ETECTRO-MECHANICAL STRESS ANALYSIS OF CURIRENT CARRYING CONDUCTIORS

BY

A THESIS
SUBMITTED TO THE
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

> DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING.

DEPARTMENT OF.ELECTRICAL AND ELECTRONIC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DHAKA-1000, BANGLADESH.

This is to certify that this work has been done by me and has not been submitted elsewhere for the award of any degree or diploma.

Signature of the candidate.

The board of examiners hereby recommends to the Department of Electrical and Eelectronic Engineering, B.U.E.T, Dhaka, the acceptance of the thesis, "Electromechanical Stress Analysis of Current Carrying Conductors " , submitted by Hafizur Rahman, Roll no. 861319 P as satisfactory in partial fulfilment of the requirements for the degree of Master of Science in Electrical and Electronic Engineering .

THE BOARD OF EXAMINERS:

M. A. Matin 5.1.90

Dr. Md. Abdul Matin.
Chairman

Professor
Department of Electrical and Electronic Engineering, B.U.E.T, Dhaka.
M. A. Matin 5.1.90

Head of the Department, Department of Electrical and Electronic Engineering, B.U.E.T, Dhaka.

Member
Dr. Enamul Basher.
Associate Professor
Department of Electrical and Electronic Engineering, B.U.E.T, Dhaka.

Pean s/1/90
Dr. Md. Rezwan Khan.
Associate Professor
Department of Electrical and Electronic
Engineering, B.U.E.T, Dhaka.

Sheneal sti-9a-
Prof. Md. Shamsuddin Ahmed.
Head, Department of Electrical and Electronic Engineering, Islamic Centre for Technical and Vocational Training and Research (ICTVTR).
Board Bazar, Gazipur.

Member (External).

ACKNOWEEDGEMENT

It is of immense pleasure on the part of the author to express his profound gratitude and indebtness to his supervisor, Dr. Md. Abdul Matin, Professor and Head , Department of Electrical and Electronic Engineering , Bangladesh University of Engineering and Technology (BUET), Dhaka for advice, guidance and constant supervision throughout the course of this research work.

The author is indebted to Dr. Md. Mujibur Rahman, Professor and Dean, Faculty of Electrical and Electronic .gineering, BUET for constant support and encouragement with this woy...

The author also wishes to express his thanks and sincerest gratitude to Dr. Md. Rezwan Khan, Dr. Enamul Basher and Mr. A.H.M. Zahirul Alam of the Department of Electrical and Electronic Engineering, BUET, Dhaka for their timely help and invaluable suggestions.

Most of the computational works were performed at the computer centre, BUET. The author therefore, is also thankful to the Director and personnel of the computer centre, BUET for their cooperation.

ABSTMACT

Electrical conductors , while carrying currents are found to be stressed mechanically both.for mechanical as well as for electrical causes. The present work has been devoted to calculating the stress and the resulting force developed on conductors due to electrical reasons only. On the basis of energy balance equation in a current carrying conductor ${ }^{-}$, mathematical models are established for the different forms of stresses (viz; dieletric stress, stress due to magnetic field and that resulting from .Joule-heating) developed on the conductor and using those mathematical models representative numerical examples are cited . Forces on overhead power lines due to these three reasons are calculated for steady-state, fault current and transient switching on conditions. Stress due to Joule-heating is much higher than that owing to the magnetic field, while a negligibly small amount of dielectric stress is caused by the eletric field on a conductor. Stress distribution inside a cylindrical conductor is studied during steady-state operations . Nonuniform stress distribution owing to the 'Skin effect' in case of ac fields is vividly observed. With the increase in frequency all the three forms of stresses increase rapidly and become as high as several hundred times at MHz range of frequencies of that at power frequencies for the same amount of current flowing through a conductor. Current as well as the stress distribution inside a conductor during switching on condition is studied on the basis of a rigorous mathematical treatment of the diffusion equation. It is observed that transient' switching current and the stress are maximum at the axis and minimum near the surface unlike the current distribution during steady-state operation.
CMDEX
Page
CHAPTER - 1 GENERAL INTRODUCTION
1.1 Introduction. 2
1.2 Historical Review. 2
1.3 Ob.jective of the Research. 4
1.4 Thesis Layout. 4
CHAPTER - 2 ELECTROMAGNETIC ENERGY AND STRESS IN CONDUCTING MEDIA
2.1 Introduction. 7
2.2 Electromagnetic Energy in Conducting Media. 7
2.3 Mechanical Stress in Elastic Media. 11
2.4 Electromagnetic Forces on Charges and Currents. 15
2.5 Electromechanical Stress in a Conducting Medium. 16
2.6 Discussion. 23
CHAPTER - 3 ELECTROMAGNETIC FIELDS IN CONDUCTING MEDIA.
3.1 Introduction. 25
3.2 The Equations for Fields in a Conducting Medium. 25
3.3 Application in a Cylindrical Conductor. 27
3.3.1 Steady-state Current Distribution Inside the 28 Conductor.
3.3.2 Transient Current Distribution Inside the 33 Conductor.
3.4 Discussion. 43
CHAPTER - 4 CALCULATION OF DIELECTRIC STRESS IN A CONDUCTOR DUE TO ELECTRIC FIELD.
4.1 Introduction. 45
4.2 Stress Distribution in a Cylindrical Conductor. 45
4.2.1 Stress under steady-state DC. 48
4.2.2 Stress under steady-state AC. 48
4.3 Numerical Example. 51
4.3.1 Steady-state Condition. 53
4.3.2 Fault Current Condition. 59
4.3.3 Transient Switching on. 60
4.4 Discussion. 63
CHAPTER - 5 CALCULATION OF MECHANICAL STRESS IN A CONDUCTOR DUE TO MAGNETIC FIELD.
5.1 Introduction. 65
5.2 Stress Distribution in a Cylindrical Conductor. 65
5.3 Numerical Example. 70
5.4 Discussion. 80CHAPTER - 6 CALCULATION OF STRESS DUE TO JOULE-HEATING INA CONDUCTOR.
6.1 Introduction. 82
6.2 Stress Distribution in a Cylindrical Conductor. 82
6.3 Numerical Example. 85
6.4 Discussion. 94
CHAPTER - 7 COMPARATIVE STUDY OF THE THREE TYPES OF ELECTRO- MECHANICAL FORCES IN A CONDUCTOR.
7.1 Introduction. 96
7.2 Variaton of the Forces with Current. 96
7.3 Variaton of the Forces with Coductor Specifications. 98
7.3.1 Variation with the Diameter of the Conductor. 99
7.3.2 Variation with the Resistivity of the Conductor. 100
7.4 Variation of the Forces with Frequency 102
7.5 Discussion. 104
CHAPTER - 8 GENERAL DISCUSSION AND CONCLUSION AND NOTE FOR 105 FURTHER RESEARCH.
APPENDIX 109
REFERENCES 132

List of Principal Symbols

```
\epsilon
M
\mp@subsup{\epsilon}{r}{}}=\mathrm{ Relative permitivity of the medium {=1 for good conductors)
* /
\omega}=\mathrm{ The angular frequency, rad/sec.
f . = operating frequency, Hz
D = Electric flux density vector.
E = Electric field intensity.
|}==\mathrm{ Magnetic flux density vector, Weber/m}\mp@subsup{}{}{2
Н = Magnetic field intensity.
\overline{i}on\overline{J}= Current density , Ampere/m}\mp@subsup{}{}{2}\mathrm{ .
\sigma}=\mathrm{ Conductivity of the medium (conductor), (Ohm-m)}\mp@subsup{)}{}{-1}\mathrm{ .
Te}=\mathrm{ Total force (compression) due to dielectric stress, newton.
Tm}= Total force (tension) due to magneto-mechanical stress, newton.
Th}=\mathrm{ Total force (tension) due to Joule-heating, newton.
```


CHAPTER ONE

GENERAL INTRRODUCTION

Electrical conductors have got a wide range of applications from generation to distribution of electrical power. In course of almost all applications a conductor is subjected to mechanical stress arising from various causes. Thermal stress developed in a conductor due to Joule-heating is found to have considerable effect in damaging a conductor. Increament in sag of overhead conductors is not ond due to the self load of the conductor, but also due to the eletro-mechanical stresses developed in a conductor during the flow of current. Stress analysis of electric wires is important from the stand-point of stringing of overhead lines as well as in selecting wires for winding of electrical apparatus.

1.2 Historical Review

A number of papers are available on studies on the thermal characterstics of current carrying conductors. House and Tuttle[1] are probably the first to develop a model to predict the real time conductor temperatures, associated thermal stress and resulting sag by knowing the conductor current, and approximate ambient conditions. But the model was restricted to steady state conditions only.However, the line current is a variable and weather conditions are rarely constant for more than a few minutes. All of these factors reduce the accuracy of a steady state ampacity program as suggested by House and Tuttle [1]. To encounter this problem a single-step linear integration of the House and Tuttle method was reported by Davidson and
others[2]. Yet several simplifying assumptions used in this model made it unusable in simulating a real-time operation.

Another model prescribed by Wong and others[3] linearizes convection, radiation and heat generation and combines these terms into a constant which had also an assumption of constant conductor current and constant weather conditions that limit its accuracy as real-time rating schemes. A real time ampacity model represented by Black [4] comes out of these constraints. The model considers convection and radiation from the surface of the conductor, energy generation inside the conductor due to $I^{2} R$ heating and storage of energy within the conductor due to its thermal capacitance.

A current carrying conductor is not subjected to thermal stress only. There may be stresses due to its electric and magnetic fields. A general formula was established by Stratton [5] to calculate the stress resulting from electric and magnetic fields.

Begg[6] calculated the electromechanical stress distribution in insulators and found that it is as high as 1.8 $k N / m^{2}$ in a ferro-electric insulator placed between two parallel circular plates and subjected to an electric field of $10^{6} \mathrm{~V} / \mathrm{m}$.

In the case of current carrying conductor, all, the three types of stresses viz, Ohmic stress, magnetic and dielectric stresses need to be studied seperately. In this thesis
the electro-mechanical stress analysis of a current carrying conductor has been carried out by paying attention chiefly to these three types of stresses.
1.3 Objective of the Research

The stress developed in a current carrying conductor is different from that developed in a dead wire owing to the mechanical stress developed within the conductor due to its electromagnetic fields. The objective of this study is to calculate : the amount of stress due to the electromagnetic fields in a conductor and to make a comparigon among the variety of stresses developed in a current carrying conductor.

1.4 Thesis Layout:

On the basis of Poynting's theorem a general formula is established in chapter-2 to determine the electric, magnetic and Ohmic stresses for time varying fields. Since stregs distribution is a function of current distribution , current distribution in a cylindrical conductor for both steady-state and transient switching conditions are studied in chapter-3.Equivalent mechanical stress digtribution in a conductor resulting from a.c and d.c electric fields is studied in chapter-4. Steady state and transient conditions are verified through some representative numerical examples. Stress distribution inside a conductor due to the action of the magnetic field is placed in chapter-5, where both a.c and d.c cases are congidered with numerical examples. Chapter-6 is equiped with the Ohmic gtress
developed in conductor. In chapter-7, tables of comparison of the three types of stresses for different conductor specifications are illustrated. The thesis is concluded with a general discussion and future research proposals in chapter-8.

CHAPTER TWO

ELECTROMAGNETIC ENERGY AND STRESS IN CONDUCTING: MEDIA

2.1 Introduction

In this chapter a review has been carried out on electromagnetic energy and stress in conducting media. The energy flow has been shown to be governed by the well-known Poynting's theorem. A precise relationship between electromagnetic energy and electro-mechanical stress is found by mathematical reasonings and it is shown that the electromagnetic energy imparted in to a conductor manifests in the form of three different stresses viz, dielectric stress,magnetic stress,and thermal stress.

2.2 Electromagnetic energy in conducting media

When currents flow in a conductor as a result of the application of a suitable potential source, energy is expended by the source in maintaing the currents. The energy supplied by the source is stored in the electric and magnetic fields set up by the currents or propagated (radiated away) in the form of electromagnetic wave. Poynting's theorem introduces the energy balance equation among these different forms of energy. The time average power transmitted across a closed surface S is given by the integral of the real part of one-half of the real component of the complex epoynting vector , i,e
$P=\operatorname{Re}\left[\begin{array}{llll}1 / 2 & \left.\oint_{S} \overline{\mathrm{E}} \times \overline{\mathrm{H}}^{*} . \mathrm{d} \overline{\mathrm{s}}\right] \quad \ldots \quad \ldots & (2.1)\end{array}\right.$

Which represents the power flow density.

The complex Poynting vector theorem may be. derived from Maxwell's field equations which are :

$$
\begin{array}{lll}
\nabla \times \overline{\mathrm{E}}+\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}}=0 & \ldots & \ldots \\
\nabla \times \overline{\mathrm{H}}-\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}}=\overline{\mathrm{J}} & \ldots & \ldots \\
\nabla \cdot \overline{\mathrm{~B}}=0 & \ldots & \ldots \\
\nabla \cdot \overline{\mathrm{D}}=0 & \ldots & \ldots \tag{2.5}
\end{array}
$$

Now expanding the divergence of $\overline{\mathrm{E}} \times \overrightarrow{\mathrm{H}}^{*}$, we obtain,

$$
\nabla \cdot\left(\overrightarrow{\mathrm{E}} \times \overline{\mathrm{H}}^{*}\right)=(\nabla \times \overline{\mathrm{E}}) \cdot \overline{\mathrm{H}}^{*}-\left(\nabla \times \overrightarrow{\mathrm{H}}^{*}\right) \cdot \overrightarrow{\mathrm{E}} \cdot \ldots(?\{)
$$

With the help of equations (2.2) and (2.3), the right hand side of equation (2.6) can be written for fields varying as $e^{j w t}$

$$
\begin{equation*}
\nabla \cdot\left(\overline{\mathrm{E}} \times \overline{\mathrm{H}}^{*}\right)=-\mathrm{jw} \overline{\mathrm{~B}} \cdot \overline{\mathrm{H}}^{*}+j w \overline{\mathrm{D}}^{*} \cdot \overline{\mathrm{E}}-\overline{\mathrm{E}} \cdot \bar{J}^{*} \tag{2.7}
\end{equation*}
$$

where w is the angular frequency

The integration of this equation throughout a volume V bounded by a closed surface S gives,
$1 / 2 \int_{V} \nabla \cdot\left(\overline{\mathrm{E}} \times \overline{\mathrm{H}}^{*}\right) \mathrm{dV}$
$=1 / 2 \oint_{\mathrm{S}} \overline{\mathrm{E}} \times \overline{\mathrm{H}}^{*} \cdot \mathrm{~d} \overline{\mathrm{~S}}$
$=-j w / 2 \int_{V}\left(\bar{B} \cdot \bar{H}^{*}-\bar{E} \cdot \bar{D}^{*}\right) d V-1 / 2 \int_{V} \bar{E} \cdot \bar{J}^{*} d V \ldots$
where the divergence theorem has been used on the left-hand-side integral. The above result may be rewritten as
$1 / 2 \oint_{s} \cdot \vec{E} \times \bar{H}^{*} \cdot(-\mathrm{d} \overline{\mathrm{S}})$
$=2 j w \int_{V}\left(\frac{\overline{\mathrm{~B}} \cdot \overline{\mathrm{H}}^{*}}{4}-\frac{\overline{\mathrm{E}} \cdot \overline{\mathrm{D}}^{*}}{4}\right) \mathrm{dV}+1 / 2 \int_{v} \overline{\mathrm{E}} \cdot \bar{J}^{*} \mathrm{dV} \ldots(2.9)$
where $-d \bar{S}$ is a vector element of area directed into the volume V. If the medium in V is characterized by the parameters,
 of equation (2.9) may be equated to give
$\operatorname{Re} 1 / 2 \oint_{\mathrm{S}} \overline{\mathrm{E}} \times \overrightarrow{\mathrm{H}}^{*} \cdot(-\mathrm{d} \overline{\mathrm{S}})$
$=w / 2 \int_{\mathrm{V}}\left(\mathcal{H}^{*} \overrightarrow{\mathrm{H}} \cdot \overline{\mathrm{H}}^{*}+\epsilon^{\prime \prime} \overline{\mathrm{E}} \cdot \overline{\mathrm{E}}^{*}\right) \mathrm{dV}+1 / 2 \int_{\mathrm{V}} \sigma \overline{\mathrm{E}} \cdot \overline{\mathrm{E}}^{*} \mathrm{dV} \ldots(2 \cdot 10 \mathrm{a})$
$\operatorname{Im} 1 / 2 \oint_{s} \bar{E} \times \bar{H}^{*} \cdot(-\mathrm{d} \overline{\mathrm{S}})$
$=2 \mathrm{~W} \int_{\mathrm{V}}\left(\mu^{\prime} \cdot \overline{\mathrm{H}}_{\mathrm{H}} \overline{\mathrm{H}}^{*}-\epsilon^{\prime} \overline{\mathrm{E}} \cdot \overline{\mathrm{E}}^{*}\right) \mathrm{dV} \quad \ldots$... (2.10b)
Equation (2.10a) is interpreted to state that the real electromagnetic power transmitted through the closed surface S in to V is equal to the power loss produced by conduction current $\sigma \bar{E}$, resulting in Joule-heating plus the power loss resulting from polarization damping forces. But in case of a conductor since $\epsilon^{\prime \prime}$ and μ^{n} does not exist so no power loss will occur from polarization damping forces
The time average energy stored in the magnetic field is given by

$$
\mathrm{W}_{\mathrm{m}}=1 / 4 \int \mu \overline{\mathrm{H}} \cdot \overline{\mathrm{H}}^{*} \mathrm{dV} \ldots \cdot \ldots \text { (2.11) }
$$

and the time average energy stored in the electric field is
$W_{e}=1 / 4 \int_{V}^{\epsilon} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \overrightarrow{\mathrm{E}}^{*} \mathrm{dV} \quad \ldots \quad \ldots \quad \ldots \quad$ (2.12)

Equation (2.10b) states that the imaginary part of the complex rate of energy flow into V is equal to $2 w$ times the net reactive energy $W_{m}-W_{e}$ stored in the magnetic and electric fields in V.Now replacing the $j 2 w$ multiplier on the left hand side of equation(2.9) by the $\frac{\partial}{\partial t}$ operator and integrating with respect to time, the energy balance equation (2.9) will take the form :
$\int_{0}^{t} \int_{\mathrm{J}} \overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{H}}^{*} \cdot(-\mathrm{d} \overrightarrow{\mathrm{S}}) \mathrm{dt}$
$=1 / 2 \int_{v}\left(\mu \bar{H} \cdot \bar{H}^{*}-\epsilon \bar{E} \cdot \overline{\mathrm{E}}^{*}\right) \mathrm{d} V^{i}+\int_{v} \overline{\mathrm{E}} \cdot \overrightarrow{\mathrm{E}}^{*} \sigma^{t} d V \ldots$

The first integral on the right hand side accounts for the electromagnetic energy storage and the second integral accounts for energy in the form of Joule-heating 171

Let us suppose that a given solid or fluid body of matter is in static equilibrium under the action of specified system of applied forces . Within this body we isolate a finite volume V by means of a closed surface S,as indicated in fig 2.1 .

Fig. 2.1 A region. V bounded by a surface S in an elastic medium under stress.

Since equilibrium has been assumed for the body and all its parts, the resultant force \vec{F} exerted on the matter within S must be zero. Contributing to this resultant are volume or body forces and surface forces exerted by elements of matter just outside the enclosed region on contiguous elements within.

Throughout V, therefore, we suppose it to be distributed with a density \vec{f} per unit volume, while the force exerted by matter outside. S on a unit area of S will be represented by the vector \bar{t}. The components of $' \bar{t}$ are evidently normal pressures or
tensions and tangential shears [5].
The condition of translational equilibrium is expressed by the equation

$$
\begin{equation*}
\int_{v} \bar{f} d v+\int_{S} \bar{t} d a=0 \tag{2.14}
\end{equation*}
$$

To ensure rotational equilibrium it is necessary also that the resultant torque be zero, or

$$
\begin{equation*}
\int_{v} \bar{r} \times \bar{f} \cdot d v+\int_{S} \bar{r} x \bar{t} d a=0 \tag{2.15}
\end{equation*}
$$

where \bar{r} is the radius vector from an arbitrary orgin O to an element of volume or surface.

