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ABSTRACT

Electrical conductors while carrying currents are found to be
stressed mechanically both.for mechanical as well as for
electrical causes. The present work has been devoted to
calculating the stress and the resulting force developed on
conductors due to electrical reasons only. On the basis of energy
balance equation in a current carrying conductor mathematical
models are established for the different forms of stresses (viz;
dieletric stress, stress due to magnetic field and that resulting
from Joule-heating) developed on the conductor and using those
mathematical models representative numerical examples are cited.
Forces on overhead power lines due to these three reasons are
calculated for steady-state, fault current and transient
switching on conditions. Stress due to Joule-heating is much
higher than that owing to the magnetic field, while a negligibly
small amount of dielectric stress is caused by the eletric field
on a conductor. Stress distribution inside a cylindrical
conductor is studied during steady-state operations Nonuniform
stress distribution owing to the 'Skin effect' in case of ac
fields is vividly observed. With the increase in frequency all
the three forms of stresses increase rapidly and become as high
as several hundred times at MHz range of frequencies of that at
power frequencies for the same amount of current flowing through
a conductor. Current as well as the stress distribution inside a
conductor during switching on condition is studied on the basis
of a rigorous mathematical treatment of the diffusion equation.
It is observed that transient' switching current and the stress
are maximum at the axis and minimum near the surface unlike the
current distribution during steady-state operation.
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= Magnetic permeability of free space,
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Te = Total force (compression) due to diele~tric stress, newton,
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1.1 Introduction
Electrical conductors have got a wide range of

applicatio~s from generation to distribution of electrical power.

In course of almost all applications a conductor is subjected to

mechanical stress arising from various causes.Thermal stress
developed in a conductor due to Joule-heating is found to have

considerable effect in damaging a conductor. Increament in sag

of overhead conductors is not on~¥J due to the self load of

the conductor,but also due to the eletro-mechanical stresses

developed in a conductor during the flow of current. Stress
,analysis of electric wires is important from the stand-point of

stringing of overhead lines as well as in selecting wires for

winding of electrical apparatus.

1.2 Historical Review
A number of papers are available on studies on the thermal

characterstics of current carrying conductors.House and Tuttle[l]

are probably the first to develop a model to predict the.real

time conductor temperatures, associated thermal stress and

resulting sag by knowing the conductor current, and approximate

ambient conditions. But the model was restricted to steady state

conditions only.However,the line current is a variable and

weather conditions are rarely constant for more than a few

minutes. All of these factors reduce the accuracy of a

steady state ampacity program as suggested by House and Tuttle

[1 ]. To encounter this prob~em a single-step linear integration

of the House and Tuttle method was reported by

2
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others[2]. Yet several simplifying assumptions used in this model

made it unusable in simulating a real-time operation.

Another model prescribed by Wong and others [3]

linearizes convection, radiation and heat generation and

combines these terms into a constant which had also an

assumption of constant conductor current and constant weather

conditions that limitC)its accuracy as real-time rating schemes.

A real time ampacity model represented by Black [4) comes out

of these constraints. The model considers convection and

radiation from the surface of the conductor, energy generation

inside the conductor due to I2R heating and storage of energy

within the conductor due to its thermal capacitance.

A current carrying conductor is not subjected to thermal

stress only .There may be stresses due to its electric and

magnetic fields. A general formula was established by Stratton

[5) to calcu'latethe stress resulting from electric and magnetic

fields.

Begg[6) calculated the electromechanical stress

insulator placed between two parallel
distribution in insulators and found that it is as high as 1.8

kN/m2 in a ferro-electric
circular plates and subjected to an electric field of 106 V/ m.

In the case of current carrying conductor. all, the three

types of stresses viz, Ohmic stress, magnetic and dielectric

'stresses need to be studied seperately. In this thesis a

3



the electro-mechanical stress analysis of a current carrying
conductor has been carried out by paying attention chiefly to

these three types of stresses.

1.3 Objective of the Research
The stress developed in a current carrying conductor is

different. from that developed in a dead wire owing to the

mechanical stress developed within the conductor due to its

electromagnetic fields.The objective of this study is to

calculate the amount of stress due to the electromagnetic

fields in a conductor and to make a comparison among the variety

of stresses developed in a current carrying conductor,

1.4 Thesis Layout:

On the basis of Poynting's theorem a general formula is

established in chapter-2 to determine the electric, magnetic and

Ohmic stresses for time varying fields. Since stress distribution

is a function of current distribution ,current distribution in a

cylindrical conductor for both steady-state and transient

switching conditions are studied in chapter-3.Equivalent

Steady state and transient conditions

is studied in chapter-4.

are veri£ied through some

fields
mechanical

from a.c

stress

and d.c

distribution

electric

in a conductor resulting

representative numerical examples. Stress distribution inside a

conductor due to the action of the magnetic field is placed in

chapter-5, where both a.c ~nd d.c cases are considered with

numerical examples. Chapter-6 is equiped with the Ohmic stress

4
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developed in conductor. In chapter-7, tables of comparison of

the three types of stresses for different conductor

specifications are illustrated. The thesis is concluded with a

general discussion and future research proposals in chapter-B.
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2.1 Introduction
In this chapter a review has been carried out on

electromagnetic energy and stress in conducting media. The energy
flow has been shown to be governed by the well-known Poynting's

theorem. A precise relationship between electromagnetic energy

and electro-nlechanical stress is found by mathematical reasonings
and it is shown that the electr~magnetic energy imparted in to a

conductor manifests in the form of three different stresses

viz,dielectric stress,magnetic stress,and thermal stress.

2.2 Electromagnetic energy in conducting media

When currents flow 10 a conductor as a result of the

application of a suitable.potential source, energy is expended by
the source in maintaing the currents. The energy supplied by the

source 1S stored 1n the electric and magnetic fields set up by

the currents or propagated (radiated away) in the. form of

electromagnetic wave.Poynting's theorem introduces the energy

balance equation among these different forms of energy. The time

average power transmitted across a closed surface S is g~ven by

the integral of the real part of one-half of the real component

of the complex ~9ynting vector, i,e

p = He [1/2 (2.1)

Which represents the power flow density.

7



The complex Poynting vector theorem may
•

l'1axwell's field equations which are:

be. derived from

4B
'i1x E+ --- 0

qt

aD
\Ix Ii - -- = J

Qt

'V. B = 0

12.2)

12.3)

(2.4)

(2.5 )

Now expanding the divergence of - -*E x H , we obtain,

V.( E x il*) = ( \7x E). H* - ('i7x H* ). E.- 17 t;)

With the help of equations (2.2) and (2.3), the right

of equation 12.6) can be written for fields varying as ejwt

hand side

(2.7)

where"" IS the angular frequency

The integration of this equation throughout a volume

b~' a closed surface S gives ,

V bounded

dV 1/21 E.:i* dV... 12.81
V

8



where the divergence theorerRhas been used on the left-hand-side

integral. The above. result may be rewritten as

= 2jw Jv - -*B.H
(-

4 4
dV •.• (2.9)

where -d'S is a vector element of area directed into the volume V •
•

If the medium in V is characterized by the parameters.
, • 1 __ .1 11.1~ •••.t:-. -J" -fr..It-.v,andconductivity~, the real and imaginary parts

of equation (2.9) may be equated to give

Re 1/2 is Ex 'H* . (-dS)

= w/2!v (It'H.ii* +£"'E.'E* ) dV + 1/2Ivll"E.E* dV •.. (2.10a)

1m 1/2 is Ex ii* . (-d'S)

= 2wJv (/tiiL'H* -~/E.E dV (2.10b)
4 4

Equation (2.10a) is int rpreted to state that the real

electromagnetic power trans itted through the closed surface S in

to V is equal to the powe loss produced by conduction current

.', e.o.l'ing in J•• l'-h'R.~g pl.o 'h. p.o.e 1.00 e'R.l'ing 'e.o

:::a~:at:::s d:m:tinge:oir~cte\~oB:: i:o:::e 100fssa::::uc:::u:in;:o:H

polarization damping forces
IThe time average energy stored in the magnetic field is given by

= 1/4 JjfH.H* dV (2.11)



- ~__ ._.._. . ._ .. _....__..__. . ---_.---.-1 ..------ ..._._.__..._.. _

and the time average. energ, stored in the electric field is

= 1/4 St E.E* dV 12.12)

Equation 12.10b) states that the imaginary part of the complex

the magnetic and electric fields in V.Now

ra I.e of ener g,' flo", into

stored il
V is equal to 2", times the net reactive

equation(2.9) by the with respect to

replacing the j2w m tltiplier on

~t operator and

the left

integrating

hand side of

time, the energy balance eq (tion 12.91 will take the form:

__ * r __ *
- E:E.E) dV + Jv E.E 0-1. dV ••• /2.13)

The first integral on the right hand side accounts for the

electromagnetic enerJ~Y storage' and the second integl~al accounts

for energy in the form of Joule-heating [71

.. 10



2.3 Mechanical Stress in Elastib Media:
Let us suppose that a given solid or fluid body of matter

is in static equilibrium under the action of specified system of

applied forces Within this body we isolate a finite volume V

1

by means of a closed surface S,as indicated in fig 2.1.

l~/'~,,~ L
--< p.v Js" ..'

/'." /\,/
1-

.'

o y

Fig. 2.1 A reg'ion.V bounded by a surface S in

an elastic medium under stress.

Since equilibrium has been assumed for the body and all

its parts, the resultant force F exerted on the matter within S

must be zero. Contributing to this resultant ~re ~y-o~um#or body

forces and surface forces exerted by elements of matter just

outside the enclosed region on contiguous elements within.

Throughout V, therefore, we suppose it to be distributed

with a density f .per unit volume, while the force exerted by

matter outside, S on a unit area of S will be represented by the

vector t. The components of 't are evidently normal pressures or

11



tensions and tangential shears [5].
The condition of translational equilibrium is expressed by

the equation

= 0 (2.14)

To ensure rotational equilibrium it is necessary also that

the resultant torque be zero, or

Iv r x f .dv + Is r x t da = o (2.15)

where r is the radius vector from an arbitrary orgin

o to an element of volume or surface.

Let n be the uni t outward normal to an element of S.

There are then three vectors

equations

x, Y, Z which satisfy the

(2.16)

/'

The expansion of the scalar products in the form

tx. = Xxnx + Xyny + Xznz
ty = Yxnx + '70 ,+ Yznz (2.17)

Yyn:f
tz = Zxnx + Zyny + Zznz

12



may also be interpreted as a linear transformation of the

component of n into the components of t, the components

nx' ny , nz being the direction cosines of ~ with respect to

the co-ordinate axes. The eqvilib!,"iumof the x-components of

foces acting on.matter withinS is now expressed by

JCfx dv + Jbx.n da = 0 (2.18)

which in virtue of the divergence theorem and the

arbitrariness of V is equivalent to the condition that at all

points within S;
flf (:;> +OX V.X = 0 (2.19)

For the Y & Z components we have, likewise,

+ = 0, = 0 (2.20)

The rotational equilibrium expressed by (2.1,~) imposes

further conditions upon the nine components of the three

vectors X,Y,Z. The x-component of this equation is for example,

J( yfz - zf ) dv + l(ytz - zty) da = 0 (2.21)
y

V 5
Introduction of the values of tz and t~ defined in

(2.1@) .leads to

13



(2.22)

which again takes to the divergence theorem and the

arbitraryness of V and is equivalent to

But,

+ zY) = 0 (2.23)

= y V:z: + Z. 'i;l'y= y v:z + Z;y ( 2 • 24)

Equation (2(g3), re'duces to

or, on taking account of (2,20),

(2.25)

In like manner there may be derived from the y- & z-
.~components of (2.15) the symmetry relations

Xy = Yx' Xz = Zx (2.27)

The nine components ~X' Y~ Z~, reprsenting forces

exerted on unit elements of area, are called stresses. In

14



diagonal terms X~ , Yy , Zz act in a direction normal to the

surface element and are, therefore, pressures or tensions. The

remaining six components are the shearing stresses acting in

the plane of the element. These nine components constitute the
components .of a symmetrical tensor, as is evident from (.i:IY.)' .

and the fact that t and n are true vectors. Representing

the components of the stress tensor by Sjk' where

=

= =
(2.28)

2.4 Electromagnetic Forces on Charges and Currents:

The electric field E at a point (in its vicini ty) is

defineq.as the force experienced by a unit point charge placed at

that point. In vector notation the definition of E becomes

E = (2 .29)

Now if we suppose that the charge is distri.buted

throughout a volume V with a macroscopically continuous charge

F =••

density, ~hen the net

J~Edv'
v

mechanical force acting on the charge

(2.30.)

is

distributed with a volume density
(2.31)

Again for the purpose of defining the magnetic induction

15



it is convenient to define

volume(frequently called the

fmthe magnetic force per unit

Lorentz force), as that part of a

force exerted on moving charge density(coul/m3), which is neither

electrostatic no"r mechanical. The magnetic induction or magnetic

flux density vector), Ii

satisfies

is then defined as the vector which

f",=pvxB
where, ~ = the charge density in coul/m3

(2.32)

v = the velocity vector of the charge in m/sec.

hence'fv = i = current density in A/m2

Thus (2.33)

Equation (2.33) represents the force exerted by th"e

magnetic field on a unit volume element of current. Taking volume

integral of equation( 2.33) leads to

Fm= S} x B dv (2.34)

where, Fm = the net force exerte"d on "a volume

distribution of current.

2.5 Electromagnetic Stress in a Conducting Medium:

Referred to the energy balance equation (2.13), deduced

earlier 1n section 2.2, the first term within the integration

sign on the right hand side, expresses the energy density stored

per unit volume due to electric field. Dimensionally it is the

force per unit area or a strqss due to the electric forces within

the system. Similarly the second term repressents a stress due to

16



magnetic forces. The third term gives the volumetric energy

density dissipated in the form of heat (as is known form Joule's

law of electric heating); in otherwords this is the value of the

thermal stress developed in a conductor due to the flow of

eleetri'c current. The minus sign on the left hand side of

equation (2.1~) indicates that all the net energy term expressed

by the right hand side of relation (2.131 must have been supplied

externally. Thus the term on the left represents the energy flow

into a unit volume of the system, where it is converted into

electric, magnetic and thermal stresses. A detailed analysis is

made by Stratton [,5], where it is shown that the magnitude

of the stress due to electric field is

I r( e) I = 1/2 e E2 (2.35)

and in vector notation it is given by,

(2.36)

where ~(e) = the electric stress tensor like that

mentioned in article 2.3 and the elements of this tensor are

shown in table2.1

17



Table - 2.1 (e)Components Sjlt of the Tensor Sce)

j\k

1

2

3

1 2

~(E~-1/2E~ )

3

The magnitude of the stress du~ to magnetic field is

given by •

and in vector notation it is given by,

\,

(2.37)

( 2.38)

where S(m) = the magnetic stress tensor corresponding to

magnetic field whose elements are shown in table 2.2

18



Table - 2,2 Components S~)of the Tensor S~)
JI<

j\k 1 2 3 r

i 11-1B;-1/2B'-) 11- B"By 1flBy Bz

2 1ft ByBx
2. a

1~ ByBZ11- (B,..-1/2B )

3 11/1BzB" 11t BzB)' 1~ (B~-1/2B~

Similarly from equation (2,13), the magnitude of the

stress due to Joule-heating is

.and in vector notation it is given by,

(2,39 )

(2,40)

.where ...•s (e ) = the stress tensor corresponding to Joule-

heating whose elements are tabulated below:

19



Table - 2.3

j\k 1

""Components Sjk of the

2

Tensor Sl!l-)

3

1 2crt (£2 -1/2E2.)

"

2

3 217t (Ei-l/2E"l

From equation (2.40) it is observed that the stress due to

Joule-heati'ng (qhmic dissipation) on the system

steadily with timeo t.

increases

But as the Ohmic loss manifests in the form of heat,

temperature of the system rises. This in turn expresses that the

temperature as well as the elastic strain resulting from thermal

stress will tend towards infinity for an unlimited period of

energy transmission through the system.But it is not' so in

practice. What happens usually is that an energy balance occurs

amongst the heat developed, convection and radiation from the

surface of the system.
"For example in case of a conductor, an @nergy balance o~ a

unit volume of it results in a governing equation given by Black

and Byrd [:4)]'

(2.41)

20



where, Qgen =the rate of heat generation per unit volume

of the conductor due to the ohomic

dissipation in it

= E.J = O"E.E = (2.42) ,

Qsun =the rate of heat absorbed by the conductor

per unit volume from solar irradiation.

