```
8085-BASED UNITERIAI EPRON PROGRANEER
```

BY

FHANDAFER ATWAR HOSSAIN

A PROTECT REPORT

 SUBMITTEA TO THE DEFARTUENT OF ELECTRICAI AND EIETTRONIC EN? IN BERING, BANGIADESH UNIVURSIIY OE GNGINEERING AND TECHNOLOGY IN PARMIAL FUIFILNETI OF THE REQUIRENENT FOR THE DEGREB OFMASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAI ATD EIECTRONIC ENGINEGRING BANGLADESH UNIVERSITY OF ENGINBERING AND TECHNOIOGY

CERTIFICATE

This is to certify that this project work was done by me and it has not been submitted elsewhere for the award of any degree or diploma.

Countersigned

(Dr.Syed Mahbubur Rahman) Supervisor.

Signature of candidate
$\frac{\text { Ch. ARran Hossain . }}{\text { (Khandaker Atwar Hossain) }}$

Accepted as satisfactory for the partial fulfilment
of the requirements for the degree of Naster of ingineering
in Electrical and Electronic Engineering.
1.

Supervisor
Assistant Professor,
Computer Engineering Department
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
2. (Dr... Shansuddin Anmed).

Dean
Faculty of Electrical and
Blectronic Engineering,
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

3. (Dr. Syed Fazi-i Rahman)

Member
Professor and Head,
Department of Electrical and
Electronic Engineering,
Bangladesh University of Bngineering and Technology, Dhaka, Bangladesh

4. (Dr. Mishfuzur Rahmin) Member

Professor and Head,
Computer Fngineering Department
Bangladesh University of Engineering and Technologv, Dhaka, Bangladesh.

AII PRAISES 10 AIIAH, THE MBRCIFUI

AOKINOWLEDG BINENT

The author expresses his indebtness and deep sense of gratitude to Dr. Syed Mahbubur Rahman, Assistant Professor of Computer Engineering Department, Bangladesh University of Bngineering and Technology, Dhaka for his continuous guidance encourarement and help and continous sugpestions all along the course of this work.

The author wishes to express his great indebtness to Dr. Shamsuidin Ahmed, Dean of the Faculty of Flectrical and Flectronic Thgineering for his interest in progressing the project work.

The author also expresses his greatfulness and thanks to Dr. S.F. Rahman, Head of the Department of Electrical and Electronic Engineering and to Dr. Mahfuzur Rahman, Head of the Department of Computer Engineering, who were kind enough to provide all the facilities of the Departments for this work.

The author expresses his indeptness to Mr. Abdul Hannan, Principal, Khulna Engineering College, for his keen interest and encouragement in pursuing the post graduate studies.

APSTDACT

Microprocessor based designs require to store their operating and additional programs in a permanent memory such as an EPROM. EPRON programmers are thus an essential requirement for any microprocessor based design. The present project work deals with the development of a 8085based EPRON programmer, which can be used in Program, Verify, Read, Display, Copy and Print Mode. Prograns have been developed for the Intel $2716,2732,2764$ and 27128 BFROMs. Since the programmer is software controlled, any type of EPROM can be programmed just with a little change in the control program of the EPRON programmer. The project work, besides, greatly encouraging microcomputer based designs, will also save buying of costly manufactured programmers available in foreign market.
Page
CHAPTER I INTRODUCTION
1.1 General introduction 1
1.2 Non-volatile memory 1
1.3 Some available EPROM 2
1.4 Aim of the project 3
CHAPTER II SEMICONDUCTOR MFMORY
2.1 Read-only memory 5
2.1.1 Manufacture-programmed ROM 62.1.2 Programmable read-only memoryprogramming characteristics
2.1.3 Erasable prorrammable Read-only memory (EPROM) programming characteristics 11
2.2 Erasure characteristics of the EPROM 14
CHAPTER III MICROCOMPUTER
3.1 Basic microcomputer organization 17
3.2 The Intel 8085 microprocessor 19
3.2.1 8085 architecture and its pin diagram 19
CHAPTER IV INTGRFACE WITH PERIPHERAL DEVICE 24
CHAPTER V PROGRAMMING CHARACTERISTICS OF INTEL BPROMs ...
5.1 Comparative study of Intel EPROMs 28
5.2 27-series EPROM operation 29
5.2.1 Read mode 30
5.2.2 Standby mode 30
5.2.3 Program inhibit mode 33
5.2.4 Program verify mode 33
5.2.5 Programming mode 33
CHAPTBR Page
5.3 Programming of $8-48$ and 8748 EPROMs 34
CHAPTER VI HARDWARE DESIGN OF EPROM PROGRAMMER
6.1 Functional description of EPROM programmer 38
6.2 Detail circuit diagram of the programmer 40
6.2.1 Address decoder 40
6.2.2 I/O and Expansion buffer 44
6.2.3 Address high and address low buffer 45
6.2.4 The data latches 45
6.2.5 Control latches 46
6.3 Connection of BPROM pins 49
CHAPTBR VII SOFTWARE DEV ILOPMENT
7.1 Function of the programmer 52
7.2 Program development of the programmer 53
7.2.1 Read sub program 55
7.2.2 Conversion of ASCII coded number 58 to hexadecimal number
7.2.3 MOVE Subprofram 64
7.2.4 DISPLAY Subprogram 65
7.2.5 VERIFY Subprogram 68
7.2.6 PROGRAM Subprogram 71
7.2.7 COPY Subprogram 75
7.2.8 PRINT Subprogram 79
CHAFTER VIII DISCUSSION AND CONCLUSION
REFERFNCES
APPENDIX - A
Complete software program

APPENDIX - B

I. Pin diagram of IC Chips
II. Pin diagrams of EPROMS.
III. Programming waveforms of EPROM

APPETVDIX - C
I. Printed circuit boarid design

INTRODUCTION

1.1 General Introduction

The advent of discrete semiconductors and the technological follow-on, e.g., the monolithic integrated circuits, have had sirnificrnt impact on the performance, cost, reliability, maintainability, physical size, and architecture of central processing units of digital computer anc allverieties of dirital systems.

The use of semiconductors hes now started to spread to peripheral equipment and memory. When the memory elements are organized and combined in a particular arraneement, they are referred to as memory system.

1.2 Non-Volatile Nemories

A memory section for storing permanent data, e. g., list of constants, tebles of data conversion like trisonometric sine tables etc., and fixed computer program: like oreretinz instructions, editor, monitor or utility promams, subroutins, keyboard encoder, character generator etc., do not require a vrite caprbility once it is loaded; thus time end cost may be saved by omitting the write feature. Such a storace device is called a Read-only liemory or ROM. The information stored in these devices will remain unchanged even if power is removed from the system which offers a considerable convenience. loreover for data only occassionally chaned, there are even cases between full write capability and the ROI. One such type is erasable prosrammable reai-only memory
or EPROM.

EPROM has quickly found its popularity as a non-volatile temporary storage medium. Hore likely responsible is its attractive combination of field programmability, high density, and low power consumption when compared to bipolar fusible-link memories. Such devices, built with either p- or n - channel metal-oxide-semiconductor technology, have served well in prototyping microprocessor based system. There is an extra advantage for the user to see the actual silicon chip through the quartz window that lets the ultraviolet lightfor erasure.

1.3 Some Available APRON Prorrammers

To program the EPROMs some devices are required known as EPRON programmer. Various types of EPROM programmer are available in the market. Performance of these programmers varies with the cost. These programmers are sometimes ON-line connected with the computer and sometimes independent units. Some available programmers are listed below along with their approximate prices.
i. "Universal PROM programmer" by Intel corporation. It can program all kinds of EPROMs using different personality cards and programming adapter socket. It can be used as an independant unit and also micro-computer based with RS-232 cable. Price is around £ 1000 .
ii. "PROM Programmer M980" " by Pro-Log Corporation. They
state "Built to handle the Programmable devices of today and tomorrow". Cost is above £ 1000 .
iii. "EPROM Emulator and Programmer EP4000 ${ }^{8 \prime \prime}$ produced by G.P. Industrial Electronics Itd. It is a microprocessor controlled programmer which can program all the popular EPROMS of Intel Corporation. Cost is about £ 600 .
iv. Rockwell Intemational introduced an EPROM programmer with their microcomputer AIM -65^{9}. It can program only the Intel 2716 EPRON. Duplication is not possible here.
v. H. Muller (Switrerland) desirned an EFROM Programmer for the popular 2716 \& 273 FPRONs using timer, logic gate and other accessories. There is no scope of duplication. Naterial corst is around \& 25^{10}.
vi. H.S.Lynes (England) designed an EPROM Programmer to accommodate 2708, 2716 \& 2732 EPROMs using drivers, latches etc. It is to be interfaced with microcomputer. Naterial cost is around \& 20^{11}.

1.4 Aim of the Project:

The EPROM Programmer to be designed is microcomputer controlled. It can be used for programming Intel 2716, 2732, and 2764 and 27128 EPROM and the EPRONS within the 8048H \& 8087 H microcomputer chips. An additional advantage over the available EPROM programmers is that with little modification
it can be used to program any type of EPROM available in the mariet. The 40 output ports should be connected to proper pins of the EFRON and a software with a little change should be written for the particular EPROM to be programmed.

EPRON is an essential part in all microcomputer based designs. As such the desion of such a flexible EPROM programmer will greatly help the research works on the microcomputer derigns. It will also replace the need for investment of quite a laree amount of foreign exchange required for this purpose. With industrial backup commercial manufacturing may also be taken up.

CHAPIRR - II

SEFICONDUCTOR MEMORY

2.1 Read-Only Memory

Semiconductor memories fall into two basic catecories. Read-only memories (ROMs) and Randam-access read/write memories (RAMs). ROM forms an important part of memory requirement in most microcomputer systems. This type of memory are also called fixed memory, permanent memory or read-only store (ROS).

In principle it is simply a special combination circuit because an input signal combination (address and entry) defines a unique output combination. The RON can take a dirital coce at its input terminals and provide a unique digital code on its output terminals. The relationship between its input and output codes are relatively fixed, usually alterable only by slow techniques, and for this resson it is termed "read-only". The difference between read-on7y memory and read/write memory is the level of difficulty in changing the stored information.

