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Abstract

The spectral subtraction based algorithms are commonly used for single chan-

nel speech enhancement because of their elegant performance in denoising with

low cOlllputationalload. They, however, suffer from a serious drawback in that

the enhanced speech is accompanied by unpleasant musical noise artifact, which

is characterized by tones with random frequencies. It is known that the key

point behind the reduction of musical noise by the minimum-mean-squared-error

(MMSE) estimator is the use of a priori SNR. The "decision-directed" approach

widely used for its estimation requires an averaging parameter. Conventionally,

a constant value is chosen by most researchers. The main objective of this work

is the development of a self-adaptive smoothing parameter in the MMSE sense to

estimate the a priori SNR in the DCT domain which can account for the abrupt

changes in the speech spectral amplitudes. The performance improvement using

the proposed self-adaptive smoothing parameter in the commonly used spectral

subtraction algorithms for denoising speech corrupted by background noise is
noteworthy.

The conventional Wiener filtering shows better denoising performance in terms

of overall and average segmental SNRs with the cost paid in Itakura-Saito (IS)

measure as compared to the spectral subtraction based methods. In this work, a

generalized Wiener filter is proposed to improve the IS measure without sacrificing

enhanced speech quality in terms of SNR by introducing a new term in the gain

function. A comparative study with the spectral subtraction algorithms and the

conventional Wiener filter confirms the superiority of the proposed generalized

Wiener filter.
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Chapter 1

Introd uction

1.1 Speech Enhancement: Background

Speech enhancement is the term used to describe algorithms or devices whose

purpose is to improve some perceptual aspects of speech for the human listener

or to improve the speech signal so that it may be better exploited by other speech

processing algorithms. Development and widespread deployment of digital com-

munication systems during the last twenty years have brought increased attention

to the role of speech enhancement in speech processing problems [1]-[6]. Speech

enhancement algorithms have been applied to problems as diverse as correction of

reverberation, pitch modification, rate modification, reconstruction of lost speech

packets in digital networks, correction of so-called "hyperbaric" speech produced

by deep-sea divers breathing a helium-oxygen mixture and correction of speech

that has been distorted due to pathological problems of the speaker. However,

noise reduction is probably the most important and most frequently encountered

speech enhancement problem.

Speech enhancement attempts to improve the performance of voice commu-

nicat.ion systems when their input. or output signal is corrupted by noise. The

improvement is in the sense of minimizing the effects of noise on the performance

of these systems. The need for enhancing speech signals arises in many situations

in which the speech either originates from some noisy location or is affected by the

noise over the channel or at the receiving end. Both digital and analog channels

are possible, and communication can be either between people or with a machine.

Hence speech enhancement is the problem of enhancing a given sample function

of noisy speech signal, as well as the problem of enhancing the performance of

1
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speech coding and recognition systems whose input signal is noisy [1]-[40]. Ex-

amples of important applications of speech enhancement include improving the

performance of 1) cellular radio telephone systems, which usually suffer from

baekground noise in the car as well as from ehannel noise; 2) pay phones located

in Boisy cnvironments (c.g. airports); 3) air-ground communication systcms in

which thc cockpit noise corrupts the pilot's speech; 4) telcconferencing systems

where noise sources in one location may be broadcast to all other locations; 5)

long distance communication over noisy radio channels; 6) paging systems located

in noisy environments (e.g. airports, machine rooms); 7) ground-air communica-

tion in which the cockpit noise corrupts the received massages; and 8) suboptimal

specch quantization systems.

In the cellular radio telephone example, the original speech is corrupted by

the noise generated by the engine, fan, traffic and wind as well as by the channel

noise [7]' [8]. The signals delivered by cellular systems may therefore be noisy

with impaired quality and intelligibility. If the cellular system encodes the signal

prior to its transmission, then further degradation in its performance results, since

speech coders rely on some model for the clean signal and normally that model

is not suitable for the noisy signal. Similarly, if the cellular system is equipped

with 11 speech rccognition systcm which is used for automatic dialing, thcn the

rccognition accuracy of such system deteriorates in the presence of noise, since

the noisy input is unlikely to obey the statistical model for the clean signal used

by the recognizer. Similar problems are encountered with pay phone communica-

tion, air-ground communication, and teleconferencing systems. In the air-ground

communication examples, however, the messages of low quality and intelligibility

delivered to the air traffic controllers may have disastrous effects. The situation

in long distance communication, paging systems, and ground-air communication

is somewhat simpler, since the noise is added to the speech at the channel and at

thc rcceiving end, respectively, rather than that at the source location. Hence,

the clcan signal can be "immunized" prior to being affected by the noise [9]-[11].

In suboptimal quantization of speech signals, the quantized signal is considcred

11 noisy version of the clean signal [12]-[13]. Hencc, enhancement cau be applied

to reduce the quantization noise, provided that quantization was not optimally

performed.

2



The forgoing discussion demonstrates that speech enhancement has three ma-

jor goals: 1) to improve perceptual aspects (e.g., quality, intelligibility) of a given

sample function of degraded speech signal; 2) to increase robustness of speech

coders to input noise; 3) to increase robustness of speech recognition systems to
input noise.

The quality of speech signal is a subjective measure which reflects on the way

the signal is perceived by listeners. It can be expressed in terms of how pleasant

t.he signal sounds or how much effort is required on behalf of the listeners in or-

der to understand the message. Intelligibility, on the other hand, is an objective

measure of the amount of information which can be extracted by listeners from

the given signal, whether the signal is dean or noisy. A given sigrml may be of

the high quality and low intelligibility, and vice versa. Hence, the two measures

are independent of each other. Both the quality and the intelligibilty of a set of

given signals are evaluated based on tests performed on human listeners. Since

no mathematical quantification of these measures, in terms of closed-form per-

cept.ually meaningful distortion measures, is known, algorithms for goals 1 and

2 above are difficult to design and evaluate. Goal 3 is significantly simpler since

t,)", prnblmn is that of decoding the signal into a finite nnmber of cln.,ses and the

ultimate goal can be ea.oilyformulated in mathenmticalterms. Usually the prob-

lem is that of designing decoders which minimize the probability of recognition

error.

The speech enhancement problem consists of a family of subproblems char-

acterized by the type of noise source, the way the noise interacts with the clean

signal, the number of voice channels, or microphone outputs, available for en-

hancement, and the nature of speech communication systems. The noise, or the

interfering signals, may, for example be due to competitive speakers, background

sounds (music, fans, machines, door slamming, wind, traffic etc.), room reverber-

ation, or random channel noise. The noise may accompany the original signal

at the source location, over communication channels, or at the receiving end.

It may affect the original signal in an additive, multiplicative, or convolutional

manner. Furthermore, the noise may be statistically dependent or independent

of the clean signal. The number of voice channels available for enhancementis

an important factor in designing speech enhancement systerrlH. In general; the

3
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larger the number of microphones, the easier the speech enhancement task. The

communication system for which speech enhancement is designed can simply be a

recording which has to be displayed to audience, a man-machine communication

system (speech recognizer), a digital communication system, etc.

Speech enhancement based on spectral decomposing and filtering [14]-[22]re-

mains a common and effective approach for enhancing speech degraded by acous-

tic additive noise when only the noisy speech is available. This general class is

based on variations of optimum filters and encompasses such methods as spectral

subtraction, Wiener filtering and various maximum likelihood (ML) estimation

schemes. A common set of requirements in this class include: 1) An appropriate

suppression rule based on an optimality criteria [15]' [16] and usually function

of the SNR (signal to noise ratio) and other speech and noise statistics. 2) An

estimation of the speech and noise power spectral densities, or their respective

autocorrelation. 3) A quantification of the probability of speech presence to fur-

ther attenuate non-speech bands [17]. 4) A mcthod fiJr redue:iug residual noise

by appropriately smoothing the estimated quantities [15] and/or exploiting the

psychoacoustic properties of human hearing.

The choice of suppression rules is governed by many factors, such as com-

putational efficiency, optimality criteria, and the exploiting of human hearing

properties. In the reported literature, the range includes heuristic rules (e.g.,

[16]) as well as formally derived ones. The ML estimation approaches in [15]' [18]

attempt to better exploit the statistical properties of the DFT (discrete Fourier

transform) of the noisy speech. These methods assume a statistie:almodcl for the

DFT coefficients of noisy speech and derive optimum estimators of the magnitude

spectrum based on that model.

An important contribution in this area is the smoothing approach proposed

III [15] whereby the variation in SNR between successive frames is reduced by

averaging the locally computed SNR (SNRpost) with the SNR estimated in the

previous frame after the filtering operation (SNRest). The method results in a

significant reduction of the "musical noise" artifacts, as shown in [14].

Another speech enhancement approach is the signal subspace (SS) method,
[23]' [24]. The key idea is to decompose the vector space of the noisy signal into

a signal-plus-noise subspace and a noise subspace under the assumption that the

4
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additive noise is white. The enhancement is performed by removing the noise

subspace and estimating the clean speech from the remaining signal-plus-noise

subspace. Hidden Markov Model (HMM) based speech enhancement approaches

[25]' [26] have also drawn much attention in recent years.

MethudH for I':ipeech <ml11trlCelJlcmt 11l1ve alHo l)(~ell c.1evn1oped ha:.i(~don exLl'ac-

tion of parameters from noisy speech, and synthesizing speech from these pa-

rameters [27]. All-pole modelling of degraded speech is one such method [28].

In all-pole modelling, if wrong peaks are extracted, then these peaks may get

enhanced. Temporal sequence of these peaks also produces discontinuities in the

contours of the spectral peaks when compared with the smooth contours in nat-

ural speech. Methods for speech enhancement have also been suggested based on

the periodicity due to pitch [29]. Noise samples in successive glottal cycles me

uncorrelated. On the other hand, the characteristics of the vocal tract system

are highly correlated due to slow movement of the articular. These methods for

enhancement of speech depend critically on the estimation of pitch from the noisy

speech signal.

Mflny speech enhancement algorithms make use of DFT to make it easier

to remove noise embedded in the noisy speech signal [1]-[22]. Recently, Discrete

Cosine transform (DCT) and Wavelet transform have been widely used as analysis

tools in the field of speech enhancement [30]-[36]. DCT is widely used because of

its excellent energy compaction properties.