Qrad =the rate of heat radiated away from the
surface of the unit volume of the conductor.

Qconv=the rate of heat passing away from the

surface of the unit volume of the

conductor by convection.

Put t ing the various representa ti ve data of the ambient

condition, solar absorptivity of the conductor, solar flux,
infrared emissivity convective heat transfer co-efficient

in the first order ordinary non-linear differential equation

(2.41) and solving the ,equation employing the standard numerical

technique such as Runge-Kutia method, a value for the conductor

temperature at discrete tjme intervals can be provided to plot a

curve of the form shown in Fig. 2.2.

21
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Flg. 2.2 Timeconstant of linnetcondu"

The time constant of the conductor 1S the time required

for the conductor to reach 63% of its ultimate steady state

temperature rise when subject to change in current. The time

constant for a Linnet conductor is calculated to be

approximately 8 minutes by Black and Byrd [4)~'.

From the figure it is evident ~ that the temperature

starts rising with current but for a short duration~ when it

reaches a definite value,. all. the generated heat due to Ohmic

22



loss and absorbed heat from solar flux is dissipated in the

Surrounding atmosphere through .radiation and convection

processes.

2.6 Discussion
Energy stored 1n a system due to electric and magnetic

field and so. with the case of stress due to el~ctric field and
stress due to magnetic field is found to be independent of time.

But the Ohmic loss, 1,e. the stress due to Joule-heating is

time dependent up to a certain interval after switching on and
finally a steady state temperature is reached. In article 2.3 it
is shown that the body forces and surface forces exerted by

elements of matter on its contiguous elements within a material

under static (~eq~~librium, "form stress tensors and their

equivalent electromagnetic

and 2.5.

stresses are discussed in article 2.4
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3.1 Introduction
Stress distribution inside a conductor is dependent on

time as well as spatial distribution of current inside a

conductor. Hence it is of practical importance to be familiar

with the current distribution inside a conductqr. It is well-

known that the current distribution is not uniform throughout the

conductor in case of alternating fields and it is of further
interest to know the current distribution inside a conductor

during switching period. Complete solution of diffusion equation

is enough to have an idea of both spatial and time dependence of

the current density inside a conductor. From the generalized wave

equation electromagnetic field penetration and current diffusion

is stated inside a cylindrical conductor of infinite length by

solving the diffusion equation for it.

3.2 The Equations for Fields in a Conducting' Medium

Electromagnetic fields in a conducting medium are governed

by the equations:

QB
'i7x E = - ~ ( 3 • 1 )

ot
- oi)

'i7x H = i + -- (3.2)
Qt

D = foE ( 3.3 )

13 = /<H ( 3.4)

i = erE ( 3.5)

V,B = 0 (3.6)

V.n = P
For a homogeneous' medium /f ' E: and 0-
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position so that

'\7. ii = 0

V.i5 = £'\7.E

( 3.8)

( 3 • 9 )

(3.10)

Taking divergence of equation (3.2)

(3.12)

(3.11)

(3.13)
at t = O.

it becomes(3.7)

charge density

:0
J2:'to e- <Ii

1";'
the,initial

+ R._ (\7. Ii) = 0
c)t

(3.3) and equation
T ~p

f =
D is"0where

The solution

Then by equation
ap
,at.
1S

As the factor 0/.: is very large for a cnductor ,then any

charge concentration in the conductor dies out quickly . Hence in

a conductor it is approximately such that

p = 0 (3 .14)

Then by equations (3.3) ,(3.7) and (3.14)
\7,e = 0 (3.15)

However,this is exact for fields varying as E=E ejwt.o

Taking curl of equation (3.1) and by equations (3.2),(3.3)

and (3.5)
'\7 'I( 'i7x E = + eQE

, CIt
(3.16)

The vector identity
( 3 • 17 )

is now used to obtain

V( 9'.E)

Equation(3.15) is used

aE c/'e
-"Ar:r q1: -/' f: Q ","-

to eliminate V.E, and

(3.18)

by

regrouping terms we obtain
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V'2'E - ~fi: ilF, /,CT~ =0 (3.19)
;' dt-2. Co'

Similar relationships can be obtained for magnetic, field
- -H and current density, i

~2H - jt~ 2/fi j<C7'd\H = 0
Qi:2 ~i

72:[ ~- /tCT~ji- Jiedi. = 0

otC1 et

(3.20)

(3.21)

Equations (3.19)-(3.21) are the generalized equations for

fields in a conducting medium.
. tFor ac fields varrying as eJw and

for a good conductor with (J > > wE the above equations reduce to

v2'E =~CTQE (3.22)
at

72ii =,Acr2> H (3.23)
at.

v2:[ 'jIcrC) I (3.24)

at-

These are the familiar forms of equations describing a

diffusion process indicating that medium and low frequency fields

in a conductor are subject to diffusion.

3.3 Application to a Cylindrical Conductor

Equation (3.23) in cylindrical co-ordinates can be

written as

_1
raC1

..•.•.-o i-T =o'z2.
( 3.25)

For axial symmetry ai
O>d

= 0 a,nd'for an infinitely long

cnductor , there will be no variation ofi along the z-direction
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T

i,e £!.. =0, hence for straight c.ylindrical conductor of infinite
a:z .

length we can write,

~ ~r> (r> ~~) = /leT g~
Equation (3.26) will have a solution of the form

(3.26 )

+ (3.27)

where 's.s = steady-state current density to be given by
the particular solution of a differential

equation.
itr. = transient current density to be given by the

complementary functio~ of the differential

equati.on.

Fig. 3.1 A solid cylindrical conductor of circular
cross-section with its axis along the z-

direction and of radius ro

3.3.1 Steady-state Current Distribution

z

Assuming sinusoidally time varying current of the form, i

,iwt t' (3 26) b= lOe equa lon. ecomes,
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or,

where,

=

o

......~o- ..J "'7' 1

( 3 • 28 )

T = j-1/2';A);4U' = .-1/2 .ro/aJ

where, ~ = f
.J Trr/t(T

Equation (3.28) has exactly the form of the zero order

Bessel equation although T is complex. A complete solution may be

written asLaI,(b

where Jo and No are zero order

(3.29)

Bessel and Neuman

functions respectively. Since Neuman function of order zero would

become infinite at r=o, then

i = AJo (Tr )

The arbitrary constant

(3.30)

A may be evaluated in terms of

current density at the surface. Let

at

Then from equation (3.30)

and
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Now expressing the Bessel's function of order zero of.first

kind as a series in ascending powers of the argument,

(<f)/(,HT):J.r-f/ 2~)(4ll

+j(¥o-)~ro/22x4aXG.l.

(3.33)

When the series (3.33) is seperated into a series of

real and ~ series of imaginary terms, each series is a modified

form of Bessel's function. Separating the real and i~aginary

terms and substituting

We obtain

(3.34 )

Jo(Tr) [ 1 (m1'~ + (m "') g
= - 22X""a)< 6"'X Sa22X "'l II.

+) Cmp)2. (YTlr) 6- -2'1. 2,llx""l2X,,2

= Ber(mr) + jBei(mr) (3.35)

Where, the terms t Ber I and I Be i J are abbreviation for

"Bessel real of order zero." and

zero.

"Bessel imaginary" of order

1. • e •

Ber(mr) = 1

30

• •••(11'11') +
22X..j~

f:!n t»B
22X""l2)(,62)(B2,-

(3.36)



Bei(mr) (3.37)

Hence the steady state solution of the diffusion

equation for a cylindrical conductor of infinite length and

having circular corss section is given by

Ber(mr)
Ber(mro

+ ,jBei(mr)
+ ,jBei(mro)

(3.38 )

or,

represeIl;ts

Ber("2)i) + ,jBei(-(2~)
Ber(V-~o) + ,jBei(r~o)

the current density at a radial

distance r from the axis of the conductor.

From equations (3.34) and (3.38) it is clear that the

and the radius of thedepth of penetrationoperation

steady-state current distribution is a function of frequency of

2>'
cylindrical conductor. The radial distribution of steady-state

current at,different frequencies is shown in Fig 3.2.
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c
Ql
Cl.•.
C
Qlt 0.7
:>
U

f= 1 kHz

0.0 f=50kHz.
1.0 Axis 1.0

Radial Distance rIr.

Fig. 3.2 Steady.state current distribution ln cylindrical

wire at different frequencie~ for 4 mm diameter

aluminium wire of conductivity a- = 3.5Bxl07 (.n_m)-1

At low frequencies the current density is almost uniform

throughout the cross-section but as the frequency is increased ,

the current distribution predominates towapds the surface. This

effect is more pronounced for thick conductors i,e, for higher

values of the ratio ro/S .
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3.3.2 Transient Current Distribution

Let the transient solution of diffusion equation be of the

form:
(3.39)

where, fIr) is an arbitrary function representing the radial

distribution and e-kt represents the exponentially .decaying

nature of the transient current, k is an arbitrary constant.

Now substituting i from equation (3.39) in the diffusion

equation 13.26) we get,

where,

- ')4crf(r»

of(r» + 7:2 fer»~- 0
dt>

t.e. K = 't'~cr

(3.40)

(3.41)

A direct comparison of (3.46) with equation (3.28) shows

that both have exactly the form of zero order Bessel equation,

here ~ is real; hence the solution will be of the form:

f (r) = CJo (Tr) + DYo('l"r) p.42)

\.1ith a simi lar reasoning as mentioned earlier

D must be zero and hence,

f (r) = CJo (Td
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So , from equations (3.39) and (3.41)

2
" CJ 0 ('J'r) e - T%4O" t (3 • 44 )

The general solution of the diffusion equation is

the sum of the transient solution and the steady state solution

i. e.

Now we assume a boundary condition

(3.45)

that the

total current density will be zero everywhere at

the surface, where it is such that

t"o, except at

comparing this with equations (3.45) and (3.38) it follows that

Also it is such that

(3.46)

Now applying

" -iss(r,O) OCrCro
" -1

0
J.,(v'-jJ,),Acr p)
J., (v-j~ r:)

the condition (3.46) in

. ( 3 . 47 )

equation (3.44) we get,

" Pm
where '.Pm is the mth root of the equation Jo(v) " 0

it readily follows that

(3.48)
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So the transient current density will be given by the

.series.

This

1;10

itr(r) = :L em Jo(~p )
mol Po

solution is analogous to the solution

(3.49)

diffusion equation for a cylindrical conductor ['~].

Now at t = 0,

The co-effient

J ( ~p)
o r:
may be evaluated

(3.50)

in a manner

similar to that used for Fourier co-efficients by multiplying

each term of (3.56) by rJo(Pmr/ro) and integrating from 0 to r.

Then from function

= 0 for(Pm

all the terms on the right disappear

s.
r:
oritr(r,O)Jo(Pmr/ro)

= It:Cmr[Jo(Pmr'ro)]2 dr
o

Again we can write,[ fO]

i;J 0
2(PmrI r0) dr = r02

o 2

so from equation (3.52)

except the mth term i.e,
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Now substituting
q;r) J0 ( lD r) dr

(3.53)

.where, (3.54)

Now

R",
of

applying the identity:

fvR;«(Z'v)R>,(~v)d\1:: ~ ~2 ~Ry(CZV)R.y_,(j->0-a:R}..f~K.-(l~v)1
(I) fZ -l~) ( 2>.'56)

denotes J~ • N~ • H~ or H~ , for the definite integral .
the R.H.S of equation(3.53) q we have~,

S}c1;(IZp')J.(~~)dl"= ~~ p2 ~cT..(ezr:)J.:,(~r:)-cz;er.('Xr:)er.(~r:)](3.56)
But J_1 (x) = - J1(x) (3.57)

(3.58)
from equation

Hence the co-efficient Cm becomes
-2 t. Po

Cm = -----~---[ <t J 1 ( a; r.) J0 (~r.) -
_'Tlq;;jjii'rL 2 J 2 (P )~~.J"l"'.'/'-"0 1 m

" Ca-2_ ~2)
Now according to the defihition of Pm, and

( 3.54)

and

and

J0 ( IX r. )= J0 (jJJ"Qjlrr.)

J1(Pm) ;

= 10 (Jj-.)I'O" r0 )

a.~-Ib2. = - j <c))l D'"'

So substituting from equation
-2.i. P",

2J1(Pm)[Pm +

(3.57) in equation (3.58).

Therefore the transient current density distribution
becomes :

••• (3.59)
the transient4mmr:adiusofwire

2Pm Jo(Pmr/ro) exp[-(Pmr/ro) t/",O"1

J1 (Pm) [Pm2 + jloo>}'<O"r02]

aluminiumanConsidering

current density at different time after switching is studied and

is shown in fig 3.3
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Fig. 3.3 Radial distribution of transient current
(ac 50 Hz) at different time after switching.

r = "4mm, (J= 3. 54xl070--mJ', , m =21.

For AC at power frequency it is observed that the

transient current die out within several hundred micro-sec .The
'transient current density at the surface remains zero but that at
the axis is at a maximum till the dying out of the transient

current except up to a few micro-sec after switching while it

oscillates inside the conductor In equation (3.60) the sum has

been carried out for upto m=21 and for higher values of m the

exponential t~rm die out rapidly.As the frequency is increased the

pattern of,the transient current distribution changes widely.

This can be observed from comparison of f(g 3.3 with fig 3.4
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Fig. 3.4 /Radial Distribution of Transient current CAe 15kHz)
At Different Time after Switching

Itis found that the process of dying out of the transient

current at higher frequencies occurs more rapidly than that for

low frequency . Further for a few micro-sec after ~itehi~,

the current distribution is found to be terminated towards the

surface rather than near the axis.
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Expression of total current density

Substitutions from equation (3.39) and equation (3.59) in

equation (3.45) gives the expression for total current density as

.a function of time and radius.

i(r,t)=
Jo(Pmr/ro)exp[-(Pmr/ro)2t//<rr ]

Jl(Pm)[Pm2 + j,¥O'"ro2] )

The

+ io Ber(lIlr)+ ,iBei(mr)
Ber (111r0) +jBei (1I\r0)

distribution of total current at
(3.60)

different instants

after switching is plotted in fig .3.5.
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Fig. 3.5 Radial distribution of total current lac 50 Hz)
at different, time after switching.

Since for AC 50 Hz the steady state current distribution

is almost uniform 'throughout the cross-section of the conductor.

The total current which is the algebraic sum of the transient

current and the steady-state current is found to have similar

pC<vttern like the transient one elevated by unity. The surface,

current density remains unity throughout the period while the

current distribution insrde the conductor rises from zero to

unity after a few hundreds of micro-sec.

Transient Current for Static Field(D.C):

In case of static time invari'~nt field. it is quite

evident that' the operating frequency is zero 1.e.

putting w=o in equation (3.59) we get the Bessel co-efficient



.~,' .••

- 2ioPm

Pw,2 Jl(Pm)

Hence the transient current distribution wilf be given by:

(3.62 )

00

'tr = -2io I.
",: 1

Jo(Pmr/ro) exp[ -tPmr/ro)2t/j«r l

1';, Jl(Pm)
(3.63)

Since the steady state current distri bu tion is uniform

through out the ,conductor for d.c, so if

the surface current density is given by

1 be the total current,

(3.64)

and transient current density as a functio'n of time and radius is

therefore:

= -21-rr rJ.•
Jo(Pmr/ro) exp[ -(Pmr/ro)2t~cr l

~ Jl(Pm)
(3.65 )

o
E~
,0

.Z~
N

E
'"
<l:

'"o

~
I

o

'"o
I

o

,

~,

! \

t.;:;ZOO mi.:;ro-se:

\=600 mi:rc-se:

-1.0 -0.5 0.') 0.5
RJdiol di~ton:,=. R/Po

1.0

Fig. 3.6 Radial distributiqn of transient current

dc at different ~ime after switching.
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~"In case of DC (.fig 3.6) the .process of dying out of. the
. ~.'"

transient current is found to be slower 'than that in case of AC •

but like AC up to few m1cro-sec after switching the transient

current distribution is oscillatory inside the conductor

remaining. zero at the surface Later on the oscillation ceases

and the distribution pattern assumes the shape of a parabola with

its vertex at the axis i,e. the transient current density is

maximum there

,

1.0

t=60:J micro-sec )
/7

~t=200 rr'llcro-sec

/

\

\
\

, .
-1.0

o
o

If)

o

o

I"

-0.5 (1.0 0.5
R.Jdiol ,jisbn~e. R/P~

Fig. 3.7 Radial distribution of total current (DCl.