The Rom, being a fixed memory. is non-volatile: i.e., loss of power or system malfunction does not chenze the contents of memory. The ROMs have the festure of random access, which means that the access time for a given memory location is the same as that for all other locations.

As a result of the recent advances in IC technology, ROMS exist in many forms. The technique employed for storing information in the RoN (called programming) provides a convenient method for classifying all ROMs into one of the following three
caterories ${ }^{4}$.

1. Programmed during manufacture
2. One-time prozrammable after manufacture by the user
3. Prosrammable after manufacture with provision for erasing and reprooramming.

Provision for programming any of these three types commonly involves some sort of link, which may be opened or closed, between each row-select line and an input line of each OR gate. These units are then specified according to the information pattern that is to be programed into the unit in a manner that depends upon the units type.

2.1.1 Manufacture-Frogrammed Read-Only Memory (ROM): Programming Characteristics.

ROMs are programmed usually as one of the final steps of their manufacture. The links are simply gaps that may be bridged by a final metalization pattern that is placed onto the circut according to the desired information to be prosrammed. This is done with a mask that determines the precise pattern, which is custom-made for a particular application. The mask is expensive to make but may be used to program any number of units. So this type of ROM is best suited for mass production.

An example of this first type of ROM unit using pn junction devices is shown in Fig.2.1. A diode is provided for each bit location in the unit. As can be seen a gap occurs in each path between a diode and the common line for a column. A value of "O"

is programmed into a particular bit position by bridging the corresponding gap, otherwise, the value of that bit is 1.

From the ficure 2.1 it can be noticed that the common line of a column is normally pulled high by a resistor and that only the select line corresponding to the specified address can pull it low. If the gap to the diode connected to that select line is left open, then the common line remains high, corresponding to an output of "1". If the gap is closed on the otherhand, then the common line is pulled low by the select line, corresponding to an output of "O".

2.1.2 Programmable Read-Only Memory (PROM): Programming Characteristics

This tvpo of ROM can be promrammed one time by the user. It has genevelly a link that, after manufanture, can be altered one way, either from closed to open or vice verse. The most common way of doin this is to make the link from a fusible metal, such as NiCr, which can be selectively "blown" (i.e., open circuited) by supplying an external current of sufficient magnitude. An example of such a ROM unit is shown in Figure 2.2. The unit is similar to the previous example of a pn junction RON unit, except that NiCr fuses are placed across the gaps and that there is provision for each of these fuses to be blown.

There are two modes of operation for this type of ROM:
i. Read mode
ii. Program mode

The mode at any time is determined by the value of the power-supply voltage $V_{c c}$. For the read mode, $V_{c c}$ is placed at its normal value (e.g., 5 V); for the program mode, $V_{c c}$ is raised to higher voltage (e.g., 10 V). A threshold circuit is connected to $V_{c c}$ to generate the simnal labled "Read Noie" which is Iogic-1 when the ROM unit is in the read mode of operation. This sional, Read Mode, is used in coniunction with an external signal, Chip Enable, to affect both the enabline of the rowselect lines and the enabling of the oultput data lines.

Fig. 2.2 Circuit for a fusble-link programmable readonly memory unit.

Read mode:- In this mode the row-select lines behave presisely the same way as in the preceding example of a pn junction ROM. As can be seen in Fig. 2.2, NAND gates are inserted into the rowselect lines. The second input line of each of these NAND gates, which is driven by the OR of Chip Eneble and the signal Read Mode, will be at logic-1, since Read Mode is at logic-1. In this case the NAND gates simply invert the decoder outputs. The rowselect line corresponding to the specified address is at logic-0, and all other row-select lines are at loojc-1.

If the fuse is intact for a column and the selected row, then the date Iine for that column is forced Iow (Iozic-0); otherwise, the dats line is pulled hioh (loric-1) by the pull-up resistor. A 3 -state driver is used to couple each column data line to an overall output line labelled "Output Data". These 3-state drivers are controlled by a sienal labeled "Output Enable", which is the AlvD of Chip Enable and the signal Read Mode.

Program mode:- In this mode of operation, $V_{c c}$ is raised to a higher voltage (e.g., OV). This affects the circuit in several ways. It causes the signal read mode to go to logic-0, which has two effects. First, the signal Select Fnable is made to depend upon the extemal signal Chip Bnable, thereby making the rowselect line corresponding to the specified address to be logic-0 only if Chip Bnable is logic-1. Second, it causes the sional Output mable to be logic-0, which dissbles the 3-state output drivers independent, of the value of Chip Enable. In addition
and most important, the row-select lines that do not correspond to the specified address are raised to hisher voltage (e.g. 10V), since the gates that drive them use the power-supply voltare V_{cc} to determine the logic-1 voltare level.

To cause a fuse to be blown, the desired address is specified, the Chip Enable line is then activated to enable the row-select lines, and then a specified current (approximately 50 mA) is supplied from a current source to the appropriate output Data line. This current passes through a voltage-sensitive switch to the data line of the corresponding column. The switch is a special circuit that closes when the voltase V applied by the current source exceeds a value somewhat hirher than the maximum loxic-1 level of $5 \mathrm{~V} \sqrt{ }$ he applied voltage will be sufficiently hish if the specified current is made to flow. Once past the switch, the applied current flows through the fuse and diode that are connected to the row-select line that is low (logic-0). All other row-select lines are at approximately 10 V and therefore draw an insignificant amount of applied current. After a short time the current causes the fuse to melt away. When a sufficient time has passed to allow for this, the Chip Enable line is deactivated. The process may then be repeated for other fuses that are to be blown in the same row and then for other rows. J

2.1.3 Erasable Programmable Reaả-Only Remory (EPROM): Programming Characteristics.

The third type of read-only menory unit, which can be prosrammed, erased, and reprogrammed, is refferred to as "erasable
programable read-only memory" or in short EPROM. This type of unit generally makes use of a link that can be placed on one condition (say closed) on a selective basis and into the other condition (say open) on a collective basis. Frogramming such a unit consists of first placine all links collectively into a specific condition, which amounts to erasing any previous information content, and then placing desired links into the opposite state, one at a time.

A noteble example of a link that is used in EPROM units consists of a special type of MOS transistor having what is called a floating aate. A specific form of such a transistor is that of a pchannel normally-off (enhancement-mode) MOS transistor with its gate electrode surroundod by insulation, as shown is Fjg. 2.3. The gate has no lead attached to it but may, however, be made to acquire a negative charge, as will be seen. When charged negatively, the sate induces a positive charge into the channel, just as it would if a negative potential with respect to the substrate were applied to the rate. With a positive charre in the channel the transistor is conductive. On the otherhand. if the gate has no terative charge, then no positive charge is induced into the channel and the transistor is not conductive.

Negative charge is supplied to the gate by injecting electrons from the drain through the insulation to the gate. This is done by applying a relatively high positive voltage to the source with respect to the drain.

The resulting electric field incuces a relatively high positive voltage on the gate with respect to the drain.

Fig. 2.3 Floating-gate PMOS enhancement-mode transistor for BFROM units.

Roughly speaking, this voltage causes a breakdown to occur at the junction between the drain and the insulation, resulting in a flow of rather energetic electrons from the drain into the insulation. Owing to their energetic state, the electrons are able to drift through the insulation to the gate electrode. This electron cherge on tho gate will remain there almost indefinitely unless specifically ramoved. Charge is romoved from the rate bu irradiating the area with ultraviolet Iisht, which imparts sufficient energy to each electron to brine it into a conductive eneray band in the insulation. The electrons are then able to flow away from the gate owing to their mutual revulsion.

A read-only memory unit using these anecial transistors can be structured in a manner similar to the provious example of a MOSRON, which was shown in Fi~.2.1. In this case, each aap in the unit is bricger with one of these floatinr-eate trensistors. In addition, circuitry is inclade that allows each floating-gate transistor to be selected for application of the necessary voltace to charge the gate. This seiection process involves the address and output-data lines.

To program the resulting EFROM, all links are first opened (corresponding to logic-1) by irradiating the unit with ultraviolet light of sufficient intensity and duration. Ihen, for those bit positions that are to contain logic-0, the corresponding links are closed one at a time.

2.2 Erasure Characteristics of the EPRON:

The erasure characteristics of the Intel 27 -series EPROMis and the $E P R O M s$ within the 8748 \& 8048 micro-computer chips are such that erasure besins to occur when exposed to light with wave lengths shorter then approximately 4000 Ansstrom (A). It should be noted that sunlimint and certsin tynes of fluorescent lamps have wavelenrths in the $3000-4000$ \& rance. Date show that constant exposure to room level fluorescent lishting could erase the typical EPROMs approximetely in 3 years while it would take approximately one week to cause erasure when exposed to direct sunlight. If the EPROMS are to be exposed to these types of lighting conditions for extented periods of time, opaque labels
are available which should be placed over the chip window to prevent unintentional erasure.

The recommended erasure procedure for the EPROMs is exposure to shortwave ultraviolet lightwhich has a wavelength of 2537 A. the integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of $15 \mathrm{w}-\mathrm{sec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~V} / \mathrm{cm}^{2}$ power rating. The chip should be placed within one inch of the lamp tubes during erasure. Some Jamps have a fil ter on their tubes which should be removed before erasure ${ }^{5}$.

3.1 Basic Microcomputer Organization

A microcomputer is a bus-oriented system of subassemblies that are implemented utilizing the technology of ISI. Functions of these subassemblies provide for manipulation of information, ordering the sequence of instruction execution, interpretation of instructions, control and timing of bus operation, storage of instructions and data, and communicstion between the computer and the external environment. The first four of these functions are frequently handled by a single subassembly known as a microprocessor. The storase function is handled by a memory subassembly. This subassembly may consists of ROM and/or RAM. The external communication is performed by a set of subassemblies known as input and output ports. Each port provides an interface between the microprocessor and some external device.

Figure 3.1 shows the general layout of a microcomputer and Fig. 3.2 shows the basic blocis of an 8 -bit microcomputer system. the various buses which connect these blocks are also shown. There are three buses:-

1. The address bus
2. The data bus
3. The control bus

These buses connect the microprocessor (CPU) to each of the RON, RAM and I/O elements so that information transfer between the microprocessor and any of the other elements can take place.

