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NOTATION
--'-

Sections and subsections in this thesis are labelled
with a decimal system, each new level of subsection being
represented by a decimal point in th.elebel,--Le. subsections.
to Chapter 5 are 5.1, 5.2, etc. No. of pages, fIgures and
tables are related with.the Chapters, i.e. first figure of
Chapter 7 is leveled as Fig. 7.1, fifth page of Chapter 7
is lebelled as 7.5, first table in Chapter 2.is lebelled
as Table 2,1 etc,
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ABSTRACTS

..Different electrical circuits of different orders have been

constructed using resistors . and capAcitors. Their frequency

responses have been determined experimentally using Lissajo.u's

fi~re. Hith these frequency responses their tr~nsfer functions

,~hRvebeeri dQterlllined 'ufling complex curve ri.tting 1IllethodrJ• These

. fitted transfer functions hav:e been. compared .with their

theoritical transfer function.s. To calculate the theoriticRl

transfer function the values of the resistors, capacitors

and the internal resistances of the capacitors have been

determined from experimental data •

..- --.An'. one~band~radio~-receiver has~-been~-t-aKen';-The~cfrequency

responses of the R.F. Sectio~ (includirig the I.F. S~ctions)

of the receiver has been obtained experimentally using

lissajoU's figure .. Then the transfer function of this Section

has been determined using complex curve fitting method.

The frequency responses I)f the fitted transfer function gives

satisfactory result. Complex curve fitting method develor;>ed by

Levy and Zaman 'rias not fully complete. Some changes ha 'Je been
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made to improve its facilities.

- ..•. _ ..•..

j;~ Previous method of determination of the' exact order of a--,
"

system did not always give the correct results. Emperical
•

relation have been developed ,for obtaining the actual order'
, . '.' .

of a ,system for use in complex curve fitting method. This 'has

- formulation has' been testedi'for different:-systems .

been done analysilg the errors-Rt different orders. This

,:. __A_computer :Programmehase be'en develope'1 for'the generalisea
"!.'~- - ..----

. '.~

complex curve fitting method.' The advantages of thi's program

over the' previous progr8m are -

1) There is no neceesity, for previous estimation about

II) Computer itself will determine the actilal 'order and

the
i ,

'I" '
I;

I
will

print it out.

III) If the data is so noisy that good fit is not possible,

the computer will give message about it.

In Levy's method transfer function' of higher type system was

not possible to determine practically "ii thout havi ng any idea

about'the exact type. In this \-Jork a technique has been developed
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to overcome the above problem •.The computer program which
has. been developed in this work.is also applicable for
higher type system. This method has been tested for systems
of different type.

'To get an idea about the critical frequency band, t.

frequency responses of several systems have been studied.
"Also the effect of frequency interval and the effect of

error in the sampled frequency response on the fitted
transfer function have been studied.

I

! .
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CHAPTER - 'I

INTRODUCTION

1.1 Introduction: .The transfer function is a type of mathematical

model necessary for designing a system or using a system as a

part of a big system •.This can be determined analytically if the

circuit parameters are known.

In determining the transfer function of an electrical

system it is not always possible to know the inner details of
. '

the systems, or it may be very complicated. Moreover manufacturer's

ratings of circuit parameters .mayvary from their actual values

and may not be that much accurate as they are theoretically

considered. Some times it became necessary to determine the

transfer function of a circuiv considering it as a black box.

Hence for these cases complex curve fitting method is necessary

for the determination of the transfer function. In this method

transfer function is obtained from sampled frequency response.

Work has been done on finding the transfer function from
1 . 2 1

frequency response by Levy and Sanathanan etal • Levy's

1.1
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method does not give a good fit in the low frequency range
when the transfer function is to be determined over several
decades. Sanathananat aI's work is an improvement development
of Levy's1-work which gives a good fit in -the low frequency
range.

The main disadvantage of both methods are that

a) Some estimation of the exact order of the systems
has to be made from the frequency response.

b) The computer programme has to be ch?nged if the assumed
order of,thesys~~mis changed.

Zaman's3
and Sanathanan

work is an'improvement development of Levy 1
, 2 '

et aI's method in which only a gUess about the
maximum possible order is necessary, The computer programme
has not"to be changed whatever the orderrnay be, The order

;--ofthe-system -has been--taken-here--as-that--order at'which the
normali jed square error first-drops to a very small value
compared',to the previous values, But these methods have the
following disadvantage -

a) Here a guess about the maximum possible order of the
system is ne~essary,

1.2
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b) The exact order is not-..always th at order at which

the normalised mean.squareerrors first.Fdl~OpS.to a

very small value with compared to the previous values.

c) It is not practically possibie to obtain transfer

function of highertype~ systems (systems having

infinite gain at zero frequency).

However in this work, methods have been developed where

the above deficiencies are celiminated •..

Transfer function of different. electrical circuits of

.. different orded, and the R.F. Section (including the I. F.

Section) of. a radio receiver have been determined considering

tr.~mas black box using the complex ourve fitting method.

In this work the frequency responses have been. obtained

fr.om.LissajouJ s Patterns.

1.3



CHAI"I'ER 2

METHOD TO PROCESS TRANSFER FUNCTIon FROM FREQUENCY
RESPONSES

2.1. Introduction: E.C. Levy1 developed a method to process
transfer functions from frequency responses of linear dynamic
systems.•However his method does not give a good fit at the low
frequency range when the transfer function is to be determined

'. 2for frequencies .extending over several decades. Santhanan et al s
work is an improvement development of Levy,s1 work.which gives a
reasonably good rit at all frequencies. In both these methods the
order of the sys.tem has to.be ascertained accurately from the
frequency response before proceeding to_ev~luate transfer function,
which is not always possible. Zaman3 in his work developed a genera-
lised method by which the transfer function can be evaluated by
Sanathanan et aI's method, but without ascertaining accurately the
order of the system before hand. Here only an idea about the maxi-
mum possible order of the system is necessary. Here in this \'lOrk
an improvement of Zaman's generalized method has been done where
no idea about the maximum possible order .nll be necessary.

,
Levy 1, Sanathanan et al,2,and Zaman' s3 methods are descri-

bed below for ready reference.

2.2 Levy's complex curve fittin~ method: Transfer function,
G(jw), of Il linear dynamic system can be expressed as a ratio of
two freauency d~pendent polynomials as s~own below :

G(jw) AO + A1 (jw)
=
1 + B1(jw) +

'2 3+ A2 (jw) + A3(jw) . + ••••
. 2 .. 3 •..• (2.1)

B2 (Jw) + B3 (Jw) + •••• - .

2.1

,,. l



Where AO.' A1 A2 ' ••••, B1 B2, ••• are constant coefficients of
the transfer function.
Equation (2.1) can be rewritten as

G(jw)=
... (2.2)

=

=

cI. +j(t)~
6' -r j W"t'

P"Cqw)
IeJw)

••• (2.3)

(2.4)

But function F(jw) is an ideal function, one which r~presents
the data exactly and which can be obtain experimentally.

F(jw) is a complex quantity.It has real and imaginary
components, Rand Q respectively.

F(jw) =R +jQ ....... (2.5)

The numerical difference between the two functions G(jw)
and F(jw) represents the error in fitting,that is

e(w) = F(jw) -G(jw)

= F (jw) Ptjwj- I ;i-e!

... (2.6)

(2.7)

e'(w) = e(w). I(j' ..••) = F(jv!) lOw) -Pljw) .

2-2



At any specific value of frequency wk

.... (2.9)

••• (2.10)

... (2.11)

Now E is defined a~ being the function given in (2.11)
summed over all the sampling frequencies wk. Hence

m
E= L

k=1

••• • (2.12)

where m is the no of d3ta.

The unk~own nolynomial coefficients A. and Bl." i=O,1,2,3_ :l-

are evaluated on the basis of minimising the error function E.
iUsing equationi(2.3) and. (2.5) we get

m

L:
k=1

(2.13 )...+ (Wk"!'kRk +6kQ'k - "lk~k)2]

:!!'ollowi-ngthe '.lsualmatbemCltical procedure e1uation(2.13)
is now partially differentiated with respect to each of the
un~nown coefficients Ai
zero. In this way it is

and B. a'nd'the'resul ts are set equal to
l. .

possible to obtain as many equations

2.3
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as there are unknown. The results are corrden~ed by the follovnng
relationships.

IIi i"'.= 2:-J. Wk ... (2.14-)
k=1

m i
S..= L Wk Rk •• ( 2.15)
J.

k=1
m i

Ti= L Wk Qk •• (2.16)
k=1

m
U.= L: Wi (R2 + Q2 ) (2.17)J. k k k • •

k=1

The final equations in the matrix notation, due to partial.
differentiations of E, are as follows (detail procedure is
given in the Appendix A)

Ip] [ D1 = [c J. .. (2.18)

where, /10 0 -i'l2. 0 ~ ....... T1 ::>2 - T,it

0 /11- 0 -).4 0 ..... -5 T" 34-~

/'12. 0 -/14 0 ~c. ........ T Q4- - T5,
[pj =

0 Air 0 -1\6 0, .... -54 T5 S6...• .. .. .. .. .. .. .. .. .. •.•..••.•.•.•.•..••.•.•.•..• ,••.•.•.•.•.•.•.•.•.•.•.•.•.•.•.• '. e •.•.•..••.•. .... (2.9
T1 -S2 -T, ::; T5 .. .. .. .. U2 0 -U4-q.

S2 T, -S4 -T7 S6 ........ 0 U4- 0

T3 -s -T5 ::>6 T7 ... Uq. 0 -U6
"l- •

e ••••.•••••••• _ ••••••••••• ....... ...................

2.4
,



•

•
•••• (2.21)

•

o
U2

o
•

•

The unknown materix [D] can be obtained after
and [aJ matrices from experimental data.

•calculating

2., Development of Levy's method by Sanathanan et al.: Seri-
ous deficiency of this technique is that it does not give a
good fit at lower frequencies when the transfer function is to
be determined for. 'frequencies.extending over several decades.
This neficiency con be overc'ome by an iteration process a" des-
cribed below and this is the contribution of 3anthanan et a12•

= :~~~~~_:_:~~~i
I(jwk)L_1

P(jwk)L
- -------

I(jwk)L_1

,

......
,j" .

(2.22)

2,5



Where the subscript L corresponds to the iteration number. As
I(jwk) is not known initially, it is assumed to be equal to 1.
The subsequent iteration tends to converge rapidly and the
coefficients evaluated become effictively those obtained

I I 2 .minimising the sumofe(wk) at all,datapoints.From
by

equation

Let, VkL

(2.22)

IF(jwk) I(jWk)L- P(jWk)L I
'/I(jWk)L_11

1= -----
II(jWk\_1/2

.......

.....
/

(2.23)

(2.24 )

Hence E' =

=
m

k=1

2 v.
• I'l-

l
..... (2.25)

Equation 2.25' is now partially differentiated with respect to each
of the polynomialco-efficients and equated to Zero. Method is the
Game as above ,but all equtions are to be multiplied by VkL•
They would yield the same form of matrix equations as that in (2.18:
but here Ai' S1' T1' Vi will be replaced by ~i,si, Tk, ui
respectively, where

... (2.26)

2.6



m,

L iSi = "k Rk VkL '.. (2.27)
.k=1
m, ..L i. VkL (2.28)Ti = wk ...- k=1..

m
, L. i (R2 Qi ). VkL ••(2.29)Ui = wk +k

k=1.

L

The coefficients A •••••• B1,2'
.....

evaluated at ~1teration(L-1) are used to evaluate
VkL for the L-th iteration.

2.4-: Brie f description of Zaman I 83 General iC.edMethod :
In'actual use of the above method to evaluate the transfer
function from the f'rquency response, the .order.of the system'
has to be ascertained • That is, the function in the form
given in equation (2.1) has to be assumed accurately which
is to be curve fitted with the experimental frequency response.
This was g~~erally done by the Bode plot of the frequency
response5• This ~ay not always be accurate and feasible.
Observing the symmetry in the [P ] and [c] matrices,
Zaman developed a generalised method in "hich 'he formula ted
15 equations. These' equations generate [p] and [c]matrices

t,
" ..- ..'



exactly whatever the order of the system may be. The equations
are given below :

I = row of a matrix
1"1 = column of matrix

- o "'order of the system

N '"(2. o + 1) , N1 = (N+1) /2,

N3 = (N +3)/2, N5 = (N'+5) /2,

[p]. - 1"Iatrix

p' (I,M) = (-1)
. (1"1-1 )/2

X (M +1-2),

[

1=

1"1=

,
(1"1..,1 )/2

(M-2)/2
= (-1)p' CI ,1"1)

p'(I,M)

(M-1 )/2

*p' (I,M) = (-1)

[
I",N5' N,2]

M., 1.N1• 2

p' (1,1"1) ., (-1)
(M/2)

en~;.

2.8
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*p'(I,M) = (-1)

••

p' (I,M) = (-1 ) I .

T (M+1-3),

p' (I,M) = (-1)

* p' (I,M) '" (-1)

* p' 0,(1) = (-1)

(M-(N-1)/2 )/2 /
. S(M+I-N3),

I ,

S (1'1+ I-N3),

p' (l, M) = (-1) . " ;

V (M+I-N--1) ,

[ :: ::: ::: J

Rest of the [pI] -Matrix elements are zero.

*p' (I,M) = (-1) /

\J (11+ I-N-1),
l

'T 2:
" l I

2J
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[e'] Matrix

C' (I'f), = S I .

(M-1Y'

C' (M) = T' (11-1),

* C' un = U'(M_N )
. l'

• These equations will not exist for 1st order system.

Emperical formulae were also developed for finding out the
frequency response from fitted tracsfer function of any order.
These equations are necessary for determination of frequency
response from.fitted trans.fer function and also error in complex
curve fitting .They are

• * F= D(1) + (-1)
(M-1 )/2 (M-1 )

T=(-1) (M-2)/2
D(M)

(M -1)
Wk

•• X = 1+ (-1)
D(M) w

k
(M-N1 )

,M=N5, N,2

2.10



y (M-N3)/2 (M-N1)= (-1) D(M) INk :1= N3, N, 2 .,

~
Zk =

X2 + y2

[ .••tan
-1

-1 ]Hk = T/F- tan Y/X

Z1k = ~ Cos Hk

Z2k = Zk Sin I1r

where Zk ~k is the frequency response of the evaluated

transfer function.