(f)

c
OJo

>.-

o
E~
o
Z~
N

E
""-

«

at different time after switching.
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In fig 3.7 the total current distribution for DC is shown.

The current distribution is found to increase with

oscillations (initially) inside the conductor to unity while the

surface current density is 'unity throughout the time. So several

hundreds of micro-sec later the transient current dies out and

the total current distribution becomes uniform allover the

conductor cross-section.

3.6 Disucssion
Electromagnetic field penetration in a conducting medium

1S characterized by diffusion equation and in article 3.2 it is

demonstrated that the current density abide by the diffusion

equation inside a conducting ,medium. So in two consecutive

articles solution of diffusion equation is accomplished for

cylindrical conductors of infinite length. In case of low

frequency ac, the switching transient current density is found to

be maximum near the axis and zero at the surface. With the

increase infrequency the peak current density shifts towards the

surface, yet the surface current den'sity remains zero •Though
~

direct current is distributed uniformly throughout the cross-

section
current

during steady state condition but switching(transient)

1S distributed in a separate fashion as is shown in

fig. 3.6. In the following chapters these current distributions

will be used to observe the pattern of stress distributions.
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CHAPTER FOUR

CALCULATION OF DIELECTRIC :ST>~:S:S
IN A CONDUCTOR DUE TO.

ELECTRIC FIELD



~.1 Introduction
A charge in an electric field experiences a force on

,
it which depends on the strength of the field. Hence from the

forces exerted by charges may be determined the work necessary to

establish a field; from energy relations in turns it will be

possible to deduce the forces exerted on ponderable elements of

matter. The theory on Maxwell-Faraday's electromechanical stress in

matter has been widely discussed by Stratton [6]. We outline below

the method of utilizing the electromechanical stress tensor derived

ln section 2.5 to calculate the mechanical stress developed in

conductors of different specifications due to the electric field.

4.2 Stress Distribution .ina Cylindrical Conductor

The dielectric stress developed within a conductor due to

the electric field can be calculated using relation (2.24),
tIe) = S(e).ii

where s( e) = the stress tensor.

(4.1)

the components of s( e) are given in table -2.1 of

section 2.5, and the components of -(e)t can be written as,

= (j = 1,2,3) (4.2)

If in equation (4.2) the components of

substituted from table-2.1
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- (e ) - e ayt; - •. i---~.;--:'

t = axtx + + aztz ,- J
~--::,

2- 1/2E2-)n ExEznzl= ax {(Ex - + EXEyny +x
- 2- 1/2E2)ny + EyExnx'+ EyEznzl+ ay {(Ey -

+ az {(E; - 1/2E2)nz + EZEyny + ExEznxll

= [axEx(Exnx + Eyny + Eznz)

+ ayEy(Exnx + Eyny + Eznz)

+ azEz(Exnx + Eyny + Eznz)l

E2(axnx + ayny + aznz).

t;<e) = (4.3)

Let us consider a cylindrical conductor with its axis along

the Z-direction of a cylindrical co-ordinate system while the

direction of current flow is also the same. Then the applied

electric field may be represented by

(4.4)



Fi~. 4.1 A "cylindrical conductor oriented along the

z-axis.

To calculate the stress on the cross-sect~on of the wire we

let Ii = in equation(4.3), i. e. the normal to the surface

under consideration is along the direction of electric field.

So acco"rding to equation(4.3) and (4.4), it is evideni: that

the direction of the dielectric stress is such that it will pro,iuce

compression on the conductor, where the magnitude of the tct~l

compression exerted by the electric field on the conductor is given

by,

=
Since da

(] f~t(e), da
~Jr;Ez2(2rrr)

= d ( 7l
o
r2) = 2 7f r

dr

dr

where the radius of the conductor and applying

Ohm's law, E = i/~, where ~. = the current density and <T the

conductivity of the conductor, we get,



~1r.Te 2 1i/cr) 2(2 Tf r) dr
OJ I; 2= g i r dr

\1'2 •

4.2.1 Stress under steady-state DC

(4.5)

For a direct current I, the current density is uniform

throughout the conductor. Hence, the current density is given by,

i =
I
~I!~o

14.6)

where, I = the total current flowing through the conductor

area.

r = the radius of the conductor.o

Then, substituting the value of i from equation(4.6) in

'equation (4.5), we get

dr = ( 4 . 7 )

4.2.2 Stress under steady-state AC

In case of alternating current the current density

,through-out the cross-section of the conductor is not Uniform. As

the frequency of alternating current increases I the non-

uniformity of distribution becomes more pronounced due toQ skin
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as a function of frequency.
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effect~il.'In a circular cylindrical conductor the current density

usually increases from'the interior toward the surface.

Substituting the value of i(r) from equation (3.38) in place
of i in the integral of equation (4,5) we get,

2 J~ )2T. = neiO ( Ber(mr) + jBei(mr) r dr ( 4 • 8 )e
a2 Ber(mr ) + jBei(mr )

a

Comparison of compression due to AC and DC

This comparison can be done by considering equal amounts of

ac and dc currents flowing ~hrough the conductor . For I to be the

( 4 • 9 )dr

~2.
o

2=

(4.9), we get the ratio

'total ac current with distribution given by equation (3.38),

J
t;;

1= 27l'riO Ber(mr)+,iBei(mr)
a Ber(mr ) + jBei(mr )

Now dividing equation (4.8) by (4.7) and replacing I by equation

.jG[ 5er>(l'np) + j ,l&ei ~IT\YO) )2y;.dr>
a eep(mr,n +- J roe, ("m~)

[ f.~~l"(mp) T j Be'l (I1'lP) ) r>dr> ] 2,
a roep (mrg) -to j Bei (mr:) ,

I
I

A plot of this ratio as a function of frequency is made on a
semilog paper in fig 4.2 where it is observed that the ratio

1ncreases from unity to as high as 90 at a frequency of 1 MHz.

For lower range of frequencies the ratio ris'es slowly but a sharp

rise is observed near 100 kHz.
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4.3 Nmerical Example:

Among mostl~, available conductors, silvet' (Ag-) IS the best

conductor (Table 4.1) though it is not used in practice because of

its high price. CopperlCul and aluminiumlAl1 conductors are used

",idel~' for practical purposes. Table 4.1 sho,,,s the conductivit~.

of some practical conductors at about room temperature 1200 C)[l2.}.

TABLE 4.1 ELECTRICAL CONDUCTIVITY (a- I OF SmLl:'._F~BAgTIQL"-~

CONl?UCTORSAT 2J) 0 c,,,:

!'J'!'!l~._".L_tcl!.e_!'ongu c to r

Lithium (£OJ)

Silver lAg)

Copper ICul

Aluminium (All

Iron IFel

Tungsten

Nichrome

"9J'!Q!c'ctivit~,-Jsr.Lin lQ6 (.n-m) -1.

0.10

0.625

0.59

0.357

0.10

O.Dl

Stranded aluminium conduclors are used for overhead power

transmission and distribution lines and even III the underground

cables copper is being replaced b)' aluminium. All aluminium

conductors(AAC), aluminium conductor steel reinforced IACSRI and

all aluminium allo)' conductorslAAAC) of different
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almost allover the world for power lines. In ACSR one or more
steel wires are kept as the core or central strand to strengthen

the breaking capacity of the conductor against tensile stress.

Telephone lines are chiefly errected with copper wires,

since the amount of conductor necessary is small and fair

cohductiviti is also an important factor for such 1ines, as low

voltage (only dc) 1S used for this purpose.

For the windings of electrical machines such as generators,

motors and transformers, copper is used instead of aluminium, since

the ohomic dissipation in aluminium is greater than that due to
copper winding for the same amount of current to flow, hence

greater cooling facilities is to be provided for Aluminium winding

which becomes costly as well as the size of the machine becomes

bulky. Moreover, rich conductivity is of great importance for such

machines to reduce the copper loss of the machine i.e. to make the

machine more efficient Even then Aluminium is used for

designing the rotor of squirrel cage induction motors.

Tungsten An alloY steel, Fe:75-80%, N~20-14%, Cr:4-5%)

filament is used 1n incandescent lamps for it emits light when

heated. Nonlinearity is inherent in this conductor, which is an

essential feature of its property. Similar is the case with

Nichrome which is used in electric heaters,toasters and

ovens and. in irons also.

We deal here basically with power lines. i.e. overhead
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transmission and distribution lines. Steady state conditions,

fault current conditions and transient sNitching on conditions are

studied seperately Nith a view to evaluating the stress and

resulting tensile/compressive force developed in conductors having

different specifications, used

4.3.1 Steady-state Condition:

for. practical purposes.

The maximum continuous current rating (Nhich rna,' be

considered as the maximum steady state operating current) of

*different conductors according to B.P.D.B. specifications are

given below in table 4.2 [13].ln article 4.2.2 ,;e arrived at an

expression given by equationI4.8) for the total compression acting

on a conductor due to the eletric field.

Table 4.2 Specification of some common conductors used for BPDB
pOHer lines.

A.Aluminium Conducter Still ReinforcedlACSRI.

Code
name
used by
BPDB

:Overall
'dia/mml

: Stranding &
: wire dialmm),,---------------
:Aluminium:steel

:us~d :Continuous :Calculaled
:far :current :breaking
:power:carrying :load(irN)
:lines:cnpacity(Amp:

,,

GROSBEAK,

GOPHER

RABBIT

DOG

WOLF

NERLIN

HAWK

7. 08

10.05

,14.15

18. 13

18.05

6/2.36 :1/2.36 :llkV 140 9.61

6/3.35 :1/3.35 llkV 205 18.35

6/4.72 7/1. 57 llkV 300 32.70

:30/2.59 7/2.59 33!,V 430 69.20

18/3.61 1/3.61 :33kV 440 41.10,,
6/2.36 :1/2.36 :33kV 560

6/2.36 :1/2.36 :1321,V: 660

'B.P.D.B: Bangladesh Power Development Board.
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B.All G~luminium Conducter (AACI.

Code
name
used by
BPDB

:Overall
:dia(mm),,
•,

Stranding &
wire dia(mm)

:Aluminium wire.

:used :Continuous :Calculated
:for :current :breaking
:power:carrying :load(kN)
:lines:capacity(Amp:--~-----------------------------------------------------------------

GNAT 6.18 7/2.06 400V 140 3.99

ANT 9.30 7/3.10 400V 205 8.28

EARWIG 10.20 7/3.40 400V 310 9.90

WASP 1'3.17 7/4.39 400V 430 16.00

The total compression due to ac electric field is

calculated and shown in table 4.4. To make a comparison with d.c,

compresslon due to static field is also calculateahandling with

the same set of data, and shown in table 4.3 In fig. 3.2 it was

shown that the current density is almost invariant (like d.c)

throughout the cross-section of a thin wire at power frequencies

(i.e. 50 or 60 cps), but in practical conductors used at high

frequencies, current density may decrease to one millionth of its

surface value in a distance of only a few thousands of a

centimeter'

different

So, the same set of calculations are repeated for'

frequencies to be familiar with the frequency depedence

of the stress distribution and compressive force.
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Table 4.3 Compressive force on some common conductors used for BPDB
power lines, for Direct Current(D.C).----------------------------------------------------

Code

GNAT(400V)

Overall
: dia(mm),,

6.18

, Current
(Amp)

140

Compressive fo~ce
: due to elec. fld.,. 10-111 N
I 1n •

48

9.30ANT (400V)

EARWiG(400V:10.20

WASP(400V) :13.17

200

260

310

44

61
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Table 4.4 Compressive force
power lines, for
frequency (50 Hz).

on some common conductors used for
Alternating Current(~.C) at

BPDB
power

-----------------------------------------------------
Code Overall

: dia(mm)
Current
(Amp)

Compressive force
: due to1Ulec. fld.
: in 10- N.

------------------------------------------------------
GNAT(400V) 6.18 140 50 ,,,,
ANT (400V) 9.30 200 45 ,,,,
EARWIG(400V 10.20 260 64 ,,,,
WASP(400V) 13.17 310 54 ,, .

-----------------------------------------------------
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Assuming a steadystate current of 300A passing through a

typical al.uminium conductor of radius 4mm,the compressive force

developed in Newton ~t different frequencies is shown in table 4.5.

Table 4.5 Compressive force on a specific conductor
at different frequencies.

for ac

Operating
: Freq.(Hz),,

Compressive force
due to1slec. fld.
in 10- N.

50. 6 ..7

5000. 9.8

10000. 14
, 50000. 37,,,, 100000. 63,,,, 500000. 270,,,., 1000000. 580,
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Again, the compressive stress distribution in

N/m2 (normalized) inside the same conductor at different frequencies

is shown in table 4.6

Table 4.6 Compressive Stress distribution
conductor of circular cross-section
at different frequencies.

inside
for ac

a

: Operating
, Frequency

: Radial
: Distance

: Stress in N/m2
(Normalized)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

50
50
50
50
50
50

5000
5000
5000
5000
5000
5000

25000
25000
25000
25000
25000
25000
50000
50000
50000
50000
50000
50000

100000
100000
100000
100000
100000'
100000

0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00

-260.3470x10_260.3470x10 26
0.3470x10-
0.3470x10-26
0.3471x10-26
0.3473x10-26
0.3113x10-27
0.3151X10-~~
0.3724x10=27
0.6309x10 26
0.1410x10-260.3473x10-300.7117x10=30
0.9310x10 29
0.4905x10-
0.3974x10-28
0.3592x10-27
0.3473x10-;~
0.3722x10-320.8484x10-300.1439x10-290.3242x10=28
0.8311xlO_260.3473x10 37
0.2869xlO=36
0.1977xlO 34
0.1448xlO-320.1456xlO=30
0.4630x10_260.3473x10

----------------------------------------------

As the
inside
, which

frequency is increased, no stress
the conductor even at a frequency of

is evident from fig. 4.,.fi).,.
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4.3.2 Fault Current Condition

Power lines are very often subjected to faults of different

pattern, single line to ground fault, double line to ground fault,

line to line fault and three phase symmetrical fault among which
the last one is the severe one. Exact calculation of the r.m.s

value of the fault current in a power system is exceedingly

complicated. Approximate methods are more practical and usually

sufficiently accurate.According to B.P.D.B .. specifications,the
max imuIfI prospective three phase r. m. s symmetrical fault levels

must not exceed the following values:-

a) 33 KV system: 1,000 MVA(17.5 KA) r.m.s symmetrical.

b) 11 KV system: 250 MVA(13.1 KA) r.m.s. symmetrical.

c ) 400/230 volt system: 29 MVA (41.9 KA) r.m.s

symmetrical [1-4]

Table 4.8 Compressive force for a fault current(ac at power
frequency) on conductors of BPDB power distribution lines.

Code Overall
: dia(mm)

Fault:Used for: Compressive force
:current:power : due to Slec. fid.
:(kA) :lines of: in 10-1 N.

---------------------------------------------------------
GNAT 6.18 41.9 400v , 4500,,,
ANT 9.30 41.9 400v , .2000,,,
WASP 13.17 41.9 400v , 980,,,

I GOPHER 7.08 13.1 llkV , 190,,,
RABBIT :10.05 13.1 llkV , 94I,.,
DOG :.14.15 13.1 llkV , 50I,,
MERLIN :18.05 17.5' 33kV , 64,
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~.3.3 Transient Switching on

Very often it is observed that different electrical
,(~ppi~an~~sor fuses get damaged just after switching on so it is

expected .that the different forms of stresses become predominent

at this instant. In article 3.3.2 effort has been made to

establish an idea about the radial and time distribution of

transient switching- on current both for static and time varying

fields..Here we shall devote our attempt to give a picture of the

stress distribution in u conductor. Assuming a typical alluminium

conductor of radius 4mm,the compressive stress distribution in Njm2

(normalizedl inside the conductor at different frequencies

with respect to time elapses after switching is shown in table 4.9

Table 4.9 dielectric stress distribution at different
distances from the axis at 10 -sec after
switching on for aC at different frequencies.:-~;~~~~~~;--:-~~~~~~----:-~~~~~~-~~-~/:2-----

: Frequency : Distance (Normalized)
----------------------------------------------

50 0.00: '0.1319x10-~~
50 0.20 : 0.1383x10=30
50 0.40 : 0.1843x10_2950 0.60 : 0.8376x10_2950 0.80 : 0.7598x10 2'
50 1.00 0.3851x10=2~

20000 0.00 0.1377x10_2820000 0.20 0.1036x10_3020000 0.40 0.4784x10_2920000 0.60 0.5248x10_2820000 0.80 0.1180x10_2620000 1.00 0.3682x10_2750000 0.00 0.1309x10_2850000 0.20 0.1247x10 30
50000 0.40 0.3205x10=29
50000 0.60 0.1807x10_2850000 0.80 0.1032x10_2650000 1.00 0.3612x10----------------------------------------------
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Now i~ case of dc,the radial distribution of transient

current just after switching is governed by a different expression

as mentioned earlier in section 3.4. So for a similar aluminium

conductor, the compressive stress distribution in

N/lu2(norulal1zed) inside the conductor for a direct current passing

through it after switching is shown in table 4.,10 .