1.2 Objective of This Research

This main objective of this thesis work is the development of a self adaptive

smoothing parameter in the MMSE sense to estimate the a priori SNR in the

DCT domain which can account for the abrupt changes in the speech spectral am-

plitude in the spectral subtraction approach. For single channel speech enhance-

ment, the spectral subtraction based algorithms are commonly used because of

their low computational load. However, the spectral subtraction algorithms have

a serious. drawback in that the enhanced speech is accompanied by unpleasant

musical noise artifact, which is characterized by tones with random frequencies

[1]. Apart from being extremely annoying to the listeners, the musical noise also

hampers the performance of the speech-coding algorithms to a great extent [42].

5



It has been shown in [17] that the key point behind the reduction of musical

noise by the minimum-mean-squared-error (MMSE) estimator [15] is the use of

a priori SNR. Several methods such as spectral subtraction based algorithms,

Wiener filtering require the knowledge of the a priori SNR and the estimation

of a priori SNR using the "decision-directed" approach requires an averaging

parameter [17J. A low value of the averaging parameter is suitable for rapidly

changing speech regions, while a high value is suitable for near stationary speech

frames [43J. Conventionally, a constant value is used for the averaging parameter

[30J.
A self adaptive optimum smoothing parameter to estimate the a priori SNR

in the DCT domain is derived in Chapter 3. The performance of the proposed

self adaptive smoothing parameter on the commonly used spectral subtraction

algorithms is evaluated on speech corrupted by background white Gaussian noise

and color noise (e.g., babble noise). It is also expected that incorporation of

improved estimate of the a priori SNR in the variants of the Wiener filtering

algorithm will significantly improve their performances both in terms of quality

and intelligibility.

Though the Wiener filtering shows better performance in terms of overall

output SNR and average segmental SNR (AvgSegSNR), its IS measure is the

worst as compared to the spectral subtraction based methods. To improve the

IS measure without sacrificing SNR, a generalized Wiener filter is proposed by

relaxing a basic assumption in Chapter 4. A comparative study with the spectral

subtraction algorithms and the Wiener filtering is provided to demonstrate the

effectiveness of implementing the proposed generalized Wiener filter.

In this work, we have computed noise spectral components from noisy speech

according to [41]. Here all computations are done in the DCT domain. The trans-

form coefficients are first divided into a number of blocks consisting of convenient

number of consecutive coefficients of the transformed signal.

1.3 Organization of the Thesis

This thesis consists of five chapters. Chapter 1 gives a brief description of neces-

sity of speech enhancement techniques, names of existing methods and the main

objectives of this research work.

6



In Chapter 2, a brief review of previous differents peech enhancement tech-

niques such as spectral subtraction rules, Wiener filtering and dual gain Wiener
filtering are presented.

In Chapter 3, the drawback of the traditional spectral subtraction based meth-

ods is discussed. To improve their performances, more accurate method for a pri-

ori SNR estimation is proposed. Simulation results are also presented to evaluate
the effectiveness of the proposed scheme.

In Chapter 4, a generalized gain function for the Wiener filter is proposed. The

performance of the proposed generalized Wiener filter is evaluated and compared

with t.hat of the conventional Wiener filter.

The thesis concludes by presenting an overall discussion on. t.he work and

pointing out some unsolved problems for future work in Chapter 5.

7



Chapter 2

Review of Speech Enhancement
Techniques

2.1 Introduction

Speech enhancement plays a key role in designing robust automatic speech and

speaker recognition systems. As the presence of noise deteriorates the perfor-

mance of the recognition systems and also shows an adverse effect on the per-

ceived quality and intelligibility of speech at the receiving end, several approaches

for speech enhancement in additive noise have been proposed. Speech enhance-

ment based on spectral decomposition and variations of optimum filters cover

the mct.hods such as spectral subtraction, Wiener filtering and various maximum

likelihood (II1L) estimation schemes. The major breakthrough in speech enhance-

ment technique are described in the following sections.

2.2 Enhancement Techniques Based on Spectral
Amplitude Estimation

In general, in enhancement of a signal degraded by additive noise, it is signifi-
cantly eusier to estimate the spectral amplitude associated with the original signal

than it is to estimate both amplitude and phase. It is principally the spectral am-

plitude rather than phase that is important for speech intelligibility and quality.

There are a variet.y of speech enhancement techniques that capit.alize on t.his as-

pect of speech perception by focusing on enhancing only the spectral amplitude.

The techniques to be discussed can be broadly classified into t.wo groups. First.,

the spectral amplitude is estimat.ed in the frequency domain, using the spectrum

8



of the degraded speech. Each short-time segment of the enhanced speech wave-

form in the time domain is then obtained by inverse transforming this spectral

amplitude estimate combined with the phase of the degraded speech. In the sec-

ond class, the degraded speech is first used to obtain a filter which is then applied

to the degraded speech. Since these procedures lead to zero-phase filters, it is

again only the spectral amplitude that is enhanced, with the phase of the filter

being identical to that of the degraded speech.

2.2.1 Spectral amplitude estimation based on spectral sub-
traction

A classical noise reduction approach for speech enhancement and robust recogni-

tion is the spectral subtraction method that was first proposed by Boll [I]. The

basic idea is restore the magnitude spectrum or power spectrum of a signal ob-

served in additive noise through subtraction of an estimate of the average noise

spectrum from the noisy signal spectrum. Assuming that the noise is a stationary

or a slowly varying process, the noise spectrum is estimated or updated during

the periods when the speech signal is absent. The estimation is performed on a

frarnc-by-framc basis, where each frame consists 20-40 ms of speech salnples. The

sample spectrum of the noisy signal is usually employed in the spectral subtrac-

tion approach, thus resulting in an estimate of the sample spectrum of the clean

signal. The square root of the estimate of the sample spectrum is considered an

estimate of the magnitude spectrum of the speech signal. An spectral estimate

of the signal is obtained by multiplying the estimate of magnitude spectrum with

sign of the noisy signal in the DCT domain.

Let x(t) denotes the clean signal and d(t) denotes the additive noise sequence

in the time domain, and it is assumed that x(t) and d(t) are uncorrelated. The

noisy signal in the time domain y(t) is given by

y(t) = x(t) + d(t) (2.1)

The discrete Cosine transform (DCT) of the noisy signal y(t) [38] is denoted

by Y" k, 0 < k < N - 1, where nand k denote frame and frequency index,, - -
respectively. The sample spectrum of y(t) is given by Y;,k' Let X",k and D",k

denote the clean speech and noise signal spectral component in the DCT domain,

9
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Fig. 2.1: The spectral subtraction approach.

respectively, then the DCT domain representation of Eq. (2.1) is given by

(2.2)

The forward DCT of the noisy signal {y(t), 0::::; t ::::;N - I} is given by [30]

N-l [1f(2t + l)k]Yk=Qkt;y(t)cos 2N ,0::::; k::::; N-l (2.3)

where

(2.5)

(2.4){ /Ttl k=ON'Qk -
- ~,1::::;k::::;N-l

The reconstructed signal, x(t), can be obtained using the following inverse Cosine

transformation (IDCT) [30]

N-l _ [1f(2t + l)k]
x(t) = {;;QkXkCOS 2N ,0::::;t::::;N-l

where Xk denotes the denoised DCT coefficients. A block diagram of thespectraJ

Rubtraction approach is shown in Fig. 2.1,1) can be of 101' 2, 1)= 2 provides best

reRult; Sd(k) is the noise estimate.

With the exact noise spectrum Dn,k the "ideal" spectral power subtraction

takes the form [20]' [30], [41]' i.e.,

Y2 X2 D2
nk= nk+ nk, , , (2.6)

10



Rearranging Eq. (2.6)

(2.7)

Thus in the DCT domain, power of the clean speech spectral is estimated as

and the clean speech spectral component itself is obtained as

y2 {1- E{D;,d.}
n,k y2

n,k

= Y. {I _ E{D;,k}}
n,k y2

n,k

(2.8)

(2.9)

where E {-} is the expectation operator. Then an estimate of the clean speech

spectral component in the DCT domain in direct spectral power subtraction
approach can be written as

(2.10)

(2.11)

where Gn,k is called the gain function, given by .

{ ( E{D;k})}Gn,k = max 0, 1.- Y;,k'

provided that the difference of spectral estimates of the nOIsy signal anel the

noise process is nonnegative. If this difference becomes negative, then it is usually

replaced by an arbitrary small nonnegative number, E. The power spectral density

of the noise is normally estimated from portions of the noisy signal during when

speech is absent and only noise is present. The spectral subtraction based signal

estimator affects the magnitude spectrum of the noisy signal in each frame while

it keeps the phase of that signal intact. From a perceptual point of view this is a

desirable property, since the short-time magnitude spectrum of the clean signal

is cOllsiderably morc important than its short-time phase Spedl'lllll [2]' [:3],[39]
and optimal estimation of the short-time magnitude and phase spectrum of the

clean signal cannot be simultaneously performed [15]' [25]. Many variations on

the basic spectral subtraction approach have been proposed [1]' [2]' [18]' [20]'
[40J.

11

(:,

.~.~-.



Scalart and Filho proposed estimation of the a priori SNR [17].

poStC'ri07'i SNR and a priori SNR are defined as follows:

S () Y;kNRpost 71., k = "in,k = 2(' k)
ad n, .

S'NP ( ) C E{X~k}
."'prior n) k = '-:,n,k = 2( Ie)

ad n, .

The local a

(2.12)

(2.13)

c

where (J~(n, k) = E{D~,k}. An estimation of ~n,k is made according to the

"decision-directed" approach by Ephraim and Malah [15J

~ ~-lk
~n,k = a &~(n_ i,k) + (1 - a)Pbn,k - 1] (2.14)

where Xn-1,k is the estimate of the kth speech spectral component and &~(n-l, k)

is the estimate of variance of the kth noise spectral component in the (n - 1)th

analysis frame, the operator Pl.] denotes half wave rectification, and a is an

averaging parameter. Considering the maximum likelihood estimate of the a

priori SNR, we have ~n,k = E{'Yn,k - I} [15]. Therefore the gain function of Eq.