,
E,

=
m
L
k=1

•where Er is the normalised error of,E,

= 1/ 2 2
(x +y )L-1

•
.~
I

•• For I-st order sys~em ;.:= 1 c•.ly gnd

F= D (1) only_ 2.11



When actually using Zaman's3 method, it is necess2ry to
make a guess about the ~aximum possible order of the system ,
tlds can be ascertained from the results and can be modified
accordingly. The experimental frequency response is then
_used to find the transfer function ..initially.assuming a first
order system'and then subsequently raising the order untill
the order of the guess is reached. In each case the transfer
funct'.on is evaluated and the error between the frequency
response from this transfer function and the experimental fre-. ,

quency responses:are calculated. normalised, squared and added
for all data points. For noise free data, the cnrrect transfer
function is one which gives the minimum error. The minimum error
should be very small with respect to the normalisation criter-
iOD. If a reasonable minimum error is not obtained then it is
.to be-understood' that the guess was not right and- still a higher
order guess in necessary. On the other hand, the correct answer
can be obtained even if the guess of the order is too high.For
noisy data the correct order of transfer function is one at which
the error drops to a very small value compared with previous
values.

The generalised complex curve fitting method has been
checked extensively to v8rify its accuracy. To do this the £011-

2.12



A program has been developed to evalute'the frequency response
from these transfer functions. Then from these frequency respon-
ses their transfer functions have. been evaluated using the
'Gene'ralised Complex curve fitting Method'. The results which
are given below were found very accurate.

i) First Order System.
The transf'er function was selected asG(jw) =

The fitted transfer function was found as 1st order as it was ro

The values of the coefficients of the fitted transfer function
are given in ;teble 2.1.

Table 2.1
Showing the accuracy for 1st order system

Constant
coefficients

From Original
transfer function

From Fitted
transfer function

Ao 1.0 1.0
A1 0'09 0.09002
Bo 1.0 1.0
B1 0.1 0.1

2.13



1i) Second
as G( jw) =

order system : The transfer function was selected
1+0.098 + 0.0007~S~

'--:._-

1+ o.1S + o.ooosi'.

The fjtted transfer function was found very accurate at 2nd
order as it was~ The values of the coefficients of the fitted
transfer function were given Table 2.2 helow.

Table 2.2
Showing the accuracy for 2nd order system

Constant
coefficients From original'

transfer function From Fitted
Transfer function

1.0 0.99987

0.09 0.09

0.00079 0.00079

1.0 1.0

0.1 0.09999

o.ooos 0.:0008

iii) 3rd order system: The transfer function was selected as



I

•..••..----~--
The fitted transfer function was found very accurate at 3rd ord.

- ,
as it waS,The values of the constant coefficients of the fitted
transfer functionare given in table 2.3.

Table 2.3
Showing the_~ccuracy for 3rd order system

Constant
coefficients

From- original
Transfer function

i
FromFitted ;'1

Transfer function

A 1.0 - 0.99999990'

A1 0.3097x10-3 O.3098x10-3

A2 ' 0.283x10-7 0.283x10:....7

-
A3 0 0

Bo 1.0 1.0

-1 0.312x10-1B1 0.312x10~ --
,

0.3758x10-4 - -4-
B2 O. }?58x10

B3 0.104 x10-7 0.104x10-7

. ,
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CHAP'I'ER -- .?

DEVELOPl'lliNT TO COUNTER THE DEFICIENCY OF ZAI1ANS METHOD.

3.1. Deficiency of Zaman's method: '" ' -'-,

In Zamans3method it is necessary to guess a highest

possible order-of the system ••~f a reasonable. minimum

error is not found,it is to be understand that the

guess was nat right and a still higher order guess is

necess2ry, In his method, the actual ,order of the system

was supposed to be that order at \ihich the error first

drops to' a smeTl ve.lue .compaired with previ'Ous values.

But it has been found that the above method of

deciding the actual order does not always give the

right order of the system. As an examp~e, a system.

having a treDsferfunction. of

3.1
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i

generates the following errors at different orders.

Tn .thise case 20sets of data within the 'frequency band
. - ~-._.--.- ,

5 Hz to 575. Hz were used.

.. -. " '-

a) At 1st order, Error =

....•,:::~--..;:..:.:-- .••••...-- ---- - -- ~.~~,--.--
, '.-

0.2097 x 10°

Fitted transfer function at this order is

. ~..:: . \ .

1.0046 ~' 0.3308 x 10-35

1+0-.30929 x 10-1 S

b) At 2nd order , Error =
"-4

0.200 x 10

Fitted transfer function at this order is.

c) At 3rd order, Errore 0.598 x10-12

Fitted transfer function at this order was

found very accurat e and it wasg-

3.2
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-11+ 0.311997 x 10 S

d) At 4th order ,Error = 0.81722 x 10-12

ritted transfer function at this-order is

-,

1+ 0.318 x 10-18 + 0.5728 x 10-482 +0.3404c10-7S3

+ 0.652 x 10-11S4

According to the previous method the order of the

--_~_s;ystem shouldb e-2nd.::-order= .'-'-Because ~itccf'irstcdrops-=from

0.209 x 100 to a reasonable minimum value of , -40.2x10 •

But the system is actually 3ra order. So it is evident that

the above concept of deciding actual order of a system is som

time confusing.

3.2 Development to counter the deficiency of Zaman's method:

To elemina te the above difficulties .three emperical

relations are developed observing the error of different



systems.

The actual order 6f a system is decided. here considering

the following conditions.

a) "The error should be reasonably small, /

b) If i is the actual order. then

E E E )-E(x-2) - (x-1) " (x-1x
<----- ;.

E - E( )x . x+1

.......

, ',/here Ex-error at x-th order.

.•. ( 3.1 )

In the previous=.exampleerrors .atc:.aifferen.t orders

w~re

E1 ., 0.2097x100

E2 •• 0.200X10-4

E3 •• 0.598x10-12

,,' •• 0.817 x10-12""4 .~~':

;



Here ,

E(3-2) - E(3_1)

E(3_2)

EO -1) - E3

EO_1)

'.

= 0.9999

= 0.9999999

= - 0.366

Therefore it is found that

E(3_2)- E(3_1)

E(3-2)

< >

According to this method the resuJ.t indicates that the

system is 3rd order and actually it is of 3rd order. Hence

supports the above emperical relation for the detection of

of the actual order.

3,5
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The relation (3.1) is applicable for systems higher than

2nd order. If the system satisfies the relation

E - E1'r

Er
> •......... ' ...• (3.2 )

._,r'

/

'Where Er" = maximum acceptable error'limi t

to consider as good fitting. then tre system will be of

,1st order •

•For 2nd order system the relation (3.1) can be used only

replacing E(x_2) by Er•

i. e. Ee - E 'r . ,1

<

>
; 0.3 )

3.6
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To support the above emperical relations several

more examples are given below.

1) Transfer function is taken as

At 3rd order the fitted transfer fumction was found very

accurate 39 data sets between 5HZ to 765 Hz were used.

The fitted transfer function was

1 0 31 88 -1 . -4 2 . -5 3.. + .' '1. x 10 8 + 0.37589..x10 S + 0.2999, x 108

The errors at different orders are I.
!

Order Error

1st 0.8859 x 104-
2nd 0.168 x 103

• 3rd 0.554 x10.,.11
4th .0.759 x 10.,.12

3.7,
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Here

= 0.981 II
I
II

= 0.8629

'~.--'Therefore
EO_2) - EO~1) EO_1) - E3
------ < ---- >
E(3-2) E(3-1)

3-5



According to this method the system is of3rd order

and actually it is. Hence the above, example supports

this method.

II) Transfer function was taken as

At 3rd order the transfer function was found very

accurate 39 sets of data between 5 'Hz to 765 Hz

'.ere taken. The fitted transfer function at this

order tvas
,,
i x 10-7520.99999+0.299999x10-3S + 0.29999:

. -11+ 0.31199x10 S+ 0.40 + 0.29999x10-5 S3

E.rors at different orders were -

3.9 .-



Order Error

1st 0.5774 x10B.

2nd
. ". ' .. "';1

0.4839x10,

• 3rd 0.216 x 1.):"9

4th 0.2056 x 10-12

~"' .

Here ,
••...•• . -r:" '
.1>(3-2) - 1:'..(3-1)

- 1 '

~ 1

= 0.999

,

3,10



,
- '1: ',.,

. i' '-. '."" ..• < '

. ,.'

<

- '1'" .' ,"" '>'t --. , •. ) ,
,'~ L '~', _ .,

';~~. '.' ~.c;:",

'." :.'. "'"
~:'::~.:;"'. ~. . .

.,/

" '.-'

, -.. ' .

.- .'.': " ~-.' ~_' r..
(3.1) .Again actually the system is of, 3rd order~ Hence' <,:C, , "

". -', -' -. :../.
J • ~_ . ',_ .~.~'_'~, - ~•

. .I; 't' ••..",,-",-

the example suppo~s this method: "" t',:','

, ' }->",:~:i{:1~tt;~,\1;":,;~~. .:;;(">_,'"" ",
III) Transfer function was taken as

, :i
, ,

Therefore for 3rd order the system s~tisfiea~ the relation:". ,<

/

.-

.-~

, 2
1+ 0.033 + 0.00048 ,

" ,~ 1+ o.?;",'.'.o.060$~~"c,t,,;,;i~~.;.;;, ..."
"'.. ~.

•• \ -:, 0 ••

• - <•• '-;, . '

~~,- .

..,',~.
and, it IvaS'

',..; .

Frequency response was taken ri-om 5 Hz to 100 Hz. At 2nd
_..:....j~.;j<J..:;:.._:.'::" \'.

order the system'~asfo~ndveryaccurate
. . i ..

1+ 0.029999;S + 0~00039999 82

'I ' 2
1+ 0.01999998, + 0.499998 :- ,c', "'f,'-~'I" .,<

I

, I
Errors at different orders were

\

~~:.-
- 1\'

Order Error

1st 10.353x10 '

2nd

3rd

0.180, x 10'-"0

,,'.'°:'256:~;,_~~~j10;, ;.,

3.11
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Here

= - 35299

For noise free data error Er is

taken as 10-4

. =- 00422
E2

Therefore for 2nd order

<------ >----
Er

Hence it sup,)orts the rel",tior; (4 3)



iv) Transfer function was taken as

..:,.

1 + 0.18

Frequency response were taken between 5 HZ to

100 Hz, • At 2nd order the transfer function waS found

accurat e and it waS

1 + 0.40 x 10-38 2
1'001 + 0.91x 10- S

1 + 0.10S + 0.417 x 10-3 s2

The errors at different orders are

Order Error

1st 0.128 x 10-2

2nd 0.275 x 10-6

3rd 0.111 x 10-8

\



Here

- 127999

E . E
(2-1) - 2

= 0.9999999

= 0.99596

E(2_1)

<---
I, . >

Hence it ShOvlS that the system is 2nd order and actually

it is

3.14 f)i



v) Transfer function was taken as

1 + 0.13:8

1 + 0.448

Frequency response was taken between 5 HZ to 100 Hz

At 1st order fitted transfer function waS found

accurate and it waS

0.9979 ~ 0.12968

1.0 + 0.4388

Error at different orders

Order Error

1st
2nd

Here

E Er 1

Er

=

0.964 x 10-11

0.286 x 10-10

0.99999

. )

3.15'
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!
I

Therefore

>
Er

Hence the system is 1st order

and actually it is

vi) Transfer function was taken as

1 + 0.09.S

1 + 0.1.3

At 1st: order the fitted tra12sfer .function was found very.
,
accurate. Frequency response was taken between 5 Hz to

100 H.z The fitted transfer function at 1st order waS

1 + 0.098

1 + O. 1;:>

Error at different orders were
r

3.16
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Order .J•• Error

1st 0.3145x10-8

2nd .. 0.3948 x10-8. '-.

Here

= ci .9999685
Er

Hence the system will be of 1st order and actual it is.

All the above examples support the emperical relations of

Hence the above error analysis gives the correct order

of the system.

(if
3.17V,



3.3. Method to process transfer function of higher Type
systems ( systems having infinite gain at zero freguency)

In developing the complex curve fitting method. Levy1

considered Bo as 1. For this reason transfer function of .

higher Type5 system is not possible.to;evaluate:ditectly~

If this method has to be applied for a system having infinite

gain at zero frequency the transfer function to be. multiplied ...

by (jw)n, n being large enough to reduce the absolute magnitude

or the function at zero frequency to a finite value. Then
.i .

from the modified frequency response a transfer function -is

obtained. Dividing this fitted transfer function by (jw)nthe

actual transfer function eRn be obtained.

But for practical system having no idea about the type i

of the system it is very difficult to obtaiu the actual

transfer function. A teChnique has been developed in this

work to overcome this problem.

r.,
\..

, .

3.1,8 .'
)
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Let us consider a transfer _function of the following form:

G(jw) = . ".'-. ( 3.4.)

Whenn=' 1, it is Type one system

When n= 2, it is Type two system

According to Levy's method it not directly possible

to determine the transfer function from the sampled

frequency responses. Let-us suppose at

frequency respons,-_.

W-ic the sampled
i
i

Then the frequency response of 1
Fk

will corresponds to the transfer D1TIction of the system.-G/CiGiJ.

Taking n= 'I

3.19



G' (jw) = 1

G(Jw)
= (3.5 )

0.1" B1/A A S2S + B21 B~/AOS30 o +,G (jw) =

1 + A1/A S + AI A 2S
, . 0 0

Then the transfer function of the system corresponds to

equation (3.6) can 'be obtained directly using Zaman's3

generalised method,if i ts.frequency response is. known. But this

frequency response can be easily obtained taking the inverse

of the frequency response of the actual higher type system.

By this inverse frequency response the transfer function G (jw)
can be obtained • The actual transfer function G(jw) can be

,
obt'ained by simply inverting the fitted transfer function G (jw) •

Ccm;:mter program has been developed in this' work on the basis of

the above concept t:o determine the transfer function of higher

type systems. This method has been tested .for different systems

and satisfactory res'llts have been foun.<!..

Three exampleshavebeen given below for, higher type systems.

1) System was taken as

" 1 -4 21 + 0.2235 x 10-'S + 0.54 x 0 S

::.20
I': ,,'.f', (



•

using the above method the fitted transfer function was-

found as

Frqquency response was taken from 5 Hz to 260Hz

No of date sets were

II) Transfer function was taken as
--- -4 2 -6 3

1+ 0.3X10-1S + 0.375 x10 S + 0.3x10 S -

using the deserve method the fitted transfer function was
. !

found as-

1- . -42 -63
1+ 0.3 x 10- S + 0.375 x10 S + 0.3 x 10 S

-- -----

Frequency response was taken betwe~n
5Hzto 195 HZ. NO.of data sets were

3-21



III) Transfer function was taken as

1+ O.022~55S+ O.54x10-'+S2 + O.143x10:..6S~

Frequency response was taken from 6H~to 385 H~.No of

data sets were ~9.The fitted tran fer function using the

above method was found as

j



CHAPrER 4

EFFECT OF FREQUENCY RANGE AND FREQUENCY INTERVAL OF
DATA SETS ON THE FTTTED TRANSFER FUNCTION

4.1. Introduction: In determination of transfer function froIT

frequency response using complex curve fitting method, it is

necessary to know the range of exact frequency band over whico

toe sampled data should be taken. The selection of incorrect

frequency band may change the fitted transfer function by

a great deal. In this chapter the effect of the frequency

range on the fitted transfer function has been discussed

with example. ,\n atte~?t has been mode to get an idea about

.the critical frequency band observing the results at various

conditions. Finally the effect of frequency interval of

data sets within Q. definite frequency band has been stud~ed.