Let $\overline{\mathrm{n}}$ be the unit outward normal to an element of S . There are then three vectors $\bar{X}, \bar{Y}, \bar{Z}$ which satisfy the equations

$$
\begin{equation*}
\mathrm{t}_{\mathrm{x}}=\overline{\mathrm{x}} \cdot \overline{\mathrm{n}}, \quad \mathrm{t}_{\mathrm{y}}=\overline{\mathrm{Y}} \cdot \overline{\mathrm{n}}, \quad \mathrm{t}_{\mathrm{z}}=\overline{\mathrm{z}} \cdot \overline{\mathrm{n}} \tag{2.16}
\end{equation*}
$$

The expansion of the scalar products in the form:

$$
\begin{align*}
t_{x} & =x_{x} n_{x}+x_{y} n_{y}+x_{z} n_{z} \\
t_{y} & =y_{x} n_{x}+y_{y} n_{y}+y_{z} n_{z} \tag{2.17}\\
t_{z} & =z_{x} n_{x}+z_{y} n_{y}+z_{z} n_{z}
\end{align*}
$$

may also be interpreted as a linear transformation of the component of \bar{n} into the components of \bar{t}, the components n_{x}, n_{y}, n_{z} being the direction cosines of \bar{n} with respect to the coordinate axes. The equilibrium of the x-components of faces acting on matter within S is now expressed by

$$
\begin{equation*}
\int_{V} f_{x} d v+\int_{S} \bar{X} \cdot \bar{n} d a=0 \tag{2.18}
\end{equation*}
$$

which in virtue of the divergence theorem and the arbitrariness of V is equivalent to the condition that at all points within S :

$$
\begin{equation*}
\int_{\mathrm{f}}^{\boldsymbol{y}}+\nabla \cdot \overline{\mathrm{x}}=0 \tag{2.19}
\end{equation*}
$$

For the $Y \& Z$ components we have, likewise,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{y}}+\nabla \cdot \bar{y}=0, \mathrm{f}_{\mathrm{z}}+\nabla \cdot \bar{z}=0 \tag{2.20}
\end{equation*}
$$

The rotational equilibrium expressed by (2.15) imposes further conditions upon the nine components of the three vectors $\bar{X}, \bar{Y}, \bar{Z}$. The x-component of this equation is for example,

$$
\begin{equation*}
\int_{V}\left(y f_{z}-z f_{y}\right) d v+\int_{S}\left(y t_{z}-z t_{y}\right) d a=0 \tag{2.21}
\end{equation*}
$$

Introduction of the values of t_{z} and t_{y} defined in (2.1污) leads to

$$
\begin{equation*}
\int_{V}\left(y f_{z}-z f_{y}\right) d v+\int_{S}(y \bar{Z}-z \bar{Y}) \cdot \bar{n} d a=0 \tag{2.22}
\end{equation*}
$$

which again takes to the divergence theorem and the arbitraryness of V and is equivalent to

$$
\begin{equation*}
y f_{z}-z f_{y}+\nabla \cdot(y \bar{Z}-z \bar{Y})=0 \tag{2.23}
\end{equation*}
$$

But,
$\nabla \cdot(y \vec{Z})=y \nabla \cdot \bar{z}+z \cdot \nabla y=y \nabla \cdot \bar{z}+z y$

Equation (23), reduces to

$$
\begin{equation*}
\nabla y\left(f_{z}+\nabla \cdot \bar{z}\right)-z\left(f_{y}+\nabla \cdot \bar{Y}\right)+z_{y}-y_{z}=0 \tag{2.25}
\end{equation*}
$$

or, on taking account of (2.20),

$$
\begin{equation*}
z_{y}=Y_{z} \tag{2.26}
\end{equation*}
$$

In like manner there may be derived from the $y-\& z-$ components of (2.1迸) the symmetry relations

$$
\begin{equation*}
x_{y}=y_{x}, \quad x_{z}=Z_{x} \tag{2.27}
\end{equation*}
$$

The nine components $X_{x}, Y_{y} \ldots Z_{z}$, representing forces exerted on unit elements of area, are called stresses. In
diagonal terms X_{x}, Y_{y}, Z_{z} act in a direction normal to the surface element and are, therefore, pressures or tensions. The remaining six components are the shearing stresses acting in the plane of the element. These nine components constitute the components of a symmetrical tensor, as is evident from ($2.5 \bar{\gamma}$). and the fact that $\overline{\mathrm{t}}$ and $\overline{\mathrm{n}}$ are true vectors. Representing the components of the stress tensor by $S_{j k}$, where

$$
\begin{align*}
& \mathrm{X}_{\mathrm{x}}=\mathrm{s}_{11}, \mathrm{X}_{\mathrm{y}}=\mathrm{s}_{12}, \ldots, \\
& \mathrm{Y}_{\mathrm{x}}=\mathrm{s}_{21}, \mathrm{Y}_{\mathrm{z}}=\mathrm{s}_{23} \cdots \cdots \mathrm{Z}_{\mathrm{z}}=\mathrm{s}_{33} \tag{2.28}
\end{align*}
$$

2.4 Blectromagnetic Forces on Charges and Currents:

The electric field E at a point (in its vicinity) is defined, as the force experienced by a unit point charge placed at that point. In vector notation the definition of $\overline{\mathrm{E}}$ becomes

$$
\overline{\mathrm{E}} \quad=\overline{\mathrm{F}}_{\mathrm{e}} / \mathrm{q} \quad \ldots \quad \ldots(2.29)
$$

Now if we suppose that the charge is distributed throughout a volume V with a macroscopically continuous charge density, then the net mechanical force acting on the charge is

$$
\begin{equation*}
\overline{\mathrm{F}}_{\mathrm{e}}=\int_{V} \rho \overline{\mathrm{E}} d v \tag{2.30}
\end{equation*}
$$

distributed with a volume density

$$
\begin{equation*}
\bar{f}_{e}=\rho^{\bar{E}} \tag{2.31}
\end{equation*}
$$

Again for the purpose of defining the magnetic induction
it is convenient to define $\quad \bar{f}_{m}$ the magnetic force per unit volume(frequently called the Lorentz force), as that part of a force exerted on moving charge density(coul/m ${ }^{3}$), which is neither electrostatic nor mechanical.The magnetic induction or magnetic flux density vector), \bar{B} is then defined as the vector which satisfies

$$
\begin{equation*}
\overline{\mathbf{f}}_{m}=\rho \overline{\mathrm{v}} \times \overline{\mathrm{B}} \tag{2.32}
\end{equation*}
$$

where, $\rho=$ the charge density in coul/m ${ }^{3}$
$\overline{\mathrm{v}}=$ the velocity vector of the charge in $\mathrm{m} / \mathrm{sec}$.
hence, $\rho \bar{v}=\bar{i}=$ current density in A / m^{2}
Thus $\quad \bar{f}_{m}=\bar{i} \times \bar{B}$
Equation (2.33) represents the force exerted by the magnetic field on a unit volume element of current. Taking volume integral of equation(2.33) leads to
$\bar{F}_{m}=\int_{V} \vec{i} \times \vec{B} d v$
where, $\bar{F}_{m}=$ the net force exerted on a volume distribution of current.

2.5

Electromagnetic Stress in a Conducting Medium:
Referred to the energy balance equation (2.13), deduced earlier in section 2.2 , the first term within the integration sign on the right hand side, expresses the energy density stored per unit volume due to electric field. Dimensionally it is the force per unit area or a stress due to the electric forces within the system. Similarly the second term repressents a stress due to
magnetic forceg. The third term gives the volumetric energy density dissipated in the form of heat (as is known form Joule's law of electric heating) ; in otherwords this is the value of the thermal stress developed in a conductor due to the flow of electric current. The minus sign on the left hand side of equation (2.13) indicates that all the net energy term expressed by the right hand side of relation (2.13) must have been supplied externally. Thus the term on the left represents the energy flow into a unit volume of the system, where it is converted into electric, magnetic and thermal stresses. A detailed analysis is made by Stratton [:5], where it is shown that the magnitude of the stress due to electric field is

$$
\begin{equation*}
\left|\bar{t}^{(e)}\right|=1 / 2 \in E^{2} \tag{2.35}
\end{equation*}
$$

and in vector notation it is given by,

$$
\begin{equation*}
\theta \bar{t}^{(e)} \eta=\bar{s}^{(e)} \cdot \bar{n} \tag{2.36}
\end{equation*}
$$

where $\bar{S}(e)=$ the electric stress tensor like that mentioned in article 2.3 and the elements of this tensor are shown in table2.1

```
Table - 2.1 Components }\mp@subsup{S}{jk}{(e)}\mathrm{ of the Tensor }\mp@subsup{\hat{S}}{}{(e)
```

$j \backslash k$	1	$\in E_{x} E_{y}$	3
1	$\in\left(E_{x}^{2}-1 / 2 E^{2}\right)$	$\in E_{x} E_{z}$	
2	$\in E_{y} E_{x}$	$\in\left(E_{y}^{2}-1 / 2 E^{2}\right)$	$\in E_{y} E_{z}$
3	$\in E_{x} E_{x}$	$\in E_{z} E_{y}$	$\in\left(E_{z}^{2}-1 / 2 E^{2}\right)$

The magnitude of the stress due to magnetic field, is given by ,

$$
\begin{equation*}
\left|\bar{t}^{(m)}\right|=1 / 2 \mu \mathrm{H}^{2} \tag{2.37}
\end{equation*}
$$

and in vector notation it is given by,

$$
\begin{equation*}
D E^{(m)} O=\hat{S}^{(m)} \cdot \vec{n} \tag{2.38}
\end{equation*}
$$

where $\hat{S}^{(m)}=$ the magnetic stress tensor corresponding to magnetic field whose elements are shown in table 2.2

Table - 2.2 Components $s_{j k}^{(m)}$ of the Tensor $\hat{S}^{(m)}$

$j \backslash k$	1	2	
i	$1 / \mu\left(B_{x}^{2}-1 / 2 B^{2}\right)$	$1 / \mu B_{x} B_{y}$	$1 / \mu B_{y} B_{z}$
2	$1 / \mu B_{y} B_{x}$	$1 / \mu\left(B_{y}^{2}-1 / 2 B^{2}\right)$	$1 / 4 B_{y} B_{z}$
3	$1 / \mu B_{z} B_{x}$	$1 / \mu B_{z} B_{y}$	$1 / \mu\left(B_{z}^{2}-1 / 2 B^{3}\right.$

Similarly from equation (2.13), the magnitude of the stress due to Joule-heating is

$$
\begin{equation*}
\left|t^{-(t h)}\right|=\int \Omega E^{2} t \tag{2.39}
\end{equation*}
$$

and in vector notation it is given by,

$$
\begin{equation*}
\int t^{(t h)} 0=\vec{S}^{(t h)} \cdot \bar{n} \tag{2.40}
\end{equation*}
$$

where $\widehat{S}^{(e)}=$ the stress tensor corresponding to Jouleheating whose elements are tabulated below:

Table - 2.3 Components $S_{j k}^{t h}$ of the Tensor $\widehat{S}^{(h)}$.

From equation (2.40) it is observed that the stress due to Joule-heating (Ohmic dissipation) on the system increases steadily with time ${ }_{p} t$.

But as the Ohmic loss manifests in the form of heat, temperature of the system rises. This in turn expresses that the temperature as well as the elastic strain resulting from thermal stress will tend towards infinity for an unlimited period of energy transmission through the system. But it is not so in practice. What happens usually is that an energy balance occurs amongst the heat developed, convection and radiation from the surface of the system.

For example in case of a conductor, an energy balance on'a unit volume of it results in a governing equation given by Black and Byrd [4],

$$
\begin{equation*}
m C_{p} \frac{d T}{d t}=Q_{\text {gen }}+Q_{\text {sun }}-Q_{r a d}-Q_{\text {conv }} \tag{2.41}
\end{equation*}
$$

where, $Q_{\text {gen }}=$ the rate of heat generation per unit volume of the conductor due to the ohomic dissipation in it $=\overline{\mathrm{E}} \cdot \overline{\mathrm{J}}=\sigma \overline{\mathrm{E}} \cdot \overline{\mathrm{E}}=\sigma \mathrm{E}^{2} \quad$ (2.42)
$Q_{\text {sun }}=t h e$ rate of heat absorbed by the conductor per unit volume from solar irradiation.

Qrad $=$ the rate of heat radiated away from the surface of the unit volume of the conductor.
$Q_{\text {conv }}=t h e$ rate of heat passing away from the surface of the unit volume of the conductor by convection.

Putting the various representative data of the ambient condition, solar absorptivity of the conductor, solar flux, infrared emissivity convective heat transfer co-efficient in the first order ordinary non-linear differential equation (2.41) and solving the equation employing the standard numerical technique such as Runge-Kutta method, a value for the conductor temperature at discrete time intervals can be provided to plot a curve of the form shown in Fig. 2.2.

Fig. 2.2 Time constant of linnet condueter

The time constant of the conductor is the time required for the conductor to reach 63% of its ultimate steady state temperature rise when subject to change in current. The time constant for a Linnet conductor is calculated to be approximately 8 minutes by Black and Byrd [4] : .

From the figure it is evident that the temperature starts rising with current but for a short duration; when it reaches a definite value, all the generated heat due to Ohmic
loss and absorbed heat from solar flux is dissipated in the surrounding atmosphere through radiation and convection processes.
2.6 Discussion

Energy stored in a system due to electric and magnetic field and so with the case of stress due to electric field and stress due to magnetic field is found to be independent of time. But the Ohmic loss, i,e. the stress due to Joule-heating is time dependent up to a certain interval after switching on and finally a steady state temperature is reached. In article 2.3 it is shown that the body forces and surface forces exerted by elements of matter on its contiguous elements within a material under static equilibrium, form stress tensors and their equivalent electromagnetic stresses are discussed in article 2.4 and 2.5.

CHAPTER THRER

ELECTROMAGNETIC FIELDS IN CONDUCTING MEDIA

Stress distribution inside a conductor is dependent on time as well as spatial distribution of current inside a conductor. Hence it is of practical importance to be familiar with the current distribution inside a conductor. It is wellknown that the current distribution is not uniform throughout the conductor in case of alternating fields and it is of further interest to know the current distribution inside a conductor during switching period. Complete solution of diffusion equation is enough to have an idea of both spatial and time dependence of the current density inside a conductor. From the generalized wave equation electromagnetic field penetration and current diffusion is stated inside a cylindrical conductor of infinite length by solving the diffusion equation for it.
3.2 The Equations for Fields in a Conducting Medium Electromagnetic fields in a conducting medium are governed by the equations:

$$
\begin{align*}
\nabla \times \overline{\mathrm{E}} & =-\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}} \tag{3.1}\\
\nabla \times \overline{\mathrm{H}} & =\bar{i}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}} \tag{3.2}\\
\overline{\mathrm{D}} & =\epsilon \overline{\mathrm{E}} \tag{3.3}\\
\overline{\mathrm{~B}} & =\mu \overline{\mathrm{H}} \tag{3.4}\\
\overline{\mathrm{i}} & =\sigma \mathrm{E} \tag{3.5}\\
\nabla \cdot \overline{\mathrm{~B}} & =0 \tag{3.6}\\
\nabla \cdot \overline{\mathrm{D}} & =\rho \tag{3.7}
\end{align*}
$$

For a homogeneous medium μ, ϵ and σ are independent of
position so that

$$
\begin{align*}
& \nabla \cdot \overline{\mathrm{H}}=0 \tag{3.8}\\
& \nabla \cdot \overline{\mathrm{D}}=\epsilon \nabla \cdot \overline{\mathrm{E}} \tag{3.9}\\
& \nabla \cdot \overline{\mathrm{i}}=\sigma \nabla \cdot \overline{\mathrm{E}} \tag{3.10}
\end{align*}
$$

Taking divergence of equation (3.2)

$$
\begin{equation*}
\nabla \cdot \bar{i}+\frac{\partial}{\partial t}-(\nabla \cdot \overline{\mathrm{D}})=0 \tag{3.11}
\end{equation*}
$$

Then by equation (3.3) and equation (3.7) it becomes

The solution

$$
\begin{equation*}
\frac{\partial \rho}{i_{i}}+\frac{\sigma}{\epsilon} \rho \quad=0 \tag{3.12}
\end{equation*}
$$

$$
\rho=\rho_{0} e^{-\frac{\sigma}{\epsilon} t}
$$

$$
(3.13)
$$

where ρ_{0} is the initial charge density at $t=0$. As the factor σ / ϵ is very large for a conductor , then any charge concentration in the conductor dies out quickly. Hence in a conductor it is approximately such that

$$
\begin{equation*}
p=0 \tag{3.14}
\end{equation*}
$$

Then by equations (3.3), (3.7) and (3.14)

$$
\begin{equation*}
\nabla \cdot \bar{E}=0 \tag{3.15}
\end{equation*}
$$

However, this is exact for fields varying as $E=E_{o} e^{j w t}$. Taking curl of equation (3.1) and by equations (3.2), (3.3) and (3.5)

$$
\begin{equation*}
\nabla \times \nabla \times \vec{E}=-\mu \frac{\partial}{\partial t}\left(\sigma \bar{E}+\epsilon \frac{\partial \bar{E}}{\partial t}\right) \tag{3.16}
\end{equation*}
$$

The vector identity

$$
\begin{equation*}
\nabla \times \nabla \times \bar{E}=\nabla(\nabla \cdot \bar{E})-\nabla^{2} \overline{\mathrm{E}} \tag{3.17}
\end{equation*}
$$

is now used to obtain

$$
\begin{equation*}
\nabla(\nabla \cdot E) \quad-\nabla^{2} E=-\mu \sigma \frac{\partial \bar{E}}{\partial t} \quad-\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}} \tag{3.18}
\end{equation*}
$$

Equation (3.i5) is used to eliminate ∇.E, and by regrouping terms we obtain

$$
\begin{equation*}
\nabla^{2} \bar{E}-\mu \in \frac{\partial_{\bar{E}}^{2}}{\partial t^{2}}-\mu \sigma \frac{\partial \bar{E}}{\partial t}=0 \tag{3.19}
\end{equation*}
$$

Similar relationships can be obtained for magnetic. field $\overline{\mathrm{H}}$ and current density, $\overline{\mathrm{i}}$

$$
\begin{align*}
& \nabla^{2} \overline{\mathrm{H}}-\mu \in \frac{\partial^{2} \bar{H}}{\partial t^{2}}-\mu \sigma \frac{\partial \bar{H}}{\partial t}=0 \tag{3.20}\\
& \nabla^{2} \bar{i}-\mu \in \frac{\partial^{2} \bar{i}}{\partial t^{2}}-\mu \sigma \frac{\partial \bar{i}}{\partial t}=0 \tag{3.21}
\end{align*}
$$

Equations (3.19)-(3.21) are the generalized equations for fields in a conducting medium. For ac fields varying as $e^{j w t}$ and for a good conductor with $\sigma \gg \omega \epsilon$ the above equations reduce to

$$
\begin{align*}
\nabla^{2} \overline{\mathrm{E}} & =\mu \sigma \frac{\partial \overline{\mathrm{E}}}{\partial \mathrm{t}} \tag{3.22}\\
\nabla^{2} \overline{\mathrm{H}} & =\mu \sigma \frac{\partial \overline{\mathrm{H}}}{\partial \mathrm{t}} \tag{3.23}\\
\nabla^{2} \overline{\mathrm{i}} & =\mu \sigma \frac{\partial \overline{\mathrm{I}}}{\partial \mathrm{t}} \tag{3.24}
\end{align*}
$$

These are the familiar forms of equations describing a diffusion process indicating that medium and low frequency fields in a conductor are subject to diffusion.

3.3 Application to a Cylindrical Conductor

Equation (3.23) in cylindrical coordinates can be written as :

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial p}\left(r \frac{\partial \bar{i}}{\partial p}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \bar{i}}{\partial \phi^{2}}+\frac{\partial^{2} \bar{i}}{\partial z^{2}}=\mu \sigma \frac{\partial \bar{i}}{\partial t} \tag{3.25}
\end{equation*}
$$

For axial symmetry $\frac{\partial \bar{i}}{\partial \phi}=0$ and for an infinitely long conductor , there will be no variation of i along the z-direction
i, e $\frac{\partial i}{\partial z}=0$, hence for straight cylindrical conductor of infinite length we can write,

$$
\begin{equation*}
\frac{1}{p} \frac{\partial}{\partial r}\left(r \frac{\partial i}{\partial r}\right)=\mu \sigma \frac{\partial i}{\partial t} \tag{3.26}
\end{equation*}
$$

Equation (3.26) will have a solution of the form :

$$
\begin{equation*}
i=i_{s . s}+i_{t r} . \tag{3.27}
\end{equation*}
$$

where $\mathrm{i}_{\mathrm{s} . \mathrm{s}}=$ steady-state current density to be given by the particular solution of a differential equation.
$i_{t r}$. $=$ transient current density to be given by the complementary function of the differential equation.

