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ABSTRACT

Like other wireless systems, Orthogonal Frequency Division Multiplexing (OFDM) requires

the proper allocation of the limited resources, like total transmit power and available

frequency bandwidth, among the users to meet the users' service requirements. As a matter of

fact, adaptive resource allocation is one of the most challenging tas~s for multiuser OFDM

systems. In this dissertation, two evolutionary approaches, Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO) have been applied for adaptive subcarrier and bit

allocations to minimize the overall transmit power (margin adaptation) and to maximize the

. throughput (rate adaptation) of a multiuser OFDM system. Each user will be assigned a

number of subcarriers. This allocation of subcarriers may be done through unconstrained or
I

fairly scheduled approaches. The number of bits are then calculated according to channel state

information and subcarrier arrangements. The transmit power level as well as bit rate for an

OFDM symbol are evaluated through these subcarrier and bit information. Simulation results

reveal that both the evolutionary approaches outperform the conventional static resource

allocation schemes considerably both in unconstrained and constrained cases. The results

further assert that both. the algorithms can handle large allocation I of subcarriers without

significant performance degradation. However the performance of PSO has been found to be

better than the GA in terms of execution time, simplicity and convergence.

'. The original versions of GA and PSO have been modified in different manners to provide

further improvements. All these modified versions perform relatively better than the original

versions. Furthermore the modification of PSO has been done by three different manners

where all of them perform relatively better than the original PSO as ~ell as the original and

modified versions of GA. Finally all these modified versions have been compared with the

existing algorithms. The comparison reveals the fact that the modified versions of PSO

perform relatively much better results than the previously best algorithm for higher number of

users.
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Chapter 1

INTRODUCTION

1.1 Introduction

With lhe basic trends of modem life, wireless as well as cellular technology has become

an indispensable part of everyday life. Nowadays people not only want to communicate

but also want to exchange different sorts of information in remote locations. As thus,

cellular technology is enhancing its features in different manners through its generations.

Orthogonal Frequency Division Multiplexing (OFDM) is an ameliorated cellular

technology for lhe next generation wireless systems. Different sorts of research has been

'done and also being done on it to make it appropriate for practical usage. In view of this,

allocation of wireless resources in OFDM systems under multiuser scenario is definitely a

challenging job for engineers. The resource allocation needs to optimize lhe usage of

certain quantities like total transmit power and available bandwidth. This dissertation has

tried to explore this research area lhough different existing and newly introduced

algorithms. The optimization has been performed through evolutionary approaches which

are certainly new in multiuser OFDM systems.

1.2 Basics of a Communication System

In the most fundamental sense, communication involves implicitly the transmission of

information from one point to another through a succession of processes. The processes

'involve generation of a message signal, description of the message signal through a

defined set of symbols, encoding of the symbols, transmission of the encoded symbols

through communication channels, decoding and reproduction of original symbols and

finally re-creation of the original message signal. All these features are encapsulated by

defining three basic elements of a communication system, namely transmitter, channel

and receiver as shown in the Fig. 1.2.1.



Sourceof Information Userof Information

CommunicationSY~A'" _
- -------------------------------

ReceiverChannel

,,,,,,,,,, .
: TransmItter,,,,,,,~--------------------------------------------------------------------------

Fig. 1.2.1 : Elements of a communication system

The transmitter is located at one point in space, the receiver is located at some other point

in space separated from the transmitter, and the channel is the physical medium that

connects them. The purpose of the transmitter is to convert of. the message signal

produced by the source of information into a form suitable for transmission over the

channel. As the transmitted signal propagates along the channel, it is distorted due to the

channel imperfections. Moreover, noise and interfering signals are added to the channel

output with the result that the received signal is the corrupted version of the transmitted

signal. The receiver has the task of operating on the received signal so as to reconstruct a

recognizable form of the original message signal for a user. There are two basic modes of

communication:

I. Broadcasting, which involves the use of a single powerful transmitter and

numerous receivers that are relatively inexpensive to build. Here information

bearing signals flow only in one direction.

2. Point-to-point communication, in which the communication process takes place

over a link between a single transmitter and a receiver. In this case, there is a

bidirectional flow of information-bearing signals, which requires the use of a

transmitter and receiver at each end of the link.

The broadcasting mode of communication is exemplified by radio and television whereas

the ubiquitous cellular systems provide the mean for one form of point-to-point

communication.

2



1.3 Characteristics of Wireless Systems

Mobile cellular wireless systems operate under harsh and challenging channel conditions.

The wireless channel is distinct and much more unpredictable than the wire-line channel

because of factors such as multipath and shadow fading, Doppler Spread, and time

'dispersion or delay spread. These factors are all related to variability that is introduced by

the mobility of the user and the wide range of environments that may be encountered as a

result.

Multipath is a phenomenon that occurs when a transmitted signal is reflected by objects

in the environment. These objects can be building, trees, hills or even cars. The reflected

signals pass through different paths to reach the user's receiver. The result may be

random signal fading due to the destructive reflections of signals on one another, which

affectively can cancel some portion of the signal energy for brief periods of time. The

degree of cancellations, or fading, depend on the delay spread of the reflected signals, as

embodied by their relative phases, and their relative power.
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Fig. 1.3.1: Multipath Signals

Time dispersion represents distortion to the signal and is manifested by the spreading in

time of the modulation symbols. This occurs when the channel is band-limited, or, in

'other words, when the coherence bandwidth of the channel is smaller than the modulation

bandwidth. Time dispersion leads to intersymbol interference, or lSI, where the energy

from one symbol spills over into another symbol, and as a result, the bit error rate (HER)

is increased. Time dispersion can also lead to fading.

In many instances, the fading due to multipath might be frequency selective, randomly

affecting a portion of the overall channel bandwidth at certain time. Frequency selective
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fading occurs when the channel introduces time dispersion and when the delay spread

exceeds the symbol period. When there is no dispersion and delay spread is less than the

symbol period, the fading will be flat, thereby affecting all frequencies in the signal

equally. Flat fading can lead to deep fades of more than 30 decibels (dB).

'Doppler spread describes the random changes in the channel introduced as a result of a

user's mobility and the relative motion of objects in the channel. Doppler has the effect of

shifting, or spreading, the frequency components of a signal. The coherence time of the

channel is the inverse of the Doppler spread and is a measure of the speed at which the

channel characteristics change. This in effect determines the rate at which fading occurs.

When the rate of change of the channel is higher than the modulated symbol rate, fast

fading occurs. Slow fading, on the other hand, occurs when the channel changes are

slower than the symbol rate.
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Fig. 1.3.2: Radio Propagation Effects

The statistics describing the fading signal amplitude are frequently characterized as either

Rayleigh or Ricean. Rayleigh fading occurs when there is no line of sight (LOS)

component present in the received signal. If there is a LOS component present, the fading

follows a Ricean distribution. There is frequently no direct LOS path to a mobile, because

the very nature of mobile communications means that mobiles can be ina building or

behind one or other obstacles. This leads to Rayleigh fading but also results in a shadow .

loss. These conditions, along with the inherent variation in signal strength caused by
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changes in lhe distance between a mobile and cell site, result in a large dynamic range of

signals, which can easily be as much as 70 dB.

In addition to lhe aforementioned channel impairments, spectrum is a scarce resource for

wireless systems, and lhus is reused within cellular systems. This means lhat lhe same

frequencies are allocated to each cell, or to a cluster of cells, and are shared. This

increases lhe overall system capacity at lhe expense of increased potential for interference

wilhin a cell and between cells as each channel is reused lhrougbout lhe system. This

generally results in cellular systems being interference-limited.

All modem mobile wireless systems employ a variety of techniques to combat lhe

aforementioned effects. Some techniques are more effective lhan olhers, with lhe

effectiveness depends on the air-interface and the system-architecture. Ali.mobile systems

were evolved from analog to digital, more sophisticated signal processing techniques

have been employed to overcome lhe impairments in wireless environment These

techniques include equalization, channel or error-correction coding, spread-spectrum,

interleaving and diversity.

Diversity has long been used to help mitigate the multipalh-induced fading lhat results

from users' mobility. The simplest diversity technique, spatial diversity involves lhe use

of two or more receive antennae at lhe base stationlhat are separated by some distance.

The signals from the mobile generally follow separate paths to each antenna This

.relatively low-cost approach yields significant performance improvement by taking

advantage of the statistical likelihood lhat lhe palhs are not highly correlated wilh each

olher. When one antenna is in a fade, the olher one will generally not be.

1.4 A Brief History ofCeUular Systems

Powered by enabling technologies, such as advanced digital signal processing and very

large scale integrated circuits, wireless communication has been experiencing an .

explosive growth. over lhe last decades. Cellular systems are one of lhe most successful

wireless applications, having billions of subscribers allover the world. It owes its birth to

Bell Laboratories, where lhe cellular concept was conceived in lhe 1970s [1]. Due to lhe

fact that radio signal strenglh is waned wilh distance, the limited frequency bandwidlh
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I can be spatially reused, rendering the possibility of wide coverage over a large

,population.

The first generation (1G) of analog cellular systems include Advanced Mobile Phone

Systems (AMPS), Nordic Mobile Telephone (NMT) and Total Access Communication

Systems (TACS). AMPS had major deployments in North America, the AsialPacific

region and Central and Latin America in 1980. NMT and TACS began their journey in

Europe during the year 1979. AMPS adopted analog FM technology with frequency

division multiple access (FDMA). With the introduction of second generation (2G)

networks, the 1G phones were destined to become obsolete, as they were not adaptable to

the new 2G standards and also had other drawbacks, such as their poor security due to the

lack of encryption, and the fact that anyone with a receiver tuned to the right frequency

could overhear the conversation. The 2G systems, adopted during early 1990s, started to

.use digital technologies and provided much higher communication capacity at an even

lower cost. Due to the debate on the spectrum access technologies, three major 2G

standards were born, namely IS-I36, IS-95 in the United States and Global System for

Mobile (GSM) in Europe. The 2G standards have high data rate versions, e.g. General

Packet Radio Service (GPRS) and Enhanced Data rates for GSM Evolution (EDGE) for

GSM, IS-136 high speed (lS-136HS) for IS-136, and IS-95 high data rate (lS-95 HDR)

for IS-95 [2]. These improved 2G cellular systems had generally been referred to as 2.5G

systems. The third and current generation of cellular systems includes wideband code

division multiple access (WCDMA) and CDM~OOO. The WCDMA frequency division

duplex (FDD) and time division duplex (TDD) standards have been adopted in Europe

and China, respectively, while CDMA2000 has been deployed in Korea and United

'States of America With different spreading factors and modulation methods, WCDMA

and CDMA2000 can support transmission rate up to several mega-bits per second. The

next generation of wireless cellular systems is envisioned to be multicarrier-based for its

efficient bandwidth usage [3] [4] [5].

1.5 Introducing the Fourth Generation of Wire less Communication

Research has recently begun for quite few years on the development of 4th generation

(4G) mobile communication systems. The commercial rollout of these systems was likely
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to begin around 2008 - 2012. AB such the 4G systems have already set outits expedition

and are trying to put back the 3G technology. Many of the aims of 4G networks have

already been published, however it is likely that they will be to extend the capabilities of

3G networks, allowing a greater range of applications, and improved universal access.

,Ultimately 4G networks should encompass broadband wireless services, such as High

Definition Television (HDTV) (4 - 20 Mbps) and computer network applications (1 - 100

Mbps). This will allow 4G networks to replace many of the functions ofWLAN systems.

However, to cover this application, cost of service must be reduced significantly from 3G

networks. The spectral efficiency of 3G networks is too low to support high data rate

selVices at low cost AB a consequence one of the main focuses of 4G systems will be to

significantly improve the spectral efficiency. In addition to high data rates, future systems

must support a higher Quality Of Service (QOS) than current cellular systems, which are

designed to achieve 90 - 95% coverage, i.e. network connection can be obtained over 90 _

95% of the area of the cell. This will become inadequate as more systems become

dependent on wireless networking. AB a result 4G systems are likely to require a QOS

.c1oserto 98 - 99.5%.

In order to achieve this level of QOS it will require the communication system to be more

flexible and adaptive. In many applications it is more important to maintain network

connectivity than the actual data rate achieved. If the transmission path is very poor, e.g.

in a building basement, then the data rate has to drop to maintain the link. Thus the data

rate might vary from as low as 1 kbps in extreme conditions, to as high as 20 Mbps for a

good transmission path. Alternatively, for applications requiring a fixed data rate, the

QOS can be improved by allocating additional resources to users with a poor

transmission path. A significant improvement in spectral efficiency will be required in

order for 4G systems to provide true broadband access. This will only be achieved by

significant advances in multiple aspects of cellular network systems, such as network

.structure, network management, smart antennas, RF modulation, user allocation, and

most importantly the resource allocation.
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1.5.1 Features of 4G wireless systems

I. Support interactive multimedia, voice, video, wireless internet and other

broadband services.

2. High speed, high capacity and low cost per bit.

3. Global mobility, service portability, scalable mobile networks.

4. Seamless switching, variety of services based on Quality of Service (QoS)

requirements

5. Better scheduling and call admission control techniques.

6. Ad hoc networks and multi-hop networks.

1.5.2 Comparison between 3G Vs 4G

Table 1.5.1 Comparative features between 3G and 4G

3G 4G

Frequency Band 1.8 - 2.5 GHz 2 - 8 GHz

Bandwidth 5-20 MHz 5-20 MHz

Up to 2Mbps ( 384 kbps
Up to 20 Mbps or moreData rate

WAN)

Multi-carrier - CDMA or
Access Wideband CDMA

OFDM(TDMA)

FEC Turbo-codes Concatenated codes

Switching CircuitlPacket Packet

Mobile top speeds 200 kroph 200 kroph

1.5.3 Introducing OFDM as main premise of 4G

Orthogonal Frequency Division Multiplexing (OFDM) is being considered the most

promising transmission technique to support the fourth generation of wireless multimedia

commuoications because of its dexterous performance in combating multipath fading as

well as Ioter Symbol Ioterference (lSI) and in the use of the available bandwidth. This

scheme was proposed by Chang in 1966 for dispersive fading channels. During the early
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,years of the evolution ofOFDM systems, the efforts of Weinstein, Hirosaki, Peled, Ruiz

et. aL have to be mentioned. OFDM has been widely adopted and implemented in wire

and wireless communications, such as Digital Subscriber Line (DSL), European Digital

Audio Broadcasting (DAB), Digital Video Broadcasting-Terrestrial (DVB- T) and its

handheld version DVB-H, and IEEE 802.11a1g standards for Wireless Local Area

Networks (WLANs) [6]-[7] etc. OFDM is very similar to the well-known and used

technique of Frequency Division Multiplexing (FDM). OFDM uses the principles of

FDM to allow multiple messages to be sent over a single radio channeL It is however in a

much more controlled manner, allowing an improved spectral efficiency.

The system's operating principle is that the original bandwidth is divided into a high

number of narrow subchannels, in which the mobile channel can be considered as non-

'dispersive. Hence no subchannel is required and instead of implementing a bank of

subchannel modems, they can be conveniently put into service with the aid of simple Fast.

Fourier Transform (FFT).

1.6 Motivation towards the Objective ofthe Thesis

In light of the trends of future wireless communications and the significant growth of the

subscriber population and penetration rate, radio resources, especially frequency

spectrum would be far from adequate unless advanced technologies are developed to

achieve a better efficiency of resource utilization. The traditional way of statically

managing resources results in a waste of scarce spectrum and power, since a fixed margin

is required to provide a good coverage and minimal required QoS everywhere. Therefore

,it is essential to control resource allocation and utilization in a way other than statically to

achieve a higher spectral/power efficiencies and provide a better QoS while functioning

under bandwidth and power restriction.

Recently, research and development of the OFDM have received considerable attention

and have made a great deal of progress for the next generation wireless system due to its

high data rate transmission capability with high bandwidth efficiency. OFDM is a

wideband modulation scheme that is specifically able to cope up with the problems of the

multipath reception. Wireless channels are of frequency selective fading type and time

varying. OFDM converts the frequency selective fading channels into a number of flat
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fading channels and allows transmission without Inter Symbol Interference (lSI) with a

low-complexity transceiver.

Multiuser OFDM adds multiple access to OFDM by allowing a number of users to share

an OFDM symbol. Two classes of resource allocation schemes exist: fixed resource

allocation [8] and dynamic resource allocation [9] [10] [11] [12]. Fixed resource

allocation schemes, such as time division multiple access (TDMA) and frequency

division multiple access (FDMA), assign an independent dimension, e.g. time slot or

subchannel, to each user. A fixed resource allocation scheme is not optimal since the

scheme is fixed regardless of the current channel condition. On the other hand, dynamic

resource allocation allocates a dimension adaptively to the users based on their channel

gains. Due to the time-varying nature of the wireless channel, dynamic resource

allocation makes full use of multiuser diversity to achieve higher performance. Two

classes of optimization techniques have been proposed in the dynamic multiuser OFDM

literature: margin adaptive (MA) [12] and rate adaptive (RA) [9], [II]. The margin

,adaptive objective is to achieve the minimum overall transmit power given the constraints

on the users' data rate or bit error rate (BER). The rate adaptive objective is to maximize

each user's error-free capacity with a total transmit power constraint. These optimization

problems are nonlinear and hence computationally intensive to solve. In [10], the

nonlinear optimization problems were transformed into a linear optimization problem

with integer variables. The optimal solution can be achieved by integer programming.