Table 4.10 Electric stress distribution at different distances
from the axis of the conductor for dc (10 micro-sec
after switchi~g on).

: Radial
: Distance

0.00
0.20
0.40
0.60
0.80
1. 00

: Stress in N/m2
: (Normalized)

. 260.1529x10-280.5708x10-
5 -290.105 x10 28

0.4729xlO-290.8888x10-
0.3899x10-26

,,,..

--------------------------------
In fig 4.5 the radial distribution of dielectric stress is

shown for' ac 50 Hz at 10 micro-sec after switching Assuming

the surface current densi ty to be uni ty, a normal ized curve is

plotted. A little amount of stress is developed near the axis

of the conductor while almost the whole stress is found to

concentrate near the surface. To get the actual value of the

stress developed, the value shown in the fi.gure should be

multiplied by the square of the surface current density.

Fig 4.6 shows the stress distribution during dc switching.

During switching instant a few micro-sec after switching ), in

case of dc the stress near the axis is found to be higher than

that in the case of ac . With time the stress distribution changes

and after several hundred m1cro-seconds it assumes the steady-

state pattern (refer to Fig 4.3).
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.4.4 Discussion

We have outlined ln this chapter the dielectric stress

developed in the form of compression ln conductors of different

specifications. Particular emphasis is given on the transient
conditio!~s like fault current situation and transient switching aD.

It is obvious that the tables through 4,,3 to 4,10

give us a clear picture that the compressive force .within the

conductor resulting from energy stored in the eletric field are

negligiblly small for conductors and it is of the order of 10-12N,
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CHAPTER FIVE

CALCULATION OF MECHANICAL STRESS IN A
CONDUCTOR DUE TO MAGNETIC FIELD.
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5.1 Introduction

When current flows through a conductor magnetic field

develops around it, the amount of which is given by Ampere's law.

'In side the conductor a mechanical stress is, produced by this

magnetic field, which may be termed as magne to-mec hanical

stress At first a mathematical model for magneto-mechanical

stress calculation is established with the help of the stress

tensor derived in chapter 2 . Then stress and the resulting force

are tabulated for conductors having

both the cases of ac and dc.

different specifications in

4.2 Stress Distribution in a Cylindrical Conductor:

The magneto-mechanical stress developed within a

conductor due to the magnetic field can be calculate'd

relation (2,38),

using

where S(ml = the stress tensor.

(5.1)

the components of are given in table -2.2 of

section 2.5, and the components of t:(m) can be written as,

t(m) =
j

(j = 1,2,3) (5.2 )

If in equation (4.2) the components of are

substituted from table-2.2 , we get
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-(m) axtx + ayty + Elztz (4 .1)t =

= ax I(B~ - 1/2B2.)nx + BXByny + BxBznzl

+ ayl (B~ - 1/2B2.)ny + ByBXnX + ByBZnZI

+ az{(B;- 1/2B2.)nz + BZByny + BxBznx I1

= [axBx(Bxnx + Byny + Bznz)

+ .iiyBy(Bxnx + Byny + Bznz)

DC Cas.e:-

t B2-- n
0/<

( 5 . 31

Let us consider a cyl-indrical conductor, having circular

cross-section, placed along t~e z-axis of a cylindrical co-

ordiante system). The current is assumed to flow in the z-

direction. Hence in cylindrical co-ordinates, the magnetic field

developed at a distance r from the centre of the conductor due to

the electric current will be given by

H = ii,., H,.

( 5 • 4 )

where ro = the radius of the conductor.
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z

Fig. 5.1 A cylindrical conductor having circular cross-
section , oriented in z-direction and carrying a

current I.

Now for the surface under consideration (circular front
face of the conductor shown in fig 5,1). the magneto-mechanical
stress is given by equation (5.3), replacing ~ by K.B_
K 'z'

and fi by

= [ BjIl =1.-1 H91 ]

( 5 , 5 )

Exactly the same amount of stress will be experienced
radially inward on the curved surface of the cylindrical conductor
if we take the unit normal n as Kr, This stress will try to squeez
the conductor radially and this lateral strain will inturn
manifests in the form of axial tension to produce longitudinal

elongation Thus we can say that axially the magneto-mechanical

stress is acting in the form of tension.
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For a direct current I.,the magnitude of the net tension

on the surface S of the conductor, shown in fig 5.1, is

T =m
[ a, the area of cross-section

conductor 1 •

of the

integration sign,since current

=
[ I is taken 'out of the

is uniformly distributed

throughout the cross-section of

(S, in case of d.c 1
( 5.6 )

From equation(5.6), it is evident that the tension due to

magnetic field is independent of the dimension of the conductor

and directly proportional to the square of the current.

AC Case:
As the current distribution is not uniform throughout the

cross-section of a conductor, current is also a variable depending

on the distance from the centre of the conductor and the magnetic

field developed inside the conductor at a distance

axis due to the electric cur~ent is given by
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('

H:~ = l(x/r) ix dx
o '

( 5 • 7 )

Where, IX = the current density at a distance x from the

centre of the conductor.

= the radius of the conductor.

Thus the magnitude of the net tension on the surface x is

given b~',
Tm = , fatm da I

J~ ~
=~~~ { f(x/rl IX dx)2 d( 7ir2)

• 0

dx}2 dr

dx}2 dr (5.8)

Comparison of magnetic tension due to AC and DC
This comparison can be done in a similar fashion mentioned

earliar in section 4.2.2 by considering equal amounts of ac and dc

currents flowing through the conductor. Dividing equation (5.8)

by equation (5.6) and putting the value of I from equation (4.8)

and that of ix {rom equation (3.39) we get the ratio as,

A plot of this ratio verses frequency IS shown in fig 5.2 .
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The ratio increases with the increase in frequency. A sharp

upslope of the ratio 1S observed near

5.3 Numerical Example

100 kHz.

.As mentioned earlier in section 4.3, we shall assume

conductors and their sizes which are used in practice. Particular

emphasis is given on the .study of magneto-mechanical stress and

tensile force acting on power lines. Representative data for

steady state conditions, short circuit(fault) conditions and

switching transient situations have been used in determining the

stress distribution and tension.

5. 3. 1 Steady state Condition

Tension on power lines due to the magnetic field is

calculated using equation 5.8 Tension due to d.c ..field is also

evaluated to make a comparison and to have an ldea about the

variation of magneto-mechanical tension with frequency,

calculations are carried out for different
'"

frequencies also.

Table 5.1 Tensile force on ~ome common conductors used for BPDB
power lines, for de--------------------------------------------~--------------

Code Overall
dia(mm)

Amount of
current(Amp)

Compressive force
due t05elec. fld.
in 10- N. 0

-------------------------------------- --------------------
GNAT(400V)

ANT (400V)

6.18

9.30

140

200

51

100

EARWIG(400V:10.20

WASP (400V):13.1~

260

310

180

250
-----------------------------------------------------------
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Table 5.2 Tensile force on some common
power lines, for ac at power

conductors used for
frequency(50Hz.)

BPDB

----------------------------------------------------------
Overall
dia(mm)

Amount of
current (Amp)

Compressive force
: due to elec. fld.,
, . ' 10-5 N
I In .----~------------~------------------~---------------------

GNAT(400V) 6.18 , 140 " 56, 0, ,
0 ,

ANT (400V) 9.30 , 200 , 110, ,, 0, 0

EARWIG{400V:10.20 , 260 , 190, ,, ,, ,
WASP (400V): 13.17 0 310 , 270, ,

----------------------------------------------------------
Assuming a steadystate current of 300A passing through a

typical aluminium conductor of radius 4mm, the tensile force

developed in Newton at different frequencies is shown in table 5.3

to get an idea about the frequency dependence of the tensile force.

Table 5.3 Tensile force on a specific conductor
for ac at different frequencies.

-------------------------------------
: Operating
Freq. (Hz)

: Tension due to _~
: magnetic field 10 (N)

50. , 25,,,
5000. , 65,,,
10000. , 97,,.

0

50000. 0 2700,,
100000. , 460,

0,
500000. , 2000,,,
1000000. 0 44000,,,,~-------------------------------------
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Fig. 5.2 Ratio of stress due to ac to that due to dc
as a function of frequency.
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To get an idea about the stress distribution tin~;Fd'e a

conductor due to steady-state ac a typical aluminium conductor

of radius 4mm is assumed for a current of 300A .The tensile stress

distribution in N/m2 (normalized) inside the conductor at

different frequencies is shown in table 5.4

Table 5.4 Magneto-mechanical Stress distribution inside a conductor
of circular cross-section for steady-state alternating
currents at different frequencies.

: Stress in N/m2
: (Normalized)

: Radial
: Distance

: Operating
: Frequency

----------------------------------------------

,,,,,
",,,,,,,,,,,,,,,,,,,,

0.0000X10-0~
0.1005x10-120.4021x10-~2
O.9048x10- 11
0.1608x10-110.2513x10=00
0.0000x10 12
0.1005x10=12
0.9048x10 12
0.1608x10-110.2513x10-
0.3473X10~~~
0.0000x10 18
0;1300x10=17
0.2318x10 16
0.5459x10- 4
0.1407x10-~3
0.4974x10-000.0000x10+ 3
0.7586x10-~0
O.4509xlO- 22
0.1139x10- 7
0.2019x10-~3
0.2375x10-

0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1.00
0.00
0.20
0.40
0.60
0.80
1. 00

50
50
50
50
50
50

10000
10000
10000
10000
10000
10000
50000
50000
50000
50000
50000
50000

5000000
,5000000
5000000
5000000
5000000
5000000

----------------------------------------------

----------------------------------------------

A parabolic stress distribution is observed for steady-

state AC at po~er frequency (refer to fig.5.3 ), and it is found

that no stress is developed' at the axis of the conductor due to

magnetic field but the stress is maximum at the surface , since
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the current enclosed increases from zero to maximum from the

axis towards the surface. The stress distribution for a frequency

of 50 kHz is shown in fig 5.4 • The stress is almost zero from

the axis up to very near the surface, where it rises very sharply.

This is because at this high frequency the current density

inside the conductor

the surface.

is almost zero and current exists only near
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5.3.2 Fault Current Study
Using the set of conductor specifications mentioned 1n

section 4.3.2 • the magneto-mechanical stress and the resulting

tension are calculated and shown in table 5.5.
a fault
of BPDB

-------------------------------------------------------

Magneto-mechanical tension developed for
current (ac at power frequency) on conductors
power distribution lines.

5.5Table

Code Overall
: dia(mm)

Fault:Used for: Tensions due to
:current:power : Magnetic field
:(kA) :lines'of: in Newton.

------------------------------------------------------
GNAT 6.18 ,. 41.9 400v 49.00,,,
ANT 9.30 , 41.9 400v 49.00,, ..

,
WASP :13.17 , 41.9 400v 49.00,,,
GOPHER , 7.08 , 13.1 llkV 1.20, ,,,
RABBIT :10.05 , 13.1 llkV 1.20,, ,, ,
DOG :14.15 , 13.1 llkV 1.10,, ,, ,
MERLIN :18.05 , 17.5 33kV 3.20,

- ------------------------------------ ------------------

5.3.3 Transient Switching on Cndition

Substituting equation (3.60) 1n to (5.8) and integrating

numerically' the magneto-mechanical tensile stress distribution

with res~ect to the distance from the axis of the conductor is

calculated for ac of different frequencies. A typical aluminium

conductor of radius 4mm is considered for this purpose .'and the

time considered is 10 sec after switching . The result is shown

in table 5.6 and the variation is plotted in fig. 5.5 .Inside the

conductor the stress increases very slowly but it rises very

sharply.near the surface .
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Table 5.6 Magnetic stress distribution inside
for ac of different frequencies at
after switching.

the conductor
l0}l- sec

----------------------------------------------
: Operating
: Frequency

: Radial
: Distance

: Stress in N/m2
(Normalized)

---------------------------------------------
50
50
.50
50
50
50

20000
20000
20000
20000
20000
20000
50000
50000
50000
50000
50000
"50000

5000000
5000000
5000000
5000000
5000000
5000000

0,00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
1. 00
0.00
0.20
0.40
0.60
0.80
.1.00

,,,,,
.',,,,,,,,,,,,,,,,

O.OOOOxlO-OO
0.7058xl0-15
0.1693X10-1:
0.3122x10-i
0.5258x10- ~
0.4604x10-1
0.0000x10-~~
0.6249x10- 4
0.1585x10-1
0.3373xl0-14
0.5607x10-14
0.4868x10-~~
0.0000x10- _
0.6486x10=i~
0.1520x10
0.3350x10-i:
0.6623x10-
0.5954x10-1~
0.1318xl0-1
0.3005x10'cL7
O.300,5x10-i~
0.6918x10-
0.1756x10-16
0.2436x10-13------------------------------------~---------
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Now in case of DC,the radial distribution of transi~nt

current just after switching is governed by equation (3.61l?) as

mentioned earlier in section 3.4. So at 10 It-sec after switching ,

the compressive stress distribution in N/m2(normalized) inside a

similar" aluminium conductor as sbove for a direct cu~rent passing

through it is calculated and (s£owni0" in table 5.7

Table 5.7 Magnetic stress distribution inside the
the conductor at 10ft"secafter ~witching on for dc.--------------------------------~~
: Radial : Stress in N/m2 :-0
: Distance : (Normalized) :_---------~--------~-----+OO-----J~

0.00 0.0000x10 15
0.20 0.1421xl0- 6
0.40 0.5245xl0-16-1g:~g g:~~~~~~g-17

: 1.00 : 0.4766x10-14 : _________________________________ J~

In fig 5.6 the stress distribution for DC switching on is

shown where it is found that except a few oscillations the

stress inside the conductor is almost zero , and increases sharply

near the surface.
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5.4 Discussion
The above chapter has been devoted to study the magnetic

stress distribution and total tensile force which is developed as

a result of this'stress 1n a cylindrical conductor

In chapter -4, we have observed that the dielectric

stress is compressive 1.0 nature. Here we have seen that the

magnetic stress has a tensiIe pr"operty i.e. a property of opposing

the dielectric stress. Although the magnitude of the resulting

tension was not of considerable extent during steady. state

operations
conditions)

during transient

it may reach as high

overcurrent

as several

situations(fault

tenths of Newton in

most conductors of practical utility. It is also notable to

state that the amount of this ~ension(c?~nsile stress) increases

with frequency as shown in fig. 5.2
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CHAPTER SIX

CALCULATION OF STRESS
JOULE-HEATING
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6.1 Introduction

It is a regular phenomenon

through a conductor I2R loss or

that when current,
Oh'~~~~~~~ dissipation

passes

occurs

within the conductor in the form of heat due to the resistance of

the conductor. This heat in turn increases the temperature of the

conductor up to a certain limit. which puts the conductor into a

state of Joule-heating or thermally stressed condition In

chapter-2.seperate expression for stress due to Joule-heating

developed in a conductor has derived. On the basis of

that expression numerical calculations of thermal stress and the

associated forces in cylindrical conductors are discussed in this

chapter.

5.2 Stress Distribution in a Cylindrical Conductor

Electro-thermal stress was found to be
l(th) = s (th) •n (6.1)

in section 2.5 of chapter 2.

where 81th) = the stress tensor.

the components of 81th) are given In table -2.3 of section

2.5. and the components of lIth) can be written as,

t~th)
J = I j = 1, 2 • 3 ) 16.2)

If in equation (6.2) the components of 81th) are substituted from

table-2.3
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"t(th) = 'l'txtx+ ayty + "ztz

= 2,o-t [ ax ((E~ - 1/2E2-)nx + EXEyny + ExEznzl

+ "y {(E~ - 1/2E2.)ny + EyExn~ + EyEznz I
-' :L 1/2E2)nz EZEyny ExEznxll+ az{(Ez - + +

::. ..acrt [axEx (Exnx + Eyny + Eznz)

+ ayEy,(Exnx + Eyny + Eznz)

+ azEz(Exnx + Eyny + Eznz)l
_Q"tE2(- + B.yny + aznz)_.,-..- axnx

t(th) (6.3)

Now Let us consider a cylindrical conductor ~ith its axis

along the z-direciion of a cylindrical co-ordinate system. If

the current flows along the

field will be given by

z-direction , the applied electric

( 6 • 4 )

z

,

..
Fig. 6.1 Cylindrical conductor whose axis is along the

z-direction
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wire

Let us calculate the stress on the cross-section of the

The normal to the surface (Surface S in fig.6.1) under

consideration must be along the direction of electron motion

because the heat transfer is asociated with the motion of the

electron Hence for stress due to Joule-heating ii .= -az' and

from equation (2.28), it can be said that this stress acts in

the form of tens ion on the conductor The magni tude of total

tension resulting from the stress due to Joule-heating is given

by ,

DC Case:-.

