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Abstract

This thesis deals with the problem of autoregressive (AR) spectral estimation

from a finite set of noisy observations without a priori knowledge of additive

noise power. For single channel case a joint technique is proposed based on the

high-order and true-order AR model fitting to the observed noisy process. The

first approach utilizes the uncompensated lattice filter algorithm to estimate the

parameters of the over-parameterized AR model and is one-pass. The latter uses
the noise compensated low-order Yule-Walker (LOYW) equations to estimate the

true-order AR model parameters and is iterative. The desired AR parameters,

equivalently the roots, are extracted from the over-parameterized model roots us-

ing a root matching technique that utilizes the results obtained from the second

approach. This method is highly accurate and is particularly suitable for cases

where the system of unknown equations are strongly nonlinear at low SNRand

uniqueness of solution from LOYW equations cannot be guaranteed. In addition,
an approach based on fuzzy logic is adopted for calculating the step size adap-

tively with the cost function to reduce the computational time of the iterative
total search technique. An extension of the above method for the estimation of

multichannel autoregressive power spectrum from a finite set of noisy observations

is also proposed. In this case the method is based on the Yule-Walker equations

and estimates the autoregressive parameters from a finite set of measured data

and then the power spectrum. An inverse filtering technique is used to estimate

the observation noise variance and AR parameters simultaneously. Two different
algori thms are proposed to estimate the noise variances of all channels. First al-

. gorithm is based on the gradient search technique of solving nonlinear equations

and the second one is based on fuzzy incorporated iterative search.

Xl



Chapter 1

Introd uction

1.1 Spectal Estimation: Background

Spectral analysis considers t,he problem of determining the spectral content (i.e.,

the distribution of power over frequency) of a time series from a finite set of mea-
surements, by means of either nonparametric or parametric techniques. Spectral

analysis finds applications in many diverse fields. In vibration monitoring, the

spectral content of measured signals give information on the wear and other char-

acteristics of mechanical parts under study. In economics, meteorology, astronomy

and several other fields, the spectral analysis may reveal "hidden periodicities"

in the studied data, which are to be associated with cyclic behavior or recurring

processes, In speech analysis, spectral models of voice signals are useful in better

understanding the speech production process, and in addition can be used for
speech synthesis (or compression) and speech recognition. In radar and sonar

systems, the spectral contents of the received signals provide information on the

location of the sources (or targets) situated in the field of view. In medicine spec-

tral analysis of various signals measured from a patient, such electrocardiogram

(EeG) or electroencephalogram (EEG) signals, can provide useful material for

diagnosis. In seismology, the spectral analysis of the signals recorded prior to and

during seismic event (such as a volcano eruption or an earthquake) gives useful

information on the ground movement associated with such events and may help
. in predicting them. Seismic spectral estimation is also used to predict subsur-

face geologic structure.in gas and oil exploration. In control systems, there is a

resurging interest in spectral analysis methods as a means of characterizing the

dynamical behavior of a given system, and ultimately synthesizing a controller

1
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for that system [1].
The essence of the spectral estimation problem is captured by the following

informal formulation.

From a finite record of a wide sense stationary data sequence

estimate how the total power is distributed over frequency (1.1)

There are two broad approaches to spectral analysis. One of these derives its basic
idea directly from definition (1.1): the studied signal is applied to a bandpass filter
with a narrow bandwidth, which is swept through the frequency band of interest

and filter output power divided by the filter bandwidth is used as a measure of the

spectral contents of the input to the filter. This is essentially what the classical (or

nonparametric) methods of spectral analysis do. The second approach to spectral

estimation, called the parametric approach, is to postulate a model for the data,

which provides a means of parametrizing the spectrum, and to thereby reduce the
spectral estimation problem to that of estimating the parameters in the assumed
model. Parametric methods may offer more accurate spectral estimates than the

nonparametric ones in the cases where the data indeed satisfy the model assumed

by the former methods.
The nonparametric method is usually based on fast fourier transform method

(Periodgram, Blackman-Tukey). This approach to spectrum analysis is com-

putationally efficient and produces reasonable results for a large class of signal
processes. In spite of these advantages, there are several inherent performance
limitations of the FFT approach. The most prominent limitation is that of fre-

quency resolution, i.e., the ability to distinguish the spectral responses of two or

more signals .. The frequency resolution in hertz is roughly the reciprocal of the

time interval in seconds over which sampled data is available. A second limitation

is due to the implicit windowing of the data that occurs when processing with the

FFT. Windowing manifests itself as "leakage" in the spectral domain, i.e., energy

in the main lobe of a spectral response "leaks" into the sidelobs, obscuring and
distorting other spectral responses that are present. In fact, weak signal spectral

responses can be masked by higher sidelobes from stronger spectral responses.

Skillful selection of tapered data windows can reduce the sidelobe leakage, but

always at the expense of reduced resolution [2].
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These two performance limitations of the FFT approach are particularly trou-

blesome when analyzing short data records. Short data records occur frequently

in practice because many measured processes are brief in duration or slowly time-

varying spectra that may be considered constant only for short record lengths.

In, radar, for example, only a few data samples are available from each received

radar pulse. In sonar, the motion of targets results in a time-varying spectral

response due to Doppler effects.,
In an attempt to alleviate the inherent limitations of the FFT approach, many

alternative spectral estimation procedures have been proposed. Major techniques

are Autoregressive (AR) Power Spectral Density (PSD) estimation, Moving Av-

erage (MA) PSD Estimation, Autoregressive Moving Average (ARMA) PSD Es-

timation, Pisarenko Harmonic Decomposition (PHD), Prony Spectral Line Esti-

mation, Maximum Likelihood Method (MLM).
Some historical perspectiye is instructive for an appreciation of the basis for

modern spectral estimation. The advent of spectrum analysis based on Fourier
analysis can be traced to Schuster, who was the first to coin the term "peri-

odogram", [3]' [4]. Schuster made attempt to find "hidden periodicities" in the

measured data. The next pioneering step was described in Norbert Wiener's

classic paper on "generalized harmonic analysis" [5]. This work established the

theoretical framework for the treatment of stochastic processes by using a Fourier

transform approach. A major result was the introduction of the autocorrelation

function with the power spectral density.
Blackman and Tukey, in a classical publication in 1958 [6] provided a prac-

tical implementation of Wiener's autocorrelation approach to power spectrum

estimation when using sampled data sequences. The method first estimates the

auto-correlation lags from the measured data, windows (or tapers) the autocor-

relation estimates in an appropriate manner, and then Fourier transforms the

windowed lag estimates to obtain the PSD estimate. This approach was the

most popular spectral estimation technique until the introduction of the FFT al-

gorithm in 1965, generally credited to Cooley and Tukey [7J. Conventional FFT
spectral estimation is based on a Fourier series model of the data, that is, the

process is assumed to be composed of a set of harmonically related sinusoids.
Other time series models have been used in nonengineering fields for many
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years. Yule [8]and Walker [9]both used AR models to forecast trends in economic

time series. Other models have arisen in the statistical and numerical analysis

fields. The modern spectral estimators have their roots in these nonengineering

fields of time series modeling.
The use of nontraditional spectral estimation techniques in a significant man-

ner began in the 1960's. Parzen [10]' in 1968, formally proposed AR spectral

estimation. Independently in 1967, Burg [11] introduced the maximum entropy
method, motivated by his work with linear prediction filtering in geosismological

applications. The one-dimensional MEM (maximum entropy method) was shown

formally by Van den Bos [12] to be equivalent to the AR PSD estimator.

1.2 Objective of This Research

The objective of this research is to propose a noise compensation technique for

autoregressive (AR) spectral estimation from a finite set of noisy observations

with unknown additive noise. Therefore the informal formulation of (1.1) can be

modified in this research as stated below.

From a finite record of a wide sense stationary white nOISe

corrupted data sequence estimate how the total power of the

noise-free data sequence is distributed over frequency (1.2)

Many researches have focused on this topic for noise-free observations [8J-[16J.

In practical cases, however, observations contain additive noise and its effect

cannot be neglected. A few methods are available for noise-corrupted observa-

tions [17]-[26]. In particular, the correlation-based methods are widely used in
estimating the parameters of AR system which are then used for AR spectral es-

timation. However, if the observations are noisy they require a priori knowledge

of the additive noise variance [17]' [19]. Although it is possible to avoid the need

of the knowledge of noise variance in estimating the AR parameters using the

high-order Yule-Walker equations (HOYW), this method is not constrained to be

nonsingular [27J. The possible singularity of the auto-correlation matrix leads to
a substantial increase in the variance of the AR spectral estimate [17J. Most of
the previous methods either assume that the noise variance is known [17], [19J

or subtract a suboptimal amount of noise power [28Jto compensate for the noise
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effect. Determination of the optimal amount of noise power to remove the bias
effect of noise is of utmost importance for high-resolution AR spectral estimation

from noisy observations.
To combat this problem, Yahagi and Hasan [20J have proposed a method

using low-order Yule-Walker equations (LOYW) to compensate for the influence

of noise in determining the AR parameters and to estimate the noise variance

from a given set of noisy measurements. But the case of strong nonlinearity of
LOYW equations at low SNR was not addressed. Unfortunately, due to the

inherent nonlinearity of LOYW equations when used for noisy observations with

unknown noise variance and system parameters, the solutions found may not be
unique depending upon the S N Rs and the system characteristics. In these cases,

the method fails to estimate the actual solution from the set of multiple solutions.

Moreover, the method is computationally expensive as very small constant step

size is maintained throughout the total range of search for better accuracy.

In this research a new joint method for estimating the AR parameters and

hence the AR spectrum of the true signal (noise free observations) is proposed.

The parameters of the over-fitted AR model to the observed noisy process are

estimated by using the lattice filter which possesses high-resolution property. It

is well known that stability cannot be guaranteed while using the noise compen-

sated lattice filter algorithm[17J, [20J. As such, we utilize the uncompensated

lattice filter algorithm with the cost paid by adding noise roots to the trans-

fer function of the original AR model. The desired AR parameters of the noise

free obersvations are extracted from the over-parameterized AR model parame-

ters by using a root matching technique which utilizes all the solutions obtained
from iterative method described by Yahagi and Hasan [20J. As a by product,

the proposed scheme has also resolved this problem of multiple solutions case of

the LOYW equations which generally arises at low SNR. Furthermore, to re-

duce greater computing time due to large number of iterations fuzzy modeling of

the cost function for step size variation is incorporated in the method of Yahagi

and Hasan [20J. A comparative study with the previous method [20] is provided

to demonstrate the effiectiveness of the proposed scheme. An extension of the
method to the multichannel AR spectrum estimation is also investigated. A new
close form equation between the auxiliary noise variances and the estimated noise
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variances is also obtained. This close form relation is utilized by two different

algorithm to estimate the different noise variances of all different channels. First
algorithm is based on gradient search technique of solving non linear equations.
Second algorithm is based on fuzzy incorporated iterative search where effect
of noise of one channel is considered at a time for minimizing the cost function.