Fig. 3.1 A solid cylindrical conductor of circular cross-section with its axis along the $z-$ direction and of radius r_{0}

3.3.1 Steady-state Current Distribution

Assuming sinusoidally time varying current of the form, i
$=i_{0} e^{i \omega t}$ equation (3.26) becomes,

$$
\begin{align*}
& \frac{\partial^{2} i}{\partial r^{2}}+\frac{1}{r} \frac{\partial i}{\partial r}=j \omega \mu \sigma i \\
& \frac{\partial^{2} i}{\partial r^{2}}+\frac{1}{r} \frac{\partial i}{\partial r}+T^{2} i=0 \tag{3.28}
\end{align*}
$$

where,

$$
\dot{T}=j^{-1 / 2} \sqrt{\omega / \mu \sigma}=j^{-1 / 2} \sqrt{2} / \delta
$$

where, $\cdots \delta=\frac{1}{\sqrt{\pi f / \mu \sigma}}$
Equation (3.28) has exactly the form of the zero order Bessel equation although T is complex. A complete solution may be written astral,

$$
\begin{equation*}
i=A J_{0}(\operatorname{Tr})+\mathrm{BN}_{0}(\operatorname{Tr}) \tag{3.29}
\end{equation*}
$$

where J_{o} and N_{o} are zero order Bessel and Neman functions respectively. Since Neuman function of order zero would become infinite at $r=0$, then

$$
\begin{equation*}
i=A J_{0}(T r) \tag{3.30}
\end{equation*}
$$

The arbitrary constant A may be evaluated in terms of current density at the surface. Let

$$
i=i_{o} \quad \text { at } \quad \mathbf{r}=r_{0}
$$

Then from equation (3.30)

$$
\begin{align*}
A & =i_{0} / J_{0}\left(T r_{0}\right) \tag{3.31}\\
\text { and } \quad i & =i_{0} J_{0}(T r) / J_{0}\left(T r_{0}\right) \tag{3.32}
\end{align*}
$$

Now expressing the Bessel's function of order zero of first kind as a series in ascending powers of the argument,

$$
\begin{aligned}
J_{0}(T r)=1 & +j \omega \mu \sigma \frac{r^{2}}{2^{2}}-(\omega \mu \sigma)^{2} r^{4} / 2^{2} \times 4^{2} \\
& +j(\omega \mu \sigma)^{3} r \sigma / 2^{2} \times 4^{2} \times 6^{2}
\end{aligned}
$$

(3.33)

When the series (3.33) is separated into a series of real and a series of imaginary terms, each series is a modified form of Bessel.'s function. Separating the real and imaginary terms and substituting

$$
\begin{equation*}
m=\sqrt{\omega / 4 \sigma}=\sqrt{2} / \delta \tag{3.34}
\end{equation*}
$$

We obtain

$$
\begin{align*}
& J_{0}(T r)=\left[1-\frac{(m p)^{4}}{2^{2} \times 4^{2}}+\frac{(m p)^{8}}{2^{2} \times 4^{2} \times 6^{2} \times 8^{2}}-\cdots\right. \\
&+j\left[\frac{(m p)^{2}}{2^{2}}-\frac{(m p)^{6}}{2^{2} \times 4^{2} \times 6^{2}}\right. \\
&= \operatorname{Ber}(m r)+j \operatorname{Bei}(m r) \tag{3.35}
\end{align*}
$$

Where, the terms 'Ger' and 'Bi' are abbreviation for "Bessel real of order zero" and "Bessel imaginary" of order zero.
ie.

$$
\begin{equation*}
\operatorname{Ber}(m r)=1-\frac{(m r)^{4}}{2^{2} \times 4^{2}}+\frac{(m r)^{8}}{2^{2} \times 4^{2} \times 6^{2} \times 8^{2}}-\cdots \tag{3.36}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Bei}(m r)=\frac{(m p)^{2}}{2^{2}}-\frac{(m r)^{6}}{2^{2} \times 4^{2} \times 6^{2}}+\cdots \tag{3.37}
\end{equation*}
$$

Hence the steady state solution of the diffusion equation for a cylindrical conductor of infinite length and having circular corss section is given by

$$
\begin{equation*}
i_{s s}(r)=i_{o} \frac{\operatorname{Ber}(m r)+j \operatorname{Bei}(m r)}{\operatorname{Ber}\left(m r_{o}+j \operatorname{Bei}\left(m r_{o}\right)\right.} \tag{3.38}
\end{equation*}
$$

or, $\quad i_{s s}(r)=i_{o} \frac{\operatorname{Ber}\left(\frac{\sqrt{2} r}{\Delta}\right)+j \operatorname{Bei}(\sqrt{2 r} / \Delta)}{\operatorname{Ber}\left(\frac{\sqrt{2} r_{0}}{\delta}\right)+j \operatorname{Bei}\left(\frac{\sqrt{2} r}{2}{ }_{0}\right)}$
$i_{s s}(r)$ represents the current density at a radial distance r from the axis of the conductor.

From equations (3.34) and (3.38) it is clear that the steady-state current distribution is a function of frequency of operation , depth of penetration ' δ ' and the radius of the cylindrical conductor . The radial distribution of steady-state current at. different frequencies is shown in Fig 3.2.

r
Fig. 3.2 Steady-state current distribution in cylindrical. wire at different frequencies for 4 mm diameter aluminium wire of conductivity $\sigma=3.58 \times 10^{7}(\Omega-m)^{-1}$

At low frequencies the current density is almost uniform throughout the cross-section but as the frequency is increased, the current distribution predominates towards the surface. This effect is more pronounced for thick conductors i,e, for higher values of the ratio r_{o} / δ.

3.3.2 Transient Current Distribution

Let the transient solution of diffusion equation be of the form:

$$
\begin{equation*}
i_{t r}=f(r) e^{-k t} \tag{3.39}
\end{equation*}
$$

where, $f(r)$ is an arbitrary function representing the radial distribution and $e^{-k t}$ represents the exponentially decaying nature of the transient current, k is an arbitrary constant.

Now substituting i from equation (3.39) in the diffusion equation (3.26) we get,
$\frac{1}{r} \frac{\partial}{\partial r}\left\{p \frac{\partial}{\partial r} f(r)\right\}=-k \mu \sigma f(r)$
or, $\quad \frac{\partial^{2} f(r)}{\partial r^{2}}+\frac{1}{r} \frac{\partial f(r)}{\partial r}+\tau^{2} f(r)=0$
where,

$$
\begin{equation*}
\tau=\sqrt{k / \mu \sigma} \quad \text { i.e, } k=\tau^{2} / 4 \sigma \tag{3.41}
\end{equation*}
$$

A direct comparison of (3.40) with equation (3.28) shows that both have exactly the form of zero order Bessel equation, here \tilde{T} is real ; hence the solution will be of the form:

$$
\begin{equation*}
\mathrm{f}(\mathrm{r})=\mathrm{CJ}(\operatorname{Tr})+\mathrm{DY}_{0}(\boldsymbol{T r}) \tag{3.42}
\end{equation*}
$$

With a similar reasoning as mentioned earlier D must be zero and hence,

$$
\begin{equation*}
f(r)=C J_{0}(T r) \tag{3.43}
\end{equation*}
$$

$$
\begin{align*}
i_{t r}= & C J_{0}(T r) e^{-k t} \\
& =C J_{0}(T r) e^{-\tau^{2} / \mu \sigma t} \tag{3.44}
\end{align*}
$$

The general solution of the diffusion equation is the sum of the transient solution and the steady state solution i.e.

$$
\begin{equation*}
i(r, t)=i_{t r}(r, t)+i_{s s}(r, t) \tag{3.45}
\end{equation*}
$$

Now we assume a boundary condition that the total current density will be zero everywhere at $t=0$, except at the surface, where it is such that

$$
i\left(r_{0}, 0\right)=i_{0} .
$$

comparing this with equations (3.45) and (3.38) it follows that

$$
\begin{equation*}
i_{t r}\left(r_{0}, 0\right)=0 \tag{3.46}
\end{equation*}
$$

Also it is such that

$$
\begin{array}{rlr}
i_{t r}(r, 0) & =-i_{s s}(r, 0) & 0<r<r_{o} \\
& \left.=-i_{0} \frac{J_{0}(\sqrt{-j \omega) / \sigma} r)}{J_{0}\left(\sqrt{-j \omega / \mu \sigma} r_{0}\right.}\right)
\end{array}
$$

Now applying the condition (3.46) in equation (3.44) we get,

$$
\begin{aligned}
J_{o}\left(\mathcal{T} r_{o}\right. &)=0 \\
\text { or, } \mathcal{J} r_{o} & =P_{m}
\end{aligned}
$$

where, P_{m} is the moth root of the equation $J_{o}(v)=0$
it readily follows that

$$
\begin{equation*}
\tau=\mathrm{P}_{\mathrm{m}} / \mathrm{r}_{\mathrm{o}} \tag{3.48}
\end{equation*}
$$

So the transient current density will be given by the series.

$$
\begin{equation*}
i_{t r}(r)=\sum_{m=1}^{\infty} c_{m} J_{o}\left(\frac{P_{m} r}{r_{0}}\right) e^{-P_{m}^{2} t / r_{0}^{2} \mu \sigma} \tag{3.49}
\end{equation*}
$$

This solution is analogous to the solution of heat diffusion equation for a cylindrical conductor [9].

Now at $t=0$,

$$
\begin{equation*}
i_{t r}(r, 0)=\sum_{m=1}^{\infty} C_{m} J_{o}\left(\frac{P_{m} P}{r_{0}^{0}}\right) \tag{3.50}
\end{equation*}
$$

The co-effient $\quad C_{m}$ may be evaluated in a manner similar to that used for Fourier co-efficients by multiplying each term of (3.50) by $r J_{o}\left(P_{m} r / r_{o}\right)$ and integrating from o to r.

Then from the orthogonality of Bessel function

$$
\begin{equation*}
\int_{0}^{r_{0}} r J_{o}\left(P_{m} r / r_{o}\right) J_{o}\left(P_{q} r / r_{o}\right) d r=0 \quad \text { for }\left(P_{m} \neq P_{q}\right) \tag{3.51}
\end{equation*}
$$

all the terms on the right disappear except the mth term i.e,

$$
\begin{align*}
& \int_{0}^{r_{0}} r i_{t r}(r, 0) J_{o}\left(P_{m} r / r_{o}\right) \\
& =\int_{0}^{r_{0}} C_{m} r\left[J_{o}\left(P_{m} r / r_{o}\right)\right]^{2} d r \tag{2}
\end{align*}
$$

Again we can write, [10]

$$
\int_{0}^{r_{0}} J_{o}^{2}\left(P_{m} r / r_{o}\right) d r=\frac{r_{o}^{2}}{2} J_{1}^{2}\left(P_{m}\right)
$$

so from equation (3.52)

$$
\begin{aligned}
& \quad \int_{0}^{r_{0}} r i_{r}(r, 0) J_{o}\left(P_{m} r / r_{o}\right) d r=C_{m} r_{o}^{2} J_{1}^{2}\left(P_{m}\right) \\
& \text { or, } \quad C_{m}^{2}=\frac{2}{r_{o}^{2} J_{1}^{2}\left(P_{m}\right)} \int_{0}^{r_{0}} r_{t r}(r, 0) J_{o}\left(P_{m} r / r_{o}\right) d r
\end{aligned}
$$

Now substituting $i_{t r}(r, 0)$ by equation (3.47)

$$
\begin{equation*}
\text { where, } \quad \alpha=\sqrt{-j \mu / 4 \sigma} \text { and } \beta=P_{m} / r_{o} \tag{3.54}
\end{equation*}
$$

Now applying the identity :

$$
\int v R_{y}(\alpha v) R_{y}(\beta v) d v=\frac{v}{\alpha^{2}-\beta^{2}}\left[\beta R_{y}(\alpha v) R_{\nu-1}(\beta v)-\alpha R_{\lambda}(\alpha v) R_{\nu}(\beta v)\right]
$$

$R \nu$ denotes $J \nu, N\rangle, H \geqslant$ or $H_{\nu}^{(2)}$, for the definite integral of the R.H.S of equation (3.53) we have j_{j}

$$
\int_{0}^{r_{0}} P J_{0}(a r) J_{0}(\beta r) d p=\frac{r_{0}^{2}}{\alpha^{2}-\beta^{2}}\left[\beta J_{0}\left(\alpha r_{0}\right) J_{-1}\left(\beta r_{0}\right)-\alpha J_{-1}\left(\alpha r_{0}\right) J_{0}\left(\beta r_{0}\right)\right]_{(3.56)}
$$

$$
\begin{equation*}
\text { But } J_{-1}(x)=-J_{1}(x) \tag{3.57}
\end{equation*}
$$

Hence the coefficient C_{m} becomes :

$$
C_{m}=\frac{-2 i_{0} r_{0}}{J\left(\sqrt{-j \omega / r^{2}}\right) r_{0}{ }^{2} J_{1}^{2}\left(P_{m}\right)}\left[\alpha J_{1}\left(\alpha r_{0}\right) J_{0}\left(\beta r_{0}\right)-J_{0}\left(\alpha r_{0}\right) J_{1}\left(\beta r_{0}\right)\right]
$$

Now according to the definition of P_{m}. and from equation (3.54)

$$
J_{0}\left(\beta r_{0}\right)=J_{0}\left(P_{m}\right)=0
$$

and $\quad J_{0}\left(\boldsymbol{a} r_{0}\right)=J_{0}\left(j \sqrt{j \omega \mu \sigma} r_{0}\right)=I_{0}\left(\sqrt{j \omega \mu \sigma} r_{0}\right)$
and $\quad J_{,}\left(\beta r_{0}\right)=J_{1}\left(P_{m}\right) ; \quad \alpha^{2}-\beta^{2}=-j \omega \mu \sigma-P_{m}^{2} / r_{0}^{2}$
So substituting from equation (3.57) in equation (3.58).

$$
C_{m}=\frac{-2 i_{0} P_{m}}{J_{1}\left(P_{m}\right)\left[P_{m}^{2}+j \omega \mu \sigma r_{o}^{2}\right]}
$$

Therefore the transient current density distribution becomes :

$$
i_{t r}=-2 i_{o} \sum_{m=1}^{\infty} \frac{P_{m} J_{o}\left(P_{m} r / r_{o}\right) \exp \left[-\left(P_{m} r / r_{o}\right)^{2} t / \mu \sigma\right]}{J_{1}\left(P_{m}\right)\left[P_{m}^{2}+j \omega \mu \sigma r_{o}{ }^{2}\right]}
$$

Considering an aluminium wire of radius 4 mm , the transient current density at different time after switching is studied and is shown in fig 3.3

Fig. 3.3 Radial distribution of transient current (ac 50 Hz) at different time after switching. $\mathrm{r}=4 \mathrm{~mm}, \quad \sigma=3.54 \times 10^{7}\left(\Omega-\mathrm{m}^{-1}, \quad \mathrm{~m}=21\right.$.

For $A C$ at power frequency it is observed that the transient current die out within several hundred micro-sec. The transient current density at the surfacè remains zero but that at the axis is at a maximum till the dying out of the transient current except up to a few micro-sec after switching while it oscillates inside the conductor. In equation (3.60) the sum has been carried out for upto $m=21$ and for higher values of m the exponential term die out rapidly. As the frequency is increased the pattern of the transient current distribution changes widely. This can be observed from comparison of fig 3.3 with fig 3.4 .

Fig. 3.4 Radial Distribution of Transient current (AC 15 kHz) At Different Time after Switching

It is found that the process of dying out of the transient current at higher frequencies occurs more rapidly than that for low frequency. Further for a few micro-sec after switchigg . the current distribution is found to be terminated towards the surface rather than near the axis.

Expression of total current density

Substitutions from equation (3.39) and equation (3.59) in equation (3.45) gives the expression for total current density as a function of time and radius.

$$
\begin{aligned}
& \left.i(r, t)=-2 i_{o} \sum_{m=1}^{\infty} \frac{P_{m} J_{o}\left(P_{m} r / r_{o}\right) \exp \left[-\left(P_{m} r / r_{o}\right)^{2} t / K \sigma\right]}{J_{1}\left(P_{m}\right)\left[P_{m}^{2}+j \omega \mu \sigma r_{o}^{2}\right]}\right) \\
& \\
& +i_{o} \frac{\operatorname{Ber}(m r)+j B e i(m r)}{\operatorname{Ber}\left(m r_{o}\right)+j B e i\left(m r_{o}\right)} e^{j w t}
\end{aligned}
$$ after switching is plotted in fig 3.5 .

Fig. 3.5 Radial distribution of total current (ac 50 Hz) at different time after switching.

Since for $A C 50 \mathrm{~Hz}$ the steady state current distribution is almost uniform throughout the cross-section of the conductor, The total current which is the algebraic sum of the transient current and the steady-state current is found to have similar prittern like the transient one elevated by unity. The surface current density remains unity throughout the period while the current distribution inside the conductor rises from zero to unity after a few hundreds of micro-sec.

Transient Current for Static Field (D.C):

In case of static, time invariant field-it is quite evident that the operating frequency is zero i.e. putting $w=0$ in equation (3.59) we get the Bessel co-efficient

$$
\begin{equation*}
c_{m}=\frac{-2 i_{o} P_{m}}{P_{m}^{2} J_{1}\left(P_{m}\right)} \tag{3.62}
\end{equation*}
$$

Hence the transient current distribution will be given by:

$$
\begin{equation*}
i_{t r}=-2 i_{o} \sum_{m=1}^{\infty} \frac{\vdots: J_{o}\left(P_{m} r / r_{o}\right) \exp \left[-\left(P_{m} r / r_{0}\right)^{2} t / \mu \sigma\right]}{P_{m} J_{1}\left(P_{m}\right)} \tag{3.63}
\end{equation*}
$$

Since the steady state current distribution is uniform through out the conductor for d.c, so if I be the total current, the surface current density is given by

$$
\begin{equation*}
i_{0}=I / \pi r_{o}{ }^{2} \tag{3.64}
\end{equation*}
$$

and transient current density as a function of time and radius is therefore:

$$
\begin{equation*}
i_{t r}=-\frac{2 I}{\pi r_{o}^{2}} \sum_{m=1}^{\infty} \frac{\therefore J_{o}\left(P_{m} r / r_{o}\right) \exp \left[-\left(P_{m} r / r_{o}\right)^{2} t / \mu \sigma\right]}{P_{m} J_{1}\left(P_{m}\right)} \tag{3.65}
\end{equation*}
$$

Fig. 3.6 Radial distribution of transient current dc at different time after switching.

In case of $D C$ (fig 3.6) the process of dying out of the transient current is found to be slower than that in case of $A C$, but like $A C$ up to few micro-sec after switching the transient current distribution is oscillatory inside the conductor remaining zero at the surface . Later on the oscillation ceases and the distribution pattern assumes the shape of a parabola with its vertex at the axis, i, e, the transient current density is maximum there .

Fig. 3.7 Radial distribution of total current (DC). at different time after switching.

In fig 3.7 the total current distribution for $D C$ is shown. The curient distribution, is found to increase with oscillations(initially) inside the conductor to unity while the surface current density is unity throughout the time. So several hundreds of micro-sec later the transient current dies out and the total current distribution becomes uniform all over the conductor cross-section.

3.6 Disucssion

Electromagnetic field penetration in a conducting medium is characterized by diffusion equation and in article 3.2 it is demonstrated that the current density abide by the diffusion equation inside a conducting medium. So in two consecutive articles solution of diffusion equation is accomplished for cylindrical conductors of infinite length. In case of low frequency ac, the switching transient current density is found to be maximum near the axis and zero at the surface. With the increase in frequency the peak current density shifts towards the surface, yet the surface current density remains zero. Though direct current is distributed uniformly throughout the crosssection during steady state condition but switching(transient). current is distributed in a separate fashion as is shown in fig. 3.6. In the following chapters these current distributions will be used to observe the pattern of stress distributions.