Fig. 3.1 General layout of a microcomputer.

Note: the I/U device may be the heyboord (Input), video display (urutput), Wphon Programmer (Output).

Fig.3.2 Block Diacram of a Tvpical Microcomputer

Address bus is used for transferring information from microprocessor to memory or I/O elements in one direction only. When the microprocessor wants to transfer information between itself and a certain memory location or I/O device, it generates the 16 -bit address from an internal register on its 16 adaress pins $A_{0}-A_{15}$, which then appears on the address bus. These 16 address bits are then decoded to determine the desired memory location or I/O device. The decoding process normally requires hardware (decoder).

The data bus is a bidirectional bus. In 8085 microprocessor, the 8 data pins are used to sand lower 8 address bits in addition to data. That is the data pins are time-shared or multiplexed. When address bits are sent the address latch enable (AIE) pin becomes HIGH.

The control bus consists of a number of siensls that are used to synchronize the operation of the individual microcomputer element. The microprocessor sands some of these signals to the other elements to indicate the type of operation being performed.

3.2 The Intel 8085 Microprocessor

The Microprocessor is the OPU of the microcomputer and is the combination of control unit ann arithmatic and logic units. Therefore, the power of the microcomputer is determined by the capabilities of the microprocessor and its clock frequency determines the speed of the microcomputers. Nicroprocessor consists of logical components that enable it to function as a programmable logic processor. Some of the components, i.e., the program counter, stack and instruction register, provide for the management of a program. Other components, i.e., the ALU, Carry flip-flop, scratchpad register and data-address register provide for the manipulation of data. The remaining components, i.e., the decoder, timine and control unit specify and coordinate the operation of the other components. Intermal pathways interconnect the components to provide for transferrine data betwoen desimeated components. Connection of the microprocessor to other units (memory and I/O devices) is done with the address, data, and control buses.

32.1 The 8085 Architecture and its Pir Function

Intel 8085 8-bit microprocessor is housed in a $40-\mathrm{pin}$ dual-in-Iine (DIP) package. Fir. 3.3 shows the Intel 8085
pin diesram and Fir. 3.4 shows the runctional block diamram of the Intel 8085 micronrocessor.

Fig. 3.3 Microprocessor siznals and Pin Assignments

The interncl organization or architecture of the Intel 8085 microprocessor is briefly discussed below.

It has a 16 -bit program counter and address latch which

FIgure 3.4 8085 Microprocessor Functional Block Diagram (Courtesy of Intel Corporation)

feed the dedicated address bus $\left(A_{15}-A_{8}\right)$ and the dual purpose address/dati bus $\left(A D_{7}-A D_{0}\right)$. Parallel data enters and leaves the MIU via the multiplexed address/data bus $\left(A D_{7}-A D_{0}\right)$. The adiress/data bus transmits an address when the AIE control Ine is HIGF and data when the ATE line is IOW.

The 8-bit internal data bus carries input or output data throurhout the unit. The data can flow from the intermal nata bus to the 8 -bit accumulator or temporary resister, flass, instruction reqister, interrupt control unit, seri=1 I/O control unit, any of the general purpose resisters (B,C,D,E,H and I), 16-bit stack pointer, 16-bit prosram counter, or 8-bit data/adaress buffer. The arithmetic-logic unit (ALU) is being fed by two 8-bit registers (accumulator and temporary register). The flag flip-flops have five status indicator'as shown in Fig. 3.5. below.

Fig. 3.5 Format of Processor Status Word

The instruction reaister feeds the instruction jecoder. This instruction decoder interprets the current instruction and determines the microprogram to be followed or the machine
cycle encodinf. The instruction decofer then instructs the timing and control section as to the sequense of events to be followed. The timing and control section coordin=tes actions of both processor and the peripheral.

The RD pin sional is outputted IOW during a memory or I/O READ operation. Similarly, the $W R$ pin sisnal is outputted IOW during a memory or I/O WRITE. The IO/V sinnal is outputted high to indicate an I / O operation and is outputted low during a memory operation. The $I O / \bar{M}, S_{0}$, and S_{1} are outputted during its internal operations as shown in Fig. 4.2. (Chepter-IV).

In the present project we have a microcomputer with the 16-bit address bus, 8-bit data bus, and with the necessary control signals ($\overline{I O R D}, \overline{I O W R}$). The designed EPROM programmer is interfaced to these buses. The interfacing desions are described in the subsequent Chapters.


```
    INTERPACING NITY DERT+HDP\ - NIIGE
```

In reward to microcomputer systems, interfacine can be separated into two areas of concern. One area involves the connection of the components, such as memory units and input/output reristers, to the buses of a microprocessor. Such interfacing is primarily concerned with the timing and control of the buses and selection of a component so as to effect a data transfer at a given time between the selected component and the microprocessor.

The other area of concorn involves interfacing components external to the microcomputer, such as peripheral devices, data channels etc. Such interfacing does not directly involve the buses of the microprocessor; so it is less structured. It is concerned with converting signals associated with the external components, which misht be of any nature (including analog), to signals compatible with the buses and vice versa.

An input or output operation is the act of trensferrine data to or from a selected rerinheral device. The minoprocessor is the focus of all operation, so an input will mean data flows into the MPU whereas an output will mean dats flows out of the MFU. Those locations where data is input from or output to are usually called input or output ports.

From the 8085 instruction sets, it appears that it uses the IN and OUT instructions for transferring data to and from I/O ports. These data transfer instructions are illustrated in Fig. 4.1. The output instruction is ropresented by OUT mnemonic
in assembly lansuare program, while the input instruction uses the IN mnemonic. The instruction formats for these operations are also reproduced in the Fig. 4.1 showing the opcode followed by a device number or port address. The byte lonr nort address can select one of $256\left(2^{8}\right)$ ports. Nostly the most sionificant 8 address lines $\left(A_{8}-A_{15}\right)$ are used for the port address.

Output instruction Instruction for mat (OUT)

Op Code
Port address

Input instruction Instruction for mat (IN)

Fig. 4.1 I/O operation of 8085

Fig.4.1 also shows two additional output control sipnals added to the microprocessor. When using the OUI operation, a special input/output write $(\overline{I / O W})$ signal is used. The IN operation also requires the use of a special output signal called input/output read ($\overline{I / O R}$) signal. Both of these output signals are active LOW signals and are illustrated in Fig. 4.1 . The status of the S_{o}, S_{1} and $I O / \bar{M}$ pins during verious read/ write operations are shown in Fig. 4.2.

8085	control sisnals	Function	
IO/M	S_{1}		
0	0	1	Memory write
0	1	0	Nemory read
1	0	1	I/O write
1	1	0	I/O read
0	1	1	Op code fetch
1	1	1	Interrupt acknowledge

Fig. 4.2 Control Signal table for I / O.

The data transfer using the IN and OUT instructions are classed as program-controlled I/O. Frogram instructions are controlling the transfer of data during IN and OUT operations. Program controlled I / O is divided into two tech iques:
i. Standared I / O
ii. Memory Mapped I/O

The memory-mapped I/O technique is the most common and car be used with any microprocessor. The standsr I/O technioues can be used only with microprocessors that have sevarate IN and OUT instructions as in the 8085 microprocessor.

It is common to refer to an output as "an output to a peripheral device". In actual practice however, the output from the microprocessor is not directly to a peripheral device but to a memory device which stores the data for the neripheral unit. The intermediate blocks in Fis. 4.3 are the memory devices known as "input interface adapter" or "outrut interface adarter". It is common for $I / 0$ interface adaptor to have charactoristics other than memory also.

Fig. 4.3 Connection with microprocessor of the peripheral

In the desiEned IPRON prosrmmer, the peripheral is the FPROM to be programmed housed in the 40 -pin socket. The address decoder torether with the buffers and latches form the output interface adanter through which address, data and control sinmal pass to the EPROM. The buffers with the decoder form the 'input interface adapter' through which data to be read or verified is input to the microcomputer (Fig. Chapter-VI).

OHPTS - V
PROGRAMMING CHARACIERISTICS OT JHIOI DPROME
5.1 Comparative Study of the Intel mproms

The EPROI Programmer can be used for programming the foljowine typo of RDROMs:-
i. 16 k (2k x 8) TTT Erasabje PRON: Intel 2716
ii. 32 k ($4 \mathrm{k} \times 8$) UW Erasable EROM: Intel 2732
iii. $64 \mathrm{k}(8 \mathrm{k} \times 8$) UV Erasable from: Intel 2764
iv. $128 \mathrm{k}(16 \mathrm{k} x \mathrm{x}$) uv Erasable PRON; Intel 27128
v. $1 \mathrm{k} \times 8$ PROM within the Intel 8048 H single component 8 bit microcomputer.
vi. $1 \mathrm{k} \times 8$ PROM within the Intel 8748 H sin le-chip microcomputer.

A comparative pin diagram of all the EPROMs is shown in Fig.5.1. Individual pin diagrams, block diagrams and logic symbols of each of the above EPROMs are siven in the appendix. 5.2 27-Series EPROM Operation

The EPROMS have the features of fact signle-address location programming and have, an access time from 250 ns to 650 ns and is ideal for use with the hish-performance microprocessors. A block diasram is shown in Fif. 5.2 to represent the 27 -series EPROMS.

The EPROVIS have five modes of operation as listed in Table 5.1 the modes are briefly discussed helow which will be heipful in the hardware desim.

Fig. 5.1 Pin diagram of Intel BPROM
5.2.1 Read Mode:- The 27-series EPROMs have two control functions, both of which must be satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output mable ($\overline{\mathrm{OB}}$) is the output control and should be used to sate data to the output pins, independent

Fig. 5.2 Block diagram of EPROMs.
of device selection.
5.2.2 Standby Mode:- The 27 -series are placed in the standby mode by applying a TPI high signal to the $\overline{C E}$ input. When in standby mode, the outputs are in a high impedance state, independent of $\overline{O E}$ input.
 (28 pin confiruration: EFROMs will be hovsed in the lower side of socket).