Eventually the corresponding AR parameters and their spectra are obtained from

the estimated noise variances.

1.3 Organization of the Thesis

In Chapter 2 a brief review of spectral estimation techniques are presented. These
include spectral density definition and basics, traditional methods, modeling and

the parameter identification approach for rational spectra. The effect of additive

white noise on AR spectral estimation is also illustrated in this chapter.

In Chapter 3 a new approach of autoregressive apectrum astimation from ob-

servations at the presence of additive white noise is investigated. This approach

is based on the high-order and true-order AR model fitting to the observed noisy

process. The first approach utilizes the uncompensated lattice filter algorithm

to estimate the parameters of the over-parameterized AR model and is one-pass.

The latter uses the noise compensated low-order Yule-Walker (LOYW) equations

to estimate the true-order AR model parameters and is iterative. The desired

AR parameters, equivalently the roots, are extracted from the over-parameterized

model roots using a root matching technique that utilizes the results obtained

from the second approach. This method is highly accurate and is particularly
suitable for cases where the system of unknown equations are strongly nonlinear

at low S N R and uniqueness of solution from LOYW equations cannot be guar-

anteed. In addition, an approach based on fuzzy logic is adopted for calculating

the step size adaptively with the cost function to reduce the computational time

of the iterative total search technique.
In Chapter 4 the problem of multichannel AR spectrum estimation from noisy

observation is addressed. A closed form equation of cost function is obtained
which was not derived in [29J. Moreover two different iterative techniques are
proposed for estimating multichannel AR spectra. One iterative technique is

based on searching in a predefined manner over the error surface and the rest one
\ -
"'.
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is gradient based.
The thesis concludes by presenting an overall discussion on the work and

pointing out some unsolved problems for future work in Chapter 5.
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Chapter 2

Review of Spectral Estimation
Techniques

2.1 Spectral Density Definitions and Basics

2.1.1 Energy spectral density of deterministic signal

Traditional spectrum estimation, as currently implemented using the FFT, is
characterized by many tradeoffs in an effort to produce statistically reliable spec-

tral estimates. There are tradeoffs in windowing, time-domain averaging, and

frequency-domain averaging, and frequency domain averaging of sampled data

obtained from random processes in order to balance the needs to reduce side-

lobes, to perform effective ensemble averaging, and to ensure adequate spectral
resolution. To summarize the basics of conventional spectrum analysis, the case

of a deterministic analog waveform x(t), that is a continuous function of time

is considered first. For generality, x(t) is complex valued. If x(t) is absolute

integrable, i.e., the signal energy ~ is finite

~= i:Ix(tWdt < 00 (2.1)

then the continuous Fourier transform (eFT) X(f) of x(t) exists and is given by

X(f) = i:x(t)exp( -j21f jt)dt (2.2)

Eqn. (2.1) is a sufficient, but not a necessary condition for the existence of Fourier

transform [30]. The squared modulus of the Fourier transform is Energy Spectral

Density, £(f) of x(t),
£(f) = IX(fW

8

(2.3)



9

Parseval's energy theorem, expressed as

(2.4)

is a statement of the conservation of energy; the energy of the time domain signal

is equal to the energy of the frequency domain transform, J:"'oo IX (fWdj. Thus
[; (f) is an energy spectral density ESD in that it represents the distribution of
energy as a function of frequency. If the signal x(t) is sampled at equispaced

intervals of 6.t sec. to produce a discrete sequence x(n) = x(n6.t) for -00 <
n < 00 then the sampled sequence can be represented as the product x(t) and

an infinite set of equispaced Dirac delta functions 5(t). The Fourier transform of

this product may be written using distribution theory [30], as

X'(f) = i: [~X(t)O(t - n6.t)] exp(-j211"jt)dt

00

- 6.t Lx(n)exp(-j211"jn6.t)
-00

(2.5)

Eqn. (2.5) corresponds to a rectangular integration approximation of Eqn. (2.2);

the factor 6.t ensures conservation of integrated area between Eqns. (2.2) and

(2.5) as ot -t O. Eqn. (2.5) will be identical in value to the transform X(J)
of (2.2) over the interval -1/(26.t) ~ j ~ 1/(26.t) Hz, as long as x(t) is band
limited and all frequency components are in this interval. Thus the continuous

energy spectral density
£'(f) = IX'(fW (2.6)

for data sampled from a band-limited process is identical to that of Eqn. (2.3).

If the data sequence is available from only a finite time window over a) n = 0

to n = N - 1, and b) the transform is discretized also for N values by taking

samples at the frequencies j = m6.j for m = 0,1,"', N -1 where 6.j = l/N 6.t,
then one can develop the familiar discrete Fourier transform (DFT) [30]from Eqn.

(2.5),

N-i

X(m) - 6.t L x(n)exp(-j211"m6.jn6.t)
n=O
N-i

= 6.t L x(n)exp( -j211"mn/N)
n=O

for m = 0, 1,"', N - 1 (2.7)



10

where X(m) is DFT ofx(n).

The inverse DFT is given by

N-!

x(n) = 6./ L X(m)exp(j2rrmnjN), for n = 0,1,"', N - 1 (2.8)
m=O

and the energy theorem is given by

N-! N-!

L Ix(nW6.t = L IX(mW6./
n=O n=O

(2.9)

Both Eqn. (2.7) and its associated inverse transform are cyclic with period N.
Thus by using Eqn. (2.7), we have forced a periodic extension to both the dis-

cretized data and the discretized transform values, even though the original con-

tinuous data may not have been periodic. The discrete ESD may then be defined

as
&(m) = IX(mW, for m = 0, 1, ... ,N - 1 (2.10)

Both the discrete & (m) and the continuous &'(1) have been termed periodogram
spectral estimates. However & (m) and &' (I), when evaluated at / = mj N 6.t

for m = 0,1,"', N - 1, do not yield identical values. &(m) is, in effect, a

sampled version of a spectrum determined from the convolution of X (I) with the

transform of the rectangular window that contains the data samples. Thus the

discrete spectrum & (m) based on a finite data set is a distorted version of the

continuous spectrum &' (I) based on an infinite data set.

2.1.2 Power Spectral Density of Random Signals

In applications most of the signals encountered are indeterministic, i.e., their

variation in the future cannot be known exactly. Only the probabilistic state-

ments can be made about the variation. Signals of such category are described

by random sequence which consists of an ensemble of possible realizations, each

of which has some associated probability of occurrence. When the process x(t)

is wide sense stationary (WSS), stochastic process with zero mean rather than

a deterministic, finite energy signal a different viewpoint is required. The quan-
tity of interest is the power (time average of energy) distribution with frequency

rather than energy distribution as the stochastic processes usually contain infinite

energy. As such, the integration of Eqns. (2.2) and (2.7) do not exist in the case

(
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of random signal and the autocorrelation function

Rxx(r) = E [X(t + r)x*(t)] (2.11)

provides the basis for spectrum analysis, rather than the random process itself.

Here E [.]denotes the expectation operator which averages over the ensemble of

realization. Rxx (r) depends only on the lag between two samples averaged and

x*(t) is the complex conjugate of x(t). The Wiener-Khinchin theorem gives us

power density spectrum PSD P(J) such that

P(J) = i:Rxx(r)exp(-j21rfr)dr (2.12)

To be honest, practically one does not know the statistical autocorrelation func-

tion. Therefore one has to assume that the process is ergodic in the first and

the second moment which permits the substitution of time averages for ensemble

averages. For an ergodic process Eqn. (2.11) becomes

Rxx(r) = lim IT fT x(t + r)x*(t)dt (2.13)
T->oo 2 -T

With the help of Eqn. (2.13) following alternate form of Eqn. (2.12) can be

obtained [31]-[33].

P(J) =J~~E { 2~ If:x(t)exp( -j21r ft)dtn (2.14)

Time Function

'"

I%rtocorrelation R(t) --------~, P(ij Power Spectral
Function Denslty

Fig. 2.1: Direct and indirect methods for obtaining PSD

Fig. 2.1 shows the direct and inirect approaches for obtaining PSD of stochas-

tic processes.

2.2 Conventional Methods (Nonparmetric Meth-
ods) for Estimating PSD

The indirect approach of PSD estimation using an autocorrelation was introduced

by Blackman and Tukey and the spectral estimator is known as correlogram. The
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other PSD estimator, based on the direct approach using the FFT algorithm is

known as periodogram.
When the data sequence is finite, only' finite number of discrete autocorrela-

tion function values, or lags are estimated. The spectral estimate proposed by

Blackman and Tukey
M

PBT(J) = t::.t L Rxx(m)exp( -2j1r fmt::.t)
m=-M

(2.15)

(2.16)

uses the available autocorrelation lag estimates Rxx(m), where -1/(2t::.t) :::::f :::::
1/(2t::.t) and - denotes an estimate. This spectral estimate is the discrete-time

version of the Wiener-Khinchin expression given by Eqn. (2.12). Autocorrelation

estimate, using Eqn. (2.13) is the unbiased estimator

1 N-m-!

N _ M L x(n + m)x*(n)
n=O

for m = 0,1, ... ,M, where M :::::N - 1

The negative lag estimates can be determined from the positive lag estimates by

the following relation which in accordance with the conjugate symmetric property

of the autocorrelation function of a stationary process.

(2.17)

Instead of Eqn. (2.16) following autocorrelation estimate is more justified accord-

ing to both Jenkins-Watts [31] and Parzen [10]'[34].

i N-m-!
R~x(m) N L x(n +m)x*(n)

n=O

for m = 0,1,"', M, where M :::::N - 1 (2.18)

The reason behind the justification is, it tends to have less mean square error

than Eqn. (2.16) for many finite data sets. R~x(m) is a biased estimator since

E [R~x(m)] = [(N - M) IN] Rxx(m).
The modern version of Schuster's periodogram is the direct method of spectral

analysis. A sampled data version of Eqn. (2.14) is as follows.