CHAPRTER FOUR

CALCULATION OE DIELECTREC STNRESS
 IN A CONDUCTOR DURE TO ELECTRRIC EIELD

Introduction

A charge in an electric field experiences a force on it which depends on the strength of the field. Hence from the forces exerted by charges may be determined the work necessary to establish a field; from energy relations in turns it will be possible to deduce the forces exerted on ponderable elements of matter. The theory on Maxwell-Faraday's electromechanical stress in matter has been widely discussed by Stratton [6]. We outline below the method of utilizing the electromechanical stress tensor derived in section 2.5 to calculate the mechanical stress developed in conductors of different specifications due to the electric field.
4.2 Stress Distribution in a Cylindrical Conductor

The dielectric stress developed within a conductor due to the electric field can be calculated using relation (2.24),

$$
\begin{equation*}
t^{(e)}=\hat{s}^{(e)} \cdot \bar{n} \tag{4.1}
\end{equation*}
$$

where $\widehat{S}^{(e)}=$ the stress tensor.
the components of $\widehat{S}(e)$ are given in table - 2 .l of section 2.5 , and the components of $\bar{t}(e)$ can be written as,

$$
\begin{gather*}
\mathrm{t}_{j}^{(\mathrm{e})}=\sum_{k=1}^{3} \mathrm{~S}_{j k} \cdot \mathrm{n}_{k} \quad(j=1,2,3) \quad(4.2) \tag{4.2}\\
\text { If in equation }(4.2) \text { the components of } \hat{S}(\mathrm{e}) \text { are }
\end{gather*}
$$ substituted from table-2.1

$$
\begin{aligned}
\bar{t}^{(e)}=\bar{a}_{x} t_{x}^{e} & +\bar{a}_{y} t_{y}^{e}+\bar{a}_{z} t_{z}^{e} \\
= & {\left[\bar{a}_{x}\left\{\left(E_{x}^{2}-1 / 2 E^{2}\right) n_{x}+E_{x} E_{y} n_{y}+\dot{E}_{x} E_{z} n_{z}\right)\right.} \\
& +\bar{a}_{y}\left(\left(E_{y}^{2}-1 / 2 E^{2}\right) n_{y}+E_{y} E_{x} n_{x}+E_{y} E_{z} n_{z}\right\} \\
& \left.+\bar{a}_{z}\left(\left(E_{z}^{2}-1 / 2 E^{2}\right) n_{z}+E_{z} E_{y} n_{y}+E_{x} E_{z} n_{x}\right\}\right] \\
= & {\left[\bar{a}_{x} E_{x}\left(E_{x} n_{x}+E_{y} n_{y}+E_{z} n_{z}\right)\right.} \\
& +\bar{a}_{y} E_{y}\left(E_{x} n_{x}+E_{y} n_{y}+E_{z} n_{z}\right) \\
& \left.+\bar{a}_{z} E_{z}\left(E_{x} n_{x}+E_{y} n_{y}+E_{z} n_{z}\right)\right] \\
& -E^{2}\left(\bar{a}_{x} n_{x}+\bar{a}_{y} n_{y}+\bar{a}_{z} n_{z}\right)
\end{aligned}
$$

or,

$$
\begin{equation*}
\bar{t}^{(e)}=E(\overline{\mathrm{E}} \cdot \overline{\mathrm{n}}) \overline{\mathrm{E}}-\frac{\epsilon}{2} \mathrm{E}^{2} \overline{\mathrm{n}} \tag{4.3}
\end{equation*}
$$

Let us consider a cylindrical conductor with its axis along the Z-direction of a cylindrical co-ordinate system while the direction of current flow is also the same. Then the applied electric field may be represented by

$$
\begin{equation*}
\overline{\mathrm{E}}=\overline{\mathrm{a}}_{\mathrm{z}} \mathrm{E}_{\mathrm{z}} \tag{4.4}
\end{equation*}
$$

Fig. 4.1 A cylindrical conductor oriented along the z-axis.

To calculate the stress on the cross-section of the wire we let $\overrightarrow{\mathrm{n}}=\bar{a}_{z}$ in equation(4.3), ie. the normal to the surface under consideration is along the direction of electric field.

So according to equation (4.3) and (4.4), it is evident: that the direction of the dielectric stress is such that it will produce compression on the conductor, where the magnitude of the total compression exerted by the electric field on the conductor is given by,

$$
\begin{aligned}
T_{e} & =O \int_{a} 1 \vec{t}^{(e)} 1 d a \\
& =\frac{\epsilon}{2} \int_{0}^{\Gamma_{2}} E_{z}^{2}(2 \pi r) d r
\end{aligned}
$$

Since $d a=d\left(\pi r^{2}\right)=2 \pi r d r$
where r_{0} the radius of the conductor and applying
Ohm's law, $E=i / \sigma$, where i, $=$ the current density and σ the conductivity of the conductor, we get,

$$
\begin{align*}
T_{e} & =\frac{\epsilon}{2} \int_{0}^{r_{0}}(i / \sigma)^{2}(2 \pi r) d r \\
& =\frac{\epsilon \pi}{\sigma^{2}} \int_{0}^{r_{0}} i{ }^{2} r d r \tag{4.5}
\end{align*}
$$

4.2.1 Stress under stéady-state DC

For a direct current I, the current density is uniform throughout the conductor. Hence, the current density is given by,

$$
\begin{equation*}
i=\frac{I}{\pi r_{0}^{2}} \tag{4.6}
\end{equation*}
$$

where, $I=$ the total current flowing through the conductor area.
$r_{0}=$ the radius of the conductor.

Then, substituting the value of i from equation(4.6) in equation (4.5), we get

$$
\begin{equation*}
\mathrm{T}_{\mathrm{e}}=\frac{\epsilon I^{2}}{\pi r_{0}^{2} \sigma^{2}} \int_{0}^{r_{0}} \mathrm{r} \mathrm{dr}=\frac{\epsilon \mathrm{I}^{2}}{2 \pi r_{0}^{2} \sigma^{2}} \tag{4.7}
\end{equation*}
$$

4.2.2 Stress under steady-state AC

In case of alternating current, the current density through-out the cross-section of the conductor is not Uniform. As the frequency of alternating current increases, the nonuniformity of distribution becomes more pronounced due to skin

Fig. 4.2 Ratio of stress due to ac to that due to dc as a function of frequency.
effect[11].In a circular cylindrical conductor the current density usually increases from the interior toward the surface.

Substituting the value of $i(r)$ from equation (3.38) in place of i in the integral of equation (4:5) we get,

$$
\mathrm{T}_{\mathrm{e}}, \frac{\pi \epsilon \mathrm{i}^{2}}{\sigma^{2}} 0^{2} \int_{0}^{r_{0}}\left(\frac{\operatorname{Ber}(m r)+j \operatorname{Ber}(m r)+j \operatorname{Bei}(m r)}{\operatorname{Be})}\right)^{2} r d r \quad(4.8)
$$

Comparison of compression due to $A C$ and DC
This comparison can be done by considering equal amounts of ac and de currents flowing through the conductor. For I to be the 'total ac current with distribution given by equation (3.38),

$$
I=\int_{0}^{r_{0}} 2 \pi r i_{0} \frac{\operatorname{Ber}(m r)+j \operatorname{Bei}(m r)}{\operatorname{Ber}(m r)+j \operatorname{Bei}(m r)} \quad d r \quad \text { (4.9), }
$$

Now dividing equation (4.8) by (4.7) and replacing I by equation

A plot of this ratio as a function of frequency is made on a semilog paper in fig 4.2 , where it is observed that the ratio increases from unity to as high as 90 at a frequency of 1 MHz . For lower range of frequencies the ratio rises slowly but a sharp rise is observed near 100 kHz .

Among mostly available conductors, silver (Ag) is the best conductor (Table 4.1) though it is not used in practice because of its high price. Copper(Cu) and aluminium(Al) conductors are used widely for practical purposes. Table 4.1 shows the conductivity of some practical conductors at about room temperature $\left(20^{\circ} \mathrm{C}\right)[12]$.

TABLE 4.1 ELECTRICAL CONDUCTIVITY (σ) OF SOME PRACTICAL CONDUCTORS AT $20^{\circ} \mathrm{C}$:

Name of the conductor	conductivity (σ) in $10^{\mathbf{8}}(\Omega-m)^{\mathbf{- 1}}$.
Lithium (Li)	0.10
Silver (Ag)	0.625
Copper (Cu)	0.59
Aluminium (Al)	0.357
Iron (Fe)	0.10
Tungsten	
Nichrome	0.01

Stranded aluminium conductors are used for overhead pover transmission and distribution lines and even in the underground cables copper is being replaced by aluminium. All aluminium conductors(AAC), aluminium conductor steel reinforced (ACSR) and all aluminium alloy conductors(AAAC) of different sizes are used
almost all over the world for power lines. In ACSR, one or more steel wires are kept as the core or central strand to strengthen the breaking capacity of the conductor against tensile stress.

Telephone lines are chiefly errected with copper wires, since the amount of conductor necessary is small and fair conductivity is also an important factor for such lines, as low voltage (only dc) is used for this purpose.

For the windings of electrical machines such as generators, motors and transformers, copper is used instead of aluminium, since the ohomic dissipation in aluminium is greater than that due to copper winding for the same amount of current to flow, hence greater cooling facilities is to be provided for Aluminium winding which becomes costly as well as the size of the machine becomes bulky . Moreover, rich conductivity is of great importance for such machines to reduce the copper loss of the machine i.e. to make the machine more efficient Even then aluminium is used for designing the rotor of squirrel cage induction motors.

Tungsten (An alloy steel, Fe:75-80\%, Ni: 20-14\%, Cr: 4-5\%) filament is used in incandescent lamps for it emits light when heated. Nonlinearity is inherent in this conductor, which is an essential feature of its property. Similar is the case with Nichrome . which is used in electric heaters,toasters and ovens and in irons also.

We deal here basically with power lines. i.e. overhead
transmission and distribution lines. Steady state conditions, fault current conditions and transient switching on conditions are studied seperately with a view to evaluating the stress and resulting tensile/compressive force developed in conductors having different specifications, used for practical purposes.

4.3.1 Steady-state Condition:

The maximum continuous current rating(which may be considered as the maximum steady state operating current) of different conductors according to B. P. D. B. * specifications are given below in table 4.2 i 13 j . In article 4.2 .2 we arrived at an expression given by equation(4.8) for the total compression acting on a conductor due to the eletric field.

Table 4.2 Specification of some common conductors used for BPDB power lines.
A.Aluminium Conducter Still Reinforced(ACSR).

Code	Overall) Stranding \&		fused	Continuous	Calculated
name	; dia(mm)	; wire dia(mm)		ffor	icurrent	breaking
used by	!			\| power	icarrying	[load (kN)
BPDB	,	© Aluminiumisteel		!lines ${ }^{\text {capacity }}$ (Amp!		
GOPHER	7.08	6/2.36	1/12.36	: 11 kV	140	9.61
)				
RabBi't	10.05	$6 / 3.35$! 1/3.35	:11kV	205	18.35
		!				
DOG	14.15	6/4.72	; 7/1.57	: 11 kV	300	32.70
	1	!				-
WOLF	18.13	! 30/2.59	17/2.59	[33kV ${ }^{\text {² }}$	430	69.20
MERLIN	18.05	18/3.61	; 1/3.61	33 kV	440	41.10
	!	!				;
HAWK	;	6/2.36	:1/2.36	33kV	560	;
	!					!
GROSBEAK		; 6/2.36	1/1/2.36	132kV	: 660	;

*B.P.D.B: Bangladesh Power Development Board.

Code name used by BPDB	© Overall dia(mm)	```; Stranding & wire dia(mm) --------------- ;Aluminium wire.```	' used ifor ipower ilines	```Continuous icurrent carrying ;capacity(Amp!```	Calculated ! breaking ! load(kN)
GNAT	6.18	7/2.06	! 400V	140	3.99
ANT	9.30	7/3.10	400V	205	8.28
		;			
EARWIG	10.20	1 7/3.40	1400v	310	9.90
WASP	113.17	(7/4.39	$4000{ }^{1}$	430	! 16.00

The total compression due to ac electric field is calculated and shown in table 4.4. To make a comparison with d.c, compression due to static field is also calculated handing with the same set of data. and shown in table 4.3. In fig. 3.2 it was shown that the current density is almost invariant (like d.c) throughout the cross-section of a thin wire at power frequencies (i.e. 50 or 60 cps), but in practical conductors used at high frequencies, current density may decrease to one millionth of its surface value in a distance of only a few thousands of a centimeter : So, the same set of calculations are repeated for different frequencies to be familiar with the frequency depedence of the stress distribution and compressive force.

Table 4.3 Compressive force on some common conductors used for BPDB power lines, for Direct Current(D.C).

Code	Overall dia(mm)	Current (Amp)	Compressive force due to êlec. fld. in $10^{-19} \mathrm{~N}$.
GNAT (400V)	6.18	140	48
ANT (400 V)	9.30	200	44
EARWIG(400V	10.20	260	61
WASP(400V)	13.17	310	52

Table 4.4 Compressive force on some common conductors used for BPDB power lines, for Alternating Current(A.C) at power frequency (50 Hz).

Code	Overall dia(mm)	Current (Amp)	Compressive force due to flec. fld. in $10^{-19} \mathrm{~N}$.
GNAT (400V)	6.18	140	50
ANT (400 V)	9.30	200	45
EARWIG(400V:	10.20	260	64
WASP(400V)!	13.17	310	54

Assuming a steadystate current of 300 A passing through a typical al \therefore uminium conductor of radius 4 mm , the compressive force developed in Newton at different frequencies is shown in table 4.5 .

Table 4.5 Compressive force on a specific conductor for ac at different frequencies.

Operating Freq. (Hz)	Compressive force due to flec. fld. in $10^{-18} \mathrm{~N}$.
50.	6.7

Again, the compressive stress distribution in N / m^{2} (normalized) inside the same conductor at different frequencies is shown in table 4.6 .

Table 4.6 Compressive Stress distribution inside a conductor of circular cross-section for ac at different frequencies.

Operating Frequency	Radial Distance	Stress in $\mathrm{N} / \mathrm{m}^{2}$ (Normalized)
50	0.00	0.3470×10^{-26}
50	0.20	0.3470×10^{-26}
50	0.40	0.3470×10^{-26}
50	0.60	0.3470×10^{-26}
50	0.80	0.3471×10^{-26}
50	1.00	0.3473×10^{-26}
5000	0.00	0.3113×10^{-27}
5000	0.20	0.3151×10^{-27}
5000	0.40	0.3724×10^{-27}
5000	0.60	0.6309×10^{-27}
5000	0.80	0.1410×10^{-26}
5000	1.00	0.3473×10^{-26}
25000	0.00	0.7117×10^{-30}
25000	0.20	0.9310×10^{-30}
25000	0.40	0.4905×10^{-29}
25000	0.60	0.3974×10^{-28}
25000	0.80	0.3592×10^{-27}
25000	1.00	0.3473×10^{-26}
50000	0.00	0.3722×10^{-32}
50000	0.20	0.8484×10^{-32}
50000	0.40	0.1439×10^{-30}
50000	0.60	0.3242×10^{-29}
50000	0.80	0.8311×10^{-28}
50000	1.00	0.3473×10^{-26}
100000	0.00	0.2869×10^{-37}
100000	0.20	0.1977×10^{-36}
100000	0.40	0.1448×10^{-34}
100000	0.60	0.1456×10^{-32}
100000°	0.80	0.4630×10^{-30}
100000	1.00	0.3473×10^{-26}

As the frequency is increased, no stress is developed at all inside the conductor even at a frequency of the range of $10{ }^{4} \mathrm{~Hz}$, which is evident from fig. 4. 4 .

Fig.4.3 Radial distribution of stress due to electric field for AC 50 Hz .

Fig.4.4 Radial distribution of stress due to electric field for $A C 25 \mathrm{kHz}$.
4.3.2 Fault Current Condition

Power lines are very often subjected to faults of different pattern, single line to ground fault, double line to ground fault, line to line fault and three phase symmetrical fault among which the last one is the severe one. Exact calculation of the r.m.s value of the fault current in a power system is exceedingly complicated. Approximate methods are more practical and usually sufficiently accurate.According to B.P.D.B. specifications, the maximum prospective three phase r.m.s symmetrical fault levels must not exceed the following values:-
a) 33 KV system: $1,000 \mathrm{MVA}(17.5 \mathrm{KA})$ r.m.s symmetrical.
b) 11 KV system: 250 MVA(13.1 KA) r.m.s. symmetrical.
c) $400 / 230$ volt system: 29 MVA (41.9 KA) r.m.s
symmetrical [14]

Table 4.8 Compressive force for a fault current(ac at power frequency) on conductors of $B P D B$ power distribution lines.

| Code | : Overall
 ! dia(mm) | $\begin{aligned} & \text { Faul } \\ & \text { curren } \\ & \text { (kA) } \end{aligned}$ | \|Used for: | power
 !lines of: | Compressive force due to elec. fld. in $10^{-16} \mathrm{~N}$. |
| :---: | :---: | :---: | :---: | :---: |
| GNAT | 6.18 | 41.9 | 400 v | 4500 |
| ANT | 9.30 | 1 41.9 | 400 v | 2000 |
| WASP | 13.17 |) 41.9 | 400 v | 980 |
| GOPHER | 7.08 | 13.1 | 11 kV | 190 |
| RABBIT | 110.05 | 113.1 | 11kV | 94 |
| DOG | !.14.15 | 13.1 | 11 kV | 50 |
| MERLIN | 118.05 |) 17.5' | ! 33 kV | 64 |

4.3.3 Transient Switching on

Very often it is observed that different electrical appliances or fuses get damaged just after switching on so it is expected that the different forms of stresses become predominent at this instant. In article 3.3.2 effort has been made to establish an idea about the radial and time distribution of transient switching- on current both for static and time varying fields. Here we shall devote our attempt to give a picture of the stress distribution in a conductor. Assuming a typical alluminium conductor of radius 4 mm , the compressive stress distribution in $\mathrm{N} / \mathrm{m}^{2}$ (normalized) inside the conductor at different frequencies with respect to time elapses after switching is shown in table 4.9

Table 4.9 dielectric stress distribution at different distances from the axis at 10 -sec after switching on for ac at different frequencies.

Operating Frequency	Radial Distance	Stress in $\mathrm{N} / \mathrm{m}^{2}$ $($ Normalized)
50	0.00	$0.1319 \times 10^{-2} \overline{7}$
50	0.20	0.1383×10^{-28}
50	0.40	0.1843×10^{-30}
50	0.60	0.8376×10^{-29}
50	0.80	0.7598×10^{-29}
50	1.00	0.3851×10^{-26}
20000	0.00	0.1377×10^{-27}
20000	0.20	0.1036×10^{-28}
20000	0.40	$0.4784 \times 10^{-3}-29$
20000	0.60	0.5248×10^{-29}
20000	0.80	0.1180×10^{-28}
20000	1.00	0.3682×10^{-26}
50000	0.00	0.1309×10^{-27}
50000	0.20	0.1247×10^{-28}
50000	0.40	0.3205×10^{-30}
50000	0.60	0.1807×10^{-29}
50000	0.80	0.1032×10^{-28}
50000	1.00	0.3612×10^{-26}

Now in case of dc, the radial distribution of transient current just after switching is governed by a different expression as mentioned earlier in section 3.4 . So for a similar aluminium conductor the compressive stress distribution in N / m^{2} (normalized) inside the conductor for a direct current passing through it after switching is shown in table 4.10 .

Table 4.10 Electric stress distribution at different distances from the axis of the conductor for de 110 micro-sec after switching on).

In fig 4.5 the radial distribution of dielectric stress is shown for ac 50 Hz , at 10 micro-sec after switching . Assuming the surface current density to be unity, a normalized curve is plotted. A iittle amount of stress is developed near the axis of the conductor while almost the whole stress is found to concentrate near the surface. To get the actual value of the stress developed, the value shown in the figure should be multiplied by the square of the surface current density.

Fig 4.6 shows the stress distribution during de switching. During switching instant (a few micro-sec after switching), in case of $d c$, the stress near the axis is found to be higher than that in the case of $a c$. With time the stress distribution changes and after several hundred micro-seconds it assumes the steadystate pattern (refer to Fig 4.3).

Fig. 4.5 Radial distribution of dielectric stress (ac 50 Hz) 10 micro-sec after switching.

Fig. 4.6 Dielectric stress distribution (dc) 10 micro-sec after switching.
4.4 Discussion

We have outlined in this chapter the dielectric stress developed in the form of compression in conductors of different specifications. Particular emphasis is given on the transient conditions like fault current situation and transient switching on.

It is obvious that the tables through 4.3 to 4.10 give us a clear picture that the compressive force within the conductor resulting from energy stored in the eletric field are negligiblly small for conductors and it is of the order of $10^{-12} \mathrm{~N}$.

CHAPTER FIVE

CALICUKATION OF MECHANICAL STRRESS IN A CONDUCTOR DUE TO MAGNETIC. FIELD

5.1 Introduction

When current flows through a conductor magnetic field develops around it, the amount of which is given by Ampere's law. In side the conductor a mechanical stress is produced by this magnetic field, which may be termed as magneto-mechanical stress . At first a mathematical model for magneto-mechanical stress calculation is established with the help of the stress tensor derived in chapter 2 . Then stress and the resulting force are tabulated for conductors having different specifications in both the cases of ac and dc.