However, even with integer programming, the complexity increases exponentially with

the number of constraints and variables. Two rate adaptive optimization problems have

been proposed by researchers. Recently, lang and Lee proposed the rate maximization

problem [9]. In [9], they proved that the sum capacity is maximized when each

subchannel is assigned to the user with the best subchannel gain and power is then

,distributed by the water-filling algorithm. However, fairness is not considered in [9].

When the path loss differences among users are large, it is possible that the users with

higher average channel gains will be allocated most of the resources, i.e. subchannels and

power, for a significant portion of time. The users with lower average channel gains may

be unable to receive any data, since most of the time the subchannels will be assigned to

users with higher channel gains. In [II], Rhee and Cioffi studied the max-min problem,
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where by maximizing the worst user's capacity, it is assured that all users achieve a

similar data rate. However, the max-min optimization problem can only provide

maximum fairness among the users. In most wireless systems of interest, different users

require different data rates, which may be accommodated by allowing users to subscribe

to different levels of service. Viswanath, Tse, and Laroia discussed long-term

proportional fairness resource allocation with "dumb" antennas. They pointed out that in

multiuser systems, channel fading can be exploited as a source of randomness, i.e .

.multiuser diversity. However, in some scenarios, due to the limited scatters in the

environment and slow channel variation, the dynamic range of channel fluctuation in the

time scale of interest may be small.

In [13], Wong et al proposed iterative searching algorithm that applies Lagrangian

relaxation for optimum multiuser subcarrier, bit and power allocation. The algorithm is

close to the lower bound with the requirement of high and complex computation. The

algorithm proposed in [14], however, over-simplifies the subcarrier allocation but c.ould

not fully utilize the multiuser diversity. In [15], an iterated water-filling algorithm is

proposed; the algorithm can acquire similar performance as Wong's algorithm and avoids

the computational complexity. Y. B. Reddy et al introduced Genetic Algorithm in

resource allocation with significant improvements [16].

In this research work, evolutionary approaches have been applied through different

proposed algorithms of resource allocation. To our best knowledge, adaptive resource

allocation for OFDM systems based on Particle Swarm Optimization (PSO) method is

still missing in the literature. In this literature, PSO is introduced as a promising

technique of adaptive resource allocation for multiuser OFDM systems. The performance

ofPSO has been compared with the original and a modified Genetic Algorithm (GA). In

the modified version, the convergence of the conventional GA has been improved by

introducing fractional generation gap. The performance of the modified GA and PSO

methods are also compared with some of the existing fixed and dynamic subcarrier and

bit allocation schemes. Moreover, the original PSO has been modified in three different

.manners to improve the overall performance.
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1.7 Problem Statement ofthe Thesis

This research work falls into two categories, the first one deals with the optimization of

available resources' allocation with definite imposed constraints and the second one is

mainly concerned with the topological aspect of the optimization techniques. For proper

clarification of the first category, two conventional methods of OFDMA resource

allocation have been deployed. Of the two methods, the margin adaptive approach

minimizes the overall transmit power for a constant bit rate and overall bit error rate

(BER). The second one, rate adaptive approach deals with the maximum throughput for a

constant total power and BER. In this thesis, both the approaches have been deployed

with the two mostly common evolutionary approaches, the Genetic Algorithm (GA) and

,the Particle Swarm Optimization (PSO). Actually OFDM system deals with immensely

high data rate as well as large number of subcarriers. This research work reflects that

evolutionary approaches can be efficiently applied to adaptive resource allocation without

performance degradation. GA and PSO both have been applied for margin and rate

adaptive allocation methods. For margin adaptive case, the power has been minimized in

two cases, unconstrained scheduled allocation and fair scheduled allocation. In unfair

scheduling, the subcarriers are allocated to the users according to the dynamic channel

conditions by water-filling algorithms. This process does not follow proper fairness in

scheduling in the sense that any of the users can even obtain no sub carrier at any

particular case. This might give the optimum level of power allocation for a constant bit

rate and BER but this is far away from the fairness in allocating the resources. On the

'other side, the fair scheduled allocation may not give optimum result but a constant

fairness with a constant bit rate of individual user is preserved. In rate adaptive process

also, both the unfair and fair scheduled approach have been deployed to maximize the

total users' throughput and minimum user throughput for a constant transmit power. In

every case, GA and PSO have been compared with each other either by slight or without

modification. The comparative results reveal that PSO shows relatively better result than

the genetic algorithm or even modified genetic algorithm in terms of simplicity, coding

capability, computational resources, execution time and convergence.

Secondly, the research has been diverted towards the topological modification of GA and

PSO. The GA has been slightly modified with the introduction of the concept of genetic
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gap between parent and child chromosomes. The PSO has been modified in three ways.

Firstly the generation index has been apportioned into the position update equation to

commence a concept of timing information. Secondly the weight inertia used in the

velocity update equation has been made adaptive. This acclimatization is accompanied

with the use of updated inertia constant by current generation index in each generation.

The last amendment is the use of ring topology to search the global best value for each

generation in PSO. The use of different topology other than straight through searching

option reveals the search option more diversified.

1.8 Organization of the Thesis

The thesis is premised of five chapters. Chapter I has already given an idea on basic

communication system, attributes of wireless environment, evolution of cellular systems

from its origin and introducing OFDM in 4G. The chapter is fmished by the preview of

,preceding researches and also by a briefreview of the carried out research work of this

dissertation.

Chapter 2 gives a detail description of OFDM systems, different multiple access

techniques, resource allocation schemes of an OFDMA system and. introductory

discussion of Genetic Algorithm (GA) in addition to Particle Swarm Optimization (PSO).

Chapter 3 describes the proposed system models under diversified scenario. The diversity

comes into the fact through various resource allocation schemes under either

unconstrained or fair scheduled approach. The chapter also deals with different proposed

algorithms along with their flowcharts.

Chapter 4 provides the numerical and comparative results of different systems proposed

in chapter 3. This chapter also gives a clear comparison of proposed architectures with

,different existing ones. Chapter 5 concludes the dissertation by stating total outcome of

the research WOlle and by invoking the scopes of the future exploration.
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Chapter 2

BASICS OF OFDM, MULTIPLE ACCESS, RESOURCE

ALLOCATION AND OPTIMIZATION TECHNIQUES

2.1 Overview ofOFDM

Orthogonal Frequency Division Multiplexing (OFDM) divides a communication channel

into a number of equally spaced frequency bands. A subcarrier carrying a portion of the

user information is transmitted in each band. Each subcarrier is orthogonal with every

other sub carrier, differentiating OFDM from the commonly used frequency division

multiplexing (FDM) [17].

OFDM has long been regarded. as an efficient approach to combat the adverse effects of

multipath spread. Its inherent multicarrier nature allows flexible frequency channel

control so that the transmission power and constellation size can be adapted on every

subcarrier to exploit the frequency-domain diversity and improve the attainable data rates

[18]-[19]. In addition, if adaptive transmission is jointly optimized for all users in a

multiuser OFDMenvironment, power or spectrum efficiency can be significantly

enhanced because the multiuser diversity provides another degree of freedom for

adaptation [20].

2.1.1 Preliminary concepts of orthogonality

Signals are orthogonal if they are mutually independent of each other. Orthogonality is a

property that allows multiple information signals to be transmitted perfectly over a

common channel and detected, without interference. Loss of orthogonality results in

bluffing between these information signals and degradation in communications. Many

common multiplexing schemes are inherently orthogonal. Time Division Multiplexing

(TDM) allows transmission of multiple information signals over a single channel by

assigning unique time slots to each separate information signal. During each time slot

only the signal from a single source is transmitted preventing any interference between

the multiple information sources. Because of this TDM is orthogonal in nature. In the

,frequency domain most FDM systems are orthogonal as each of the separate transmission

signals are well spaced out in frequency preventing interference. Although these methods .



are orthogonal, the term OFDM has been reserved for a special form of FDM. The

subcarriers in an OFDM signal are spaced as close as is theoretically possible while

maintain orthogonality between them. OFDM achieves orthogonality in the frequency

.domain by allocating each of the separate information signals onto different subcarriers.

OFDM signals are made up from a sum of sinusoids, with each corresponding to a

subcarrier. The baseband frequency of each subcarrier is chosen to be an integer multiple

of the inverse of the symbol time, resulting in all subcarriers having an.integer number of

cycles per symbol. As a consequence the subcarriers are orthogonal to each other. Fig.

2.1.1 shows three subcarriers, which are orthogonal to each other.
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Fig. 2.1.1: Time domain construction of an OFDM signal.

Sets of functions are orthogonal to each other if they match the conditions in equation

(2.1). If any two different functions within the set are multiplied, and integrated over a

symbol period, the result is zero, for orthogonal functions. Another way of thinking of

this is that if we look at a matched receiver for one of the orthogonal functions, a

subcarrier in the case of OFDM, then the receiver will only see the result for that function.

The results from all other functions in the set integrate to zero, and thus have no effect.

T {C . .l-}J s;(t)s f(t)dt = . - .
o 0 l*} (2.1)

(2.2)
O<t<T k=1,2, ... M
otherwise

Equation (2.2) shows a set of orthogonal sinusoids, which represent the subcarriers for an

unmodulated real OFDM signal.

{
sin(21difot)s.(t) = o
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,where fa is the subcarrier spacing, M is the number of subcarriers, T is the symbol period.

Since the highest frequency component is Mfa, the transmission bandwidth is also Mfa.

These subcarriers are orthogonal to each other because when we multiply the waveforms

of any two subcarriers and integrate over the symbol period the result is zero. Multiplying

the two.sine waves together is the same as mixing these subcarriers. This results in sum

and difference frequency components, which will always be integer subcarrier

frequencies, as the frequency of the two mixing subcarriers has integer number of cycles.

Since the system is linear we can integrate the result by taking the integral of each

frequency component separately then combining the results by adding the two sub-

integrals. The two frequency components after the mixing have an integer number of

cycles over the period and so the sub-integral of each component will be zero, as the

'integral of a sinusoid over an entire period is zero. Both the sub-integrals are zeros and so

the resulting addition of the two will also be zero, thus the frequency components are .

orthogonal to each other ..

2.1.2 Frequency domain orthogonality

Another way to view the orthogonality property of OFDM signals is to look at its

spectrum. In the frequency domain each OFDM subcarrier has a sinc(x), sin(x)/x,

frequency response, as shown in Fig. 2.1.2. This is a result of the symbol time

corresponding to the inverse of the carrier spacing. As far as the receiver is concerned

each OFDM symbol is transmitted for a fixed time (Tm) with no tapering at the ends of

the symbol.

'This symbol time corresponds to the inverse of the subcarrier spacing of ltrpFr Hz .This

rectangular, boxcar, waveform in the time domain results in a sinc frequency response in

the frequency domain. The sinc shape has a narrow main lobe, with many side-lobes that

decay slowly with the magnitude of the frequency difference away from the centre. Each

carrier has a peak at the centre frequency and nulls evenly spaced with a frequency gap

equal to the carrier spacing.
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Fig. 2.1.2: Derivation and representation of OFDM spectrum
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The orthogonal nature of the transmission is a result of the peak of each subcarrier

corresponding to the nulls of all other subcarriers. When this signal is detected using a

Discrete Fourier Transform (OFT) the spectrum is not continuous, but has discrete

samples. If the DFT is time synchronized, the frequency samples of the DFT correspond

to just the peaks of the subcarriers, thus the overlapping frequency region between

subcarriers does not affect the receiver. The measured peaks correspond to the nulls for

all other subcarriers, resulting in orthogonality between the subcarriers.

2.1.3 OFDM generation and reception

OFDM signals are typically generated digitally due to the difficulty in creating large

banks of phase lock oscillators and receivers in the analog domain (19]. Fig. 2.1.3 shows

the block diagram of a typical OFDM transceiver. The transmitter section converts digital

data to be transmitted, into a mapping of subcarrier amplitude and phase. It then

transforms this spectral representation of the data into the time domain using an Inverse

Discrete Fourier Transform (IDFT). The Inverse Fast Fourier Transform (IFFT) performs

the same operations as an IDFT, except that it is much more computationally efficient,

and so' is used in all practical systems. In order to transmit the OFDM signal the

calculated time domain signal is then mixed up to the required frequency.

1--------- - --_. --eu';ri;--- - - --- - ----. --- - - --- - ---I
I •
I •
I Serinl Modullllion •
I Serial to Mopping
I d Parn.
I TX 31a ..
•Transmitter ~:"IU'"~-_._-_._----------- ------- -Fr:q~~~y-c~;e~ti~:;'-LO-
.------------ ---~cr- ---------------.---- --i,

Parn. Gunrd RF.'Modullllion
10 Slicer FFT Q Period Q Amplifier

Serial Serinl Removal Demod'
: RX dala . OnTicr :
I __ •

I Time Sync. •
• •• Receiver ,
• I.._-------------------------------------------

Fig. 2.1.3: Block diagram of a basic OFDM Transceiver
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The receiver performs the reverse operation of the transmitter, mixing the RF signal to

base band for processing, then using a Fast Fourier Transform (FFT) to analyze the signal

in the frequency domain. The amplitude and phase of the subcarriers is then picked out

.and converted back to digital data.

2.1.3.1 Serial to parallel conversion

Data to be transmitted is typically in the form of a serial data stream. In OFDM, each

symbol typically transmits 40 - 4000 bits, and so a serial to parallel conversion stage is

needed to convert the input serial bit stream to the data to be transmitted in each OFDM

symbol. The data allocated to each symbol depends on the modulation scheme used and

the number of subcarriers. For example, for a subcarrier modulation of 16-QAM each

subcarriercarries 4 bits of data, and so for a transmission using 100 subcarriers, the

number of bits per symbol would be 400. For adaptive modulation schemes, the

modulation scheme which is used on each subcarrier can vary and so the number of bits

'per subcarrier also varies. AI; a result the serial to parallel conversion stage involves

filling the data payload for each subcarrier ..At the receiver the reverse process takes place,

with the data from the subcarriers being converted back to the original serial data stream.

When an OFDM transmission occurs in a multipath radio environment, frequency

selective fading can result in groups of subcarriers being heavily attenuated, which in tum

can result in bit errors. These nulls in the frequency response of the channel can cause the

information sent in neighboring carriers to be destroyed, resulting in a clustering of the

bit errors in each symbol. Most FOlward Error Correction (FEe) schemes tend to work

more effectively if the errors are spread evenly, rather than in large clusters, and so to

improve the performance most systems employ data scrambling as part of the serial to

parallel conversion stage. This is implemented by randomizing the subcarrier allocation

of each sequential data bit. At the receiver the reverse scrambling is used to decode the

signal. This restores the original sequencing of the data bits, but spreads clusters of bit

errors so that they are approximately uniformly distributed in time. This randomization of

the location of the bit errors improves lhe performance of lhe FEC and lhe system as a

whole.
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2.1.3.2 Subcarrier modulation

Once each subcamer has been allocated bits for transmission, they are mapped using a

modulation scheme to a subcamer amplitude and phase, which is represented by a

complex In-phase and Quadrature-phase (IQ) vector [18]. Fig. 2.1.4 shows an example of

subcamer modulation mapping. This example shows 16-QAM, which maps 4 bits for

each symbol. Each combination of the 4 bits of data corresponds to a unique lQ vector,

shown as a dot on the figure. A large number of modulation schemes are available

allowing the number of bits transmitted per camer per symbol to be varied.

'" '" '" '"0010 0110 1110 1010

'" '" '" '"0011 0111 1111 1011

'"
lSl lSl lSl

0001 0101 1101 1001

'" lSl •• ••
0000 0100 1100 1000

Fig. 2.1.4: Example IQ modulation constellation. 16-QAM, with gray coding of data
to each location

Subcamer modulation can be implemented using a lookup table, making it very efficient

to implement. In the receiver, mapping the received IQ vector back to the data word

performs subcamer demodulation. During transmission, noise and distortion becomes

added to the signal due to thermal noise, signal power reduction and imperfect channel

equalization. Fig. 2.1.5 shows an example of a received 16-QAM signal with a SNR of

18 dB. Each of the IQ points is blurred in location due to the channel noise. For each

received IQ vector the receiver has to estimate the most likely original transmission

.vector. This is achieved by finding the transmission vector that is closest to the received

vector. Errors occur when the noise exceeds half the spacing between the transmission IQ

points, making it cross over a decision boundary.
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Fig. 2.1.5: IQ plot for 16-QAM data with added noise

2.1.3.3 Frequency to time domain conversion

After the subcarrier modulation stage each of the data subcarriers is set to an amplitude

and phase based on the data being sent and the modulation scheme; all unused subcarriers

are set to zero. This sets up the OFDM signal in the frequency domain. An IFFT is then

used to convert this signal to the time domain, allowing it to be transmitted. Fig. 2.1.6

'shows the IFFT section of the OFDM transmitter. In the frequency domain, before

applying the IFFT, each of the discrete samples of the IFFT corresponds to an individual

subcarrier. Most of the subcarriers are modulated with data. The outer subcarriers are

unmodulated and set to zero amplitude. These zero subcarriers provide a frequency guard

band before the Nyquist frequency and effectively act as an interpolation of the signal

and allows for a realistic roll off in the analog anti-aliasing reconstruction filters.
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Fig. 2.1.6: OFDM generation, lFFT stage

2.1.3.4 RF modulation

,The output of the OFDM modulator generates a base band signal, which must be mixed

up to the required transmission frequency. This can be implemented using analog

techniques or using a Digital Up Converter. Both techniques perform the same operation,

however the performance of the digital modulation will tend to be more accurate due to

improved matching between the processing of the I and Q channels, and the phase

accuracy of the digital IQ modulator.