2
1 N,

Nt::. t::.tL x(n)exp(-j21rfnt::.t)
t n;O

for n = 0,1,"', N - 1 (2.19)
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It is defined for frequency interval -1/(2.6.t) ~ j ~ 1/(2.6.t). Using the fast

fourier transform Eqn. (2.19)can be evaluated at the discrete set of N equally

spaced frequencies j(m) = m.6.j Hz, for m = 0,1, ... ,N - 1 and .6.j = l/N .6.t,

- - 1 2
P(m) = PpER(J(m)) = N.6.t IX(m)1

Here X(m) is the DFT of Eqn. (2.7). P(m) is identical to the energy spectral

density E(m) of Eqn. (2.10) except for the division by the time interval of N.6.t

seconds to make P( m) a power spectral density. The total power in the process,

which is assumed periodic due to the DFT property, is

N-l

Power = L P(m).6.j (2.21)
~ m=O

based on rectangular integration approximation of PPER. If the .6.j factor is

incorporated into P( m), then

- - 1 2
P(m) = P(m)t.f = (N.6.tj2IX(m)1

= I~};x(n)exp(-j27rmn/N)12

(2.22)

Eqn. (2.22) is often known as the periodogram, but it is not scaled appropriately

as PSD. Using Eqn. (2.22) it is the peak in the PSD plot, rather than the area

under the plot, that is equal to the power of the assumed periodic signal. The

computational economy of the FFT algorithm has made this a popular approach

[2].
Many of the problems of the periodogram PSD estimation technique can be

traced to the assumption made about the data outside the measurement interval.

The finite data sequence may be viewed as being obtained by windowing an

infinite length sample sequence with a boxcar function [2]. The use of only this

data implicitly assumes the unmeasured data to be zero, which is usually not

. the case. This multiplication of the actual time series by a window function

means the overall transform is the convolution of the desired transform with the

transform of the window function. If the true power of a signal is concentrated
in a narrow bandwidth, this convolution operation will spread that power into

adjacent frequency regions. This phenomena, termed leakage, is a consequence

of the tacit windowing inherent in the computation of periodogram.

\
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In addition to the distorting effects of leakage on the spectral estimate, leakage

has detrimental impact on power estimation and detectability of sinusoidal com-

ponents [35]-[37]. Sidelobes from adjacent frequency cells add in a constructive

or destructive manner to the main lobe of a response in another frequency cell

of the spectrum, affecting the estimate of power in that cell. In extreme cases,

the sidelobes from strong frequency components can mask the main lobe of weak

frequency components in adjacent cells.

Data windowing is also the fundamental factor that determines the frequency

resolution of the periodogram. The convolution of the window transform with

that of the actual signal transform means that most narrow spectral response

of the resultant transform is limited to that of the main-lobe width of the win-

dow transform, independent of the data. For recrtangular window, the main-

lobe width between 3-dB levels (and therefore, the resolution) of the resulting

(simr !)/rr! transform is approximately the inverse of the observation time of

N 6.t seconds. Other windows may be used, but the resolution will always be

proportional to IIN 6.t Hz. Leakage effects due to data windowing can be re-

duced by the selection of windows with nonuniform weighting. Harris [38Jhas

provided a good summary of the merits of various windows. Nuttal [39] gives a

correction to the sidelobe behavior for some of the windows described by Harris.

However, The price paid for a reduction in the sidelobes is always a broadening

in the main lobe of the window transform, which in turn means a decrease in the

resolution of the spectral estimate.

In a nutshell, the conventional BT and periodogram approaches to spectral

estimation have the following advantages:

1. Computationally efficient if only a few lags are needed (BT) or if the FFT

is used (periodogram).

2. PSD estimate is directly proportional to power for sinusoid processes

The disadvantages of these techniques are:

1. Suppression of weak signal main-lobe responses by strong signal sidelobes.

2. Frequency resolution limited by the available data record duration, inde-

pendent of the characteristics of the data or its SN R.
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3. Introduction of distortion in the spectrum due to sidelobe leakage.

4. Need for some sort of pseudo ensemble averaging to obtain statistically

consistent spectra

5. The appearance of negeative PSD values with the BT approach when some

autocorrelation sequence estimates are used.

The high variance of the periodogram and correlogram methods motivates the

development of modified methods that have lower variance, at a cost of reduced

resolution.

2.3 Parametric Methods for Rational Spectra

q p

x(n) = L:b1u(n - I) - L:akx(n - k) (2.23)
.1~O k~l

This most general linear model is termed an ARMA (Autoregressive Moving
Average Model) model. The interest in these models stems from their relationship

to linear filters with rational transfer functions. Here {ak} is Autoregressive (AR)

coefficient and {bk} is Moving Average (MA) coefficient.
The system function H(z) between the input urn) and output x(n) for the

ARMA process of Eqn. (2.23) is the rational expression

The principal difference between the spectral estimation non-parametric methods

and parametric methods is that in the first case, no assumption on the studied sig-

nal is made(excepts for its stationarity). The parametric or model-based methods

of spectral estimation assume that the signal satisfies a generating model with

known functional form, and then proceed by estimating the parameters in the

assumed model. The signal's spectral characteristics of interest are then derived

from the estimated model. In those cases where the assumed model is a close
approximation to the reality, it is no wonder that the parametric methods provide

more accurate spectral esitmates than the nonparmetric techniques.
In the parametric methods an input driving sequence urn) and the output

sequence x(n) that is to model the data are related by the linear difference equa-

tion,

H( ) = B(z)
z A(z) (2.24)



(2.26)
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where
p

A(z) = z-transform of AR branch = L: akz-k
k=O

q

B(z) = z-transform of MA branch = L:blz-I
1=0

It is well known that the power spectrum at the output of a linear filter, 'Px(z), is

related to the power spectrum of the input stochastic process, 'Pu(z), as follows:

" B(z)B'(l/z')
'Px(z) = H(z)H (l/z )'Pu(z) = A(z)A'(l/z*) .'Pu(z) (2.25)

Eqn. (2.25) is normally evaluated along the unit circle, z = exp(j211' Jilt) for

-1/(2ilt) :s: f :s: 1/(2ilt). Often the driving process u(n)is assumed to be a

white-noise sequence of zero mean and variance a~.The PSD of the noise is then

(l~ilt. Here ilt factor is included in the expression for power spectral density of the

noise so that Px(exp[j211'filt]), when integrated over -1/(2ilt) :s: f :s: 1/(2ilt),
yields the true power of an analog signal. However for convenience and simplicity

from now on wards, the factor ilt is omitted and f is regarded as normalized

frequency by assuming ilt = 1. The PSD of the ARMA output process is then

2 [B(J) 1

2

PARMA(J) = PA!) = au A(J)

where AU) = A(exp[j211' f]) and B(J) = B(exp[j211' f]). Without loss of general-

ity, one can assume aD = 1 and bo = 1 since any filter gain can be incorporated

into a~.
If all the ak = 0, for k = 1,2, ... ,p, then

q

x(n) = L:blu(n - I).
1=0

(2.27)

the process given by Eqn. (2.27) is known as moving average of order q, and

This model is sometimes termed an all-zero model [40J.

If all the bl = 0, for 1= 1,2," .,q, then

p

x(n) = - L: akx(n - k) + u(n)
k=!

(2.28)

(2.29)
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The process given by Eqn. (2.29) is strictly an autoregressive (AR) of order p.

The process is termed AR in that the sequence x( n) is a linear regression on

itself with u(n) representing the error. With this model, the present value of the

process is express as a weighted sum of past values plus a noise term. The PSD

(2.30)C'2
PAR(J) = IA(f)12

This model is sometimes termed an all-pole model.

The Wold decomposition theorem [40] relates the ARMA, MA and AR mod-

els. Basically the theorem asserts that any stationary ARM A or MA process

of finite variance can be represented as a unique AR model of possibly infinite

order; likewise, any ARMA or AR process can be represented as MA process of

possibly infinite order. This theorem is important because if we choose the wrong

model among the three, we may still obtain a reasonable approximation by an

AR model of higher order. Thus an ARM A model can be approximated by an

AR model of higher order. Since the estimation of parameters for an AR model

results in linear equations, it has a computational advantage over ARM A and MA

parameter estimation techniques. The largest portion of research effort on ratio-

nal transfer function modeling has therefore been concerned with AR model. As

this research is concentrated on AR spectral estimation from noisy observations

a brief discussion on AR PSD estimation is given below.

IS

2.3.1 Autoregressive PSD estimation
2.3.1.1 Yule-Walker equations

The derivation of Yule-Walker (YW) equations for AR spectral estimation is first

given. The YW equations describe the linear relationship between the AR pa-

rameters and the auto-correlation function. The solution of these equations is

provided by the computationally efficient Levinson-Durbin algorithm, the details

of which reveal some fundamental properties of AR processes.

If autoregression is a reasonable model for the data, then the AR power spec-

tral density estimate based on Eqn. (2.30) can be rewritten as



a2u
11 + L:~=1 akexp( - j27r f k) 12
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(2.31 )

It reveals that to estimate PSD one need only estimate aI, a2,"', ap, a~. To do

this, a relationship between the AR parameters and the autocorrelation function

(known or estimated) of x(n) is now presented. This relationship is known as the

Yule-Walker equations [41]. The derivation proceeds as follows:

Rxx(k) = E [x(n + k)x*(n)] = E [x*(n) ( - ~ atx(n - I) + u(n + k))]

p- L atRxAk - I) + E [u(n + k)x*(n)]
1=1

Since H(z) is assumed to be stable, causal filter, we have

E (n(n + k)x*(n)) = E [u(n + k) ~ h*(I)u*(n -I)]

00

L h*(I)a~o(k + 1)
1=0

2h*cru -k

= {O for k > 0
h*a2 for k = 0o u

Note that o(m) is the discrete delta function where

o(m) = 1 if m = 0
= 0 ifm # 0

But ho = limz-;oo H(z) = 1, and therefore,

for k > 0
for k = 0

(2.32)

Eqn. (2.32) is the Yule-Walker equations. To determine the AR parameters, one

need only choose p equations from Eqn. (2.32) for k > 0, solve for aI, az, ... ,ap

and then find a~from Eqn. (2.32) for k = O. The set of equations which require

the fewest lags of the autocorrelation function is the selection k = 1,2,"', p.

They can be expressed in matrix form as

[

Rxx(O)
Rxx(l)

Rxx(~ - 1)

Rxx( -(p - 1)) ] [ al ] [ Rxx(l) ]Rxx(-(p-2)) a2 Rxx(2)
: : = - : (2.33). . .

