line. In practice, all TL's have loss due
to finite conductivity and/or lossy dielectric. For much of practical cases, these losses
can be neglected. But in the case of quasi-neutral base, the system of TL equations
(2.3.3a,b) suggest a lossy line. So a terminated lossy line is considered next.

Fig.l.4 below shows a length 1 of a lossy TL terminated in a load impedance 2L•
Propagation constant will then be complex (r = a + jP).

V(x), [(x)

•
_J./L

- Zo, a; fJ ZL..-

-
•

-f
o

) x

Figure 1.4: A lossy TL terminated in a load-impedance 2L•
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The expressions for voltage and current in a lossy transmission line, therefore, are:

Vex) = V; [exp(-rx)+ pexp(rx)],

v+
I(x) = _0 [exp(- rx)- pexp(rx)),

Zo

( 1.4.20a)

(1.4.20b)

here p is the reflection coefficient of the load and Va+ is the incident voltage amplitude
at x=O. The reflection coefficient at a distance I from the load is:

the input impedance at a distance I from the load, therefore, is given by:

Z =V(-I)_Z ZL+Zotanhrl
,n 1(-1) 0 Zo +Z,. tanh rl'

(1.4.21)

(1.4.22)

The profiles of the voltage and current waves within a typical lossy transmission line are
shown below in figure 1.5.

IV.I

o

Figure:1.5 Voltage and current profile in a lossy TL.

This ends the brief digression into classical transmission line analysis.

II
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1.5 REVIEW OF RECENT LITERATURE
There has been a considerable number of papers on different aspects of base transit time
over the past few decades. Specific interest has been focused on estimating base transit
time using analytical and numerical methods.

In Van den Biesen [3] a regional analysis to study the transit time of the BJT as a
function of base-emitter bias was used. He subdivided the total transit time from emitter
to collector contact into five components. But no closed form solution in [3] was
obtained. J. S. Yuan [4] studied the effect of the base profile on the base transit time of
the bipolar transistor for all levels of injection. He proposed equation for the minority
carrier distribution within the base for different types of base doping. Using boundary
conditions and the proposed equation he numerically evaluated the base transit time.
Suzuki [5] proposed electron current density In and base transit time (-ra) models of
uniformly doped bipolar transistor for high level of injection. He also considered the
electron veiocity saturation effect in the collector-base depletion region. Ma et al in [I]
improved their earlier work [6] considering the velocity saturation of the electron in the
depletion region of base-collector and the electrical field dependence on the minority
carrier mobility. This method is based on iteration techniques. Shahidul Hassan and A.
H. Khandoker [2] developed a mathematical expression for In and 'tB for uniform base
doping density for all levels of injection ignoring the velocity saturation of electron at
base-collector depletion region. Rosenfeld [7] derived an analytical formula of base
transit time through a dopant-graded base considering the dependence of mobility on the
doping level valid for low level of injection only and ignoring the bandgap narrowing
effect. Among many other analytical works important for the present work are [8-10].
Marshak [8] presented a review on general transport equations describing electron and
hole motion and densities. As a special case minority carrier flow in quasi-neutral
material is derived and discussed. Chyan et al [9] developed a complete analytical
model of the electron and hole current density, current gain and forward transit time
under high injection before the onset of the Kirk effect, for heavily doped base and
emitter with nonuniform band structures. Ziaur Rahman Khan [10] studied base transit
time of BJT with nonuniformly doped base. An analytical expression for the base transit
time for low and high levels of injection are obtained incorporating exponentially doped
base, doping dependence of mobility, bandgap narrowing, electric field developed due
to high injection, nonuniform doping and velocity saturation effects at the collector-base
junction. Base transit time was calculated and it was found that low-injection base
transit time is smaller than that of high-injection. The results of the present work are in
good agreement with [I].

For numerical work on base transit time there are a host of papers appeared in the
literature. Among them emphasis is given on those models that considered transmission
line (TL) model. The transmission line equivalent circuit (TLEC) model for solving
general drift-diffusion equations had been first introduced by Sah [II]. This procedure
was followed in [12] and [13]. Karamarkovi6 et al [14] solved one-dimensional time-

12



Chapter 1

dependent, isothermal, minority carrier transport equations for an arbitrarily doped
quasi-neutral base under periodical steady-state voltage excitation of the emitter-base
junction using the now-familiar TL method assuming a lossy transmission line. The
novelty of the method lies in the ability to exploit periodical steady-state frequency-
domain analysis where the momentum relaxation-time effect is easily included as the
TL inductivity. Again Karamarkovic et al (15] developed a novel TLEC for minority
carrier transport through arbitrarily doped quasi-neutral silicon regions. This particular
model (compared to that 0[[11]) has two advantages:

1. The novel TLEC deals with normalized minority carrier excess concentration as
a TL voltage. This approach is employed in the present work also.

2. The novel TLEC model incorporates inductance.

Anyway the virtue of this paper lies in its elaboration on the normalization procedure of
spatially and temperature-dependent TL parameters. In [16] Jankovic et al showed that
it is possible to model minority carrier transport through quasi-neutral base region at all
injection levels using a nonlinear inhomogeneous lossy TL. This model also includes
Kirk effect. This particular paper is a very important guide to the present work. In a very
recent paper Karamarkovic et al [17] worked on an analytical approach to model Kirk
effect. Here an analytical expression is derived which enables the calculation of
minimum carrier velocity in high-injection regime.