4.2. Effeot of the frequency ran~e : The most important factor

of determination of transfer function from t~e frequency

4.1
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response using the cOlIlplexcurve fitting method is the

frequency range ,within which the data sets.are taken. The

values of the coefficients asweil as the order 01' tne fitted..

transfer function may vary as the frequency band within which"

the data is taken is narrowed. AS an example, a 3rd order

practical circuit is taken whose transfer function is as
follows •

-"--~-----------

The constant coefficients are -

BO = 1.0, B1 = 0.312 x10-1, B2= 0.3758 x10-4

B3 = 0.104 x 10-7

a) ~hen the ~requency range of the sampled data sets we~e

between 5 Hz to 100 Hz (No. of data sets were 20), the

transfer function was found 2nd order and the constant

coeffieients of the fitted transfer function were _

4.2
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x1 -7A2 = 0.3827 0 ,

. -1 'Bo = 1.0, B1= 0.3082 x 10 -

, -4B2 = 0.2588 x 10

b) When the frequency band of the sampled data sets were

between 5 Hz to ':75 Hz' (No. of data sets were. 35 ), the

fitted transfer function was found 2nd order again. The

constant coefficients of the fitted transfer function were

c) Frequency range was Qetween i 5 Hz to 385 Hz (no. data

sets were 39).

The' order of the system was found 3rd, and'the c,-nstant

coefficients of the fitted transfer function were

4.3



. -3' 7= 0.3099079 x 10 ,A2 = 0.2829 x 10-

.'

B. 1 0 B 0 3 2021 • 0-1 B 0.37583 x10-4 ,0="1=.1 x1 '2=

. -7B3 = 0.10405 x 10

The above results were. found to. be accept able •

d) Frequency range was between 5 Hz to 765 Hz (39

sets of data were taken).

The order 0 f the syst e::l was found 3rd and the
,

constant coefficients of the fitted transfer function
!
1
iwere - ,

4.4
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This result L; found to be very accurate.

4.3. Detection of critical band :To get an idea about the

the selection of.critical frequency band, three arbitrary

transfer functions of 1st, 2nd and 3rd oraer have been taken.

Using these transfer functions frequency responses are gener-

ated ana at different conditions their fitted transrer function

have been determined using complex curve fitting method. The
\conditions are-:No. of data sets, starting frequency 01"tne

sets and tne frequency interval of the data sets. Observing

these results an attempt has been made to reach a conclusion

about the critical frequency band.

a) Transfer function was ta1a3nas 1 + O~09S Frequency
1._ + o. IS •

response has been generated from the transfer function and .1s

given in the Table 4.1.

4.5



Table 4.1

Frequency response,for the 1st order system

1 + 0.095

1 + 0.15

Contd •••

4,6
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Table 4.1 (Continued from last page)

FREQUENCY' F(L) PHI. (L) (RAD.)

100 0.900027 .-0.002
120 ~ 0.900019 ":0.001
140 0.900013 -0.001
160 0.900010 -0.001
180 0.900008 -0.001
200 0.900007. -0.001
220 0.900005 -0.001
240 0.900005 -0.001

N. B. Where F(L) is m2gnitude .. . ,
PHI(L) is phase in radian.

. ': ,~



The following results have been found at different

conditi,ns :

Table -4.2
Results at different conditions for the system
( 1. + 0.09S) I (1 + 0.1S).

No. of sets
of Data

15

15

15
15

starting
frequency
Hz

1,00

02

25

Frequency
interval

Hz

5

5

02

02

Remark on the fittea.
transfer function.

gives accurate result

Does not give accurate
result

"

Gives accurate result

Does not give actual result

From the data in Table 4.1 it is found that the maximum,
rate of change of magnitude and phase difference is at

the lower frequency region ( nearly upto 45 Hz) and it

decrease as frequency increases. Again from the table 4.2

4.8
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it is seen that only those data sets whose frequency band

covers the relatively large changing (in magnitude and,.

angle) region give the accurate results

b) Second order system

The transfer function is taken as

. 2
1 + 0.09S + 0.000798

1 + O.1S +-0.008S2.

The follm'Jing resul ts are fbund at different conditions

Table 4.4
Results at different conditions for the system

(1 + 0.093 + 0.0007932) I ( 1 + 0.13 +
0f sets Starting Frequency
data frequency .interval

No
of

14

Hz

25
Hz

5

0.00832)
Remark on the
fi tt ed trans fer
function.

Does not give accura
resul t

14 15 5

25 15 5

15 1 1

15 15 1

20 10 1

10 10 5
"4 5 5

If

If

gives exact result

Does not give'

gives nearby exac,t

If

4.9 I
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Table 4.3 -.

Frequency response for the 2nd order system

1 + 0.098 + 0.0007982

1 + 0.18 + 0.00882

FREQUENCY F(L) PHI(L) (RAD. )

1 1.207619 -0.215

2 1.113841 -0.865

3 0.699077 -1.175

4 :0.485776 -1.234

5 0.374261 -1.221

10 0.193417 . -1.010

15 0.147115 -0.820

20 0.127913 ';'0.678

30 0.112536 -0.493

40 .0~106701 - ,';_::'''';;0.383

50 0.103902 -0.312

60 0.102353 -0.263

80 0.100791 -0.199

100 0.100060 -0.160

120 0.099662 -0.134

Contd •••
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Table 4.3 (Continued from last page)

FREQUENCY F(L) .PHI(L) (RAD.)'

140 0.099421 -0.,115

160 0.099264 -0.101

180 0.099156 -0.089

200 0.099079 -0.081

220 0.099022 -0.073

240 0.098979 -0.067

.
4,11
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From the data of Table 4.} it has been seen that the change

in magnitude and angle is greater in'-the lo.wer frequency range
-' .~-" -";-

than that of the higher, ,and from the above statistics of Table,
4.4 it is evident that orily those data sets which lies in that

region give accurate results.

c) Third order system : The trensfer function is taken as

1 + 0.}O97 x 10-}S+'0.28J x 10~7S2

. The Following results are observed at different conditions

Tabie 4.6

Results at <llif.ferent conditions for the system

( 1 + 0.}O79 x 10-} S + 0.28} x 10-7 S2 ) I ( 1+ 0.}12 x 10-1S

+ 0.}758 x 10-4 S2 + 0.104 x 10-7 S} )
••••" t.! '.• I

No of sets Starting Frequency Remarkon the Iof data frequency .~~ f1tted transfer fHnction
20 5 5 Does not gives accurate

result
J5 5 5 "

'}9 5 10 gives exact result
. 20 100 10 Does not give accurate

result
}O 100 10 gives exact result
}O 200 10 Does,not give exact

. reilUlt

4.12
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Table 4.5

Frequency response for the system
1 + 0.3097 x 10-3S + 0.283 x 10~7S2

1 + 0.312 x 10-15 + 0.3758 x 10-4S2 +0.104 x 10-753

FREQUENCY F(L) PHI(L) (RAn.)

5 0.727925 -0.784
10 0.468424 -1.141
15 0.332664 -1.318

20 0.255103 -1.428
30 0.171910 -1.570
40 0.128393 -1.670
50 0.101629 -1.752

60 0.083452 -1.824
70 0.070261 -1.889
80 0.060228 -1.949
100 0.045940 -2.059
120 0.036250 -2.156
140 0.029271 -2.242
160 0.024042 -2.319
180 0.020015 -2.387

Con to.

4.1.~,:- .",
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., Table 4.tj(Continued from last page)

FREQUENCY F(L) PHI(L) (RAD.) ..'

200 0.()16848 -2.447

220 0.014318 -2.499 •

240 0.012271 -2.545

260 0.010597 -2.584
280 0.009215 3.665

300 0.008064 3.636

320 0.007100 3.611

340 0.006285 3.590

360 0.005593 3.573 ).

380 0.005002 3.559

400 0.004494' 3.549
420 '0.004056 3.541

440 0.003675 ' 3.535

460 0.003344 3.531

480 0.003053 3.529
500 0.002798 3.529

Contd ••..



• '0

o

. TaM.e 4.,'-rContinue from last page)

FRroUENCY F(L) PHI(L) (RAD.)

520 .0.002573 3.531
.'540 0.002374 3.534
560 0.002197 3.538
580 ().002039. 3.543
600 0.001898 . 3.550

. 620 0.001772 . 3.557
640 0.001658 3.564
660 0.001555 3.573

4.15
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From the data sets in Table 4.5 it is seen that in the lower

frequency range (aOout upto 300 Hz) both magnitude and

angle c'canges relatively rapidly than that of the higher

,frequency range. Now from th~ above statistics it can be,

assumea that if the data sets, cover the relatively rapid

changing region will give accurate result.

Finally it Can be said roughly that to: get actual result

the frequency range should be as large 'as possible and it must

cover the relatively rapid changing (both magnitude and angle)

region.

4.4. Effect of frequency interval : If the number of data sets

are increased with,in ,a definite frequen,cy band, it has been
,

found that the result does not improve remarkably. AJ3 an

example- the following result was observed. Frequency range was

between 5Hz.to 770Hz. Three frequency intervals of data were

taken (10 Hz, '15 Hz, 20 Hz) .The transrer function was taken as

4.16



Table 1+.7

Showing the effect of frequency interval. -'
---------------- .. _---_ .._---_._~._- --------

-.\0

ooA2

1.00

o. 30971x10-3 -

0.1

1.00

-10.312x10

0.35776x10-4

-70.104x10

10Hz

0.999999

0.30972x10-3

i

1.00

0.37577x10-4

.15Hz

0.999999

0.30972x10-3-

-"0.283x10 '

1.00

-10.3120x10 _

0.37577x10-4

0.104x10-7

4.17

, 20Hz

1.000005
.-

0.30976x10-3

-7 -0.283x10

-140.18x10

1.00

-- - -1
0.3120x10

0.104x10-7



CHAPTER 5

EFFECT OF ERROR IN TEE Siu1PLED FREQUENCYRESPONSE

5.1. Introduction: The effect of different levels of
•error in the samplea' frequency response on 'the fitted .

transfer function has been studied in this chapter with

the help .of few examples. The frequency responses are

generated from the transfer .functions and errors have been

introduced randomely within a certain level. Here three

error levels !
+1 'l. ,! 2% and - 3% have been studied •

The results are given in tabular: : fOIlll•.

5.2. EXAl'IPLES :

a) The transfer fuqctionwas taken as
3 . -7 21+ O.312x10- S+0.286 x10 S

!,
I.

~he constant eoefficients of the fitted transfer functions

at different error levels are sho';lDin the Table 5.l. 20

sets of data within the frequency band 5 H~ to 585 H~ were taken

5.1

t'
/

\
\.

,r ,.r:)~[
.,' \,~,



Table 5.1

Results showing the effect of'error in the sampled

for the transfer function

••
.~,-";

,,.,
Constant I From original ' 0%' e=or 'From " From , From
coefficients I Transfer function i ' 1% error; 2$(,erraI:' 3%error
------~,-_. '

1.0 1.0278 1.0455

0.31177 "0.2103
x 10-3 x'.10-4

-0.21479 -0.10~38
~0-4 x10-XI

0.286x10-7

0.0

1.0

0.28599

x10-5

0.0

1.0

0.16456

x10-7

0.0

1.0

0.3095

0.0

1.0

0.27924

0.0

1.0



w=o

}=.-w
•.••..• -.....• ---.::: ""- """------------

y

-0"5

0'1 0'2 o'Lt 0'5 O'G X
0'3

~l% Error in data

------ :!:2% Error in data

---------- :!:3%Error- in data

-0'2 J.\
0 :!:O%Error in data

Fig 5.1 Polar plot of frequency respose showing the, effect of different
levels of error in the frequency response on the transfer function

I +0.312XIO-3S +0'2'3GXlo.'7's1..

I T 0;3/12. X 10-1S ;-0.37') x 10-4S2.+0'105 X10-7 S3

R •

-0"3
0-

J -0"4

r,oJ

01

[:~,



From the above Table 5.1 it is found that for all the

error ( ':'1%, % 2'}6', j; Y/o - ) the fi tt ed transfer

function are of 2nd order whether in the original trans-

fer function it was of 3rd orqer~ Though these fitted

transfer functions' are quanti ti vely '. incorrect but from

the polar plot ot: the frequency' response '0£ fig. 5.1;

it is found that the results are qualititively acceptable

b) Transfer function was taken as

1+ 0.3X10~2S + 0.3X10-5S2

1 4. 1 -4 2 1 -5 31+ 0.3x10- S O. x 9 S. -+ 0.5 x - a s

i .
The constant coeff~cients of the fitted transfer functions

at different error levels are shown in the Table 5.2.

20 set of data wi thin the frequency band 5 Hz to 585 Hz

were taken.

5.4
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TABLE 5.2------

Results showing the effect of error in the 'sampled data for the
tran~fer function

1+ a'.3x10-2S + 0.3x10-5s2

•. , r
t

Constant : From original 'From~O% IJj'rom:!:1% 'From~ 2%, From + 3%
coefficient' Transfer functiorj error :error' ,

, I :error error
t , I--------------- ,----------------------

1.0 1.0 00,99936 1.014-87 1.104-2

0.30X10-20.3012x
X10-2

0.2871
x10-2

o. :;Ox
x10...,5

0.302x
x10-5

0.3x10":'5 0.348338

x10-5

0.0 0.0 0.0 - 0.0 0.0

1.0 1.0 1.0

-4- -4- 0.4824-0.4-x10 0.4-x10
X10-4-

O.5X10-5 0.5x 0.502
x105 x 10,-3

1.0 1.0 ,

0.5691
X10-5

5.5
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From the T8!ble 5.2 it is seen that the fi tted tra1l5fer

functions are of3rd order as they were.Upto ~2%

error the ,fitted transfer function is quantitively
J

acceptabl~. It is also 'observed that as the magnitude of

the constant coefficients increases, the effect of error
i,
I

on the f~tted transfer function 'is lesser.
,
i
! ,

c) Transfer function was taken as. ",
I' 2

1+ O.O}S + 0.00048 "
j , ' ' '

1 + 0.02 8 + 0.0005 82

The constant coefficients of the fitted transfer function

at different error levels are shown in Table 5.3.20 sets
I,

of data ,rlthin the frequency band 5 Hz to 100 Hz were

taken.