Rxx(O) ap Rxx(p)
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Eqns. (2.33) is known as low order Yule-Walker (LOYW) equations. It is obvious

that the above autocorrelation, Rxx is hermitian (R'ix = Rxx) and it is Toeplitz

since the elements along diagonal are identical. Also, the matrix is positive def-

inite (assuming x(n) is not purely harmonic) which follows from the positive

definite property of the autocorrelation function [42]'[43].

It should be noted that Eqn. (2.33) can also be augmented to incorporate the

O'~equation, yielding

Rxx(O) Rxx(-I) Rxx( -p) 1 0'2
u

Rxx(1) Rxx(O) Rxx(-(p -1)) al 0
- (2.34)

Rxx(p) Rxx(p - 1) Rxx(O) ap 0

which follows from (2.32). Thus to determine the AR parameters and 0'2 one must

solve Eqn. (2.34) with the p+ 1 estimated autocorrelation lags Rxx(O), ... , Rxx(p)

and use Rxx(-m) = R;x(m).
The Levinson-Durbin [44]-[47] algorithm provides an efficient solution for Eqn.

(2.34). The algorithm requires only order p2 operations, denoted a(p2), as op-

posed to a(p3) for Gaussian elimination. Although appearing at first to be just

an efficient algorithm, it reveals fundamental properties of AR processes. The

algorithm proceeds recursively to compute the parameter sets

An additional subscript has been added to the AR coefficients to denote the

order. The final set at order p is the desired solution. In particular, the recursive

algorithm is initialized by

al1 = -Rxx(l)/ Rxx(O)

O't = (1 - lal1I2)Rxx(0)

with the recursion for k = 2,3, ... ,p given by

akk - - [Rxx(k) + I:ak-1.1] /O'tk-l)
l~l

aki = ak_l,i+akka*k-l,k-i

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

;",
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The parameter set {akl, ak2,' .. , akk, oD thus computed is the same as would be

obtained by using Eqn. (2.34) for p = k. Thus the Levinson-Durbin algorithm

also provides the AR parameters for all the lower order AR model that fits to the

data. This is useful property when one does not know a priori the correct model

order, since one can use Eqn. (2.35)-(2.40) to generate successively higher order

models until the modeling error of is reduced to a desired value. In particular, if a

process is actually an AR(p) process (an AR process of order p), then ap+l,k = apk

for k = 1,2, . ", p and hence ap+l,p+l = O.In general for an AR(p) process, akk = 0

and Of = 0; for k > p.

Table 2.1: Summary of AR process properties excluding purely harmonic pro-
cesses

• Autocorrelation matrix is positive definite XHRxxX > 0 for all X vectors .

• Reflection coefficient sequence satisfies JK;j < 1 for i = 1,2,'" ,p .

• Zeros of A(z) lie within unit circle: IZil < 1 for i = 1,2,"',p

• Prediction error powers monotically decrease: or :::;O~:::;... :::;0; :::;0

Hence, the variance of the excitation noise is a constant for model order equal

to or greater than the correct order. Thus the point at which of does not change

would appear to be a good indicator of the correct model order. It can be shown

that of first reaches its minimum at the correct model order.

The parameters {all, a22, ... , app} are often called the reflection coefficients

and are designed as K1, K2,"', Kp• They have the property that for

to be a valid autocorrelation sequence, i.e., the autocorrelation matrix is posi-

tive semidefinite, then it is necessary and sufficient that lakkl = IKkl ~ 1 for

k = 1, 2, ... ,p. Furthermore a necessary and sufficient condition for the poles of

A(z) to be or within the unit circle of the z plane is IKkl :::;1 for k = 1,2,'" ,po

It should be noted that if IKkl = 1 for some k, then the recursion (2.35)-(2.40)

must terminate since of = O.The process in this case is purely harmonic (consists

I .-
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only of sinusoids).

2.3.1.2 Lattice filter algorithm

The problem of AR parameter estimation is closely related to the theory of linear

prediction. If x(n) is assumed to be an AR(p) process, the prediction of x(n) on

the basis of previous samples [48]can be done in the following manner.

p

x(n) = - L oo(k)x(n - k)
k=!

(2.41)

then {OOI> 002, ... , OOp}can be chosen to minimize the prediction error power Qp

where
Qp = E [Ix(n) - x(nW]

By the orthogonality principle [33]

E [(x(n) - x(n))x'(k)] = 0 for k = n - 1,"', n - p

or

The minimum prediction error power is
p

Qp . = E [(xn - x(n))x'(n)J = Rxx(O) +L OOkRxx(-k)
mm k=!

(2.42)

(2.43)

(2.44)

(2.43) and (2.44) are identical to (2.32). Thus it must be true that OOk = Upk
for k = 1,"', p and Qp. = ap2 so that the best linear predictor is just

mm
x(n) = - L~=! upkx(n - k). The error sequence, although uncorrelated with the

linear estimate, is not necessarily a white process (it will be if x(n) is a AR(p)
process). In the limit as p ---t 00, the error sequence becomes white. Therefore

{Uk!, Uk2,"', Ukk} and a~ constitute the parameters for the optimum k-th order

linear predictor and the corresponding minimum prediction error power, respec-

tively. Therefore, AR parameter estimation and linear prediction of an AR(p)

process yield identical results and the theory of one is applicable to the other.

The most popular approach for AR parameter estimation with N data sam-

ples was introduced by Burg in 1967. The Burg algorithm may be viewed as

(
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recursive lattice method based on the forward and backward errors in linear pre-

dictions with the constraint that the AR parameters satisfy the Levinson-Durbin

recursion.
To derive the estimator, suppose that we are given the data x(n), n = 0, 1,"', N - .

1 and let us consider the forward and backward linear prediction estimates of or-

der k, given as

k

x(n) = - ~ akix(n - i)
i=l
k

x(n-k) = -~a~ix(n+i-k)
i=l

(2.45)

(2.46)

and the corresponding forward and backward errors ekn and bkn defined as

ekn = x(n) - x(n)

and
bk(n) = x(n - k) - x(n - k)

(2.47)

(2.48)

where aki, 0 :S i :S k - 1, k = 1,2,'" ,p, are the prediction coefficients. The sum

of the square of forward and backward error is
N-l

Ck = L [leknl2 + Ibknl2]
n=k

(2.49)

This error is to be minimized by selecting the prediction coefficients, subject to

the constraint that they satisfy the Levinson-Durbin recursion given by

1 :S i :S k - 1,1 :S k :S p (2.50)

(2.51)

(2.52)

where Kk = akk is the k-th reflection coefficient in the lattice filter realization

of the predictor. When Eqn. (2.50) is substituted into the Eqns.(2.48) and

(2.49), order-recursive Eqns. (2.52) and (2.53) , respectively, for the forward and

backward prediction errors are obtained.
k

ekn = x(n) + ~.akiXn-i
i=l
k-l

= x(n) + ~(ak-l,i + Kka~_I,k_i)Xk-i + Kkxn-k
i=l

= ek-l n + Kkbk-1 n-l, ,
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where
k

bkn =:= Xn-k +L a:iXn-k+i
i=l

Similarly it can be shown that

(2.53)

Here eOn = bOn = x(n). It is seen that the predictor coefficients for the back-

wards predictor are complex conjugates of those of the forward predictor, which is

a consequence of the stationary autocorrelation function [42]. The relationships

of Eqns.(2.52) and Eqns.(2.53) give rise to the so called lattice filter structure

shown in Fig. 2:2. It is to be noted that the transfer function of the entire filter

xln)

is just

Fig. 2.2: Lattice formulation of prediction error filter

p

A(z) = 1+ :L:>PiZ-i
i=l

which is the inverse of H(z) = l/A(z). This follows from Eqn. (2.48). This filter

is termed either the "inverse" filter, or" whitening" filter or "prediction error"

filter.
Now if Eqn. (2.52) and Eqn. (2.53) are substituted in Eqn. (2.50) and the

minimization of Em with respect to the complex-valued reflection coefficient Km

is performed following expression can be obtained.

(2.54)

•••
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The term in the numerator of Eqn. (2.54) is an estimate of the crosscorrelation

between the forward and backward prediction errors. With the normalization

factors in the denominator of Eqn. (2.54), it is apparent that IKkl < 1, so that

the all pole model obtained from the data is stable. As the denominator in Eqn.

(2.54) is simply the least-squares estimate of the forward and backward errors,

ELI and ELI' respectively, the Eqn. (2.54) can be expressed as

. "N-I b'K _ - L..Jn=kek-I,n k-I,n-I (2.55)k- I N-I[~f ~b]22:n=k Ek_1 + Ek_1

where ELI +ELI is an estimate of the total squared error Ek. The denominator

term in Eqn. (2.55) can be computed in an order-recursive fashion according to

the relation
(2.56)

where Ek == E£ + EZ is the total least-squares error.
To summarize, the Burg algorithm computes the reflection coefficients in the

equivalent lattice structure as specified by Eqns. (2.55) and (2.56). Eqn. (2.50)

is used to obtain the AR model parameters. From the estimates of the AR

parameters, we form the power spectrum estimate

pBU (J) = Ep (2.57)
xx 11+ 2:;=1 aie-j2~fiI2

The major advantages of the Burg method for estimating the parameters of the

AR model are:

1. it results in high frequency resolution

2. it yields a stable AR model

3. it is computationally efficient.

Conventional periodogram and BT analysis lead to spectral estimates that

are characterized by many "hills and valleys", since the Fourier transform of a

zero mean random process. Autocorrelation lag windowing or spectral window
smoothing will substantially reduce the fluctuations but not eliminate them. An .

AR spectral estimator can be used to smooth these fluctuations since a pth-order

AR spectral estimate is constrained to have p or less peaks (or trouhgs). For

p small, a smoothed spectral estimate will result. Fig. 2.3 shows smooth PSD

estimates of AR estimation over FFT based rough PSD estimation.
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Fig. 2.3: FFT and AR model based PSD estimation of random processes

2.4 Multichannel Spectral Estimation

The spectral estimation method in previous sections it is assumed that we wish

to estimate the power spectral density (PSD) of a single time series. In many
practical situations the data that are available are not limited to the output of
a single channel but may well be the result of observations at the output of sev-

eral channels. It is common in the fields of sonar [49]' radar [50]' and seismic

exploration [51] to record data from multiple sensors. With this additional infor-

mation it is then possible to estimate cross-spectra as well as auto-spectra. The

cross spectra are important in establishing linear filtering relationship between

the time series [31]. The multichannel spectral estimation problem is to estimate

the auto- spectra of the individual channel and the cross-spectra between all pairs

of channels. Many of the techniques described in the previous sections are eas-

ily extended to multichannel spectral estimation by replacing scalar functions by
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suitable matrix functions of a vector valued time series [52].