In the present model, a novel iterative procedure is employed using the nonlinear,
inhomogeneous, lossy TL model to determine minority carrier distribution n(x) for a
given current density In• An integration of n(x) over the base width WB gives the total
electron charge Qn' The ratio of Qn to In gives the base transit time. Uniformly and
nonuniforrnly doped base along with bandgap narrowing effects and velocity saturation
at the base-collector junction are duely considered.

1.6 OBJECTIVE OF THE PRESENT THESIS
A considerable number of analytical modeling has been done to determine base transit
time. These procedures involve many assumptions. So here a semi-numerical procedure'
has been developed to present a clear picture of the actual physical events that occur
within the base. Numerical procedures are easier to handle and take less computational
time compared to analytical models. The electrical characteristics of bipolar devices are
determined by the minority carrier transport through arbitrarily doped quasi-neutral
regions. This transport is described by a complex set of partial differential equations
with space-dependent coefficients. However in quasi-neutral regions, the drift-diffusion
(DD) model is enough to describe carrier transport. These transport equations can be

13
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successfully modeled by TLEC procedure. It is a demonstrated fact that an all injection
level; TL model of carrier transport through the base of silicon BJT is also possible. The
normalized excess minority carrier concentration acts as 'voltage' and the current
density constitutes the 'current' in the novel TL model. As the resulting TL base-model
is nonlinear, an efficient iterative method is devised to calculate minority carrier
distribution throughout the base. The space and temperature-dependent TL parameters
are normalized. The advantage of the TL model is that it can be used in frequency
and/or time domain analysis. As the excess minority carriers are normalized, so the
same TL can be used for both small and large signal analysis. The objective of the
present thesis is to employ the above novel TL approach to calculate minority carrier
distribution throughout base and thereby to determine numerically the base transit time.
Other important profiles (such as transit time versus base-emitter voltage and injection
ratio for uniformly and nonuniformly doped bases, electric field distribution within the
base etc.) are also obtained. This is for the first time that TL model has been employed
to obtain base transit time and other important parameters involving base transit time.

1.7 SUMMARY OF THE THESIS
In this work, the base transit time of a BJT is evaluated by employing a novel iterative
method, Le. the TL method. In chapter I, the defining equations of base transit time are
discussed. Also basics of classical transmission line are discussed for future reference.
Recent works (both analytical and numerical) on base transit time have also been
reviewed, emphasis is given on TL models. In chapter 2 mathematical background on
TL model has been provided. It has been shown how the transport equations (drift-
diffusion and continuity equations) reduce to a set of equations analogous to TL
equations. The proper normalization procedure and its necessity are also discussed. Also
the algorithm generating the minority carrier profile by using the TL model equations is
discussed. The results obtained are discussed in chapter 3 and the dependence of base
transit time on different transistor parameters are studied. The relevant graphs are
included there. Chapter 4 ends with suggestions for future work.

14



CHAPTER 2

MATHEMATICAL ANALYSIS

2.1 INTRODUCTION
Base transit time is an important parameter for bipolar junction transistors (BJT). This
transit time can be reduced by creating a quasi-electric field in the base. It has been
established that quasi-electric field can be established by grading the dopant density in
the base. In this chapter drift-diffusion (DO) and transport equations are described for a
dopant-graded base in order to derive the transmission line (TL) model equations. The
analytical analogy between transport equations (DO and continuity equations for
electrons and holes) and classical transmission line equations (Telegraphers' equation)
are fully derived. A new TL method has been introduced to compute minority carrier
distribution within base. Cosequently an algorithm is also constructed, based on the
present novel TL model, to compute the base transit time.

2.2 TRANSPORT EQUATIONS
The electron current density In, and hole current density Jp with arbitrary base doping
concentration NA(x) are given by [4,9]:

dn(x)
J,,(x) = q D,,(X)-- +qf-l,.(x)n(x)E(x),

dx
dp(x)

J p(x) = qf-lp(x)p(x)E(x) - q Dp(x)d-:-'

(2.2.1 a)

(2.2.lb)

where, x is the distance of a point in the base from the base-emitter junction, Dn(x) and
Dp(x) are the diffusion coefficients for electrons and holes, /in(x) and /ip(x) are the
electron and hole mobilities, n(x) and p(x) are electron and hole concentration
respectively, q is the charge of electron and E(x) is the electric field at a point x in the
base.
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Emitter Base Collector

B
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J" '-

0 1 WB
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Fig. 2.1. One-dimensional structure of an n +pn" Si bipolar transistor

The total current density, which is constant, is the sum of the contribution due to
electrons and holes:

(2.2.2)

The base width of a modern bipolar transistor is very thin. So the carrier recombination
within the base can safely be neglected [4]. Neglecting Jp, and considering the
conventional direction of current (opposite to electron flow) eqn.(2.2.2) becomes:

J (x)""-Jn(x). (2.2.3)

In the absence of recombination, the collector current density In becomes constant [7].
Using Jp(x)=O and band gap narrowing effect, it can be shown that the electric field in
the base is [4]:

E(x) = kBT[J_dP __ ,_I_d n~(x)],
q P dx n;,(x) dx

(2.2.4)

where kB is Boltzmann constant, T is temperature and n;e(x) is the effective intrinsic
carrier concentration in the base.
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The first term in eqn.(2.2.4) represents electric field due to concentration gradient and
the second term in eqn.(2.2.4) represents the quasi-fields due to nonuniform band gap
narrowing.

The intrinsic carrier concentration nie is given by:

(2.2.5)

where N,=lxIOI7 cm,J, Vg is 9mY and Vr is thermal voltage.