Mode	$\frac{\text { Pins }}{\left\lvert\, \begin{array}{l} \text { Iype of } \\ \text { EPROMs } \end{array}\right.}$	$\begin{gathered} \mathrm{CE} / \mathrm{PGM} \\ (20) \end{gathered}$	$\begin{aligned} & \text { PGM } \\ & (27) \end{aligned}$	$\begin{aligned} & \mathrm{OE} / \mathrm{V}_{\mathrm{pp}} \\ & (22) \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{pp}} \\ & (23) \end{aligned}$	$\begin{aligned} & V_{c c} \\ & (24) \end{aligned}$	$\begin{aligned} & V_{c c} \\ & (28) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{pp}} \\ & (1)^{2} \end{aligned}$	$\begin{aligned} & \text { Outputs } \\ & 11-13, \\ & 15-19 \end{aligned}$
READ	2716	$\mathrm{V}_{\text {II }}$	-	$\mathrm{V}_{\text {II }}$	+5	+5	-	-	Dout
	$\begin{aligned} & 2732 \\ & 2732 \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {IL }}$	-	$\mathrm{V}_{\text {II }}$	-	+5	-	-	
	2764	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {II }}$	-	-	+5	+5	
	27128	$V_{\text {II }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {II }}$	-	-	+5	+5	
$\frac{\text { STM AND- }}{\text { BY }}$	2716	$\mathrm{V}_{\text {IH }}$	-	X	+5	+5	-	-	High Z
	$\begin{aligned} & 2732 \\ & 27324 \end{aligned}$	$\mathrm{V}_{\text {IH }}$	-	X	-	+5	-	-	
	2764	$\mathrm{V}_{\text {IH }}$	X	X	-	-	+5	+5	
	27128	$\mathrm{V}_{\text {IH }}$	X	X	-	-	+5	+5	
PROGRAM	2716	$\begin{aligned} & \text { Pulsed } V_{I I}- \\ & \text { to } V_{I H} \end{aligned}$		$V_{I H}$	+25	+5	-	-	$D_{\text {in }}$
	$\frac{2732}{2732 \mathrm{~A}}$	$\mathrm{V}_{\text {IH }}$	-	$\frac{25}{21}$	-	+5	-	-	
	2764	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {II }}$	${ }^{\text {IH }}$	-	-	+5	+21	
	27128	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {IH }}$	-	-	+5	+21	
PRO- GRAM VERIEY	2716	$\mathrm{V}_{\text {II }}$	-	$\mathrm{V}_{\text {II }}$	+25	+5	-	-	$D_{\text {out }}$
	$\begin{array}{\|l\|} \hline 2732 \\ 2732 \mathrm{~A} \\ \hline \end{array}$	$\mathrm{V}_{\text {II }}$	-	$\mathrm{V}_{\text {II }}$	-	+5	-	-	
	2764	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {IH }}$	$V_{\text {II }}$	-	-	45^{-}	+27	
	27128	$\mathrm{V}_{\text {II }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {II }}$	-	-	$+5^{-}$	+2T	
PRO- GRAM INHI B- IT	2716	$\mathrm{V}_{\text {IL }}$	-	$\mathrm{V}_{\text {IL }}$	+25	+5	-	-	High
	$\frac{2732}{\frac{2732 A}{2732}}$	$\mathrm{V}_{\text {IH }}$	-	$\frac{25}{21}$	-	+5	-	-	
	2764	$\mathrm{V}_{\text {IH }}$	X	X	-	-	5	21	
	27128	$\mathrm{V}_{\text {IH }}$	X	X	-	-	5	21	

Contd. Table 5.1

1. X ----- don't care
2. Exceeding 22 V on pin $1\left(\mathrm{~V}_{\mathrm{pp}}\right)$ will damage the 2764 and 27128 while programming
3. In the program mode the $2732 \mathrm{~A} O E / V_{p p}$ input is pulsed from a TTI: low level to 21V (25V for 2732). Exceeding 22 V will damaged the 2732A.
4. V_{cc} must remain within $5 \pm 5 \mathrm{~F}$ Volts.
5. $\mathrm{V}_{\mathrm{II}}=$ Input low voltare $=0.1 \mathrm{~V}$ to 0.8 V
6. $V_{I H}=$ Input high voltage $=2 \mathrm{~V}$ to 6 V
7. $V_{c c}$ must be applied simultaneously or before $V_{p p}$ and removed simultsneously or after $V_{p p}$.
5.2.3 Program Inhibit Miode:- Proeramming of multiple EFROFTs in parallel with different data is also accomplished. Except for $\overline{C B} / P G M$ or $\overline{C B}$ or $\overline{C B}$ (or PGM)all like inputs (including $\overline{O E}$) of the parallel 27 - sPROM s may be common. An active sirnal to the $\overline{C E}$ pin of a particular BPROM will propram that EPROM and others are inhibited from being prosrammed.
5.2.4 Program Verify Moje:- A verify should be performed on the prosramned bits to determine that they were correctly proarammed. The verify mav be nerformed with $V_{p p}$ at 25 V (or 21 V as the case may be). In case of $2716 \mathrm{~V}_{\mathrm{pp}}$ should be at 5 V except durine programming and proaram verify. In case of $2732,2764 \& 27128$ the verify is accomplished with $\overline{O E} \& \overline{C E}$ at $V_{\text {II }}$ with FGM at $V_{\text {IH }}$.
5.2.5 Programmins Mode:- Initially after each erasure, all bits of the EPROMs are in the "1" state. Data is introduced by selectively programming "O's" into the desired bit locations. Although "O's" will be programmed, both "1's" and "O's" may be present in the data word.
a. Intel 2716 EPROM:

The 2716 is in the prozraming mode when the power supply
$V_{p p}=25 \mathrm{~V}$ and
$\overline{O E}=V_{I H}$
When the adriress and data are stable, a 50 msec , ective-hioh, TII program pulse is applied to the $\overline{\text { ST }} / P G M$ input.
b. The 2732 EPROMS:

The 2732 \& 2732 A are in the programming mode when
$\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{pp}}=21 \mathrm{~V}$.
When the address and data are stable, a 50 msec , active-low, I'IL program pulse is applied to the $\overline{\mathrm{CE}}$ input. The 2732A must not be programmed with a $D C$ sicnal applied to the $\overline{C E}$ input.
c. The 2764 \& 27128 EFROMS :

The 2764 \& 27128 are in the procramming mode when
$V_{p p}=21 \mathrm{~V}$
$\overline{C E}=\overline{P G M}=V_{I I}$
For programming, CE should be kept TTI Iow at all times while V_{pp} is kept at 21 V . When address and data are stable, a 50 msec , active low, TTI program pulse is applied to $\overline{\text { PGM }}$ input.

For all the above EPROMs the data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are all TTL. A program pulse must be applied at each address location to be programmed. Any location can be programmed at any time-either individually, sequentially or at random. The program pulse has a maximum wicth of $55 \mathrm{msec}^{5}$.

5.3 Programming of 8748 H \& 8048 H EPROM

The programming process consists of:
i. activating the program mode
ii. applying an address
iii. latching the address
iv. applyine data
v. applying program pulse.

Each word is programmed completely before moving on to the next and is followed by a verification step. The followine is a list of the pins used for programming and a descrintion of their functions:

Pins
XTAI 1
Reset
Test 0
EA
BUS
$\mathrm{P}_{20}-\mathrm{F}_{22}$
$V_{D D}$
PROG

Function
Clock input 1 to $3 \mathrm{MH}_{z}$ Initialization and adֶress latching Selection of prorram or Terify mode Activation of Program/Verify mode Address and data input,data output during verify

Address input
Programming power supply
Program pulse input

The program/verify sequence is:

1. $V_{D D}=5 \mathrm{~V}$, clock applied or internal oscillator operating $\overline{R_{\text {DSEt }}}=O V, \operatorname{TEST} O=5 \mathrm{~V}, 3 \mathrm{~A}=5 \mathrm{~V}$, BUS and PROG flo Oting , P_{10} and P_{11} must be tien to eround.
2. Insert 8748 H in prosrammine socket.
3. TRAS $0=O V$ (select prorram mode).
4. $E A=18 \mathrm{~V}$ (activate ororrm mode)
5. Address applied to BTJS and $P_{20}-I_{22}$.
6. $\overline{\text { RESET }}=5 \mathrm{~V}$ (latch address)
7. Data applied to BUS
8. $\mathrm{V}_{\mathrm{DD}}=21 \mathrm{~V}$ (proarammine power)
9. $\operatorname{PROG}=\mathrm{OV}$ followed by one 50 msec pulse to 18 V
10. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
11. TEST $0=5 \mathrm{~V}$ (verify mode)
12. Read and verify data on BUS
13. TEST $O=O V$
14. RESET= OV and repeat from step 5
15. Programmer should be at conditions of step 1 when the RFROMs are removed from socket.

CHAPIER - VI

HARDWARE DEJIGN OF EPROM PROGRAMMER

6.1 Functional description of EPROM Programmer

A simplified block diegram of the EPROM porgrammer is shown in Fir. 6.1 and consists of the following major blocks.
a. The address decoder (ADDBO)
b. The I/O data buffers (DABUF)
c. The expansion buffer (EXBUF)
d. The address latches
i. Lower address lateh (ADI)
ii. Hisher address latch (ADH)
e. the data latch
i. EPROM data latch (DR)
ii. Frinter data latch (PRT)
f. The control latches
i. Port controlling latch (PCR)
ii. EPROM controlline latch (CR)

The address decoder is used to select the address, data and control latches and the I / O buffers and the expansion buffer. The $B 8$ to $B F$ (Hexadecimal) adaress range is used by the address decoder for the selection purpose.

The I/O data Buffers are used for transferrine iata to and from the microcomputer. The expansion buffer is reserved for future expansjon of the system.

Fig. 6.1 Block Diagram of EPROM Programmer

The control latches are use? for sending various signsls to the EPROMS for the mole selections and also for controllint the remaining latches. Control lines are program-controlled so that the Intel EPROM series ($2716,2732,2764,27128$ etc.) can be programmed.

The date latches are used to latch the data to be programmed and upon receiving output control ($\overline{O C}$) signal they send the date to the desired location.

The address latches are used to latch the address of the Jocation of the EPROM to be programmed and upon receiving the output control signal they put the address on the desired pins of the EPROM.
6.2 Detail Circuit Diagram of the EPROM Programmer

A detailed schematic diemram of the desimned EPROM programmer is shown in Firs. 6.2. The descriotion of each functional unit is siven below.