(2.10) takes the form

OPE _
n,k - (2.15)

The method of estimating the clean speech spectral amplitude using the above

gain function will be called spectral power estimation (PE) method in the fol-

lowing sections and chapters. Hence the final form of the above subtraction rule

is
- PEXn k = Onk'Ynk, "

(2.16)

Scalart and Filho [17] also proposed to consider the possibility of the prob-

ability of speech presence in the spectral subtraction rules. Several authors in-

corporated the further attenuation based on the probability of speech presence

[44]' [45] in the FFT ( fast Fourier transform) domain. Let q",k is the probability

of speech absence in the k-th spectral component and n-th frame. The analysis

relics on a two-state model of a speech event such that the noisy signal under

consideration mayor may not have speech present in it. This is illustrated by

the following two hypotheses:

Ho: The speech is absent: Yk = Dk

HI: The speech is present: Yk = Xk +Dk

12



The probability that the speech is in state HI may be obtained according to
Bayes rule as

(2.17)

given )~l,k.

p(Yn,kIHI)P(HI)
p(Yn,kIHI)P(HI) +p(Yn,kIHo)p(Ho)

p(HI)
p(H ) + p(H ) ,>(Yn,kIHo)

I 0 p(Y",kIHl)

Since Xn,k and Dn,k are zero-mean real Gaussian random process in

t.he DCT domain, the probability density function of Yn,k follows the Gaussian

dist.ribution, i.e.,

(2.18)

cpr -
n,k -

1- qn,k

1- qn,k + qn,k .j'Yn,k exp (

13



1- qn,k
1- qn,k + qn,k"j'Yn,k exp( -Vn,k)

(2.21)

Thus an additional attenuation based on the uncertainty of the speech presence

in the DCT domain is

cpr _ 1- qn,k (2.22)
n,k - 1 - qn,k + qn,kV(1 + En,k) exp( -Vn,k)

where IJ",k = 'Yn,kEn,k/2(1 + En,d. En,k is calculated by using Eq. (2.14). Thus the

effective gain in this method can be expressed as

CMPE = 1- qn,k CPE
n,k J() ( ) n,k1 - qn,k + qn,k 1+En,k exp -Vn,k

Th<.' <.:orrcsponr.!ing suhtraction rule takes the form

- MPEXn,k = Cn,k .Yn,k

(2.23)

(2.24)

This method will be called modified spectral power estimation (MPE) in the

following sections and chapters.

In the recent years efforts were directed to find an optimum parametric estima-

tor [20] by using statistical distribution of speech and noise signals and optimizing

in the MMSE sense. The authors [20] estimated the clean speech spectral power

as

~,k - an,kY;'k - an,kE{D~,k}

an,k {Y;'k - E{D~,k}} (2.25)

By using Eqs. (2.8)-(2.15), an estimate of clean speech spectral component is

obtained as

En,k Yo
(1 C )' ",k

+r.."n,k
(2.26)

"a" is evaluated in the minimum mean-square (MMSE) sense by minimizing the

cost function

0= E {(X~,k - ~,k)2}

Substituting Eqs. (2.25) and (2.7) consecutively into Eq. (2.27)

14
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= E {[X;',k - an,k(X;',k + D;',k) + an,kE{D;"k}r}

E {[ (1- an,k)X;',k - an,kD;',k + an,kE{ D;',k}n
E {[ (1 - an,k? X~,k + a;,kD~,k + a;,kE{ D;,k}2

-2an,k(1 - an,k)X;',kD;',k - 2a;,kD;,kE{D;,k}

+2an,k(1 - an,k)X;',kE {D;',d ] }

(1 ~ (J,,,,k)"E{X~,k} + (J,;"kE{D~"d + a;',kE{D~,d2

-2an,k(1- a",k)E{X;',k}E{D;',k}

- 2a;,kE {D;,d E {D;,k}

+2an,k(1- an,k)E{X;,dE{D;,d

(1 - an,k)2E{ X~,k} + a;;,kE{ D~,k} + a;;,kE{ D;,k}2

-2an,k(1- an,k)E{X;',k}E{D;,k} - 2a;,kE{D;,k}2

+2an,k(1 - an,k)E {X;',k} E {D;',d
2 {1} 2 1 2 22(1 - a",k) E Xn,k + an,kE{Dn,k} - an,kE{Dn,d

Differentiating 0 with respect to an,k gives

(2.28)

80
2(1 - an,k)( -l)E{X~,k} + 2an,kE{D~,k} - 2an,kE{D;,d2

2an,kE{X~,k} + 2an,kE{D~,k} - 2an,kE{D;,k}2

-2E{X~,k} (2.29)

Equating 88/ 8an,k to zero yields an optimum expression for an,k

(2.30)

Since X" k and Dn k in the DCT domain are zero-mean real Gaussian random, ,

process, the probability density function of Xn,k follows the Gaussian distribution,

I.e.,

() 1 (X;' k )
P Xn,k = J2 E{X2 } exp - 2E{X2 }

7r n,k n,k

Fourth moment of Xn,k, i.e. E{X~,k}' is then given by

. (2.31)

(2.32)
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Now, using the formula

100 r(m+!)
xmexp(-ax2)dx = ~, a> 0, m> -1

o 2a 2
(2.33)

Thus E{X4
} is obtained as (dropping subscript (n,k) for notational simplicity)

2 r(i¥)
V2-rrE{X2} 2(1/2E{X2})~

2 rm
= ---;0===0 ---~-"

V2-rrE{X2} 2(1/2E{X2})~

1 ~ft
V2-rrE{X2} 2(1/2E{X2})~

4V2E{X2}2 ~ft
V27r 1

3E{X2}2 (2.34)

<lS 1'(11. + 1) = nr(n). We obtain

(2.35)

Similarly,

(2.36)

Substituting Eqs. (2.35) and (2.36) into Eq. (2.30), we get

3E{X~,k}
3E{X~,d + 3E{D~,d - E{D~,kF

3E{X~,k}
3E{X~k}+2E{D~k}, ,

~~,k

~~,k + 0.667
(2.37)

Finally, the corresponding subtraction rule (Eq. (2.26)) can be expressed <lS

(2.38)

~n,k y........ . nk
(1+ ~n,k) ,

~~,k OPE y.
0.667 +~;;k n,k' n,k,

~~,k

0.667 + ~~,k

This method will be called parametric spectral power estimation (PARA) in the

following sr-ctions and chaptr-rs. ~",k is ca1cu!atr-d by using Eq. (2.14).

16



(2.39)

However, to reduce spectral distortion that results form this subtraction rule

the authors [20] proposed the inclusion of a spectral floor

I-'Ynkl= { IX",ki, if 1X",kl> iLiYn,kl
, f(iL, [Yn,k[), otherwise

where f(iL,IYn,kl) = 0.5(iLIYn,kl + IXn-1,kl) and now IXn,kl is the estimate for
diocrntc COoine transformed spectral magnitude of clean speech. In the above

subtraction rule, the value of iL to be 0.05 ~ 0.2.

In many works [15]' [20]' [30J including all described above authors estimate

the a pl'iori SNR (~n,k) using a constant value for the smoothing parameter a

Eq. (2.14). The value is usually chosen in the range 0.96 to 0.995.

2.2.2 Spectral amplitude estimation based on Wiener fil-
tering

In this method, a multiplicative filter is ru;sumed and its output is the estima-

tion of the clean signal. Let Wn,k denotes the filter gain and Yn,k denotes the

noisy speech spectral component. Then an estimate of the clean speech spectral

component is obtained as

(2.40)

Wn,k is derived in the MMSE sense by minimizing the cost function

(2.41)

Substituting Eq. (2.40) into Eq. (2.41)

(2.42)

Substituting Eq. (2.2) into Eq. (2.42)

Nn,k E{[Wn,k(Xn,k + Dn,k) - Xn,k]2}

- (W~,k - 2Wn,k + l)E{X~,k} + 2Wn,k(Wn,k - l)E{Xn,kDn,k}

+W~,kE{D;',k} (2.43)

Using the fact that Xn,k and Dn,k are zero-mean and uncorrelated real Gaussian

random variables (i.e., E{X",kD",d = 0 , E{Xn,d = 0 and E{D",k} = 0), the
above cost function takes the form

(2.44)
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Differentiating Nn,k with respect to Wn,k gives

(2Wn,k - 2)E{X;',k} + 2Wn,kE{D;;,k}

2(Wn,k - I)E{X;',k} + 2Wn,kE{D;;,d (2.45)

Equating aNn,daWn,k to zero yields

(2.46)

(2.47)

Dividing Eq. (2.46) by 2E{D;;,k}

( E{X:'k}
Wn,k - 1)E{D2' } + Wn,k = 0

n,k

Substituting E{X:',d/E{D;;,k} = ~n,k (defined in Eq. (2.13)) into Eq. (2.47)

(Wn,k - 1)~n,k+Wn,k - Wn,k~n,k - ~n,k+Wn,k
o (2.48)

Thus an expression for optimum Wn,k is obtained as

W - E,n,k ( 9)
n,k - E,n,k + 1 2.4

This is the gain function of the Wiener filter (Eq. (2.49)) whose output is the

estimate of clean speech spectral component and input is the noisy signal spectral

component. ~n,k is calculated by using Eq. (2.14).

2.2.3 Dual gain Wiener filter

The dual gain Wiener filter is proposed by Soon and Koh [43]. The derivation

of the gain function for the conventional single gain Wiener filter (Eq. (2.49)) is

based on the assumption that the clean speech spectral component Xn,k and the

noise spectral component Dn,k are uncorrelated real Gaussian random variables

(i.e., E{Xn,kDn,d = 0). The gain function resulted due to this assumption is

only attenuative, i.e., less than 1. But noise can increase or decrease a clean

speech spectral component amplitude. The component that has been increased

by noise should be decreased by the filter gain and the component that has been

decreased by noise should be increased by the filter gain. For the first case filter

gain should be less than 1 and for the second case the filter gain should be greater

than 1. The derivation of the dual gain Wiener filter [43Jis given in the following.

18
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(2.50)

and if Xn kDn k < 0, ,

(2.51)

instead of assuming E{Xn,kDn,d = O. The value of E{IXn,kl} and E{IDn,kl} is

calculated as follows.

The probability density function of a random variable x which follows Gaus-

sian distribution is

f(x) = ~exp (-(x - 1J,)2/2u;,) ,-00 < a; < 00 (2.52)
a:J; 27f

where u and f.' are the mean and standard deviation of x, respectively. The

expected value of J; with the distribution given above is defined as

E(X) = i:xf(x)dx (2.53)

As Xn,k is also a random variable and zero-mean (f.' = 0), the probability density

function of X n k

f(X) = ~exp (_X2 /2ui) , -00 < X < 00 (2.54)
Ux 27f

But the probability density function of IXn,ki is required. A fundamental theorem

on probability density function of a random variable y, when y = g(x), is

f () !x(XI) !x(xn)
y y = Ig'(xdl + ... + Ig'(xn)1 + ' . , (2.55)

(2.56)

(2.57)

where g'(x) is the derivative of g(x), fAx) is the distribution of x. Xl , 3;2 .....

xn are the real roots of y = g(x).