The electron mobility in the base is given by [4]:

J1,,(X) = J1mi" + J1m(" - J1mi")"
1+ NA(X)

N~r

(2.2.6)

From eqn.(2.2.6), D(x) can be determined using the Einstein's relation:

D(x) kBT
--=--
Jl(x) q

(2.2.7)

In this work, a non-uniform doped base is considered. For practical devices, it follows

exponential distribution and is given by [4]:

(2.2.8)

where T/ is the slope of the base doping and is written as:

(2.2.9)

As a standard choice for practical devices, most often ~3, whereas ~O represents
uniform doping.
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Employing basic definitions of differential calculus, the terms of E(x), as shown in
eqn.(2.2.4), can be rearranged in a compact form [9]:

E(x) = kBT ~ In[ p~x) ].
q dx n" (x)

Substituting eqn.(2.2.1 0) into eqn.(2.2.1 a) gives:

J" = kBTfl,,(X){n(x)~ In[ p~x) ] + dn(X)}
dx n" (x) dx

Using the Einstein relation (eqn.2.2.7), eqn.(2.2.11) gives:

J" = qD,,(X){n(x)~ In[ p~x) ] + dn(X)}
dx n" (x) dx

(2.2.10)

(2.2.11)

(2.2.12)

So after some mathematical manipulation, eqn.(2.2.12) can be written in the following
way:

J"p(x) d [p(x)n(x)]
2 =- 2 •

kBTfl" (x)n" (x) dx n" (x)
(2.2.13)

The electron diffusion length in crystalline silicon is about 3.8 Ilm (even at doping
concentration of 1019cm'\ Base width of high-speed transistors is less than 100 nm (so
Ln»Wa). Therefore, the carrier recombination in crystalline silicon region is negligible
[9]. This results in a constant In (in eqn.2.2.3).

Now a new novel term, the normalized excess electron concentration, is introduced
which acts as 'voltage' in TL model. The definition of normalized excess electron
concentration is:

( ) = p(x)n(x) -Iu x 2 •
n" (x)

18
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Note that, according to eqn.(2.2.14):

du(x) =~[p(x:n(x) _I]",~[p(x:n(x)].
dx dx n" (x) dx n" (x)

(2.2.15)

Substituting eqn.(2.2.15) into eqn.(2.2.13), the first of the transport equations applicable
to a p-type quasi-neutral base takes the form of:

(2.2.16)

Again using eqn.(2.2.3), that J(x)
reduces to:

- In(x), and recalling eqn.(2.2.7), eqn.(2.2.16)

du(x)
--=
dx

p(x) 2 J(x)
qD, (x)n" (x)

(2.2.17)

Now the continuity equation has to be used to obtain the other one of the transport
equations.

A uniform semiconductor sample in zero electric field must be neutral:

(2.2.18)

here ND+ and NA- are the concentrations of ionized donors and acceptors respectively.
This is known as the charge neutrality condition. However semiconductor devices are
rarely uniform and usually operate under nonequilibrium condition. A photon absorbed
in the semiconductor may promote an electron from the valence band into the
conduction band, thus creating both an electron in the conduction band and a hole in the
valence band. This process is known as electron-hole pair (EHP) generation or generally
'Generation'. Generation rate, G is the equal to the concentration of EHP's produced in
one second. On the other hand, an electron from the conduction band may fall into a
vacant space in valence band. This process is known as 'Recombination'. So
recombination rate R gives the concentration of EHP's recombining in one second. In a
uniform semiconductor:

(2.2.19)

In steady-state: G = R.
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For a nonuniform semiconductor, equation (2.2.19) has to be modified in order to
account for changes in the current densities. For an incremental volume such changes in
the current is proportional to \7.J and equation (2.2.19) has to be duely changed [19]:

an 1at = q \7 . J n +Gn - Rn,

ap I
-=-\7.J +G -R .at q p P P

(2.2.20a)

(2.2.20b)

These equations are known as Continuity equations, where nand p in the subscripts of
G, R refer to generation/recombination rates of electrons and holes respectively.

When electrons and holes are generated in pairs (EHP's) in a uniform semiconductor,
the semiconductor sample remains neutral or nearly neutral. This situation arises when,
for example, light generates extra carriers in a piece of n-type semiconductor. This
situation is known as Quasi-neutrality. The assumption that a semiconductor piece is
quasi-neutral means that:

n-no '"p- Po'

no and Po are equilibrium electron and hole densities.

(2.2.21 )

In a p-type quasi-neutral base, the total carrier recombination is the sum of Shockley-
Hall-Read (SHR) and Auger recombination [16]:

,
m() p(x)n(x)-nj, (x) C () C ()
~l U,X =--------------+ /In x + pP x,

Tp" (n(x) + nj, (x)) + Tn, (p(X) + nj,(x))
(2.2.22)

where TnO and TpO are electron are hole lifetimes (=IO'7s) [20], Cn and Cp are capture
coefficients (for silicon, = 3xlO'Jlcm6s'l) [21].