5.6



Table 5.3

Results showing the effect of error ..in the sampled data for'

the transfer function

1 + 0.03S + 0.0004S~

1+ 0.02:S+ 0.00055'1..

Constant ' From original' Frem 0%
coefficient9 transfer : error

I function

i
I + + ,

+From 1% ' From 2%, From 3%, I -I error , error , error, . ,,
I

0.0004

1.0

0.02

1.0

0.004

1.0

. 0 02

0.9934 0.99588

,
0.03088 0.03091

0.000413 0.000413

1.0 1.0

0.02049 0.02037

0.9777

0.0327

0.00044

1.0

0.0215

B .
2 0.005 0.000517 0.0005159'0.0005505

5.7
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Fig 5.2 Polar pLo,t of frequency respose showing the effect of

different levels of error in the frequency response on the transfer

1'(, X
\
,\

I
. I

Wi'l
j f I,
, I
, I
I
'/

.,1
I
1
~

't
~

1"4
w=o

/"2

'" ~
~

1'0

..•.,.

R •..-
Cl'SO'Go'Lt0'2

, + 0.03$ + 0'0004 s2.
J + 0.02 S '1-0'0005;;2y

function



From the above Table-5.3 it is see~that the results are

acceptable. The Fo_lar plot of the frequency responses, _-
"-

for these fitted transfer function is given in fig. 5.3

5.3. Conclusion: From the above examples it is clcear that

though "+ +_ 3% error even - 1% error mpychange order of the

_fitted transfer function,but still the result is qualititi.-

velyacceptable. The deviation of the values; of the

constants of the fitted transfer function with error from

that of the noise free case depends on the error level

as well as the relati~e magnitudes of the constants.

S9
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CHAPTER 6

MEASUREMENT OF DATA

6.1. Selection of circuits: Different electrical cireui 1;:s_-of
different orders were constructed using resist:ors'and capacitors.
'~eir circuit diagrams and the theoritical callulation procedure
of transfer function are given in the Appendix B

6.2. Instrument used: The~nstrumentB used for carrying out the
experiment were- Phasemeter. Oscilloscope. Digital muitimeter.
frequency generator. frequency counter.

6.3. Difficulties of the phase-meter: The Phasemeter was of
model Type 2971. It can measure phase difference in both radians
and degrees. It has two voltage selective circuit -1) 5V to 10mv
~nd other was 2) 15 V to 30mv. The general procedure of measuring
p:lase difference is to keep the voltage level of the points from
where phase difference will be measured as high as possible within
the selective voltage range.

It is found that the voltage level 'effects the phase
reading badly. The higher the voltage level. the higher the phase
reading (the more accurate readin,,;).This voltage characteristics
of the phase- meter made the exnerimentimpossible for two reasons:

1) In higher frequency (about 100 Hz to above depending on
loading condition) the frequency generator could not effort the
minimllm required voltage level (10mV to 5V range). so the phase
reading found I,aslower than that of the actual. value.

6.1



2) The output voltage of a circuit is generally much less
than the input voltage. Though in some case the input voltage
could be kept in the required level, but the output voltage was
much less.So obviously error in reading occurs.

Owing to these-:reasons, to determine phase difference
'Lissajou's figure; has been used.

6.4. Lissajou's pattern: A Lisajou's pattern :4 is the figure
created on an Oscilloscope screen when sine-wave potentials are
applied to both the horizontal and vertical deflecting plates.
If the frequency of .these two component potentials are the same
but they differs in phase, the resulting pattern is a measure of
the phase difference between the two waves and the ratio of the
output and input voltages (gain) at that point.

To see that this is so, let us suppose that the potential
C'

across the aorizontal ~eflecting plates of the Oscilloscope is
denoted as

(6.1) .

and that accross the vertical deflecting plate is given by:

i.e. ,

(6.2)

'" Sin wt Cos e1 + Cos wt Sine1 ••• (6.3)

. :. ' i



and e
-L.E "

2
c Sin wt CosH2 + Cos wt Sine2 ••••• (6.4)

v

To el minate the time factor wt, let us multiply the first

equation by Cos(12 and $he second 'equation by Cos e'1.Then we get -

Cos e'2 = Sin wt. Cos91008 92+ Cos wt Cose2 SinB1 (6.5)

and

Subtracting equation ( 6.6) to, (6.5) we get

Similarly, multiplying the first by Sin e2and the second by

Sin 9 1 and subtracting we get -

-SinB
1

C0892), Sin wt .... (6.8)

equation (6.7) and (6.8) can be .~itten as

C08 e 2 .... (6.9)

("i



Squaring and adding equation ( 6.9) and(6~10)we get _

Cos ce -e )
2 1

This is the equation of an ellipse whose principal axes coincide

with the coordinate. axes when e2-e1 =TI/2. Hence in most cases

the result. is an ellipse {except. de = O&.de= 11), the orienta-

tion of which depends upon the phase difference between the tl'lO

waves. r"

'The results have the form illustrated in fig. 6.1

\:r

. & e • 71/2

~ .....-d9-
Ae: 0

<1 e. = IT

•

Fig. 6.1 Form of ellipse at different phase difference.

6.4
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If the amplitudes of the potential applied to the.vertical
and horizontal deflecting plates are equal then the pattern at
phases -6e;: 11/2. and 46-=311/2 will be circular.

ry(m~
tYlc.uI) --

Fig. 6.2. General form of an ellipse for a Partieular
considion .

The experimental procedure necessary for measuring the
phase difference and gain between the tl,Wpotential is quite
direct and consists in measurinf; the three distances E '( t).' . y cu )

Ey (l'Iax) and
,
E .
x( Imax).

Obviously, gain = EyCmax)_

E (max)x
... (6.12)

(6.13).....

Ey(cut) is the value of ey at the Roint when ex= O.Then from

equation (6.11 )

Ey(cut) = E2Sin( 62- 61)

A.gain b ..., -
r':" -is 6-5



Ey( cut)

Ey(max.)

.-1= S~n '.. Ey(cut)

Ey -(max)
... '.~... (6.14)

The shape and rotation of the ellipse illustrated in Fig. 6.1

can be explained grap~ically6 when two sinusoidal voltages of~ .
equal frequency which. are in phase with each other are applied

to the horizontal and verticaldi1"1ecting plates, the pattern

appearing on the screen is a straight line as is clear from

Fig- ~.3. ....

Thus when ~wo'equal voltages of equal frequency but with 900

phase displacement are applied to a eno, the trace on the sareen

is-a circle. This is shown in Fig. 6.4.

!
\.;hen two equal voltage of eqnal frequ~ncy but 1.lith.8

phase shift (Not equal to a. or 9~)are~pplicd to a CROwe
obtain an elipse as shown in Fig 6.5.An 'eTIipse is also obtained

Nhen unequal voltages of same frequency are appl;.ed to the CRO.

A number of conclusions;,cllD be drawn from the above discussions

when two sinusoidal voltages of same frequency are applied:

i) A straight line results when the two volteges are equal

and are either in phase with each otter ,or 180 out of phase

,

6.6



I - -

I
I

J -
I
I
I
I
I
I
I

Vertical applied
_voltage-e,)/

- ,
Hoizontal applied voltage-ex

Fig 6.3 _Lissajous pattern when phase

difference is zero and equal voltage - is applied.

: .
I

- t-

Vertical applied voltage
e'j

Horizontal applied voltage - ex --
Fig 6. it Form of U 5sajOu's' pattern when phase

difference is TU2 and equal voltage is applied
,-
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again.

with each other. The angle formed with the horizontal is 450
when the magnitudes of voltages are equal. An increase in the
vertical deflection voltage Causes the line to have t:l.nangle
greater than 450 with the horizonsal.

ii) Two sinusoidal \vaveforms of the same frequencyp roduce a
Lissajou's pattern, which may be a straight line, a circle
or an ellipse depending upon the phase and magnitude of the
voltages.

A circle can be formed only when the magnitude of the two
signa.lsare equal and the phase difference between them is
either 900 or 270°. H01'Jever,if the two voltages are not equal
and/or out of phase an ellipse is formed .If theY voltage is
is larger, an ellipse with vertical major axis is formed while
if the x plate voltage has a greater magnitude, the major axis of
the ellipse lies along horizontal axis.

iii) It is clear from Fig. 6.6 that for equal voltages of same
frequency progressive variation of phase voltage causes the
pattern to vary from a straight diagonal .line to ellipses f

different ecentricitiesand then to a circle, after that t~rough
D canother series of ellipses and finally ~ diagonal straight line r

. '~ I

(
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Vertical applied voltage

-11--
<f

",'.0-

- --- --I
I ,
I '

. I I
. I
I I
1 I
J
I I
I .

I I
I I

I '
I I

I'

I I
II ,

I 1
I I

•

Horizontal applied voltage
ex

Fig 6.5 Shape of an ellipse at.a phase difference <p



.' o'-~--- <p =-o~,% ..

o . o'ep = ~0,330

o
>
"0

m - 0' <IJ
r T -9 , .-

270'0..
0-c

q:>= 150'. 210"

Horizonal applied voltage

Fig 6.6 Forms of Lissajou's patterns at. different.
conditions- when equal voltages a.r..eapplied .•.
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The rotation of figure 6.1 can be explain_easil~ from
fig. 6.6.

lrJhen o LLl9 L"Tt/ 'l. and the voltage at hO'1'i20ntal

axis is zero., .thenvoltage on vertical axis has some
+Ve value c.orresponds to.the.phase difference. As
voltage on X axis increases, then the resultant voltage
voltage vector starts to move towards the ~ x- axis
So rotation takes plac~ as indicated in fig. 6.1 Similarly

the same form of ellipse occurs
but the rotation is in opposite direction that of for o,<Ll8<n/2.
In this case when voltage on X-axis is zero then voltage on

y~xis has some -ve voltage~ AS voltage on X -axis increase
the resultant voltage vector starts to move tow:..rds the
+ve x-axis, and form the rotation as in fig. 6.1.
for all conditions the rotation of the ellipse follows the
rotation of Fig. 6.1

6.5 Measurement procedure : The input 'Nasconnected to the
frequency generator and the horizontal axis of the Oscilloscope.
The out-put was connected to the vertical axis of the Oscilloscope
properly. Then varying the input fre~uenc7 and voltage level,
data ~ere taken. The Lissajou's figures were made as large as

,
possiole on the Oscilloscope screen within its callibration so

6.11



that full scale readings could be taken. Voltage readings were
also taken.by digital mllltimeter as well as in the Oscilloscope.

6.6. Errors in measurement .:Thepossible reasons for which
error may include in the data were-

i) The data was taken by graphical method.So personal error.
may be encounteed.

ii) The frequency generator generates qigher harmonics
especially at low frequency range. The use'of filter lowered the
input voltage by such a low level that the output voltage was
very diffiult to meaSure. So without using filter at low frequ-
e:lciesaverage of several sets of readings I,ere taken.

iii) At some frequencies thelttern of Lissajou's figure was
not steady. At these conditions reading were taken estimating the
midpoint. To minimize this error, different sets of readings were
taken at different occasion and if steady readings were not
found, an average of those sets had been taken.

6.7. !,!eqsurementof cricui t parameters: To check the accur9.cy
of the fitted transfer functions of different electrical
circuits obtained from their frequency responses using genera-
lized comnlex curve fitting method,it is necess sry to knOlv

their theorecal trarsfer functions. To obtain the theoretical
transfer function it is neceSS:lry to ~ncw the values of

6.12
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the circuit parametersaccurately. The parameters were resistors,~
and capacitors. The resistance, capacitanceand the internal
resistance of a capacitor were obtained by the following
procedure • It has been observed that the rated values especially
in the case of a capacitor varies greatly.

R,

1-----
I
I

I Vrx
.j.

i
Vc

L _

----,
I,.

Rx,
I

I
I

C I
1
I___J

Fig. 6.7. : R-C circutt showing the internal resistance of

a ca"aci tor.
Vi ~ input voltage

Vr ~ voltage accroSs the resistance

Vco ~ Output volta~
:: V':; 1tage ac:cross the terminals of the O'arac tor .

•
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--------- --

v . = Voltage drop due to the internal resistancerx
of the capacitor

v = Actual voltage drop for the capacit,or•.c

If there is no internal resistance in the capacitor
then.

V.2~ V2
r + V Co

2
(6. 15)

But it was found that

V?
~ > + V2co.

(6.16)

,
Then it is evident that there is an internal resistance

Fig CB Vector diagram showing the different volta~e
drops at different sections of a R-C circuit.

61!.



Here;
OC= V. = ~nput voltage

].

EC = Vco = Voltage accress the terminals of

the capacitor .•

OB= AC= V actual veltage drep for the capacitorc

EA = Voltage drep due te the internal resistance
.ofthe capac iter.

= Yrx
The resis tive drop Yrx can be isela ted from Vce by-the

fellewing trial and error methed.

~o = y2 + y 2c rx:

let, V = jv2
+ V2x . r ce

i.e. y2 + Vce2 = y2r X

(G.17)

(6.18 )

(6.19)

Since there is resistive drop cempenent in
ameunt .ofvoltage E is subtrated from Vco

V an smallco,
I'e:ctorically

and added \1ith Vr al,zebric ally •

Fer conveniant of .operation E is taken as

E=

2
(6.20)

,

r 1 ~o. ':J



let, V' CO(1) =

,
and vr(1) =

(

(6.21 )

(6.22)

Then again it is checked that whether

> '2V.co (1) + V ,2
r '(1)

If it is so, the same produre will be repeated until

(Vi - Iv'~otn) +

small value (s',

Then V =, rx

,2
V r(n) )

,0. 0001)

falls
• Where

behind a predetermined
n is the' iteration no.

(6.23)

(6.24)

Now, R
"

Rxand C can be obtained if the current,y',andthe
corresponding. frequency, f is known. I

R= Vr ( 6.25)I --
I

Rx = Vrx ( 6.26)
I

c = 1

2 nfvc ( 6.27)
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CHAPTER 7 "-."- -.

(

DETERI1INATICN OF TRANSFER FUNCTIONS OF DIFFERENI'

ELECTRICAL CIRCUITS

7.1 Introduction: Different circuits of 1st order to 3rd order

have been constructed using resistors and capacit,ors,of different

values. The values of the resistores, capacitores and the,.

internal resistances of the capacitors have been calculated

from experimental data using the technique explained in section

6.7. With these values, their theor~tical transfer functions

were calculated (The calculatlon procedures have b~en given

in Appendix B).

The frequency response of these circuits have been

obtained experimentally using Lissajou's pattern and they are

given in tabulaIH.' form in Table 7.1, to Table 7.5.\lith these

frequency responses fitted transfer functions have been deter-

mined using the generalized complex curve fitting method.