6.2.1 The address decoder (ADDEC)

There are six latches and two sets of buffers in the designed programmer. Their address are to be $B 8$ to BF . This is accomplished with the help of the 3 -line to 8 -line decoder (74LS138) IC Chip in conjunction with the 2-imput NAND eates. The pins D_{A}, D_{B}, D_{C} of the decoder are connected to the A_{8}, A_{9} and A_{10} lines respectively of the address bus of the microcomputer.

The six outputs $\left(\bar{Y}_{1}\right.$ to $\left.\bar{Y}_{6}\right)$ bearino tho address BG to BE, of the decoder are connected to the chip Bnable (CE) pin of the six latches, after beine inverted by the 7404 inverter, as because the Chip Enable of the latches are active Hish. The adiresses of all the latches and buffers are given in Table 6.1.

Table 6.1 Address of the Iatches

Sl. No.	Name of the latch/Buffer	Address designated (in hexadecimal)	$\begin{aligned} & \text { CE/ } \overline{O C} \text { (Buefer) } \\ & \text { connec- } \\ & \text { tion with } \\ & \text { decoder pin } \end{aligned}$
1.	I/O Data Buffer(DABUF1 \& DABUF2)	B8	$\bar{Y}_{0}(\operatorname{Pin} 15)$
2.	Higher address latch(ADH)	B9	$Y_{1}(\operatorname{Pin} 14)$
3.	Iower address latch(ADL)	BA	$\mathrm{Y}_{2}($ Pin 13)
4.	EPRON Data latch(DR)	BB	$Y_{3}(\operatorname{Pin} 12)$
5.	EPROM controlling latch (CR)	$B C$	$\mathrm{Y}_{4}(\operatorname{Pin} 11)$
6.	Port control latch(POR)	BD	$Y_{5}(\operatorname{Pin} 10)$
7.	Printer data latch(PRT)	BE	$Y_{6}(\operatorname{Pin} 9)$
8.	Expansion Buffer(EXBUF)	BE	$\bar{Y}_{7}(\operatorname{Pin} 7)$

If the CE pin of a particular latch is HIGH, the contents of the data bus will be latched in the realster. The CE pin will be HIGH when the specified latch is addressed. This data will be outputted only when the output control $(\overline{O C})$ pin is LOW. This $\overline{O C}$ pin is controlled by the port control register (PCR).

Using this decoder the following binary format of the high address bus (Fig. 6.3) may be used for address selection between $B 8$ to $B F$.

Fig. 6.3 Addressing format of the address decoder.
The decoder should be enabled with the above address only during input/output operation i.e., when $\overline{I O R}=0$ or $\overline{I O W}=0$.

The decoder for decoding the address has three enabling pins, \bar{E}_{3}, \bar{E}_{2}, which are active low and E_{1} which is active high. The decoder will output LOW at one of its 8 output pins depending on the value of D_{A}, D_{B}, D_{C} inputs when all three pins $\vec{E}_{3}, \overparen{E}_{2}$ and E_{1} are activated.

The input to \bar{E}_{3} pin is from the output pin of a NAND gate whose inputs are A_{11} and A_{12} lines of the address bus and that to $\widetilde{\mathrm{E}}_{2}$ pin is from the output of another NAND gate whose inputs are A_{13} and A_{15} lines of the address bus. So \vec{E}_{3} and \widetilde{E}_{2} are selected only when $A_{11}=1, A_{12}=1, A_{13}=1$ and $A_{15}=1$. Another logic circuit is necessary to select E_{1} such that E_{1} will be high only when $A_{6}=0$ and $I O R=0 / I O W=0$. Accordingly the input to E_{1} pin will come from a logic circuit which will follow the
its
truth table and/Karnangh map involving the don't care conditions as given in Fig. 6.4

ION	IOR	A_{14}	Output E_{1}
0	0	0	d
0	0	1	d
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Fig. 6.4(a) Truth table.

The boolean function of the above truth table will be

$$
\begin{aligned}
& B_{1}=\overline{A_{14}} \overline{I O W}+\overline{A_{14}} \overline{I O R} \\
&=\overline{\overline{A_{14}}(\overline{I O W}+\overline{I O R})} \\
&=\overline{\overline{A_{14}}+\overline{\overline{I O W}+\overline{I O R}}} \\
&=\overline{A_{14}+\overline{\overline{I O W} \cdot \overline{I O R}}} \\
&=\overline{A_{14}+\overline{I O W \cdot I O R}} \\
&=\overline{A_{14}} \\
&=\overline{(I O W \cdot I O R}) \\
& \hline \overline{A_{14} \cdot \overline{I O W \cdot I O R}}
\end{aligned}
$$

Therefore the logic circuit becomes as shown in Fig.6.5.

6.2.2 I/O and Expansion Buffers (DABTTF1, DABUF2, EXBUF)

74IS244 buffers are used which has two control pins. Each control pin controls four bits of data. The $\overline{\mathrm{OC}} 1$ controls four output bits and $\overline{O C} 2$ controls four input bits. Two buffers are used for handling eight outgoing and eight incoming bits. The two buffers DABUF1 and DABUF2 are used for transferring data to microcomputer received from the EPROM in case of reading and verifying the $E P R O M$ content and for receiving data from the microcoumpter for onward transmission to different latches via the data bus. The address of these two bus buffers are B8. These buffers are designed to be always in the output mode by connecting the \bar{Y}_{0} output of the decoder after being inverted by the inverter to $\overline{O C} 1$ pins of the buffers. The output control pins $\overline{\mathrm{OC}} 1$ and $\overline{\mathrm{OC}} 2$ are active LOW.

For all OUT instructions (OUT B9 to OUT BF), the decoder ontput pin \bar{Y}_{0} (pin 15 of 74138) will be HIGH and after being inverted it will be LOW. Therefore these buffers will be always in the output mode and data will be outputted to the data bus from the microcomputer. The outrut pin \bar{Y}_{0} is directly connected to the output control $\overline{O C 2}$ pin of the buffers. So that when IN instruction to address $B 8$ is executed only then the pin \bar{Y}_{0} is LOW and these buffers are in the input mode as $\overline{0 C 2}$ is directly connected to \bar{Y}_{0} of decoder and data from the specified address of the EPROM will be inputted to the buffers and will be transmitted to the microprocessor. The output pin $\overline{\mathrm{Y}}_{7}$ is directly connected to the expansion buffer (E BUF) and here 8-bit data can only be
outputted and cannot be inputted.
6.2.3 The Address High and Address Low Registers(ADI \& ADH) The address high latch (ADH) is used for latching the high byte address $\left(A_{8}-A_{15}\right)$ and the latch $A D L$ is used for latching low byte address ($A_{0}-A_{7}$) of the EPROM to be programmed. At first the high byte address of the location of the BPROM is loaded in the accumulator of the microprocessor. Then the content of the accumulator is transferred to the ADH latch using the instruction OUT B9. When OUT B9 instruction is used the $\overline{0 C 1}$ pins of the two data buffers (DABUF1, DABUF2)/ IOW and the CE pin of the latch $A D H$ is high and hence the content of the accumulator is transferred to the ADH latch and is latchod there. In the same manner the IOW byte address of the location of the EPRON is latched in the ADL latch. Here the instruction transferring the low byte address is OUT BA. The $\overline{O C}$ pin remains high so that output is 3-stated. The $\overline{O C}$ pins of all the latches is controlled by the port control register (PCF) latch.

6.2.4 The Data latches (DR \& PRT Latches)

The data to be transferred to the location specified by the content of the ADH and ADI latches is loaded in the accumulator and is transferred and latched in the Data register (DR)using The instruction OUT BB . Its output control ($\overline{\mathrm{OC}}$) pin also remains high. The output control $\overline{O C}$ is activated by the second bit of the PCR latch.

In a similar way data is transferred to the latch PRT using the instruction OUT BE. It's $\overline{O C}$ pin is grounded so that it is
of the latch PCR.

Port control latch (PCR) controls the output pin ($\overline{O C}$) of the remaining latches. Control information is transferred to the PCR from accumulator using the instruction OUT BD. Output control pin ($\overline{O C}$) is grounded so that whenever its chip enable (CB) pin is high, the content of the data bus is latched in the PCR and is outputted at the same time. The format of the Port control latch for output selection of the remaining latches are shown in Fig. 6.6.

Fig. 6.6 Format of Port control latch

When the output Q is Low, the corresponding latch outputs the latched data in it.

Table 6.2 Control Commands for Various Functions on the EFROVS

Mode	Type of EPROM	Control Sisnal							Hex
		Bit	$\begin{array}{cc}\text { Bit } \\ 6 & \text { Bit }\end{array}$	Bit	${ }_{3}$	Bit	$\begin{gathered} \text { Bit } \\ \hline \end{gathered}$	$\begin{gathered} \text { Bit } \\ 0 \end{gathered}$	
$\begin{aligned} & \text { READ } \\ & \text { MASTER } \end{aligned}$	$\begin{gathered} 2716 \\ \& \\ 2732 \end{gathered}$	1	X 1	0	X	0	X	X	
	$\begin{gathered} 2764 \\ \& \\ 27128 \end{gathered}$	1	X 1	0	1	0	X	X	
$\begin{aligned} & \text { READ } \\ & \text { SLAVE } \end{aligned}$	$\begin{aligned} & 2716 \& \\ & 2732 \end{aligned}$	0	X 0	1	X	1	X	X	
	$\begin{aligned} & 2764 \& \\ & 27128 \\ & \hline \end{aligned}$	0	10	1	X	1	X	X	
PROGRAM MASTER	2716	1	X 1	1		Fulsed $V_{I I}{ }_{I H} \text { to }$	X	X	
	2732	1	X 1	0	X	1	X	X	
	$\begin{array}{r} 2764 \\ 128 \end{array}$	1	11	1	0	0	X	X	
PROGRAM SLAVB	2716	1	$\begin{aligned} & \text { X Pulsed } \\ & V_{I I} \text { to } \\ & V_{I H} \end{aligned}$	1	X	1	X	X	
	2732	1	X 1	1.	1	1	X	X	
	$\begin{array}{r} 2764 \\ 128 \\ \hline \end{array}$	1	00	1	1	1	X	X	
$\begin{aligned} & \hline \text { PROGRAM } \\ & \text { VBRIFY } \end{aligned}$	2716	1	X 1	0	X	0	X	X	
	2732	1	X 1	0	X	0	X	X	
	$\begin{array}{\|r} 2764 \\ 128 \end{array}$	1	X 1	θ	1	0	X	X	
$\begin{aligned} & \text { PROGRAM } \\ & \text { VERIFY } \\ & \text { SIAVE } \end{aligned}$	2716	0	X 0	1	X	1	X	X	
	2732	0	X 0	1	X	1	X	X	
	$\begin{array}{r} 2764 \\ 128 \end{array}$	0	10	1	X	1	X	X	

6.3 Connection of the EPROM Pins

From a comparative study of the pin diagrams of all the EPROMS (Fig. 5.4) it can be seen that the 27-series EPRONS pin diagrams are almost similar. The difference in the pin connections are shown in Table 6.3. A MASTER IC socket (40 pin) and a SLAVE IC socket (40 pin) with zero insertion force (ZIF) are used for placing any of the BPROMs type during programming. The EPRONis are always placed at the bottom of the socket as shown in Fig. 5.1. Since the 8048 H and 8748 H microcomputer EPROMs differ significantly from the 27-series, a differont connecter is used for programmine but with the same ZIF socket. The two connecter connoction can be seen from the detailed circuit diagram in Fig. 6.2.