Noting that, for one dimensional time-independent analysis, \7.J" reduces to dJ"(x)/dx,
continuity equation (2.2.20a) gives [16]:

~=-qm(u,x) (2.2.23)

Therefore, equations (2.2.17) and (2.2.23) constitute the "general ID drift-diffusion
isothermal minority carrier transport equations at all injection levels."
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2.3 TL MODEL
By assuming normalized excess electron concentration as 'voltage' and electron current
density as 'current', the system of differential equations, (2.2.17) and (2.2.23), can be
made analogous to well-known Telegraphers' equation. This requires only a few minor
algebraic manipulation of equations (2.2.17) and (2.2.23). For example, eqn.(2.2.17) can
be made to look as a TL equation if all the terms of the right side of eqn.(2.2.17), except
J(x), is grouped under a single term. From now on, this term will act as 'resistance' of
the transmission line (base). So,

R(u,x) = p(x) ,
qD-rx)n" (x)

(2.3.1)

In a similar fashion, eqn.(2.2.23) lacks the term u(x) explicitly. But this term can be
made to appear explicitly in the equation by rearranging the recombination term
(eqn.2.2.22). Thus;

q9'l(u,x) = q[p(x)n(x)-n"'(x)1c,,n(x) +Cpp(x) + I }
~ Tp"(n(x) + n" (x» + T"" (p(x) + n" (x»

= u(x)[qn" '(x){cnn(x) +C p(x) + l }]
p Tp"(n(x) + n" (x») + T"" (p(x) + n" (x))

here use has been made of the definition of u(x) (eqn.2.2.14). According to this
manipulation, the "voltage" u(x) is singled out from the expression of recombination
and the terms under the third bracket of the right side of the above equation are grouped
into a single term, which will henceforth be known as the 'conductance' G(u,x) of the
transmission line. So,

G(u,x) = qn,,'(x){cnn(x) +Cpp(x) + I }.(2.3.2J
'tpo(n(x) + n,Jx))+ 't"" (p(x)+ n,Jx))

Then using the new definitions of R(u,x) and G(u,x) (i.e. combining equations 2.3.1 and
2.3.2), the transport equations (2.2.17) and (2.2.23) can be rewritten as;

dU;;) = -R(u,x)J(x),
dJ(x)-- = -G(u,x)u(x).
dx

21
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Equations (2.3.3) are analogous to the time-independent transmission line equations. In
the classical TL analysis, if the line inductances and capacitances (L and C) are omitted
(i.e. if the equations are made time-independent so that time derivatives vanish), the
same equations are obtained (consider equations I.4.2a,b). Also notable is the fact that
equations (2.3.3) represent lossy TL. Furthermore, the set of equations (2.3.3) are
inhomogeneous, because Rand G are functions of both u(x) and x through n(u,x) and
p(u,x). The TL model thus completes with the formulation of equations (2.3.3).

For an npn transistor, the pn-product at the base edge is given by [9]:

p(O)n(O) = [n(O)+ NA(O)]n(O) = nie2(O)exp(Ern -Err) ~ n;,2(x)exp(qv.,),
kHT kHT

here ni.(O) is the effective intrinsic carrier concentration and Vb. is the base-emitter
voltage. The above expression reduces to (using eqn.2.2.l4):

(2.3.4)

It is also assumed that the electron velocity at the base-collector junction is saturated
and so the electron current density is given by [9]:

(2.3.5)

here Vs is minority carrier velocity at the collector end (i.e. x=w) of quasi-neutral base.
Typical value ofvs is 107 cm-Is [22]. Then using eqn.(2.2.3), eqn. (2.3.5) gives:

here w is the base width WH•

J(w) = qV,n(w), (2.3.6)

Equations (2.3.4) and (2.3.6) constitute the Boundary conditions for the system of
equations (2.3.3).
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The load-impedance at the collector-base junction (x=w) is:

=

z (w) = u(w)
L J(w)

p(w)
2qnie (w)Vs

(2.3.7)

For ap-type base, the quasi-neutrality condition (2.2.21) can be rewritten as:

p(u,x) = n(u,x) +NA (x). (2.3.8)

2.3.1 Normalization process
In eqn.(2.2.14), a normalized u(x) has been defined. In all other equations in this
section, this u(x) is used as it is in eqn. (2.2.14). One problem that immediately arises is
that in the TL model, so far discussed, the 'voltage' is normalized but the 'current' is
not. So there is a need to devise a procedure to normalize the current also. Besides TL
parameters are extremely temperature-dependent. Consequently, a straightforward
implementation of TL equations along with its parameters (equations 2.3.1, 2.3.2,
2.3.3a,b) to solve the voltage and current distribution along inhomogeneous TL is
difficult. The normalization scheme that is being followed here makes the parameters
stable against temperature variation, besides being able to normalize the current also.

According to this normalization scheme [15], the current density In is redifined as:

(2.3.9)

where:

(2.3.10)

the thermal velocity V,h is defined as:

(2.3.11)

here m* is the effective mass and for silicon it is l.lm, m being the mass of electron.
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So the normalized resistance of the TL model are as follows:

and normalized conductance becomes:

G
G,,=-,

Fn

where Rand G are originally defined as in equations (2.3.1 & 2).

(2.3.12a)

(2.3.12b)

Owing to the opposite influence of Fn on Gn and Rn, the normalized parameter values
approach those of the typical TL if the micrometer is used as the unit of length (as
suggested by [15]). This is in accordance with the micrometer order of length of quasi-
neutral regions. After normalization (with Fn expressed in AIJlm\ u(x) and J(x) become
dimensionless. But Rn and Gn are expressed in l/Jlm. The temperature dependence of Fn
enables the excessive temperature variation of TL parameters to be substantially
reduced after normalization. The doping dependence of TL parameters are not affected
by the normalization scheme.