T(th) = I ttl th) ds I
- " crt JEz2 d(rrr2)

o-t,'"(2 2 7Tr dr= Ez .
; ~,

0

= O"'t f It( i/a- )2 . 27\r

=27'it fro 2r i dr-a- D

[since ds = d( 7f r2) J

dr
( ~ •5 )

For DC, current distribution is uniform throughout the

cross-section So if I be the total current , then
(6.6)

putting this value of i in equation (6.5),
T(th)

(6.7) •

Where, t the time in second required for the conductor
~.

to reach its ultimate steady state temperature.

The ultimate steady state temperature being constant for a

particular conductor but
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temperatur
condition.

AC Case:-.

varles with the amount of current and the ambient

For AC the current density 1.S also a function of the

distance from the axis (1"

thus

and is given by equation (3.38),

(j

J t Ber(mr)
Ber(mro)

"

2
+ ,iBe i (mr) lr
+ jBei(mro~

dr

( 6 • 8 )

Comparison of the thermal tension due to AC to that due to DC:

Considering the same amount of AC and DC current and

similar conductor specifications, and replacing I of equation

16.7), by equation (4.8),we get,

T(th)
.;I.e

T(th)
<I.e

r .2
o

= -
2

J
~.

Ber
o ~Ber

[r':Ber
) Ber
•

(mr)
1 mro )

(mr)
(mro )

.,'

2-
+ ,iBei ('mr)1r dr
+ ,iBei (mro~

+ ,iBei (mr) r drJ2
+ jBei (mro)

( 6.9 )

This ratio is the same as that derived for stress due to

electric field discussed in,chapter 4'and fig 4.2 represents the

plot of this ratio as a function of frequency.
•

6.3 Numerical Example:

Maximum ambient air temperature ground. tempera.ture at

one meter, ground thermal. res i s t i v i ty and max i urn conductor

temperatures etc are the essential features or design parameters

for errection of power lines, because very often power conductors
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are subject to thermally stressed condition due to continous

operation or overcurrent situations arising from short circuit or
from any other abnormal operating conditions.

In chapter -2 we have formulated expressions for

evaluating the mechanical stress developed in a conductor due to

Joule-heating (I2R loss). There we have shown that it is a time

dependent quantity. A characteristic curve to denote the time

constant for Linnet conductor (ACSR) has also been shown.

.fig. 2.2 ,it is observed that the time required for

From

Linnet

conductor to reach its ultimate steady-state temperature rise

when subject to change in current is approximately 30 minutes for

a particular ambient condition (refer to fig. 2.2)

Almost in every substations and with transformers

switchgear and circuit breakers i.e. protective

provided to prevent the fault currents from

devices are
damaging the

conductor and other valuable electrical appliances, there are

different types of circuit breakers depending on the speed of the

breaker [151.

Type of Breaker The ckt has to withstand
the fault current up to

1) 8 cycle breakers 8 x l/f sec.

2 ) 5 cycle breakers 5 x l/f sec.

3 ) 3 cycle breakers 3 x l/f sec.

4 ) 2 cycle breakers 2 x l/f sec.

Where f is the frequency of operation (supply frequency).

So the duration of the fault current should be considered

according to the speed of the breaker. 8 cycle breaker
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assumptions will be made for calculating the stress durin~ fault

current condition.

6.3. 1 Steady-state Condition:

The total tension resultin~ from thermal stress is

expressed in equation (6.8). where utilizing' the set of 'data

from table 4.2 and assumin~ a time of 30 minutes, table 6.2 is

prepared. Tension due to ~.e case is also tabulated (table 6.1)

to make a comparision.

Table 6.1 Mechanical tension developed
used for BPDB power lines
Direct Current(D.C).
(Assuming' a saturation time

on some common conductors
due to Joule-heating for

of 30 minutes.)
------------------------------------------------------

Code 'Overall
dia(mm)

Current
(Amp)

Tension due to
Joule-heating
in Newton.------------------------------------~----------------

GNAT(400V) 6.18 140 " 211,,,
ANT 1400V) 9.30 200 • 390•,

•
EARWIGI400V:10.20 260 , 580,,

•
WASP (400V) :13.17 310 , 741,

-------------------------------------------------------
Table 6.2 Mechanical tension developed on some common

conductors used for BPDB power lines due to Joule-
heating for ae at power frequencyl50 Hz.)
and assuming a saturation time of 30 minutes.
-----------------------------------------------------

Code Overall
dialmm)

Current
lAmp)

Tension due to
Joule-heating. (~
1n J1.ewton

----------------------- -----------------------------
GNAT(400V) 6.18 140 ' ' 215•,,
ANT (400V) 9.30 200 • 395•

•
•

EARWIGI400V: 10..20 260 , 581,

WASP (400V) : 13.17 310 745-----------------~------------------------------------

87



Assuming a stead~'state current of 300A passing through a

typical aluminium conductor of radius 4mm,the tensile force

developed in Newton at di fferent frequencies is tabulated below

I table 6.3) to get an idea about the frequency dependence of the

'tensile force cleve] ped i TI a r-'OrJr!llr.-(OT" dUf~ to Joule-heating.

Table 6.3 Tensile forc~ ')11 :\

alternatinJt C'ur~r~rJt~:;
.~..;pecific conductor for
at different frequencies.

Operating Tr~T1 s i f)fl due
Freq. (liz) to ,Jpl.Ile-

hea t. i Int In N.
50. 7.1G

5000. 10,4

10000. 1566

50000. 4072.

100000. 671 2

500000. 29535

1000000. 62G50

The tensile stress distribution in N/m2(normalizedlinside

the same conductor at different frequencies is shown in table 6.4.
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Table 6.4 Tensile Stress distribution inside a conductor
of circular cross-section for steady-state ac at
different frequencies. (aluminium wire of radius,4mm) ..:-~~~~~~~:;--:-;~~~~1----:-;~~~~~-~~-~/:2:

: Frequency : Distance : (Normalized) :
------------------------------------------

50 : 0.00 OOxl0~OO
50 : 0.20 13xlO-09
50 : 0.40 27x10-09
50 : 0.60 40xlO-09
50 : 0"80 54xlO-09
50 : 1.00 '67xlO-09

10000 : 0.00 OOxlO+OO
10000 : 0.20 42xlO-12
10000 :0.40 11x10-11
10000 : 0.60 37xlO-11
10000 : 0.80 16xl0-1~
10000 : 1.00 8IxiO-IO
25000 - : 0.00 OOxlO+OO
25000 : 0.20 29x10-14
25000 : 0.40 IBxlO-13
25000 : 0.60 21xlO-12
25000 : 0.80 30xlO-11
25000 1.00 48x10-10
50000 0.00 00x10+00
50000 0.20 21x10-17
50000 0.40 50xiOo=~:
50000 0.60 22x1 12
50000 0.80 13x10-
50000 1.00 28x10:~g
100000 0.00 00x10 23
100000 0.20 13x10-
100000 0.40 21x10-21
100000 0.60 80x10-19
100000 0.80 10x10-14
100000 1.00 2jx10-10---------------~------------------------~-

The stress distribution due to Joule-heating for AC 50 Hz

steady-state is shown in fig 6.2. The stress is zero at the axis

but it increases almost linearly from the axis towards the surface

where it becomes maximum. At a high frequency (25 kHz) as in fig

6.3, the stress remains zero from the axis up to the middle of the

conductor and rises very sharply near the surface which resembles

the pattern of current distribution.
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6.3.2 Fault Current Study
Power lines'specification, mentioned in table 4.2 and fault

c.urrent conditions specified in art. 4.3.2 are put in

equation(6.S) and with an assumption of S cycle breaker the

tension due to Joule-heating are evaluated and shown in table 6.5

Table 6.5. Thermo-electric tension developed for a fault
current (ac at power frequency) on conductors of BPDB
power distribution lines. (due to Joule heating).

----------------------------------------------------------
Code Overall

dia(mm)
Fault:Used for:

:current:power :
:(kA) :lines of:

Tension due to
Jule-heating
in kN.

----------------------------------------------------------
DOG

MERLIN

:14.15

:1S.05

17.5

17.5

33kV

33kV

1. 40

1. SO
-------------------------------------_.--------------------

6.3.3- Switching Condition
With the help of equation (3.60) and equation (6.5) thermo-

electric s~ress distr~bution and the resulting tension is

calculated for a typical aluminium conductor In. chapter-3, we

have seen in fig 3.3 that the transient switching current does not

exist more than a few milli seest so time integration is made for a
duration of dying out of the transient current.
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Table 6.6 Thermo-electric stress distribution at different
distances from the axis after switching on for ac
(at power freq. i.e.50Hz.) up to dying out of the
transient current.

\

0.00
0.20
0.40
0.60
0.80
1. 00

/

,----------------------------------
: Radial : Stress in N/m2

: Distance : (Normalized)
-----------------------------------110.1058x10_12o . 111Ox10 14

0.1510x10=13
0.6744xl0 13
0.6094x10-10.3104x10- 0

---------------------------------

Table 6.7 Thermo-electric stress distribution at different
distances from the axis after switching on for dc,
up to dying out of the transient current.

------------------------------------
: Radial : Stress in N/m2
: Distance (Normalized)

----------------------------------
0.00 0.1319x10-~~
0.20 0.1383xl0-140.40 0.1510x10-
0.60 0.6744x10-i3
0.80 0.6094x10-1~
1.00 0.3104x10----------------------------------

During the switching instant for AC 50 Hz it is observed

fig 6.4) , that though a small amount of stress is sensed at the

conductor axis the conductor experiences almost no stress up to

80% of its cross-section from the axis .The stress increases very

sharply and linearly from very close to the surface This is

because there exists a very little current inside the conduc.tor

during switching period.

92



i
I
II 4000

1.00.5-0.5 0.0
Radial. Distance, r/ro

Radial distribution of stress due to Joule-heating.
Switching instant (ac 50 Hz).

o
-1.0 '

Fig. 604

.•...•.•
"U
(I)

.N 3000
o
E
L.o
Z-2000•......•..•

N pEb
...•..•... -
Z )(1000

4000

1.0

Joule-heating.

0.5-0.5. 0.0
Radial Distance, rIro

Radial distribution of stress due to
Switching instant (dc).

Fig. 6.5

.•...•.•
"U
(I)

.~ 3000
o
~o
Z 2000•......•.

N

E...•..•... .

ZI: 1000
I

-0(1)_
CIlx
e'-'.•..• 0
(/) -1.0

93



6.4 Discussion
It is observed that even for steady state operation .of a

conductor the mechanical tension due to the stress resulting from

Joule-heating is as high as
400 volt overhead lines. During fault current condition it is foundo
to be of similar magnitude, whereas the calculated breaking load

of the same conductor is about 10-40 KN (table 4.2) So the

conductor will be highly stressed due to a continuous operation

at its maximum continuous' current carrying capacity or it may

be damaged if a fault is not cleared by a fast breaker.
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CHAPTER SEVEN

COMPARATIVE STUDY OF THE THREE
TYPES OF ELECTRO-MECHANICAL
FORCES IN A CONDUCTOR
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7.1 Introduction
After getting a set of results about the mechanical stress

due to electric field, magnetic field and Joule-heating

inditiduallY in the previous three chapters,we turn our attention

in the Durrent chapter to depict a comparative picture of these

three types of forces in a cylindrical conductor The chapter

will be occupied with set of tables of comparison followed

by graphical representations with probable reasons of

variations.

7.2 Variation of Forces with Current

Let us first study "the amount of three different forces

on a given conductor for power frequency (50 Hz) a.c. Table

7.1 represents the three different types of forces developed in

an Ca:luminium conductor of 8 mm diameter. The results are

plotted in fig 7.1.
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Table 7.1 Forces for different amount of current.

(Ambient temperature 27°Cl.

Comnressive / Tensile force
Current Due to Due to Due to Ultimate

I dielectric Magnetic Joule- temperature.
Amp stress. field."" heating rise

T in 10.faN T 1n10. N T"." in N .
°C.

e m th
50 .38 .71 30.2 4.3

100 1.50 2.80 118.7 16.87

150 3.50 6.40 244.3 34.7

200 6.10 11.0 392.8 55.8

250 9.60 18.0 551.3 78.3

300 14.00 25.0 713.2 101.3

It ~s observed from fig ..7.1 that all the three forms of

stresses increase in the form of a two degree parabola with the

increase in currents. Actually stress distribution of power

frequency a.c. is almost similar to that for d.c. field and is

proportional to the square of the current as mentioned in sectioruo

.4.2 ,5.2 ,6.2 It can be noted that the three forces at power

frequency are such that Te Electric

polarizabili ty and the magnetic susceptibility are negligibly

small in case of good conductors ,compared to its

So energy stored in the electric and magnetic

conductivity.

fields are

negligible in comparision

Joule-heating.

to
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7.3 Variation of the Forces with Conductor Specifications
Dependence of the forces on conductor specifications are

different for the three forms of s.trsses The major

specifications of the conductor are its diameter and resistivity.
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7.3.1 Variation with the diameter of the conductor

Forces on aluminium conductor of different radii for an

alternating current of 300A at 50 Hz is shown in table 7.2 and

plotted in fig 7.2.
Table 7.2 Forces on aluminium conductors of different diameter.

Conductor C~"!Jlr~~"!-"J-"e__l_'l'e!)siIe force
size Due to Due to Due to

diameter dielectric ~lagnetic Joule-
in stress. field'4 heati:ng
mm. T in la-IaN T ;nlO- N Tth in Ne m
8 31.0 25 735.0

12 14.0 26 316.0

16 7.8 26 178.8

20 5.0 26 115.6

24 3.5 26 73.9

30 ?~,-5_~_~~___~___:zJL _____ 52.4

The forces due to dielectric stress and that resulting

from Joule-heating decrease in a hyperbolic form with the

increase in conductor size ldiameterl This is because at power

frequency those two forms of ~~nsionO have inverse relationship

with the square of the conductor diameter ,while the force due to

magnetic field is independent of the conductor size as mentioned

in sections 4.2, 5.2, 6.2 .
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7 . 3 . 2 Variation with the resistivity of the conductor

Table 7.3 and fig 7.3 illustrate this variation for 8 mm

dia conductors having different resistivities.A current of 300A

is assumed.

Table 7.3 Forces on conductors having different resistivities.

Resistivity: Com~~ssive / Tensile force
~ Doe Co I Doe Co Due to
ig dielectric Magnetic Joule-

10- .!l-Tll stres s . field'4 heating
T in 10-IBN T "'10- N Tth in N. e . m

1.6 10 25 421

1.7 12 25 424

2.8 18 25 731

10.0 86 25 2559

30.0 - 780 --_.~--- 25 8180

With the increase in resistivity that is for poorer

conductors stress due to Joule-heating increases almost linearly

(fig 7.4) while the dielectric stress increases in a parabolic

pattern but stress due to magnetic field remains unchanged as it

does not depend on this propert~. of the conductor (equation 5.7).
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7.4 Variation of forces with frequency

Now we shall investi,ate the relative frequency dependence

of the electro-mechanical stresses on a specific conductor, for a

wide range of frequencies Forces on an aluminium conductor
having a radius of 4.mm with H current flow

in table 7.4 with graphical ploL it, fl, 7.4
of 300A are listed

Table 7.4 Forces on an aluminium conductor for ac at different

frequencies.