Let, x( n) be a multichannel wide sense stationary(WSS) random process.

That is, the mean of the process is a constant and the auto correlation function

depends only on the lag. Specifically,

E [x(n)] = J.L(n) = J.L

which will henceforth be assumed equal to zero, and the ACF

Rxx(m) = E[x(n)xT(n - m)]

does not depend on n. The mth sample of the ACF is the M x M matrix

(2.58)

Rxx(m) = (2.59)

where the (i,j) element is the cross-correlation function (CCF) between xi(n) and

xj(n) at lag m or

The power spectral density matrix or cross-spectral matrix is defined as

(2.60)

Pxx(j) =

Pll (j)
P21 (j) (2.61 )

The diagonal elements Pij(j) are the power spectral densities (PSDs) of the

individual channels or auto-PSDs, while the off-diagonal elements Pij(j) for i # j
are the cross-PSDs between xi(n) and xj(n), which are defined as

00

Pij(j) = 2: rij(m)exp(-j27rfm)
m=-oo

(2.62)

The magnitude of the cross-PSD describes whether frequency components in xi(n)

are associated with large or small amplitudes at the same frequency in xj(n), and

the phase of the cross-PSD indicates the phase lag or lead of xi(n) with respect

to xj(n) for a given frequency component. The cross-spectral matrix may also be

written as
00

Pxx(j) = 2: Rxx(m)exp( -j27r fm)
m=-oo

(2.63)
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Multichannel white noise is defined as the process whose ACF satisfies

Rxx(m) = :EJ(m) (2.64)

so that the cross spectral matrix is a constant matrix or

Pxx(J) =:E (2.65)

For multichannel white noise the individual processes are each white noise pro-

cesses with variance or PSD [:Elii. The cross-correlation given by the off-diagonal

elements of :E.

The output of a multichannel filter is [52J
00

x(n) = L H(m)u(n - m) (2.66)
m=-oo

where u(n) is the M x 1 input sequence vector and H(m) is a complex M x M

matrix defined as

h!M(m) ]
h2M(m)

hMM(m)

(2.67)

and hij(m) is the impulse response of the filter between the jth input and the

ith output. The cross-spectral matrix is obtained by evaluating on the unit circle

[17]
(2.68)

where Puu(J) is the cross-spectral matrix for the input signal. Eq. 3.5 shows an

important relationship in spectral estimation of a scalar time series between the

input PSD and the output PSD of a LSI filter.

2.4.1 Classical spectral estimation

(2.69)i,j=I,2,"',M

An estimator of the cross-PSD Pij(J) is provided by the cross-periodogram [31]

. 1
Pij(J) = NX;'(J)Xj(J)

where Xi(J) is the DFT of xi(n) and given as

N-!

X;(J) = L xi(n)exp(-j27rfn)
n=O

(2.70)

.•.. .,.._.
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For the auto-PSD or for i = j this reduces to the usual periodogram. In matrix

notation the cross-spectrtal matrix is estimated as

where
N-l

XU) = L x(n)exp( - j21r In)
n=Q

(2.71)

(2.72)

(2.73)

2.4.2 Autoregressive spectral estimation

The estimate of the cross-spectral matrix based on a multichannel AR model is

given by

where the "hats" denote estimators. The most sraightforward means of estimat-

ing the unkown parameters is by using the Yule-Walker equations as given by

Eqn. 2.74 with a suitable ACF estimator.

R

Rxx(O)
Rxx(-l)

Rxx(p -1)
Rxx(p - 2)

(2.74)

Rxx(-p+1) Rxx(O)
r = [Rxx(1), Rxx(2), ... ,Rxx(p)],

where R is the p x p block Toeplitz matrix (i.e., a matrix with equal sub matrices,

or blocks, on any block diagonal) with block entries Rxx(m) each of which has

dimension MxM, r is the 1xp block row vector and Rxx(m) = E[x(n)xT(n-m)]

(m = 0,1,'" ,p) with Rxx(.:..m) = Rrx(m).

2.5 Effect of Noise on AR Spectral Estimation

A very important problem with the AR spectral estimator is its sensitivity to the .

addition of observation noise to the time series [26]. If a signal x(n) is contam-

inated by zero mean white noise v(n), the observed signal y(n) is described as

follows:
y(n) = x(n) + v(n) (2.75)

/~-,
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(2.76)

Assume that x(n) is the output signal of a pth-order AR model excited by white

noise u(n),
p

x(n) = - :L akx(n - k) + u(n)
k=l

where, u(n) is the zero mean white noise uncorrelated with v(n) and,

E{ u2(n)} = a~

E{ v2(n)} = a;

and E[.] is the expectation operator.

urn) 1
A(z)

x(n) +

Fig. 2.4: Autoregressive process with noise

To illustrate the noise effect on AR spectral estimation an example is given

in Fig. 2.5. As expected AR(p) PSD obtained from y(n) is different from AR(p)

PSD obtained from x( n). It is seen that the spectral peaks are indistinguishable,
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Fig. 2.5: Noise effect on AR spectral estimation; -:without noise; ... :with noise
at different S N Rs
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broadened and unexpectedly the AR spectrum of the noisy signal lies below the

AR spectrum of the noise-free signal for a wide frequency range. These are due
to incorrect modeling of the observed noisy signal y(n). Accurate modeling of

y(n) by an AR system will be addressed in the next chapter.
To reduce the degredation of the AR spectral estimate in the presence of noise,

four general approaches have been proposed. They are as follows.

1. use the ARMA spectral estimate

2. filter the data to reduce the noise

3. use a large order AR model

4. compensate either the autocorrelation function estimates or the reflection

coefficient estimates for the noise effects.

Approach (1) and (3) are used to get the PSD of y(n). However, this research

is carried out to estimate the AR spectrum of the actual data sequence x(n) in-

stead of noise corrupted y(n) where it is assumed that data sequence y(n) is only

available. Moreover, the noise power 0-; is also assumed to be unknown. Noise

cancellation schemes that compensate the autocorrelation lags for the noise can

be found in [17]' [21]-[23]. A serious deficiency is that, one does not know how

much noise power to remove. Thus, if the subtracted noise power is too large,

the estimated AR spectrum will exhibit sharper peaks than the true spectrum.

Moreover the system may become unstable. In the subsequent chapters we pro-

pose accurate noise compensation schemes for spectral estimation of x(n) solely

from y(n).

2.6 Conclusion

In this chapter different methods for estimating power spectral density with their

merits and demerits have been discussed. If the assumed model is accurate then

the parametric methods give higher resolution even with short data length. More-

over, they do not suffer from spectral leakage. Among the three linear models AR
model is widely used. Two popular methods namely the Yule-Walker mehthod

and the Burg method for estimating AR parameters from noise-free observations

have been focused. The Burg algorithm yields better resolution. However, in
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case of noise contaminated observations, estimated AR spectrum deviates from

the estimated AR spectrum of noise-free actual observations. This research is

mainly concerned with the estimation of AR spectrum of the actual signal which

is contaminated by additive white noise with unknown power. In the subsequent

chapters we propose noise cancellation schemes for autoregressive spectral esti-

mation of single and multichannel systems from noise corrupted observations.

\



Chapter 3

Autoregressive Spectral
Estimation from Noisy
Observations

3.1 Introduction

Spectral estimation is one of the key issues of modern signal processing, providing

a powerful means of extracting useful information from a given data set. The au-

toregressive (AR) spectral estimation has received much attention lately in many

diverse fields [1]' [53]. Maximum entropy spectral estimation [11]used in seismic

signal processing, and linear prediction [54] used in speech processing are iden-
tical to AR spectral estimation, though they are based on different theoretical
foundations. The principal advantage of the AR spectral estimators over con-

ventional Fourier-based spectral estimators is their enhanced resolution property

[55]. From the statistical point of view, the best way to improve the resolution

capability is to reduce the number of unknown parameters in the spectral esti-

mator. This implies that we need a parsimonic model to interpret the observed

data. In the decomposition theorem [56],Wold reveals that any stationary pro-
cess can be expressed as a linear sum of an innovation sequence. Fuller [57Jshows

that the power spectrum of a stationary sequence can be fitted with an arbitrary

accuracy by an autoreggressive (AR) process as long as appropriate model order

is used. Using AR modeling, the observed process can be considered to have been

generated by an all-pole filter driven by a white noise sequence, allowing one to

relate the desired power spectrum to the noise spectral density and the frequency

transfer function of the filter [58].

32
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Many researches have focused on this topic for noise-free observations [11],

[13]-[16]. In practical cases, however, observations contain additive noise and its

effect cannot be neglected. A fewmethods are available for noise-corrupted obser-

vations [17]-[26]. In particular, the correlation-based methods are widely used in
estimating the parameters of AR systems. However, if the observations are noisy
they require a priori knowledge of the additive noise power [17]' [19]. Although

it is possible to estimate the AR parameters without knowing the noise power

by using the high-order Yule-Walker equations (HOYW), it is not constrained to

be nonsingular [27]. The possible singularity of the auto-correlation matrix leads

to a substantial increase in the variance of the AR spectral estimate [17]. Most

of the previous methods either assume that the noise power is known [17]' [19]
or subtract a suboptimal amount of noise power [28] to compensate for the noise

effect. Determination of the optimal amount of noise power to remove the bias

effect of noise is of utmost importance for high-resolution AR spectral estimation

from noisy observations.
To combat this problem, Yahagi and Hasan [20]have proposed a method us-

ing the low-order Yule-Walker equations (LOYW) to compensate for the effect of

noise in determining the AR parameters and to estimate the noise power from a

given set of noisy observations. But the case of strong nonlinearity of the LOYW
equations at low SN R was not addressed. Unfortunately, due to inherent nonlin-
earity of the LOYW equations when used for noisy observations with unknown

noise power and system parameters, the solution may not be unique depending

on S N Rs and system characteristics. In these cases, the method fails to estimate

the actual solution from the set of multiple solutions. Moreover, the method is

computationally expensive as the step size is maintained constant and very small

throughout the total range of search.
In this chapter, we propose a 2-step method to estimate the AR parameters

from the signal which is contaminated by additive white noise. In step-I, the

AR parameters are estimated by using the technique proposed by Yahagi and

Hasan [20]incorporating fuzzy modeling of the cost function for step size variation

to reduce the number of iterations. The previous tychnique is briefly reviewed

in Sec.3.3. In step-2, we estimate the parameters of an over-fitted AR model

to the observed process using the lattice filter. The desired AR parameters,
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equivalently the roots, are extracted from the over-fitted model roots using a

'root matching' technique described in Sec.3.4.1 which utilizes the solution(s)

found in step-I. This technique solves the problem of multiple solutions and at

the same time improves the estimation accuracy of AR parameters. Moreover,

instead of using constant step size we use variable step size obtained as the

output of a fuzzy inference system described in Sec.3.4.2. Doing this reduces the

number of iterations as compared to the previous one. Finally, in Sec.3.5, several

examples of computer simulation are presented to demonstrate the effectiveness

of the proposed method.