Finally, the normalized loading impedance ZL (eqn. 2.3.7) becomes:

Z w _ u(w) _ u(w)
1.( ) - J(w) - FJ'(w)

p(w)
2qn;, (w)v,

Therefore, substituting eqn.(2.3.1O) in the above expression and assuming p(w)"'NA(w),
the load-impedance (eqn.2.3. 7) becomes simply the ratio of thermal and the effective
recombination velocity of minority carriers at the end of the quasi-neutral region:

ZL(W) = u(w) '" Vth .
J*(w) Vs

2.4 FORMULATION OF THE PRESENT TL MODEL

(2.3.13)

The inhomogeneous lossy TL, discussed in sections 2.2 and 2.3, can be represented as a
series of n homogeneous segments of uniform length. As per the boundary conditions
(equations 2.3.4 and 2.3.6), only the voltage at the base-emitter junction
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(Vbe=u(O)=exp(VbelVr» and the current at the collector-base end (J(w)=qvsn(w» are
known. The complete transmission line (base) can be represented as in figure 2.2.

E-B junction base

Figure:2.2 The base transmisision line.

C-B junction

In the present work, at the collector-base junction, J(w) is assumed. Then new) is known
(from eqn.2.3.6) and hence pew) can be calculated (eqn.2.3.8 at x=w). Then Rn(w) and
Gn(w) can be calculated from new) and pew) (using equations 2.3.1 & 2 and then using
the normalization process as in equations 2.3.12). The load impedance at x=w is given
by eqn.(2.3.13).The propagation constant, reflection coefficient and characteristic
impedance are then obtained from equations 1.4.5, 1.4.16 and 1.4.8 respectively. The
voltage and current at the end of the (n-I )th segment (i.e. the beginning of the nth
segment) is calculated using transmission line equations (1.4.20a,b). The base is then
fragmented into n segments of uniform length (/';x=w/n). All the calculations mentioned
above are for the load-end, i.e. at the end of the nth segment. Now these parameters can
be used to determine the minority carrier distribution at the receiving-end, i.e. to the end
of the (n-I)th segment (or the beginning of the nth segment). As n(x) at the end of(n-
I)th segment is known, then again pew), Rn(w), Gn(w), reflection coefficient,
propagation constant, characteristic impedance etc. are calculated using the same
equations as above. But the load-impedance is determined from the ratio of u(w-ilx) to
J*(w-ilx). Then again all the other parameters are calculated using the same old
equations successively. Repeating this process ultimately ends in reflecting the voltage
and current to the beginning of the I st segment (i.e. at x=O). Then at x=O, Vbe is obtained
from eqn.(2.3.4). This is, in brief, the present TL model, which will be elaborated
below.
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In the following figure 2.3, the transmission line (base) is thought to be composed of an
array of n homogeneous segments of uniform length D.x (=w/n). Then the following
analysis is carried on:

n-I

"-, x=w

Xn.2
Xt_l Xi

X=O X,
ZL,n_2 ZL,n_l

u(O)

Figure:2.3 The base TL divided into n segments of equal length.

a) For the nth segment, at x=w or WH, a particular value of J(w) is assumed.

b) new) is then calculated using eqn.(2.3.6), again repeating here for convenience:

J(w) = qV,n(w), (2.4.1 )

here q, Vs and J(w) is known.
c) Using quasi-neutrality condition (eqn.2.3.8) pew) is calculated:

p(w)=n(w)+NA(w), (2.4.2)

here again new) is known from eqn.(2.4.I) and a particular form of NACx) is
assumed in eqn.(2.2.8), repeated again:
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(2.4.3)

d) Using new) and pew) from equations (2.4. I & 2) the voltage at x=w is calculated
from eqn.(2.2. I4):

u(w) = p(w;n(w) I.
n" (w)

the effective intrinsic concentration is given by eqn.(2.2.5):

here the values of N" Vg and Vr are constant.

e) And load-impedance at x=w is given by eqn.(2.3.13):

f) Resistance for the nth segment is calculated using eqn.(2.3.1):

R(w) = pew) 2
qD,(w)n" (w)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

g) Conductance for the nth segment is calculated using eqn.(2.3.2):

G(w) = qn,,2(w){c,n(w) + Cpp(w) + I } (2.4.8)
Tp"(n(w) + n,,(w)) + T,,, (p(w) + n" (w))

h) Resistance and conductance of the TL are then normalized by a constant F given by
equations (2.3.12):

R'=RF,

G,=G
F'

27
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where the normalizing factor is given by eqn.(2.3.1 0):

F
n,,'(w)

= q -N-A-(-w-) V,h' (2.4.10)

(2.4.11 )

i) Characteristic impedance Zo."for the nth segment is given by eqn.( 1.4.8). In that
equation putting L=C=O:

~

'
Z = -
O,n G' .

here the normalized values of resistance and conductance are used (equations
2.4.9).

j) Putting L=C=O in eqn.( 1.4.5), the propagation constant is obtained:

(2.4.12)

k) Reflection coefficient is given by eqn.(1.4.10). Into that equation putting the values
of equations (2.4.6 and 2.4.10) gives:

(2.4.13)

I) At this point, all parameters of the TL are at hand. Now the voltage and current at
x=w are to be reflected to the generating end (at the end of (n-I)th segment or the
beginning of the nth segment, i.e. at X=X"_I==w-ax). For a lossy TL, the voltage and
current at the generating end is given in terms of those at the load/receiving end by
equations (1.4.20a,b). Since those equations were deduced for a TL where the x-
coordinate runs from left to right, the sign of x in the exponential terms for the
present case will be simply reversed. Because in the present case x-coordinate runs
in the opposite sense (see figure 2.4 below). So the voltage and current in the TL at
distance ax from the load (i.e. at x= X"_I=w-ax) is given by:

U(X"_l) = uo" + [exp(y"ax) + pexp(- y"ax)],

+

J*(x"_)= uo,,, [exp(y"ax)-pexp(-y"ax)],
Zo"
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here the current is dimensionless, as all terms in eqn.(2.4.14b) are normalized
according to the normalization procedure mentioned in section 2.4.