In this case, g(X) = IXI, y = g(x), i.e., IXI = g(X) has two roots +X and

-X, Xl = +X, X2 = -X. Using Eq. (2.55)

!(IXi) = !x(XI) + !x(X2)
Ig'(XI) I Ig'(X2) I

As g(XI) = +X therefore g'(XI) = +1 andlg'(X1)1= 1. Similarly g(X2) = -X

therefore g'(X2) = -1 and Ig'(X2)1 = 1. Also

fx(Xj) - ~exp (-(+X)2/2ui)
Ux 27f

1 (2 2)V2ir exp -X /2uxUx 27f
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f(IXI)

~ cxp (-( _X)2 /2a~)
ax 27f

~ exp (_X2 /2a~)
(Jx 27f

Sllb~titlltillg Eqs. (2.57) and (2.58) illto Eq. (2.56)

_1_ exp (_X2 /2(J2 ) _1_ exp (_X2 /2(J2 )
_ ax..f2; x + (jX~ x

1 1

~ exp (_X2 /2(J~) + ~ exp (_X2 /2,,~)(Jx 27f (Jx 27f

= ~ exp( _X2 /2(J5c)
"x 27f

The probability density function f(iXI) is obtained as

(2.58)

(2.59)

(2.60)f(IXI) = ~exp (-X2/2(Ji)
(Jx 27f

With the distribution function given in Eq. (2.60) and the definition of expected

value given in Eq. (2.53), wc gct

Using Eq. (2.33), we obtain

00 r(I+I)
{ X exp (_X2 /2(Ji) dX = 2 li.!
In 2(1/2(J3c) 2

'I'll",; E {IX I} is obtaincd as

(2.62)

i.e.,

E(jXI) 2 r(f)
(Jx.j2i; 2(1/2(J5c) J.¥
2 r(l)

(Jx.j2i; 2(1/2(Ji)1
2 1

(Jx.j2i; 2(1/2,,3c)

~(Jx (2.63)

20
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Similarly,

E(lDn,kll = {!;:UD(k) (2.65)

Finally, substituting Eqs. (2.64) and (2.65) into Eqs. (2.50) and (2.51), respec-
tively,

(2:66)

and

where ux(k) and uD(k) are the standard deviations of the clean speech spectral

Xn,k and the noise spectral component Dn,k, respectively (i.e., uX(k)/UD(k) =
J~n,k). Substituting Eq. (2.66) into Eq. (2.43), we obtain

Nn,k = (W~,k - 2Wn,k + 1)E{X~,d + 2Wn,k(Wn,k - 1)E{Xn,kDn,k}

+W~kE{D;;k}, ,

(W~,k - 2Wn,k + 1)E{X~,d + 2Wn,k(Wn,k - 1)~ux(k)UD(k)

+W; kE{D;; k} (2.68), ,

Differentiating Nn,k with respect to Wn,k gives

BN".k
BWn,k= (2Wn,k - 2)E{X~,d + 2(2Wn,k - 1)~ux(k)UD(k)

+2Wn,kE{ D;;,k} (2.69)

Equatinp; fJNn,k/fJWn,k to zero yields

(2Wn,k - 2)E{X~,k} + 2(2Wn,k - 1)~ux(k)UD(k) + 2Wn,kE{D;;,k} = 0 (2.70)

Dividing Eq. (2.70) by 2E{D;;,d and substituting E{X~,k}/ E{D;;,k} = ~n,k
(defined in Eq. (2.13))

~UX(k)UD(k)
(Wn,k - 1)~n,k+ (2Wn,k -1) n E{D2} + Wn,k = 0 (2.71)

n,k

Substituting E{D;;,d = ub(k) as in Eqs. (2.12) and (2.13) into Eq. (2.71), we
obtain

2 ux(k)
(Wn,k - 1)~n,k+ (2Wn,k - 1):;;: uD(k) + Wn,k

21
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(2.73)

Rearranging Eq. (2.72), the optimum filter gain

~n,k + ~IF;:;
~n,d 1+ ~J ~n,k

G] is always less than 1 and, the authors [43] have proposed to use this gain for

the spectral component whose magnitude has been increased by noise, i.e., for

the condition Xn kDn k > O., ,

Similarly, substituting Eq. (2.67) into Eq. (2.43) and equating EJNn,k/EJWn,k

to zero gives the optimum filter gain

G2 = Wn,k

~n,k - ~ IF;:;
~n,k+ 1- ~J~n,k

The authors [43] have proposed to use G2 for the spectral component

magnitude has been reduced by noise, i.e., for the condition Xn,kDn,k < O.

(2.74)

whose

2.3 New Constraint for Dual Gain Wiener Fil-
ter

The dual gain Wiener filter described in the last section requires a new constraint,

otherwise G2 defined in Eq. (2.74) cannot be always guaranteed to be > 1. The

value of the G2 will be > 1 if

~n,k - ~J~n,k > ~n,k+ 1 - ~J~n,k (2.75).
1f 1f

l.e'1

~n,k - ~J~n,k - ~n,k - 1+ ~J~n,k -
1f 1f

which yields

~V~n,k-1> 0
1f

(2.76)

1f2
~n,k > 4 (2.77)

If ~",k > n4' for a noisy speech spectral component then we propose to use the

gain function G2, otherwise no denoising operation is performed, i.e., X",k = Yn,k'
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2.4 Conclusion

In this Chapter, the basic speech enhancement algorithms have been discussed

elaborately in the DCT domain. In particular, the methods those haveb een

covered are spectral power subtraction (PE), modified spectral power subtraction

(lvIPE), parametric spectral power subtraction (PARA), Wiener filtering and dual

gain Wiener filtering. It has been observed that all described methods require

the knowledge of the a priori SNR. Estimation of the a priori SNR requires an

averaging parameter according to the "decision-directed" approach. In the next

Chapter, an optimal smoothing parameter to estimate the a priori SNR in the

DCT domain is proposed.
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Chapter 3

Enhancement in the DCT
Domain using Optimal Estimate
of the a priori SNR

3.1 Introduction

Various speech-processing systems have found their way in our everyday life.

through their vivid use in voice communication, speech and speaker recognition,

aid for hearing impaired and numerous other applications [2]. However, in many

practical situations they are confronted with high ambient noise levels and their

performance degrades drastically. Thus, their is a strong need to improve the

performance of these systems in noisy conditions by developing speech enhance-

ment algorithms that are able to work at very low SNRs. For single channel

speech enhancement, the spectral subtraction based algorithms are commonly

used. However, the spectral subtraction algorithms have a serious drawback in

that the enhanced speech is accompanied by unpleasant musical noise artifact,

which is characterized by tones with random frequencies [1]. Apart from being

extremely annoying to the li~tener" the mu,ieal noi,e also hampers the perfor-

mance of the speech-coding algorithms to a great extent [42]. It has been shown

in [17]that the key point behind the reduction of musical noise by the minimum-

mean-squared-error (MMSE) estimator [15] is the use of a priori SNR. Several
methods such as spectral subtraction based algorithms, Wiener filtering require

the knowledge of the a priori SNR and the estimation of a priori SNR using the

"decision-directed" approach requires an averaging parameter [17]. A low value

of the averaging parameter is suitable for rapidly changing speech regions, while
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a high value is suitable for near stationary speech frames [43]. Conventionally, a

constant value is used for the averaging parameter [30].

In this chapter of this research work, we propose and derive an optimal av-

eraging parameter to estimate the a priori SNR using the "decision-directed"

approach in the DCT domain.

3.2 Problem Formulation

Noise always corrupts speech and is unavoidable in real life. Usually, the noise

d(t) is modelled as an additive Gaussian process with zero-mean and variance oJ
Tlw nuiHYspeech signal y(l) iii then given by

y(t) = x(t) + d(t) (3.1)

(3.2)

(3.4)

where:l:( t) is the clean speech signal. The forward DCT of the noisy signal

{y(t),O ::::t ::::N - I} is given by [30]

N-I [7I"(2t + l)k]Yk = ak ~ y(t) cos 2N ,0:::: k ::::N - 1

where

{1ft, k = 0~- (3.3)- 1ft,1 ::::k ::;N - 1

The objective of this research is to denoise the speech signal with enhanced SNR

and better subjective performance by modifying the noisy DCT coefficients Yk

\Ising spectral subtraction techniques incorporating our proposed parameter. The

reconstructed signal, x( t), can be obtained using the following inverse Cosine

transformation (mCT) [30]

N-I _ [7I"(2t+ l)k]
x(t) = {;akXkcos 2N ,0::;t::;N-l

where Xk denotes the denoised DCT coefficients.

3.3 Adaptive Averaging Parameter for a prwr~
SNR Estimation

It Wa'; prcviouHly mentioned in Chapter 2 that in many works [15]' [20]' [30J to

estimate the a priori SNR, a was set to a constant value (e.g., 0.96 to 0.995).
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But using a constant Cl' has certain drawbacks. Consider an example as a test

case where Cl' = 0.98 and the SNRpo,t shows a pulse like behavior, i.e., for n < n[

and n > n2, it is very low as compared to its values in the interval n, ~ n2,

whcre 1/1 and 112 denote, respectively, the frames of rising and falling edges. At

n" a signal component suddenly goes high such that In"k > > In,-I,k. Since [n,k

contains 98% of the previous frame estimated SNR, it will fail to respond to this

change. Rather En.k will rise slowly and ultimately begin to follow SNRpost in this

high SNR region (n1 ~ n2) with some delay. Similarly at n2, [n.k fails to respond

to the abrupt downfall of SNRpa,t and only after a certain delay converges to the

low SNR level. Therefore, it will be logical to use a much smaller value of '-"'in

these transitional areas: This suggests us to use a time-frequency varying '-"'.