The address pins $A_{0}-A_{7}$ are connected to the 8 output pins $D_{0}-D_{7}$ of the $A D I$ latch. The next three address pins $A_{8}-A_{10}$ and A_{12} are also connected permanently to the three lower output pins $D_{0}-D_{2}$ and D_{4} lines of the $A D H$ latch. The A_{11} and A_{13} pins are connected to the D_{3} and D_{5} pins of the $A D H$ latch via the selector switch because the connection of these pins are variable for diff. EPRONS.

The data pins $D_{0}-D_{7}$ of EPROMs are connected to the output pins $D_{0}-D_{7}$ of $D R$ latch and also they are connected directly to the eight input pins of the buffers DABUFI \& DABIUF2 so that the data can be inputted to the $\mu \mathrm{C}$ directly when needed. The data of either slave of Master EPRON will be inputted to the

Table 6.3 Difference in the Pin connections of different FPROM

Pin No. 28-Pin Configuration	Pin no. 24-Pin configuration	2716	2732	2764	27128	Comment
1	-	-	-	V_{pp}	V_{pp};	May be connected
2	-	-	-	A_{12}	A_{12} \}	socket
3-19	1-17	$\left(A_{0}-A_{7}\right)$ and	$\left(\mathrm{O}_{0}-\mathrm{O}_{2}\right)$ and	GND and $\left(\mathrm{O}_{3}\right.$	O_{5})	Same for all FPROMs
20	18	CE/PGM	CE	CG	CE \{	
22	20	OE	$\mathrm{OE} / \mathrm{V}_{\mathrm{pp}}$	OE	OE \{	Variable on type
23	21	V_{pp}	A_{11}	A_{11}	A 11$\}$	of EPROM So a switch is to
26	24	V_{cc}	V_{cc}	n.c	A_{13} \}	be used
27	-	-	-	PGM	PGM \{	May be connected
28	-	-	-	V_{cc}	V_{cc} \{	permanently to socket.

microcomputer via the buffers depending on whose $\overline{O B}$ enable is activated. The programming voltage is supplied to the programming pins in case of programming an EFROM at either Master or Slave location from an outside source of 25 V or 21 V as the case may be. Since the $+25 V V_{p p}$ required by the EPROM must be off except when programming or verifying, the switch is designed to be in the off state when the processor is turned on. A high on the switen input turns it off.

With the switch off, the diode to +5 V turns on and supplies the $V_{p p}$ (for 2716) pin with the voltare recuired for normal read operation. This input is controlled by the CR resister output. When the switch to 25 V is on, the diode is reverse biased. The switching circuit is shown in Fig. 6.7.

Due to voltage drop across transistor a higher voltage than 25 V (or 21 V) must be used as the switch supply. A $0.1 \mu \mathrm{~F}$ capacitor on the $V_{p p}$ pin helps prevent overshoot which might destory the EPROM during switching.

SOFTWARE DEVEIOENENT

7.1 Functions of the Programmer

The following operation will be performed by the micro-processor-based programmer.

1. Loading the data to be programmed from a selected input device (Tape, BPROM etc.) into the micro-computer memory.
2. Programming a segment of a Prom with the data which are stored begining at a specified address in the microcomputer memory.
3. Displaying the contents of a segment of a PROM at the Master or Slave location or of the main memory on the monitor screen.
4. Moving a block of data from one memory location to another memory location.
5. Pransferring a block of data in a PROM into the microcomputer memory so. that the contents of the PROM may be verified or examined through the system and may also be used to duplicate a PRON.
6. Transferring a block of data from a PROM to the printer to make a hardcopy of the content.
7. Comparing a block of data in a PROM with the contents of a segment of memory (Program Verification).
8. Verifying a segment of a PROM to see whether the segment is erased.
9. Printing the contents of a segment of memory.

Hardware has been designed so that data to be programmed into the $B P R O M$ can come from another ROM/GPRON or from RAM via CPU.

7.2 Program Development for the Programmer

Flow diagram of the program to perform the functions described above is shown in Fig. 7.1. To perform the operations as shown in the flow diagram seven subprograms are used. These subprograms are called by the main program (Main Menu) as desired by the user. The names and functions of subprograms are as follows:
i. RBAD: Used to read the contents of an EPROM at Master location or at slave location and store it to a desired memory location.
ii. MOVE: Used for moving a block of data from a certain memory location to another location.
iii. DISPIAY: Used to display the contents of an EPROM at Master location or at Slave location.

Fig. 7.1 Flow diagram of the program to perform different functions.
iv. VERIFY: Used to verify if any desires segment of the BPROM at Slave or at Master location erased.
v. COPY: Used for copying an EPROM in Slave location from an EPROM at Master location.
vi. PROGRAM: Used for programming any segment of the EPROM at Master location from the main memory.
vii. PRINT: Used for printing the data from the main memory or from EPROM at Master or Slave location.

The different variable names used in these subprograms are given in Table 7.1.

When the program is executed main Menu will be shown on the monitor screen of the system. The format of the main Menu as will be shown on the screen is shown in Fig.7.2. There are seven choices of operations to be performed as shown in the figure and for each choice there is a corresponding key to be pressed on the key board. After pressing a particular key the corresponding operation format for the corresponding function will be displayed on the screen. Now the different operations will be discussed in the following sections.

7.2.1 READ Subprogram

Read subprogram is used to read the contents of an EPROM at Slave or Master location and store it to a desired memory location. After the main Menu is displayed if the

Once the source EPRCM is selected, the microcomputer waits for the start and end address of the BPROM and also for the destination address in the memory of the microcomputer starting from which data block from the EPRON will be stored. Each of the address will be entered by the user from the key board interactively The interaction of the user and the computer for transferring data from the Master EPROM is shown in Fig. 7.4(a), (b), (c). As each line of the prompt is displayed the corresponding address is to be entered with carriage return at the end. Next line appears only after the previous line is entered. The typed address can be corrected using the cursor movement.

(a)
.

(b)

(c)

Fig. 7.4 Intoractive displays of Master EPRON for RFAD operation.

An overall flow chart of the Read propram is shown in Fig. 7.5(a).

Fig. 7.5 (a) Overall Flow Chart for READ Program

The detailed flow chart of read display menu. is shown in Fig. 7.5(b) and that of the actual data reading is given in Fig. 7.5(c). The detail program is given in the appendix.

7.2.2 Conversion of an ASCII-coded hexadecimal number to its binary eouivalent

Data to be read from Master from a certain address, to be programmed in Slave from certain address etc. are entered by punching the number on the key board manually. This number is to be stored in the specified address. A chart for the specified address and thier functions are given in the Table 7.2.

When a key containing a number is pressed its ASCII code is loaded in the accumulator. This ASCII code should be converted

Fig. 7.5(b) Display of Read Menu and acquisidion of address flow chart.

Fig. 7.5(c) Flow chart for Data Transfer for READ operation.
to the corresponding number and then stored in the specified memory locetion. One byte should be stored in one memory location.

It can be seen from the Table that ASCII Code for the number 0 through 9 are 30 Hex to 39 Hex and A through F are 41 Hex through 46 Hex. So to convert $30 H$ through $39 H$ to number 0 through $9,30 \mathrm{H}$ is to be subtracted or four high bits are to be cleared, and to make 41 H to 46 H to Hex number A through $\mathrm{F}, 3716$ is to be subtracted.

The flow chart for ASCII-code to binary conversion routine required for each entry of the address is shown in Fig.7.6.

Fig.7.6 (Contd.)

Fig. 7.6 Flow chart for ASCII to binary conversion

7.2.3 MOVE Subprogram

It is used for transferrino a block of data from a certain memory location to another memory location. After the main Menu is displeyed on the screen, if the key \mathbb{M} is pressed, the screen will display the MOVE Menu as shown in Fig. 7.7(a)

Fig. 7.7(a)

The cursor will be at the position shown. The starting address will have to be entered manually. After entering the address if carriage return key is pressed the format shown in Fig.7.7(b) will be displayed with the cursor shown at the position. Finding address will have to be entered manually.

Fig.7.7(b) Interactive Displays of Move Menu

The CR key will have to be pressed to get the next instruction and the farmat shown in Fig. 7.7(c) will be displayed. The memory starting address wherefrom the data is to be stored will have to be entered manually.

M : MOVE DARA PROM NGMOPY TO MEMORY

MEMORY START ADDRESS ppgq
UNTIL mmnn
TO MEMORY START ADDRESS
Fig. 7.7(c) Interactive Displays of Move Menu

The flow chart consists of mainly two parts:
i. Dispalying of the operating format and entering the starting and ending addresses.
ii. Transferring the data from one location to another location.

The flow charts are shown in Fig.7.8(a) and 7.8(b).