The incident voltage at load uo,"+ is given by [23]:

+
uO,n

u(W)
=----

1 + pew)
(2.4. I 5)

-Llx), p(w) +Uo ,
=w-Llx)

ZL

n

U(x=w
J*(x

x=w-Llx x=w

Figure: 2.4 The nth segment of base.

m) For the (n-l)th segment, n(xn_l) at the end of the (n-I)th segment or the beginning of
the nth segment (i.e. at X=Xn_I=W-fu:) is unknown there and it is not possible to
calculate it from eqn.(2.4.l). Therefore, substituting eqn.(2.4.2) into eqn.(2.4.4) and
solving the resulting quadratic equation for n(x) gives:

here the negative solution is disregarded.

n) Then P(Xn_l) is calculated from eqn.(2.4.2). Here x= Xn_I=W-fu:.

0) Therefore, as above, R, G, Yn-), p.. Xn_I), ZO,n-1 are calculated using equations (2.4.4-
13), The load impedance in these cases are given by eqn.(2.4, I7) below, Here Xn_1

stands for w-fu:.
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(2.4.17)

q) The above parameters are calculated for x=w-,ix, i.e. at the end of the (n-I )th
segment. So using equations (2.4.14a,b) the voltage and current at the beginning of
(n-I )th segment or at the end of the (n-2)th segment (i.e. at x=w-2,ix) can be
obtained:

(2.4.18a)

+

J*(w-2,ix) = uO
,._. [exp(y._,,ix)- pexp(-y._,,ix)], (2.4.18b)

Zo,._,
where uo,.-'+ is the incident voltage at x._, and is obtained from eqn.(2.4,15) by

substituting xn-, for w.

r) The above procedure (equations 2.4.1-18) is repeated until x=O is reached. The
voltage u(O) at that end is also calculated from eqn,(2.4.18a). This is the generating
end of the TL base or the base-emitter junction of the BJT.

s) The base-emitter voltage Vbe is obtained from eqn.(2.3.4) as follows:

Vb, = V,. In u(O) ,

VT is the thermal voltage.
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U(Xj_t),
J*(Xi_l )

•

•

Rj,Gj"

•
U(Xi),
J*(Xi)

•
Xi

Figure2.5: The i-th segment of the base TL. Note that x,=w-(n-i)1'>x,

with xo=O for i= I and xn=w for i=n.

2.5 ALGORITHM BASED ON THE PROPOSED TL MODEL
The proposed TL model in section 2.4, therefore, can be used to calculate base transit
time and other related profiles, which are very important for study of BJT
characteristics. This TL model is then used to obtain the minority carrier distribution
n(x) through the base. Once n(x) is known, eqn.(lJ.I) readily gives the stored electron
charge within the base. Then eqn.(1.3.2) can be used to calculate the base transit time.

The procedure of the proposed TL model is in brief: for a given J(w), new) can be
calculated. Hence pew) can also be calculated. Then voltage u(w) is calculated. Once
these are known, Rand G arc calculated and then normalized accordingly. Therefore,
characteristic impedance,' load-impedance, propagation constant and reflection
coefficient are also calculated. Up to this, the calculation are done for the last of the
base segments (i.e. the nth segment, particularly at x=w or Ws). Now the voltage and'
current at x=w are then reflected along the base TL (using reflection coefficient,
characteristic impedance, load-impedance and using well-known transmission line
equations) toward the generating end (i.e. at x=w-1'>x=xn_,).When at x=xn.1, a new new)
is calculated using a new relation (eqn.2.4.16). Againp(xn_l), ZL(xn-I), Rand G and their
normalized values, reflection coefficient and characteristic impedance are calculated.
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These calculations are for the (n-I)th segment and for X=Xn.l. So the voltage and current
at X=Xn.2 are calculated using the previously calculated voltage and current at X=Xn.l.
This process is repeated successively until x=O, i.e. the base-emitter junction, is reached.
Then the base-emitter voltage Vbe is calculated (eqn.2.4.19). The n(x) for each point in
the base TL are then calculated, so these values of n(x) can be integrated numerically
over the base width WH• This gives the stored electron charge. Dividing this by the base
current gives the base transit time (eqn. 1.3.2).

Now there is a problem of selecting a suitable length for each segment of the base TL.
There is an analytical formula defining a critical width We (ilx<we), which the width of
each segment must not exceed. The following formula for We is derived in [15]:

(2.5.1)

here"t is the relaxation time (=1O.13S). Also a table is given in [15] showing estimated
values of We for different doping concentrations and temperatures. It is shown that We

decreases with increasing doping concentration but never drops below 10nm even for
the highest doping (5xI019cm.3). So a standard choice for the number of segments of
base TL can be n=100.