The proposed modification in the estimation of a priori SNR is given by

[;',k = Ctn,k~n-1,k + (1 - Ctn,k)P[,n,k - 1] (3.5)

where En-1,k = X~_I,k/&~(n - 1, k) and Cl'n,kdenotes the time-frequeney varying

averaging parameter. Now the PE gain function (Eq. (2.15)) can be written as

[C;,fW = [;',k (3.6)
1+ek

The MPE gain function (Eq. (2.23)) is given by

[CMPE]p = 1- qn,k [CPE]P (3.7)
n,k . / ;op) ( ) n,k1 - qn,k + qn,ky (1 + ~n,k exp -Vn,k

where Vn k = In,ke,k/ (2(1 + e,k))' The PARA gain function (Eq. (2.38)) is
given by

(3.9)

(3.8)

(3.10)Wp -n,k -

[CPARA]p = ([~,k)2 [CPE]"
n,k 0.667 + (E;',k)2 n,k

The Wiener gain function (Eq. (2.49)) is given by

Wp _ [;',k
n,k -;op + 1

I.:.n,k

The gain functions of dual gain Wiener filter are given by

'i':.,k+~&
;p 4~'
~n,k +1+-;; V ~;"',k

'i':.,k-~&
f.t:.,k+1-~v'i!:.,k 1
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3.3.1 Estimation of adaptive averaging parameter

It is desired that the estimate [~,kgiven by Eq. (3.5) should actually be as close

as possible to a priori SNR En k, we propose an MMSE estimator for Cl:nk which. , ,

minimizes the error

(3.11)

given En-I,k' The operator P[.] in Eq. (3.5) is used to ensure the positiveness of

the decision-directed estimator in case "(n,k - 1 goes negative. As stated in [15J it

is also possible to apply P[.] on the right side of Eq. (3.5) rather than using only

on "(n,k - 1. In both the case results are very similar [14]. Thus as the objective

of l1~ingP[.] i~ to en~ure only po~itivcne~s of [n,k, not becau~e ,~, a part; of l,,~sic

mathematical derivation, we omit temporarily the operator P[.] in the definition

of our cost function to facilitate taking the expectation operator. Substituting

Eg. (3.5) into Eq. (3.11), we obtain

J" E {(Cl:~i~-I,k +(1 - Cl:n,k?("(n,k - 1)2

+2Cl:n,k(1 - Cl:n,k)[n-I,k("(n,k - 1)
- 2)- }-2En,k[Cl:n,kEn-l,k + (1 - Cl:n,k)("(n,k - 1)] + En,k IEn-l,k

- Cl:~,i~_I,k + (1 - Cl:n,k)2E {("(n,k - 1)2}

+2Cl:n,k(1 - Cl:n,k)[n-l,kE {("(n,k - I)}

(3.12)

Using Eq. (2.12) we can write

(3.13)

To find the value of E{("(n,k - 1J2} we need to evaluate E{Y;,k}' For notational

simplicity we drop subscript (n, k) as in Chapter 2. Using Eq. (2.2), an expression

for y2 can be obtained as

(3.14)
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Thus E{y4} is obtained as

E{y4} = E{X4+4X2D2+D4+2X3D

+2X D3 + 2X2 D2}

= E{X4} + 4E{X2}E{D2} + E{D4}

+2E{X3}E{D} + 2E{X}E{D3}

+2E{X2}E{D2} (3.15)

Now again using the assumption for Xn,k and Dn,k (i.e., zero-mean and uncor-

related real Gaussian random variables), the simplified form of E {y4} can be

obtained as

E{X4} + 4E{X2}E{D2} + E{D4} + 2E{X2}E{D2}

E{X4} + E{D4} + 6E{X2}E{D2} (3.16)

Again introducing notational subscript (n, k)

E{y,;t,d = E{X~,d + E{D~,k}

+6E {X~,d E{D~,k}

Uoing Eqs. (2.31)-(2.36)

Similarly,

E{D~,k} = 3E{D~,k}2

Substituting Eqs. (3.18) and (3.19) into Eq. (3.17)

E{Y,~k} = 3E{X~,d2 + 3E{D~,k}2

+6E{X~k}E{D~k}, ,

Using Eqs. (3.13) and (3.20), we obtain

2 E{Y:,k}
E{bn,k -I)} = E{D2 }2 2E{'Yn,d + 1

n,k

3E{X;,k} + 3E{D~,k} + 6E{X;,k}E{D~,d= --~---~---~---
E{D2 }2n,k

(3.17)

(3.18)

(3.19)

(3.20)

-2E{oyn,k} + 1

E{X;d2 E{D~kF E{X;k}E{D~k}
= 3E{D2' .}2 + 3 E{D2' }2 + 6 E{D2 F '

n,k n,k n,k

-2E{oyn,d + 1

= 3~;',k+ 3 + 6~n,k- 2E{ 'Yn,d + 1 (3.21)
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As E{CYn,k - I)} = ~n,k, it follows that E{-Yn,k} = 1 + ~n,k [[15]' Eq, (49) ].80
Eq. (3.21) becomes

3~;;,k+ 6~n,k + 3 - 2(1 + ~n,k) + 1

3~;;,k+ 4~n,k+ 2 (3.22)

Substituting E {CYn,k- I)} = ~n,k and E{hn,k _1)2} = 3~~,k+ 4~n,k+ 2 into Eq.
(3.12), we obtain

J" = a;;,i;;-l,k + (1 - an,k)2(3~;;,k + 4~n,k+ 2) + 2an,k(1 - an,k)~n-l,k~n,k

-2an,k~n,in-l,k - 2(1 - an,k)~n,k~n,k+ ~;;,k
= Q:~,,i;;-l,k + 3~;;,k(1 - an,d + 4~n,k(1 - an,k)2 + 2(1 - an,k)2

- - -
+2an,k~n-l,k~n,k - 2an,kan,k~n-l,k~n,k - 2an,k~n,k~n-l,k

- 2(1 - a",1.)c.n,l,C.",k+ C.;;.k
2 -2 2 2 2 2an,kc'n-l,k + 3~n,k(1 - an,k) + 4c,n,k(1 - an,k) + 2(1 - an,k)

- 2- - 2
+2an,k~n-l,k~n,k - 2an,k~n-l,k~n,k - 2an,k~n-l,k~n,k - 2(1 - an,k)~n,k

+~;;,k
- a;;,i;;_l,k + ~;;,k[3(1- an,k? - 2(1- an,k) + 1]

+~n,k [4(1- an,k)2 + 2an,k~n-l,k - 2a;;,in-l,k - 2an,k~n-l,k]

+2(1 - an,k)2

= (l':',k~:'-l,k + C.~,k(:3- U(Xn,k+ a(l'~"k - 2 + 2an,k + 1) + C.",k[4(1 - ("H,kf

-2CY:"in-l,k] + 2(1 - cyn,d

a;',k~;;-l,k + ~;',k(2 - 4an,k + 3a;;,k) + ~n,k [4(1 - an,d - 2a;;,in-l,k]

+2(1 - an,k)2
2-2 222 2 2-

an,k~n-l,k + an,k~n,k + ~n,k(2 - 4an;k + 2an,k) - 2an,k~n-l,k~n,k

+4~n,k(l - an,k)2 + 2(1 - an,k)2

a;;,i;;-l,k + a;;,k~;;,k+ 2~;;,k(1 - an,k)2 - 2a;;,in-l,k~n,k

+4c'n,k(1 - an,k)2 + 2(1 - an,k)2 ,
2 -2 2 - 2 2 2 2

an,k~n-l,k - 2an,k~n-l,k~n,k + an,k~n,k+ 2~n,k(1 - an,k)

+4~n,k(1 - an,k? + 2(1 - an,k)2
2-2 - 2 22

an,k(~n-l,k - 2~n-l,k~n,k + ~n,k) + 2(1 - an,k) (~n,k + 2~n,k + 1)

a;;,k(~n-l,k - c'n,k)2+ 2(1 - an,k)2(~n,k + 1)2
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Differentiating In with respect to Cin,k gives

- 2 2 22Cin,k(';n-l,k - ';n,k) + 4Cin,k(';n,k + 1) - 4(';n,k + 1)

Cin,k {2(~n-l,k - ~n,k? + 4(~n,k + I?} - 4(~n,k + 1)2 (3.24)

Now equating aJ,,/ aCin,k to zero yields

Finally, the optimum expression for Cin,k is obtained as

(3.25)

aopt =n,k
1

- 2
1+ 0.5 (.;n,k - .;n-l,k)

~n,k + 1

(3,26)

3.3.2 Implementation of a'::'l,
As ~n,k is unknown, Eq. (3.26) cannot be used directly. Nevertheless, an approx-

imate value of Cin,k can be obtained substituting (n,k = Ebn,k - I} for ~n,k in

Eq. (:3.26). ThiH b a reasonable HubHtitution as E{(n,d ~ ';n,k' If SNR,,,,.,,over a

region shows uniform variation, Cin,kwill attain a value close to 1. For any abrupt

change Cin,k attains a lower value enabling €~,k to respond to that change more

suitably.

3.4 Results

3.4.1 Data used

For evaluating the impact of the proposed time-frequency varying smoothing

parameter on the traditional spectral subtraction methods i.e., PE, MPE, PARA,

WieHer filter <\nddual gain Wiener filter, simulations were performed over a data

set consisting of 20 different speech utterances from the TIMIT and other sources.

Half of the sentences are spoken by female speakers while the remaining sentences

are by male speakers. The speech signals are sampled at 8 KHz and quantized

to 16 bits. Noise types in our experiments were also from NOISEX database

and they were white Gaussian, Babble, Aircockpit, Helicockpit and Highway.

The results are shown for one female speech utterance- "Pretty soon a woman
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came with along with a folded umbrella as a walking stick" (SI) and male speech

utterance- "She had your dark suit in greasy wash water all year" (S2) with noise

cases- white Gaussian, Babble, Highway and Aircockpit in following section and
chapter.

3.4.2 Estimation of noise level

Noi,e i, e,timated from noise signal itself. Noise is estimated according to [41]

where 0.5 :s; ).,D :s; 0.9 and IN",kl is noise spectral's magnitude. In this thesis

work, we have used AD = 0.9 and 13N = 2 for all cases.

3.4.3 Performance test

The frame-basis analysis is performed in all cases. The frame is of 32 ms. That

is each time, we have taken 256 samples of noisy speech. Input frames are taken

as 75 percent overlapped. To reconstruct signal, weighted overlap-add method

is used. To quantify the performance of the proposed smoothing parameter on

t.hc convent.ional spectral subtraction rules and the Wiener filter, IS (Itakura-

Sait.o) Distortion, average segmental SNR (AvgSegSNR) and overall output SNR

(Output. SNR) are measured. Both the IS measures and AvgSegSNRs show high

correlation with informal listening tests. The performance evaluation techniques

that we have used are given below briefly.