7.1



7.2. Practical Examples:

1) 1st exampl e (1st order syst am. ):

R,,11

I r-- -----, i
I

I VoV. I Rxl1:I
I I 1

II 1

1 L-I-~~1_1
• 0:

Fig. 7.1 1st order circuit

The theoretical transfer function was calculated as

1.0 + O.000123S

("
I

'.,

"I



.!!!!!!!!.

Experiment al data for the 1st order system from Lissajous patterns.

1 + 0.00012~S

1+ 0.008~1S

I

I Phse differeoc e
• iii i i •

~otation I GainNo. or I Frequ- I Vertical Axis Reaa1nl'S' Horizontal I Voltage
Obs. I ency I I Axis Readings, Reaaings

volts

I Hz
I f

I , .' _

I ..f I'.,
Y max' SID I X maX I Out)ur'Inpur I I I

I I . I (" ,(V),
I Yo '1' . I I ,

, I . , " I t
" I'! ,

---- L.---------~i----~i
, , " .

SID I Y cut ',
I,,

I
I___ ~ L

1 5 .2V/JJ 1.1 4.0 2V/D 4.2 - - # 0.9524 -15.':jb
2 b + 1.~ 4.U " 4.~ - - " u.9~2 -19.57
} 7 " 1., 4.U • 4.4 -. - 0.9091 -22.04"
4 tl " 1.25 ~.O " j.35 - - " U.8955 -24.b2, 9 IV/D 1.8 4.U IV/JJ 4., -..... \ .. - " 0.8889 -2b74
6 10 11 1.96 4.0 " 4.b - - " 0.8696 -29.~

--7 12 " 2.1'1 4.0 " 4.0 - - " ,0.8,jj -j2.8,

0 1, " 1.85 j.O " ~.9 - - 0.7692 ... -~.07' II

9 20 " 2.88 4.0 - - .,.00 4.4~5 " 0.6780 -4b05
10 25 U.5vID ,.1 4.0 - - 1.46, 2.4" " 0,6U1, -50.81
11 ,0 " ,., 4.0 - - 1.4tl5 2.78, " 0.,,36 -55.59
12 40 " ,.,5 4.0 - - 1.448 ,.~8 " 0.4299 -b2;6

1, 50 o •.2vID ;.b5 4.0 - - 0.57, 1.b1 " 0';571 -6,.8, 7. 3
" ..,

contd ....-------_ ..
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TABLE7.1 (continued from last page)

~,-

1'- y- I f

T

No. of 0 Frequency 0 Vertical Aris Reading' Horizontal' • Voltage reading 0

Rotation' • Gain I Fhase difference

obs. " .\ Aris Realling volts
• in degrees

, ! ••••

_. I I I' i .
Hz \ SiD 0 Y cut' \ Y max 0 SiD 0 X max lout .' Input

: I 1 I I put:. I

I I I I I
I • • I V" Y'r I , , I Q" I i

, I '
! .

14 60 OOsV/D ;.7' 4.0 - - 0.574- 1.867 ' -tP-" 0.;074- -09.64

-- - ~-_.

15 70 •• ;.8 4.0 - - 0.567 2.10; " 0.2696 _71.81

1b 80 •• ;.8, 4.0 - - 0.571 2. ;9, " 0.2;84 -7;.24

17 100. •• ;.8b 4.0 - - 0.560 2.89t\ " . 0;19;2 -74.80

18 120 •• ;.90 4.0 - - 0.562 ;.460 " 0.1624- -77.16

19 150 •• ;.92 .. 4.0 - - 0.282 2.16, " . 0.1,04 -:-78.52

20 200 •• ;.9' 4.0 - - O.ct\4-' 2.858 .. 0.0994 . -79.27

,

7.4
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i
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Fig 7.2 Polar plo'~ of frequency response showing the accuracy

y

,
of the fitted transfer function 0'99 + O'I'.l79XlO-3S

.1"0 to"S('25X 10-2S

o
0"1 0'2 0'4 0'4

R .
0'5.' O"G 0'7 0"13

w.~o
0"")

",:;2
X1~~

-0"1
From Theoretical Tra nsfer Functton

- - - - From Fitted Transfer Function

"

I I,
I

.' tv
~4ic.
/

. ~ /
(0 ((/

/l(~"v / .

. 0;;~ty g;;.
,r:

"!A.~""

.~~~~'. ,".
j

6-

~ --'20 ttl:..

Experimental Frequency Responseo

"

-0''1

'.0"3

Q

1-0'2

~
, .-~

-0"5
[i 7,5



The fitted transfer function by this method was found as -

0.990 + 0.0001279s

1.0 + 0.0086253

The result is found to be quite satisfactory ,

The polar plot of frequency response has .been shown in

FiEj. 7.2.

ii) 2nd Example (1st order system):

1 r- -----, 1
v. I Rx12: VoJ I

1
I I
I

j1~1:_:
• •

Fig 7.3 1-st order circuit

7.6



Table 7.2
.Experimental data from Lissajous pattern for tlle 1st order system

1+ O.00036~S

1+ 0.013858

i
• Phase
• difference

No. of' F'requency , VerticalAXis Read~n"'s 'Hor~zonal i i
• ~ t Rota- I Gain

abs. ' S/D : Y cut : Y max I a~s rea- " tion I
I , I d1ngs. .

H~ I , I

• SID : X max:
I !

I

I
i

Degree

2V/D. 1.4

2.21.. 4

-50.7

-~9.4

-20.5

-~5.5

.-56.4

0.600

0.~11

0.800

0.740"

"
..4.'1

~

5

5

"

"

"

"
2.4

4

2.~2

-2.0

"

•

"

.,,
20

1U

5
8

5

~

2

1

6 25 .IV/D 4.0 " .4.tl ' " 0.417 -CGO.2

6

tl ~~

•

• ~.o
~.'I "

"

~.u

9 " " 0.290

10 50 " 2.~ 2.46 u 5.0
11 60 0.5V ID ,~.7~ " 4.8 0.208 -69.6

12 '10 " " 0.185 -71.1

1~ 80 " ~.08 " " . 0.1bO -74.~
14 90 • 2.8 2.9 "
1;' 100 •• 2.b~ " -76.tl

7-7



I I ':::1 ., . -... , . . , I !
.,./fitted transfer functionO. 9857+ 0:-00033255

1 + O. 013315

Y' i From Theor~ical Transfer Function

- - ....,- - - - - From Fitted .... Transfer Funct ion

o Experimental Frequency Response

-x 0'2. 0'4

R •
O'G

w=O
O'S x

~ ~ _ 0_--. -,.:.;.,J

- 0":1
0..

1 -0"2

- 0':3

-0'4

-y
IS Hi!- IOlh

J

7.f\

5\\1- .. '

o



Here

The theor~t ical trausfer fun-ctionis calculated as

1+ 0.000363,:3

1+ 0.01385s

The fitted transfer function with this method was found as

0.9857 + 0.0003325s

1.0 + 0.013318
oJ

The polar pI ct of'the frequency response of these transfer

functions have been shown in fig. 7.4.

The result is found to be quite satisfactory.

7.9



iii) 3rd Example (2nd order system):

I
I
I
.1

1
_-
-' ..

V.I

Fig. 7.5 2nd order circuit-

-:-..--' ..•.- 1

RX22:
I
1

I I
I I
I e221L--- __ .,J

a) In this case ehe parameters were as follows :

R21 = 92.53.n..'_ R)(21 = 1.47.:n. • C21
I
I

I :
R22 = 97.00..n.• Rx22 = 2.27 Ji. , °22

The theo~tical transfer function is

= 65.8)1--£

calculated as

,...-------

----- ------- ------_.- -- -

7.10



TABLE 7.,
Experimental data from 'Lissajou's patterns for the 2nd

order system

1 + 0.27272 -10-35+0.164 ~1O-752 ,

1 +0.212575-10-15+0.5506_10-452

i , i ,
No. of: Freqe.ency I Vertical Axis Readings , Horizontal Axis Rotation , Gain Phase different
obs. ' readings • , ,. ,

•
,, ,, 1------ -, , • I

Hz ' SID ~ Y cut I Y max SiD , X amx , , Degree.. , , •, • • ,

1 5 0.2V/D .2.5 4.0 0.2V/D 4.8 . ~ .. 0.8333 -38.68. .

2 6 •• 2.7 4.0 •• 5 .. 0.8000 - 42.45

, 7 •• 2.96 4.0 •• 5.4- •• 0.7407 - 47.73

~
4 8 •• 3.18 4.0 0.5V/D 2.25 •• 0.7111 - 52.66

5 9 " 3.,5 4.0 " 2.4 " 0.6667 - 5C);.8~
I

6 10 •• 3.5 4.0 " 2.55 " 0.6275 -6"1:04

7 1.2 •• ,.65 4;0 " . 2.82 " 0.5674 -65.85

8 15 •• 3.85 4.0 •• 3.4-- " 0.4706 -74.26
.'

9 22 " 4.0 4.0 " 4.7 ~ '. 0.3404 -90.00

,
10. 30 " ,.9 4.0 lV/D 3.32 0.2402 -102.84

11 40 •• ,.68 4.0 " 4.66 0.17"7 -11,.07

12 50 O.lVID ,.45 4.0 •• ,.2 .. o 1250 - '20.40

1, 60 •• ,.2 .. ' .
4.0 ". 4.8 0.08" -126.87

14 70 " ,.'10 4.0 " 5.15 " 0.0'(77 - 1,1.41

contd. 7.11



Table 7.3 (continued from last page)

. J__ I DegreeX max:

T'--------Ti----------------~i~----------T'-----~i--------~,------------
No. of: Frequency : Vertical Axis Readings i Horizontal Axis 'Rotation' Gain " Phase different
Obs. I ': 1 Readings I I I

'! , . ,-'----_ •••,--------'--------------------I I i i -, I •

,Hz , SID , Y cut, Y max ,S/D,
! '!! I I

'14

15

70

eo
O.lV/D

5Omv/D

3.00

2.8

4.0

4.0

lV/D

"

5.15

3';'

--%--'",~o, ,

"

0.0777

0.0606

- 131.41

-'135.57

16

17

90
100

"

"

2.6

2.45

,4".0

4.U

"

"

4.0

4.e
"

"

0.0500

0.0417

- (39,.46

-'14~.23

'18 120 " 1.b5 3.0 " 5.U " 0.0300 - 146.63

19 1lj.0 20mv/D 2.1 4.0 " .,3.45 " 0.023~ -'1tl-8 ';3
~u 160 " 1.9 tl-.O " 4.tl- " , 0.018~ -'15'.btl-

, 21 180 " 1.0 3.b " 5.U " U.UN4 ,';153.001

22 200 " 1.26 3.0 " 5.0 " 0.0',20 -155.17
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Fig 7,6 Polar plot of
fitted transfer function

y

frequency response showing the accuracy of the
1"0079 - O'8XI04S - O'374XIO-7s'2.

;1'0 +O'224xIO-'S+O'508xI0-4S2.

From Theor~tjcal _Transfer Function

Fl"omFItted'Trap sfe r Function

Experimental Frequency Response

-~--'--

o

x
0"(,

w=o
0'5O"~

R •.
0'30'20' I

~

"" ~

-0'1

-O'lt

--1)2

""o;:r

Q

1

--()"~ ~d
#1(

~J.

I.

•

-O"S
/s~~

:-..
~
~
"",-~",.

( .~--
'"' ~ ---

'6,~
"

- -_'1- tl1 7,13



The fitted transfer function was. found as

The result is not very accurate. The order is found to be.

same as the theorgtical transfer function and the constant

coefficients of the denominator is nearl.y: accurate. But from

the polar plot' of the frequency response of f:j.g 7.6 it is se en

that the result is qualit~tively sdtlsfactory

iv) 4th example (2nd order system)

R23.
~,.--.

1 1r- ___ -J;) 1-- -----1 JI RX23; I RX24:I

y. I r YoI I I II
I C I-I. ;,....C23 I

j
I ( I 24 I

I L ~ ' II - -J-:: ----4~... - - -

Fig 7.10: 2nd order circuit

7.14
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!.@.LE 7.'10
,

Experimental data trom Lissajou's pattern for the 2nd
order syst em 1.0.865.10-35.0.1823.10-652

1.0.391.10-15.0.1834.10-352

No. of I

, ,-, . , j I , ' , '

Frequency , Vertical Axis Readin,s Horizontal Axis , Voltage Readings Rotation Gain I
Fnase

obs. t, I ' Readings' in volts Difference, , ,
, I

, , , ,
I,

I I
, , I •

• Hz , SID • Y cut :Ymax Sill 'Xmax output Input Degree
, , , icv 0) ,

,
(Vi)I ,

I , , ,
, • I I ,, I I

, , ,

1 5 Iv/D ,., 4.U 2v/D ,.2 - - ";,-,,.-tfL 0.625 -56 .'10

"

2 " " ,.55 4.0 " ,.5 - - " 0.571 -62.6!

7 n ,~7 '10.0 " ,.9 0.~1, I I, - - "
-67.7

I

n ,'10.0 "
,

'10 tS ,.8 '10., - - " U.q.b:> -71.tS

:> -;, " ,.8b 4.0 " 4.'/. - ' " 0.426 -74.8

'"
10 n ,.9 4.0 - - ,.345 8.8 " 0.380, -77.2

~ '7 ' 11 n ,.98 ' 4.0 - - ,.1b 1'10.7 "" o. ,51 -84. ,
. )

ttS 1~ n . ,.U ,.9 - - 2. ,75 8.1'13 ' 0.291 -90.0

9 45 • ,.98 49 - - ,.e;6 12.0 ': ,'" 0.25' -95.7

10. ~o O.5V/D ,.92 4.0 - - 1.496 7,875 " /
0.190 -10',.5

co n t d .. , 15
7.



TA.BLE7.4 (con:t;inued :from last page)

---~i~----~i------------~i----------i---'---------~i-----i~-----------
No. of; Frequency: Vertical Axis readings , Horizontal Axis Voltage readings" Rotation, Gain ' Phase
obs.' Readings' in volts ' differen:: e

I I • I'

Iii ! i'i
I " II H", : SID : Ycut : Y max : S/J) , Jl 'max I Outpu, ' Input'

____ J ~ :.t : f : (Vo) :(Vi)

0.2V/D ;.'12 4.0

n 3.2 '1.0

n ;.0 4.U

n 2.';/ , '1.0

" 2.75 ,,".0

;.5----4.U

11 25

"12 ~O

1; ;5

14 . 40

15 50

1b bO

17 70

~ 18 , ClO

O.5V/D

"

"

3.8
3.67

4.0

4.0

1.455 9.947

1.'1~2, 12.51

1.417 ' 15.255 ,

1.092 14.27~ ,

u.564 10. ~O

0.550 1~.~3,

0.280 tl.465

0.277 10.29'1-

I ', I'+' 0.146

" 0.114

0.09:;

" 0.077

" 0.055

" 0.042

"i 0.0~3 '

" 0.027

Degree

-108.2

-11;.4

-119.0

-121.2

-126.9

-131.4

-133.5

,-136.6

7.16



F'ig 7, B Polar plot of frequency. response showing the accuracy of the

fitted transfer function 0"977+0"f,503X1C1-o"lD9j)<\C6S~
y j"o+C"it0\3xlo'S+O'ib29 XIO-'3S2.