4.2 Stress Distribution in a Cylindrical Conductor:

> The magneto-mechanical stress developed within a
conductor due to the magnetic field can be calculated using relation (2.38),

$$
\begin{equation*}
\overline{\mathrm{t}}(\mathrm{~m})=\overline{\mathrm{S}}(\mathrm{~m}) \cdot \overline{\mathrm{n}} \tag{5.1}
\end{equation*}
$$

where $\widehat{S}(\mathrm{~m})=$ the stress tensor.
the components of $\hat{S}(m)$ are given in table -2.2 of section 2.5 , and the components of $\overline{\mathfrak{t}}(\mathrm{m})$ can be written as,

$$
\begin{equation*}
\mathrm{t}_{\mathrm{j}}^{(\mathrm{m})}=\sum_{k=1}^{3} \mathrm{~S}_{\mathrm{jk}} \cdot \mathrm{n}_{\mathrm{k}} \quad(\mathrm{j}=1,2,3) \tag{5.2}
\end{equation*}
$$

If in equation (4.2) the components of $\widehat{S}(m)$ are substituted from table-2.2, we get

$$
\begin{align*}
& \bar{t}(m)=\bar{a}_{x} t_{x}+\bar{a}_{y} t_{y}+\bar{a}_{z} t_{z} \\
&= {\left[\bar{a}_{x}\left\{\left(B_{x}^{2}-1 / 2 B^{2}\right) n_{x}+B_{x} B_{y} n_{y}+B_{x} B_{z} n_{z}\right)\right.} \\
&+\bar{a}_{y}\left\{\left(B_{y}^{2}-1 / 2 B^{2}\right) n_{y}+B_{y} B_{x} n_{x}+B_{y} B_{z} n_{z}\right) \\
&\left.+\bar{a}_{z}\left(\left(B_{z}^{2}-1 / 2 B^{2}\right) n_{z}+B_{z} B_{y} n_{y}+B_{x} B_{z} n_{x}\right)\right] \\
&= {\left[\bar{a}_{x} B_{x}\left(B_{x} n_{x}+B_{y} n_{y}+B_{z} n_{z}\right)\right.} \\
&+\bar{a}_{y} B_{y}\left(B_{x} n_{x}+B_{y} n_{y}+B_{z} n_{z}\right) \\
&\left.+\bar{a}_{z} B_{z}\left(B_{x} n_{x}+B_{y} n_{y}+B_{z} n_{z}\right)\right] \\
&-B^{2}\left(\bar{a}_{x} n_{x}+\bar{a}_{y} n_{y}+\bar{a}_{z} n_{z}\right) \\
& \tag{5.3}
\end{align*}
$$

DC Case: -
Let us consider a cylindrical conductor, having circular cross-section, placed along the z-axis of a cylindrical coordiante system). The current is assumed to flow in the z direction. Hence in cylindrical co-ordinates, the magnetic field developed at a distance r from the centre of the conductor due to the electric current will be given by

$$
\begin{align*}
\bar{H} & =\bar{a}_{\phi} H_{\phi} \\
& =\bar{a}_{\phi} \frac{I r}{2 \pi r_{0}^{2}} \quad \text { (for } r<r_{o} \text {) }
\end{align*}
$$

where $r_{0}=$ the radius of the conductor.

Fig. 5.1 A cylindrical conductor having circular crosssection , oriented in z-direction and carrying a current I.

Now for the surface under consideration (circular front face of the conductor shown in fig 5.1), the magneto-mechanical stress is given by equation (5.3), replacing \bar{B} by $\bar{a}_{\phi} B_{\phi}$ and \bar{n} by \bar{a}_{z} :

$$
\begin{align*}
\overline{\mathrm{t}}_{\mathrm{m}}= & \frac{1}{\mu}\left(\overline{\mathrm{a}}_{\phi} \cdot \overline{\mathrm{a}}_{z} \mathrm{~B}_{\phi}\right) \overline{\mathrm{B}} \quad-\frac{1}{2 \mu} \mathrm{~B}_{\phi}^{2} \overline{\mathrm{a}}_{z} \\
& =-\frac{\overline{\mathrm{a}}_{z}}{2} \mu_{0} \mu_{r} \mathrm{H}_{\phi}^{2} \quad\left[\mathrm{~B}_{\phi}=\mu_{0} \mu_{r} \mathrm{H}_{\phi}\right] \tag{5.5}
\end{align*}
$$

Exactly the same amount of stress will be experienced radially inward on the curved surface of the cylindrical conductor if we take the unit normal $\overline{\mathrm{n}}$ as $\overline{\mathrm{a}}_{\mathrm{r}}$. This stress will try to squeez the conductor radially and this lateral strain will intern manifests in the form of axial tension to produce longitudinal elongation. Thus we can say that axially the magneto-mechanical stress is acting in the form of tension.

For a direct current I, the magnitude of the net tension on the surface \boldsymbol{S} of the conductor, shown in fig. 5.1, is

$$
\begin{aligned}
& T_{m}=\int_{a}\left|\bar{t}_{m}\right| d a \quad[a, \text { the area of cross-section of the } \\
& =\frac{1}{2} \mu_{r} \mu_{0}^{r_{0}}\left(\frac{I r}{2 \pi r_{0}^{2}}\right)^{2} d\left(\pi r^{2}\right) \\
& =\frac{I^{2}}{4 \pi} \mu_{0} \mu_{r} \int_{0}^{r_{0}} \frac{r^{3}}{r_{0}^{4}} d r \\
& =\frac{I^{2}}{16 \pi} \mu_{0} \mu_{p}
\end{aligned}
$$

From equation(5.6), it is evident that the tension due to magnetic field is independent of the dimension of the conductor and directly proportional to the square of the current.

As the current distribution is not uniform throughout the cross-section of a conductor, current is also a variable depending on the distance from the centre of the conductor and the magnetic field developed inside the conductor at a distance r from its axis due to the electric current is given by

$$
\begin{equation*}
H_{e}=\int_{0}^{r}(x / r) i_{x} d x \tag{5.7}
\end{equation*}
$$

Where, i_{x}. the current density at a distance x from the centre of the conductor.

$$
r_{o}=\text { the radius of the conductor. }
$$

Thus the magnitude of the net tension on the surface x is given by,

$$
\begin{align*}
T_{m} & =1 \int_{a}^{t_{m}} d a \mid \\
& \left.=\frac{1}{2} \mu_{0} \mu_{r} \int_{0}^{r_{0}} 1 \int_{0}^{r}(x / r) i_{x} d x\right)^{2} d\left(\pi r^{2}\right) \\
& \left.=\pi / \mu / \mu_{r} \int_{0}^{r_{0}} \frac{r^{2}}{r^{2}} \int_{0}^{r} x i_{x} d x\right\}^{2} d r \\
& =\pi / \mu / \mu_{r} \int_{0}^{r_{0}} \frac{1}{r}\left\{\int_{0}^{r} x i_{x} d x\right\}^{2} d r \tag{5.8}
\end{align*}
$$

Comparison of magnetic tension due to $A C$ and DC :

This comparison can be done in a similar fashion mentioned earliar in section 4.2 .2 by considering equal amounts of ac and dc currents flowing through the conductor. Dividing equation (5.8) by equation (5.6) and putting the value of I from equation (4.8) and that of i_{x} from equation (3.39) we get the ratio as,

$$
\frac{\mathrm{T}_{\mathrm{ac}}^{(\hat{m})}}{\mathrm{T}_{\mathrm{dc}}^{(\mathrm{in}}}=\frac{16 \pi^{2} \int_{0}^{C_{0}} 1 / \mathrm{r}\left\{\int_{0}^{r_{0}} \frac{\operatorname{Ber}(m x)+j \operatorname{Bei}(m x)}{\operatorname{Ber}\left(m r_{0}\right)+j \operatorname{Bej}\left(r_{0}\right)} \times \mathrm{dx}\right\}^{2} \mathrm{dr}}{\left\{\int_{0}^{C_{0}} \frac{\operatorname{Ber}(m r)+j B e i(m r)}{\operatorname{Ber}\left(m r_{0}\right)+j B e i\left(m r_{0}\right)} \mathrm{dr}\right\}^{2}}(5.10)
$$

A plot of this ratio verses frequency is shown in fig 5.2.

The ratio increases with the increase in frequency. A sharp upslope of the ratio is observed near 100 kHz .
5.3

Numerical Example
As mentioned earlier in section 4.3 , we shall assume conductors and their sizes which are used in practice. Particular emphasis is given on the study of magneto-mechanical stress and tensile force acting on power lines. Representative data for steady state conditions, short circuit(fault) conditions and switching transient situations have been used in determining the stress distribution and tension.

5.3.1 Steady state Condition

Tension on power lines due to the magnetic field is calculated using equation 5.8 . Tension due to d.c. field is also evaluated to make a comparison and to have an idea about the variation of magneto-mechanical tension with frequency, calculations are carried out for different frequencies also.

Table 5.l Tensile force on some common conductors used for BPDB power lines, for dc.

Code	Overall dia(mm)	Amount of current (Amp)	Compressive force due to elec. fld. in $10^{-5} \mathrm{~N}$.
GNAT (400V) :	6.18	140	51
ANT (400 V)	9.30	200	100
EARWIG(400V	10.20	260	180
WASP (400V)	13.17	310	250

Table 5.2 Tensile force on some common conductors used for BPDB power lines, for ac at power frequency(50 Hz .)

Assuming a steadystate current of 300 A passing through a typical aluminium conductor of radius 4 mm , the tensile force developed in Newton at different frequencies is shown in table 5.3 to get an idea about the frequency dependence of the tensile force.

Table 5.3 Tensile force on a specific conductor for ac at different frequencies.

$\begin{aligned} & \text { Operating } \\ & \text { Freq.(Hz) } \end{aligned}$	Tension due to magnetic field $10^{-4}(\mathrm{~N})$
50.	25
5000.	65
10000.	97
50000.	270
100000.	460
500000 .	2000
1000000.	4400
-	

Fig. 5.2 Ratio of stress due to ac to that due to dc as a function of frequency.

To get an idea about the stress distribution insige a conductor due to steady-state ac , a typical aluminium conductor of radius 4 mm is assumed for a current of 300 A . The tensile stress distribution in N / m^{2} (normalized) inside the conductor at different frequencies is shown in table 5.4

Table 5.4 Magneto-mechanical Stress distribution inside a conductor of circular cross-section for steady-state alternating currents at different frequencies.

Operating Frequency	Radial Distance	Stress in N / m^{2} (Normalized)
50	0.00	0.0000×10^{-00}
50	0.20	0.1005×10^{-12}
50	0.40	0.4021×10^{-12}
50	0.60	0.9048×10^{-12}
50	0.80	0.1608×10^{-11}
50	1.00	0.2513×10^{-11}
10000	0.00	0.0000×10^{-0}
10000	0.20	0.1005×10^{-12}
10000	0.40	0.9048×10^{-12}
10000	0.60	0.1608×10^{-12}
10000	0.80	0.2513×10^{-11}
10000	1.00	0.3473×10^{-11}
50000	0.00	$0.0000 \times 10^{+00}$
50000	0.20	0.1300×10^{-18}
50000	0.40	0.2318×10^{-17}
50000	0.60	0.5459×10^{-16}
50000	0.80	0.1407×10^{-14}
50000	1.00	0.4974×10^{-13}
5000000	0.00	$0.0000 \times 10^{+00}$
5000000	0.20	0.7586×10^{-43}.
5000000	0.40	0.4509×10^{-30}
5000000	0.60	0.1139×10^{-22}
5000000	0.80	0.2019×10^{-17}
5000000	1.00	0.2375×10^{-13}

A parabolic stress distribution is observed for steadystate $A C$ at power frequency (refer to fig. 5.3), and it is found that no stress is developed at the axis of the conductor due to magnetic field but the stress is maximum at the surface, since
the current enclosed increases from zero to maximum from the axis towards the surface. The stress distribution for a frequency of 50 kHz is shown in fig 5.4 . The stress is almost zero from the axis up to very near the surface, where it rises very sharply. This is because at this high frequency the current density inside the conductor is almost zero and current exists only near the surface.

Fig. 5.3 Radial distribution of stress due to magnetic field. Steady-state ac 50 Hz .

Fig. 5.4 Radial distribution of stress due to magnetic field. Steady-state ac 50 kHz .

5.3.2 Fault Current Study

Using the set of conductor specifications mentioned in section 4.3 .2 , the magneto-mechanical stress and the resulting tension are calculated and shown in table 5.5*
Table 5.5 Magneto-mechanical tension developed for a fault current (ac at power frequency) on conductors of BPDB power distribution lines.

Code	Overall dia(mm)	$\begin{aligned} & \text { Fault } \\ & \text { current } \\ & (\text { kA }) \end{aligned}$	$\begin{aligned} & \text { Used for } \\ & \text { power } \\ & \text { lines of } \end{aligned}$	Tensions due to Magnetic field in Newton.
GNAT	1 6.18	41.9	400v	49.00
ANT	9.30	41.9	400 v	49.00
WASP	113.17	41.9	400v	49.00
GOPHER	7.08	13.1	11 kV	1.20
RABBIT	10.05	13.1	11 kV	1.20
DOG	!14.15	13.1	11 kV	1.10
MERLIN	18.05	17.5	: 33 kV	3.20

5.3.3 Transient Switching on Cndition

Substituting equation (3.60) in to (5.8) and integrating numerically the magneto-mechanical tensile stress distribution with respect to the distance from the axis of the conductor is calculated for ac of different frequencies. A typical aluminium conductor of radius 4 mm is considered for this purpose, and the time considered is 10 sec after switching. The result is shown in table 5.6 and the variation is plotted in fig. 5.5. Inside the conductor the stress increases very slowly but it rises very sharply near the surface.

Table 5.6 Magnetic stress distribution inside the conductor for ac of different frequencies at $10 \mu-s e c$ after switching.

Operating Frequency	Radial Distance	Stress in N / m^{2} (Normalized)
50	0.00	$0.0000 \times 10^{-0} 0$
50	0.20	0.7058×10^{-15}
50	0.40	0.1693×10^{-14}
50	0.60	0.3122×10^{-14}
50	0.80	0.5258×10^{-14}
50	1.00	0.4604×10^{-13}
20000	0.00	0.0000×10^{-00}
20000	0.20	0.6249×10^{-15}
20000	0.40	0.1585×10^{-14}
20000	0.60	0.3373×10^{-14}
20000	0.80	0.5607×10^{-14}
20000	1.00	0.4868×10^{-13}
50000	0.00	0.0000×10^{-00}
50000	0.20	0.6486×10^{-15}
50000	0.40	0.1520×10^{-14}
50000	0.60	0.3350×10^{-14}
50000	0.80	0.6623×10^{-14}
50000	1.00	0.5954×10^{-13}
5000000	0.00	0.1318×10^{-17}
5000000	0.20	0.3005×10^{-17}
5000000	0.40	0.3005×10^{-17}
5000000	0.60	0.6918×10^{-17}
5000000	0.80	0.1756×10^{-16}
5000000	1.00	0.2436×10^{-13}

Now in case of $D C$, the radial distribution of transient current just after switching is governed by equation (3.6.6) as mentioned earlier in section 3.4 . So at 10μ-sec after switching, the compressive stress distribution in N / m^{2} (normalized) inside a similar aluminium conductor as above for a direct current passing through it is calculated and shown in table 5.7.

Table 5.7 Magnetic stress distribution inside the the conductor at $10 \mu \mathrm{sec}$ after switching on for dc. the conductor at $0 \mu \cdot \sec$ af er

| Radial | Stress in $\mathrm{N} / \mathrm{m}^{2}$ |
| :--- | :--- | :--- |
| Distance | (Normalized) |
| 0.00 | $0.0000 \times 10^{+0}$ |
| 0.20 | 0.1421×10^{-15} |
| 0.40 | 0.5245×10^{-16} |
| 0.60 | 0.5371×10^{-16} |
| 0.80 | 0.7377×10^{-17} |
| 1.00 | 0.4766×10^{-14} |

In fig 5.6 the stress distribution for $D C$ switching on is shown, where it is found that except a few oscillations, the stress inside the conductor is almost zero, and increases sharply near the surface.

Fig. 5.5 Radial distribution of stress due to magnetic field. 10 micro-sec afțer switching (ac 50 Hz).

Fig. 5.6 Radial distribution of stress due to magnetic field. 10 micro-sec after switching (dc).

The above chapter has been devoted to study the magnetic stress distribution and total tensile force which is developed as a result of this'stress in a cylindrical conductor.

In chapter -4 , we have observed that the dielectric stress is compressive in nature. Here we have seen that the magnetic stress has a tensile property i.e. a property of opposing the dielectric stress. Although the magnitude of the resulting tension was not of considerable extent during steady state operations during transient overcurrent situations(fault conditions) it may reach as high as several tenths of Newton in most conductors of practical utility. It is also notable to state that the amount of this fension(fensile stress) increases with frequency as shown in fig. 5.2.

CHAPTER SIX

CALCULATION OF STRRESS DUE TO JOULE-HEATENG:

Introduction

It is a regular phenomenon that when current passes through a conductor $I^{2} R$ loss or ohf dissipation occurs within the conductor in the form of heat due to the resistance of the conductor. This heat in turn increases the temperature of the conductor up to a certain limit, which puts the conductor into a state of Joule-heating or thermally stressed condition. In chapter-2, seperate expression for stress due to Joule-heating developed in a conductor has been derived. On the basis of that expression numerical calculations of thermal stress and the associated forces in cylindrical conductors are discussed in this chapter.
5.2 Stress Distribution in a Cylindrical Conductor Electro-thermal stress was found to be : $\overline{\mathrm{t}}(\mathrm{th})=\widehat{\mathrm{S}}^{(\mathrm{th})} \cdot \overline{\mathrm{n}}$
in section 2.5 of chapter 2 .
where $\hat{S}(t h)=$ the stress tensor.
the components of $\hat{S}^{(t h)}$ are given in table -2.3 of section 2.5 , and the components of $\bar{t}^{(t h)}$ can be written as,

$$
t_{j}^{(t h)}=\sum_{k=1}^{3} s_{j k} \cdot n_{k} \quad(j=1,2,3) \quad(6.2)
$$

If in equation (6.2) the components of $\widehat{S}^{(t h)}$ are substituted from table-2. 3

$$
\begin{align*}
\bar{t}^{(t h)}= & \bar{a}_{x} t_{x}+\bar{a}_{y} t_{y}+\bar{a}_{z} t_{z} \\
= & 2 \sigma t\left[\bar{a}_{x}\left(\left(E_{x}^{2}-1 / 2 E^{2}\right) n_{x}+E_{x} E_{y} n_{y}+E_{x} E_{z} n_{z}\right)\right. \\
& +\bar{a}_{y}\left(\left(E_{y}^{2}-1 / 2 E^{2}\right) n_{y}+E_{y} E_{x} n_{x}+E_{y} E_{z} n_{z}\right) \\
& \left.+\bar{a}_{z}\left(\left(E_{z}^{2}-1 / 2 E^{2}\right) n_{z}+E_{z} E_{y} n_{y}+E_{x} E_{z} n_{x}\right)\right] \\
= & 2 \sigma t\left[\bar{a}_{x} E_{x}\left(E_{x} n_{x}+E_{y} n_{y}+E_{z} n_{z}\right)\right. \\
& +\bar{a}_{y} E_{y}\left(E_{x} n_{x}+E_{y} n_{y}+E_{z} n_{z}\right) \\
& \left.+\bar{a}_{z} E_{z}\left(E_{x} n_{x}+E_{y} n_{y}+E_{z} n_{z}\right)\right] \\
& \quad-\sigma_{t} E^{2}\left(\bar{a}_{x} n_{x}+\bar{a}_{y} n_{y}+\bar{a}_{z} n_{z}\right) \\
\bar{t}(t h)= & 2 \sigma t(\bar{E} \cdot n) \bar{E}-\sigma t E^{2} \bar{n} \tag{6.3}
\end{align*}
$$

Now Let us consider a cylindrical conductor with its axis along the z-direction of a cylindrical coordinate system. If the current flows along the z-direction, the applied electric field will be given by

$$
\begin{equation*}
\overline{\mathrm{E}}=\overline{\mathrm{a}}_{\mathrm{z}} \mathrm{E}_{\mathrm{z}} \tag{6.4}
\end{equation*}
$$

Fig. 6.1 Cylindrical conductor whose axis is along the z-direction

Let us calculate the stress on the cross-section of the wire . The normal to the surface (Surface S in fig.6.1) under consideration must be along the direction of electron motion , because the heat transfer is asociated with the motion of the electron . Hence for stress due to Joule-heating, $\bar{n}=-\bar{a}_{z}$, and from equation (2.28), it can be said that this stress acts in the form of tension on the conductor. The magnitude of total tension resulting from the stress due to Joule-heating is given by ,

DC Case:-

$$
\begin{align*}
& T^{(t h)}=1 \int_{S} \bar{t}^{(t h)} d s 1 \\
& =\sigma t \quad \int \mathrm{E}_{\mathrm{z}}^{2} \mathrm{~d}\left(\pi \mathrm{r}^{2}\right) \quad \text { [since } \mathrm{ds}=\mathrm{d}\left(\pi \mathrm{r}^{2}\right) \text {] } \\
& =\sigma t_{l} \int_{0}^{r_{0}} E_{z} \cdot 2 \pi r d r \\
& =\sigma t \int_{0}^{r_{0}}(i / \sigma)^{2} \cdot 2 \pi r d r \\
& =\frac{2 \pi t}{\sigma} \int_{0}^{r_{0}} i^{2} d r \tag{6.5}
\end{align*}
$$

For $D C$, current distribution is uniform throughout the cross-section. So if I be the total current, then

$$
\begin{equation*}
i=I / \pi r_{o}^{2} \tag{6.6}
\end{equation*}
$$

putting this value of i in equation (6.5),

$$
\begin{align*}
\mathrm{T}(\mathrm{th}) & =2 \frac{I^{2} t}{\pi \sigma^{2} r_{0}^{4}}\left(r_{o}^{2 / 2)}\right. \tag{6.7}\\
& =\frac{I^{2} t}{\pi \sigma r_{0}^{2}}
\end{align*}
$$

Where, $t=$ the time in second required for the conductor to reach its ultimate steady state temperature.

The ultimate steady state temperature being constant for a particular conductor but the time required to reach the
temperatur varies with the amount of current and the ambient condition.