3.4.3.1 IS distortion measure

For an original clean frame of speech with linear prediction (LP) coefficient vec-

tor, a", and processed speech coefficient vector, ad, the Itakura-Saito distortion

measure defined by [46] is given by,

(3.28)

where a~and a~ represent the all-pole gains for the processed and clean speech

frame respectively. The lower the IS measure for anenhanced speech, the better

is its perceived quality.
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3.4.3.2 AvgSegSNR measure

The frame-based segmental SNR is formed by averaging frame level SNR esti-

mates and is defined by [46]

10 M-l "Nm+N-lx2(t)A S SNR - - '" I L.'=Nm dBvg eg - M ~ ogloNm+N_l
m=O L (x(t) - x(t)?

t=Nm

(3.29)

where M denotes the number of frames, and x(t) may by the reconstructed signal

or the noisy signal. The lower and upper thresholds are selected to be -10 dB

and 35 dB, respectively. The higher the AvgSegSNR measure for an enhanced

speech, the better is its perceived quality.

3.4.3.3 Overall SNR measure

The overall SNR of the noisy signal, i.e., the input SNR is defined as

SNR = 10l0g1oL::J:fx2(t) dB

Ld2(t)
1:=0

(3.30)

The output SNR is measured by the same equation with the exception that the

noise is now calculated as the difference between the original and enhanced signal,

i.e., substituting d(t) by d(t) = x(t) - x(t), where x(t) denotes the estimated

speech. The higher the output SNR measure for an enhanced speech, the better

is its perceived quality.
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3.4.4 Performance evaluation

Various comparative results are shown for the PE, MPE, PARA, Wiener filtering

and dual gain Wiener filtering methods using our proposed smoothing parameter

D:",k along with using D: = 0.98 in Figs (3.1)-(3.14).

Figs. (3.1)-(3.4) show the variation of IS measures, AvgSegSNRs and overall

SNRs, respectively, at different noise levels and at different noise types for the

PE and the MPE methods. Below 5 dB SNRs, the impact of the proposed O!",k is

not significant in IS measure, AvgSegSNR and overall SNR. But for SNR levels

above 5 dB, improvements in all of the objective measures are noticeable. The PE

method using D: = 0.98 fails to improve the IS measure for input SNR of 15 dB

and above for babble noise, and overall SNR for input SNR of 23 dB and above.

The MPE method using D: = 0.98 fails to improve the IS measure for input SNR

of 7 dB and above, and overall SNR for input SNR of 15 dB and above for white

noise. On the contrary, using D:",k IS measures has improved significantly for the

PE method, and AvgSegSNRs and overall SNRs have improved significantly for

the MPE method for SNR :::::15 dB. It is to be noted that for the MPE algorithm

q".k = 0.2 is assumed (Eq. (3.7)). This is the value empirically used by Ephraim

and Malah [15J and previously by McAullay and Malpass [18J. However, it has

been shown in [44] that for power subtraction algorithms using such a constant

value as the speech presence probability gives poor results. To overcome this, a

timn-frn'lunncy varying q",k was dnvcloped. In this work, we have used a const.ant.

q",k to emphasize the importance of the self-adaptive D:",k'

Figs. (3.5)-(3.8) show the variation of IS measures, AvgSegSNRs and overall

SNR.s, respectively, at different noise levels and at different noise types for the

PARA method. For comparison, IS measures, AvgSegSNRs and overall SNRs

of the PE and MPE methods are also presented in these figures. At low SNRs,

using the proposed D:",k has more impact on the improvement in IS measure

than on the improvement in AvgSegSNR. But at high SNRs, improvements in

all of the objective measures are noticeable. Also note that the PARA method

using D: = 0.98 fails to improvethe IS measure for input SNR of 11 dB and

above. But the use of the self-adaptive D:",k proposed in this work has ensured

significant quality improvement. It has been observed that for a given utterance

the performance of the conventional PARA method is highly dependent on the
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choicc of 0'. Another point to be noted with this method is that if no 'floor' (Eq.

(2.39)) is used, the improvement in SNR is reasonably good but with the cost

paid in quality. This is the reason why the 'floor' was introduced even at the cost

of overall SNR. It is evident from Figs. (3.5)-(3.8) that the self-adaptive O'n,k has

further improved the performance of the algorithm in quality terms. Therefore,

there is a greater flexibility in changing the 'floor' parameters, and accordingly

higher quality at a comparatively higher SNR can be ensured. It can also be

concluded that the IS measure is most significant for the PARA method than the

MPE and the PE methods; and AvgSegSNR and overall SNR are most significant

for the MPE method than the PE and the PARA methods using O'n.k for all types

of noises.

Tables 3.1-3.3 show comparative IS measures, AvgSegSNRs and overall SNRs

for the Wiener filter at different noise levels for SI corrupted by Gaussian white

noise. As can be seen, the use of proposed an k improves the quality in terms. .
of IS, AvgSegSNRs and overall SNRS of the enhanced speech significantly. The

effectiveness of O'n.k on the Wiener filter is also shown in Figs. (3.9)-(3.12) for

highway and aircockpit noises. For comparison, SNRs of the MPE method and

IS measures of the PARA method are also presented in these figures. The Wiener

filter using a = 0.98 fails to improve the IS measure for the whole range of input

SNR while it fails to improve AvgSegSNR and overall SNR for input SNR of

15 dB and above. The proposed O'n,k has more impact on the improvement in

AvgSegSNR and overall SNR than on the improvement in IS measure, particularly

at SNRs 10 dB and above. Below 10 dB SNRs, proposed 0'"." has more impa.ct
on IS measure. Better quality of enhanced speech in terms of AvgScgSNR and

overall SNR is obtained by the Wiener filter than that of the MPE method.

In Figs. (3.13)-(3.14), the effect of an,k on the dual gain Wiener filter is

shown. The same impact as in the Wiener filter is observed on the dual gain

Wiener filter. The theoretical limits of IS measures, AvgSegSNRs and overall .

SNRs for the dual gain Wiener filter are shown in Figs. (3.15)-(3.16) and in

Table 3.4. In this case, clean signal is used for decision making, i.e., to separate

which noisy speech spectral component require gain G1 and which noisy speech

spectral component require gain G2 (Eq. (2.73) and (2.74)). Theoretical limits

of all objective measures are well ahead for the constraint dual gain Wiener filter

34



indicating a potential scope for further research.

Speech enhancement results in the time and frequency domain are also shown

in Fig. 3.17. Fig. 3.17 (a) shows the white noise degraded speech y(t) at SNR

= 10 dB for the female utterance Sl ("Pretty soon a woman came along with

a folded umbrella as a walking stick"), and the enhanced speech resulting from

the MPE method using a = 0.98 and the proposed an,k' Fig. 3.17 (b) shows the

corresponding spectrograms. It is apparent that the speech energy in the MPE

method using proposed an,k is maintained, unlike the conventional MPE which

reduces the speech energy.

Table 3.1: Results on IS improvement for the speech utterance "Pretty soon
a woman came along with a folded umbrella as a walking stick", corrupted by
additive white noise at different SNRs

SNR IS
dB Degraded Wiener using a = 0.98 Wiener using an,k

-5 4.4329 30.7794 3.1740
0 3.7006 54.4804 3.1953
5 2.9595 63.6960 2.9944
10 2.2565 60.9298 2.3838
15 1.6316 53.4421 UJ824
20 1.0988 45.3573 1.7358
30 0.4169 9.7157 0.9950

Table 3.2: Results on AvgSegSNR improvement for the speech utterance "Pretty
soon a woman came along with a folded umbrella as a walking stick", corrupted
by additive white noise at different SNRs

SNR AvgSegSNR
dB Degraded Wiener using a = 0.98 Wiener using a",k
-5 -5.5230 -0.1055 -0.6835
0 -3.1505 1.7793 1.8087
5 -0.2367 3.7671 4.4540
10 3.1788 5.9274 7.4043
15 7.1140 8.3957 . 10.6785
20 11.4041 11.1947 14.1348
30 20.5644 18.0996 21.7406
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Table 3.3: Results on overall SNR improvement for the speech utterance "Pretty
soon a. woman came along with a folded umbrella as a walking stick", corrupted
by additive white noise at different SNRs

SNR overall SNR
dB Degraded Wiener using Q = 0.98 Wiener using Qn,k

-5 -2.9793 3.6153 5.1304
0 0.9694 5.6284 8.2346
5 5.3421 8.0384 11.3117
10 10.0585 10.8128 14.7315
15 15.0333 13.9526 18.4320
20 20.0190 17.4296 22.2472
30 30.0065 25.5371 30.6844

Table 3.4: Results of theoretical limit on overall SNR improvement for the speech
utterance "Pretty soon a woman came along with a folded umbrella as a walking
stick" , corrupted by additive white noise at different SNRs

SNR overall SNR
dB Wiener dual gain Wiener constraint dual gain
-5 5.1304 4.6550 5.8623
0 8.2346 8.0150 9.8219
5 11.3117 11.5971 13.7349
10 14.7315 15.4374 17.7062
15 18.4320 19.2670 21.8034
20 22.2472 23.3977 26.0932
30 30.6844 32.8261 35.4797
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Fig. 3.1: Variation of (a) IS, (b) AvgSegSNR, (c) Output SNR for PE and MPE
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3.5 Conclusion

In this chapter, an optimal averaging parameter to estimate the a priori SNR

has been proposed and derived in the MMSE sense. The performance of this

parameter in the spectral subtraction rules (i.e., PE, MPE, PARA), Wiener fil-

ter and dual gain Wiener filter are shown in terms of necessary measures (IS,

AvgSegSNR and overall SNR). It can be concluded that the time-frequency vary-

ing smoothing parameter causes a significant improvement in terms of all speech

quality indices (i.e., IS, LAR, AvgSegSNR, overall SNR) over all methods using

conventional smoothing parameter. It has been observed that improvements in IS

measures of the PARA method and AvgSegSNRs and overall SNRs of the Wiener

filter are more significant. Note that the IS measures of the Wiener filter are not

optimal with compared to its AvgSegSNRs and overall SNRs. Intensive analysis

of the underlying problem reveals that the basic assumption of uncorrelation be-

tween clean signal spectral component and noise spectral component should be

relaxed. This leads us to generalize the Wiener filter. A generalized Wiener filter

is prQPosed by relaxing the basic assumption in Chapter 4 and better quality of

enhanced speech is expected. A comparative study with the spectral subtraction

algorithms and Wiener filter is provided to demonstrate the effectiveness of the

generalized Wiener filter.