7.2.4 DISEIAY Subprogram

It is used to display the contents of an EPRON at Master location or at Slave location. In this operation the data is to be fetched from the BPROM at Master or slave location and is to be displayed on the screen instead of storing in the memory with the difference that in DISPI.AY routine the contents are displayed instead of being stored and in READ operation the data are stored in memory.

The operation and flow chart are similar to the RBAD subprogram excepting that instead of moving the fetched data to the memory location it is displayed.

Fig. 7.8(a) Flow chart for Move Menu display and address entry.

Fig. 7.8(b) Flow Chart for Transfer of Data from Memory to Memory.

7.2.5 YBRIFY subprogram

It is used to verify whether any semment of an EPROM at Master or Slave location is erased. Here data is to be fetched from the EPROM and read and disnlayed on the screen to see whether BPROM is erasef. Arter the main menu (Selection menu) is displayed on the screen, if the key V is pressed, verify Menu will be displayed as shown in Fig. 7.9(a).

After the verify menu is displayed, if M is pressed the BPROM at Master location will be verified and if S is pressed the EPROM at slave location will be verified.

As in the case of READ, once the source EPRON is selected the microcomputer waits for the start and end eddress of the block of BPRON to be verified.

The figures that will be displayed after pressing the key is shown in Fig. 7.10(a) and (b). Bach of the adतresses will have to be entered by the user from the key board interactively. Only four fisures can be entered and may be corrected by shifting the cursor. Next line will be disnlayed only after the previous

Fig.7.11(a) Flow chart for displaying menu and acquisition of addresses for V V RIFY.

Fig. 7.11(b) Flow Chart for Transferring data for VERIFY.

Fig. 7.10 Interactive Displays of Verify Menu
line is entered with carriage return at the end.

The detailed flow chart for displaying and address entering is shown in Fig.7.11(a) and that of data transfer is shown in Fig.7.11(b).

7.2.6 PROGRAM Subprogram

This program is used for programming any serment of the BPRON at Naster location from the data stored at a certain memory location. After the main menu is displayed if key P is pressed, program menu as shown in Fig.7.12(a), (b) and (c) will be displayed on the screen one after the other.

(a)

(b)

(c)

Fig. 7.12 Interactive Displays of Program Menu

As in the previous cases, here also the start address will have to be entered manually and only after the start address has been entered with carriage return at the end, the next line will appear with the cursor at the position shown. The typed data can be corrected by moving the cursor.

Fig. 13(b) Flow chert for transfer of data for program operation.

Fig.7.13(a) Fiow Chart for Display of Program Menu and Acquisition Start and End Address.

As in the other cases, here also the flow chart can be divided in two sections, (i) Displaying the Program Menu and entering the start and end addresses of the memory where the data to be programmed is stored and the start address of the EPROM wherefrom programming is to beain and (ii) programming the EPROM.

The detailed flow charts are shown in Fig.7.13(a) and (b). Prosramming waveforms and programming characteristics of Intel DFROM are given in ADP first raised to 25 V or 21 V as the case may be. The desired address is applied to the device. and $\overline{O E}$ is raised to a high state. The data byte is then applied to the device. At least $2 \mu s$ after the data is stable, a 50 ms program pulse is applied. Data must be held low for at least 2μ s after the program pulse goes low. After a location is programmed, $\overline{O E}$ can be taken low and location read to see if the programming was successful. It $\overline{O B}$ is left high, the data and address for the next location can be sent and then another 50 ms programming pulse applied to the $\overline{C B} / P G M$ pin. The address will be incremented after each location is programmed.

7.2.7 COPY subprogram

COPY subprogram is used to copy a block of data in an BPRON in Master location into an EPRON at Slave location. Data is first fetched from the EPROM in Master location by activating
its output enable pin and then sending the data to the EPROM at Slave location in programming mode and then verifying whether the EPRON at slave location is correctly programmed. After the main menu is displayed if key C is pressed, Copy Nenu as shown in Fig.7.15(a), (b) and (c) will be displayed on the screen one after another.

(a)

(b)

Fig.7.15 Interactive Display of COPY Menu.

Fig. 7.16 (a) Flow chart for displaying and
acquisition of address in COPY mode.

Fig.7.16(b) Flow Chart for Transfer of Data for COPY. program.

The addresses are to be entered manually from the key board interactively. Here also the next line will appear on the screen only after the provious address is entered with carriage return at the end. The typed address can be corrected using the cursor movement.

The flow chert is shown in Fir. $7.15(\mathrm{a})$ and (b). The first flow chart is for enterins the addresses and displaving the Menu and the second flow chart is for fetching the content of Master EPROM and then programming into Slave EPROM and then verifying it.

7.2.8 PRINT Subprogram

This program is used for printing the data from the main memory or from EPROM at Master or Slave location. After the main menu is displayed on the screen, if the key T is pressed, the system will enter the PRINT mode and the PRINT menu as shown in Fig.7.17 will be displayed.

T: PRINT DATA FROM THMORY, MASTER, SLAVE
EROM N FMORY M
FROM MASTER T
PROM SIAVE S

Fig.7.17 Format of Print Menu

After PRIMI Menu is displayed if \mathbb{M} is pressed the data from memory will be printed，if $⿴ 囗 ⿰ 丿 ㇄$ Haster EPROM will be printed and if S is pressed data from Slave BPROM will be printed．

Once the source is selected the microcomputer waits for the start and end addresses of the block of data to be printed． Bach of the addresses will be entered interactively．Inter－ action of the user and the computer for transferring data from Memory is shown in Fig． $7.18(\mathrm{a})$ and（b）．The data is to be entered manuelly by the user．Next line appears only after the previous line is entered．

（a）

（b）
Fig．7．18 The Interactive Displays of Nemory for PRINT．

The flow chart for the PRINT program can also be divided into two blocks．

1．Dispalying of llenu and acquisition of address
2．Transfering of data to printer．

Fig.7.18(a) Flow Chart for Displaying oi Print Menu and Acquisition of Address.

The printer is a slow device. So it cannot print data as fest as data can be supplied from memory. To overcome this difficulty the printer has two sionals (i) busy (ii) acknowledge. When one byte of data enters the printer, it sends the busy simal indicatine that it cannot acoept any more data and when printer accepts one byte of data it sends acknowledee sipnal that it has received data. These signals are examined by the control unit and sends data only when the printer is not busy.

The EPROM programmer designed by us is microprocessor controlled Three buffers, six latches and decoder, NAND gates, inverters were used in the design.A single sided PCB was desiened and constructed with in-house facilities. Since the board was single sided as such there was many cross connections, which is very cumbersome. This is due to the unavailability of a PCB laboratory. The design would be easier if integrated chip like 8155 was available. Due to nonavailability of the ISI integrated chip, we had to use the simpler type IC's.

This programmer can be used to Program, Verify, Read, Display, Copy and Print. With its 40 output terminals, with proper connections and softrare any type of EPROM can be programmed.

The designed Programmer can be used for programming Intel 2716, 2732,2764 and 27128 BPROMs and the BPROMs within Intel 8748 , 8049 chips. Since the programmer is software controlled, as such it can be used to program any type of BPROM available, just with a little change in the control program of the EPROM programmer. This programer will also save the buying of costly manufactured programmer available in the foreign market and it will prove to be helpful in research works on the microcomputer based design.

1. Steve Ciarcia, "Build your own 280 Computer", BITS Book/A McGraw Hill Fublication/Peterborough, New Hampshire.
2. Roger I. Tokheim, "Microprocessor Fundamentals," Schaum's Outline series in computers, McGraw Hill Book Company, New York, 1980.
3. Millman J., Halkias C.C., "Integrated Electronics: Analog and digital circuits and systems", McGraw Hill Book Company, New York.
4. Givone, D.D., Roesser, R.P., "Microprocessors/Microcomputers: An Introduction," MCGraw Hill Book Company, New York.
5. "Intel Data catalor", 1983.
6. Hall, Douglas V., "Microprocessors and difital systems" MeGraw Hill Book Company, New York.
7. "Pro-Iog Corporation". M 980, Electronics, July 31,1980.
8. "G.F. Industriai miectronics", EP4000, Wireless World, April 1983.
9. H.Muller, "Simple EPRON Programmer" International Centre for theoretical physics, Technology and Application in physics, 18 April - 13 May, 1983.
10. "AM-65 User's Guide", Rockwell International, 1978.
11. H.S.Iynes, "BFROM Programmer", Wireless World, April, May, 1982.

APPEIVDIX - A

Soft-ware programme .
 THE DISPLAY MONITUR HAS THE ADDFESS STARTING FROM E8OOt TU EFFFH．IF ANY DATA IS MOVED TO A PARTICULAR LCCATICN WITHIN THIS ADDFESS RANGE．THE DATA WILL BE DISPLAYED AT THAT LOCATION．
THIS IS THE MAIN PROGRAM WHICH WILL DISPLAY THE MAIN NENU QN THE MONITGR FQR THE SELECTID：H OF SUBPROGRAM．