AC Case:-.
For $A C$ the current density is also a function of the distance from the axis 'r' , and is given by equation (3.38), thus

$$
\begin{equation*}
\left.T^{(t h)}=\frac{2 \pi t}{\sigma} i_{0}^{2} \int_{0}^{\mathscr{R}}\left[\frac{\operatorname{Ber}(m r)+j B e i(m r)}{\operatorname{Ber}\left(m r_{0}\right)+j \operatorname{Bei}(m r}\right]_{0}^{2}\right]^{r} d r \tag{6.8}
\end{equation*}
$$

Comparison of the thermal tension due to $A C$ to that due to $D C$:
Considering the same amount of $A C$ and $D C$ current, and similar conductor specifications, and replacing I of equation (6.7), by equation (4.8), we get,

$$
\frac{\mathrm{T}_{d \cdot c}^{(t h)}}{\mathrm{T}_{\mathrm{d} \cdot \mathrm{c}}^{(\mathrm{th})}}=\frac{\mathrm{r}_{0}^{2}}{2}
$$

This ratio is the same as that derived for stress due to electric field discussed in, chapter 4 and fig 4.2 represents the plot of this ratio as a function of frequency.

6.3 Numerical Example:

Maximum ambient air temperature, ground temperature at one meter, ground thermal resistivity and maxium conductor temperatures etc are the essential features or design parameters for errection of power lines, because yery often power conductors
are subject to thermally stressed condition due to continous operation or overcurrent situations arising from short circuit or from any other abnormal operating conditions.

In chapter - 2 we have formulated expressions for evaluating the mechanical stress developed in a conductor due to Joule-heating ($I^{2} R$ loss). There we have shown that it is a time dependent quantity. A characteristic curve to denote the time constant for Linnet conductor(ACSR) has also been shown. From fig. 2.2 , it is observed that the time required for Linnet conductor to reach its ultimate steady-state temperature rise when subject to change in current is approximately 30 minutes for a particular ambient condition (refer to fig. 2.2).

Almost in every substations and with transformers, switchgear and circuit breakers i.e. protective devices are provided to prevent the fault currents from damaging the conductor and other valuable electrical appliances, there are different types of circuit breakers depending on the speed of the breaker [5].

Type of Breaker

1) 8 cycle breakers
2) 5 cycle breakers
3) 3 cycle breakers
4) 2 cycle breakers

The ckt has to withstand
the fault current up to
: $8 \mathrm{x} 1 / \mathrm{f}$ sec.
: $\quad 5 \mathrm{x} 1 / \mathrm{f}$ sec.
: $3 \mathrm{x} 1 / \mathrm{f}$ sec.
: $2 \mathrm{x} 1 / \mathrm{f}$ sec.

Where f is the frequency of operation (supply frequency). So the duration of the fault current should be considered according to the speed of the breaker. 8 cycle breaker
assumptions will be made for calculating the stress during fault current condition.

6.3.1 Steady-state Condition:

The total tension resulting from thermal stress is expressed in equation (6.8), where utilizing the set of data from table 4.2 and assuming a time of 30 minutes, table 6.2 is prepared. Tension due to d.c case is also tabulated (table 6.1) to make a comparision.

Table 6.1 Mechanical tension developed on some common conductors used for BPDB power lines due to Joule-heating for Direct Current(D.C).
(Assuming a saturation time of 30 minutes.)

Code	Overall dia(mm)	Current (Amp)	Tension due to Joule-heating in Newton.
GNAT(400V)	6.18	140	211
ANT (400 V)	9.30	200	390
EARWIG(400V	10.20	260	580
WASP (400V)	13.17	310	741

Table 6.2 Mechanical tension developed on some common conductors used for BPDB power lines due to Jouleheating for ac at power frequency(50 Hz .) and assuming a saturation time of 30 minutes.

Code	Overall dia(mm)	Current (Amp)	Tension due to Joule-heating in Newton
GNAT (400 V)	6.18	140	215
ANT (400 V)	9.30	200	395
EARWIG(400V:	10.20	260	581
WASP (400V	13.17	310	745

Assuming a steadystate current of 300 A passing through a typical aluminium conductor of radius 4 mm , the tensile force developed in Newton at different frequencies is tabulated below (table 6.3)to get an idea about the frequency dependence of the tensile force develped in a monductor due to Joule-heating.

Table 6.3 Tensile force on : t (hecific conductor for alternating currents at different frequencies.

Operating Freq.(Hz)	Tension due to doule- heating in
50.	716
5000.	1074
10000.	1566
50000.	4072.
100000.	6712
500000.	29535
1000000.	62650

The tensile stress distribution in N / m^{2} (normalized)inside the same conductor at different frequencies is shown in table 6.4.

Table 6.4 Tensile Stress distribution inside a conductor of circular cross-section for steady-state ac at different frequencies.(aluminium wire of radius, 4 mm).

The stress distribution due to Joule-heating for AC 50 Hz steady-state is shown in fig 6.2. The stress is zero at the axis but it increases almost linearly from the axis towards the surface where it becomes maximum. At a high frequency (25 kHz) as in fig 6.3 , the stress remains zero from the axis up to the middle of the conductor and rises very sharply near the surface which resembles the pattern of current distribution.

Fig. 6.2 Radial distribution of stress due to Joule-heating. Steady-state ac 50 Hz .

Fig. 6.3 Radial distribution of stress due to Joule-heating. Steady-state ac 25 kHz.

6.3.2 Fault Current Study

Power lines'specification, mentioned in table 4.2 and fault current conditions specified in art. 4.3.2 are put in equation(6.8) and with an assumption of 8 cycle breaker the tension due to Joule-heating are evaluated and shown in table 6.5

Table 6.5 Thermo-electric tension developed for a fault current (ac at power frequency) on conductors of BPDB. power distribution lines.(due to Joule heating).

6.3.3. Switching Condition

With the help of equation (3.60) and equation (6.5) thermoelectric stress distribution and the resulting tension is calculated for a typical aluminium conductor . In chapter-3, we have seen in fig 3.3 that the transient switching current does not exist more than a few milli secs, so time integration is made for a duration of dying out of the transient current.

Table 6.6 Thermo-electric stress distribution at different distances from the axis after switching on for ac (at power freq. i.e. 50 Hz .) up to dying out of the transient current.

Radial	Stress in N / m
Distance	(Normalized)
0.00	0.1058×10^{-11}
0.20	0.1110×10^{-12}
0.40	0.1510×10^{-14}
0.60	0.6744×10^{-13}
0.80	0.6094×10^{-13}
1.00	0.3104×10^{-10}

Table 6.7 Thermo-electric stress distribution at different distances from the axis after switching on for dc, up to dying out of the transient current.

Radial Distance	Stress in $\mathrm{N} / \mathrm{m}^{2}$ (Normalized)
0.00	0.1319×10^{-2}
0.20	0.1383×10^{-28}
0.40	0.1510×10^{-14}
0.60	0.6744×10^{-13}
0.80	0.6094×10^{-13}
1.00	0.3104×10^{-10}

During the switching instant for $A C 50 \mathrm{~Hz}$, it is observed (fig 6.4), that though a small amount of stress is sensed at the conductor axis, the conductor experiences almost no stress up to 80\% of its cross-section from the axis. The stress increases very sharply and linearly from very close to the surface. This is because there exists a very little current inside the conductor during switching period.

Fig. 6.4 Radial distribution of stress due to Joule-heating. Switching instant (ac 50 Hz).

Fig. 6.5 Radial distribution of stress due to Joule-heating. Switching instant (dc).
6.4._Discussion

It is observed that even for steady state operation of a conductor the mechanical tension due to the stress resulting from Joule-heating is as high as severalhinded on conductors-usedfor 400 volt overhead lines. During fault current condition it is found to be of similar magnitude, whereas the calculated breaking load of the same conductor is about $10-40 \mathrm{KN}$ (table 4.2). So the conductor will be highly stressed due to a continuous operation at its maximum continuous current carrying capacity or it may be damaged if a fault is not cleared by a fast breaker.

CHAPTER SEVEN

COMPARATIVE STUDY OF THE THREE TYPES OF ELECTRR-MECHANICAL FORCES IN A CONDUCTOR

7.1 Introduction

After getting a set of results about the mechanical stress due to electric field, magnetic field and Joule-heating indiłidually in the previous three chapters, we turn our attention in the current chapter to depict a comparative picture of these three types of forces in a cylindrical conductor. The chapter will be occupied with set of tables of comparison followed by graphical representations with probable reasons of variations.
7.2 Variation of Forces with Current

Let us first study the amount of three different forces on a given conductor for power frequency (50 Hz) a.c. Table 7.1 represents the three different types of forces developed in an Caminium conductor of 8 mm diameter. The results are plotted in fig 7.1.

Table 7.1 Forces for different amount of current.
(Ambient temperature $27^{\circ} \mathrm{C}$).

$\begin{aligned} & \text { Current } \\ & \text { I } \\ & \text { Amp } \end{aligned}$	Compressiv Due to dielectric stress. Tein $10^{-18} \mathrm{~N}$	/ Tensile Due to Magnetic field. T_{m} in $10^{-4} \mathrm{~N}$	orce Due to Jouleheating Th in N	Ultimate temperature. rise ${ }^{\circ} \mathrm{C}$
50	. 38	. 71	30.2	4.3
100	1.50	2.80	118.7	16.87
150	3.50	6.40	244.3	34.7
200	6.10	11.0	392.8	55.8
250	9.60	18.0	551.3	78.3
300	14.00	25.0	713.2	101.3

It is observed from fig. 7.1 that all the three forms of stresses increase in the form of a two degree parabola with the increase in currents. Actually stress distribution of power frequency a.c. is almost similar to that for d.c. field and is proportional to the square of the current as mentioned in sections 4.2,5.2,6.2 . It can be noted that the three forces at power frequency are such that $\mathrm{T}_{\mathrm{th}}>\mathrm{T}_{\mathrm{m}}>\mathrm{T}_{\mathrm{e}}$. Electric polarizability and the magnetic susceptibility are negligibly small in case of good conductors, compared to its conductivity. So energy stored in the electric and magnetic fields are negligible in comparision to that dissipated in the form of Joule-heating.

Fig. 7.1 Three types of forces as functions of currents.
7.3 Variation of the Forces with Conductor Specifications Dependence of the forces on conductor specifications are different for the three forms of strsses , The major specifications of the conductor are its diameter and resistivity.
7.3.1 Variation with the diameter of the conductor

Forces on aluminium conductor of different radii for an alternating current of 300 A at 50 Hz is shown in table 7.2 and plotted in fig 7.2.

Table 7.2 Forces on aluminium conductors of different diameter.

```Conductor size diameter in mm.```	Compressive/ Tensile force		
	Due to	Due to	Due to
	dielectric	Magnetic	Joule-
	$\begin{aligned} & \text { stress } \\ & \mathrm{T}_{0} \text { in } 10^{-18} \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { field. } A_{N} \\ & \mathrm{~T}_{\mathrm{m}} \text { in } 0^{-4} \end{aligned}$	heating
8	31.0	25	735.0
12	14.0	26	316.0
16	7.8	26	178.8
20	5.0	26	115.6
24	3.5	26	73.9
30	2.5	26	52.4

The forces due to dielectric stress and that resulting from Joule-heating decrease in a hyperbolic form with the increase in conductor size (diameter). This is because at power frequency those two forms of tension have inverse relationship with the square of the conductor diameter, while the force due to magnetic field is independent of the conductor size as mentioned in sections $4.2,5.2,6.2$.
7.3.2 Variation with the resistivity of the conductor Table 7.3 and fig 7.3 illustrate this variation for 8 mm dia conductors having different resistivities. A current of 300 A is assumed.

Table 7.3 Forces on conductors having different resistivities.

Resistivity Compressive / Tensile force			
P	Due to	Due to	Due to
ig	dielectric	Magnetic	Joule-
$10^{-8} \Omega-m$	gtress-i8	field. 4	heating
	$\mathrm{T}_{\mathrm{e}} \mathrm{in}^{10}{ }^{\text {d }}$	$\mathrm{Tm}^{\text {n }} 10^{-4} \mathrm{~N}$	$h$ in N
1.6	10	25	421
1.7	12	25	424
2.8	18	25	731
10.0	86	25	2559
30.0	780	25	8180

With the increase in resistivity that is for poorer conductors stress due to Joule-heating increases almost linearly (fig 7.4) while the dielectric stress increases in a parabolic pattern but stress due to magnetic field remains unchanged as it does not depend on this property of the conductor (equation 5.7).


Fig. 7.2 Dependence of forces on conductor size (diameter).


Fig. 7.3 Variations of forces with resistivity of the conductor.
7.4 Variation of forces with frequency

Now we shall investigate the relative frequency dependence of the electro-mechanical stresses on a specific conductor,for a wide range of frequencies . Forces on an aluminium conductor having a radius of 4 . mm with a current flow of 300 A are listed in table 7.4 with graphical plot in fig 7.4 .

Table 7.4 Forces on an aluminium conductor for ac at different frequencies.

Operating frequency in Hz . f	Compressive / Tensile force		
	$\begin{aligned} & \text { Due to } \\ & \text { Electric } \\ & \text { Tein } 10^{-18} \text {. } \end{aligned}$	$\begin{aligned} & \text { Due to } \\ & \text { Magnetic fld. } \\ & \text { Tmin(10 } \left.0^{-4}\right) \mathrm{N} \end{aligned}$	$\begin{gathered} \text { Due to } \\ \text { Joule-heating } \\ T_{\text {th in }} N \end{gathered}$
50	6.7	25	716
5000	9.8	65	1074
10000	14.0	97	1566
50000	37.0	270	4072
100000	63.0	460	6712
500000	270.0	2000	29535
1000000	580.00	C4400	62650

All the three forces increase with. the increase in frequency . For lower range of frequencies, , they increase slowly but a sharp rise of them is observed near 100 kHz .


Fig. 7.4 Three forms of forces as functions of frequency.

In course of the comparative study of the electromechanical forces on a current carrying conductor some important features are observed , which are,1) eletro-mechanical forces are directly proportional to the square of the current flowing through the conductor at power frequency a.c . 2) forces due to electric field and that due to Joule-heating are inversely proportional to the square of the conductor diameter while the force due to magnetic field is independent of the diameter of the conductor . 3) forces arising from electric field are smaller for good conductors and increases parabollically with resistivity of the cồnductor . But for Joule-heating, force increases linearly with the increase in resistivity and magneto-mechanical force remains unchanged with respect to the resistivity of the conductor. 4) frequency response of the forces are such that they increased with the increase in frequency and a very rapid increament is observed above 100 kHz . In the above study ond the steady-state forces are considered.

## CHAPTER EIGHT

GENERAL DISCUSSION AND CONCLUSION

A current carrying conductor is usually exposed to different forms of stresses, some of them are caused externally viz, by ambient conditions, wind thrust, solar irradiation, ice loading (in cold countries) and some of them due to its own mechanical and electrical causes, In case of overhead conductors it is stressed owing to its self load also. But electrically on the course of carrying current in any condition it has to undergo three forms of electro-mechanical stresses.

Our observation says that, the dielectric stress, though plays a vital role in causing damage to an insulator, is negligible in case of conductors and of the order of $10^{-12} \mathrm{~N} / \mathrm{m}$, when subjected to a fault current of 17.1 kA at 33 kV .

The tension due to magnetic field is found to be considerably high of the order of a few newton, yet it is very small to cause any severe damage to the conductor, even when a fault current of several $K A$ range is allowed to pass through the conductor, because the breaking strength of the specimen conductor for which the stress was calculated was of the range of $k N$.

The mechanical tension on practical overhead conductors resulting from Joule-heating is high enough even for steady state current. It is of the order of $k N$ which may cause increase in the sag of overhead conductors and may result hazardous ground clearance of them. Stress of this form due to fault current is high enough i.f the breaker tripping were not sufficiently fast, i.e,if the breaker failed to clear the fault current rapidly it may cause permanent deformations to them, $\}$ vivid example of which was the cause of the
black out of the whole New York city for a long duration of 23hours, on July 13 , 1977. Later it was investigated out that after two consecutive lightning strokes, three $345-\mathrm{kV}$ lines were crippled pushing the remaining lines above their thermal limits, and due to thermal expansion the conductors of another $345-\mathrm{KV}$ line sagged deep enough to cause short circuit via small tree. The line tripped causing further overload of the few remaining ties [16].

In course of our study we have seen that the stress due to magnetic field is directly proportional to the relative permeability of the material which was assumed to be unity for conductors like copper and aluminium , but material like silicon steel, which is used for the construction of the core of different electrical machines like, generators, motors and transformers, are blessed with a large value of relative permeability $\mu_{n}=7000$ at room temperature [17]. Almost in all applications eddy current flows through a magnetic core though its amount is limited to a low value by slicing them in thin laminations, yet owing to their large permeability, they will have to withstand a considrable stress resulting from the magnetic field produced by the eddy current. Moreover, a core is also exposed to a huge amount of magnetic field, while the electrical machine is running. Hence obviously it is of practical importance to measure the amount by which such a typical core is stressed due to magnetic field. This may be a future research project.

It may be further noted that while calculating the stress due to Joule-heating during steady state operation of overhead power lines we have to assumé the time constants and saturation time of the Linnet conductor specimen as the standard one, on which experiment was carried out by Black[4]. It was mentioned earlier in section 3.4 that the time constant and saturation time of a conductor is a function of various parameters, such as ambient condition, wind velocity, solar irradiation and absorbtivity of the conductor, hea@ conduction and convection co-efficients of the conductor etc. So it has got considerable practical importance to determine the time constants and saturation time of typical conductors used for overhead power lines.

Finally we would like to propose that the nature and effect of stresses developed in overhead power conductors due to lightning stroke may be a valuable quiery for power engineers. There are three ways in which lightning can generate over-voltages on an overhead line. Among these the surge (induced in the conductor due to the electostatic and electromagnetic coupling from a nearby lightning strike to ground) that travel along the conductor in opposite directions away from the point of impact rises up to 100 KV in distribution system $[18 ; 19]$ causing a current of million ampere range for micro-sec duration. Since the duration of this current is negligibly small, stress resulting from magnetic field may be higher than that resulting from Joule heating.

## MAIN PROGRAM




SLIBROUTINE


```
C
C
C
 EPSI=8.852E-12
 N}=10
 PRINT *,1
 READ(5,*)(PO(I),I=1,6)
 READ(5,*)(F(I),I=1,15)
 READ(5,*)(D(I),I=1,5)
 READ (5,*)(RE(I), I=1,5)
 DATA MU/0.000001256
 PRINT *,2
 WRITE(3,8)
 8 WRITE'3,8), ', 5X,'FREQUENCY',6X,'TEAC',5X,'TEDC',5X,
 8 FORMA'T(4X,'I',5X,'FREQUENCY',6X,''TEAC',5X,'TEDC',5X,
 *'TTHAC';4X,'TTHDC',4X,'TH(AC)/TH(DC)'/)
 DO 170 K=1,5
 21 R0=D(I)/2000.
 DATA MU/0.000001256
 RO=RE(L)
 OMEGA=2*PAI*F
 14M=SQRT(OMEGA*MU/RO)
A SATURATION TIME OF THIRTY MINUTES IS ASSUMED FOR
 CALCULATING THE STRESS DUE TO JOULE-HEATING.
 TIME=1800
 Z0=M*R0
 PRINT *,3
 BEMR=BES(Z0)*BES(Z0)
 INTEGRATION STARTS
 H=(R0-A)}/\textrm{N
 11 X=H
 MM=N+1
 Z=M*X
COMPUTER PROGRAM FOR CALCULATING THE FORCES DUE TO IELETRIC S'TRESS, MAGNETO-MECHANICAL STRESS AND S CARRYING TO JOULE-HEATING DEVELOPED IN A CURRENT CARRYING CONDUCTOR.
VARIABLES ARE FREQUENCY OF THE APPLIED FIELD, CURRENT, DIAMETER AND RESISTIVITY OF THE CONDUCTOR.
```

```
 DIMENSION PX(800), PY(800), PM(800),D(10),RE(10),F(10),PO(10),
```

    DIMENSION PX(800), PY(800), PM(800),D(10),RE(10),F(10),PO(10),
    *PYY(800)
INTEGER F
REAL M,MU,JO,OMEGA
COMPLEX SUM, CEXP, BES, BEMR, BEMX, BEMY,SUMY, PY, PY1M, PX, PX1M, PM, PM1M
COMPLEX CMPLX
COMPLEX SUMM
OPEN(UNIT T=5,STATUS='OLD',FILE='INPUT')
OPEN(UNIT=3,STATUS='NEW',FILE='OUTPUT')
A=0.0