55 c



Chapter 4

Generalized Wiener Filter

4.1 Introduction

In Chapter 3, it is shown that the single gain Wiener filter with improved estimate

of the a priori SNRprovides best overall SNR and AvgSegSNR over PE, MPE

and PARA methods. But the IS measure of the enhanced speech using the

Wiener filter is comparatively very high. In the derivation of the conventional

Wiener filter gain it is assumed that clean and noise spectral components are

uncorrelated, Le.,

(4.1)

Eq. (4.1) holds when the observation noise and speech are 'truly' uncorrelated

random processes. But for some color noises, namely, babble, highway, aircockpit,

Eq. (4.1) holds only approximately. In particular, at low SNRs (e.g., < 10

dB) it may be unrealistic to assume that the speech and noise coefficients are

uncorrelated. To show this we plot IE{Xn,kDn,k}I at different SNRs for two

speech in Fig. (4.1).

In this chapter, we take into account the correlation that exists between speech

and noise at any SNR in deriving the Wiener filter gain. It is expected that the

proposed generalized Wiener filter will perform better in denoising particularly

at low SNRs as compared to its conventional counterpart and other spectral

subtraction based methods, e.g., PE, MPE and PARA.
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4.2 Generalized Wiener Filter Gain

Let W~,k denotes the generalized Wiener filter gain and Yn,k denotes noisy speech

spectral component. Then an estimate of the clean speech spectral component

can be obtained as

(4.2)

To derive W~,k in the minimum mean-square error (MMSE) sense, we minilnize

the cost function

Nn,k = E{(Xn,k - Xn,k)2}

- E{(W~,kYn,k - Xn,k)2}

- E{(W~,k(Xn,k + Dn,k) - Xn,k)2}
- ((W~k)2-2W~k+l)E{X~k}, , ,

+2W~,k(W~,k- I)E{Xn,kDn,k}

+(W" )2E{D2 }n,k n,k

Differentiating N",k with respect to W~,k gives

(4.3)

aNn,k
aW~,k

= (2W~,k - 2)E{X~,k} + 2(2W~,k - I)E{Xn,kDn,k}

+2W~,kE{D~,d (4.4)

Now equating aNn,k/aW~,k to zero yields

2(W~,k - I)E{X~,k} + 2(2W~,k - I)E{Xn,kDn,k} + 2W~,kE{D~,k} = a (4.5)

Dividing Eq. (4.5) by 2E{D;,k}' we obtain

(g) E{X~,k} 2(2W~,k - I)E{Xn,kDn,k} g_
2 Wn,k - 1 2E{D2 } + 2E{D2 } +Wn,k - a

n,k n,k
(4.6)

Substituting E{X~,k}/E{D;,k} = ~n,k (defined in Eq. (2.13)) into Eq. (4.6) gives

W" {c + 1 + 2E{Xn,kDn,d} _ c _ E{Xn,kDn,k} = a (4.7)n,k ,>n,k E{D2 } ,>n,k E{D2}
n,k n,k

Finally, an expression for W~,k assuming E{Xn,kDn,k} f a is obtained as

c + E{Xn,kDn,k}
'>n,k E{D'}wg - n,k

n,k - c + 1+ 2E{Xn,kDn,d
'>n,k E{D' }n,k
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In the following, we propose a recursive technique to estimate E{Xn,kDn,k}' We
can write

Dividing Eq.

Rearranging

E{Yn,kDn,k} = E{(Xn,k + Dn,k)Dn,k}

E{Xn,kDn,k} + E{D~,k}

(4.9) by E{ D~ k}, we obtain,

E{Yn,kDn,k} . E{Xn,kDn,k}
E{D2 } E{D2} + 1n,k n,k

(4.9)

(4.10)

where

E{Yn,kDn,k} _ 1
E{D~,k}

- Tn,k-1 (4.11)

E{Yn,kDn,k}
E{D~d,

E{Yn,k(Yn,k - Xn,k)}
E{D~,k}

E{Y;'k} E{Yn,kXn,k}
E{D~k} . E{D~k}, ,

(4.12)

In this work, we estimate Tn,k recursively as

(4.13)

where Tn-1,k is the previous frame estimate, f3n,k is the averaging parameter,

o :::;f3n,k :::;1. Substituting Eq. (4.11) into Eq. (4.8), we obtain an optimum
expression for the gain function of the generalized Wiener filter

W~,k = ~n,k+ Tn,k - 1
~n,k + 1+ 2Tn,k - 2
~n,k - 1+ Tn,k

~n,k - 1+ 2Tn,k
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Notice that the a priori SNR ~n,k is estimated using the "decision-directed"

approach as described in Eq. (3.5).

In the following section, an optimum expression for the time-frequency varying

averaging parameter f3n,k in the MMSE sense (in the DCT domain) is derived.

4.3 Estimating f3n,k

It is desired that the estimate T~,k should actually be as close as possible to Tn,k'
Here we propose an MMSE estimator for f3n,k which minimizes the cost function

J{3 {
~p 2 - }E (Tn,k - Tn,k) I Tn-1,k

{
~ 2 ~p 2 - }E (T;:,k) - 2Tn,kTn,k + Tn,k) I Tn-1,k

given Tn-l,k' Substituting Eq. (4.13) into Eq. (4.15), we obtain

(4.15)

J{3 - E { (f3~,kT;-l,k + (1 - f3n,kh~,kX~,k + 2f3n,k(1 - f3n,k)Tn-1,k1'n,kXn,k

-2Tn,kif3n,kTn-1,k + (1 - f3n,kli'n,kXn,k] + T;,k) I Tn-1,k}
2 -2 2 {2 } 2 _.f3n,kTn-1,k + (1 - f3n,k) E In,k Xn,k + 2,6n,k(1 - f3n,k)Tn-1,kE {In,k} Xn,k
. - 2

-2f3n,kTn,kTn-1,k - 2(1 - f3n,k)Tn,kE bn,k} Xn,k + Tn,k (4.16)

where Xn,k = 1 - Xn,k/Yn,k, independent of f3n,k' Using Eq. (2.12), we can write

2 _ E{Y~k}
Ebn,k}- E{D2 F (4.17)

n,k

and
E{Y;k}

Ebn,k} = E{D; } (4.18)
n,k

To find the value of Eb~,k} we need to evaluate E{Y;,k}' As in Chapter 3, we

drop subscript (n, k) for notational simplicity. Using Eqs. (3.14) and (3.15)

E{y4} E{X4 + 4X2 D2 + D4 + 2X3 D + 2XD3 + 2X2 D2}

_ E{X4
} + 4E{X2}E{D2} + E{D4} + 2E{X3}E{D}

+2E{X}E{D3} + 2E{X2}E{D2} (4.19)

Using the fact that Xn,k and Dn,k are zero-mean but uncorrelated real Gaussian

random variables, the simplified form of E{y4} is obtained as

E{y4} _ E{X4} + 4E{X2}E{D2} + E{D4} + 2E{X2}E{D2}

E{X4
} + E{D4

} + 6E{X2}E{D2} (4.20)
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We know from Eqs. (3.18) and (3.19)

E{X4 } = 3E{X2 }2n,k n,k

and

E{D~,k} = 3E{D~,k}2

Substituting Eqs. (4.21) and (4.22) into Eq. (4.20) yields

Substituting Eq. (4.23) into Eq. (4.17), we get

3E{X~,d + 3E{D~,k} + 6E{X~,k}E{D~,k}
E{D2 }2n,k

E{X2 p E{D2 P E{X2 }E{D2 }_ 3 n,k + 3 n,k + 6 n,k n,k
E{D2}2 E{D2}2 E{D2 }2n,k n,k n,k

E{X2 } E{D2}2 E{X2}3( n,k)2 + 3 n,k + 6 n,k
E{D~k} E{D~d E{D~k}, , ,

- 3~~,k+ 3+ 6~n,k
- 3(~n,k + 1)2

(4.21)

(4.22)

(4.23)

(4.24)

(4.26)

Substituting Eq. (3.14) into Eq. (4.18), we obtain

E{-yn,k} _ E{Y;,d
E{D~,k}
E{(X~,k + 2Xn,kDn,k + D~,k)}

=
E{D~,k}

E{X~d E{XnkDnk} E{D~k}-~'-+2 " + '
E{D~,k} E{D~,k} E{D~,k}

c + 2E{Xn,kDn,k} + 1 (4.25)~n,k E{D2 }
n,k

Combining Eqs. (4.25) and (4.11)

E{-Yn,k} - ~n,k+ 2Tn,k - 2 + 1
- ~n,k+ 2Tn,k - 1

Now substituting E{-yn,k} and E{-y~,k} into Eq. (4.16), we obtain

JiJ = (3~,/f~-l,k + (1 -(3n,k)23(~n,k + 1)2X~,k

+2(3n,k(1 - (3n,k)Tn-l,k(~n,k + 2Tn,k - l)Xn,k - 2(3n,kTn,kTn-l,k

-2(1 - (3n,k)Tn,k(~n,k+ 2Tn,k - l)Xn,k + T~,k (4.27)
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Differentiating J{3 with respect to f3n,k

2fln/f~_l,k - 2(1 - fln,k)3(~n,k + 1)2X~,k

+2(1 - 2fln,k)Tn-l,k(~n,k + 2Tn,k - 1)xn,k

-2Tn,kTn-l,k + 2Tn,k(~n,k + 2Tn,k - l)Xn,k

[
-2 2 2

- 2fln,k Tn-l,k + 3(~n,k + 1) Xn,k

-2Tn-l,k(~n,k + 2Tn,k -l)xn,k] - 2 [3(~n,k + 1)2X~,k

-i',,-I,k(~n,k + 2Tn,k - l)Xn,k + Tn,kTn-l,k

(4.28)

Now equating BJ{3/Bf3n,k to zero, the optimum expression of f3n,k is obtained as

2 2 - -fl = 3(~n,k + 1) Xn,k + Tn,kTn-l,k - (Tn,k + Tn-l,k)(~n,k + 2Tn,k - l)Xn,k
n,k TLl,k + 3(~n,k + 1)2X~,k - 2Tn-l,k(~n,k + 2Tn,k - l)xn,k

(4.29)

4.3.1 Implementation of f3n,k

In the above expression Xn,k = 1 - Xn,k/Yn,k and Tn,k are unknown. Xn,k is not

computable as Xn,k is unknown. However Xn,k may be replaced by 1 - Wn,kl

where Wn,k is Wiener gain calculated using our proposed smoothing parameter

to estimate the a priori SNR. Hence Tn,k may be replaced by In,kXn,k (comparing

Eqs. (4.12) and (4.13)).