3.2 Problem Formulation

If a signal x(n) is contaminated by a white noise process v(n) with distribution

N(O, a;J, the observed signal y(n) is obtained as

y(n) = x(n) + v(n) (3.1)

Assume that x(n) is the output signal of a pth-order AR model excited by a

sequence of white noise u(n) with distribution N(O, a~) and is given by

p

x(n) = - L aix(n - i) + u(n)
i;;::l

(3.2)

(3.3)

The observation noise v(n) is assumed to be independent of the input noise u(n),
i.e., E[u(n)v(n - t)] = 0 for all t, where E[.] denotes the expectation operator.

The order p of the AR model is assumed to be known.

The z-transform of Eqn. (3.2) can be obtained as

1
X(z) = A(z) U(z)

where, A(z) = 1 + alz-1 + a2z-2 + ... + apz-P, and X(z) and U(z) denote the

z-transforms of x(n) and u(n), respectively. The transfer function H(z) of the

AR system in Eqn. (3.3) is given by

1
H(z) = A(z)

The AR power spectrum [53] is defined by

(3.4)

(3.5)

'.-
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where, A(z) is evaluated on the unit circle in the z-plane. Since we are interested

in estimating the system characteristics, we can set a~= 1 as it acts only as a

scaling factor. Eqn. (3.5), therefore, reduces to

(3.6)

(3.7)m? 1

For the noise-less case, {ad can be obtained from the following Yule-Walker

equations [53]:
p

Rxx(m) = - L akRxx(m - k)
k=l

where, Rxx (m) is the auto-correlation function defined as

1 N-l-Iml
Rxx(m) = N L x(n)x(n + 1m!)

n==O

(3.8)

(3.9)m=O
m#O

R ( ) _ { Ryy(O) - a~
xx m - Ryy(m)

and N is the number of data points. Clearly, any p equations are sufficient to

determine the AR parameters. Generally, m = 1,2,"', P is chosen which results

in a set of symmetric Toeplitz equations. When noise is present, however, we

cannot estimate Rxx(m) since only y(n) is available. But exploiting the following

relation we can calculate RxA m) for all values of m except m = 0 as a~ is

unknown.

Although the high-order Yule-Walker equations where Rxx(O) is absent, can be

used to estimate the AR parameters [17]' this approach is not constrained to be

nonsingular [27]. The possible singularity of the auto-correlation matrix leads to

a substantial increase in the variance of the AR spectral estimate [17].

From Eqn. (3.6) it is clear that the problem of spectrum estimation by AR

method (i.e., finding PAR(W)) solely from a set of noisy observations y(n) depends

on finding the values of a~, the additive noise power, and {ai}, the AR parameters,

where i = 1,2,'" ,po

3.3 Review of The Previous Method
Considering the case of singularity of auto-correlation matrix and the accuracy
of estimates, compensation was done utilizing Eqn. (4.4) rather than using the
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high-order Yule-Walker equations.

[

Ryy(O) - a; Ryy(l) ... Ryy(p - 1)] aj Ryy(l) ]
Ry~(l) Ryy(O: - a; :.. Ryy(~ - 2) x a2 = Ry~(2) (3.10)

Ryy(p _ 1) Ryy(p - 2) Ryy(O) - a; ap Ryy(p)

In [20]' an iterative method was developed for solving Eqn. (4.4), termed as

the noise compensated low-order Yule-Walker equations. The limitations of the

method proposed in [20Jare briefly discussed below.

~.,

Unknown

D

v(n)

+

Observed
;, signal

D rProcessing unit

urn) 1

A(z)

yen) B(z)
zen)

Fig. 3.1: FIR filtering of AR(p) plus noise process.

Consider the AR plus noise process with a processing filter B(z) shown in

Fig. 3.1. In order to estimate u~and AR parameters from the observed signal

y(n), this signal is processed using an auxiliary filter B(z). The polynomial B(z)

is defined as

(3.11)

Note that the order of B(z) is set equal to the known order p of the AR system and

bo = 1 is assumed without loss of generality. Our objective here is to estimate the

noise power u~ and {ad (i = 1,2, ... ,p) by equating B(z) with A(z). Therefore,

B(z) can be regarded as the inverse filter of H(z) in Eqn. (3.4), i.e.,

H(z)B(z) = 1 (3.12) .

when B(z) = A(z) holds. The filtered output z(n) (see Fig. 3.1) of the observed

signal y(n) is given by
p

z(n) = y(n) + L: bky(n - k)
k;j

(3.13)
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Substituting Eqn. (3.1) in Eqn. (4.6) gives
p p

z(n) = x(n) +L bkx(n - k) + v(n) +L bkv(n - k) (3.14)
k=1 k=1

The noise power is estimated in the following way.
The one-step time delayed autocorrelation of z(n) is given by

E [z(n)z(n -1)] = E [u'(n)u'(n - 1)]+ (b1 + b1b2 + ... + b(P_l)bp) a~ (3.15)

where p

u'(n) = x(n) + L bkx(n - k)
k=1

Using Eqn. (3.15), the noise power a; can be expressed as
(3.16)

(3.18)

a2 = E[z(n)z(n - 1)] - E[u'(n)u'(n - I)J (3.17)
v b1 + b1b2 + ... + b(p_1)bp

As u'(n) cannot be measured, it is impossible to use Eqn. (4.29) directly. Ne-

glecting the term E[u'(n)u'(n - 1)] in Eqn. (4.29) gives

-2(k) = E [z(n)z(n - 1)] k = 1,2,'"
av b1 + b1b2 + ... + b(p_1)bp'

where k is the iteration number and a;(k) is the pseudo noise power obtained from

each iteration. The iterative total search technique described in [20] is outlined

below.
Since the noise power a; is unknown, substituting an auxiliary variable a(k)

for a; in Eqn. (4.4) we obtain

[

Ryy(O) - a(k)
Ryy(1)

Ryy(p - 1)

bl
b2

X =

Ryy(l)
Ryy(O) - a(k)

Ryy(p - 2)

Ryy(l)
Ryy(2)

, a(k) ~ 0

Ryy(p - 1)
Ryy(p - 2)

Ryy(O) - a(k)

(3.19)

bp Ryy(p)

Eqn. (4.39) is calculated repeatedly for different arbitrary values of a(k) and

every time a;(k) is determined from Eqn. (4.8). As a(k) approaches to a;, {bi}
and u'(n) approach to {a;} and u(n), respectively. At the point of equality, the

relationship E[u'(n)u'(n -1)] = 0 holds. Under this condition both Eqns. (4.29)
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and (4.8) give the same value of the noise power. Therefore, use of Eqn. (4.8)

instead of Eqn. (4.29) does not affect the desired result. A cost function is then

defined as
elk) = liT;(k) - a(k)j (3.20)

which gives a measure of the error between the auxiliary variable ark) for noise

power and the pseudo noise power iT;(k). An estimated value of the noise power

8; can be obtained from the point where e(k) becomes zero. Here iteration starts

from ark) = amin = 0 and finishes at ark) = amax. The maximum limit of ark),
i.e., amax can be calculated by forming a (p + 1) x (p + 1) Toeplitz matrix from

the vector [Ryy (0), Ryy (1), ... ,Ryy (p) J and taking the (p + 1)-th element from
the vector found from the singular value decomposition of the Toeplitz matrix.

Determination of amax in this way ensures that amax > 0"; [59J. In each iteration

ark) is incremented by s, where s = (amax - amin) /h. The value of h depends

on the accuracy desired. Depending on the value of s, ark) can be made to pass

through 0";. Obviously, the precision of the iterative algorithm depends on the

value of s. The smaller the value of s, the better the resolution one can achieve.
Now we are going to address two problems in the above mentioned iterative

technique.

1. As 0"; as well as {ai} are unknown and they are in product form, Eqn.

(4.4) possesses inherent nonlinearity. Here ark) is increased linearly with

a step size defined by sand iT;(k) is calculated in each step and compared

with ark). A solution is reached where the distance as expressed by Eqn.

(4.9) is ideally zero. The question arises as the iteration proceeds from

a(O) = amin = 0 to ark) = amax whether there exist more than one itera-
tions where the distances are zero. If multiple solutions exist, how can we

extract or differentiate the actual solution? Due to the presence of inherent

nonlinearity, solutions found throughout the range 0 - amax may not be

unique. We show in our simulation part that particularly at low SN R the

nonlinearity becomes very strong and there exist multiple solutions. There-

fore, there might exist more than one solution, unlike the unique solution

case described in [20J.

2. A large number of iterations is required due to the constant small step size
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maintained throughout the total range of search to obtain the desired accu-

racy. This is computationally expensive and hence a method for reducing

the number of iterations without affecting the accuracy is desired.

3.4 The Proposed Method

A new 2-step approach is formulated to overcome the problems mentioned in

the preceding section. First, we estimate the true-order AR model parameters

and the additive noise power using the iterative method described by Yahagi

and Hasan [20] incorporating fuzzy modeling of the cost function for step size

variation to reduce the number of iterations. By the term 'true-order AR model'
we refer to the AR model with transfer function H(z) = 1IA(z) from input u(n)
to output x(n) (see Fig. 3.1). It is assumed that multiple solutions are obtained

particularly at low SN RB. Next, we estimate the parameters of the over-fitted

AR model to the observed noisy process. By the term 'over-fitted AR model'

we refer to the AR model with transfer function HO(z) = 1/G(z) from input

w(n) to output y(n) (refer to Eqn. (3.25)). The parameters of this model are

estimated using the lattice filter which possesses high-resolution property. It is
known that stability cannot be guaranteed while using the noise compensated

lattice filter algorithm [17]' [20]. As such, we utilize the uncompensated lattice
filter algorithm with the cost paid by adding noise roots to the transfer function

of the original AR model. The desired AR parameters are extracted from the

over-fitted AR model parameters by using all the solutions obtained from the

previous approach. As a by product, we also determine which set, i.e., 0; and
B(z) is closest to the unknown actual values, i.e., 0"; and A(z), respectively, from

multiple sets of solution.