7.17

i I
!
I
I

'x
R •• w= 0

," ..
0'3. .. .0'4 ..

Experimental Frequency RE?sponseo.

0'2

- - - - - From Fitted Transfer Function

~--- From Theoretical Transfer Function

0"1

-0"2

-C'l

~ I

\i~
t\~
\~
,,~~

"'G~ .
.. " 9~

-O'Lt "~. f?

'- ~ ;:;
'-.&~ 611.

'- --.....Q..,~.
~ ---0'5

Q

1

....,
m
"S...,

-x

,

-y



The theor~tical transfer function was calculated as

The fitted transfer function. was found .as

The fitted transfer function is not very accurate.

The order is same as theorgtically it was • The constant

coefficien-ts at the denominator are nemrer;to.;thatdt: theor~.tical
i

values. Though the fitted transfer function is not quanti~ely

very accurate,but from the frequency response plot of fig •

..7.S the. result is.-found satiafac~ory.

7.18



v) 5th example C3rd order system) ••
R31 R32 R33

1
" .J'.- .,,- - - - --j r-- -- - --. r- ------

RX32
I RX33: II RX31 I I
II I I Iv. I I v ..I

'- -'.
, ..

I II
I ~. I o •

I I IC31 I C32 I

C33 I
I. I ,I --- __ 1 L_ - __ ~ _1 I1 __ - -----

, .

Fig. 7.9 3rd order circuit.

Here

R = 10.11Jl., R j333

The theoritical transfer function was calculated as

7.19



~:_...:0.2

Experimental data frei, LiasaJou's pattern forthe3rdorder system
1.0.311949.10-3 S .0.286 .10-752

1'0312212.10-15.0.379 xlO-4 52. 0.105xlO-753

- 66.9;

-77.160.,125

o .l!'l44"

II!;;2
. 4.5n

2v/D

, i

4.0

4.0

,.68

,.9
"
"15

10

1

--,
No. of.' Frequency 'Vertical Axis Readings ,Horizontel Axis' 'Rotation Gain' Phase
obs. : I or readings, i .: , difference

I I ii, ,
I 1 I I I
' Hz : SID : Y cut : X max I SID , X max I : Degree

5 '0.5V/D' 2.95 4.0 IV/D ' 2.9 '. ~'. '0.6897 ' - 47.52

2,
4 20 0.2v/D ,.975 4.0 IV/D ;.; " 0.24-24 -8;.59

0.2v/D .4.07

5

b

7

Ii

25
,0
40

50

"
"

"
2Omv/D

;.99
4.0

;.99
;.9,

4.0

4.0

4.0

4.0

'n

"
2V/D

4.1

4;75

;.25

"

t
.

.......:. .

0.1951

0.1b8'+

0.12;0

0.09828

. -85.95
i I
I! -90.00,
-94.05

-100.7,

,

9

10.

11

12

1,

60

80

100

120

150

"
n

n

"

1Omv/D

. ,.85

- 2.775

;.55
;.;5
;.0 .

4.0

;.0
4.0
4.0

4.0

"
n

0.5v/D
n.

"

• 4.95

5.1

,.5
4.42

2.'39

"

"

"

"

0.080t!1

o 0588<!

U.04571

U.0,620

0.02676

-105-74

-112."

-117.44

-120.12

- 131.41

0.00889 . -'58.75
contd ....

14

15
16

200

250

,00

"
"

"

2.4
1.95

1.45

4.0
4.0 .

4.0

"
. IV/D

"

4.45

,.25 ..

4.5

'.
"

"

"

0.01798

0.01231

- 143.13

-15~.82

7: 20



Degree

,

Table 7.5 {continued from last page)

----~,---------~i-..;.....------------~i-----------~i-------Ti------~,------------
No. of: Frequency , Vertical Axis Readings ,Horizontal Axis Rotation, Gain Phase
Obs. ' readings, ' difference

I ! t

I I ' ,Hz I SID Y cut , X mac 'S/D ,X mllx '
I 'I I

! ,! !!

17. ~50 1Omv/D 1.06 4.0 2v/D ' 3.0 - ~,- 0.00667 - 164.63- ,'-.
18. 400 5mv/D 0.75 4.0 rf/D 4.0 II/ .. 0.00500 .,.169.'19

19. 450 n 0.46 3.95 n 5.0, n 0.00395 -173.31

20. 500 ,n 0.20 3.15 n 5.0 " 0.Gq3"'5 -176.:36t..0.00235
I

21 574 n ' 0'0 2.35 n " 5.0 -~~d.oo
, ~ ' !

22 690 n 0.10 1.5 " 5.0 ' , " 0.00150 1'85.82

23 g1~ n 0.10 1.0 " 5.0 " 0.00100 -185.74

"-",

7.21



Fig 7.10 polar plot of frequency response showing the accuracy of
the fitted transfer function-

0'9929 - O'I~2g';Xlci:!>$+O'IOS,XIO-7s2.

1'0 +- O'32S,xlo-'s +O'2.35"XIO-"r.s'.l..

y ~,- -

From Theor~tical Transfer Function

o
O.
::t:
t"

0'2

R
.p'ft .

w=o x
O~(, ()

o Experimental Frequency Response

~'\) +-0'1.
~
'" II

-0"2

From Fitted Transfer Function '

-0"6 o 5H'2.- -'-- 7.22



The fitted transfer function was found as 2nd order and

it was

At 3rd order it was

Quantif~Nelythe result is found to be unsatisfactory. But

from the frequency response plot of fig. 7.10 it is found that
/the result is quite satisfactory.

7.3. Reasonsfor; vl!riation from theor!atical values : It has
Ifound that ,in 2nd order system, specially in the case of 3rd,

order the fitted transfer functions differ from tnat of the

t neoretical.
'\'
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It is not possible to take 10C"f accurate data by graphical

method. Moreover the v2.lues of the parameters were found

different at different frequencies. If we look into the

the equivalent circuit of a capacitor? we can pee a

series resistance r I a series inductance L and a, s

parallel resistance r
" p.

I

I
I
I
I
1
1 rS
I

L

I
I
[
I
I

IL _

c
I
I'

I
I
I

- - - - _I
/

Fig. 7.11 Equivalent circuit of capacitor.
i
i
,

In calculating the capacitance and the internal resistance,

the effect of indlj,ctanceand parallel resistance is neglected

So the values of internal resistance R and capacitor cx

which are measured are not very accurate.

7. 24



It has been observed in the chv.p"\;er.5that in most of the

cases ~ 1% error gives satisfactory results .Hence error in
measuring the freaueIXY response should not be greater than

! 1% • But so much accurancy cannot be expected when frequency

response is measured from Lissajo:u's pattern-Hence better
, ..~.: . ,.

instru~ent for measuring frequency response is necessary

which is not available in our department at present.
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CHAPTER 8
DETERMINATION OF TRAKSFER FUnCTION OF THE R.F.
SECTION OF A RADIO RECEIVER.

8.1. Introduction: An one band radio receiver was taken.
Tracing the whole circuit of the receiver its circuit diagram
has been constracted. The _R.F. section including the I.F.
sections is selected as a circuit whose transfer function is to
be deternined.

The frequency response-of the circuit has been obtained
using Lissajou's patterns considering the whole system as a
black box. Th~n from -this frequency response transfer function of
the whole section has been determined using generalized complex
curve fitting method.

8.2. Measurement procedure : Thetraosfor.mers of t-heconvertet' and. ." ,

LF. stages are designed,. for very low voltage level. But the
I

signal genera tor re,quires a minimum voltage leye 1 to genera te
any desired frequency perfectly. This level is much higher than
that of the saturation level of the transformers. More over the
gain was so high that it was almost impossible to take the
frequency response using oscilloscope.

To overcome these difficulties a high resistance was
connected to the circuit at input.

_ 8.1
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.. - -. :~-:....-.

High
Resistance t

Vi

R.F. '
section

Fig.!'l.2 Block diagram of theR.F. section with High Resistance

The higb resistance acts as an attenuator whicb lowered

the voltage level sufficiently at tne, input of tne R.F. section

to keep it in the required voltage level. Moreover this time
I .....•

tbe gain, Vo/Vix. is possible, .to .obtain from oscilloscope •

~;.(8.1)

.....•... (8.2)

tbehigb
Vi

=

Transrer function of

.The transl'er function of the R.F. section = ..!L
Vi

resistance section

Vix
The transfer function of the wbole system

(
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TABLE 8.1

Experimental data from Lissajou's pattern for the I High Resistance'
Section for determination of transfer function of the R.F. Section

24.62

28.57

24.62.26.,..

Phase Differenee

0.00192

'!

"

:.:..d::Li '" 0.00184

.:LY L 0.00192

" 0.00188

5.0 '

5.U
5.0
5.0"

"

:~,

, 5v/D

2.4

2.3
2.4
? 35'

1.0

1.05
1.0

1.1
,

"
"
"

,20mv/D400300

407200

4141~5

421U~

I I Iii 1

No. of: Frequency t Vertical Axis Readings ,,, Horizontal Axis 'Rotation' Gain
cbs. :', t Rea~ngs t I I

! I ! ,, ,---,-----~i-" ,
It, I
~ Hz j SiD 1 Y cut . ; Y max , SID : X max I : I

I

~

4

1

2

5 428000 " 1.0 2.4 " " 5.v " 0.00192 24.62

b 434700 " 0.9 2.4 " ;.0 " 0.00192 22.02

'7

tl

~

1U

11

'l42U10

'+50250

453138

4601;u

468900

"
"

"
"

"

0.6

0.0

0.4

1.0

1.1

2;5,
1.4

1.1

1.7

1.9,

"

"

"
_.11

"

;.U
5.0
;.U
;.0
5.0

"-:-+',' ':
.,~'"

"

"

0.00200

0.00112

0.00088

0.00136

0.001;2

; 13.67'

0.0

21.32

-36.03

-35.,'

...."".

~ 12 47;980 " 1.15 2.1 " 5.0 " 0.00168 -33.20

13 485660 " 1.2 2.15 " ;.0 ,
0.00172' -33.93

14 49385u " 1.2 2.2; " ;.0 " 0.00180 -32052

15 5U2290 " 1.2 2.25 " 5.0 >.11 0.U0180 -;2.':3

8.4



Experimental data from Lissajou's pattern for tne 'RF + High Reisstance' section for determination of
the trans fer function 01' the R.F. Section.

T'-------"T,-------'-------- __, _

Degree

r, -_-- ~, ...• , _
. . I t

Rotat ion ..Gain Phase difference

Hz

Frequency ,Vertical axis Horizontal Axis
Readings 0...... 'Readinp;s

!

, ii,
'SID',' 'Y cut ,X max , SID 'X max
I : : ____ I : I

No of ,
obs.

1, . 441064

10. : 4,s518

11 4,9812

12 440,95

0.2v/D 2.0

-69.64

-'(0.99

-105.84

-62. ,s
0.0
0.0

-79.00

-90.00

-1,2.21

-15,.15

-196.60

-080.0

-213.75

"

" 1'95

" 1;,75

',11 .0.960

0.0
0.0

',,# 0.7900

5.~94.

" . 6.200 .
.~~ ',.

6.800
. ~'.~ 7.000

~7.200

it..2.885-. . 3-9'"
. -

5.0
5.0
5.0

5; "I

5.0
5.2

5.
5
5.0
5.0

5;0
5.0

'5,0n

IV/D .

"

"

n

"

2Omv/D

n

"
"

n

'n

...

~.9

1 • 5l:l

0.001

0.001

j

1.92

2.75

~.95

2.7

,."
3.4
,.5
'.6

1.4

0.0
0.0

1.8
2.6

1.4

,.8

,.8
,

o
1.0

2.0

n

51mv/D

50mv/D

n

n

n

"

O.lV/D

"
n

"

"

42,745

425298

42750,

~oooo
'>00000

4,2252

429504

4~452

4:;6904

1

2

~

5

4

7

9

6

8

•

"14

1,
16

"'7

,>4179~

4'>,.:1,0

,>4419,

1;.44 9"5

n

n

"
"

;.0

,.75
,.0
2.0

3.66

3.75

3.78
3.75

n.

"

••

"

5.0
~.O
5.0
5.0

"
.~

#
"

7.320
7.500

7.560

7.500 contd ...

-235.65

-270.00

- ,:7. 47 '~'_',
j ;

- 327. 78 8.~5



Table 8.2 (contd. from last page)

iii i \ I
1\0. of, Frequency Vertical Axis Rer-.dings , Horizontal Axis 0 Rotatiqn Gain Phase differen::
cbs. I . ReedinGs I t

I . I _-------"-

" 1. , ,
I
, Hz, SID : Y cut , Y max

, -J-

"fV..,~.

I I Degree: __ -'-0 ---

-102.b8

-16. ;G

-;G.O';.

-90.00

-34'1.;2

0.0

2.870 I

7.100

'1-.;00

6.800

7.400
7.200

--,

--:.
"

..\-,

"

5.0

5.0
5.0
5.0

5.0
5.0

X maxSID

n

"

"

"
20mv/D

~.It..:->.~

2.87'

"

;.'1

3.7
;.6

;.55

c.t!

2.15

2.0

1.0

1.0
0.0

n

n

n

O.lv/D

"

0.2v/D

'+51974

454b58

4%624

445"62

'146003

'l47'l87

20

23

2'1

22

19

18.

,,4 456725 " 2.U 2.1 " . 5.0 .. . 2."00 -10'(.75

.0.000'1 0.0001

~

25
2&

"27

28

461228

4b8273

4':'8438

500999

"
"
5mv/D

"

1.0

0.4
0.0001

. 1.1;

1.07, ,

u;u001

"
n

:1.V/D ,

"

5.0
5.0
5.0
5.0

"

"
~
,.~ ..