The value of J(w), assumed in eqn.(2.4.l), is restrained by a maximum value determined
byNAw):

J(w) = qV,NA (w). (2.5.2)

The following figure gives the algorithm that has been followed in constructing a
program (written in MATLAB) to compute minority carrier distribution within base and
other useful parameters using the present TL model.
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Figure 2.6: Flowchart of the TL model (continued to next page).
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Figure: 2.6 (cont.): Flowchart of the TL model.
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The above algorithm is used to calculate the minority carrier distribution within the base
for an assumed J(w). For each segment n(x) is determined and it is possible to compute
stored electron charge Qn by integrating n(x) over base width numerically. For
numerical integration, trapezoidal method can be followed as is available in any
numerical software packages, such as MATLAB. Then the ratio of Qn to J(w) gives base
transit time 'B. Again a series of J( w) can be generated for which the above algorithm
could be run for each J(w) and thus Vbe and base transit time ('B) are calculated in each
case. Then Vbe is plotted against 'B. In this process other plots (for example, electric
field distribution within the base) could also be obtained. In the present case the above
algorithm was run in MATLAB software.
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RESULTS AND DISCUSSION

3.1 INTRODUCTION
The novel transmission line approach has been developed in chapter 2. The procedure
and a relevant algorithm are developed there. In this chapter that novel model is used to
calculate minority carrier distribution within the base. With this minority carrier profile,
the electric field distribution within the base, the electron charge variation with current
density and base-emitter voltage have been calculated. Finally, base transit time is
calculated for different values of peak base-doping, slope of base-doping and base
width. Results obtained are then plotted and discussed in this chapter.

3.2 DISTRIBUTION OF MINORITY CARRIER WITHIN BASE
The distribution of minority carrier within the base is plotted in Figure 3.1. The figures
are for three different values of slope of base-doping '7 (for definition of '7, see eqn
2.2.9). Two sets of curves for two voltages (one for low voltage (0.7V) and the other for
high voltage (0.82V» are also drawn. As seen from the curve minority carrier
distribution decreases from its peak value at x=0 (base-emitter junction) as distance
from the base-emitter junction increases. This is due to diffusion of carriers within base.
Also as the base-emitter voltage increases, more carriers are injected into the base
region across the base-emitter junction. So carrier profilcs for high voltage are always
higher than those of low voltage. Again minority carrier distribution decreases with
increase of '7. This is because as electric field increases, drift velocity also increases. So
a high electric field doesn't allow the charges to accumulate within base. Hence n(x)
decreases with increase of '7. But at the collector-base junction the trend is opposite.
Because in that region electron velocity is saturated. So as electric field increases,
current density increases, hence n(x) also increases (eqn 2.3.6).
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Figure 3, I: Minority carrier distribution within base for two base-emitter voltages

and for three values of slope of base-doping.
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3.3 ELECTRIC FIELD DISTRIBUTION WITHIN BASE
The distribution of electric field E(x) within the base for different base-emitter voltage
is shown in figures 3.2 (a), (b) and (c). The curves show that, when base-emitter voltage
is small, the slope of field distribution within the base is very small. But for high base-
emitter voltage it is a decreasing function of distance. From equation (2.2.4), we see that
electric field depends upon the hole concentration and effective carrier concentration.
The quasi-field due to nonuniform bandgap narrowing (Le. the second part of the

-2knT1]Vequation) is g . This part of the electric field is independent of distance from
qW nV(

the base-emitter junction. So the variation of electric field with distance is due to the
first part of the electric field only. When base emitter voltage is low (Le. for low
injection) p(x) ;:;;NA(x). So the concentration gradient part of the electric field (i.e. the

first part of the equation) becomes - knT1] , which is also independent of distance. So
qWn

for low voltage the electric field is constant. In this region the electric field acts in a
direction that assists the flow of electron within the base. For high voltage (or high
injection level), p(x) ;:;;n(x). The change in the aiding field in the base is due to the
modulation of electron concentration as well as electron concentration gradient at high
voltage. From fig.3.2 we find that the electric field for high voltage region opposes the
flow of minority carrier when the distance is small, but when the distance increases its
direction also changes.

In figures 3.2 (a), (b) and (c), the electric field distributions within the base for
different slopes of base-doping are also shown. It can be seen that, for low voltage, as
the slope of base-doping increases, the aiding electric field distributions within the base
increases. This is because, the first part of the electric filed in eqn (2.2.4) is directly
proportional to the slope of base doping for low voltage. For high voltage when slope of
base doping increases, the distance at which the electric field for low and high injection
are equal move towards the collector-base junction.
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3.4 VARIATION OF ELECTRON CHARGE WITH BASE-
EMITTER VOLTAGE AND CURRENT DENSITY

In figures 3.3 (a) and (b), variation of stored electron charge Qn with current density In
and base-emitter voltage Vbe are plotted. The variation of electron charge with base-
emitter voltage are plotted in figures 3.3 (a) ; and the variation of electron charge with
current density are plotted in figures 3.3 (b). These are plotted for three different values
of slope of base-doping ('1= 1,2,3). As can be seen from figure 3.3 (a), electron charge
increases with increasing base-emitter voltage in an exponential manner. This is
expected: as the voltage level increases more charges are accumulated in the base
region. The process is cumulative. Hence is the exponential change. The distribution of
electric field within the base also affects the accumulation of charges as is explained in
the subsection 3.3. On the other hand the variation of electron charge with current
density is seen to be linear from figure 3.3 (b). As more currents flow, more is the
electron charge stored. Besides, for a given current density stored electron charges
decrease with increasing 'I ('I = I, 2, 3) . This correspondingly reduces base transit time
for increasing 'I =1,2,3 (this is also evident from figures 3.5(a), 3.6(a) and 3.7(a) and
other such curves. Furthermore, as can be seen from figures 3.3, as the variation of
electron charge with base-emitter voltage is exponential and that with current density is
linear, so it can be logically inferred that the variation of current density with base-
emitter voltage will also be exponential. So no extra curves are plotted for this purpose.
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3.5 VARIATION OF BASE TRANSIT TIME WITH BASE-
EMITTER VOLTAGE