2.1.3.5 Guard period

For a given system bandwidth the symbol rate for an OFDM signal is much lower than a

single carrier transmission scheme. For example for a single carrier BPSK modulation,

the symbol rate corresponds to the bit rate of the transmission. However for OFDM the

'system bandwidth is broken up into Nc subcarriers, resulting in a symbol rate that is Nc

times lower than the single carrier transmission. This low symbol rate makes OFDM ,

naturally resistant to effects of Inter-Symbol Interference (lSI) caused by multipath

propagation. Multipath propagation is caused by the radio transmission signal reflecting

off objects in the propagation environment, such as walls, buildings, mountains, etc.

These multiple signals arrive at the receiver at different times due to the transmission

distances being different This spreads the symbol boundaries causing energy leakage

between them. The effect of lSI on an OFDM signal can be further improved by the
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addition of a guard period to the start of each symbol. This guard period is a cyclic copy

that extends the length of the symbol waveform. Each subcarrier, in the data section of

the symbol, (i.e. the OFDM symbol with no guard period added, which is equal to the

,length of the lFFT size used to generate the signal) has an integer number of cycles.

Because of this, placing copies of the symbol end-to-end results in a continuous signal,

with no discontinuities at the joins. Thus by copying the end of a symbol and appending

this to the start results in a longer symbol time. Fig. 2.1.7 shows the insertion of a guard

period.

• ••••••••••• ( IFFT
. I

Guard I
Period IFFT Outpul ,

Gu~,d IFFT ,) ••••••••••••
Penoo (

I I ,
hili( ~I"

TFFT .' ~
I TG I I Time
I I

I ,
I Symbol'" .:«<

Sl'lllbol N.' ~I~ SymbolN+\TS

Fig. 2.1.7: Addition ofa guard period to an OFDM signal

The total length of the symbol is T,=To + Twr, where T.is the total length of the symbol in

samples, To is the length of the guard period in samples, and TEFT is the size of the lFFT

used to generate the OFDM signal. In addition to protecting the OFDM from lSI, the

guard period also provides protection against time-offset errors in the receiver.

,2.1.4 The OFDM system model

In the transmitter the incoming the data stream is grouped into blocks of N data symbols.

These groups are called OFDM symbols and can be represented by a vector

xm = [Xo,m'Xl,m'X2,m' 'XN-l,mf . Next an IDFT operation is performed on each data

symbol blocks and a cyclic prefix of length N,p is added. The resulting complex

baseband discrete time signal of the mth OFDM symbol is
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n denotes the timing index.

The complete time signal s(n) is given by

sen) = fSm(n-m(N +Nq,))
m=O

if nE[O,N+Nq>-l]

otherwise
(2.3)

(2.4)

'In general the received signal is the sum of a linear convolution with the discrete channel

impulse response h(n) and the additive white Gaussian noise (AWGN), w(n). In addition

it is assumed that the transmitter and the receiver are perfectly synchronized. Based on

the fact that the cyclic prefix is sufficiently longer to accommodate the channel impulse

response, .the linear convolution becomes circular one. Thus the received signal becomes
N -I

r(n) = ~)(A)s(n - A) +wCn)
11=0

(2.5)

In the receiver the incoming sequence r(n) is split into two blocks and the cyclic prefix

associated with each block is removed. This results III a vector

rm=[r(zm),r(zm+l)' ,r(zm+N-l)]' with zm=m(N+N,p)+Nq>' The received

,data symbol hm is given by

N-l

Y',m = Lr(zm + n)e-2""'IN
n=O

Substituting r(n)

Y',m = ~(~lh(A)Sm(Nq> +n_A)}j2""'IN + ~w(n+Zm)ej2""'IN

N-l(~1 1 N-I J= L L,h(A)- Lx"mej2"'<,-")IN e-j2""'IN+w"m
n=O A."'O N k=O

N-l

where w',m = L wen + zm)e-j2""'IN
n=O
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2.2 Overview of Multiple Access Techniques in OFDM Systems

Various multiple access schemes can be combined with OFDM transmission like

Orthogonal Frequency Division Multiplexing- Time Division Multiple Access (OFDM-

TDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Multi Carrier-

Code Division Multiple Access (MC-CDMA).

Multiple Access
Techniques

""T

~ . l ~

Separation in Separation in Separation
time time & frequency using code

: I I
I I I

~FDM-TDMA :==> C OFDMA
:==>

~C-CDMA:==>

Fig. 2.2.1: Different multiple access schemes

2.2.1 OFnM-TDMA

In OFDM-TDMA, time slots in multiples of OFDM symbols are used to separate the

transmission of multiple users as shown in Fig. 2.2.1. This means that all the used

subcarriers are allocated to one of the users for a finite number of OFDM symbol periods.

In WiMax, one of the allowed transmission mode uses OFDM- TDMA wherein the base

station allocates the time-slots to the users for the downlink (DL) and uplink (UL)

transmission.
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Subcarrier
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A group of OFDM
symbols allocated to

an user

All the subcarriers are
allocated to an user

oUser 1

oUser 2

• User 3

Fig. 2.2.2: Time-Frequency view of an OFDM-TDMA

2.2.20FDMA

Orthogonal Frequency Division Multiple Access (OFDMA) is a multi-user OFDM that

allows multiple access on the same channel by fonning subchannels with a group of

,subcarriers. OFDMA distributes subcarriers among users so all users can transmit and

receive at the same time within a single channel on what are called subchannels.

Subcarrier-group subchannels can be matched to each user to provide the best

perfonnance, meaning the least problems with fading and interference based on the

location and propagation characteristics of each user. Different users transmit their

signals through their mobile stations to the corresponding base-station. The base station

then allocates the subcarriers to the corresponding users considering different conditions

imposed on it. Fig. 2.2.2 shows K number of users are transmitting their signals and base

station allocates their subcarrier into an OFDM signal according to different parametric

conditions. This OFDM signal is magnified in Fig. 2.2.3.
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Fig. 2.2.3: Signals from multiple users form an OFDMA signal at the base station.

Pilot Subcarrier5

\
Guard Band Guard Band

Fig. 2.2.4: Complete OFDMA signal at the base station.

10 OFDMA systems, both time and/or frequency resources are used to separate the

multiple users' signals. The time-frequency view of a typical OFDMA signal is shown in

Fig. 2.2.4 for a case where 3 users are transmitting data. The users' signals are separated

in time domain by using different OFDMsymbols and/or by subcarrier domain. Thus

,both time and frequency resources are used to support multiuser transmission.
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Fig. 2.2.5: Time-Frequency view of an OFDMA signal

2.2.3 MC-CDMA

,In MC-COMA systems, a data symbol is sent on multiple subcarriers by using a

spreading code, which is different for multiple access users [21]. Multiple users' signals

overlap in time and frequency domain but they can be separated at the receiver by using

the knowledge of spreading codes, Thus MC-COMA can be considered as a combination

of OFOM and COMA schemes resulting in benefits due to both these approaches,

2.3 Overview of Resource Allocation in OFDMA Systems

Channel-aware scheduling and resource allocation has become an essential component

for high-speed wireless data systems. In these systems, the active users and the allocation

of physical layer resources among them are dynamically adapted based on the users'

current channel conditions and quality of service (QoS) requirements. The purpose of

'resource allocation at the base station is to allocate intelligently the limited resources, e.g.

total transmit power and available frequency bandwidth, among users to meet users'

service requirements. Channel-aware adaptive resource allocation has been shown to

achieve higher system performance than static resource allocation, and is becoming more

critical in current and future wireless communication systems as the user data rate
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requirements increase. To allocate the available resources among users, two methods,

margin adaptive process [22] and rate adaptive [23] method are used.

Resource Allocation

Static Resource Allocation Dynamic Resource Allocation.

Fixed Power
and

Bandwidth
Minimize power with

constant BER
Maximize total users' capacity

with constant power

Fig. 2.3.1: Different schemes ofOFDM resource allocation

2.3.1 Margin adaptive approach

Margin adaptive resource allocation [22] deals with the allotment of subcarrier, bit and

power to a number of users where all users transmit in all the time slots. The system uses

the given set of user data rates and bit error rate and attempts to minimize total transmit

power. The minimum transmit power is obtained by

(2.8)

where P is the total transmit power, bn.k is the bite rate for kthuser on the nih subcarrier,

and a;.k is the channel gain squared for nih subcarrier in addition to kth user and 10 is

the required received power expressed by

I(bn.,) = ~o [Q-\B~Rn)]2(2b", -1)

Here No stands for noise power spectral density and BER" designates the bit error rate
for nthsubcarrier.
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(2.10)

. "Q(x) =_1_J e-, dt and here Q-l denotes Ihe inverse Q function .
..& ,

In margin adaptive approach, Ihe total transmit power is minimized for a constant overall

bit error rate and as well as for a constant bit rate for each user. The margin adaptive

resource allocation can also be viewed as minimizing bit error rate for a constant transmit

power. BoIh the approaches assume constant bit rate for each user.

2.3.2 Rate adaptive approach

Rate adaptation [23] represents an algoriIhm Ihat maximizes Ihe total data rate of Ihe .

multiuser OFDM system by adapting Ihe transmit power for each user and each

subcarrier. The total transmit power for Ihe system is fixed and represented by

K N IL~:>k..= s (2.9) ,

where S is Ihe total tr~;~:1 power and s•• is the transmit power for kth user and Ihe nthI

subcarrier. MaIhematically, the optimization problem considered in this approach is

,formulated as

K N [ h' ]R. =LL P•.• log, 1+ P•.• ~.
.=I.=I.N N _ON

where K is Ihe total number of users, N is Ihe total number of sub carriers, No is the power I

spectral density of additive white Gaussian noise, B is Ihe total available bandwidIh. p..•

is Ihe power allocated for user k in Ihe subcarrier n, h•• is Ihe channel gain for user k

and subcarrier n, P'., can only be Ihe value of eiIher I or 0, indicating wheIher

subcarrier n is used by user k or not The fourIh constraint shows Ihat each subcarrier can

only be used by one user.

2.3.3 Unfair and fair scheduling

Fairness in scheduling can be introduced into a system by eiIher ofIhe two ways, fairness

in data rate and fairness in using subcarriers. Fairness in data rate means a minimum I
amoUDtof data rate has to be preserved for a particular user regardless any condition of
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the channel. Like the previous one, fairness in subcarrier sharing also signifies the fact

that a minimum number of subcarriers have to be used for a particular user even at the

worst condition. With proper fairness scheduling, the minimum power or maximum

throughput does not reflect the optimum result but reveals a fair allocation of subcarriers

to the corresponding user. The fairness index is defined as

(2.11)

with the maximum value of 1 to be the greatest fairness case in which all users would

achieve the same data rate or subcarriers. Here k =1,2, ... , K denotes user and {r,}:t is

a set of predetermined values which are used to ensure proportional fairness among users.

2.4 Introducing Genetic Algorithm & Partie,le Swarm Optimization in OFDM

The purpose of resource allocation at the base station is to intelligently allocate the

limited resources, e.g. total transmit power and available frequency bandwidth among

users to meet users' service requirements. Channel-aware adaptive resource allocation has

been shown to achieve higher system performance than static resource allocation, and is

.becoming more critical in current and future wireless communication systems as the user

data rate requirements increase. Furthermore, the sub carrier allocation problem to

multiple users has many different permutations, thereby making the solution space very

large. Unlike other algorithms, the evolutionary approaches can handle large solution

space without any performance degradation. In this thesis, the subcarriers and bits are

allocated to different users according to the dynamic channel state information through

evolutionary approaches. Each user is allocated one or more subcarriers provided that one

subcarrier can be used by only one user. The number of bits are then chosen according to

the water filling algorithm i.e. the modulation schemes are selected in response of the

channel state information of the corresponding user. The optimum arrangement of the,
I

users as well as subcarriers can be evaluated by one of the two evolutionary approaches,:

'Genetic Algorithm (GA) or Particle Swarm Optimization (PSO). I
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2.4.1 Basics of genetic algorithm

A genetic algorithm (GA) is a search technique used in computing to find exact or

approximate solutions to optimization and search problems. Genetic algorithms are

categorized as global search heuristics. Genetic algorithms are a particular class of

evolutionary algorithms that use techniques inspired by evolutionary biology such as

inheritance, mutation, selection, and crossover. Genetic algorithms are implemented as a

computer simulation in which a population of abstract representations (chromosomes) of

candidate solutions (individuals) to an optimization problem evolves toward better

solutions. Traditionally, solutions are represented in binary as strings of Os and Is, but

other encodings are also possible. The evolution usually starts from a population of

,randomly generated individuals and happens in generations. In each generation, the

fitness of every individual in the population is evaluated, multiple individuals are

stochastically selected from the current population (based on their fitness), and modified:

(recombined and possibly randomly mutated) to form a new population. The new

population is then used in the next iteration of the algorithm. Commonly, the algorithm I
terminates when either a maximum number rif generations has been produced, or a

satisfactory fitness level has been reached for' the population. If the algorithm has

terminated due to a maximum number of generations, a satisfactory solution mayor may

not have been reached.

2.4.1.1 Population representation and initialization

,GAs operate on a number of potential solutions, called a population, consisting of some

encoding of the parameter set simultaneously. Typically, a population is composed of

between 30 and 100 individuals, although, a variant called the micro GA uses very small

populations, -10 individuals, with a restrictive reproduction and replacement strategy in

an attempt to reach real-time execution [24].

The most commonly used representation of chromosomes in the GA is that of the single-

level binary string. Here, each decision variable in the parameter set is encoded as a

binary string and these are concatenated to form a chromosome. The use of Gray coding

has been advocated as a method of overcoming the hidden representational bias in

conventional binary representation as the Hamming distance between adjacent values is
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constant [25]. Empirical evidence of Caruana and Schaffer [26] suggests that large

Hamming distances in the representational mapping between adjacent values, as is the

case in the standard binary representation, can result in the search process being deceived

or unable to efficiently locate the global minimum. A further approach of Schmitendorgf

et-al [27], is the use of logarithmic scaling in the conversion of binary-coded

chromosomes to their real phenotypic values. Although the precision of the parameter

values is possibly less consistent over the desired range, in problems where the spread of

feasible parameters is unknown, a larger search space may be covered with the same

number of bits than a linear mapping scheme allowing the computational burden of

exploring unknown search spaces to be reduced to a more manageable level.

Whilst binary-coded GAs are most commonly used, there is an increasing interest in

alternative encoding strategies, such as integer and real-valued representations. For some

problem domains, it is argued that the binary representation is in fact deceptive in that it

,obscures the nature of the search [28]. In the subset selection problem [29], for example,

the use of an integer representation and look-up tables .provides a convenient and natural

way of expressing the mapping from representation to problem domain:

The use of real-valued genes in GAs is claimed by Wright [30] to offer a number of

advantages in numerical function optimization over binary encodings. Efficiency of the

GA is increased as there is no need to convert chromosomes to phenotypes before each

function evaluation; less memory is required as efficient floating-point internal computer

representations can be used directly; there is no loss in precision by discretization to

binary or other values; and there is greater freedom to use different genetic operators. The

use of real-valued encodings is described in detail by Michalewicz [31] and in the

literature on Evolution Strategies.

'Having decided on the representation, the first step in the GA is to create an initial

population. This is usually achieved by generating the required number of individuals

using a random number generator that uniformly distributes numbers in the desired range.

2.4.1.2 The objective and fitness functions

The objective function is used to provide a measure of how individuals have performed in

the problem domain. In the case of a minimization problem, the most fit individuals will
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have the lowest numerical value of the associated objective function. This raw measure of

fitness is usually only used as an intermediate stage in determining the relative

performance of individuals in a GA. Another function, the fitness function, is normally

used to transform the objective function value into a measure of relative fitness. Thus

F(x) = g(f(x))wherefis the objective function, g transforms the value of the objective

,function to a non-negative number and F is the resulting relative fitness. This mapping is

always necessary when the objective function is to be minimized as the lower

objective function values correspond to fitter individuals. In many cases, the fitness

function value corresponds to the number of offspring that an individual can expect to

produce in the next generation.

2.4.1.3 Selection
Selection is the process of determining the number of times a particular individual is

chosen for reproduction and, thus, the number of offspring that an individual will produce.

The selection of individuals can be viewed as two separate processes:

1) determination of the number of trials an individual can expect to receive, and

2) conversion of the expected number of trials into a discrete number of offspring.

The first part is concerned with the transformation of raw fitness values into a real valued

expectation of an individual's probability to reproduce and is dealt with in the previous

subsection as fitness assignment. The second part is the probabilistic selection of

individuals for reproduction based on the fitness of individuals relative to one another

and is sometimes known as sampling.

Types of selection methods

~ Roulette Wheel Selection Methods

~ Stochastic Universal Sampling

2.4.1.4 Crossover (Recombination)

The basic operator for producing new chromosomes in the GA is that of crossover. Like

its counterpart in nature, crossover produces new individuals that have some parts of both

parent's genetic material.
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Types of crossover

);- Single point crossover

);- Multipoint crossover

);- Uniform crossover

2.4.1.4.1 Single point crossover

The simplest recombination operator is that of single-point crossover.