4.4 Simulation Results and Discussions

In this result section, we show simulation results for the same speech and noises

as in the previous chapter.

Fig. (4.2) shows the variation of fln,k for all the speech frames. It can be

observed that smoothing parameter fln,k lies in the range of a ::; fln,k ::; 1 as

expected. We present comparative results of the proposed generalized Wiener

filter with the PE, MPE, PARA and conventional Wiener filter methods in Figs.

(4.3)-(4.6). It may be restated that the main purpose of proposing the generalized

Wiener filter is to improve the IS measure of the conventional Wiener filter with-

out sacrificing output SNR and AvgSegSNR. As can be seen from the figures, the

IS index has significantly improved for both the utterances and the noises used,
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and at all SNRs (-5 dB to 30 dB). AvgSegSNR and overall output SNR are still

better for the generalized Wiener filter than the PE, MPE, PARA methods, but

comparable with the Wiener filter as desired.

Finally, we present speech enhancement results in the time and frequency

domain. Fig. 4.7 (a) shows the highway noise degraded speech y(t) at SNR

= 10 dB for the female utterance ("Pretty soon a woman came along with a

folded umbrella as a walking stick"), and the enhanced speech resulting from the

proposed generalized Wiener filter and the conventional Wiener filter. Fig. 4.7

(b) shows the corresponding spectrograms. As expected, proposed generalized

filter produces lower residual noise and noticeably less speech distortion in some

speech segments.
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4.5 Conclusion

In this Chapter, we have presented a generalized Wiener filter for improving the

IS index of the conventional Wiener filter. Simulation results shown for different

speech and noises reveal that the proposed generalization to the conventional
Wiener filter is particularly useful at a low SNRs.
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Chapter 5

Conclusion

5.1 Summary

The major focus of this research has been to further improve the performances of

the traditional spectral subtraction methods with a better estimate of the a priori

SNR. The performances of the spectral subtraction methods, the Wiener filter

and the dual gain Wiener filter incorporating optimal averaging parameter to esti-

mate the a priori SNR have been reported with necessary evaluations. Significant

improvement in terms of enhanced speech quality indices (i.e., IS, AvgSegSNR,

Overall SNR) has been observed over all methods using conventional smoothing

parameter. It has been also noticed that using our proposed smoothing param-

eter, the spectral subtraction methods prevent the undesired fall of SNR of the

denoised speech even when the original signal has a SNR of 30 dB. It has been ob-

served that improvements in IS measures of the PARA method and AvgSegSNRs

and overall SNRs of the Wiener filter are more significant and noticeable. It has

also been observed that the IS measures of the Wiener filter are not optimal as

compared to its AvgSegSNRs and overall SNRs. To improvethe IS measure,

a generalized Wiener filter has been proposed by relaxing the assumption that

clean speech and noise spectral components are uncorrelated. The performance

of the generalized Wiener filter has been evaluated using the standard TIMIT

and NOISEX databases. It has been shown using several numerical examples

that the generalized Wiener filter has performed optimally (Le., in terms of all

speech quality indices (e.g., IS, AvgSegSNR and overall output SNR)) compared

to its conventional counterpart and other spectral subtraction based methods,

e.g., PE, MPE and PARA. The improvement in terms of quality indices of the
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proposed scheme has been found to be particularly significant at low SNRS.

5.2 Future Works

It has been observed that the dual gain Wiener filtering give highly impressive

results in terms of quality indices (e.g., IS, AvgSegSNR, output SNR) if we can ac-

curately identify noisy spectral components whose amplitude has been increased

or decreased by noise. The prediction based algorithm suggested in [43] has been

found to be ineffective in discriminating the spectral components. An effective

algorithm for this purpose is highly desired.
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Appendix A

Derivation of an k in the FFT,
Domain

In the FFT domain

Y X+D

(A.l)

where XR [LndXj are real and imaginary parts of Xn,k, respectively, and Dn and

Dj are real,ind imaginary parts of Dn,k, respectively. ly[2 can be written as

[Y12 = (x'h + D;,,) + (XJ + DJ)

+2XnDn + 2XjDj

- IXI2 + ID[2+ 2XnDn + 2XjDj

Thus E{IYI4} is obtained as

(A.2)

E{IYI4} = E{[XI4 + IDI4+ 21X121D[2+ 4(X'hD;" + XJDJ

+2XnXjDnDj) + 4(IX12 + [DI2)(XnDn + XjDjn

E{IX[4} + E{IDI4} + 2E{IXI2}E{IDn

+4 GE{[Xn) GE{IDn)

+4 GE{IXI"}) GE{IDj2}) (A.3)

Using the fact that Xn,k and Dn,k are zero-mean and uncorrelated complex Gaus-

sian random variables, we can assume E{XnXjDnDj} = 0, E{jXI2(XnDn +

XjDjn = 0, E{IDI2(XnDR + XjDjn = 0, E{IXn[2} = E{[Xj[2} = ~E{IXn
E{IDnI2} = E{IDj[2} = ~E{IDI2}, thus simplified form of E{1Y14} is obtained
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as follows

Again introducing notational subscript (n, k)

Since Xn,k is a complex Gaussian random process, the probability density function

of IXn,k I follows the Rayleigh distribution, i.e.,

Fourth moment of \Xn,kl, i.e. E{\Xn,k\4}, is then given by .

= faoo IXn,kI4p(IXn,kJ)dIXn,kl

= 2 {''' I I'" (- IX",d
2

) dl' 1E{IXn,kI2} Jo Xn,k exp E{IXn,kI2} Xn,k

Using Eq. (2.33) E{IX".kI4} is obtained as

Similarly,

Substituting values from Eqs. (A.8) and (A.9) into Eq. (A.5)

(A.6)

(A.7)

(A.8)

(A.9)

E{IYn,kI4} = 2E{IXn,kI2}2 + 2E{\Dn,kI2}2

HE{IXn,kI2}E{IDn,kI2} (A.I0)

In the FFT domain, the local a posteriori SNR and a priori SNR are defined as

follows:
IYn,k12

SNR"ost(n, k) = "in,k = 2( k)
ad n,

E{IXn,k\2}
SNR"rior(n, k) = ~n,k = 2( k)

(Jd n,

where O'J(n, k) = E{IDn,kI2}. Using Eqs. (A.lO) and (A.ll), we get
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2E{[Xn,kI2} + 2E{IDn,kn + 4E{IXn,kI2}E{[Dn,kI2}
E{[Dn,kI2}2

-2E{-yn,d + 1
= 2E{IXn,k[2}2 + 2E{IDn,kj2}2 + 4 E{IXn,kI2}E{IDn,kI2}

E{IDn,d2}2 E{IDn,kI2}2 E{IDn,kI2}2
-2E{ 'n,d + 1

= 2E;',k+ 2 + 4En,k - 2Ehn,k} + 1 (A.13)

As E{hn,k -In = En,k, it follows that E{-Yn,k} = 1+En,k [[15]' Eq. (49) ]. Thus

Eq. (A.13) becomes

E{(Jn,k - In = 2~;,k + 4~n,k + 2 - 2(1+ ~n,k) + 1

2~;,k + 2~n,k + 1 (A.14)

Substituting E {hn,k - In = ~n,k and E{hn,k -1)2} = 2~;',k+ 2~n,k+ 1 into Eq.

(3.12), we obtain

2 -2 2 2J", = Qn,kEn-l,k + (1 - Qn,k) (2En,k+ 2En,k+ 1)

+2an,dl - an,k)~n-l,k~n,k - 2Qn,k~n,k~n-l,k

-2(1 - Qn,k)~n,k~n,k+ ~;,k

- Q;,i;-l,k + 2~;,k(1 - Qn,k)2 + 2~n,k(1 - Qn,k)2 + (1 - Qn,k)2
- - -

+ 2Qn,kEn-J ,kEn,k - 2Qn,kQn,kEn-l,kEn,k - 2Qn,kEn,kEn-l,k

- 2 (1 - Qn,k)En,kEn,k+ ~;,k

Q;"k~;'-l,k + 2E;',k(1 - Qn,k)2 + 2En,k(1 - Qn,k)2 + (1 - Qn,k)2
- 2 - -+2Qn,k~n-l,k~n,k - 2Qn,kEn-l,k~n,k - 2Qn,k~n-l,kEn,k

- 2( 1 - Qn,k)~;,k + ~;,k

- Q;,i;-l,k + ~;,k [2(1- Qn,k)2 - 2(1- an,k) + 1]

+En,k [2(1 - Qn,k? + 2Qn,k~n-l,k - 2a;,in-l,k - 2an,k~n-l,k]

+(1- an,k?
2-2 2~ 2 r (Qn,k~n-J,k + En,k(2 - 4an,k + 2Qn,k - 2 + 2an,k + 1)

+~n,k [2(1- an,d - 2a;,,in-l,k] + (1- an,k)2

a;,i;-l,k + ~;,k(1 - 2an,k + 2a;,k) + ~n,k [2(1 - Qn,d - 2a;,in-l,k)]

+(1- an,k?

= a;"i;-l,k + a;',k~;',k + ~;,k(1 - 2an,k + Q;,k)
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-20!~,in-l,kEn,k + 2En,k(1 - O!n,k)2 + (1 - O!n,k)2

2 C2 2 C2 c2 (1 )2 2 2 C cctn,kl."n-l,k + an,kl."n,k + ':.n,k - Qn,k - an,k":,n-l,k":,n,k

+2En,d1 - O!n,k)2 + (1 - O!n,k)2

O!~,i~_I,k - 20!~.in-l,kEn,k + O!~,kE~,k+ E~,k(l - O!n,k)2

+2En,k(1 - O!n,k)2 + (1 - O!n,k?
2 -2 - 2 22

un,dEn-l,k - 2En-l,kEn,k + En,k) + (1 - O!n,k) (En,k + 2En,k + 1)

a;"d~n-l,k - En,d + (1 - an,k)2(En,k + 1)2

Differentiating Ja with respect to an,k gives

(A.15)

2an,k(~n-l,k - En,k? + 2an,k(En,k + 1)2 - 2(En,k + 1)2

O!n,k (2(~n_l,k - En,k)2 + 2(En,k + 1)2) - 2(En,k + 1)2 (A.16)

Now equating aJ,,/ aO!n,k to zero yields an optimum expression for O!n,k as

opt 1
ctn,k = - 2

1+ (En'k - En-I'k)
C,n,k + 1
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