Operating com.'Ti .. , T.n.il. force
frequency Due to Due to Due to
in Hz. Electric f~d. Magnetic lId. Joule-heating

f T ;1"\ 10- N T :,,(10- )N Tth in Ne .m
50 6.7 25 716

5000 9.8 65 1074
10000 14.a 97 1566
50000 37.0 270 4072

100000 f,3 . a 460 6712
500000 270.0 2000 29535

1000000 580.00 i...,7r'190 62650 ,

All the three forces increase with. the increase in frequency. For

lower range of frequencies, they increase slowly but a sharp rise

of them is observed near 100 kHz.
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7.5 Discussion
In course of the comparative study of the electro-

mechanical forces on a current carrying conductor some important

features are observed ,which are,1) eletro-mechanical forces are

directly proportional to the square of the current flowing through

the conductor at power frequency a.c 2) forces due to 'electric

field and that due to Joule-heating are inversely proportional to

the square of the conductor diameter whi.le the force due to

magnetic field is independent of the diameter of the conductor

3) forces arising from electric field are smaller for good

conductors and lncreases paraboll ically with resistivity of the

c~nductor U3up for Joule-heating ,forceD increases linearly with

the increase in resistivity and magneto-mechanical forcet) remains
!

unchanged with respect to the resistivity of the conduct,?r. 4)

frequency response of the forces are such that they increaseQ with

the increa~e In frequency and a very rapid increament is observed
above 100 kHz .In the abov.e study (oplY;J the steady-state forces

are considered.
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CHAPTER EIGHT

GENERAL DISCUSSION AND CONCLUSION
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A current carrying conductor is usually exposed to different

forms of stresse's, some of them are caused externally viz, by

ambient conditions, wind thrust, solar irradiation, ice loading (in

cold coun.tries) and some of them due to it.s own mechanical and

eleetr ical causes, In case of overhead conductors it 1S stressed

owing to its self load also. But electrically on the COUTse of

carrying current in any condition it has to undergo

electro-mechanical stresses.

three forms of

Our observation says that, the dielectric stress though

plays a vital role in causing damage to an insulator, is negligible

in case of conductors and of the order of 10-'2 N/m

to a fault current of 17.1 kA at 33kV

when subjected

The tension due to magnetic field 1S found to be considerably

high of the order of a few newton yet it is very small to cause

any severe damage to the conductor, even when a fault current of

several KA range is allowed to pass through the conductor, because'

the breaking strength of the specimen conductor for which the stress

was calculated was of the range of kN.

The mechanical tension on practical overhead conductors

resulting from Joule-heating is high enough even. for steady state

current. It 1S of the order of kN which may cause increase in the

sag of overhead conductors and may result hazardous ground clearance

of them. Stress of this form due to fault current is high enough i£

the breaker tripping were not sufficiently fast, i.e,if the breaker

failed to clear the fault current rapidly it may cause permanent

deformations to them, 0 vivid example of which was the cause of the
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black out of the whole New York city for a long duration of

23hours, on July 13,1977. Later it was investigated out that

after two consecutive lightning strokes, three 345-kV lines were

crippled pushing the remaining lines above their thermal limits,

and due to thermal expansion the conductors of another 345-KV line

sagged deep enough to cause short circuit via small tree. The line

tripped causing further overload of the few remaining ties [IG].

In course of our study we have seen that the stress due to

magnetic field is directly proportional to the relative permeability

of the material which was assumed to be unity for conductors like

copper and aluminium out material like silicon steel, which is

used for the construction of the core of different electrical

machines.like, generators, motors and transformers, are blessed with

at roompermeability ~ = 7000
I"

temperature [17]. Almost in all applications eddy current flows

a large value of relative

through a magnetic core though its amount is limited to a low value
.by slicing them in thin laminations, yet. owing to their large

permeability ,they will have to withstand a considrable stress

resulting from the magnetic field produced by the- eddy current.

Moreover, a core is also exposed to a huge amount of magnetic field,

while the electrical machine is running. Hence obviously it is of

practical importance to measure the amount by which such a typical

core is stressed due to magnetic field. This may be a future

research project.
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It may be fu~ther noted that while calculating the stress due

to Joule-heating during steady state operation of "~ overhead power
lines we have to assume the time constants and saturation time of

the Linnet conductor specimen as the standard one, on which

experiment was carried out by Black[~]. It was mentioned earlier in

section 3.4 that the time constant and saturation time of a

conductor is a function of various parameters, such as ambient

condition, wind velocity, solar irradiation and absorbtivity of the
-t

conductor, he'aO conduction and convection cQ-efficients of the

conductor etc. So it has got considerable practical importance to

determine the time constants and saturation time of typical

conductors used for overhead power lines
Finally we would like to propose that the nature' and effect

of stresses developed in overhead power conductors due to

lightning stroke may be a valuable quiery for power engineers. There

are three ways in which lightning can generate over-voltages on an

overhead line. Among these the surge (induced in the conductor due

to the electostaticand electromagnetic coupling from a nearby

lightning strike to ground) that travel along the conductor in

opposite directions away from the point of impact rises up to 100 KV

in dlstr"ibution system [18~19] causing a current of million ampere

range for micro-sec duration Since the duration of this current

is negligibly small,stress resulting from magnetic field may be

higher than that resulting from Joule heating.
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FLOW CHART FOR CALCULATION OF THE FORCES

MAIN PROGRAM

START

DO 170
J=1,15

DO 170
K=l,5

Skin depth factor
m=)(2 rrf(I)*/t!f IK»)

DO 170
1=1,5

Use BES to Compute Denominator
Berlmt' ) + j Beilmr )

Integration Starts

Use BES to Compute Numerator
Berlmx ) + j Beilmx l

Functional Value at
Different Intervals.

P.>er(Nlx) + j ~ei ell')l()
PX (J }=----.:..-'---'------

l3er (1'111':) +- j Bei(mr:) x

PXHl=PX(l}-PXIMMl d
SUM= SUM + (Z*PX(Jl+ PXIJ+1})
SUM= (Z*SUM + PX1M)* INTERVAL/3

B

,
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SUBROUTINE

BES(X)

A

DO 170
L=l,6

STOP

COJ'vlPUTE
BES(X) = BerOO + j BeilXI
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C COMPUTER PROGRAM FOR CALCULATING THE FORCES DUE TO
,C DIELETRIC STRESS, MAGNETO-MECHANICAL STRESS AND STRESS DUE
C TO JOULE-HEATING DEVELOPED IN A CURRENT CARRYING
C CONDUCTOR.
C -----------------------------------------------------------
C VARIABLES ARE FREQUENCY OF THE APPLIED FIELD, .CURRENT,
C DIAMETER AND RESISTIVITY OF THE CONDUCTOR.
C -----------------------------------------------------------DIMENSION PX(BOO),PY(BOO),PM(BOO),D(10),RE(10),F(10),PO(10),'

*PYY(BOO)
INTEGER F
REAL M,MU,JO,OMEGA
COMPLEX SUM,CEXP,BES,BEMR,BEMX,BEMY,SUMY,PY,PYIM,PX,PXIM,PM,PM1M
COMPLEX CMPLX
COMPLEX SUMM
OPENIUNIT=5,STATUS='OLD' ,FILE='INPUT')
OPEN(UNIT=3,STATUS='NEW' ,FILE='OUTPUT')
A=O.O

C A=I.B05/1000 FOR ACSR, THE STEEL STRAND IS TO BE NEGLECTED.
PAI=22/7
EPSI=B.B52E-12
N=100
PRINT *,1
READ(5,*)(PO(I),I=I,6)
READ (5,* )(F (I ),1=1 ,15 )
READ (5 ,*)(D (I ),1=1 ,5 )
READ(5,*)(RE(I),I=I,5)
DATA MU/0.000001256
PRINT *,2
WRITE(3,B)

8 FORMAT I4X, 'I ',5X, 'FREQUENCY' ,6X, 'TEAC' ,5X, 'TEDC' ,5X,
*'TE(AC)/TE(DC)' ,5X,'TMAC' ,5X,'TMDC' ,5X,'TM(AC)/TM(DC)' ,5X,
*'TTHAC,';4X, 'TTHDC' ,4X, 'TH(AC)/TH(DC)' /)

C ITERATION FOR DIFFERENT CURRENTS STARTS
DO 170 L=I,6

C ITERATION FOR DIFFERENT DIAMETERS STARTS
DO 170 1=1,5

C ITERATION FOR DIFFERENT FREQUENCIES STARTS
DO 170 J=I,15

C ITERATION FOR DIFFERENT RESISTIVITIES STARTS
DO 170 K=I,5

21 RO=D(I)/2000.
DATA MU/0.000001256
RO=RE(L)
OMEGA=2*PAI*F

14 M=SQRT(OMEGA*MU/RO)
C A SATURATION TIME OF THIRTY MINUTES IS ASSUMED FOR
C CALCULATING THE STRESS DUE TO JOULE-HEATING.

TIME=IBOO
ZO=M*RO
PRINT *,3
BEMR=BES(ZO)*BES(ZO)

C INTEGRATION STARTS
C -----------------------------------------------

H=(RO-A)./N
11 X=H

MM=N+l
Z=M*X

C ITERATION FOR EVALUATING THE FUNCTION STARTS
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C INTEGRATION STARTS
C --------------------------------------------- __

H=(RO-A)/N
11 X=H

MM=N+1
Z=M*X

C ITERATION FOR EVALUATING THE FUNCTION STARTS
DO 20 J=1,MM

65 BEMX=BES(Z)*BES(Z)
PX(J)=(BEMX/BEMR)*X

C NESTED INTEGRATION FOR MAGNETO-MECHANICAL STRESS STARTS
16 Y=A

NN=20
HH=(X-A)/NN
MY=N+1
ZZ=M*Y

C ITERATION FOR NESTED INTEGRATION STARTS
DO 25 K=l,MY

55 PY(K)=(BES(MZ)/BES(Z»*Y
Y=Y+HH
ZZ=M*Y

25 CONTINUE
PY1M=PY(1)-PY(MY)
SUMY=O.O
DO 35 K=2,NN,2

35 SUMY=SUMY+(2.0*PY(K)+PY(K+1»
SUMY=(2.0*SUMY+PY1M)*HH/3.
PM(J)=(SUMY**2)/X
X=X+H

20 Z=M*X
PM1M=PM(1)-PM(MM)
SUMM=O.O
DO 30 K=2,N,2

30 SUMM=SUMM+(2.0*PM(K)+PM(K+1»
SUMM=(2.0*SUMM+PM1M)*H/3.
PX1M=PX(1)-PX(MM)
SUM=O.O
DO 33 K=2,N,2

33 SUM=SUM+(2 ..0*PX(K)+PX(K+1»
SUM=(2.0*SUM+PX1M)*H/3.

C CALCULATION OF SURFACE CURRENT DENSITY STARTS
C ---------------------------------------------------------Y=A

HH=(R-A)/N
MM=N+l
ZZ=M*Y
DO 26 K.=l,MM
PY(K)=(BES(ZZ)/BES(ZO»*Y
Y=Y+HH
ZZ=M*Y

26 CONTINUE
PY1M=PY (1)-PY (.101)
SUMY=O.O
DO 36 K=2,100,2
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36 SUMY=SUMY+(2.0*PY(K)+PY(K+1»)
SUMY=(2.0*SUMY+PY1M)*HH/3.
JO=PO/(2*PAI*SUMY)

C CALCULATION OF SURFACE CURRENT DENSITY COMPLETED
C CALCULATION OF THE FORCES STARTS
C -----------------------------------C FORCES DUE TO DIELETRIC STRESS

TEAC=PAI*EPSI*lRO*RO)*(JO*JO)*SUM
TEDC=EPSI*lPO*PO)*(RO*RO)/(2*PAI*R*R)
RAT1=TEAC/TEDC

C FORCES DUE TO MAGNETO-MECHANICAL STRESS
TMDC=(PO*PO*MU)/(16*PAI)
TMAC=PAI*MU*SUMM*(JO*JO)
RAT2=TMAC/TMDC

C FORCES OWING TO THE STRESS DUE TO JOULE-HEATING
TTHAC=PAI*RO*(JO*JO)*SUM*TIME
TTHDC=TIME*(PO*PO)*RO/(PAI*R*R)
RAT3=TTHAC/TTHDC
PRINT *,5
WRITEl.3,110) RE( L) ,D(I) ,TEAC,TEDC ,RAT1,TMAC ,TMDC ,RAT2 ,TTHAC,

*TTHDC,RAT3
110 FORMATl/1X,E7.2,3X,F5.4,4X,EB.2,3X,EB.2,3X,E7.2,3X,EB.2,3X,EB.2,

*4X,E7.2,4X,EB.2,4X,EB.2,4X,E7.2/)
170 CONTINUE
1BO STOP

END
C END OF MAIN PROGRAM,SUBROUTINE STARTS
C FUNCTION SUBPROGRAM BES(X) FOR CALCULATING T~E BESSEL REAL
C AND BESSEL IMAGINARY .
C ----------------------------------------------------------

COMPLEX FUNCTION BES(X)
C ----------------------------------------------------------

IF(Z.LE.1) GO TO 40
IF(Z.GT.1.AND.Z.LE.B) GO TO 60
IF(Z.GT.1) GO TO 70

C FIRST SLAB STARTS
40 BER=l.

BEI=O.
INF=6
DO 50 K= 1,INF, 1
FAC=!.
K2=2*K
DO 24 I=1,K2

24 FAC=FAC*I
FAK2=FAC
BER=BER+(-1)**K)*((Z*Z*.25)**K2)/(FAK2**2)
FACT=l.
KD=2*K-1
DO 26 I=l,KD

26 FACI=FACI*I
FACIT=FACI .
BEI=BEI+«-1)**(K-1»*((Z*Z*.25)**KD)/(FACIT**2)

50 CONTINUE
BES=CMPLX(BER,BEI)
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RETURN
C SECOND SLAB STARTS

60 BER=1_64*(Z/8)**4+113.77777774*IZ/8)**8-32.3634565*IZ/8)**12
++2.641913976*IZ/8)**16-.08346906*(Z/8)**20+.00122552*IZ/8)**24
+-.00000901*IZ/8)**28 '
BEI=16*(Z/8)**2-113.77777774*(Z/8)**6+72.8177775*IZ/8)**10
+_10.56765779*(Z/8)**14+.52185615*(Z/8)**18-.01103667*(Z/8)**22
++.00011346*IZ/8)**26
BES=CMPLX(BER,BEI)
RETURN

C THIRD SLAB STARTS
70 PAI=22/7

EPSI1=1.E-7
EPSI2=3.E-7
FK=SQRTIPAI/(2*X) )
GK=1/SQRT(2*PAI*X)
FARG=-CMPLX( .707, .707)*X+THETAI-X)
FRA=REALIFARG)
FIA=AIMAG(FARG)
N=FIA/12*PAI)
FIA=FIA-N*2*PAI
FX=FK*EXP(FRA)*CMPLX(COS(FIA),SIN(FIA»
FR=REAL(FX)/PAI
FI=AIMAG(FX)/PAI
GARG=CMPLX( .707,.707)*X+THETA(X)
GRA=REAL(GARG)
GIA=AIMAG(GARG)
M=GIA/(2*PAI)
GIA=GIA-M*2*PAI
GX=GK*EXP(GRA)*CMPLX(COSIGIA),SIN(GIA»
BES=GX*(1+EPSI2)+CMPLX(-FI,FR)*(1+EPSI1)
RETURN
END

C FUNCTION SUBPROGRAM 2
COMPLEX FUNCTION THETA(X)
COMPLEX CMPLX

43 TREAL=.0110486*(8/X)-.0000906*18/X)**3-.0000252*(8/X)**4-.0000035
+(8/X)**5+.0000006*(8/X)**6
TIMAG=_.3926994-.0110485*(8/X)-.0009765*(8/X)**2-.0000901*
+18/X)**3_.00000Q09*(8/X)**4+.0000051*(8/X)**5+.0000019*(8/X)**6
THETA=CMPLX(TREAL,TIMAG)

111 RETURN
END
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c

C
C
C

C

C
C
C
C
C
C
C

C
C
C
C

C

COMPUTER PROGRAM FOR THE DETERMINATION OF THE ROOTS OF THE
BESSEL EQUATION , JO(V)=O.
------------------------------------------------------
PRECESION IS UP TO TWO DECIMAL PLACES.------------------------------------------------------
OPENIUNIT=l,STATUS='OLD' ,FILE='INPUT')
OPEN(UNIT=3,STATUS='NEW' ,FILE='OUTPUT')
WRITE(3,*l 'ROOTS OF THE BESSEL EQUATION .ARE .....