Consider the two parent binary strings:

PI = I 0 0 I 0 I I 0, and -

P2 = I 0 I I I 0 0 O.

If an integer position, i, is selected uniformly at random between I and the string length, I

minus oile [1, I-I], and the genetic information exchanged between the individuals about

this point, then two new offspring strings are produced. The two offspring below are

produced when the crossover point i = 5 is selected,

0, = I 0 0 I 00 0 0, and

O2 = I 0 I I I I I O.

This crossover operation is not necessarily performed on all strings in the population.

Instead, it is applied with a probability Px when the pairs are chosen for breeding.

'2.4.1.4.2 Multipoint crossover

For multi-point crossover, m crossover positions, k, E {I, 2, ,I}, where ki are-the

crossover points and I is the length of the chromosome, are chosen at random with no

duplicates and sorted into ascending order. Then, the bits between successive crossover

points are exchanged between the two parents to produce two new offspring. The section

between the first starting position and the first crossover point is not exchanged between

individuals. This process is illustrated in Fig. 2.4.1.1.

Fig. 2.4.1: Multipoint Crossover (m=5)

35



.2.4.1.4.3 Uniform crossover

Single and multi-point crossover define cross points as places between loci where a

chromosome can be split. Uniform crossover [18] generalizes this scheme to make every

locus a potential crossover point. A crossover mask, the same length as the chromosome

structures is created at random and the parity of the bits in the mask indicates which

parent will supply the offspring with which bits. Consider the following two parents,

crossover mask and resulting offspring:

PI = 1 0 1 10 0 0 1 1 1

P2=0001111000

Mask = 0 0 1 1 0 0 1 1 0 0

01=0011110100
.

02=1001001011

Here, the first offspring, 01, is produced by taking the bit from PI if the corresponding

mask bit is 1 or the bit from P2 if the corresponding mask bit is O. Offspring 02 is created

using the inverse of the mask or, equivalently, swapping PI and P2. Uniform crossover,

like multi-point crossover, has been claimed to reduce the bias associated with the length

of the binary representation used and the particular coding for a given parameter set. This

helps to overcome the bias in single-point crossover towards short substrings without

requiring precise understanding of the significance of individual bits in the chromosome

representation.

2.4.1.5 Mutation

In natural evolution, mutation is a random process where one form of a bit of a gene is

replaced by another form to produce a new genetic structure. In GAs, mutation is

randomly applied with low probability, typically in the range 0.001 and 0.Ql, and

modifies elements in the chromosomes. Usually considered as a background operator, the

role of mutation is often seen as providing a guarantee that the probability of searching

any given string will never be zero and acting as a safety net to recover good genetic

material that may be lost through the action of selection and crossover.
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Binary mutation flips the value of the bit at the loci selected to be the mutation point

Given that mutation is generally applied uniformly to an entire population of strings, it is

possible that a given binary string may be mutated at more than one point. With non-

.binary representations, mutation is achieved by either perturbing the gene values or

random selection of new values within the allowed range.

lllutation poin t .""_ ..~

Original string. 0 0 01 1 1 0 0 0 1 0,. ,
l\.fu tated string. 0 0 L!l 1 , 0 0 0 1 0~

Fig. 2.4.2: Binary Mutation

2.4.1.6 Reinsertion

To maintain the size of the original population, the new individuals have to be reinserted

into the old population. Similarly, if not all the new individuals are to be used at each

generation or if more offSprings are generated than the size of the old population then a

reinsertion scheme must be used to determine which individuals are to exist in the new

population ..

2.4.1.7 Terminatiou of the GA

Because the GA is a stochastic search method, it is difficult to formally specify

convergence criteria. As the fitness of a population may remain static fora number of

generations before a superior individual is found, the application of conventional

termination criteria becomes problematic. A common practice is to terminate the GA

after a pre-specified number of generations and then test the quality of the best members

of the population against the problem definition, lfno acceptable solutions are found, the

GA may be restarted or a fresh search initiated. GA can also be terminated by defining a

variable which signifies the dynamic change for each generation. The dynamic change

may be defined as a change of fitness value of the current generation from that of the

previous generation. When the dynamic change declines than a predefined value then the

GA is terminated.

2.4.1.8 Algorithm and flowchart of a simple GA

The algorithm as well as flowchart of a basic genetic algorithm is as follows
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o START : Create random population of n chromosomes
1 FITNESS: Evaluate fitness f(x) of each chromosome in the population
2 NEW POPULATION

o SELECTION : Based on f(x)
1 RECOMBINATION: Cross-over chromosomes
2 MUTATION : Mutate chromosomes
3 ACCEPTATION : Reject or accept new one

3 REPLACE: Replace old with new population: the new generation
4 TEST : Test problem criterium
5 LOOP : Continue step 1 - 4 until criterium is satisfied

Fig. 2.4.3: Algorithmic structure of basic genetic algorithm

Initialization for nthgeneration

Calculate the fitness for nthgeneration

No

Yes

Fig. 2.4.4: Flowchart of basic genetic algorithm
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2.4.2 Basics of particle swarm optimization

Particle swarm optimization (pSG) is one of the evolutionary computational techniques.

Like the other evolutionary computation techniques, PSG is a population-based search

algorithm and is initialized with a population of random solutions, called particles. Unlike

in the other evolutionary computation techniques, each particle in PSG is also associated

with a velocity. Particles fly through the search space with velocities which are

.dynamically adjusted according to their historical behaviors. Therefore, the particles have

a tendency to fly towards the better and. better search area over the course of search

process. Since its introduction in 1995 by Kennedy and Eberhart, PSG has attracted a lot

of attentions from the researchers around the world [32]-[38].

The original PSG algorithm is discovered through simplified social model simulation.

The PSG algorithm works on the social behavior of particles in the swarm. Therefore, it

finds the global best solution by simply adjusting the trajectory of each individual

towards its own best location and towards the best particle of the entire swarm at each

time step (generation).

The original PSG algorithm [32] can be described by

)l", =WV", +c,randO(p",-x",)+c,RandO(p"" -x",) (2.12)

(2.13)

where cj and c, are positive constants, w is the inertia weight and randO and RandO are

two random functions in the range [0,1]; XI = (XlpXIZ' ,XID) represents the {h particle;

P, = (PIl'PI2' PID) represents the best previous position (the position giving the best

fitness value) of the lh particle; the symbol g represents the index of the best particle

among all the particles in the population; V, = (VIpVI" vlD) represents the rate of the

position change (velocity) for particle i. The .best previous position, p, and the best

position among all the particles, Pg are designated as the local best (pbest) and global best

.(gbest) respectively.

Equation (2.12) & (2.13) are the equations describing the flying trajectory of a population.

of particles. Equation (2.12) describes how the velocity is dynamically updated and

Equation (2.13) signifies the position update of the "flying" particles. Equation (2.12)
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consists of three parts. The first part is the momentum part. The velocity can't be changed

abruptly. It is changed from the current velocity. The second part is the "cognitive" part

which represents private thinking of itself - learning from its own flying experience. The .

third part is the "social" part which represents the collaboration arnong particles -

learning from group flying experience. In Equation (2.12), if the sum of the three parts on

the right side exceeds a constant value specified by user, then the velocity on that

dimension is assigned to be oloVmax, that is, particles' velocities on each dimension is

clamped to a maximum velocity Vmax, which is an important parameter, and originally is

the only pararneter required to be adjusted by users. Big Vmax has particles have the

'potential to fly far past good solution areas while a small Vmax has particles have the

potential to be trapped into local minima, therefore unable to .fly into better solution areas.

Usually a fixed constant value is used as the Vmax, but a well designed dynamically

changing Vmax might improve the PSO's performance.

2.4.2.1 Processing steps ofPSO

• Initialize a population of N particles which signifies the random positions and

velocities on D dimensions in the problem space.

• For each particle, evaluate the optimization fitness function in D variables.

• Compare particle's fitness evaluation with its pbest. If current value is better than

pbest, then set pbest equal to the current value, and p, equals to the current

location x, in D-dimensional space.

• IdentifY the particle in the neighborhood with the best success so far, and assign

its index to the variable g.

• Change the velocity and position of the particle according to equation (2.12) and

(2.13).

• Loop to step 2 until a criterion is met, usually a sufficiently good fitness or a

maximum number of iterations.

2.4.2.2 Algorithm and flowchart of basic PSO

. ,The algorithm as well as flowchart of a basic genetic algorithm is as follows
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o START : Create random swarm ofn particles
1 FITNESS: Evaluate fitness f(x) of each particle in the population
2 NEW POPULATION

o : Calculate the local best value
1 : Calculate the global best value
2 : Update the position and velocity of the particle

3 REPLACE: Replace old with new population: the new generation
4 TEST : Test problem criterium
5 LOOP : Continue step 1 - 4 until criterium is satisfied

I

Fig. 2.4.5: Structure of Basic Particle Swarm Optimization

Initialize particles with random position
and veloci vectors

Evaluate the fitness for each particle's position (P)

Yes

No

If fitness ofp is better than fitness ofpbest
then best=

Set best ofpbest values as gbest

Update particle's position and velocity

End

Fig. 2.4.6: Flowchart depicting the general PSO algorithm

41



./

Chapter 3

MODELING AND DESCRIPTION OF SYSTEM

In this chapter, the analytical expressions as well as structUral view of used system

models have been represented with necessary equations. The resource allocation schemes

that have been used in this research work are given with necessary algorithms and

flowcharts. The optimization system model of both GA and PSO have been presented

with their modified versions along with their algorithms and corresponding flowcharts.

3.1 Structural Model Used in OFDMA Systems for Resource Allocation

Orthogonal Frequency Division Multiple Access (OFDMA) has recently received

significant interest and has been adopted as one of the three physical layer modes in the

IEEE wireless MAN standard 802.16-2004. In OFDMA the active subcarriers are divided

into subsets of subcarriers termed as subchannels which are assigned to multiple users for

simultaneous transmission. The subcarriers of each subchannel may not necessarily be

adjacent. To maintain the orthogonality among the subcarriers in the uplink of OFDMA

systems, the signals from all active users should arrive at the base station simultaneously.

This is accomplished by an initial uplink synchronization called the ranging process by

which the base stations adjust their transmission time instants and transmitted powers so

that at the base station their ranging signals synchronize their mini-time slot boundary of

the base station and have equal power. By means of the ranging process, the system

compensates the near/far problems in large cells. Generally a ranging process can be

categorized as initial ranging and periodic ranging. In this thesis, periodic ranging has

been considered where transmitted power as well as the corresponding throughput has to

be allocated to different users according channel state condition. Allocation of these

available resources are accomplished after a certain period in a dynamic nature.

The basis of an OFDMA system in a particular cell in cellular structure has been shown

in Fig. 3.1.1. Different users (say 10 users) reside over a particular hexagonal cell and

always try to synchronize with the corresponding base station. The base station not only

performs the initial synchroniz~tion but also allocates the available resources to the users

for efficient and reliable transfer of data. For allocation of resources like power and



throughput, the base station use to communicate with the available users with the help of

forward and reverse transmission links (Fig. 3.1.2).

eUser€)

CYser i~
CYserV

CYserV

Fig. 3.1.1: Structural model of an OFDMA system in a particular cell for a cellular
network

User!_
User2_ OFDM OFDM

Transceiver Transceiver -. Userk

UserK-
data

Subcarner Channeland
bit allocation Information

SJbcarnerand it
Subcarrier and bit infomationfor 1\ obilek Subchannel Vector

allocation algorithm .

Base Station Mobilek

Fig. 3.1.2: Two-way communication between base station and a particular user

In the base station, all channel information is sent to the subcarrier and power allocation

algorithm through feedback channels from all mobile users. The resource allocation

scheme made by the algorithm is forwarded to the OFDM transceiver. The transceiver
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then selects different numbers of bits from different users to form an OFDM symbol. The

resource allocation scheme is updated as fast as the channel information is amassed. In

this research work, perfect instantaneous channel information is assumed to be available

at the base station and only the broadcast scenario has been studied. It is also assumed

that the subchannel and bit allocation information is sent to each user by a separate

channel.

3.2 Basic OFDMA System Model

Let we consider the multiuser OFDM system having K (Ie=1,2, ...• K) users and N (n =

1, 2, .... N) subcarriers. In the transmitter, the serial data from the users are fed into the

subcarrier and bit allocation block which allocates bits from different users to different

subcarriers. We assume that each subcarrier has a bandwidth that is much smaller than

the coherence bandwidth of the channel and that the instantaneous channel gains on all

the subcarriers of all the users are known to the transmitter. Using the channel

information, the transmitter applies the combined subcarrier, bit, and power allocation

algorithm to assign different subcarriers to different users and the number of bits/OFDM

symbol to be transmitted on each subcarrier. Depending on the number of bits assigned to

a subcarrier, the adaptive modulator will use a corresponding modulation scheme, and the

transmit power level will be adjusted according to the combined subcarrier, bit, and

power allocation algorithm. These subcarriers are grouped together into Q subchanne1s

where each subchannel has m = N subcarriers. As a consequence, the system allots a
Q

subset of N subcarriers to a particular user and determines the number of bits per each

assigned subcarrier on downlink transmission (Fig. 3.2.1).
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IFFT

Serial
to

Parallel
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I "
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Userk_

User I
User 2

UserK

Fig. 3.2.1: Baseband transmission of amultiuser OFDM system

The complex symbols at the output of the modulators are transformed into the time

domain samples by inverse fast Fourier transform (IFFT). Cyclic extension of the time

domain samples, known as the guard interval, is then added to ensure orthogonality

between the subcarriers, provided that the maximum time dispersion is less than the

guard interval. The transmit signal is then passed through the Rayleigh fading channel to

different users. We assume that the subcarrier and bit allocation information is sent to the

receivers via a separate control channel. At the receiver, the guard interval is removed to

eliminate the lSI, and the time samples of the IIh user are transformed by the FFT block

into modulated symbols. The bit allocation information is used to configure the

demodulators while the subcarrier allocation information is used to extract the

demodulated bits from the subcarriers assigned to the IIh user. In the Rayleigh fading

channel, different subcarriers will experience different channel gains. We denote by

INln,k the magnitude of the channel gain (assuming coherent reception) of the nth

subcarrier as seen by the IIh user. We assume that the single-sided noise power spectral

density (PSD) level No is equal to unity for all subcarriers and is the same for all users.
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3.3 Diversified Proposed Systems for Different Resource Allocation Schemes

The purpose of resource allocation at the base station is to intelligently allocate the

limited resources, e.g. total transmit power and available frequency bandwidth among

users to meet users' service requirements. Channel-aware adaptive resource allocation has

been shown to achieve higher system performance than static resource allocation, and is

becoming more critical in current and future wireless communication systems as the user

data rate requirements increase. Furthermore, the subcarrier allocation problem to

multiple users has many different permutations, thereby making the solution space very

large. Unlike other algorithms, the evolutionary approaches can handle large solution

space without any performance degradation. In this thesis, the subcarriers and bits are

allocated to different users according to the dynamic channel state information through

evolutionary approaches. Each user is allocated one or more subcarriers provided that one

subcarrier can be used by only one user. The number of bits are then chosen according to

the water fIlling algorithm i.e. the modulation schemes are selected in response of the

channel state information of the corresponding user. The optimum arrangement of the

users as well as subcarriers are evaluated by two evolutionary approaches. In this thesis

work Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been

deployed as the evolutionary methods. Considering the optimum usage of evolutionary

approaches in multiuser OFDM systems, this thesis work has been diversified into two

main category of its entity

:-- Application specific task in optimization of resource allocation

>- Topological modification ofPSO in optimization of resource allocation

The first one is the application of GA and PSO into two multiuser OFDM resource

allocation schemes, namely margin adaptive allocation and rate adaptive allocation. Both

the margin and rate adaptation schemes are evaluated by the original and modified

versions of GA and PSO. Each of the algorithms is analyzed for unconstrained case as

well as fair scheduled case. The second category is dealt with the topological

modifications of these optimization techniques. The original versions are modified to

obtain better results for either of the adaptation cases.
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3.3.1 Application specific task in optimization of resource allocation

OFDMA resource allocation

Margin Adaptive Scheme

Optimization by
modified GA

Rate Adaptive Scheme

Fig. 3.3.1 Different proposed systems for resource allocations

During the first part of thesis, genetic algorithm (GA), modified GA and particle swarm

optimization (PSO) have been applied in optimizing the transmit power for a constant bit

error rate and in optimizing the bit rate for a definite amount of transmitting power. Both

the optimizations are performed under unconstrained and fair scheduled approach.

3.3.1.1 Margin Adaptive (MA) resource allocation for multiuser OFDM systems

In margin adaptive resource allocation system the total transmitted power has to be

minimized for the optimum arrangement of subcarriers and bits to the users with the

constraints of bit error rate. In some cases, margin adaptive scheme concentrates on

minimizing the overall bit error rate for a definite amount of transmitted power. For both

the cases, the user data rate has to remain constant throughout the transmission period. In

this thesis dissertation both the methods have been analyzed after defining a suitable

fitness function for power as well as bit error rate optimization for the used multi carrier

systems. The genetic algorithm and particle swarm optimization have been applied to
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optimize the overall requirement keeping the constraints intact. At first an appropriate

fitness function has been derived for the used system model and then the initial

population matrix as well as sub-initial populations have been affixed to start the

evolutionary approaches.