1.1;0

1.0750

0.0

O.U

-117.7,'

-1,8.15

-180.00 '

-180.00

29 600000 " 0.001 0.0001 n ,.0 " 0.0 -100.lJO
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8.3. Results and the errors: Using the above measuring technique
and using equation (8.4) the transfer function of the system was
found as

0.744969x10-:-2 - 0.2302449x10:-Bs+ 0.167377x10-14s2

. + O.7668x10-28s4Vo
-= ---------- ----------------
h -8 .
1+ 0.26177x10 s+

O.1494x10-2 -0. 2817x10-9sV.
~

-= -------------
~ -9_._. 1 + O.67768x10 s

0.744969x10-2 -0.2297 x10-8s + 0.1672x10-14 s2

-0.16204x10-21s3 +0.7657x10-28s4+0.51966x1037s5v,...2=-----------------------
/. \ 0.1494-0.2426 x10-10s + O.3837x10-15s2

. -23'
- 0.673079x10 s3 + 0.2462x10-28 ll. _

s
- 0.4644x10-36S5

The freqency responses were taken using Lissajou's figure.
To get exact results from the Lissajou's figure the input output
frequency must be same. Since th8re are a~tive elements in the
circuit, the input and output frequency were obviously different.
The I.F. amplifers are ~~ned .So it attenuates all the frequencies

.except its tnning frequency • Therefore the effect of the frequences

8,7
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outside the tuned band is -eliminated. 1"~ough for this 'reason

the effect due to the different frequencies on the Lissajou's
'-

figure was partially eliminated , the figure was found unsymmet-

rical. For tne high resist ance section it was never found

distinct. The data was taken for this case on tne basis of an

approximate figure.

The phase difference 'and _gain both had a great variation

if tne input voltage level was changed. The readings were taken

at the maximum input voltage level at wnich the Lissajou's

pattern waS most nearer to its symmetry.

Though the exact frequency response was not possible

to obtain for the above reasons, still !the fitted transfer
!
i

function was found satisfactory. The frequency response obtained

from the fitted transfer function is plotted. in fig. 8.3.
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CHAPTER 9

SUGGESTIONS AND CONCLUSIONS

9.1. Summary and conclusion: The complex cu~ve fitting

method for obtainrimg transfer function from frequency response

gives ¥ery accurate result if the frequency response is noise

.~ree and the corresponding error in fitting the frequency

response to the transfer function is very small, i.e, of the

order
3 ..of 10-4 or smaller ••But if the frequency response is noisy

.. . -1
then the above error is lQrger and may be of the order of 10 . ,

Because of the noisy data a better fitting cannot be obtained.

Some times it may become difficult to ascertain the

correct order of the transfer function using the previous method3 •

The emperical relations developed in section 3.2 eliminates

the problem.

d 1In previous metho determination of transfer. functions

of higher type systems were not practically possible. The technique

which has been developea in this work in section 3.4

\ 9.1



on the concept of inverting the data gives excellent fittings

for higher type systems.

The frequency range over which the data sets are taken is very

important factor. A smaller ran2;e may even change the order'

of the transfer function~To get accurate result the frequency

range should be taken as large as possible and the critical

frequency band has to be included. The critical frequency
i

band is that region where both the'magnitu~e and angle changes

relatively rapidly than that of the other frequencies.

To get the actual transfer function fro'm the frequency response,

data should be very accurate. It hGs been found that in some

cases ~ 1% error may change the fitted transfer function

quantitively and even the order of the transfer function.

Finally the transfer function of six practical electrical'

systems of different order including the. R.F. Section of a

Radio receiver have been obtained usin~ generalised complex

curve fittin~ l~ethod. It has been found that in some cases

the fitted transfer function is quant:iJ:g{\velydi fferent and' for

the case of 3rd order system the order of the transfer function,

9.2



has been found difrerent from that of the theoretical •

From error analysis in Chapter 5it has been observed

that for obtaining accurate result, the error should be

less than i 1% for some cases. But it is not practically

pos~ible to get so much accurate data from oscilloscope

using Lissajou's pattern. So the variation of the fitted

transfer functions. from that of their ther&tical values

is obvious .But from th:e'frequnecy response plots of the

fitted transfer functions the results were found reasonably'

acceptable. .\

9.2. Scope of Future Research: In this woril:the ritical

,frequency band has not been determined accurately ,only an

idea about the critical frequency band has been given.

Further woril:is necessary to determine the actual critical

frequency band.

The computer programme is developed in Fortran IV

language. Fortrna IV compiler can handle data of maximum

magnitude of about 1075• If the frequency is higher liI<eR.F.
,

frequency the magnitude of the data inside the calculation

9.3



-
procedure some times become larger'than that of the maximum

handling capacity of the Fortran IV compiler. To overcome

this prob~em program should have to develop in other lan~-

ages (such as combination of Fortran and Assembly).

,The programme' which have been developed is not optimised.

Optimised program shculd be developed for the savi~g of

~aluable C.P.D time of the computer.

The measurement of 'frequency.response for the R.F. Section

with ~i:.ssaj9u's pattern ~las not very accura+;e .Since the
Iinput output frequencies vTere not the Same. Nore accurate

result inll be obtain if better measurement technique is used.

In this work Lissajou's figure has been used to measure
I I

frequency response. It has been observed that ~ 1% error may

change the fitted transfer function. To get accurate result

error ,should be less than~1% .But it is not possible to

obtain so much accurate result using Lis~ajou's figure. So

better instrument for measuring frequency res~onse isnece-

ssary to work practically.

(
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APPENDIX - A

DETAILED CALCULATIONS OF THE COMPLEX CURVE FITTING NETHOD

Transfer function, G(jw), of a linear dynamic system can be
\ . ., -

expressed as a ratio of tw~ frequency dependent polynomials as shown
below:

, G( jw) =
AO+A1(jw) + A2(jw)2+A3(jw)3+ •••••
1+B1(jW)+B2{jw)2+B3(jw)3 ••••••••••

. i .

• ••• (1)

.... are constant coefficients
of the transfer function. Equation (1) can be written as-

••••
G(jw)

(AO-A2w2+A4W
4 •••• )

= (1-BiW2 + B4W
4....)

.... )

)
•••• (2)

=
oG+jw. (0

6 +jw.Y • • • • . , , .. I 0)
i
I
i, .
I

... • • (4)

F~jw) is the .ideal function, i.e., one which represents the data
exactly. It has real and imajinary components.

F(jw) = H(w) + jQ(w) • • • • • (5)

The numerical difference between the two functions

2



F(jw) and G(jw) represents the error in fitting, that is

... '...

e(w) = F(jw) - G(jw)

.- ffi*-'w).= F( jw) .I jw

Now, e'(w) = e(w) I(jw) = F(jw). I(jw)-P(jw)

At any specific value of frequency wk
/e (wk) = F(jwk),I(jwk) ,- P(jwk)

= C( wk) + jd( wk)

•••

••

•••••

••••

(6)

. (7)

(8)

(9)
(10)

The magnitude of the function e!(wk)is given by-

.... (11)

(12)

Now, E is defined as being the function given in (12) summed over all
" "the sampling frequencies wk. Hence

•••• (13)

The.unknown polynomial coefficients A. and B. i = 0,1,2, ...•
1. 1..,

are evaluated on the basis of minimising" the function E. Using
equations (3) and (5) -

m
E = 4 [(Rk6k -wk1kQ.k -:-oCk)2 + (wk'lk~+6kQ.k - wkf3k)2J.••(14)

k=1 J,

3



Now,
the following relationships are defined:

, - ,

, ,'li i

m

~E
k~1

.... . ... (15)

m
s. ~ z::: wt ~ ... (16)
~ k~1

m i '(17)T. ~ L wk Qk ...
~

k~1

m
u. L i (R2 Q~) (18)~ wk + •••~ k~1 k

Now, partially differentiating E with respect to each of Ais and B.s~
and substituting /'I., S., T., U.,:-

, ~ ~ ~ ~

or, .....)

~ 0 ••• (19)

or,/)0 AO -;12 A2 +~4 A4 - •••••• +B1T1+B2S2-B3T3-B4S4+,
••. ~••• : So •••• (20)

,/

4



ii)

i -

m

or, . ;=1 [-2Wk t WkRk(B1-B3W~+ B5W~." ••.• )

.(21)

•••••• (22)

iii)
m
z:
k=1

or,
m
~
k=1

••••

iv)

5



," -. ~

m

[WkRk2::" 2~ (B1
2 4 ~.....) ~k(1-B2W~or, - B3wk + B5 wk +

k=1
. k

4 ••.•. )-wk (A1
. 2 4 .

•••••• ~= 0 (25)+B4Wk - - A3Wk + A5Wk - ••••

(26)

v)

, .

(28)

vi)

6



m
or,'. 2:..

k=1

2 2 ~.
-2wk Qk(wkli1c (B1-B3Wk +B5wk - ••••• ) + Qk(1-

B2W~-=+~_B4.w~- ••••• ).- Wk(~1-A3w~-~A5W~ -~. __~))l
...........

or, AOS2+A1T3-A2S4:-A3T5+A4S6+ •••••••••• +B2U4

- B4U6 + B6US ..; BSU10+ ••••• =U2 •••••
CO

(0) .

Vii)-~:3 ~ E1 [2{ G-k(bkRk.-.:Wk'Y k !lk-6(k) -~ I1c(wk7"0k

+ 6k air- - Wkl3"k)] = 0

....) .....))

)

- ....))] = 0 •.• ... (1)



•

= 0 ••• e.- •
.

(32)

From equations (20), (22), (24), (26);"(28), (30) and (32) a matrix

equation can be written as

\)l [n] = [eJ ....
;. :. >'.';-

__.' . .~ ~.~ __ ,_.,u ,"',-_' _'. '
'-c'

\. !.

...

114 •••• T . 82 -T -84 !I!51 . 3

0 ..... -82 T3 84 -T5 -36

• • • • •
• • • •

0 U6

-U6 0

0 Us
• •
• ••

•

o

•• • • ••

.... 0 U4

•••• U4 0

• • •
• • ••

•

•

o

. .. . . .. . '.

Where,

1\0 0 -~ ....0

O. ?-2 0 -~4

". 0 "';'4 02

0 /'4 0 -~ ..

[~= • • • •
• • • • • • . . •

T1 -~2 -T3 84

82 T3 -84 -T5
T3 -84 -T5 -86
• • • •
• • • •

. . . . . ... .... ( 34 )
<

8
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APPENDIX - B

THEORITICAL CALCULATION OF TRANSFER FUNCTION

a) First order system:
R1

t i-------I

V. : RX1:

1_1 i_--J~tJ
l
Vo

1

1=

1st order R.C. circuit

Vo
- = --------Vi

."

• 1+ ~1C1S
1+ (R1 + Rx1) C1S

b) Second system I •

Rl'.

,-- ---I - ....• ---,

: lRX4
'

RX2:V. ,. I , VoI I I I

I L~rU :IC2
:! j~~:--j

•
Fig.82: 2nd order R.C. crcuit

/•
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. --., '~'"

, ,,~f "

;, ,{ -..., '"'-'.

:-~. - - ..-. . ,- '. -. . : '-'

',--. '. , .- .•. ; '.
~;,~~.\

,', " ;/' :,'

o -

. "-
, V~

~

-(R1+ 1/C1 ),x s o

, .,--

~,:': :" ..::..
'", "'._.'.' : - .;'..-~

.. ''-~' .. -
''- " .

". t _
- ",'. ~~:~',. ,"

- ~'

12 ,= -..-R-
1

-+-:R-
x
-
1

-+-1-I-c-
1
-s----( R-

x
-
1

-+-1-I-c-
1
-s-)-,'-

<, '

1
+ c::s2

"

i , '-.
':; . ",

, ,

I ' .
i Rx1/C2 ~2/C1 1/s 1/(C1

' 2)+ +,R2/C1 + + C2si,

, 21+Rx1 Rx2 C1 C2s, + (Rx1 C1 + Rx2 C2) s

1 + R1(C1 + C2) + Rx1 C1 + R2 C2 + Rx2 C2) s +

c) 3rd Order system:
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t
Vi

" I,'Flg 83: ~, 3i"dorder ~ircuit',' , ,','
L

,,' i,,'. ," ,

0= - (Rx1 + 1/C1S) 11-+ (Rx1 +R2 + rsc2 +j/c1s + lIC'2s)12'

v.
~,

-(~2 + 1/C2S)
-(Rx1 + 1/C1s)

o
o

o
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;'~'. '-' ..

. ----_._ ..

.' .". . .- ;,' ~

.-.:.

,,- ""-' ,. ,

r'- .
~. ,-' " ...• ,

...._ '. :.'v.~;' .Ii'; ;.;. ,f.,
. :: .-.' " .• , ~"

'" :

". - "

,- "--, '! -'

•. J'

i: "
.-' ',''i ..... , '. -,' t"

-, - ','

,-', .
.. t. " . '",'

"

1+ (Rx1 01 +R~2,0~ +.Rx3 03) 8 +
. ;', .1 .• ',r: : ~.:

01 03 + Rx2 Rx3 02 °3),8
2 + Rx1 Rx2 Rx3 01 °2,93 8

3

1 + R1'(01 + 02 + 03) + R2' (02 + 03) + R3' °3 - Rx1(02 + °3)

- Rx2 03 !S + R1 I > Rx1 (01 02+0103) + R2' (01 °2 + °1 °3)
. i .: . " ". -' -

\

+ Rx2 °2:°3; R3',(01 03 +02 03):-Rx2 01 03 +R2i (~2'. ' . . , .'

" .~.'~'.

+ R') 02 03 8
2 + R' Rx1 (R ' + R' ) + R' (Rx2 + R' )

3 1 x2 3 2 3

2 2 (Rx2 + R' ) °1 °2 °3
3' ','- :.

- R;2 - Rx1 ' 3 8, ... . '

"
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APPEN DIX - C

OIt'1cNSIQi'I F(6QI.', ..•(6~)),'R{6C}. Q(6S), 'v'{6!'J.151.P()1,.31J.X(15),
>;: rl ( 2 J , T 12. ) ,A:3 ( 1S ) • S 3 ( 1 5 ) • T b ( 15 J ,U R ( 1 :::) , A ( 1 J J , S ( 18 I , P f-lI ( oC I ,
':' I~RE(60l ,EXXIIC) ,PHX(bOI ,FX(60) ,ZAIIC) ,FA(~O),hE(2.,J ,TE:(ZJ,*A A ( 10 , 1.";' ) , b 3 ( 10, 1D) ,r ~ N ( 10 J
OlWdL E ?R.=C I S IO\.! R., 'J, ....•, V, P, X ,H, T ,AP, $j, Ti~, Ui.$,A,:~, -:-=XX ,:::X ,AA,.*d6,EN 1

*:.:"::. R.EADS AND :"J.RITES TH:: INPUT. C'ATA' ::":":'
RE:1.0' (1,51 XX, N ,Ll,';;:R'(IFR::(K),F(t<) •.PHI{I':.)J. K=1,N)_.'FOR~IAT (12 /IZI 12 I F3.2 1 (rJ,lX,F5.~,lX,~6'.2)1.
j.,'RITE (3.511 XX, r~, L1'"ER, «(IFi{E(K),F(t~),Pi-lIlf<l) ,rZ=.l,N)
F:JR.,4.f1..T ('0', 12/1X,IZ / IX, 12 1 l>:., F£'.2 /. (lX,I:s,I-X,FS.6,* 1X,F7.2l) . ~-- .