0100	START LXI D，OEBCH	PUT 44 STAR（＊）FROM
0110	CALL STAF	THE LOCATIDN GESC OF MONITOR
0120	LXI D，CEDCAH	PUT 44 ＊AT OEDC OF MONITOF．
C 130	CALL STAR	
0140	LXI D，OE9 51 H	
0150	LXI H．SEL	WFITE SELECTIDI MENU
0160	CALL DSPT	FROM ESSIH LOCATION．
0170	LXI D，OE9GOH	
0180	CALL DASH	UNDERL INE EY DASH．
5190	LXI D，CEA10 H	WRITE
0266	LXI H．COP	COPY
O210	CALL DSPT	
－こ2\％	MVI A， 3 A	
0230	STA E EAIBH，	
0240	LXI D，CEAIAH	MASTEF
025%	CALL DMST	
－260	CALL TO	TO
0275	SHLD（EAC3H	
0280	LXI D，OEA 27 H	
C29．	CALL CSLV	SLAVE
0306	MVI $A, 3 \mathrm{~A}$	
Oこ10	STA OEARC	
Cこ20	MVI 4,03	c
0330	STA EEA2EF	
Q 348	LXI D．OEA9D	WFITE
Oこ56	CALL DPRG	PFOGRAM
6 36\％	MVI A，ЗAH	
－こ76	STA EAGBL	
0380	LXI D，EA9 AH	－
0390	CALL DMEM	MEMARY
0400	CALL TC	
6410	SHL D EEAA 3 H	TO
0420	LXI D，OEAATH	
0430	CALL DMST	MASTEF
0440	MVI $A, 3 A$	
045	STA OEAACH	
0455	MVI $A, 10 \mathrm{H}$	P
1960	STA DEAAEH	
0470	LXI D，ESIOH	WFITE
0490	CALP DVEF．	VER IFY
e5t6	MVI A． $\begin{gathered}\text { A }\end{gathered}$	
C510	STA NEE18H	
\％520	LXI D，EB：AH	
0530	CALL EMS	MASTER，SLAVE
0540	LXI D，©EE27H	
655	CALL DEPS	EFASED
0560	MVI A，डA	
6570	STA OEE2CH	
C58	MVI A．16H	\checkmark
659\％	STA EE2Eh	－－－－－－－－－－－－
OEOC	LXI D，EBSOH	WFITE
CEIS	CALL DFD	$P \equiv A D$
QE20	MVI $A=3 \mathrm{AH}$	
OESO	STA OEE98H	
$0 \in \mathscr{C}$	LXI D．EBGAH	
0650	CALL DMS	MASTER．SL AVE
0667	MVI A， 3 AH	MスSTER．SLAV－
C670	STA OEEACH	
CEB6	MVI A， 12 H	卜
OES	STA EEAEF	－－－－－－－－－－－－

$$
A-3
$$

23
23
24
24
24
24
24
24
24
24
24
24
25
25
25
25
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26

DMENU CALL OFGH CPI $\angle D H$ JZ ESMST CPI 5こ $j Z$ DSSIV CPI 52H $J Z$ DSMEM CPI 51 $J Z$ START JMP DMENU
DSMST LXI D,OEAIUH CALL SPACE CALL ESEADD CALL SUBTR MVI A,OAOH OUT CECH MVI $A: 4$ OUT BDH CALL HLRP CAL2 DSLDP Hit
DSSLV LXI OEA10H
CALL SPACE
CALL LSLV1
CALL ESEADD
CALL SUBTR.
MVI A,04
OUT OEDH
MVI A, 14 H OUT O BCH CALL HLFP CALL DSLOP HLT
DSMEN LXI GEAIOH
CALL SPACE
CALL LMEM 1
CALL ESEADD
CALL SUBTP
LHLD STRT 1
DSLOPM MOV A.M
PUSHE
MCV B, A
CALL 103 H
PCP B
INX H
$\begin{array}{ll}\text { DCX } \\ \text { MCV } & A \\ \text { B }\end{array}$
OFA C IS IBCI IS NDT O THEN
JNZ DSLDPM HLT

CHECK FOR DISPLAY KEY PRESSED
IS IT M THEN GU TU
DSM ST
IS IT S THEN GD TO
OSSLV R THEN GO TO
DSMEM
IS IT Q THEIV RETUFN TO
AAIN MENU DTHEFWISE LOUP BACK
TI SEARCH FDF KEY PRESSED
CLEAR'SELECT EPRUM*
ENTER ADDRESS
RESIT OF SUBTFACTION IN BC RP.
SET MASTER IN READ MODE.
SET ADH,ADL \& CR IN OUT MODE.
START ADDR. IN HL
DISPLAY THE COIVTENT

ENTER ADURESS

SET SLAVE IN OUTPUT MUDE
DISPL AY
PFOGFAM: SUEPRDGRAM STARTS FROM HERE. IT IS USED TD FROGFAN AN EPRON AT MASTER GR SLAVE LOCATION FFCM MAIN MEMORY.

$$
A-7
$$

```
        4753 MCV B.A
        4EOO RET
```



```
* SHIFTING DATA FROM TwO MEMORY LUCATION TO D.E RP
***********************************************************************
```



```
    4820 MOV D.L SHIFTED OR PRDGRAMMED IS LDADED
    4E3Q MOV E,H
    IN D,E PP
    4840 RET
```

THIS IS SUEFROUTINE FOR SHIFTING DAT A FROM TWO 4 E5 HLFP LHLD STRT 1
4860 MCV A.L
4876 MEV L,H
4880 MOV H.A
4 EG 0 RET
 * SUBRDUTINE FCR WRITING START, END ADDFESS \& THEN ENTERING

*
4
4
4

THE ADDRESS MANUALLY FROM KEYBDARD FUUR DIGITS CAN BE ENTERED AND ALSO CORRECTED BY CURSOF SHIFTING

4900 ESEACD CALL LSADI
4 S10 LXI H,CEAAEH
4920 CALL CURSD
453 CALL LDADR
$49 こ 2$ LHLD MEMFI
4935 SHLD STRT 1
4940 CALL LEAD
455 LXI H. 2 EBZンH
496 CALL CURSD
4970 CALL LDADF
498 LHLD MEMRI
4 SGE SHLL END 1
5000 RET

WRITE START END ADDRESS.
PLACE CUPSUR AT DESIRED PGSITION LOAD ADDRESS
SHIFT THE ENTERED ADDRESS
TO STRTI
WFITE END ADDPESS
PLACE CURSOR AT POSITIUN
SHIFT THE ENTERED ADDRESS TO EIND 1
 * THIS IS SUBRCUTINE FQR ENTERING ADDRESS WHERE DATA TO BE * STORED OF PRCGRAMMED

501 ESSADD CALL LSAD3	WRITEVSTART ADDRESS: ON BRD L
5029	LXI H, CEBADH

 * SUEROUTINE FOR CLEARING THE MAIN MENU

5080 CLEAF LXI D.00E959
5es CALL SPACE
5100 LXI D.OEA 10 H
5110 CALL SPACE
5120 LXI D,GEAGOH
513 CALL SPACE
5140 LXI D.OEB10H
5150 CALL SPACE
5160 LXI D,GEB10H
5176 CALL SPACE
5180 LXI D,OE90H
5196 CALL SPACE
5200 LXI D.OECIUH
5213 CALL SPACE
5220 LXI D.OEC90H
5230 CALL SPACE
5240 RET

辛立辛
SUBFDUTINE LOPFFOR LDOPING UITIL CDNTENT OF B，C RP IS
かも CC 6
6070 INX
6．36 DCR B
EGSO MOV A，B
E10\％CFI OO
6116 RET

＊SUBRDUTINE FDR PUTTING 44 STARSI＊！IN A LINE

Є120 STAR MVI B．2CH
6130 LUP1 MVI A． $2 A H$
614 CALL 1 CP
6150 JNZ LOPI
6169 RET
 ヶ SUBRCUTINE FOF PUTTING 40 SPACES INA AINE

617 S SPACE MVI B， 28 H
6180 LOP2 MVI A，2GH IS ASCII CODE FOP SPACE
E190 CALL LOP
5200 JNZ LLPZ
6210 RET
 SUBRCUTINE FOR DISPLAYING 43 DASHES IN A LINE
 6220 DASH MVI B，20H
6236 LOPJ MVI A，2DH
6246 CALL LGP
6250 JNZ LDP3
626% RET
6270 SVASP MVI B，07H
528 LOP4 MVI A．2CH
6290 CALL LCP
6300 JNZ LDP4
6310 RET

APPENDIX-B
Pin Diagrams and Programming Waveforms

Figure 1. Pin Configuration

Figure 2. Biock Diagram
Pin diagram of intel EPROMs.

FUNCTIONAL DESCRIPTION

Since the \& D-1ype latches use pro wansistot tnout for the outpu: contol input $O C$ and enabit. mpuit E, which are common to ail 8 circuits, the input load factor is small Witt a hysteretis of 400 mV (typical) specially given to the input circui: E, noise margin is high. When E is high, the iniormation from the data input D appears in the output C. When the D signal changes, the sional that appears, in Q also changes. When E changes from high to low, the status of D immediately before the change is latched While E is low. the status of O does nol change even it the D is changed. When $O C$ is high. $10-80$ are all put in the high impedance state irtespective of other indut signais. Sinct al outputs have high fan-out, this device is suitable for use a; ; buffer register, 1/O pon; or bi-directional bus driver. Fo: appl:cation, see M74LS374P.

Pin diagram of Intel74IS373.

FUNCTIONAL DESCRIPTION

The use of pnp transistors in the input circuit has enabled the achievement of small input load factor. With hysteresis characteristics, the buffer has a 3 -state noninverted output with high noise margin. .
When output control input $\overline{O C}$ is low, the outbu: Y is low if input A is low and Y is high if A is high. When $O C$ is high. all of Y_{1}, Y_{2}, Y_{3}, and Y_{4} are in the highimpeciance state, irrespective of the status of A.
By connecting $\overline{10 C}$ with $\overline{2 O C}$, it becomes possibie to control the output of all 8 circuits simutianeousiy. Output can be terminated by a load resistor of 133Ω or over.
For stancard characteristics, see M?ALS241P

PIN 'CONFIGURATION (TOP VIEW)

Outline 16P4

FUNCTIONAL DESCRIPTION

For use as a decoder, specity inputs D_{A}, D_{B}, and D_{C} in 3-bit binary code. In the case of decoding function, the E_{1} is kept in high state while $\overline{E_{2}}$ and $\overline{E_{3}}$ are kept low. If $E_{1}, \overline{E_{2}}$ and \bar{E}_{3} are not in these conditions, all the outpurs become high, irrespecti: $=$ of the status of $D_{A} \sim D_{C}$. For use as a demultiplexe:, $\overline{E_{1}}, \overline{E_{2}}$ and E_{3} are used as data inputs and D_{A}, D_{E}, and D_{C} as seltetion inputs This forms a 1 -line io e-fine demuluplexer.

PROGRAMMING WAVEFORMS ($\mathrm{V}_{\mathrm{PP}}=25 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$)

PROGRAMMING WAVEFORMS

Programming Waveforms of 2764 \&27128.

APPEDIX - -
Printed Circuit Board Designs

\rightarrow Selection knob for connection to different type of EPROM Top side view of the EPROM rogrammer box. (above)

Front view of the EPROM Programmer Box.

 ADH - Addresshigh repeisters; $C R$ - Control redister.
ADL- " Low ", ;
PCR - Port contiol ", ; PRT-Printer ,"