3.4.1 Extracting the desired AR parameters

Any AR system corrupted by noise can be modeled by another high-order AR

system. As the AR model order increases, y(n) can be more and more accurately

characterized by an AR process [60J. It can be shown as follows.

The z-transform of Eqn. (3.1) is given by

Y(z) = X(z) + V(z) (3.21)



From Eqns. (3.3) and (3.21), we can write

1
Y(z) = A(z) U(z) + V(z)

40

(3.22)

. Pagano [26] and Kay [60] have shown that an AR process corrupted by additive

white Gaussian noise can be exactly represented by an ARM A process. As de-

scribed in [26] and [60]' the power spectral density (PSD) of the observed process

y(n) is

(3.23)

If we write (J~F(z)F(z-l) = (J~+ (J~A(z)A(z-I), then y(n) may be modeled as

p p

Laiy(n - i) = Lhw(n - j), ao= bo= 1
i=O j=O

(3.24)

where F(z) = 1+Lj=l !jZ-j and w(n) is a white noise sequence with distribution

N(O, (J~). The z-transform of Eqn. (3.24) can be obtained as

Y(z) = F(z) W( )
A(z) z

1 .
- A(z)j F(z) W(z)

1
"" A(z)D(z) W(z)

1 (3.25)"" C(z) W(z)

Here, W(z) is the z-transform of the new white noise sequence w(n), D(z) 2!

F(Z)-l (as only finite number of terms are considered) and C(z) = A(z)D(z).

We may write C(z) as

(3.26)

Since C(z) is the product of A(z) and D(z), it is clear that q, the order of C(z)

must be greater than p, the order of A(z). From Eqns. (3.25) and (3.26), we

may assert that C(z), consisting of the parameters {e;}, where i = 1,2, ... , q can

be obtained directly from the noisy data y( n). Moreover, when q is reasonably

greater than p, C(z) includes p roots of A(z) and (q - p) roots of D(z) where
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Fig. 3.2: Roots of A(z) and C(z); 'o':roots of A(z) , p = 4; 'x':roots of C(z),
q = 9.

(3.27)(dB)

the roots of D(z) are solely due to the additive noise v(n). The parameters of

C(z) will be estimated by using the lattice filter algorithm [15]. To illustrate this

point, let us consider an AR system, x(n) - 2.595x(n - 1) + 3.339x(n - 2) -

2.2x(n - 3) + 0.731x(n - 4) = u(n). To obtain y(n) = x(n) + v(n), we assume

that x(n) is corrupted by additive white noise v(n) at an SN R of 20 dB. Here,

S N R is defined by

p = 4, and A(z) = 1 - 2.595z-1 + 3.339z-2 - 2.2z-3 + 0.731z-4• Now, using

the lattice filter algorithm for high-order AR model with q = 9, we can find

C(z) = 1.0000 - 1.3584z-1 + 0.6510z-2 + 0.4249z-3 - 0.1026z-4 - 0.1503z-5 +
0.0341z-6 + 0.2098z-7 - 0.0137z-B - 0.0586z-9 from y(n). In Fig. 3.2, we see

that p = 4 roots of A(z) match 4 roots of C(z), out of q = 9 roots of C(z). The

other roots are due to noise.
We now illustrate that using C(z) how the ambiguity raised due to the pres-

ence of strong nonlinearity particularly at low SN R can be eliminated. In the

case of multiple sets of solution found in step-1 described in the previous section, .

one solution must be fairly close to the actual noise power a; and AR param-

eters {ail, where i = 1,2,'" ,p. As C(z) includes the roots of A(z) as well as
some extra roots due to noise, we need to develop a method of elimination. To

extract the roots of A(z) from C(z), we use the solutions obtained by using the
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noise compensated LOYW equations. We denote these solutions as Bi(z), where

i = 1,2,"', M, and M denotes the number of solutions. From these multiple

solutions, if exist, one solution should be considered at a time for matching with

all of the roots of C(z). Obviously, only one solution which has roots closer to the

roots of A(z) will match more closely than those of the other solutions. In this

way, an estimate of A(z) can be obtained from C(z) using the multiple solutions

Bi(z). We propose the following algorithm for separating the desired roots from

C(z).

The Algorithm:

1. Find the coefficients of C(z) of the over-fitted AR model using the lattice

filter algorithm from the observed sequence y(n). Here, the order of lattice

filter q should be reasonably larger than the AR system order p. An estimate

of q can be obtained using any standard tecJ:mique [61].

2. Find the roots of C(z). Let R be the total number of real roots and A be

the total number of complex roots.

3. Determine Bi(z) using the LOYW equations, where i = 1,2,"', M and M
denotes the number of solutions. Let ri be the total number of real roots

and Ti be total number of complex roots of the ith solution.

4. Calculate the distances, djl = l.8j - 1>d, j = 1,2,"', ri, I = 1,2,"', R,

where

• .8j is the jth real root of Bi(z), j = 1,2," " rio

• 1>1 is the lth real root of C(z), 1= 1,2," ., R.

5. Find the minimum distances

Let the real roots of C(z) be Rj corresponding to the minimum distances

Dj, j = 1,2," ',ri'

6. Calculate the distances, him = I(~- 7Pml, k = 1,2," ., T;/2, m = 1,2,"', A/2,

where
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• (1 is the kth complex root of Bi(z), k = 1,2,"', T;/2. Here only the

complex roots with positive imaginary parts are considered .

• 'l/Jm is the mth complex root of C(z), where m = 1,2,"', )../2. Here

only the complex roots with positive imaginary parts are considered.

7. Find the minimum distances

HI. = min(h~m)' k = 1,2," ., T;/2.
m

Let the complex roots with positive imaginary parts of C(z) be )..~corre-

sponding to the minimum distances Hk, k = 1,2," ., T;/2.

8. Calculate the total distance for the ith solution, ei = Ej'=l Dj + 2E~i~~H1,
i = 1,2,"', M. Find the value of i = imin at which ei is minimum.

9. Form the polynomial A(z) by using the real roots R;min, j = 1,2,"', Tim'n'
complex roots )..~min, k = 1,2, ... , Timin /2 along with their respective com-
plex conjugate roots using the following equation:

rmin Ti •.••i ••. /2

A(z) = [II (l-Rj-;.Z-l)] x [ II (l_'\~_;.Z-l) x (l_conj(,\~_;n)z-l]
j=l k=l

where conj(-) denotes the conjugate operation. This algorithm ensures extraction

of the roots from C(z), that shows minimum distance with one complete set of

. roots of Bi(z), i = 1,2,"', M. The extracted roots correspond to the roots of

A(z). An estimated value of the noise variance (i.e., &~)can be obtained from

the iminth solution.

3.4.2 Determining the step size: Fuzzy approach

In the iterative technique explained in Sec.3.3, the step size s is constant through-

out the entire range of ark) from 0 to am•x. Depending on the value of s the

number of iterations may become large. If high accuracy of the estimated values,

i.e., &~and A(z) is desired, the step size s should me made smaller. On the other

hand using a larger step size may cause fast convergence with poor estimation or

even without any convergence at all. Therefore, the choice of the step size reflects

a trade-off between the accuracy of estimation and the speed of convergence.

The value of the cost function defined in Eqn. (4.9) should decrease when a

solution is approached and increase whenever a solution is crossed. With this in



44

1- •- . - . - . - . - . - . -.
I

Rule 1

Input
Cost function
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Defuzzifier Output
Step size

Fig. 3.3: Block diagram for a fuzzy inference system: System consists of 1 input,
1 output, and 4 rules.

mind, we can determine the step size as a function of the cost function instead

of keeping it to be constant throughout the iteration range. That is if the cost

function becomes smaller then the step size will be reasonably smaller to achieve

the solution (to pass a(k) through the point of solution) and if the cost function

becomes larger then the step size will be larger to skip the less concerned region of

iteration. We should be careful in selecting the maximum step size of an iteration

so that it does not miss any solution (i.e., a minimum). The minimum step size

depends on our desired accuracy of estimation. In this way, we can reduce the

number of iterations significantly without sacrificing the accuracy of estimation

since we keep the step size smaller in the region of iteration where we approach

a solution.

For determining the step size in accordance with the value of the cost function

a Fuzzy Inference System (FIS) is designed which maps nonlinearly the input,

cost function, ti'>the appropriate output, the step size. We consider the following

points in designing the FIS.

1. A single-input single-output Mamdani fuzzy inference system [62]' [63] with

4 rules is chosen.
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2. The input to the FrS is the cost function (error index) calculated using

Eqn. (4.9). We select the universe of discourse of the cost function to be
the value obtained from Eqn. (4.9) by executing the first iteration setting

a(k) = 0 in Eqn. (4.39).

3. We define four membership functions (MFs) for the input. They are 'very

small', 'small', 'significant' and 'large'. The type of membership function

and their ranges are depicted in Fig. 4.6. Normalized cost function can be

obtained by dividing the cost function by the universe of discourse calcu-

lated in step 2.

4. The output from the FrS is the effective step size s. We have calculated
the universe of discourse of step size to be (1/K) x amax. We have found

K = 10 as an well performed approximation. But in some cases where

the cost function falls rapidly we may have to increase the value of K to

avoid any chance of missing a solution. Where the cost function changes

slowly we can choose a smaller value of K which makes the total number

of iterations less.

5. We define four membership functions (MFs) for the output also. They
are 'very small', 'small', 'significant' and 'large'. The type of membership

function and their ranges are shown in Fig. 4.7. Step size is shown in

normalized scale. Normalized step size can be obtained by dividing the

step size by the universe of discourse calculated in step 4. Actually, we are

more concerned of the 'very small' membership function of the output since

the accuracy of the iterative technique depends on how the 'very small' MF
is defined. We choose the 'very small' MF as a zero-mean Gaussian type

membership function

(;1:-12

f(x; a, c) = e- 2. , e = 0 (3.28)

An increase in the value of a will increase the value of the step size in the

region where the cost function is 'very small'. It decreases the total number

of iterations but the cost must be paid in estimation accuracy.
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Fig. 3.5: Membership function of the output variable, the step size, to the FIS.
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6. The following rules may be implemented in the FIS:

• Rule 1: If (cost function is very small) then (step size is very small)

• Rule 2: If (cost function is small) then (step size is small)

• Rule 3: If (cost function is significant) then (step size is significant)

• Rule 4: If (cost function is large) then (step size is large)

In this fuzzy model no logical operator is used as there is only one input. The

implication method we choose is min (minimum), the aggregation method is max

(maximum), and we obtain the crisp output via centroid defuzzification strategy.