5 FORMAT(3X,'APPX. ROOT',4X,'FUNCTIONAL VALUE'/)
RNU=O
DO 30 RKA=2,50,.01

10 FV=BESJPIRKA,RNU)
IF (RKA.LE.1.0E-6) THEN
WRITE(3,*) RKA,FV
ELSE
GO TO 10
ENDIF

30 CONTINUE
STOP
END
FUNCTION SUBPROGRAM 1
DOUBLE PRECISION FUNCTION BESJP(X,P)
SUBROUTINE BESSEL(BESJP,X,P)
COMPUTATION OF BESSEL FUNCTIONJ(X,J) OF THE ORDER OF P
LIMITATION X.GE.O.AND.P.GT.(-l)
RETERNS THE VALUE ZERO IF X.LT.O.OR.P.LT.(~l).OR.IF(X.EQ.O.
AND P.LT.O).OR.WHEN THE VALUE OF THE BESSEL FUNCTION WOULD CAUSE
AN UNDER FLOW.
DOUBLE PRECISION A,A1 AK,AL,ALOGUF,BL,Y2,DABS,DCOS,DEXP,DLOG,
+DSIN,DSQRT,EMPACH,FF,FI,P,PP,PN,QN,S,SIGN,U,UB,UU,U1,V,X,XB.
+XX,Y,Y1,PI
INTEGER I,K,L,NP,NU,NUB,NUM
THE CONSTANTS DEFINED IN THE FOLLOWING DATA STATEMENT ARE MACHINE
DEPENDENT
ALOGUF IS THE NATURAL LOGARITHM OF THE LAGEST MACHINE NUMBER.
EMPACH IS THE SMALLEST POSITIVE NUMBER SO THAT (l+EPMACH) > 1.
DATA ALOGUF/1.70D+02/
DATA EMPACH/1.0D-16/
DATA PI/3.14159265358979323846264338327950288D+00/

42 BESJP=O.OD+OO
IF(X.EQ.0.OD+00.AND.P.EQ.0.OD+00)BESJP=1.0D+00
IF(X.LE.0.OD+00.OR.P.LE.(-1.0D+00»GO TO 110
XB=(-15.0D-01)*(DLOG(EMPACH»
IF(X.GE.XB.AND.P.LT.X)GO TO 60
NP=X-P
PP=NP
IF(NP.GT.0)U=P+PP+1.0D+00
IF(NP.LE.O)U=P
COMPUTATION OF THE LOGARITHM OF THE GAMMA FUNCTION
UU=U
AL=O.OD+OO
.NUB=10
IF(EMPACH.LT.1.0D-17)NUB=50
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10

20

C

30
40

C

50

C
60

UB=NUB
IF(U.GE.UBlGO TO 20
NU=U
L=NUB-NU
BL=L
UU=U+BL
S=l.OD+OO
,DOlOK=l,L
AK=K
S=S*(U+AKI
CONTINUE
AL=DLOGISl
A=2.5D-Ol*X*X/(U+l.OD+00l
XX=1.OD+00/IUU+l.OD+00)**2
Fl=«(((XX/l.56D+02-6.9lD+02/3.60360D+05)*XX\1.OD+00/1.188D+03)
+*XX_l.OD+00/l.680D+03)*XX+l.OD+00/l.260D+03)*XX-liOD+00/3.6D+02)
+*XX+l.OD+OO/l.2D+Ol)/(UU+l.OD+00)-AL
FF=-Fl-A+U*DLOG(5.0D-Ol*X)+UU*(1.OD+00-DLOG(UU+l.OD+00»+l.OD+OO
+-5.0D-Ol*DLOG(2.0D+00*PI*(UU+l.OD+00»
IF(-FF.GT.(ALOGUF-l.OD+Ol»GO TO 110
FF=DEXP(FF)
EVALUATION OF SERIES EXPANSION
V= 1.OD+OO
Yl=O.OD+OO
BESJP=l.OD+OO
S=U-A
DO 30 1=2,200
AI=I
Y2=A*(Yl*(AI+AI-2.0D+00)-V*A)/(AI*(AI+U»
BESJP=BESJP+Y2
S=S+(U-A+AI)*Y2
IF(X.LT.l.OD-Ol.AND.DABS(Y2).LT.(1.OD-02*EMPACH»GO TO 40
IF«1.OD+Ol/EMPACH)*(U-A+AI)*(DABS(Yl)+DABS(Y2».LT.DABS(S»GO TO
+40
V=Yl
Yl=Y2
CONTINUE
BESJP=BESJP*FF
IF(NP.LE.O)GO TO 110
START OF BACKWARD RECURSION(WHEN X.LT.XB.AND.P.LT.X)
XX=2.0D+00/X
V=S*XX*FF
DO 50 K=l,NP
AK=K
Y=XX* (U-AK) *V-BESJP
BESJP=V
V=Y
CONTINUE
BESJP=V
GO TO 110
COMPUTATION WHEN X.GE.XB.AND.P.LT.X
NUM=l
IF(P.GT.2.0D+OO)NUM=2
NP=P
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C

70
80

90

C

100
110

PP=NP
UU=P-PP+1.0D+00
IF(NUM.EQ.1)UU=P
DO 90 K=.1,NUM
AK=K
U=UU+1.0D+00-AK
HANKEL'S ASYMPTOTIC EXPANSION OF BESSEL FUNCTION
V=1.0D+00
U1=4.0D+00*U*U
XX=8.0D+00*X
PN=1.0D+00
QN=O.OD+OO
SIGN=1.0D+00
AI=-l.OD+OO
DO 70 1=1,100
AI=AI+2.0D+00
V=V*(U1-AK*AK)/(AI*XX)
IF(DABS(V).LT.EMPACH)GO TO 80
SIGN=-SIGN
CONTINUE
FI=X-(5.0D-01*U+2.5D-01)*PI
Y1=DSQRT(2.0D+00/(PI*X»*(PN*X)*(PN*DCOS(FI)-QN*DSIN(FI»
IF(NUM.EQ.1)Y2=Yl
CONTINUE
BESJP=Y2
IF(NUM.EQ.1)GOTO 110
START OF FORWARD RECURSION(WHEN X.GT.2.AND.P.LT.X)
XX=2.0D+00/X
DO 100 K=2,NP
BESJP=XX*UU*Y2-Y1
UU=UU+1.0D+00
Y1 =Y2
Y2=BESJP
CONTINUE
RETURN
END
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FLOW CHART FOR CALCULATION OF STRESS DISTRIBUTION.

START

DO 52
1'=1,1000,200

DO 170
K=I,5

Initialize lower limit
of Integration

A. 0

.,

C

No. of interval for Integration
N 100

H~1 = N + I

Use STSC to Compute the functional
value at the inlel'\'uls,PX1K)
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SUBROUTINE

BES(Z)

PXHI=PXI I )-PXINf'1l
SUf'I= SUH + IZ*PXIK)+ PXIK+lll
SUH= IZ*SUf'1 + PXIH)* INTERVAL/3

STRESS

B

SUBROUTINE:

STSClR,TT,TI)

COMPUTE
BESIZ) = BertZ) + j BeilZI

Use BESJP to
compute Transient

current density I,

SUBROUTINE

< BESJP(X,P) >
Compute Bessel's Function
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Use BES(Z) to
compute Steady-

state current
density

Compute total
current density



C COMPUTER PROGRAM FOR THE DETERMINATION OF RADIAL AND TIME
DISTRIBUTION OF TOTAL CURRENT, TRANSIENT CURRENT AND
STEADY-STATE CURRENT

C
C

C

C

C

------------------------------------------------------
VARIABLES ARE RADIAL DISTANCE, TIME IN MICRO-SEC AND
FREQUENCY IN HZ. '
------------------------------------------------------
DIMENSION PM(50)
COMPLEX PMR,SUM,TR,DEN,SSI,TI
COMPLEX CMPLX
REAL MUS,M,MU
OPEN(UNIT=1,STATUS='OLD' ,FILE='INPUT')
OPEN(UNIT=3,STATUS='NEW',FILE='OUTPUT' )
INTEGER I"
READ (1,*) (PM (I ),1=1 ,21 )
READ (1,*) (I" ( I),1=1 ,15 )
DATA PI/3.141592653
DATA MU/0.00001256
DATA '1''1'/1200
DATA SIGMA/3.58E+08
MUS=MU*SIGMA

11 RO=. 004
WRITE(3,5)

5 FORMAT (3X, 'FREQ. ',3X, 'TIME' ,4X, 'R/RO' ,5X, 'TRAN. CUR' ,5X, 'PH.TC' ,
+6X,'SS.CUR'~8X,'PH.SSC',8X,'TOT.CUR',6X.'PH.TTC'/)
DETERMINATION OF STEADY-STATE CURRENT DENSITY
DO' 1=1,15
AF=2*PI*F( I)
M=SQRT(AF*MUS)
ROM=RO*M
DO 30 '1'=10,1''1',50
TIM=T*1.0E-6
AM=AF*TIM
K=AM/(2*PI)
AM=AM-K*2*PI
DO 30 RAD=O,1.0,0.2
R=RAD*RO
RM=M*R
SSI=(BES(RM)/BES(ROM»CEXP(AM)
DETERMINATION OF TRANSIENT CURRENT DISTRIBUTION
SUM=CMPLX(O.O,O.O)
DO 14 J=1,8
PMS=PM(J)*PM(J)
PRG=M*RO*RO
PMR=CMPLX(PMS,PRG)
XE=«-(PM(J)/RO)**2)*(TIM/MUS»
IF (XE.LE.-170) THEN
EXE=O
ELSE
EXE=EXP(XE)
ENDIF
RKA=RAD*PM(J)
RNU=O
IF (RKA.EQ.O.)THEN
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DOUBLE PRECISION A,A1 AK,AL,ALOGUF,BL,Y2,DABS,DCOS,DEXP,DLOG,
+DSIN,DSQRT,EMPACH,FF,FI,P,PP,PN,QN,S,SIGN,U,UB,UU,U1,V,X,XB,
+XX,Y ,Y1 ,PI
INTEGER I,K,L,NP,NU,NUB,NUM

C THE CONSTANTS DEFINED IN THE FOLLOWING DATA STATEMENT ARE MACHINE
C DEPENDENT
C ALOGUF IS THE NATURAL LOGARITHM OF THE LAGEST MACHINE NUMBER.
C EMPACH IS THE SMALLEST POSITIVE NUMBER SO THAT (l+EPMACH) > 1.

DATA ALOGUF/l.70D+02/
DATA EMPACH/1.0D-16/
DATA PI/3.14159265358979323846264338327950288D+00/

42 BESJP=O.OD+OO
IF(X.EQ.0.OD+00.AND.P.EQ.0.OD+00)BESJP=1.0D+00
IF(X.LE.0.OD+00.OR.P.LE.(-1.0D+00)GO TO 110
XB=(-15.0D-01)*(DLOG(EMPACH)
IF(X.GE.XB.AND.P.LT.X)GO TO 60
NP=X-P ~
PP=NP
IF(NP.GT.0)U=P+PP+1.0D+00
IF(NP.LE.O)U=P

C COMPUTATION OF THE LOGARITHM OF THE GAMMA FUNCTION
UU=U
AL=O.OD+OO

UME=EXE
ELSE
UME=BESJP(RKA,RNU)*EXE
ENDIF
RNU=l
RKA=PM(J)
DEN=~PM(J)*BESJP(RKA,RNU))*PMR
SUM=SUM+UME/DEN

14 CONTINUE
TR=(-2)*SUM
TRM=CABS (TR).
TRP=ATAN(TR)

22 SSM=CABS(SSI)
SSP=ATAN(SSI)
.TI=SSI+TR
ATI=CABS(TI)
WRITE(3,18) F(O),IME,RAD,TCM,TCP,SSM,SSP,ATI,TIP

18 FORMAT(3X,I8,3X,I4,4X,F4.2,5X,F8.6,6X,F8.4,6X,F7.5,5X,F8.4,
+8X,F7.5,5X,F8.4/)

30 CONTINUE
STOP
END

C FUNCTION SUBPROGRAM 1
DOUBLE PRECISION FUNCTION BESJP(X,P)

C SUBROUTINE BESSEL(BESJP,X,P)
C COMPUTATION OF BESSEL FUNCTIONJ(X,J) OF THE ORDER OF P
C LIMITATION X.GE.O.AND.P.GT.(-l)
C RETERNS THE VALUE ZERO IF X.LT.O.OR.P.LT.(-l).OR.IF(X.EQ.O.
CAND P.LT.O).OR.WHEN THE VALUE OF THE BESSEL FUNCTION WOULD CAUSE
C AN UNDER FLOW.
C
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NUB=10
IFIEMPACH.LT.1.0D-17)NUB=50
UB=NUB
IF(U.GE.UB)GO TO 20
NU=U
L=NUB-NU
BL=L
UU=U+BL
S=l.OD+OO
DO 10 K=l,L
AK=K
S=S*(U+AK)

10 CONTINUE
AL=DLOG(S)

20 A=2.5D-01*X*X/(U+1.0D+00)
XX=1.0D+00/(UU+1.0D+00)**2
F1=«««XX/1.56D+02-6.91D+02/3.60360D+05)*XX+1.0D+00/1.188D+03)
+*XX-1.0D+00/1.680D+03)*XX+l.OD+00/1.260D+03)*XX-1.0D+00/3.6D+02)
+*XX+1.0D+00/l.2D+01)/(UU+1.0D+00)-AL
FF=-F1-A+U*DLOG(5.0D-01*X)+UU*(1.0D+00-DLOG(UU+1.0D+00»+l.OD+OO
+-5.0D-01*DLOG(2.0D+00*PI*(UU+1.0D+00»
IF(-FF.GT.(ALOGUF-1.0D+01»GO TO 110
FF=DEXP(FF)

C EVALUATION OF SERIES EXPANSION
V= 1.OD+OO
Y1=0.OD+00
BESJP=1.0D+00
S=U-A
DO 30 1=2,200
AI=I
Y2=A*(Y1*(AI+AI-2.0D+00)-V*A)/(AI*(AI+U»
BESJP=BESJP+Y2
S=S+ (U-A+AI) *Y2
IF(X.LT.1.0D-01.AND.DABSIY2).LT;(1.0D-02*EMPACH)GO TO 40
IF(1.0D+01/EMPACH)*(U-A+AI)*(DABS(Y1)+DABS(Y2»).LT.DABS(S»GO TO
+40
V=Y1
Yl=Y2

30 CONTINUE
40 BESJP=BESJP*FF

IF(NP.LE.O)GO TO 110
C START OF BACKWARD RECURSION(WHEN X.LT.XB.AND.P.LT.X)

XX=2.0D+00/X
V=S*XX*FF
DO 50 K=l,NP
AK=K
Y=XX*(U-AK)*V-BESJP
BESJP=V
V=Y

50 CONTINUE'
BESJP=V.
GO TO 110

C COMPUTATION WHEN X.GE.XB.AND.P.LT.X
60 NUM=l
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C

70
80

90

C

100
110

C
C
C

C

IF(P.GT.2.0D+00)NUM=2
NP=P
PP=NP
UU=P-PP+1.0D+00
IF(NUM.EQ.1)UU=P
DO 90 K=l,NUM
AK=K
U=UU+1.0D+00-AK
HANKEL'S ASYMPTOTIC EXPANSION OF BESSEL FUNCTION
V= 1.00+00
U1=4.00+00*U*U
XX=8.0D+00*X
PN=1.0D+00
QN=O.OD+OO
SIGN=1.0D+00
AI=-1.0D+00
DO 70 1=1,100
AI=AI+2.0D+00
V=V*(U1-AK*AK)/(AI*XX)
IF(DABS(V).LT.EMPACH)GO TO 80
SIGN=-SIGN
CONTINUE
FI=X-(5.0D-01*U+2.5D-01)*PI
Y1=DSQRT(2.0D+00/(PI*X»*(PN*X)*(PN*DCOS(FI)-QN*DSIN(FI»
IF(NUM.EQ.1)Y2=Y1
CONTINUE
BESJP=Y2
IF(NUM.EQ.1)GO TO 110
START OF FORWARD RECURSION(WHEN X.GT.2.AND.P.LT.X)
XX=2.00+00/X
DO 100 K=2,NP
BESJP=XX*UU*Y2-Y1
UU=UU+1.0D+00
.Y1=Y2
Y2=BESJP
CONTINUE
RETURN
END
FUNCTION SUBPROGRAM BES(X) FOR CALCULATING THE BESSEL REAL
AND BESSEL IMAGINARY
----------------------------------------------------------
COMPLEX FUNCTION BES(X)----------------------------------------------------------
IF(Z.LE.1) GO TO 40
IF(Z.GT.1.AND.Z.LE.8) GO TO 60
IF(Z.GT.1) GO TO 70

C FIRST SLAB STARTS
40 BER=l.