3.3.1.1.1 Modeling of the fitness function for MA approach

Let b, .• E {O,1,2, ..... ,B} signify the number of bits for nth subcarrier and T(h user where B

denotes the maximum number of information bits that can be transmitted by each

subcarrier. R. represents the number of bits that are needed to be transmitted in an

OFDM system. Here b,.• determines the mode of adaptive modulation (i.e. BPSK, 16

QAM, 64 QAM or anything else). The system has been assumed to acquire channel state

information through its dynamic channel estimation scheme. Let IHL.. represents the

channel gain for nth subcarrier and T(h user. The required transmission power for the

specified bit errouate at b,.• bits per symbol is given by [13],

f(b, .•)
P"'=~12

1"".( n,k

(3.1)

In' multiuser scenarIO, not more than one user is considered to share a particular

subcarrier. Mathematically it is expressed as

;. ={I if b". ;c 0
n.' 0 if bn,. = 0

(3.2)

(3.3)

We assume that the channel is lSI-free and has gain IHI. The probability of two-

dimensional symbol error in QAM is closely approximated as

p. = 4Q[~:;]
00 "

where Q(x)=_l-Je-'dt anddmin is the minimum distance between QAM constellation
&. .

points at the channel output and is given by

(3.4)

where d is the distance between constellation points at the channel output.

48

. ,



We define a convenient quantity called SNR gap (or sometimes called normalized SNR)

by
3f = d;".

40"z
(3.5)

Here M denotes

where 20"z is defined as the noise power. In QAM the number of bits to be transmitted is

defined as

SNRb=logzM=logz(I+-) (3.6)
. f

P[H[Z
number of QAM levels and SNR=--z where P defines total .

20"

transmitted power. So from equation (I), the symbol error probability,

So,

Q[ 3P;ndlH[Z] =.!.P
20"Z(2b -I) 4'

=> 3p;nd IHlz = Q-l (.!.P )
20"Z(2b -I) 4 '

=> . 3p;nd IHlz _ [Q-l (.!.P )]Z
20"z(2b -I) 4 '

=> 3P;ndlH[Z _ [Q-l('!' P )]Z
No(2

b -I) 4 '

=>P =~[Q_l(.!.p)]z(2b -I)
ond 3IH[Z 4 '
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Here Q-l denotes the inverse Q function. This equation represents the fitness function for

Margin Adaptive optimization problem. If we assume the syinbol error rate as bit error

rate for corresponding modulation scheme then the above equation can be approximated

as

(3.10)

So, the required total transmission power (P,.,,,}) can be written as follows

N K f(b.,.)
P,.", ; L L 2 X A.,'

n=1 k=l H n,k

(3.11)

where,

3.3.1.1.2 Setting of initial population ofMA approach

The serial binary data from the transmitting side of different users are made into parallel

and then mapped according to different modulation schemes like, BPSK, QPSK, 16

QAM, 64 QAM etc. The selection of modulation schemes ultimately decides the number

of the bits to be transmitted. The subcarrier allocation to the different users are made into

random and therefore this random selection is used to define the initial population. The

number of bits for a particular subcarrier are then selected according to the water filling

algorithm This conventional algorithm reveals the fact that more bits are allocated to a

subcarrier whose channel state information is good and vice-versa. So

gl,1 gl,2 gl,3 gl,N

g2,1 g2,2 g2,3 g2,N

Initial population =

gNind,l gNind,2 gNind,3 gNind,N

(3.12)

Here g. . represents the random assignment of user to a particular subcarrier j for Z<h',J

chromosome.

The matrix of the random assignments of users reveals two another implicit initial

populations, (which is defined as sub-initial populations) of channel state information and
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where Q=E(RZ
)

Then according to the Rayleigh distribution, the implicit channel matrix becomes -

eh, 1 eh, z eh, 3 ...............••....••......... eh, N, , . .
ehZ1 ehzz ehZ3 •••••••••••••••••••••.••••.... ehz,N. , ,

Channel matrix =

ChNind,l ChNind•2 ChNind,3 ChNind,N

(3.14)

where eh;,j represents the channel gain for a user to a particular subcarrier j for z'h

chromosome.

The bits from the corresponding users are allocated to the subcarriers according to the

conventional water-filling algorithm

51 I I

\ '.'~
~'t(,l." .:"')

J' . 1 '
"(e-:.

--._"



Bit matrix =

bl,1 bl,2 bl" bl,N

b2,1 b2,2 b2" ••••••••••••••..............•• b2,N

bNind,1 bNind,2 bNind.3 bNind,N

(3.15)

where b',j represents the number of bits for a user to a particular subcarrier j for {h

chromosome.

The bit and channel matrices are used to evaluate the total power for an OFDM symbol.

3.3.1.1.3 Unfair scheduling

The subcarrier, bit and power allocation problem for minimizing the total transmit power

can be formulated as -

N K feb )
argminLL ;,. d,.",

bn,k n=1 k"'l H ",k

subject to

KLA.,. =1 forn=1,2, ,N
k=1

N KLLA.,. = N for b•• E {0,1,2, ..... ,B}
n=1 k=l

N

R. = Lb.,. for k = 1, 2, , K
n=1

(3.16)

(3.17)

(3.18)

(3.19)

3.3.1.1.4 Fair share scheduling

In fairly scheduled case, the problem has been formulated with the fact in mind that a

minimum number of subcarriers have to be allocated to a particular user even at the worst

scenario. The optimization problem for fair scheduled case can be formulated as -

N K feb )
argminLL ;.• x A..,.

bn,k 11=1 k=l H ",k
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subject to

kn ;:: Nmm' where kn is the number of subcarriers for a particular user k

KL;'~'n" = I for n=1, 2, "', N
k=l

N KLLAn" = N for bn" E {O,1,2,..... ,B}
n=l k=l

N

R, = Lbn" for k = 1, 2, , K
n=l

(3.21)

(3.22)

(3.23)

3.3.1.1.5 Use of the evolutionary approaches for optimization

Unlike other algorithms, the evolutionary approaches can handle large solution space

without any performance degradation. Two most famous algorithms, Genetic Algorithm

(GA) and Particle Swarm Optimization (PSO) can be efficiently used for optimization of

two schemes of resource allocation ..

3.3.1.1.5.1 Original genetic algorithm

Genetic algorithm is inspired by the mechanism of natural selection where stronger

individuals are likely to be the. winners in a competing environment. The continuing

performance improvement of the computational system has made GA attractive for some

types of optimization. As a matter of fact GA is very suitable for the optimization of bit

and subcarrier allocation problem in multiuser OFDM system

After the formation of the initial and corresponding sub-initial population according to

different constraints, GA is used to evaluate the optimum arrangement of the users to the

subcarriers. An algorithmic pseudo code has been formulated to evaluate this proposed

margin adaptive algorithm.
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ORlGINAL_GA(NIND, MAXGEN,NVAR,PRECI)

1. start

2: chrom <- initial-population(NIND, NVAR*PRECI)

3. gen<- 0

4. objV <- objfun(chrom)

5. while gen <MAXGEN

a. FitnV <- ranking(objV)

b. Selch <- select(chrom,FitnV)% For minimum

c. Selch <- recombin(Selch,recombin-probability)

d. Selch <- mut(Selch,mut-probability)

e. ObjV <- objfun(Selch)

f gen <- gen +1

6. endwhile

7. end

Fig. 3.3.2: Algorithmic pseudo-code of original GA

In this pseudo code, NIND, MAXGEN,NVAR,PRECI stand for number of individuals,

maximum generation number, number of variables (here it designates the number 0

subcarriers for a particular OFDM system) and precision index. With the help of this

values, the initial and sub-initial populations are generated by initial-populationO

function. The following table explains each of the used.functions

Table 3.3. I Parameter specification for original GA in margin adaptation f .

Functions Explanation

objfun Evaluates the fitness value b fitness function
rankin Ranks the fitness values accordin to the re uirements
select Performs selection rocedure

recombin Performs recombination rocedure
mut Performs mutation rocedure
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3.3.1.1.5.2 Modified genetic algorithm

GA has been modified slightly over the conventional one by setting a fractional value of

the generation gap. The fractional generation gap ('GGAP' in the following pseudo code)

helps to converge quickly by taking the good genes for the next generation.

MODIFIED_GA(NIND, MAXGEN, NYAR, PRBCI,GGAP)

,

.

1. start

2. chrom <- initiatpopulation(NIND, NYAR*PRBCI)

3. gen<- 0

4. objV <- objfun(chrom)

5. while gen <MAXGEN

a. FitnV <- ranking( objV)

b. Selch <- select(chrom,FitnV,GGAP) % For minimum

c. Selch <- recombin(Selch,recombin -probability)

d. Selch <- mut(Selch,mut-'probability)

e. ObjV sel <- objfun(Selch)

f. [chrom objV]=reins( chrom, .Selch, ObjV sel)

g. gen <- gen + 1

6. end while

7. end

Fig. 3.3.3: Algorithmic pseudo-code of modified GA

Table 3.3.2 Parameter specification for modified GA in margin adaptation

Functions Explanation

Evaluates the fitness value b fitness function
Ranks the fitness values according to the re uirements

Performs selection rocedure
Performs recombination rocedure

Performs mutation rocedure
Reinserts new chromosomes
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3.3.1.1.5.3 Particle swarm optimization

Particle swarm optimization (PSO) is one of the evolutionary computational techniques.

Like the other evolutionary computation techniques, PSO is a population-based search

algorithm and is initialized with a population of random solutions, called particles. The

original PSO algorithm is discovered through simplified social model simulation.

ORIGINAL]SO (NIND, MAXGEN, NVAR, Cl, C2, WEIGHT, randO, RANDO)

1. start

2. chrom +- initial-'population(NIND, NVAR *PRECI)

3. gen +- 0

4. objV +- objfun(chrom)

5. while gen <MAXGEN

a. lbest +-local_bst(NIND, NVAR) % For minimum

b.. gbest +- global_bst(NIND, NVAR) % For minimum

c. Calculate updated velocity and position

I. (V'd)'J=w(V'd)'J+c,ran<{)«(p,J'J -(g'd)')+ c,Ram()«(pgJ'J -(g,J,)

11. (gld);,j = (g'd )',1 + (V'd)',1

d. gen +- gen + I

6: end while

7. end

Fig. 3.3.4 Algorithmic pseudo-code of original PSO

In this pseudo code NIND, MAXGEN, NVAR, Cl, C2, WEIGHT, randO, RANDO

r,epresent number of individuals, maximum generation number, number of variables (here

it designates the number 0 subcarriers for a particular OFDM system), constants, inertia

weight and random variables respectively. Like GA, the initial population matrix has

been formed along with its sub-initial population matrices. The following table signifies

each of the commands.
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,
I

Table 3.3.3 Parameter specification for PSO in margin adaptation

Functions Explanation

Evaluates the fitness value b fitness function
Finds the local best value for a articular generation
Finds the lobal best value for a articular eneration

3.3.1.2 Rate Adaptive (RA) resource allocation for multiuser OFDM systems

3.3.1.2.1 Fitness function for RA approach

In rate adaptive resource allocation scheme, the throughput is maximized for a constant

transmitted power level having a. fixed amount of bit error rate. The fitness function used

here for optimization is evolved from Shanon's theorem which signifies the fact of the

maximum capacity of a dedicated channel. The fitness function for rate adaptive

approach is -

K N [ H
2

]R. =LL P',n log2 1+ hn ~,n
.=In=lN N~

ON

where K is the total number of users, N is the total number of subcarriers, No is the power

spectral density of additive white Gaussian noise, B is the total available bandwidth. P. n

is the power allocated for user k in the subcarrier n, h',n is the channel gain for user k

and subcarrier n, P. n can only be the value of either I or 0, indicating whether, .

subcarrier n is used by user k or not. The fourth constraint shows that each subcarrier can

only be used by one user.

3.3.1.2.2 Setting of initial population for RA approach

The serial binary data from the transmitting side of different users are made into parallel

and then mapped according to different modulation schemes like, BPSK, QPSK, 16

QAM, 64 QAM etc. The selection of modulation schemes ultimately decides the number

of the bits to be transmitted. The subcarrier allocation to the different users are made into

random and therefore this random selection is used to define the initial population. The

number of bits for a particular subcarrier are then selected according to the water filling
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chromosome.

gNind,l gNind,2 gNind.3 ..•........••.. gNind,N

(3.26)

(3.27)

ChNind,l ChNbzd.2 ChNind,3 ChNind,N
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N K [ HZ ]argminLL P•.• logz 1+h. ;,.
Pn..k>Pn.t n=1 k=l N N _

ON

Channel matrix =

Here g. . represents the random assignment of user to a particular subcarrier j for ilb',J

where eh. . represents the channel gain for a user to a particular subcarrier J' for ilb',J

~ gZ,1 gZ,2 gz,3 gZ,N

Initial population = (3.25)

3.3.1.2.3 Unfair scheduling

The subcarrier, bit and power allocation problem for minimizing the total transmit power

can be formulated as -

g'.l g •.z g'.3 g •.N

The matrix of the random assignments of users reveals two another implicit initial

populations, (which is defined as sub-initial populations) of channel state information and

number of bits. The wireless channel has been assumed here as the quasi static. The

channel state information at each subcarrier is generated randomly and subject to

'Rayleigh' distribution.

Then according to the Rayleigh distribution, the implicit channel matrix becomes -

e~.l e~.z e~.3 e~,N
ehz.• ehz.z ehZ,3 ehZ•N

chromosome.

algorithm. This conventional algorithm reveals the fact that more bits are allocated to a

subcarrier whose channel state information is good and vice-versa. So



59

subject to

(3,28)

(3.30)

(3.29)

K

LPo,k = IJor all n
k=l

Po,k ~ 0 for all n,k

Po k = {O,I} for all n,k

N K

LLPo,k ~ 1';otal
71=1 k=l

N K

LLPo,k ~ 1';otal
71=1 k=l

K

LPo,k = Ifor all n
k=l

Po' ~ 0 for all n,k

Po,' = {O,I} for all n,k

N K [ H' ]argmin L: L: P." log, 1+ P',o ;"
PJI./:,Pn,1r: 71=1 k=l N N _

ON

subject to

, ko ~ Nmin' where ko is the number of subcarriers fora particular user k

3.3.1.1.5 Use ofthe evolutionary approaches for optimization

For rate adaptation, the evolutionary approaches have been used in both unconstrained

and constrained manner. Like margin adaptation, the evolutionary approaches can handle

large solution space without any performance degradation in rate adaptation also. GA,

with its original and modified version and PSO, with its original version have been

deployed to optimize the throughput of an OFDM symbol.

3.3.1.2.4 Fair share scheduling

In fairly scheduled case, the problem has been formulated with the fact in mind that a

minimum number of subcarriers has to be allocated to a particular user even at the worst

scenario. The optimization problem for fair scheduled case can be formulated as -



3.3.1.1.5.1 Original genetic algorithm

ORIGINAL _GA(NIND, MAXGEN,NV AR,PRECI)

I. start

2. chrom <- initial--'population(NIND, NVAR*PRECI)

3. gen <- 0

4. objV <- objfun(chrom)

5.. while gen <MAXGEN

a. FitnV <- ranking(objV)

b. Selch <- select(chrom,FitnV) % For maximum

c. Selch <- recombin(Selch,recombin --'probability)

d. Selch <- mut(Selch,mut--'probability)

e. ObjV <- objfun(Selch)

f. gen <- gen + I

6. end while

7. end

Fig. 3.3.5: Algorithmic pseudo-code of original GA

Table 3.3.4 Parameter specification for original GA in rate adaptation

Explanation

number of individuals
maximum eneration number

number of variables number of subcarriers
recision index

Initial 0 ulation set
Evaluates the fitness value b fitness function

Ranks the fitness values according to the re uirements
Performs selection rocedure

Performs recombination rocedure
Performs mutation rocedure
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3.3.1.1.5.2 Modified genetic algorithm

GA has been modified slightly over the conventional one by setting a fractional value of .

the generation gap. The fractional generation gap helps to converge quickly by taking the

good genes for the next generation.

MODIFIED_GA(NIND, MAXGEN, NVAR, PRECI,GGAP)

1. start

2. chrom - initial-'population(NIND, NVAR*PRECI)

3. gen- 0

4. objV - objfun(chrom)

5. while gen <MAXGEN

a. FitnV - ranking( objV)

b. Selch - select(chrom,FitnV,GGAP) % For maximum

c. Selch - recombin(Selch,recombin-probability)

d. Selch - mut(Selch,mut-'probability)

e. ObjV sel - objfun(Selch)

f. [chrom objV]=reins( chrom, Selch, ObjV sel)

g. gen-gen+1

6. end while

7. end

Fig. 3.3.6: Algorithmic pseudo-code of modified GA

Table 3.3.5 Parameter specification for modified GA in rate adaptation

Functions / Explanation
Variables
NIND number of individuals

MAXGEN maximum generation number
NVAR number of variables (number of subcarriers)
GGAP Generation gao
PRECI orecision index
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Initial 0 ulation set
Evaluates the fitness value b fitness function

Ranks the fitness values according to the re uirements
Performs selection rocedure

Performs recombination rocedure
Performs mutation rocedure
Reinserts new chromosomes

3.3.1.1.5.3 Particle swarm optimization

Particle swarm optimization (PSO) is one of the evolutionary computational techniques.