PROGRAMME FOR OET~RNTN~TIDN OF TRArlS~~9 FUNCTION FO~ ANYTVP~ OF SYST~~S .
c****** ** ***~**~* ** ******** ** ~******* ~* ******** ** ***~~**;~**************~.~¥¥ .~. :)**** ****************************

TO US;:: THIS P~O,;RA-NME TIi:: F:jLLU'l/P;G DATj, hAV:: 10 B~ E:HERc:D
ACCGPDPJG T(j Tt-!e F,:;. ';'T SP;:ClcI:::O~THt:.'( I~R_.= _Xx C UR 1 .

!,d-tI':7.:E, 'oJ' SI'V~~S FOR. TYP::: l~P.1J SYST~MS
'I' ST~~JQS FOR HIGHER TYPE SYSTEMS

N NO. OF DATA Si:TS
Ll = l\iO •• LJt- IT-=P_~TI'J:'~S \.j.':.NTE::O
'ER TliE MAXIMUM ACC~PT~5L~ ~R~QR
IFRE(K) = FREOU~NCY CJR~ESPQk0S TO K-TH ChTA S~T
F(X} GAIN CORRESPO~JDS TO K-TH QATft S~T
PdI(K) ANGLE L'J iJESrU::E CtjP.Re::';PO;J:JS .T8 K-Tti DATA SET

IN ~H~ OUTPUT TrlE~~ \IILL 5~ LiST CF ~LL T!iE-AeOvE DATA
WHIC.H HAl/c_bEE'''l_ GIVi::N AS HIPUT, V":"LU':: O:=-Llt;"-JSTA\fr.S(<.\ t. 8)
COR~ESP~NJS Te TH~ MIf4IMU~ r~OR~AL,IS~D eRROR ~GR DIFcE~~NT
ORO;;:R$(U?T8 TH[: (ACTUAL+IIT:i I':;P,Dr::~) •.•i-nc~ :iA'J:':'bE:::;'i LALCUL.ATcD
A,\JD THE, ACTUAL Ji'.CER' Or' TdE::: SYSTc,l. IF TH=. H~PUT :=R::..')fJf:"~CY
RESPO~SE IS SO NOISY Trl~T GOOD. F!TTIN~ [5 ~OT POSSIBLE THISPkOGRAM~E ~llL ALSO GIVE MESSAG~ Ai;SlJT IT,
~;:;:g~~~~,~28 ~~~,:,,~,:,~rN,;,8I ;~::~~,~,;S~;~,:,S!~!~U~8,;,,~,~,;;;~,~c~,f:c:;,~;~:~t~~~.

Eccc
(
ccccccc.
cccc
cccccc
cc

c
5

J • 1
= 1, I'~.'\f .2
0.0
0.0c.• 0
:: J •.O

\

CONVERTS T~l~ A:J~~L FR~~ DEl;?EE T~T~ RADI~~1 A~Q INV~RTS
,T~I;:: DAr~ IF ;~EC'::SSc..?,y ,;-:':'~,

OJ 181 K=l,N
~(K) = 2.J*3.1415~27*IFRE(~)
P,~!(K) =' 3.1415~27*?ji{K)/lEC.O'
If IXX •. c:J •. 0' GO TS IS2
?HX(K) = - ?HIIKJ
.FXC~) = 1 / F(~)
GJ TO lSi
PHX(K) = PhI(k)
FX(KJ = FIKJ
LJfI.~T I;\IU-=
*** .CALCUlATIJr~ FOR. R(K) A~D O{K)

OJ 6L __1\_ = 1, iJ.~r .::1
IF (-?HXIK) •.tT.--'O-) ,''1F::-1
PtiX(K) ='A3~(?HXIK»
R(K) = FX(KI ':: cos IPHX(K)
Q(Kl ..~ '.IF''.FX(K) ':' SIN (PI/XP;))C~NTINU~ I

::::,~* ClJ,~~STP..ACTIUi~ OF r ~"!~'\.TR!X '._',_'.'
J = a .
J '::: J + 1
N~ = (2 ::'J + 1 )
"n ::: (~jR. •. 1) / 2
N~ (N~" 3) 1 Z
fJ5 ::: ( .~~ + 5 ). 1 ,
j,;C ::; .'U;;' + 1
00 3 '= C K::: 1, r.~
VIK,l} ::; l'
00 390 L ~ 1, Ll
J F ( L • = ~. I I G8 TJ I'
or; bZ K ::; 1, N
V(K,L) V(K,L4J
Cor~TI I'~U
CGNT I :':U
t~,:. = 2.
DC! '::'0 I
Ad( 1 J
S'.:' I I) :::
T;',( i )
U:JI1+1I

3a~

62
15

cc

Ui2

1dl
C

61
C

400

14



'-.- . ..,._. -- -~

','- T[J( L+:-1-N3)1-1 2

N5 ). 1 2'

-= N3, !~R, Z.
= 1, '\I1-, 2
(-11 *-,;:. (J'1/2.1 .•' TI.)l 1+1".1-,'13)
:;. 2, :'J1, 2 .
(-IJ * * I>I/Z) -.- SBlldh'Hl

-= hl3, r>,JR., 2.
I-IJ *', (1",-'1))/21 ,;, 'J3II+'1-2';";[)
:; NS, NR, i!..
C.J

C
C

DJ~OK:=l,N
IF ( 'rl(K) .EU. ::J) GO'Te 30
hG( II .::: Aa(I) + ~J(K} "* ::: (I-l) ::' V(K.L)
SolI) = S31 I) + RIK) " "I~I "':' (1-1) " V( K,Ll
T;(II : T3(I) + O(K) ;;: H{K) ,;:: ,~ I';: V{K,L)
U[:'(1+1) = Ub(I+i) +.( RIK) :';::';: ~ + ~(;..,) ':: ~:: 2 ) ,;:: ;';(10;.) ',' -* (1+1)

':' ~ VIK,Ll .
3C CONTI'UE
20 CONTlmJE:.

112 nO 40 I :.,1,Nl,2
0:] .:0 H :-l"Nl,.2 .

SO P I I ,:"11 : ('-1) .;: ,;:. (j-1/2) ,;: AB( I +;.1-1)
00 6Q M :~2, I~l, 2

60 PII,f.1) = 0.0
[10 70 M =, to, NR,

.70 PII,MJ_= (-II ,;,,'
OJ 30 fo1 = tiS, N.~,ao P(I,f-l1 = (':"Ll ,;:::;:

40. CO~lTHJU':':
Du 90 I =,2, Nl, Z'
no 100,. M =~_l" Nl, 2

1:'0 P( 1,:"11 : 0.0

-liC ~Y(;,~'?-:~"(---li ~~*-7P1-2)/2)'::: 'Aa('I+!,':-I)00 120 M ~ NS, NR, 2 i

120 P(I,/-:) = (-1) ,;: ::: «,"1-:~5)/2) ,~ T!}tI+M-N::»
0:) 130 M = ~3, flj R, 2

130 P{I,M) : (-i) ':: ';::((M-r~3+2J/2) * S[)CI+f>l-\I1.t
90 C8NTINU"

00 i4J I
DO 150 •.•..1

IljQ P(I,f-l)
00 160 11

16G p(l,~n
OJ 1.70 11

170 P ( I • I-ll :;
DO lao M

180 P( I.") =
1'T0 CONTINU::::

DO 190 I = NS, ~lR, 2
00 200 f-1 : 2" ~Jl, 2

Z.Q:) PlI",M) = (-1) -:: ::: ((11-?:)/2) '~.. Tol';:+'~-j'J.:.)
.-OO--210~"1= __.L,_ ill, 2

210 P( I,M) .(-1) ".: ::' <'''1/2) ::: 58(1+,"1-,'.11).
['0'-22-0- -i., :--1\<5, i\lR, 2

~20 PII,~.11 = (-1) ':: ':: (IH-QSl/2). ::', Uf',t:L+:"'-2;~ra)
SD 230 1"1 = f'J3, NF., 2.

230 P ( I ';'11' -= 0. D
190 CG~ITINUE I

C ::":::;:. CONSTACTI.JN OF C .I.1ATQIX AS THE L"-ST (OLUHN OF P Mj,TRrX
C FJK THe: us.:: !]F G.tdJSS-JARC'AN !.lcTH,")G OF OITER,"lIN,c,TION OF
~ UNKNOW~ VARIABLES***

DU 240 I -= 1., ("ll, 2
2 40 P ( I , ~~C J = 5 ~ ( I )

00 2S~ I = ~, r~l, 2
2 SO P I I •NC) = T:3 ( i - 1 )

DO 260 I = ;'J3, Nk, .2
260 P( I,NC) -= .O.C-

OJ 2:7(J I = ;'(5, \;~, 2
270 P(I,NCI :=. Ua(I-,"HI

, .':::::* OETER,\lU1ATION OF THi.: VALUeS OF .~. Ar~::J 'S' USING
GAUSS-J~h.OA;~ ,'1::::-Tfl'.lC' ::::~:::

00 28G K ..: 1, :'lKS -= PIK,KI
Del 29::J r-l = 1, N(

29J P(K,,'.ll ;;; P(K,:-l) 1 S
00 .:J 00 I = 1, NR
S = P(I,K)
IF ( I .C\J. K ) GO TO 3JJ
-DU 3LO M -= 1, NC

310 P(I,M) = P(I,~) - P(K,M) .;:S
3eD CONTINUE
250 CONTI r.;UE

*** FITTED VAtUES OF 'A' A~0 'B' **6
00 320 I = i, i,li

320 'AIL'!1 = PII,'C)
88(L,1l = 1

KX -= 2-
DO 330 I N3, :~R
13i)(L,KXI : P(I,;'JCI

C

15



----_.

"

i:XX (JJ! =LX :::L

/ H=lZ))TEIZ)"
M;= = -1

C

166
12l
:350,

tll

34Z
341

41 L

64
C
403

414

330 KX = KX + 1
._~ D=r~~~INATrnM OF ~RROR ~NC V(K,L) ***E,~IL) ='C:O' - u.

DO 340 K ::. 1- i~00 35,:,JX = 1, ZCC = AAILdl
IF ( JX .~w.2 ) CC = R3IL,l)
0=0.0
30 36G. I = Z. Nl
XCI) = AA(L,I)
If ( JX .EO; 2) X(I) = Do(L,r.lA = I - l' _
IF III/ZI * Z .EO. 1) .';()TIC 370
IF I '",IKJ .;::0. Q ) (;0 TO 36C'CC = CC • 1-1) D 0 (IA/ZIO X(.II D W(II * _ IAGU TO 360

370 0 =.0 • (-11 ., D (IIA-1I/21*. XII) " W(I).D * iA360 CONTINU~ .IHJXI = CC
Tl,J X I = C
HEIJXI = SQRT(CC**Z • 0*~2)IF (CC .LT. 0) GO'Ta 166ToIJX) = ATANIO/CCI
GO. TO l21 '. '
TE'JXJ = ~TAN'O/CC)+ 3.1415927
IF (0 .LT. 0' T=(JXJ :: ~TAN(D/CC) - 3.1~15q~1CONT ll,U"
CONT I~u~
FF :;;; (Hell)
P" = TEIll-"F = 1
IF IPH .• LT. C)
?ti = .as( ?H)
RR. = F;: * cas (PY)
UO :: MF * FF * SIN (PI1)IF IR(KI .EO. Gl G0 TO IIIIF IOIK) .EO. CI GO TO 111
RN = IRIKI - RRI / FolK)
ON ;:: '~J(KJ - ,joJ) / i)(K)
CONTI '~Ut
LA = L
EN(LJ = Hl(l) -+ (f:~.J::~:'~2•. ~~~"":::::2)::'V(K,LJ
V(K,LA)= 1 / ( lit.::.. :'.: ".: 2. -+ T(Z J :;: :;.: L )
*** DETERMINATION OF T,iE M!~I~U~ NOltMALrS~D ERR~~ I~IT.~INTtlE ~IVEN IT~RATIQ~ NUMa~R. ***-IF ( L .GT. 1 ) GO rQ 4)CEXX(J) :::EN{L)

LX = 1
GJ TO 390

430 IF' (EXX(J) .GT. C:NILI)
, IF IEXXIJ) .E,l. E'<lLI).390 CONTINU:.
C .***** PRINTING OF CONSTA~TS A~O NOR~'lISEO ER~OR

1;:: (XX .!:"(). 01 fjO TQ .341 I

00 34Z IX = 1,011lA(IX)= AAILX,IX}
AA(LX,;X} = RB{LX,IX)b3ILX,!X) = lAI IX)
CJNT Ii'<lUi:::
COiHTNUS:
Iii\.ITE (3;6'-1 J, IAt.(LX,IJ ,1=1,1\;1) deGILX,ll tI=l,~H),E~HLX)FOR~AT (IJ"1X,i2,5X,4CSX.025.16)1 .

.",.:**~ J::TE"'Ui-JAT!0~1 .)F TH;: A:TUAL OKOc:R OF T:ic SYSTE,"I.>::f,'::,'::;:
IF C J .E~Jo 1 t GO Tn ~ODIF I eR .GT. "XXIJ) 1 GO TO 414
IF 1 ~XXIJ-11 .GT. EA~(J) ) GJ TO LC~
WfUTE (3,4111
r:)R:1ATI"C' lX, "DATA IS TOO f.lQISY. r.0...:,0 FIT IS ~.JIJT POSSIBLE* HORE ACCURAT~DATA DATA IS REUUI~~D")
GO TO 42(,
iF 1 J .GT. Z ) GO.TO Ho
I~ IIIE~ - :XXIJ-11) / ER ) .GT. (IEXXIJ-I) - EXXIJI)" /oXXIJ-1I» GO T0 412GO TO 4~G
IF IIIEXXIJ-21 - cXXIJ-ll) / i:XXIJ.-Zll .GT. II:XXIJ-ll* - "XXIJI) / EXXIJ-III) Ga TO 4JZ
GU TO 4GO
JY ~ J-l
IFl.:XX{JY) ,CT. Eti.) GJ TO 4v'')
w"IT= 13,413) JY

410

41Z

340. C
.C

413
42:0 Ftil\:"'lAT('O' LX.'4CTUt..L OR~::K; C ..:: TH= 5'(5T::I".:: "ot!3 ,1;(.'UROC;:l{')',STOP

E i"iJ
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