```
```

    DO 170 L=1,6
    ITERATION FOR DIFFERENT DIAMETERS STARTS
    DO 170 I=1,5
    ITERATION FOR DIFFERENT FREQUENCIES STARTS
    DO 170 J=1,15
    ITERATION FOR DIFFERENT RESISTIVITIES STARTS
        SATURATION TIME OF THIRTY MINUTES IS ASSUMED FOR
    ITERATION FOR EVALUATING THE FUNCTION STARTS
    ```

C INTEGRATION STARTS
\(\mathrm{H}=(\mathrm{RO}-\mathrm{A}) / \mathrm{N}\)
\(11 \mathrm{X}=\mathrm{H}\)
\(M M=N+1\)
\(Z=M * X\)
C. ITERATION FOR EVALUATING THE FUNCTION STARTS DO \(20 \mathrm{~J}=1\), MM
\(65 \operatorname{BEMX}=\operatorname{BES}(Z) * \operatorname{BES}(Z)\)
PX \((J)=(\) BEMX \(/\) BEMR \() * X\)
C NESTED INTEGRATION FOR MAGNETO-MECHANICAL STRESS STARTS
\(16 \mathrm{Y}=\mathrm{A}\)
\(\mathrm{NN}=20\)
\(\mathrm{HH}=(\mathrm{X}-\mathrm{A}) / \mathrm{NN}\)
\(M Y=N+1\)
ZZ=M*Y
C ITERATION FOR NESTED INTEGRATION STARTS
DO \(25 \mathrm{~K}=1\), MY
\(55 \mathrm{PY}(\mathrm{K})=(\operatorname{BES}(\mathrm{MZ}) / \operatorname{BES}(\mathrm{Z})) * Y\)
\(Y=Y+H H\)
ZZ \(=\mathrm{M} * \mathrm{Y}\)
25 CONTINUE
PY1M=PY(1)-PY(MY)
SUMY \(=0.0\)
DO \(35 \mathrm{~K}=2, \mathrm{NN}, 2\)
35 SUMY \(=\) SUMY \(+(2.0 * P Y(K)+P Y(K+1))\)
SUMY \(=(2.0 * S U M Y+P Y 1 M) * H H / 3\).
\(\operatorname{PM}(J)=(S U M Y * * 2) / X\)
\(\mathrm{X}=\mathrm{X}+\mathrm{H}\)
20 Z \(=\mathrm{M}\) * X
PM1M=PM(1)-PM(MM)
SUMM \(=0.0\)
DO \(30 \mathrm{~K}=2, \mathrm{~N}, 2\)
\(30 \cdot \operatorname{SUMM}=\mathrm{SUMM}+(2.0 * \mathrm{PM}(\mathrm{K})+\mathrm{PM}(\mathrm{K}+1))\)
SUMM \(=(2.0 * S U M M+P M 1 M) * H / 3\).
PX1M=PX (1) -PX (MM)
SUM \(=0.0\)
DO \(33 \mathrm{~K}=2, \mathrm{~N}, 2\)
33 SUM \(=\) SUM \(+(2 \cdot 0 * \operatorname{PX}(K)+P X(K+1))\)
SUM \(=(2.0 * S U M+P X 1 M) * H / 3\).
C CALCULATION OF SURFACE CURRENT DENSITY STARTS
C
\(\mathrm{Y}=\mathrm{A}\)
\(\mathrm{H} H=(\mathrm{R}-\mathrm{A}) / \mathrm{N}\)
\(M M=N+1\)
\(\mathrm{ZZ}=\mathrm{M} * \mathrm{Y}\)
DO \(26 \mathrm{~K}=1\), MM
PY (K) \(=(\operatorname{BES}(Z Z) / \operatorname{BES}(Z 0)) * Y\)
\(Y=Y+H H\)
\(Z Z=M * Y\)
26 CONTINUE
PY1M=PY(1)-PY(101)
SUMY \(=0.0\)
DO \(36 \mathrm{~K}=2,100,2\)
```

    36 SUMY =SUMY +(2.0*PY(K)+PY(K+1))
    SUMY = (2.0*SUMY +PY1M)*HH/3.
    J0=PO / (2*PAI*SUMY)
    C CALCULATION OF SURFACE CURRENT DENSITY COMPLETED
C CALCULATION OF THE FORCES STARTS
FORCES DUE TO DIELETRIC STRESS
TEAC=PAIT*EPSI*(RO*RO)*(J0*JO)*SUM
TEDC=EPSI*(PO*PO)*(RO*RO)/(2*PAI*R*R)
RAT1=TEAC/TEDC
C FORCES DUE.TO MAGNETO-MECHANICAL STRESS
TMDC=(PO*PO*MU)/(16*PAI)
TMAC=PAI*MU*SUMM* (J0*J0)
RAT2 ='TMAC / TMDC
FORCES OWING TO THE STRESS DUE TO JOULE-HEATING
TTHAC=PAI*RO*(J0*J0)*SUM*TIME
TTHDC=TIME*(P0*P0)*RO/(PAI*R*R)
RAT3 = TTHAC / TTHDC
PRINT *,5
WRI'IE (3,110) RE(L) ,D(I),TEAC,TEDC,RAT1,TMAC,TMDC, RAT2,TTHAC,
*TTHDC,RAT3
110 FORMAT(/1X,E7.2,3X,F5.4,4X,E8.2,3X,E8.2,3X,E7.2,3X,E8.2,3X,E8.2,
*4X,E7.2,4X,E8.2,4X,E8.2,4X,E7.2/)
170 CONTINUE
180 STOP
END
C END OF MAIN PROGRAM,SUBROUTINE STARTS
C FUNCTION SUBPROGRAM BES(X) FOR CALCULATING THE BESSEL REAL
C
C
C
C
AND BESSEL IMAGINARY .
COMPLEX FUNCTION BES(X)
IF(Z.LE.1) GO TO 40
IF(Z.GT.1.AND.Z.LE.8) GO TO 60
IF(Z.GT.1) GO TO 70
C FIRST SLAB STARTS
40 BER=1.
BEI=0.
INF=6
DO 50 K=1,INF,1
FAC=1.
K2=2*K
DO 24 I=1,K2
24 FAC=FAC*I
FAK2=FAC
BER=BER+((-1)**K)*((Z*Z*.25)**K2)/(FAK2**2)
FACI=1.
KD=2*K-1
DO 26 I =1,KD
26 FACI=FACI*I
FACIT=FACI
BEI=BEI +((-1)**(K-1))*((Z*Z*,25)**KD)/(FACIT**2)
50 CONTINUE
BES =CMPLX(BER,BEI)

```
```

                RETURN
                            SECOND SLAB STARTS
    60 BER=1-64*(2/8)**4+113.77777774*(2/8)**8-32.3634565*(2/8)**12
        ++2.641913976*(2/8)**16-.08346906*(2/8)**20+.00122552*(2/8)**24
        +-.00000901*(2/8)**28
            BEI=16*(2/8)**2-113.77777774*(2/8)**6+72.8177775*(2/8)**10
        +-10.56765779*(2/8)**14+.52185615*(2/8)**18-.01103667*(2/8)**22
        ++.00011346*(2/8)**26
            BES=CMPLX(BER,BEI)
            RETURN
    C THIRD SLAB STARTS
70 PAI=22/7
EPSI1=1.E-7
EPSI2=3.E-7
FK=SQRT (PAI/(2*X))
GK=1/SQRT(2*PAI*X)
FARG=-CMPLX(.707,.707)*X+THETA(-X)
FRA=REAL(FARG)
FIA=AIMAG(FARG)
N=FIA/(2*PAI)
FIA=FIA-N*2*PAI
FX=FK*EXP(FRA)*CMPLX(COS(FIA),SIN(FIA))
FR=REAL(FX)/PAI
FI=AIMAG(FX)/PAI
GARG=CMPLX(.707,.707)*X+THETA(X)
GRA = REAL (GARG)
GIA=AIMAG (GARG)
M=GIA/(2*PAI)
GIA=GIA-M*2*PAI
GX=GK*EXP(GRA) *CMPLX(COS(GIA),SIN(GIA))
BES=GX*(1+EPSI2) +CMPLX(-FI,FR)*(1+EPSI1)
RETUKN
END
C FUNCTION SUBPROGRAM 2
COMPLEX FUNCTION THETA(X)
COMPLEX CMPLX
43 TREAL=.0110486*(8/X)-.0000906*(8/X)**3-.0000252*(8/X)**4-.0000035
+(8/X)**5+.0000006*(8/X)**6
TIMAG=-. 39.26994-.0110485*(8/X)-.0009765*(8/X)**2-.0000901*
+(8/X)**3-.00000009*(8/X)**4+.0000051*(8/X)**5+.0000019*(8/X)**6
THETA = CMPLX(TREAL,TIMAG)
111 RETURN
END

```
 STOP
 END
 FUNCTION SUBPROGRAM 1
 DOUBLE PRECISION FUNCTION BESJP (X,P)
 SUBROUTINE BESSEL(BESJP,X,P)
 COMPUTATION OF BESSEL FUNCTIONJ(X,J) OF THE ORDER OF \(P\)
 LIMITATION X.GE.O.AND.P.GT. \((-1)\)
 RETERNS THE VALUE ZERO IF X.LT.O.OR.P.LT. (-1).OR.IF (X.EQ.O.
 AND P.LT. O). OR. WHEN THE VALUE OF THE BESSEL FUNCTION WOULD CAUSE
 AN UNDER FLOW.

DOUBLE PRECISION A,A1 AK,AL,ALOGUF,BL,Y2,DABS,DCOS,DEXP,DLOG,
 +DSIN, DSQRT, EMPACH, FF , FI, P, PP, PN , QN, S, SIGN, U, UB, UU, U1, V, X, XB,
 +XX,Y,Y1,PI
 INTEGER I,K,L,NP,NU,NUB,NUM
 THE CONSTANTS DEFINED IN THE FOLLOWING DATA STATEMENT ARE MACHINE
 DEPENDENT
 ALOGUF IS THE NATURAL LOGARITHM OF THE LAGEST MACHINE NUMBER.
 EMPACH IS THE SMALLEST POSITIVE NUMBER SO THAT (1+EPMACH) >1.
 DATA ALOGUF/1.70D+02/
 DATA EMPACH/1.0D-16/
 DATA PI/3.14159265358979323846264338327950288D+00/
 \(42 \mathrm{BESJP}=0.0 \mathrm{D}+00\)
 \(\mathrm{IF}(\mathrm{X} \cdot \mathrm{EQ} \cdot 0.0 \mathrm{D}+00\). AND. P. EQ. \(0.0 \mathrm{D}+00\)) \(\mathrm{BESJP}=1.0 \mathrm{D}+00\)
 IF (X.LE. O.OD +00 .OR.P.LE. \((-1.0 D+00)\)) GO TO 110
 \(\mathrm{XB}=(-15.0 \mathrm{D}-01) *(\mathrm{DLOG}(\) EMPACH \())\)
 IF (X.GE.XB.AND.P.LT.X)GO TO 60
 \(N P=X-P\)
 \(P P=N P\)
 IF (NP. GT. O) U \(=P+P P+1.0 D+00\)
 IF (NP.LE.O) U \(=\mathrm{P}\)
COMPUTATION OF THE LOGARITHM OF THE GAMMA FUNCTION
 \(\mathrm{UU}=\mathrm{U}\)
 \(\mathrm{AL}=0.0 \mathrm{D}+00\)
 NUB \(=10\)
 IF (EMPACH . LT . 1. OD-17) NUB=50
```

    UB=NUB
    IF(U.GE.UB)GO 'TO 20
    NU=U
    L=NUB}-N
    BL=L
    UU=U+BL
    S=1.0D+00
    DO 10 K=1,L
    AK=K
    S=S*(U+AK)
    C EVALUATION OF SERIES EXPANSION
V=1.0D+00
Y1=0.0D+00
BESJP=1.0D+00
S=U-A
DO 30 I=2,200
AI=I
Y2=A*(Y1*(AI+AI-2.0D+00)-V*A)/(AI*(AI+U))
BESJP=BESJP+Y2
S=S+(U-\dot{A}+AI)*Y2
1F(X.LT.1.OD-01.AND.DABS(Y2).LT.(1.0D-02*EMPACH))GO TO 40
IF((1.0D+01/EMPACH)*(U-A+AI)*(DABS(Y1)+DABS(Y2)).LT.DABS(S))GO TO
+40
V=Y1
Y1=Y2
30 CON'TINUE
40 BESJP=BESJP*FF
IF(NP.LE.0)GO TO 110
C START OF BACKWARD RECURSION(WHEN X.LT.XB.AND.P.LT.X)
XX=2.0D+00/X
V=S*XX*FF
DO 50 K=1,NP
AK=K
Y=XX*(U-AK)*V-BESJP
BESJP=V
V=Y
CONTINUE
BESJP=V
GO TO 110
C COMPUTATION WHEN X.GE.XB.AND.P.LT.X
60 NUM=1
IF(P.GT.2.0D+00)NUM=2
NP=P

```
```

    PP=NP
    UU=P-PP+1.0D+00
    IF(NUM.EQ.1)UU=P
    DO }90\textrm{K}=1\mathrm{ ,NUM
    AK=K
    U=UU+1.0D+00-AK
    C HANKEL'S ASYMPTOTIC EXPANSION OF BESSEL FUNCTION
V=1.0D+00
Ul=4.0D+00*U*U
XX=8.0D+00*X
PN=1.0D+00
QN=0.0D+00
SIGN=1.OD+00
AI=-1.0D+00
DO 70 I=1,100
AI=AI+2.0D+00
V=V*(U1-AK*AK)/(AI*XX)
IF(DABS(V).LT.EMPACH)GO TO 80
SIGN=-SIGN
70 CONTINUE
80 FI=X-(5.0D-01*U+2.5D-01)*PI
Y1=DSQRT(2.0D+00/(PI*X))*(PN*X)*(PN*DCOS(FI)-QN*DSIN(FI))
IF(NUM.EQ.1)Y2=Y1
90 CONTINUE
BESJP=Y2
IF(NUM.EQ.1)GO.TO 110
C START OF FORWARD RECURSION(WHEN X.GT.2.AND.P.LT.X)
XX=2.0D+00/X
DO 100 K=2,NP
BESJP=XX*UU*Y2-Y1
UU=UU+1.0D+00
Y1 = Y2
Y2 = BESJP
100 CONTINUE
110 RETURN
END

```


SUBROUTINE

\(11 \mathrm{RO}=.004\)
WRITE \((3,5)\)
5 FORMAT (3X,'FREQ.', 3X, 'TIME', 4X,'R/R0', 5X,'TRAN. CUR', 5X, 'PH.TC',
+6X,'SS.CUR', 8X,'PH.SSC', 8X,'TOT.CUR', 6X,'PH.TTC'/)
DETERMINATION OF STEADY-STATE CURRENT DENSITY
DO \(\quad I=1,15\)
\(\mathrm{AF}=2 * \mathrm{PI} * \mathrm{~F}(\mathrm{I})\)
\(M=S Q R T(A F * M U S)\)
ROM=R0*M
DO \(30 \mathrm{~T}=10, \mathrm{TT}, 50\)
TIM=T*1.0E-6.
AM=AF*TIM
\(K=A M /(2 * P I)\)
\(A M=A M-K * 2 * P I\)
DO \(30 \mathrm{RAD}=0,1.0,0.2\)
\(\mathrm{R}=\mathrm{RAD} * \mathrm{RO}\)
RM=M*R
\(\operatorname{SSI}=(\operatorname{BES}(\mathrm{RM}) / \operatorname{BES}(\operatorname{ROM})) \operatorname{CEXP}(\mathrm{AM})\)
C. DETERMINATION OF TRANSIENT CURRENT DISTRIBUTION
\(\operatorname{SUM}=\operatorname{CMPLX}(0.0,0.0)\)
DO \(14 \mathrm{~J}=1,8\)
\(P M S=P M(J) * P M(J)\)
\(P R G=M * R 0 * R 0\)
PMR \(=\) CMPLX (PMS, PRG)
\(\mathrm{XE}=((-(\mathrm{PM}(\mathrm{J}) / \mathrm{RO}) * * 2) *(\mathrm{TIM} / \mathrm{MUS}))\)
IF (XE.LE. -170) THEN
EXE \(=0\)
ELSE
EXE \(=\mathrm{EXP}(\mathrm{XE})\)
ENDIF
\(R K A=R A D * P M(J)\)
\(\mathrm{RNU}=0\)
IF (RKA.EQ. O.) THEN
\(\mathrm{UME}=\mathrm{EXE}\)
ELSE
UME = BESJP (RKA, RNU) *EXE
ENDIF
RNU \(=1\)
\(R K A \doteq P M(J)\)
\(\mathrm{DEN}=(\cdot \mathrm{PM}(\mathrm{J}) * \mathrm{BESJP}(\mathrm{RKA}, \mathrm{RNU})) * \mathrm{PMR}\)
SUM = SUM + UME / DEN
14 CONTINUE
\(T R=(-2) * S U M\)
TRM=CABS (TR).
TRP=ATAN (TR)
22 SSM=CABS (SSI)
SSP=ATAN (SSI)
\(T I=S S I+T R\)
ATI=CABS (TI)
WRITE \((3,18) \mathrm{F}(\mathrm{O})\), IME, RAD, TCM, TCP, SSM, SSP, ATI, TIP
18 FORMAT (3X,I8, 3X,I4, 4X,F4.2,5X,F8.6,6X,F8.4,6X,F7.5,5X,F8.4,
+8X,F7.5,5X,F8.4/)
30 CONTINUE
STOP
END
C FUNCTION SUBPROGRAM 1
DOUBLE PRECISION FUNCTION BESJP(X,P)
SUBROUTINE BESSEL (BESJP, X,P)
COMPUTATION OF BESSEL FUNCTIONJ(X,J) OF THE ORDER OF \(P\) LIMITATION X.GE.O.AND.P.GT. (-1)
RETERNS THE VALUE ZERO IF X.LT.O.OR.P.LT. (-1).OR.IF (X.EQ. O.
AND P.LT.O).OR.WHEN THE VALUE OF THE BESSEL FUNCTION WOULD CAUSE AN UNDER FLOW.

DOUBLE PRECISION A,A1 AK,AL,ALOGUF,BL,Y2,DABS,DCOS, DEXP, DLOG,
+DSIN, DSQRT, EMPACH,FF,FI, P, PP, PN, QN, S, SIGN, U, UB, UU, U1, V; X, XB,
\(+\mathrm{XX}, \mathrm{Y}, \mathrm{Y} 1, \mathrm{PI}\)
INTEGER I, K,L,NP,NU,NUB,NUM
THE CONSTANTS DEFINED IN THE FOLLOWING DATA STATEMENT ARE MACHINE
DEPENDENT
ALOGUF IS THE NATURAL LOGARITHM OF THE LAGEST MACHINE NUMBER.
EMPACH IS THE SMALLEST POSITIVE NUMBER SO THAT (1+EPMACH) >1.
DATA ALOGUF/1.70D+02/
DATA EMPACH/1.0D-16/
DATA PI/3.14159265358979323846264338327950288D+00/
\(42 \mathrm{BESJP}=0.0 \mathrm{D}+00\)
\(\operatorname{IF}(X . E Q \cdot 0.0 D+00 . A N D \cdot P \cdot E Q \cdot 0.0 D+00) B E S J P=1 . O D+00\)
IF (X.LE. O.OD +00 .OR.P.LE. \((-1.0 \mathrm{D}+00)\)) GO TO 110
\(\mathrm{XB}=(-15.0 \mathrm{D}-01) *(\mathrm{DLOG}(\) EMPACH \())\)
IF (X.GE.XB.AND.P.LT.X)GO TO 60
\(N P=X-P\)
\(P P=N P\)
IF (NP.GT. 0) \(\mathrm{U}=\mathrm{P}+\mathrm{PP}+1.0 \mathrm{D}+00\)
IF (NP.LE.O) U=P
C
COMPUTATION OF THE LOGARITHM OF THE GAMMA FUNCTION
\(\mathrm{UU}=\mathrm{U}\)
\(A L=0.0 D+00\)
```

    NUB=10
    IF(EMPACH.LT.1.0D-17)NUB=50
    UB=NUB
    IF(U.GE.UB)GO TO 20
    NU=U
    L}=NUB-N
    BL=L
    UU=U+BL
    S=1.0D+00
    DO 10 K=1,L
    AK=K
    S=S*(U+AK)
    C START OF BACKWARD RECURSION(WHEN X.LT.XB.AND.P.LT.X)
XX=2.0D+00/X
V=S*XX*FF
DO 50 K=1,NP
AK=K
Y=XX*(U-AK)*V-BESJP
BESJP=V
V=Y
50 CONTINUE
BESJP=V
GO TO 110
C COMPUTATION WHEN X.GE.XB.AND.P.LT.X
60 NUM=1

```
```