Like the other evolutionary computation techniques, PSO is a population-based search,
algorithm and is initialized with a population of random solutions, called particles. The

original PSO algorithm is discovered through simplified social model simulation.

ORIGINAL]SO (NIND, MAXGEN, NVAR, CI, C2, WEIGHT, randO, RANDO)

1. start

2. chrom +- initialyopulation(NIND, NV AR *PRECI)

3. gen +- 0

4. objV +- objfun(chrom)

5. while gen < MAXGEN

a. Ibest +-Iocal_ bst(NIND, NV AR) % For maximum

b. gbest +- global_ bst(NIND, NV AR) % For maximum

c. Calculate updated velocity and position

I. (v,J'J =1t(V/d)'J +qanc()((p/d)'J -(g/d),)+c,Ranc()((pgd)'J -(g/d)')'

11. (g'd ),.i = (g'd )',i + (V'd)'.i

d. gen +- gen + I

6. end while

7. end

Fig. 3.3.7: Algorithmic pseudo-code of original PSO
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Table 3.3.6 Parameter specification for PSO in rate adaptation

Functions Explanation
NIND number of individuals

MAXGEN maximum generation number
NVAR number of variables (number of subcarriers)
Cl, C2 Constoot

RoodO, roodO Roodom variables
WEIGHT Inertia weight

. obifunO Evaluates the fitness value by fitness function

local_ bstO
Finds the local best value for a particular

generation

global_ bstO
Finds the global best value for a particular

generation

3.3.2 Topological modification ofPSO in optimization ofresource allocation

3.3.2.1 First modified structure

Here the generation index has been introduced in the equation of position update. In the

~ qriginal PSO position update equation the previous position has just been added with the

~ newly obtained velocity. But the generation information is missing here. As a

~ consequence the timing information as well as the generation information should be

~ introduced here in the velocity update equation. The modified update equations are as

follows:

(3.31)

(3.32)

Here (gen)n~ denotes normalized generation index.
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FIRST_MODIFIED]SO (NIND, MAXGEN, NVAR, CI, C2,WEIGHT, randO, RAND())

1. start

2. chrom <- initial-population(NIND, NYAR*PRECI)

3. gen <- 0

4. objV <- objfun(chrom)

5. while gen <MAXGEN

a. lbest <-local_bst(NIND, NYAR)

b. gbest <- global_ bst(NIND, NYAR)

c. Calculate updated velocity and position

I. (v,J'J ~ I«vid)'J +qand.)«(pid)'J -(gid),)+c2Rand)«(pgd)'J -(g'd)')'

n. (g'd )',1 = (g'd)/,j + gen. (V'd)',1

d. gen <- gen + I

6. end while

7. end

Fig. 3.3.8: Algorithmic pseudo-code of first modified PSO

3.3.2.2 Second modified structure

In conventional PSO, static inertia weight does not give the optimum result whereas the

dynamicity in inertia weight makes the result closer to the optimum one. The dynamic

nature has been introduced here by formulating an equation

Inertia weight = w_max - (gen-I)*w_dec (3.33)

where w max is defined as the maximum possible value for inertia weight, gen stands for

generation number and w_dec is calculated by

w_dec=(w _max-w _min)/w _step (3.34)

Here w_min and w_step stands for minimum and incremental rate of inertia weight

respectively.
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By linearly decreasing the inertia weight from a relatively large value to a small value

through the course of the PSO run gives the best PSO performance compared with fixed

inertia weight settings.

SECONO_MODIFIEO]SO (NINO, MAXGEN, NVAR, CI, C2, randO, RANO())

I. start

2. chrom <- initialyopulation(NIND, NVAR*PRECI)

3. gen <- 0

. 4. objV <- objfun(chrom)

5. while gen <MAXGEN

a. Ibest <-local,-bst(NIND, NVAR)

b. gbest <- global_bst(NIND, NVAR)

c. Calculate adaptive inertia weight

1. Inertia_weight, (l.A.) ~ w_max-(gen- J) *wjec

11. w_dec ~ (w_max-w _min)/w _step

d. Calculate updated velocity and position

1. (V'd)'J=I.A,(v/d)'J +c,rand)((p,J'J -(g,J,)+c2Rand)((pgd)'J ~(g'd)')

11. (gid )i.i = (gid )i,J + gen. (Vid)i.i

e. gen <- gen + I

6. end while

7. end

Fig. 3.3.9: Algorithmic pseudo-code of second modified PSO

3.3.2.3 Third modified structure

The commonly used PSOs are either global version or local version ofPSO. In the global

version of PSO, each particle flies through the search space with a velocity that is

dynamically adjusted according to the particle's personal best performance achieved so

far and the best performance achieved so far by all the particles. In the local version of .
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PSO, each particle's velocity is adjusted according to its personal best and the best

performance achieved so far within its neighbourhood. The neighbourhood of each

particle is generally defined as topologically nearest particles to the particle at each side.

The global version of PSO can also be considered as a local version of PSO with each

particle's neighbourhood to be the whole population. Kennedy and Mendes tested PSOs .

with regular shaped neighborhoods, such as global version, local version, pyramid

structure, star structure, 'small' structure, and von Neumann, and PSOs with randomly

generated neighbourhoods. In this part of modification, the ring topology is used to find

the global best value for any particle while updating its velocity. The particles are

arranged on a ring-like network according to its index values in the initial population as

shown in Fig. 3.3.10. Here n is the total number of particles in the swarm and k the index

of particles, where k = 1, 2, ... , n. For any particle, neighbours are selected one from

either side of it on the ring. For example, the neighbours of particle I are particles of

index 2 andn (Fig. 3.3.10). The best guide for that particle is selected; based on the

objective function, from the three, two neighbors and the particle itself. This distributed

nature adds diversity to the particles while updating its positions and enables to search a

wider region in the solution space rather than converging to a single point, Pg , as it

happens in case of the global model.

Fig. 3.3.10: Ring Topology
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TIllRD_MODIFIED]SO (NIND, MAXGEN, NVAR, Cl, C2, WEIGHT, randO, RANDO)

1. start

2. chrom +- initial-'population(NIND, NYAR *PRECI)

3. gen+- 0

4. objV +- objfun(chrom)

5. while gen <MAXGEN

a. Ibest +-Iocal_ bst(NIND, NYAR)

b. gbest +- global_bst_ring(NIND, NYAR)

c. Calculate updated velocity and position

L (v,J'J = u{V/d)'J+cjrand)«p/d)'J -(g/d),)+c,Rand.)«pgd)'J -(g/d)')'

11. (g'd )',j = (gid ),,) + (Vid)i,)

d, gen +- gen + I

6. end while

7, end

Fig. 3.3.11: Algorithmic pseudo-code ofthird modified PSO

3.4 Necessary Flowcharts of the Proposed Algorithms

The systems have been described along with their algorithmic pseudo code in the

previous section. These proposed systems have been simulated by MATLAB 7,1. The

flowcharts of all the proposed systems have been given in this section whereas the results

are provided in the next chapter.
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3.4.1 Flowcharts of application specific optimizations in resource allocation

Generate initial
population of users'

assignment to subcartiers

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function.

Select individuals

Do crossover

Do mutation

Yes

Fig. 3.4.1: Flowchart ofthe proposed algorithm with original structure ofGA
(Unfair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function

Select individuals

Do crossover

Do mutation

Check the minimum level of the
usage of subcarriers for a user

Yes

Yes

Fig. 3.4.2: Flowchart of the proposed algorithm with original structure of GA (fair
Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function

Introduce
generation gap

Select individuals

Do crossover

Do mutation

Do insertion

Yes

Fig. 3.4.3: Flowchart ofthe proposed algorithm with modified structure of GA
(unfair Scheduling) for margin adaptive approach.
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Generate initial
population of users'

assignment to subcarrier

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness functio

Introduce
generation ga

Yes

Check the minimum level of the
usage of subcarriers for a user

Yes

Fig. 3.4.4: Flowchart ofthe proposed algorithm with modified structure of GA (fair
Scheduling) for margin adaptive approach
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. Generate initial
population of users'

assignment to subcarriers

Obtain channel state infonnation

Generate sub-initial
population of channel

state infonnation

Generate sub-initial
population of number

of allocated bits

Calculate the total transmitted power with the proposed fitness function

No
Assign Inertia constant, cl, c2, randO, RandO

Evaluate global best

Evaluate local best

Update the population by -
Vii = W\',d+ OJ,randOCPuJ -xu1)+c~dO(Pzd -"14)

Xid := Xid + Vid

Yes

Fig. 3.4.5: Flowchart ofthe proposed algorithm with original structure of PSO
(Unfair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state infonuation

Geuerate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function

No

Assign Inertia constant, cl, c2, randO, RandO

Evaluate global best

Evaluate local best

Update the population by -
lid = WVId+ "I.I"Q,:dO(Pid -%ld)+~QndO(PKd-~)

xid = xid +Vfd

Check the minimum level of the
usage of subcaniers for a user

Yes

Fig. 3.4.6: Flowchart ofthe proposed algorithm with original structure ofPSO (fair
Scheduling)
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Calculate the bit rate with the proposed fitness function

Select individuals

Do crossover

Do mutation

Yes

Fig. 3.4.7: Flowchart of the proposed algorithm with original structure of GA i

(Unfair Scheduling) for rate adaptive approach
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Generate initial
population of nsers'

assignment to snbcarriers

Obtain cbannel state information

Generate snb-initial
population of channel
state information

Calculate the bit rate with the proposed fitness function

Select individuals

Do crossover

Do mutation

Check the minimum level of the
usage of snbcarriers for a user

Yes

Yes

Fig. 3.4.8: Flowchart of the proposed algorithm with original structure of GA (fair
Scheduling) for rate adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtaio channel state information

Generate sub-initial
population of channel
state information

Calculate the bit rate with the proposed fitness function

Introduce
generation gap

Select individuals

Do crossover

Do mutation

Do insertion

Yes

Fig. 3.4.9: Flowchart of the proposed algorithm with modified structure of GA
(unfair Scheduling) for rate adaptive approach
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Generate initial
population of users'

assignment to subcarrier

Obtain channel state information

Generate sub-initial
population of channel
state information

Calculate the bit rate with the proposed fitness function

Introduce
generation ga

Yes

Check the minimum level of the
usage of subcarriers for a user

Yes

Fig. 3.4.10: Flowchart ofthe proposed algorithm with modified structure of GA
(fair Scheduling) for rate adaptive approach

77



Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Calculate the bit rate with the proposed fitness function

No
Assign Inertia constant, cl, c2, randO, RandO

Evaluate global best

Evaluate local best

Update the population by -
"Id '" WV1d+ "trandO(Pld -"101)+ c7fiand()(pgd -Xid)

Xid = Xid +Vid

Yes

Fig. 3.4.11: Flowchart oftheproposed algorithm with original structure of PSO
(Unfair Scheduling) for rate adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Calculate the bit rate with the proposed fitness function

No
Assign Inertia constant, cl, c2, randO, RandO

Evaluate global best

Evaluate local best

Update the population by -
\I,d= '"',d + OJ,rtmdO(Pid -~d)+c~ndO(Pgd -.:!:jd)

Xid ;;;;xjd +vjd

Check the minimum level of the
usage of subcarriers for a user

Yes

Fig. 3.4.12: Flowchart ofthe proposed algorithm with original structure of PSO (fair
scheduling)
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3.4.2 Flowcharts of topologically modified PSO in optimization of. resource

allocation

Generate initial
population of users'

assignment to subcarriers

Obtain channel state infonnation

Generate sub-initial
population of channel
state infonnation

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function

No
Assign Inertia constant, cJ, c2, randO, RandO

Evaluate global best

Yes

Introduce
generation, gen

Evaluate local best

Update the population by -
Vld=WV,d + c1randO(P;d -X1d)+ clRandQ(Prd -Xld)

Xtd = X/d +gen.vid

Fig. 3.4.13: Flowchart of the proposed algorithm with first modified structure of
PSO (Unfair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarrier

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number

of allocated bits

Calculate the toW transmitted power with the proposed fitness function

No
Assign Inertia constant, cl, c2, randO, RandO

Evaluate global best

Evaluate local best

Yes

Introduce
generation, gen

Update the population by •
VI';= wvl,; + clrandO(PI'; -x1,;)+ clRand()(Pp -xr</)

X/il =X/il +gen.vid

Check the minimum level of the
usage of subcarriers for a user

Fig. 3.4.14: Flowchart of the proposed algorithm with first modified structure of
PSO (fair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function

Calculate inertia weight, (w) by
w_max-(gen-l)*w _dec
where,
w_ dec~(w _max-w _min)/w _step

No
Assign c1. c2, randO. RandO

Evaluate global best

Evaluate local best

Yes

Update the population by -
V1d'"WVtd + OJ!cmdO(Pld -XuI) + C1RcmdO(pp - ~)

Xid ::;;;xjd +vid

Fig. 3.4.15: Flowchart of the proposed algorithm with second modified structure of
PSO (Unfair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assigiunent to subcarner

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of nwnber

of allocated bits

Calculate the total traosmitted power with the proposed fitness fimction

Evaluate local best

Evaluate global best

Yes

No
Assign, cl, c2, randO, RandO

Calculate inertia weight, (w) by
w_max-(gen-l) *w_dec
where,
w_ dec~(w _max-w _min)/w _step

Update the population by -
Vid == WVid + clrandO(PIlI-xrJ)+ clRand()(pp-x1d)

xiti =X1d +vlti

Check the minimwn level of the
usage of subcarriers for a user

Fig. 3.4.16: Flowchart of the proposed algorithm with second modified structure of
PSO (fair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarriers

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number
of allocated bits

Calculate the total transmitted power with the proposed fitness function

No
Assign Inertia constaot, d, c2, randO, RandO

Use ring topology to evaluate global best

Evaluate local best

Update the population by -
"Id'"WV"t+ "IrandO(p"t -x,d)+c:RandO(Prd-:r,d)

Xid == Xid +vjd

Yes

Fig. 3.4.17: Flowchart ofthe proposed algorithm with third modified structure of
PSO (Unfair Scheduling) for margin adaptive approach
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Generate initial
population of users'

assignment to subcarrier

Obtain channel state information

Generate sub-initial
population of channel
state information

Generate sub-initial
population of number

of allocated bits

Calculate the total transmitted power with the proposed fitness function

No
Assign Inertia constant, c1, c2, randO, RandO

Use ring topology to evaluate global best

Evaluate local best

Yes

Update the population by -
Vii =WV,i +c1randO(Pii -Xii)+ cJRandQ(prJ -Xii)

Xid = Xid + V1d

Check the minimum level of the
usage of subcarriers for a user

Fig. 3.4.18: Flowchart of the proposed algorithm with third modified structure of
PSO (fair Scheduling) for margin adaptive approach
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Chapter 4

RESULTS AND DISCUSSION

The performance of diversified resource allocation schemes in OFDMA systems have

been analyzed in this chapter. OFDMA resources have been allocated with the help of

cjifferent existing and modified evolutionary approaches. Genetic Algorithm (GA) and

Particle Swarm Optimization (PSO), the two evolutionary algorithms have been applied

in this thesis to improve the overall performance of all the resource allocation methods.

The use of PSO significantly perks up the system performance over GA by many factors.

Further improvement has become possible by modifying both the algorithms. This

encroachment has become more significant when the results have been compared with

the existing ones.

4.1 Used Specification for Total System

4.1.1 Specification for multiuser OFDM system

In this thesis, all the simulations have been performed with MATLAB 7.1. A simulator

lias been created for this purpose which is used to allot the resources of OFDM systems

though different optimizers. Except stated otherwise, all the simulations follow the

specification of table 4.1.1.

Table 4.1.1 Parameters of multiuser OFDM simulator

Parameter Value
Number of subcarriers 64(if otherwise not stated)
Number of users 2,4,6,8(if otherwise not stated)

Channel" Ravleigh
no modulation (0 bits), QPSK (2

Modulation scheme bits), 16QAM (4 bits) and 64 QAM
"

. (6 bits)'
Channel State Information Known

4.1.2 Parameter setting for genetic algorithm & particle swarm optimization

In this section, genetic algorithm as well as the particle swarm optimization have been

studied extensively to affix their operational parameters. If not otherwise stated, all the

optimizers use the specifications of table 4.1.2.
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Table 4.1.2 Parameters of GA, modified GA and PSO

GA ModifiedGA PSO

Initial
Initial Initial Swann

Population size 80 Population 80 Size
25

size
Generations a to 100 Generations a to 100 Generations Oto 100
Crossover 0.6 Crossover 0.6 C, 1.5
Mutation 0,03 Mutation 0,03 C, 1.5

Generation 0.8
Initial Inertia 0.8

Gan weil!ht

The most important aspect in parameter setting is the settlement of the size of the initial

population in genetic algorithm and particle swarm optimization. Fig. 4.1.1 & 4.1.2

represent the convergence curves (evaluated by GA & PSO) with different sizes of initial

population and swarms. These curves are the simulated results in obtaining minimum

transmit power.

____ Initial Population = 10

~ Initial Population = 20
____ InitiaI Population = 60
___ Initial Population = 60 . I-

--e-- Initial Population = 100

45

40-E
CD 35
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E
:J
E 10'c
:iE

5

0
0 10 20 30 40 50 60 70

Number of Generations
80 90 100

Fig. 4.1.1: Convergence curves ofGA for different sizes of initial populatio~.
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Fig. 4.1.2: Convergence curves ofPSO for different swarm sizes.