In figures 3.5-3.12 variation of base transit time (TB) with base-emitter voltage (Vbe) are
plotted. These curves are plotted for different peak base-doping (NA(O» and for
different slope of base-doping (1]). Again variation with base widths (WB) are also
plotted. So a wide range of variation of base transit time with base-emitter voltage can
be inferred from these curves. As a general rule, base transit time remains independent
for some values of base-emitter voltage and then it changes for some higher values of
base-emitter voltage. Base transit time decreases with slope of base-doping. However,
for 1] = 2 and 3, it can be seen that base transit time is larger for high values of base-
emitter voltage (which corresponds to high levels of injection). This is due to the
reduction of aiding field in the exponential base when the voltage level (i.e. the level of
injection) increases. From the electric field distribution (fig.3.2) it is noted that the
electric field for low voltage assists the flow of electron (minority carrier) within the
base. But for high voltage levels the same field opposes the electron flow for distances
x<O.05 /lm. This decrease in electric field slows down the electron flow in the base and
thereby increases the base transit time. However, the increase in aiding electric field for
distances x>O.05 /lm in the base affects the base transit time less, because the electrons
in that region are already approaching the collector-base junction. As velocity saturation
is considered to be active in that region, electrons will be swept toward the collector-
base junction by the reverse-biased collector-base region. As base width increases,
electrons have to spend more time within base and so base transit time also increases.

The dependence of base transit time upon peak base-doping concentration can also be
seen from figures 3.5-3.12 . As can be seen, base transit time increases with peak base
concentration. This is due to the dependence of carrier mobility on the peak base-doping
as is evident from eqn.(2.2.6). That relationship shows that electron mobility in the base
decreases with peak base-doping. So with the increase in the peak base-doping the base
transit time increases.
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3.6 DEPENDENCE OF BASETRANSIT TIME UPON BASE
WIDTH

The dependence of base transit time upon base width for various slope of base-doping is
shown in figures 3.13. It can be seen that the base transit time is an increasing function
of base width. If the base width increases, more time is needed for the minority carriers
to diffuse across the base. So base transit time increases with base width. These plots,
along with figures 3.5-3.12, also show that base transit time is directly proportional to
the base width. But as is evident from fig.3.13, the variation is not exactly linear. This is
due to the reason that base transit time depends on many other factors which also
depend upon the base width. So with the increase in base width, base transit time also
increases but the increment is not linear.

3.7 DEPENDANCE OF BASETRANSIT TIME UPON SLOPE OF
BASE DOPING

The variation of base transit time with base-emitter voltage for different slope of base-
doping is shown in figure 3.14. From this figure it is seen that the base transit time is a
decreasing function of 'I. This is because the aiding electric field in the base increases
with 'I. From the fig. 3.14 it is also noted that for higher values of11 the base transit time
for low voltage becomes smaller than that of high voltage. The reason for this becomes
clear if we observe the electric field distribution within the base in fig 3.2. For low
voltage, the electric field within the base increases with 11for same distance. But for
high voltage as 11increases, the distance at which the electric field for low and high
voltage are equal move towards the collector base junction. So when 11is small, the
aiding electric field for high voltage is larger than that of low voltage for most of the
part of base width. So, for lower values of 11,the base transit time is larger for low
voltage. When 11is high, the aiding electric field for low voltage increases. But for high
11,electric field for high voltage is greater than that of low voltage only at the edge of
the collector base junction. That's why, the base transit time for high voltage is larger
than that oflow voltage when 11is high.
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3.8 COMPARISON
The present approach is used mainly for nonuniformly doped base. But this work can
successfully incorporate a uniformly doped base by putting 17 = O.The plot for 17 = 0 is
shown in figure 3.15. As can be found, for low base-emitter voltages base transit time
remains constant, then at high voltages it decreses, but then it increases again, at some
still higher base-emitter voltages. P. Ma et 01 [I] analysed base transit time for a
uniformly doped base. The curve of [I], as shown in figure 3.16, also has similar
behavior compared to fig.3.15. There difference is also small. This justifies the present
novel TL modeling.

3.9 CONCLUSION
The novel TL method of calculating minority carrier concentration within base is used
to obtain different performance figures of bipolar junction transistor. The ultimate
objective of this work is to determine base transit time. The results presented in this
chapter show that base transit time increases with base width and peak base-doping. It
is also a function of base-emitter voltage. It is also found that the base transit time is a .
decreasing function of slope of base-doping. The results obtained are also compared
with some published data. This concludes that the novel TL method is in quite good
agreement with the available results. So this technique is a workable simulation
technique for the BJT's .
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CONCLUSION

4.1 CONCLUSION
In the present work a novel TL model has been developed to compute minority carrier
distribution within base and thereby calculate base transit time. This TL model is
straightforward and conceptually easier in that it incorporates strictly distributed
parameters. It regains the inherent beauty of the transmission line analysis. In the
preceding chapter minority carrier distribution, electric field distribution and variation
of base transit time with different parameters (such as, base-emitter voltage, base width,
peak base-doping and slope of base-doping) were plotted. It can be inferred from the
plots that base transit time increases with base width and peak doping but decreases
with slope of base-doping. It is found that the base transit time is a strong function of
base width than the other two.

4.2 SUGGESTIONSFOR FUTUREWORK
The present work used a novel TL model within the base region to calculate minority
carrier distribution and hence base transit time. The present work was limited to only dc
(or steady-state) analysis. However a time-dependent analysis (including the effects of
LlC of transmission line) can be done in future. Also the effect ofa changing base width
due to changing base-emitter voltage can also be incorporated in this TL model. Again
this model predicts device behavior before the onset of Kirk effect. It remains to be seen
how the present TL method incorporates this effect.
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