    IF(P.GT.2.0D+00)NUM=2
    NP=P
    PP=NP
    UU=P-PP+1.0D+00
    IF(NUM.EQ.1)UU=P
    DO }90\textrm{K}=1\mathrm{ ,NUM
    AK=K
    U}=\textrm{UU}+1.0\textrm{D}+00-\textrm{AK
    C HANKEL'S ASYMPTOTIC EXPANSION OF BESSEL FUNCTION
V=1.0D+00
U1=4.0D+00*U*U
XX=8.0D+00*X
PN=1.0D+00
QN=0.0D+00
SIGN=1.0D+00
AI= -1.0D+00
DO 70 I=1,100
AI=AI+2.0D+00
V=V*(U1-AK*AK)/(AI*XX)
IF(DABS(V).LT.EMPACH)GO TO }8
SIGN=-SIGN
CONTINUE
FI=X-(5.0D-01*U+2.5D-01)*PI
Y1=DSQRT(2.0D+00/(PI*X))*(PN*X)*(PN*DCOS (FI)-QN*DSIN(FI))
IF(NUM.EQ.1)Y2=Y1
CONTINUE
BESJP=Y2
IF(NUM.EQ.1)GO TO 110
C START OF FORWARD RECURSION(WHEN X.GT.2.AND.P.LT.X)
XX=2.0D+00/X
DO 100 K=2,NP
BESJP=XX*UU*Y2-Y1
UU=UU+1.0D+00
Y1=Y2
Y2=BESJP
100 CONTINUÉ
110 RETURN
END
C FUNCTION SUBPROGRAM BES(X) FOR CALCULATING THE BESSEL REAL
C AND BESSEL IMAGINARY:
C ------------------------
C
IF(Z.LE.1) GO TO 40
IF(Z.GT.1.AND.Z.LE.8) GO TO 60
IF(Z.GT.1) GO TO 70
C FIRST SLAB STARTS
40 BER=1.
BEI=0.
INF=6
DO 50 K=1,INF,1
FAC=1.
K2=2*K
DO 24 I=1,K2

```
```

    24 FAC=FAC*I
    FAK2=FAC
    BER=BER+((-1)**K)*((Z*Z*.25)**K2)/(FAK2**2)
    FACI=1:
    KD=2*K-1
    DO 26 I=1,KD .
    26 FACI =FACI * I
        FACIT=FACI
        BEI=BEI+((-1)**(K-1))*((Z*2*.25)**KD)/(FACIT**2)
    50 CONTINUE
        BES = CMPLX (BER,BEI)
        RETURN
    C SECOND SLAB STARTS
60 BER=1-64*(Z/8)**4+113.77777774*(Z/8)**8-32.3634565*(Z/8)**12
++2.641913976*(Z/8)**16-.08346906*(Z/8)**20+.00122552*(2/8)**24
+-.00000901*(Z/8)**28
BEI=16*(Z/8)**2-113.77777774*(2/8)**6+72.8177775*(2/8)**10
+-10.56765779*(Z/8)**14+.52185615*(Z/8)**18-.01103667*(Z/8)**22
++.00011346*(2/8)**26
BES=CMPLX(BER,BEI)
RETURN
C THIRD SLAB STARTS
70 PAI=22/7
EPSI1=1.E-7
EPSI2=3.E-7
FK=SQRT(PAI/(2*X))
GK=1/SQRT(2*PAI*X)
FARG=-CMPLX(.707,.707)*X+THETA(-X)
FRA=REAL (FARG)
FIA=AIMAG (FARG)
N=FIA/(2*PAI)
FIA=FIA-N*2*PAI
FX=FK*EXP(FRA)*CMPLX(COS(FIA),SIN(FIA))
FR=REAL(FX)/PAI
FI=AIMAG(FX)/PAI
GARG=CMPLX(.707,.707)*X+THETA(X)
GRA=REAL (GARG)
.GIA = AIMAG (GARG)
M=GIA/ (2*PAI)
GIA=GIA-M*2*PAI
GX=GK*EXP(GRA)*CMPLX(COS(GIA),SIN(GIA))
BES=GX*(1+EPSI2) +CMPLX(-FI,FR)*(1+EPSI1)
RETURN
END
C FUNCTION SUBPROGRAM 2
COMPLEX FUNCTION THETA(X)
COMPLEX CMPLX
43 TREAL=.0110486*(8/X)-.0000906*(8/X)**3-.0000252*(8/X)**4-.0000035
+(8/X)**5+.0000006*(8/X)**6
TIMAG=-..3926994-.0110485*(8/X)-.0009765*(8/X)**2-.0000901*
+(8/X)**3-.00000009*(8/X)**4+.0000051*(8/X)**5+.0000019*(8/X)**6
THETA=CMPLX(TREAL,TIMAG')
111 RETURN
END

```
 \(\operatorname{READ}(1, *)(\mathrm{FF}(\mathrm{I}), \mathrm{I}=1,5)\)
 WRITE \((3,5)\)
 5 FORMAT (3X,'TIME', 5 X, 'R/RO', 5 X, 'MAG.STRESS'/)
 \(12 \mathrm{R} 0=.004\)
 \(\mathrm{MU}=4 * \mathrm{PI} * 1.0 \mathrm{E}-07\)
 DO \(52 \mathrm{~T}=0,1000,200\)
 DO \(52 \mathrm{I}=1,5\)
 T=1000000, FOR STEADY-STATE 1 SEC AFTER SWITCHING IS
C T C CONSIDERED.
 DO \(52 \mathrm{RAD}=0.0,1, .2\)
 \(A=0\)
 FOR THE CALCULATION OF DIELECTRIC STRESS NO INTEGRATION IS
 REQUIRED, FOR MAGNETIC STRESS INTEGRATION W.R.T DISTANCE
 FROM THE AXIS IS NECESSARY BUT FOR STRESS DUE TO JOULE-
 HEATING TIME INTEGRATION IS ESSENTIAL.
 INTEGRATION WITH RESPECT TO DISTȦNCE FROM THE AXIS STARTS.
 \(R R=R A D * R 0\)
 \(\mathrm{X}=\mathrm{A}\)
 \(\mathrm{N}=100\)
 \(D X=(R R-A) / N\)
 \(M M=N+1\)
 DO \(25 \mathrm{~K}=1\), MM
 \(\mathrm{F}=\mathrm{FF}\) (I)
 CALL STSC(X,T,TCD)
 \(\mathrm{PX}(\mathrm{K})=\mathrm{X} * \mathrm{TCD}\)
 \(\mathrm{X}=\mathrm{X}+\mathrm{DX}\)
25 CONTINUE
 PX1M=PX(1)-PX(MM)
 SUMX \(=0\)
 DO \(35 \mathrm{~K}=2, \mathrm{~N}, 2\)
\(35 \operatorname{SUMX}=\operatorname{SUMX}+(2.0 * \operatorname{PX}(\mathrm{~K})+\mathrm{PX}(\mathrm{K}+1))\)
 SUMX \(=(2.0 *\) SUMX + PX1M \() * D X / 3\)
 PRINT *,1
 CDX=CABS (SUMX)
 IF (RR.EQ.0.)THEN
 SMR \(=0.0\)
 ELSE
```

        SMR=MU*CDX*CDX/(2*RR*RR)
        ENDIF
        WRITE(3,7) T,RAD,SMR
        FORMAT ( 3X,F5.0,5X,F4.2,5X,E10.4/)
        52 CONTINUE
        STOP
        END
    C SUBROUTINE FOR CALCULATION OF TIME AND TIME AND RADIAL
C DISTRIBUTION OF CURRENT.
SUBROUTINE STSC(R,TT,TI)
DIMENSION PM(50)
COMPLEX PMR,SUM,TR,DEN,SSI,TI
COMPLEX CMPLX
REAL MUS,M
DATA PI/3.141592653
DATA MU/0.00001256
DATA SIGMA/3.58E+08
MUS=MU*SIGMA
C DETERMINATION OF STEADY-STATE CURRENT DENSITY
DO I I=1,15
AF=2*PI*F(I)
M=SQRT (AF*MUS)
ROM=RO*M
TIM=T*1.0E-6
AM=AF*TIM
K=AM/(2*PI)
AM=AM-K*2*PI
R=RAD*R0
RM=M*R
SSI = (BES (RM)/BES (ROM)) CEXP (AM)
C DETERMINATION OF TRANSIENT CURRENT DISTRIBUTION
SUM=CMPLX(0.0,0.0)
DO 14 J=1,21
PMS = PM(J)*PM(J)
PRG=M*R0*R0
PMR=CMPLX(PMS ,PRG)
XE=((-(PM(J)/RO)**2)*(TIM/MUS))
IF (XE.LE.-170) THEN
EXE=0
ELSE
EXE=EXP(XE)
ENDIF
RKA=RAD*PM(J)
RNU=0
IF (RKA.EQ.0.)THEN
UME=EXE
ELSE
UME=BESJP(RKA,RNU)*EXE
ENDIF
RNU=1
RKA=PM(J)
DEN =(PM(J)*BESJP(RKA,RNU )) *PMR
SUM = SUM+UME / DEN
14 CONTINUE

```
```

        TR=(-2)*SUM
        TI=SSI+TR
        RETURN
        END
        FUNCTION SUBPROGRAM 1
        DOUBLE PRECISION FUNCTION BESJP(X,P)
        SUBROUTINE BESSEL(BESJP,X,P)
        COMPUTATION OF.BESSEL FUNCTIONJ(X,J) OF THE ORDER OF P
        LIMITATION X.GE.O.AND.P.GT.(-1)
        RETERNS THE VALUE ZERO IF X.LT.O.OR.P.LT. (-1).OR.IF(X.EQ.O.
        AND P.LT.O).OR.WHEN THE VALUE OF THE BESSEL FUNCTION WOULD CAUSE
        AN UNDER FLOW.
    DOUBLE PRECISION A,A1 AK,AL,ALOGUF,BL,Y2,DABS,DCOS,DEXP,DLOG,
    +DSIN,DSQRT, EMPACH,FF,FI,P,PP,PN,QN,S,SIGN,U,UB,UU,U1,V,X,XB,
    +XX,Y,Y1,PI
    INTEGER I,K,L,NP,NU,NUB,NUM
    THE CONSTANTS DEFINED IN THE FOLLOWING DATA STATEMENT ARE MACHINE
    DEPENDENT
    ALOGUF IS THE NATURAL LOGARITHM OF THE LAGEST MACHINE NUMBER.
    EMPACH IS THE SMALLEST POSITIVE NUMBER SO THAT (1+EPMACH) > 1..
    DATA ALOGUF/1.70D+02/
    DATA EMPACH/1.0D-16/
    DATA PI/3.14159265358979323846264338327950288D+00/
    42 BESJP=0.0D+00
    IF(X.EQ.0.0D+00.AND.P.EQ.0.OD+00)BESJP=1.0D+00
    IF(X.LE.0.0D+00.OR.P.LE.(-1.0D+00))GO TO 110
    XB=(-15.0D-01)*(DLOG(EMPACH))
    IF(X.GE.XB.AND.. P.LT.X)GO TO }6
    NP=X-P
    PP=NP
    IF(NP.GT.0)U=P+PP+1.0D+00
    IF(NP.LE.0)U=P *
    COMPUTATION OF THE LOGARITHM OF THE GAMMA FUNCTION
    UU=U
    AL=0.0D+00
    NUB=10
    IF(EMPACH.LT.1.0D-17)NUB=50
    UB=NUB
    IF(U.GE.UB)GO TO 20
    NU=U
    L}=NUB-N
    BL=L
    UU=U+BL
    S=1.0D+00
    DO 10 K=1,L
    AK=K
    S=S*(U+AK)
    CONTINUE
    AL=DLOG(S)
    A=2.5D-01*X*X/(U+1.0D+00)
    XX=1.0D+00/(UU+1.0D+00)**2
    F1=(()(((XX/1.56D+02-6.91D+02/3.60360D+05)*XX+1.0D+00/1.188D+03)
    +*XX-1.0D+00/1.680D+03)*XX+1.0D+00/1.260D+03)*XX-1.0D+00/3.6D+02)
    ```
```

    +*XX+1.0D+00/1.2D+01)/(UU+1.0D+00)-AL
    FF=-F1-A+U*DLOG(5.0D-01*X)+UU*(1.0D+00-DLOG(UU+1.0D+00))+1.0D+00
    +-5.0D-01*DLOG(2.0D+00*PI*(UU+1.0D+00))
    IF(-FF.GT.(ALOGUF-1.0D+01))GO TO 110
    FF=DEXP(FF)
    C EVALUATION OF SERIES EXPANSION
V=1.0D+00
Y1=0.0D+00
BESJP=1.0D+00
S=U-A
DO 30 I=2,200
AI= I
Y2=A*(Y1*(AI+AI-2.0D+00)-V*A)/(AI*(AI+U))
BESJP=BESJP+Y2
S=S+(U-A+AI)*Y2
IF(X.LT.1.0D-01.AND.DABS(Y2).LT.(1.0D-02*EMPACH))GO TO 40
IF((1.0D+01/EMPACH)*(U-A+AI)*(DABS(Y1)+DABS(Y2)).LT.DABS(S))GO TO
+40
V=Y1
Y1 = Y2
CONTINUE
40 BESJP=BESJP*FF
IF(NP.LE.0)GO TO 110
C . START OF BACKWARD RECURSION(WHEN X.LT.XB.AND.P.LT.X)
XX=2.0D+00/X
V=S*XX*FF
DO 50 K=1,NP
AK=K
Y=XX*(U-AK)*V-BESJP
BESJP=V
V=Y
50 CONTINUE
BESJP=V
GO TO 110
C COMPUTATION WHEN X.GE.XB.AND.P.LT.X
60 NUM=1
IF(P.GT.2.0D+00)NUM=2
NP=P
PP=NP
UU=P-PP+1.0D+00
IF(NUM.EQ.1)UU=P
DO 90 K=1,NUM
AK=K
U=UU+1.0D+00-AK
C HANKEL'S ASYMPTOTIC EXPANSION OF BESSEL FUNCTION
V=1.0D+00
U1=4.OD+00*U*U
XX=8.0D+00*X
PN=1.0D+00
QN=0.0D+OO
SIGN=1.0D+00
AI=-1.0D+00
DO }70\quad\textrm{I}=1,10
AI=AI+2.0D+00

```
```

    V=V*(U1-AK*AK)/(AI*XX)
    IF(DABS(V).LT.EMPACH)GO TO }8
    SIGN=-SIGN
    CONTINUE
    FI=X-(5.0D-01*U+2.5D-01)*PI
    Y1=DSQRT (2.0D+00/(PI*X))*(PN*X)*(PN*DCOS(FI)-QN*DSIN(FI))
    IF(NUM.EQ.1)Y2=Y1
    CONTINUE
    BESJP=Y2
    IF(NUM.EQ.1)GO TO 110
    START OF FORWARD RECURSION(WHEN X.GT.2.AND.P.LT.X)
    XX=2.0D+00/X
    DO 100 K=2,NP
    BESJP=XX*UU*Y2-Y1
    UU=UU+1.0D+00
    Y1=Y2
    Y2=BESJP
    CONTINUE
    RETURN
    END
    C FUNCTION SUBPROGRAM BES(X) FOR CALCULATING THE BESSEL REAL
C. AND BESSEL IMAGINARY .
C
COMPLEX FUNCTION BES(X)
C ------------------
IF(Z.LE.1) GO TO 40
IF(Z.GT.1.AND.Z.LE.8) GO TO 60
IF(Z.GT.1) GO TO 70
C FIRST SLAB STARTS
40 BER=1.
BEI=0.
INF=6
DO 50 K=1,INF,1
FAC=1.
K2=2*K
DO 24 I=1,K2
24 FAC=FAC*I
FAK2=FAC
BER=BER+((-1)**K)*((Z*Z*.25)**K2)/(FAK2**2)
FACI=1
KD=2*K-1
DO 26 I=1,KD
26 FACI=FACI*I
FACIT=FACI
BEI=BEI+((-1)**(K-1))*((Z*Z*.25)**KD)/(FACIT**2)
50 CONTINUE
BES =CMPLX(BER,BEI)
RETURN
C SECOND SLAB STARTS
60 BER=1-64*(Z/8)**4+113.77777774*(Z/8)**8-32.3634565*(Z/8)**12
++2.641913976*(Z/8)**16-.08346906*(Z/8)**20+.00122552*(Z/8)**24
+-.00000901*(Z/8)**28
BEI=16*(Z/8)**2-113.77777774*(Z/8)**6+72.8177775*(Z/8)**10
+-10.56765779*(Z/8)**14+.52185615*(Z/8)**18-.01103667*(Z/8)**22

```
```

        ++.00011346*(Z/8)**26
            BES=CMPLX(BER,BEI)
            RETURN
    C THIRD SLAB STARTS
70 PAI=22/7.
EPSI1=1.E-7
EPSI2=3.E-7
FK=SQRT(PAI/(2*X))
GK=1/SQRT(2*PAI*X)
FARG=-CMPLX(.707,.707)*X+THETA(-X)
FRA=REAL(FARG)
FIA=AIMAG(FARG)
N=FIA/(2*PAI)
FIA=FIA-N*2*PAI
FX=FK*EXP(FRA)*CMPLX(COS(FIA),SIN(FIA))
FR=REAL(FX)/PAI
FI=AIMAG(FX)/PAI
GARG=CMPLX(.707,.707)*X+THETA(X)
GRA=REAL (GARG)
GIA =AIMAG (GARG)
M=GIA/(2*PAI)
GIA=GIA-M*2*PAI
GX=GK*EXP(GRA)*CMPLX(COS(GIA),SIN(GIA))
BES=GX*(1+EPSI2)+CMPLX(-FI;FR)*(1+EPSI1)
RETURN
END
C FUNCTION SUBPROGRAM 2
COMPLEX FUNCTION THETA(X)
COMPLEX CMPLX
43 TREAL=.0110486*(8/X)-.0000906*(8/X)**3-.0000252*(8/X)**4-.0000035
+(8/X)**5+.0000006*(8/X)**6
TIMAG=-.3926994-.0110485*(8/X)-.0009765*(8/X)**2-.0000901*
+(8/X)**3-.00000009*(8/X)**4+.0000051*(8/X)**5+.0000019*(8/X)**6
THETA = CMPLX(TREAL,TIMAG)
111 RETURN
END

```
[1] House H.E. and Title P.D., "Current carrying capacity of ACSR". A.I.E.E trans., vol., PAS. 77, pp. 1169-77, Feb 1958.
[2] Davidson, G.A., Donoho, T.E., Landrieu, P.R.H., McElhaney, R.T., and Saeger, J.H., "Short-time thermal ratings for bare overhead conductors", IEEE trans; Vol. PAS -88, No. 3. pp. 194-199, March 1969.
[3] Wong, I.V., Findlay, J.A., and McMurtrie, A.N., "An online method for transmission Ampacity evaluation," IEEE trans., Vol. PAS -101, No. 2, Feb. 1982.
[4] Black, W.Z., and Byrd, W.R., "Real-time Ampacity model for overhead lines", IEEE tranbs., Vol. PAS -102, No.7, pp. 2289-2293, July 1983.
[5] Stratfon, J.A. "Electromagnetic theory", McGraw-hill book Co., Inc. NY \& LONDON 1941. pp. 83-103
[6] Deg, R.K., "Calculation of electroinechanical stress distribution in insulators using finite element method", M.Sc.Engg. Thesis, B.U.E.T. Dhaka. pp. 68-72, May 1987.
[7]
Collin, R.E., "Foundations of Microwave engineering", McGraw-hill Kogakusha; Ltd. pp. 31-33,1966;
[8], Ramo, S.,Whinnery, J.R. and Vanduzer, T., "Fields and Waves in Communication Electronics", John Wiley and Sons, Inc. New York, 1965, pp. 291-293.
[9] Pipes, L.A. , Harvill, L.R. "Applied Mathematics for Engineérs and Physicists", Third Edition, McGraw-hill book Co. Ltd. , pp. 424-426, 1970 .
[10] McLachlan, " Bessel functions for Engineers", 2nd Edition, Oxford at the Clarendon press, 1961, pp. 138.
[11] William, D. Stevension Jr. " E]ements of Power system analysis", 2nd Edition, Mcgraw-Hill Book Co. Inc. Kogakusha Co. Lttd. Tokyo, 1962 , pp \(84-85\).
[12] Dekker, Adrianus, J., "Electrical Engineering Materials", Prentice-Hall of India, New Delhi-110001. 1977, pp. 151.
[13] British standard 215: Part 1: 1970 specification for Aluminium conductors and Aluminium conductors steel reiforced for overhead power transmission line. pp. 11.
[14] ... Distribution Planning Guide, Bangladesh Power Development Board, Dhaka, 1980 , pp. 6-7.

〔15] Rao,Sunil S., "Switchgear and Protection", Khanna Publishers. New Delhi 110006, 1982,pp. 305-308.
[16] Lester Fink and Kjell Carlsen; " Operating under stress and Strain", IEEE Spectum, March 1978, pp. 48-50.
[17] Dekker, A.J., "Electrical Engineering Materials", Prentice-Hall of India, New Delhi-110001, 1977, pp. 110
[181 Simms, J.R.," Overvoltage. Protection of Gas Insulated Substations", Power Engineering Journal, July'1987, No.4, IEE, pp. 215-222.
[19] Weedy, B.M., "Electric Power Systems", 3rd Edition. John Wiley and Sons, Chichester, December 1984. pp. 357-359.
```