Initial population size greater than 60 gives similar impact whereas its lower value gives

few dBm higher than the original result (Fig. 4.1.1). Similar aspect is validated for

modified version of GA also. But unlike GA, the low value of initial swarm size does not

degrade the overall performance too much in PSO. So it is quite sufficient to take the

value of 25 for initial size of swarm. This lowers the need of memory size as well as

computational complexity for PSO.

4.2 Application Specific Task in Optimization of Resource Allocation

4.2.1 Margin adaptive approach

4.2.1.1 Margin adaptive approach by GA and modified GA

4.2.1.1.1 Minimum transmit power obtained by GA and modified GA using margin
adaptive approach (unconstrained approach)

With the value of 80 for the initial population of the GA, the original GA along with the

modified one has been used for simulation to allocate the resources for multiuser OFDM

systems. The minimum power has been calculated with these algorithms for 10 times

(Table 4.2.1), Both the algorithms have been simulated for 0 to 200 generations. It is
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clearly evident that modified version of GA converges to lower value compared with

original GA (Fig. 4.2.1).

Table 4.2.1 Minimum transmit power evaluation by GA and modified GA *
(Unconstrained approach)

Margin Adaptive approach
(Unconstrained annroach)

Minimum Minimum

Run
Transmit Power Transmit Power

(in dBm) (in dBm)
(By GA) (Bv modified GA)

I 4.862 4.748
2 5.048 5.351
3 4.549 5.459
4 5.9 4.751
5 5.347 5.272
6 4.625 4.601
7 5.738 5.001
8 4.94 4.980
9 6.207 5.321
10 6.628 4.931

Mean 5.3844 5.0415

• Simulations have been run for an OFDMA system having. 64 subcarriers & 4 users
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Fig. 4.2.1: Comparison between GA and modified GA in unconstrained margin
adaptive approach

This statement is reflected through the mean value of the 10 outcomes which clearly

signifies the fact that by introducing a concept of the generation gap between the parent
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and child population, the possibility of obtaining more optimum result is enhanced. The

convergence curve for this method is given in Fig. 4.2.2.
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Fig. 4.2.2: Convergence curves ofGA and modified GA for evaluating total transmit
power (for a particular run time of each algorithm) [Unconstrained approach)

4.2.1.1.2 Minimum transmit power obtained by GA and modified GA using margin
adaptive approach (fair scheduled approach)

With the previous affixed size of the initial population, two algorithms have been run.

again to allocate the resources for multiuser OFDM systems under fair scheduled

approach. The fair scheduling has been introduced into the simulation with the fact that a

minimum number of subcarriers have to be used for a particular user. The minimum

power has been calculated with these algorithms for 10 times (Table 4.2.2). Both the

algorithms have been simulated for 0 to 200 generations. Yet again it is clearly evident

that modified version of GA converges to lower value compared with original GA (Fig.

4.2.3). The convergence curves are given in Fig. 4.2.4.
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Table 4.2.2 Minimum transmit power evaluation by GA and modified GA *
(Fair scheduled approach)

Margin Adaptive approach
'Fair scheduled approach)

Minimum Minimum

Run Transmit Power Transmit Power
(indBm) (indBm)
(Bv GA) (Bv modified GA)

1 25.2113 23.1830
2 23.7787 21.4330
3 21.0987 22.6718
4 27.9440 25.7185
5 25.6760 22.7958
6 23.1860 23.3612
7 26.5640 23.5845
8 26.1073 23.3500
9 25.0021 22.7197
10 27.9812 25.4546

Mean 25.2549 23.4272

* Simulations have been run for an OFDMA system having 64 subcarriers & 4 users
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Fig. 4.2.3: Comparison between GA and modified GA in fair scheduled margin
adaptive approach
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4.2.1.1.3 Comparison between the unconstrained approach and fair scheduled
approach for margin adaptive resource allocation scheme

In this section, a comparative feature has been depicted between unconstrained and fair

scheduled margin adaptation.
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Fig. 4.2.5: Comparative results for unconstrained and fair scheduled GA in margin
adaptation.
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The optimum value for fair scheduled approach is several dBm higher than the

unconstrained approach. This fact clearly reveals that the fair share scheduling does not

give the optimum result in arrangement of users to the subcarriers. This statement are

valid both for original and modified versions ofGA. (Fig. 4.2.5 and Fig. 4.2.6)
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Figure 4.2.6 Comparative results for unconstrained and fair scheduled modified GA in
margin adaptation.

4.2.1.2 Margin adaptive approach by PSO
4.2.1.2.1 Minimum transmit power obtained by PSO using margin adaptive
approach (unconstrained approach)

Table 4.2.3 Minimum transmit power evaluation by PSO*(Unconstrained approach)

Run Minimum Transmit Power
(in dBm) (Bv psm

I 4.829
2 4.015
3 5.767
4 4.698
5 4.864
6 4.654
7 4.662
8 5.149
9 5.757
10 4.328

Mean 4.8722

*Simulations have been run for an OFDMA system having 64 subcarriers & 4 users
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With the affixed value of initial size, the PSO has been applied for simulation to allocate

the resources for multiuser OFDM systems. The minimum power has been calculated

with these algorithms for 10 times (Table 4.2.3). Fig. 4.2.7 represents the corresponding

convergence curve for a particular run time.
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Fig. 4.2.7: Convergence curve ofPSO for evaluating total transmit power (for a
particular run time of each algorithm) [Unconstrained approach)

4.2.1.2.2 Minimum transmit power obtained by PSO using margin adaptive
approach (fair scheduled approach)

'Table 4.2.4 Minimum transmit power evaluation by PSO* (Fair scheduled approach)

Run Time
Minimum Transmit
Power (in dBm)

I 19.2176
2 20.1876
3 18.8423
4 20.1525
5 20.0302
6 19.7645
7 19.3405
8 20.1003
9 . 19.5621
10 19.6709
Mean 19.6869

• Simulations have been run for an OFDMA system having 64 subcarriers & 4 users
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[J Unconstrained PSO

• Fair Scheduled PSO

The fairness in choosing the subcarriers has been introduced here also in the PSG

algorithm. .A minimum number of subcarriers has been affixed in fair sharing. The results

and convergence curves are shown in table 4.2.4 and Fig. 4.2.8.
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Fig. 4.2.8: Convergence curve of PSO for evaluating total transmit power (for a
particular run time of each algorithm) [Fair scheduled approach)

4.2.1.2.3 Comparison between the unconstrained approach and fair scheduled
approach for mar in ada tive resource allocation scheme b PSO
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Fig. 4.2.9: Comparative results for unconstrained and fair scheduled PSO in margin
adaptation
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The fair shared algorithm clearly reveals that introducing fairness act as an obstacle in

reaching the optimum level of the transmitted power. In the comparison Fig. 4.2.9, it is

evident that the optimum level of power in fair scheduled approach is several dBm higher

than that of unconstrained approach.

4.2.2 Rate adaptive approach
4.2.2.1 Rate adaptive approach by GA and modified GA

4.2.2.1.1 Maximum throughput obtained by GA and modified GA using rate
adaptive approach (unconstrained approach)

In rate adaptive method, the throughput for an OFDMA system has been calculated for a

constant transmitted power and for a specific bit error rate. The simulation parameters are

the same as the previous section, i.e. the number of initial population, cross-over /

mutation probability and so on. Additionally the total available bandwidth for rate

adaptation is set to I MHz, the total transmit power at basestation is IW and the AWGN

power density is -80 dBW/Hz. Table 4.2.5 (alongwith Fig. 4.2.10) bestows bit rate for 10

time different times whereas Fig. 4.2.11 represents the corresponding convergence curve

for a particular run time.

Table 4.2.5 Maximum throughput evaluation by GA and modified GA*
(Unconstrained approach)
Rate Adaptive approach
(Unconstrained approach)

Maximum Maximum

Run Sum Capacity Sum Capacity
(in bits/slHz) (in bits/slHz)
lBv GA) (Bv Modified GA)

1 2.98 3.33
2 3.12 3.75
3 3.14 4.02
4 2.95 3.62
5 2.92 2.98
6 3.51 3.56
7 2.78 3.87
8 3.76 3.51
9 3.19 2.98
10 2.83 . 3.78

Mean 3.118 (0:: 3) 3.54 ('" 4)
* Simulationshavebeen run for an OFDMAsystemhaving 64 subcarriers & 4 users
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Fig. 4.2.11: Convergence curves ofGA and modified GA for evaluating total
throughput (for a particular run time of each algorithm) [Unconstrained approach)

4.2.2.1.2 Maximum throughput obtained by GA and modified GA using rate
adaptive approach (fair scheduled approach)

Like all other algorithms, the fair scheduling has been introduced into the simulation with

the fact that a minimum number of subcarriers have to be used for a particular user. The

maximum bit rate has been calculated with these algorithms for 10 times (Table 4.2.6) for

each ofthe algorithms. The convergence curves are shown in Fig. 4.2.13.
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Table 4.2.6 Maximum throughput evaluation by GA and modified GA *
(Fair scheduled approach)

Rate Adaptive approach
(Fair scheduled a JDroach)

Maximum
Maximum Sum

Sum Capacity

Run Capacity (in
(in bitslsIHz)

bits/sIHz) (By
(By GA)' Modified

GA)
1 2.01 2.67
2 . 1.89 2.12
3 1.9 1.84
4 2.2 1.97
5 2.18 2.56
6 1.78 2.45
7 2.24 2.39
8 1.56 . 2.58
9 1.78 2.79
10 2.31 2.71

Mean 1.985 (~2\ 2.408 {~2\

*Simulatio.ns have been run for an OFDMA system having 64 subcarriers & 4 users
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Fig. 4.2.12: Comparison between GA and modified GA in fair scheduled rate
adaptive approach
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41.2.2.1.3 Comparison between the unconstrained approach and fair scheduled
~lpproach for rate adaptive resource allocation scheme

The comparative results reveal the fact that unlike unconstrained approach, with the

introduction of the fairness in scheduling approach, the bit rate does not reach to the

maximum value,
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Fig. 4.2.14: Comparative results for unconstrained and fair scheduled GA in rate
adaptation.

99

f



The fact is validated for both the original and modified versions of GA in Fig. 4.2.14 and

4.2.15. But another fact is that this deviation between the fair and unfair scheduling is not

so prominent like that of margin adaptive approach.
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Fig. 4.2.15: Comparative results for unconstrained and fair scheduled Modified GA
, in rate adaptation.

4.2.2.2 Rate adaptive approach by PSO

4.2.2.2.1 Maximum throughput obtained by PSO using rate adaptive approach
(unconstrained approach)

In this section, PSO has been applied in rate adaptive resource allocation in multiuser

OFDM systems for unconstrained approach in selecting subcarriers. Table 4.2,7

calculates the maximum capacity of a particular OFDMA symbol for several times where

the mean value is approximately 5 bits/s/Hz. Fig. 4,2.16 represents the convergence curve

whereas Fig. 4.2.17 and 4.2.18 represent some comparative nature of the results with the

,:,ariation of subcarriers and users. Fig. 4,2.17 shows that the maximum capacity increases

with the increment of subcarriers for system of 4 users. Fig. 4.2.18 signifies the minimum

user's capacity as a function of number of users for 3 systems having 3 sets. of

subcarriers. The figure reveals the fact that with the increment of users, minimum user's

capacity gain decreases, Due to the effect of multiuser diversity, the more users in the

system, the lower the probability that a given subchannel is in a deep fade for all users.
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Table 4.2.7 Maximum throughput evaluation by PSO (Unconstrained approach)

Maximum

Run Sum Capacity
(in bitslsIHz)
'(Bv PSO)

1 4,56
2 422
3 4,21
4 08
5 4-45
6 4,72
7 4-44
8 4-49
9 4,71
10 4-89

Mean 4.547 ('" 5)

• Simulations have been run for an OFDMA system having 64 subcarriers & 4 users
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Fig. 4.2.16: Convergence curve ofPSO for evaluating maximum throughput (for a
particular run time of each algorithm) [Unconstrained approach)
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4.2.2.2.2 Maximum throughput obtained by PSO using rate adaptive approach (fair
scheduled approach)

This section is more likely the reappearance of the previous section with slight

modification in using constrained approach rather than the unconstrained one. The

fairness has been deployed in the system considering a minimum threshold level in using

subcarriers. Table 4.2.8 gives' the maximum capacity for different run times. In

comparison with table 4.2.7, the fairness approach gives less optimum value in choosing

maximum capacity. Fig. 4.2.19 shows the convergence curve whereas the Fig. 4.2.20 and

4.2.21 correspond to the maximum capacity and minimum user's capacity as a function

of number of subcarriers and number of users respectively. The curves signify that the

maximum capacity in fairness approach is less than the unconstrained one whereas the

minimum user's capacity is also affected with the introduction of fairness in scheduling.

The second case is more prominent in the lower value of total users. For higher number

of users this difference decreases significantly.

Table 4.2.8 Maximum throughput evaluation by PSO (Fair scheduled approach)

Maximum

Run Sum Capacity
(in bits/slHz)
(Bv psm

I 4.01
2 3.56
3 3.78
4 4.12
5 3.96
6 3.91
7 4.23
8 . 4.29
9 4.08
10 3.96

Mean 3.99 (;::;4)

* Simulationshave been run for an OFDMAsystemhaving 64 subcarriers & 4 users
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Fig. 4.2.19: Convergence curve ofPSO for evaluating maximum throughput (for a
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4.2.2.2.3 Comparison between the unconstrained approach and fair scheduled
approach for rate adaptive resource allocation scheme by PSO

In comparison between the unconstrained and constrained approaches (in Fig. 4.2.22), the

optimum level for rate adaptation is reached more prominently in unconstrained case. In

fair scheduled case, as appalled conditioned subcarriers are allowed to carry bits for a

specific user, definitely the maximum throughput declines from the optimum result.
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Fig. 4.2.22: Comparative results for unconstrained and fair scheduled PSO in rate
adaptation
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4.2.3 Performance comparison of GA, modified GA and PSO for all the proposed
algorithms

4.2.3.1 Comparison in tenns of the optimum value

In all the previous sections, the proposed algorithms have been simulated for few times

for each of the cases. The mean value of each of the arrangements have been taken in this

section to provide a clear idea amount the relative performances ofthe algorithms.

Table 4.2.9 Margin adaptive resource allocation (Unconstrained case)

Pro osed Scheme B
GA

ModifiedGA
PSO

i 55
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:S. 5.3•~ 5.2
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c
~ 4.9

~ 4.8
] 4.7
c
i 4.6

GA Modified GA

Used Optimization technique

Fig. 4.2.23: Comparison among different margin adaptive unconstrained allocation

Table 4.2.10 Margin adaptive resource allocation (Fair scheduled case)

ProDosed Scheme By MA lin dBm)
GA 25.2549

ModifiedGA 23.4272
PSO 19.6869

GA ModifiedGA

Used Optimization Technique

PSO

Fig. 4.2.24: Comparison among different margin adaptive fair scheduled allocation'
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Table 4.2.11 Rate adaptive resource allocation (Unconstrained case)

Pro osed Scheme B
GA

ModifiedGA
PSO
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Fig. 4.2.25: Comparison among different rate adaptive unconstrained allocation

Table 4.2.12 Rate adaptive resource allocation (Fair scheduled case)

Pro osed Scheme B
GA

ModifiedGA
PSO
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Fig. 4.2.26: Comparison among different rate adaptive fair scheduled allocation

From all the tables and figures in this subsection it is clearly evident that PSO performs

the best among all the optimization algorithms. This is validated both for margin and rate

adaptation cases. Even the difference between unconstrained and constrained system
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4o 20 40

cannot alter this proclamation. Modified version of GA improves the result over its

original version, but PSO perks up the optimum result quite significantly.

4.2.3.2 Comparison in tenns of convergence

With these values of initial sizes of the algorithms, the modified GA and PSO have been

used for simulation to allocate the resources for multiuser OFDM systems once again to

sketch an impact of convergence. In Fig. 4.2.27, both the algorithms have been simulated

for a to 200 generations. It is clearly evident that PSO converges to lower value

compared with GA although the initial rate of convergence is higher for GA. The relative

higher rate in initial convergence may be attributed to higher number of individuals in the

) population and hence higher number of function evaluated in one generation of GA,

which is several times compared with that ofPSO.
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Fig. 4.2.27: Comparison of the convergence of GA and PSO

4.2.3.3 Comparison in tenns of computational time

Although there are huge differences between GA and PSO in terms of internal operations

to update the solutions, yet both of them are population-based and evaluate objective

function and they try to optimize it. As such the number of function evaluated to achieve

the target (objective function) value and corresponding central processing unit (CPU)
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execution time are considered as the performance metrics to carry out a comparative

assessment between GA and PSO (in Table-4.2.13 and in Fig 4.2.28). Here in all the

cases GA needs more time to converge than PSO although the number of generations for

GA is sometimes lower than that of PSO. It is mainly due to the fact that GA needs more

functions to evaluate to reach an optimum value whereas PSO needs to execute only two

simple functions per generation for each swarm.