BEI=O.
INF=6
DO 50 K=l,INF,l
FAC=l.
K2=2*K
DO 24 I=1,K2
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24 FAC=FAC*I
FAK2=FAC
BER=BER+«-1)**K)*«Z*Z*.25)**K2)/(FAK2**2)
FACI=l;
KD=2.*K-1
DO 26 I=l,KD

26 FACI=FACI*I
FACIT=FACI
BEI=BEI+«-1)**(K-1»)*«Z*Z*.25)**KD)/(FACIT**2)

50 CONTINUE
BES=CMPLX(BER,BEI)
RETURN

C SECOND SLAB STARTS
60 BER=1_64*(Z/8)**4+113.77777774*(Z/8)**8-32.3634565*(Z/8)**12

++2.641913976*(Z/8)**16-.08346906*(Z/8)**20+.00122552*(Z/8)**24
+-.00000901*(Z/8)**28 c

BEI=16*(Z/8)**2-113.77777774*(Z/8)**6+72.8177775*(Z/8)**10
+~10.56765779*(Z/8)**14+.52185615*(Z/B)**lB-.01103667*(Z/8)**22
++.00011346*(Z/8)**26
BES=CMPLX(BER,BEI)
RETURN

C THIRD SLAB STARTS
.70 PAI=22/7

EPSIl=l.E-7
EPSI2=3.E-7
FK=SQRT(PAI/(2*X»
GK=1/SQRT(2*PAI*X)
FARG=-CMPLX(.707,.707)*X+THETA(-X)
FRA=REAL(FARG)
FIA=AIMAG(FARG)
N=FIA/ (2H'AI)
FIA=FIA-N*2*PAI
FX=FK*EXP(FRA)*CMPLX(COS(FIA),SIN(FIA»
FR=REAL(FX)/PAI
FI=AIMAG(FX)/PAI
GARG=CMPLX(.707,.707)*X+THETA(X)
GRA=REAL(GARG)
.GIA=AIMAG(GARG)
M=GIA/(2*PAI)
GIA=GIA-M*2*PAI
GX=GK*EXP(GRA)*CMPLX(COS(GIA),SIN(GIA»
BES=GX*(1+EPSI2)+CMPLX(-FI,FR)*(1+EPSI1)
RETURN
END

C FUNCTION SUBPROGRAM 2
COMPLEX FUNCTION THETA(X)
COMPLEX CMPLX .

43 TREAL=.0110486*(8/X)-.0000906*(8/X,)**3-.0000252*(8/X)**4-.0000035
+(8/X)**5+.0000006*(8/X)**6
TIMAG=_.'3926994_.0110485*(8/X)-.0009765*(8/X)**2-.0000901*

+(8/X)**3_.00000009*(8/X)**4+.0000051*(B/X)**5+.0000019*(8/X)**6
THETA=CMPLX (TREAL, TIMAG')

111 RETURN
END
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C
C
C
C
C
C
C

C

c
C

C
C
C
C
C
C

COMPUTER PROGRAM FOR THE DETERMINATION OF RADIAL AND TIME
DISTRIBUTION OF STRESS AT DIFFERENT TIME AFTER SWITCHING
AND STEADY-STATE STRESS.
---------------------------------------------------------
VARiABLES ARE FREQUENCY OF OPERATION , TIME AFTER SWITCHING
AND RADIAL DISTANCE R/RO.
----------------------------------------------------------
DIMENSIONPX/200),PM(50)
,COMMON JO,M,PM,F,RO
REAL MU
INTEGER FF,F
COMPLEX PX,PX1M,SUMX,TCD
OPEN(UNIT=l,STATUS='OLD' ,FILE='INPUT')
OPEN(UNIT=3,STATUS='NEW' ,FILE='OUTPUT')
PI=3.141592653
INPUTTING THE FREQUENCY.
READ(l,*) (FF(I),I=l,5)
WRITE(3,5)

5 FORMAT/3X,'TIME',5X,'R/RO' ,5X,'MAG.STRESS'/)
12 RO=.004

MU=4*PH 1.OE-07
DO 52 '1'=0,1000,200
DO 52 1=1,5
T=1000000,FOR STEADY-STATE 1 SEC AFTER SWITCHING IS
CONSIDERED.
DO 52 RAD=O.O,l,.2
A=O
FOR THE CALCULATION OF DIELECTRIC STRESS NO INTEGRATION IS
REQUIRED , FOR MAGNETIC STRESS INTEGRATION W.R.'1'DISTANCE
FROM THE AXIS IS NECESSARY BUT FOR STRESS DUE TO JOULE-
HEATING TIME INTEGRATION IS ESSENTIAL.
-------------------------------------------------------
INTEGRATION WITH RESPECT TO DISTANCE FROM THE AXIS STARTS.
RR=RAD*RO
X=A
N=100
DX=(RR-A)/N
MM=N+1
DO 25 K=l,MM
F=FF(I)
CALL STSC(X,T,TCD)
PX(K)=X*TCD
X=X+DX

25 CONTINUE
PX1M=PX(1)-PX(MM)
SUMX=O
DO 35 K=2,N,2

35 SUMX=SUMX+(2.0*PX(K)+PX(K+1)
SUMX=(2.0*SUMX+PX1M)*DX/3
PRINT * ,'1
CDX=CABS(SUMX)
IF (RR.EQ.O. )THEN
SMR=O.O
ELSE
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SMR=MU*CDX*CDX/(2*RR*RR)
ENDIF
WRITE(3,7) T,RAD,SMR

7 FORMAT(3X,F5.0,5X,F4.2,5X,E10.4/)
52 CONTINUE

STOP
END

C SUBROUTINE FOR CALCULATION OF TIME AND TIME AND RADIAL
C DISTRIBUTION OF CURRENT.

SUBROUTINE STSC(R,TT,TI)
DIMENSION PM(50)
COMPLEX PMR,SUM,TR,DEN,SSI,TI
COMPLEX CMPLX
REAL MUS,M
DATA PI/3.141592653
DATA MU/O.00001256
DATA SIGMA/3.58E+08
MUS=MU*SIGMA

C DETERMINATION OF STEADY-STATE CURRENT DENSITY
DO 1=1,15
AF=2*PI*F (I)
M=SQRT(AF*MUS)
ROM=RO*M
TIM=T*1.0E-6
AM=AF*TIM
K=AM/(2*PI)
AM=AM-K*2*PI
R=RAD*RO
RM=M*R
SSI=(BES(RM)/BES(ROM»CEXP(AM\

C DETERMINATION OF TRANSIENT CURRENT DISTRIBUTION
SUM=CMPLX(O.O,O.O)
DO 14 J=1,21
,PMS=PM(J)*PM(J)
PRG=M*RO*RO
PMR=CMPLX(PMS,PRG)
XE=«-(PM(J)/RO)**2)*(TIM/MUS»
IF (XE.LE.-170) THEN
EXE=O
ELSE
EXE=EXP(XE)
ENDIF
RKA=RAD*PM(J)
RNU=O
IF (RKA.EQ.O.)THEN
UME=EXE
ELSE
UME=BESJP(RKA,RNU)*EXE
ENDIF
RNU=l
RKA=PM(J)
DEN=(PM(J)*BESJP(RKA,RNU»*PMR
SUM=SUM+UME/DEN

14 CONTINUE
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TR=(-2)*SUM
TI=SSI+TR
RETURN
END

C FUNCTION SUBPROGRAM I
DOUBLE PRECISION FUNCTION BESJP(X,P)

C SUBROUTINE BESSEL(BESJP,X,P)
C COMPUTATION OF BESSEL FUNCTIONJ(X,J) OF THE ORDER OF P
C LIMITATION X.GE.O.AND.P.GT.(-I)
C RETERNS THE VALUE ZERO IF X.LT.O.OR.P.LT.(-I).OR.IF(X.EQ.O.
C AND P.LT.O).OR.WHEN THE VALUE OF THE BESSEL FUNCTION WOULD CAUSE
C AN UNDER FLOW.
C

DOUBLE PRECISION A,AI AK,AL,ALOGUF,BL,Y2,DABS,DCOS,DEXP,DLOG,
+DSIN,DSQRT,EMPACH,FF,FI,P,PP,PN,QN,S,SIGN,U,UB,UU,UI,V,X,XB,
+XX,Y,YI,PI
INTEGER I,K,L,NP,NU,NUB,NUM

C THE CONSTANTS DEFINED IN THE FOLLOWING DATA STATEMENT ARE MACHINE
C DEPENDENT
C ALOGUF IS THE NATURAL LOGARITHM OF THE LAGEST MACHINE NUMBER.
C EMPACH IS THE SMALLEST POSITIVE NUMBER SO THAT (I+EPMACH) > 1.

DATA ALOGUF/1.70D+02/
DATA .EMPACH/1.0D-16/
DATA PI/3.14159265358979323846264338327950288D+00/

42 BESJP=O.OD+OO
IF(X.EQ.O.OD+OO.AND.P.EQ.O.OD+OO)BESJP=I.OD+OO
IF(X.LE.0.OD+00.OR.P.LE.(-1.0D+00»GO TO 110
XB=(-15.0D-OI)*(DLOG(EMPACH»
IF(X.GE.XB.AND ..P.LT.X)GO TO 60
NP=X-P
PP=NP
IF(NP.GT.0)U=P+PP+1.0D+00
IF(NP.LE.O)U=P p

C COMPUTATION OF THE LOGARITHM OF THE GAMMA FUNCTION
UU=U'
AL=O.OD+OO
NUB=10
IF(EMPACH.LT.1.0D-17)NUB=50
UB=NUB
IF(U.GE.UB)GO TO 20
NU=U
L=NUB-NU
BL=L
UU=U+BL
S=1.0D+00
DO 10 K=l,L
AK=K
S=S*(U+AK)

10 CONTINUE
AL=DLOG(S)

20. A=2.5D-01*X*X/(U+1.0D+OQ)
XX=1.0D+00/(UU+1.0D+00)**2
F1=«««XX/1.56D+02-6.9ID+02/3.60360D+05)*XX+1.0D+00/1.188D+03)

+*XX_I.OD+00/1.680D+03)*XX+1.0D+00/1.260D+03)*XX-1.0D+00/3.6D+02)
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+*XX+1.0D+00j1.2D+01)j(UU+1.0D+00)-AL
FF=-F1-A+U*DLOG(5.0D-01*X)+UU*(1.0D+00-DLOG(UU+1.0D+00»+1.0D+00

+-5.0D-01*DLOG(2.0D+00*P1*(UU+1.0D+00»
1F(-FF.GT.(ALOGUF-1.0D+01»GO TO 110
FF=DEXP(FF)

C EVALUATION OF SERIES EXPANSION
V=l.OD+OO
Y1=0.OD+00
BESJP=1.0D+00
S=U-A
DO 30 1=2,200
AI=I
Y2=A*(Yl*(AI+AI-2.0D+00)-V*A)j(A1*(AI+U»
BESJP=BESJP+Y2
S=S+(U-A+AI)*Y2
IF(X.LT.1.0D-01.AND.DABS(Y2).LT.(1.0D-02*EMPACH»GO TO 40
IF«1.0D+01jEMPACH)*(U-A+AI)*(DABS(Y1)+DABS(Y2».LT.DABS(S»GO TO

+40
V=Y1
Y1=Y2

30 CONTINUE
40 BESJP=BESJP*FF

IF(NP.LE.O)GO TO 110
C START OF BACKWARD RECURSION(WHEN X.LT.XB.AND.P.LT.X)

XX=2.0D+00jX
V=S*XX*FF
DO 50 K=l,NP
AK=K
Y=XX*(U-AK)*V-BESJP
BESJP=V
V=Y

50 CONTINUE
BESJP=V
GO TO 110

C COMPUTATION WHEN X.GE.XB.AND.P.LT.X
60 NUM=l

IF(P.GT.2.0D+00)NUM=2
NP=P
PP=NP
UU=P-PP+1.0D+00
IF(NUM.EQ.1)UU=P
DO 90 K=l,NUM
AK=K
U=UU+1.0D+00-AK

C HANKEL'S ASYMPTOTIC EXPANSION OF BESSEL FUNCTION
V=1.0D+00
U1=4.0D+00*U*U
XX=8.0D+00*X
PN=1.0D+OO
QN=O.OD+OO
SIGN= 1.OD+OO
AI=-1.0D+00
DO 70 1=1,100
AI=AI+2.0D+00
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V=V*(U1-AK*AK)/(AI*XX)
IF(DABS(V).LT.EMPACH)GO TO 80
SIGN=-SIGN

70 CONTINUE
80 FI=X-(5.0D-01*U+2.5D-01)*PI

Y1=DSQRT(2;OD+00/(PI*X)*(PN*X)*(PN*DCOS(FI)-QN*DSIN(FI»
IF(NUM.EQ.1)Y2=Y1

90 CONTINUE
BESJP=Y2
IF(NUM.EQ.1)GO TO 110

C START OF FORWARD RECURSION(WHEN X.GT.2.AND.P.LT.X)
XX=2.0D+00/X .
DO 100 K=2,NP
BESJP=XX*UU*Y2-Y1
UU=UU+1.0D+00
Y1=Y2
Y2=BESJP

100 CONTINUE
110 RETURN

ENDC FUNCTION SUBPROGRAM BES(X) FOR CALCULATING THE BESSEL REAL
C AND BESSEL IMAGINARY
C ----------------------------------------------------------

COMPLEX FUNCTION BES(X)
C

C

C

----------------------------------------------------------
IF(Z.LE.1) GO TO 40
IF(Z.GT.1.AND.Z.LE.8)'GO TO 60
IF(Z.GT.1) GO TO 70
FIRST SLAB STARTS

40 BER=l.
BEI=O.
INF=6
DO 50 K=l,INF,l
FAC=l.'
K2=2*K
DO 24 I=1,K2

24 FAC=FAC*I
FAK2=FAC
BER=BER+(-1)**K)*«Z*Z*.25)**K2)/(FAK2**2)
FACI=l.
KD=2*K-1
DO 26 I=l,KD

26 FACI=FACI*I
FACIT=FACI
BEI=BEI+«(-1)**(K-1»*((Z*Z*.25)**KD)/(FACIT**2)

50 CONTINUE
BES=CMPLX(BER,BEI)
RETURN
SECOND SLAB STARTS

60 BER=1_64*(Z/8)**4+113.77777774*(Z/BI**B-32.3634565*(Z/B)**12
++2.641913976*(Z/8)**16-.0B346906*(Z/81**20+.00122552*(Z/B)**24
+-.00000901*(Z/B)**2B '
BEI=16*(Z/B)**2-113.77777774*(Z/B)**6+72.B177775*(Z/B)**10
+_10.56765779*(Z/B)**14+.521B5615*(Z/B}f-*1B-.01103667*(Z/B)**22
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o

++.00011346*(Z/B)**26
BES=CMPLX(BER,BEI)
RETURN

C THIRD SLAB STARTS
70 PAI=22/7.

EPSIl=1.E-7
EPSI2=3.E-7
FK=SQRT(PAI/(2*X))
GK=1/SQRT(2*PAI*X)
FARG=-CMPLX( .707, .707)*X+THETA(-X)
FRA=REAL(FARG)
FIA=AIMAG(FARG)
N=FIA/(2*PAI)
FIA=FIA-N*2*PAI
FX=FK*EXP(FRA)*CMPLX(COS(FIA),SIN(FIA))
FR=REAL(FX)/PAI
FI=AIMAG(FX)/PAI
GARG=CMPLX(.707 •.707)*X+THETA(X)
GRA=REAL(GARG)
GIA=AIMAG(GARG)
M=GIA/(2*PAI)
GIA=GIA-M*2*PAI
GX=GK*EXP(GRA)*CMPLX(COS(GIA).SIN(GIA)
BES=GX*(1+EPSI2)+CMPLX(-FIiFR)*(1+EPSI1)
RETURN
END

C FUNCTION SUBPROGRAM 2
COMPLEX FUNCTION THETA(X)
COMPLEX CMPLX

43 TREAL=.Ol104B6*(B/X)-.0000906*(B/X)**3-.0000252*(8/X)**4-.0000035
+(B/X)**5+.0000006*(B/X)**6
TIMAG=-.3926994-.01104B5*(B/X)-.0009765*(B/X)**2-.0000901*

+(B/X)**3-.00000009*(B/X)**4+.0000051*(B/X)**5+.0000019*(B/X)**6
THETA=CMPLX(TREAL,TIMAG)

111 RETURN
END
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