Table 4.2.13 Comparative performance measures of modified GA and PSO for a
target value of 3.01 dBm *

PSO ModifiedGA
CPU Number of Number of CPU Number of Number of

Run execution functions execution functions
time (s) generations evaluated time (s) generations evaluated

1 2.5428 66 1650 3.978 30 4320
2 2.2932 60 1500 12.8701 100 14400
3 1.2012 30 750 4.1184 32 4608
4 3.666 100 2500 8.2681 64 9216
,5 2.7144 70 1750 4.0872 31 4464
6 3.6192 100 2500 12.9481 100 14400
7 1.1388 24 600 4.2744 32 4608
8 3.6972 100 2500 12.4021 95 13680
9 0.3276 6 150 1.1232 9 1296
10 1.6536 43 1075 4.9296 31 4464

*All the simulations have been carried out on a PC (processor: Intel(R), Core(TM) 2 CPU,
1.73 GHz, RAM: 1022MB).
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Fig. 4.2.28: CPU execution time for PSO and GA for a target value of3.01dBm
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4.3 Performance comparison of the proposed modified versions of PSO

4.3.1 First modification of PSO

Here the generation index has been introduced in the equation of position update. In the

original PSO position update equation the previous position has just been added with the

newly obtained velocity. But the generation information is missing here. As a

consequence the timing information as well as the generation information should be

introduced here in the velocity update equation. The modification clearly reveals that

much more faster ~onvergence is obtained here in the modified version. Two sets of

convergence curves have been given in Fig. 4.3.1 and Fig. 4.3.2 for margin and rate

adaptation approach respectively. For both the cases it is apparent that the modified

version of PSO provides faster convergence than that of the original one.

10080

_ Modified PSO
-e-- Norma IPSO

60

50

E
al
'C 40
.E
~

~ 30
l1.
:t::
E
<II 20
Ce
I-

10

00 20 40 60
Number of Generations

Fig. 4.3.1: Convergence curves of original and modified PSO (for Margin
Adaptation)
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Fig. 4.3.2: Convergence curves of original and modified PSO (for Rate Adaptation)

4.3.2 Second modification of PSO

A large inertia weight (w) facilitates a global search while a small inertia weight

facilitates a local search. By linearly decreasing the inertia weight from a relatively large

value to a small value through the course of the PSG run gives the best PSG performance.

compared with fixed inertia weight settings.

Table 4.3.1 Comparison of power calculation using static and dynamic inertia
weight (For Margin Adaptive approach)

Marltin Adaptive approach
Power Calculation Power Calculation
Using Static Inertia Using Dynamic Inertia
Weil!ht (in dBm) Weil!ht (in dBm)

6.2567 3.4772
7.8892 4.4217
5.7088 3.3295
6.8486 3.7947
5.9896 5.4535
7.6657 4.2393
7.8121 2.7139
5.6677 3.7957
3.9179 2.9788
9.8576 2.9065

Mean = 6.7614 Mean - 3.7111
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Fig. 4.3.3: Comparison between original PSO and modified PSO in margin
adaptation (The PSO is modified by introducing dynamic inertia weight)

Table 4.3.2 Comparison of transmitted capacity calculation using static and
dynamic inertia. weight (For Rate Adaptive approach)

Rate Adal tive approach
Sum Capacity Sum Capacity

Using Static Inertia Using Dynamic Inertia
Weight Weight

(in bits/slHz) (in bits/slHz)
1.8201 3.9087
1.7867 3.6712
2.6791 4.2341
1.8921 4.6751
1.6589 4.5431
2.1123 3.9976
1.8982 4.7896
2.0911 4.2389
2.1219 4.6754
1.7962 4.4786

Mean = 1.9857 (::::2) Mean = 4.3212 (::::4)
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Fig. 4.3.4: Comparison between original PSO and modified PSO in rate adaptation
(The PSO is modified by introducing dynamic inertia weight)

4.3.3 Third modification ofPSO

the ring topology has been used here in search of global best value in each generation of

the PSO. This modified version of PSO helps to find the global minima either maxima

more efficiently. The principle reason behind this is the introduction of a global diversity

of the swarms in each step of generation. As the searching process becomes more

diversified; the probability of achieving the optimum result turns out to be more

prominent. Table 4.3.3 as well as Fig. 4.3.5 reveals these facts.

Table 4.3.3 Power calculation by using ring topology and comparison with that of
the original one (For Margin Adaptive approach)

Margin AdaDtive annroach
Power Calculation Power Calculation

Without Ring Topology Having Ring Topology
lin dBm). -lin dBm).
3.7727 3.5695
3.2062 2.8543
3.6131 5.9559
3.0651 4.7227
3.4911 5.581
3.3293 3.4816
3.9871 5.2988
3.4391 7.6293
3.3666 2.7139
3.5617 2.9788

SD=O.2691 SD = 1.6289
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Fig. 4.3.5: Comparison between original PSO and modified PSO in margin
adaptation (The PSO is modified by introducing ring topology in search of global

best value)

Table 4.3.4 Power calculation by using ring topology and comparison with that of
the original one (For Rate Adaptive approach)

Rate Adantlve approach
Sum Capacity Sum CapacityWithout Using Ring Using Ring TopologyTopology
(In bits/slHz' <inbits/slHz)

4.4087 3.7087
4.6712 3.6712
4.3341 4.1341
4.6751 4.9751
4.5431 4.5431
4.4973 3.9976
4.7892 5.1296
4.3341 4.2389
4.6754 5.3754
4.4786 4.9786

SD = 0.1576 SD = 0.6129
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Fig. 4.3.6: Comparison between original PSO and modified PSO in rate adaptation
(The PSO is modified by introducing ring topology in search of global best value)

4.4 Performance comparison of all the algorithms with the existing ones

The performance measure of subcarrier and bit allocation algorithms for real-time

services in multiuser OFDM systems is the total transmit power required by all users

on all subcarriers. The total transmit power, evaluated by different original and

proposed algorithms have been compared in table 4.4.2. Fig. 4.4.1 and 4.4.2 clearly

show the relative impact. All the algorithms are depicted in table 4.4.1.

different al orithms with their abbreviations
Time Division Multi Ie Access

Fre uenc Division Multi Ie Access
Genetic Algorithm

Modified Genetic Algorithm
Particle Swarm 0 tirnization

First Modified Particle Swarm 0 timization
Second Modified Particle Swarm 0 timization
Third Modified Particle Swarm 0 timization

First and Second Modified Particle Swarm 0 timization
Second and Third Modified Particle Swarm 0 tirnization
First and Third Modified Particle Swarm 0 timization

First, Second and Third Modified Particle Swarm
o timization
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Table 4.4.2 Comparison among all the algorithms (proposed and existing ones) in.
calculating the total transmit power in margin adaptive approach*

Used Total Total Total Total
Method I Algorithm transmit transmit transmit transmit

power (in power (in power (in power (in
dBm) for 2 dBm) for 4 dBm) for 6 dBm) for 8
users users users users

TDMA 6 12 19 26
FDMA 8.5 15.5 22.5 30

Wonl!:'sAll!:orithm -2 0.5 7 13
Janl!:'s All!:orithm 6.5 16 28 45

GA 2.5 5 11 15
M.GA 2.5 4.5 9 13.5
PSO 3.5 5.5 8 10

FM-PSO 3.5 5 7.5 8.5
SM-PSO 3.5 4.5 7 8
TM-PSO 3.5 6 7.5 9

(FM+SM)-PSO 3.5 4.5 7 8
(SM+TM)-PSO 3.5 5 8 9
(FM+TM)-PSO 3.5 5.5 7.5 9

(FM+SM+TM)"PSO 3.5 4 7 8
* Simulations have been carried out for an OFDMA system having 64 subcarriers and

Rayleigh fading channel

50
IJTDMA-E IilIFDMA

III 40••• IilIWong's Algorithm
g o Jang's Algorithm..
~

30 .GA

lL i' OM-GA
;to
E 20 ! IilIPSO
••I: OFM-PSO
l!
I- 10 .SM-PSO
E Ii:lTM-PSO".Ii o (FM+SM)-PSO.5 0
~

2 (;J (SM+TM)-PSO4 6 8
-10 • (FM+TM)-PSO

Nurrber of Users
• (FM+SM+TM)-PSO

Fig. 4.4.1: Comparison among all the algorithms (proposed and existing ones) in
calculating the total transmit power in margin adaptive approach

116



50
-t-PSO

45 -----e- FM-PSO

----t--- 8M-PSO

40 ----1M.PSG
-------- {F+S)M-PSO

Ess --e- (8+ l)M-PSO
III ...........e.- (F+l)M-PSO
"tl ----"T- (F+S+ l)M-PSO
:S..31

!25

---- Jangs Algorithm
-e- OFOM-FDMA

•••
--+- OFDM-lDMA

~20
-GA

e ----t--- Wong's Algorithm

~ -e-M-GA
~ 15•...
~ 10•...

5

0
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Fig. 4.4.2: Comparison of total transmit power calculated by all the existing and
proposed algorithms

Fig. 4.4.2 gives a comprehensive view of performance all the algorithms. As this figure is

apparently ambiguous to clarify the characteristics of the algorithms, this figure is sub

divided into three divisions (Fig 4.4.3, Fig 4.4.4 and Fig 4.4.5) to have a clear aspect.

45

40

'E'35
III
""30l:
;.

~ 25

0.20
~
Ul 15
l:
f!
I- 10

~ 5
I-

--+--- OFDM. TDMA
---e- OFDM-FDMA
----+-- Wong's Algorithm
-- Jang's Algorithm
~ Original GA
~ Original PSO

o

873
-5
2 456

Number of users

Fig. 4.4.3: Comparison oftotal transmit power calculated by different existing static and
dynamic approaches along with the evolutionary approaches
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Fig. 4.4.4: Comparison of total transmit power calculated by PSO and different
modified PSO
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Fig. 4.4.5: Comparison of total transmit power calculated by GA and modified GA

This comparison clearly reveals several facts -

~ All the proposed dynamic algorithms outperform the static ones (OFDM-FDMA,

OFDM-TDMA) and Jang's dynamic algorithm Although Wong's performance
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shows the optimum performance among all the static and dynamic algorithms for

minimum number of users, yet its performance declines with the increment of the

number of users. For large number of users, all the proposed and existing

algorithms perform optimum.

~ Among the dynamic allocation schemes, PSO along with all of its modified

versions outperform the original and modified GA .

~ The modified GA and modified PSO perform better than their original oiles.

~ The second modified version performs the best among all the modified versions

ofPSO.

~ The third modified version performs the worst among all the modified versions of

PSO and original PSO.

~ Among the hybrid modified version, the hybrid of fust and second modified

versions ofPSO outperform all proposed and existing static algorithms.'
:I
I

Besides of the calculation of total transmit power for different number of users" the total

throughput can be evaluated for.different number of users as well. As a matter of fact, the

total throughput has been evaluated for different number of users by all the existing and

proposed algorithms. (Table 4.4.3 and Fig. 4.4.6) ,]

Table 4.4.3 Comparison among all the algorithms (proposed and existing ones) in
calculating the total throughput in rate adaptive approach* I

.,

Total Total Total T,~tal
Used throughput (in throughput (in throughput (in throughput (in

Method / Algorithm bits/slHz) for 2 bits/slHz) for 4 bits/slHz) for 6 bits/slHz) for 8
users users users u~;ers

GA 2 3 4 5
M-GA 2 4 5 7
PSO 3 5 6 8

FM-PSO 3 5 7 9
SM-PSO 3 5 7 ;9
TM-PSO 2 4 6 i8

(FM+SM)-PSO 3 6 7 :9
(SM+TM)-PSO 3 6 7 9
(FM+TM)-PSO 3 5 6 18

'FM+SM+TM)-PSO 3 6 7 9
• Simulations have been carried out for an OFDMA system having 64 subcarriers and

Rayleigh fading channel
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Fig. 4.4.6: Comparison among all the algorithms (proposed and existing ones) in
calculating the total throughput in rate adaptive approach

This comparison also reveals some valuable facts -

:» PSO and modified version of GA perform relatively better than the original

version of GA.

:» All the modified versions ofPSO perform better than the original version ofPSO.

:» Among all the modifications, the second modified version as well as the final

hybrid modified structure perform the best of all the algorithms.

From all the comparisons (both margin and rate adaptation), it is clearly evident that the

PSO and its modified versions outperform all the existing static as well as dynamic

algorithms.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

A central problem in OFDMA is rate and power allocation of users to subcarriers. Fixed

resource allocation assigns a predetermined set of subc arriers to each user. Since the

scheme is fixed regardless of the current channel condition, it is far from being optimal.

Subcarriers which appear in deep fade to one user may be in good condition for others.

That's why dynamic resource allocation assigns subcarriers adaptively to users according

to the current channel conditions. In this literature, dynamic resource allocation has been

analyzed under different scenario considering various practical and theoretical impacts.

To allocate the available resources, the transmitter as well as the base station needs

efficient optimization techniques. As OFDM deals with huge data rate, therefore the

optimization has to deal with a large solution space. This research work has fully

ooncentrated on evolutionary approaches for optimization because these stochastic

processes can handle huge solution space without performance degradation. Moreover

some of their results are comparable with other algorithms and this result has further been

improved by slight modification over the original ones.

Actually this dissertation has focused on several points in OFDMA resource allocation.

The first one has dealt with the application specific task of the evolutionary techniques.

Here both Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been

used to optimize the resources in margin and rate adaptation. GA has slightly been

modified by introducing a concept of generation gap and reinsertion process. In margin

adaptation, the total transmit power has to be minimized for a constant bit error rate and

user data rate. On the other hand, rate adaptation deals with the maximization of the total

throughput while maintaining a constant transmit power. Both the adaptation have

clarified for unconstrained and fair scheduled cases. The unconstrained algorithm does

not provide any restriction in choosing the number of subcarriers for a particular user

whereas the fair scheduled approach confined a minimum number of subcarriers to a

particular user. During the second phase, this research work concentrated on topological

modifications of PSO. A type of modification was made in PSO by introducing
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generation information in position update equation. The second modification was done by

using a dynamic inertia weight in velocity update equation. The last modification was

performed by introducing a ring topology in search of globally best value for each

generation.
From the result of the first phase of this dissertation it is evident that PSO provides a

significant improvement over conventional and even the modified version of GA. In

margin adaptation PSO gives the minimum result among three optimizers whereas in rate

adaptation also, PSO provides the maximum value than GA and modified GA finally. For

each iteration, PSO needs to update their position using two very simple equations

whereas GA needs some procedures (like crossover, mutation, reinsertion) to update its

value. As a whole, the performance obtained by PSO shows relatively better result than

the other two algorithms in terms of simplicity, coding capability, computational

resources, execution time. To compare the convergence between GA and PSO, it is

apparent that GA shows initial higher rate of convergence whereas PSO provides better

result in final converging capability. As such PSO can be defined as one of the effective

means to optimize the allocated resources.

Furthermore the allocation schemes have been classified into unconstrained and fair

scheduled approaches. The unconstrained algorithms provide more optimum result in

either case whereas the fair scheduled subcarrier distribution prevails a fairness in

affixing resources but loses the optimality in final result. In all the cases PSO performs

the best among all the algorithms.

The second phase of the thesis mainly deals with the topological modification of PSO..

All the modifications provide better result than original version of PSO. The key

performance identifier for any system is the total transmit power required by all users. In

view of this all the proposed algorithms have been compared with other existing

algorithms. The comparison reveals the fact that dynamic resource allocations outperform

the static ones. Among all the dynamic algorithms, Wong's performance provides the

best result for lower number of users. But its performance declines with the increment of

the number of users. All the evolutionary algorithms give comparable results with other

algorithms. Among them the modified versions of PSO provide the best results in terms

of optimality. The hybrid modified structures of PSO bestow even better result than
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Wong's algorithm for higher number of users. As a matter of fact, the modified versions

of PSO can be effectively applied in optimizing the allocated resources for multiuser

OFDM systems.

5.2 Future Work

5.2.1 Extension of the cnrrent research

To the best of knowledge, PSO has not been deployed in multiuser OFDM resource

allocation systems so far. This dissertation implemented PSO in different resource

allocation schemes quite effectively and efficiently. The modification of PSO has further

fructified its application oriented purpose. There are definitely future ideas which can be

regarded as an extension ofthis research work.

a) The basic operations of GA like selection, crossover, mutation can be applied in

PSO to update the position of the particles. This can enhance the system

performance by combining the effect of initial higher rate convergence and final

converging capability.

b) This research work has totally been concentrated on periodic ranging process, the

same work can be done in initial ranging process also.

c) Multiple antenna provides the advantage of spatial diversity which ultimately

improves the system performance as well. As such this work can be extended for

Multiple Input Multiple Output (MIMO) OFDMA systems where resources can

be optimized using these proposed algorithms. The use of channel coding can

further increase the system performance. Convolutional code can be applied to the

original system and the overall performance can be evaluated remaining the same

structure.

5.2.2 Application of evolntionary approaches in other areas of OFDM

Evolutionary algorithms can also be applied in other sectors of wireless communications

particularly in OFDMA systems.
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~ GA and PSO can be applied to solve the peak to average power ratio (PAPR)

problem in OFDM. Here a contradictory situation has to be handled by

maximizing bit rate and rrrinimizingthe non-linearity of the amplifier.

~ In the case of antenna diversity, the higher number of antenna results in lower bit

error rate. On the other hand, higher number of antenna results in huge

complexity. So an optimum level has to be reached where an effective result can

be obtained.
~ GA and PSO can also be applied in the resource allocation of MC-CDMA

systems and the comparison of this system can be drawn out with the OFDM

systems.
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