Fig. 3.6 shows the input-output mapping of the proposed FIS. The following

0.9

0.9

0.7

~ 0.6

"Co
~ 0.5

~
~ 0.4

~
Z 0.3

0.2

0.'

0.1 ~2 0.3 ~ ~5 ~6 0.7 M ~
Normalized cost function

Fig. 3.6: Input-output mapping of the FIS.

steps can be followed to implement the above mentioned FIS.

1. Set the maximum range of the cost function and the maximum step size

(universe of discourses) by executing, respectively, step 2 and step 4 of the

aforementioned criteria of the FIS. Set the desired accuracy of estimation

by adjusting the parameter (J of the Gaussian membership function 'very

small' of step size according to step 5.

2. Set the initial value of a(O) = 0 and the final value of a(k) = amax

3. Calculate the cost function using Eqn. (4.9).
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4. Supply 'cost function' calculated in step 3 to the input of the FIS.

5. Determine s, the 'step size', as the output of the FIS.

6. Calculate a(k) = a(k - 1)+ s, k = 1,2,'"

7. if a(k) ::::amax, repeat steps 3 to 6, otherwise terminate.

3.5 Simulation Results

In this section, we examine and illustrate the proposed method using several

numerical examples. Consider the following AR system.

Example 1:

x(n) = 2.595x(n - 1) - 3.339x(n - 2) + 2.2x(n - 3)

-0.731x(n - 4) + u(n) (3.29)

The observed sequence is y(n) = x(n) + v(n), where v(n) is the additive white
noise. We assume that the input noise power a~is normalized to unity without

loss of generality and the number of data samples N = 4000. For this example

the order of the AR system is p = 4. The estimated AR parameters obtained

by the previous method at various SN Rs defined by Eqn. (3.27) are presented

in Table 3.1. The results shown are the mean value of 20 simulation runs. The

.quantity in bracket represents standard deviation of respective samples obtained
from 20 simulation runs. As can be seen from Table 3.1, though at SN R=30dB
the solution is unique, we get two solutions at SN R=20dB and SN R=15dB
using the previous method. The term 'Solution l' in Table 1 refers to the values

of a(k) and B(z) corresponding to the first intersection point between a(k) and

il;(k) (e.g., see Fig. 7). Similarly, 'Solution 2' refers to the values of a(k) and

B(z) corresponding to the second intersection point between a(k) and il;(k) and

so on. The solution points obtained by the previous method at SN R=20dB are

graphically shown in Fig. 3.7 for a typical simulation run. From Fig. 3.7 we
see that there exist two intersection points. The value of the cost function at
the first intersection point is 3.4251 x 10-4 and at the second intersection point

is 3.9805 x 10-4• But only the second intersection corresponds to the actual

solution. Therefore, we see that even the value of the cost function is not the

least at the actual solution, that is global minimum cannot be guaranteed at the
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Table 3.1: Results on noise power and AR parameter estimation by the previous
method

SNR (dB) 15 20 30
Solution 1 b, .1.7564 -1.7371 .2.5777

(0.0547) (0.0344) (0.1177)
b, 1.3973 1.3556 3.2508

(0.1026) (0.0662) (0.2799)

b3 .0.3339 -0.2967 .2.1400
(0.0855) (0.0555) (0.274)

b, 0.0262 0.0146 0.6670
(0.0310) (0.0169) (0.1073)

a; 2.784 0.6202 0.0942
(0.1928) (0.063) (0.0161)

Solution 2 b, .2.5200 -2.5341 Not found
(0.2148) (0.0927)

b, 3.1660 3.1986 Not found
(0.4908) (0.2147)

b3 -2.0356 -2.0665 Not found
(0.4683) (0.2063)

b, 0.6694 0.6815 Not found
(0.1733) (0.0778)

a; 3.1084 0.9702 Not found
(0.1934) (0.0658)

Table 3.2: Results on noise power and AR parameter estimation by the proposed
method

SNR (dB) 15 20 30

a" .2.6388 .2.6304 .2.5946
(0.0152) (0.0144) (0.0253)

<i2 3.4054 3.4029 3.3381
(0.0363) (0.0356) (0.0538)

a:. .2.2409 .2.2487 .2.1983
(0.0356) (0.0386) (0.05)

a. 0.7324 0.7322 0.7301
(0.0146) (0.0183) (0.0189)

u~ 3.0445 1.0051 0.0992
(0.2278) (0.0867) (0.0082)

a~(true value) 3.0767 0.9985 0.1008

[Note: numerical value in the bracket denotes the standard deviation of the respective samples'
obtained from the 20 simulation runs]
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Fig. 3.7: Two cross over of ark) and i7;(k) imply two solutions at SN R = 20 dB,
obtained from a typical simulation run. Here ark) increases linearly.

real solution. Therefore, this cost function alone is blind to the actual solution

when multiple solutions persist.

The results of AR parameter estimation obtained by using the proposed joint

technique for the same example and simulation conditions are given in Table 3.2.

The outcome of the proposed technique is unique as shown. From Table 3.1 and

Table 3.2 it is also evident that the estimated AR parameters by the proposed

method are very close to the Solution 1 at 30 dB SN R, Solution 2 at 20 dB as

well as 15 dB SN R, obtained by the previous method. But in each case A(z)
obtained by using the proposed joint technique is more accurate than the solution

directly obtained from B(z) of the previous method.

The effect of fuzzy modeling the cost function on step size can be observed

vividly from Fig. 3.8. In the proposed method the step size follows the behavior

of the cost function as shown in Fig. 3.8. It is small when the cost function

is small and it is large when the cost function is large as desired. This results

nonlinear behavior in the auxiliary variable ark) as depicted in Fig. 3.9, unlike

its linear behavior shown in Fig. 3.7. Thus it ensures iteration requirement be

less and also gives better accuracy of estimation as the step size becomes small

or very small where the cost function is smaller in value.
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Fig. 3.8: Variation of the cost function and the step size with iteration using the
proposed method at SNR = 20 dB, for a typical simulation run

SNR=20 dB

•.2

0.8

._d.(k)
..... iY;(k)

Solution 1

0.2 o 5 15 20
No. 01 iteratIon

25 30 35

Fig. 3.9: Two cross over of a(k) and o-;(k) imply two solutions at SN R = 20 dB,
obtained from a typical simulation run. Here a(k) increases nonlinearly.
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Table 3.3: Comparison of the accuracy of estimation and the number of iterations

SNR (dB) 15 20 30

e~reviotts 0.0664 0.0437 0.0158
,2 0.0080 0.0077 4.6700e-006evrovosed

Minimum
step size 0.0081 0.0077 0.0039

No. of iterations: 391 133 38
previous method (23.4819) (7.6784) (2.7198)
No. of iterations: 32 38 22
proposed method (9.6206) (3.1473) (0.9403)

Time (sec.) required in 34.6060 9.2580 3.929
iterations: previous method (7.4266) (0.5257) (0.2826)
Time (sec.) required in 2.4500 3.7340 1.4695

iterations: proposed method (0.7722) (0.3187) (0.0690)

Note: numerical value in the bracket denotes the standard deviation of the respective samples
obtained from the 20 simulation runs

A comparison of the previous and the proposed joint methods on accuracy of

parameter estimation and computational complexity is presented in Table 3.3. We

find that at all S N Rs the error e~roposed is less than the error e~revious' The index

e~revious denotes the sum of the squared error among the true and the estimated

AR parameters obtained by the previous method. And e~roposed is the sum of the

squared error among the true and the estimated AR parameters obtained by the

proposed method. When multiple solutions are obtined we cannot identify the

true solution using the previous method. However, for fair comparison e~revious

is calculated considering the solution closest to the actual one. In the proposed

method the AR parameters are calculated from the matched roots of C(z). It is

also evident from Table 3.3 that in our method, the required number of iterations

as well as the time required for these iterations is less than that of the previous

constant step size total search technique. Here the mean value of no. of iterations

obtained from 20 simulation runs is rounded to the next integer value. For the

system described by Eqn. (3.29) we notice that the variation of the cost function.

is rather flat, particularly at high SNR, e.g., 30 dB, and consequently the step

size variation becomes less. Hence, as the step size remains more or less constant

the reduction of the number of iterations is less at higher SN R for this system

using the proposed method. But we see that at SN R=20 dB and SN R=15 dB
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the number of iterations has reduced significantly by our method.

In Table 3.4 and Table 3.5, we present summarized results for other exam-

ples keeping the simulation conditions same. We see that for each example the

proposed method performs better both in terms of accuracy and computational

requirement than the previous one.

Finally, the power spectrum plot is shown III Fig. 3. IO for the system in

Example 1. We see that the estimated spectrum by our method is much closer

to the actual spectrum than that of the previous method. The variance of the

estimation is also found satisfactory which can be observed from Fig. 3.11. For

other examples also we have obtained similar results.

3.6 Conclusion

A hybrid method for autoregressive (AR) spectral estimation from noisy obser-

vations has been proposed. The major focus of the paper has been to develop

a highly accurate estimation algorithm for AR parameters from the noise cor-

rupted signal to eliminate the smoothing effect of noise on AR spectrum. To

achieve this goal, unlike conventional approaches, noise uncompensated lattice

filter (LF) algorithm, to avoid any chance of instability, is employed to estimate

the parameters of a high-order AR model fitted to the observed process. It is

shown that this model preserves the true AR system roots precisely with some

extra roots due to noise. A root matching technique has been adopted to extract

the true system roots from the mixture of noise plus system roots. This technique

has utilized the solution(s), single or multiple, from the low-order Yule-Walker

(LOYW) equations as auxiliary solution. It has been shown that the iterative

method based on the noise compensated LOYW equations [20] is blind to the de-

sired solution of AR parameters and noise power particularly at low SN R due to

strong inherent nonlinearity. The proposed scheme has also resolved this problem

of multiple solutions case of the LOYW equations.

We have also proposed a nonlinear iterative technique for finding the auxiliary'

solution using the LOYW equations. Nonlinear iteration is performed by fuzzy

modeling the cost function. The incremental step size in each successive iteration

is obtained adaptively with the cost function as the output of a fuzzy inference

system. This has reduced the number of iterations significantly as compared to
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Table 3.4: Results on noise power and AR parameter estimation by the previous
and proposed methods for AR(2) and AR(6) systems

AR system Previous method Proposed metho
5 I

Example 2 Solution 1 " -0.7356 -1. 7983 _1.7981 a, (-~.769i, .1.798~\ ;/.7985
(0.0091) (0,0104) (0.0045) 0.0042 (0.0056 0.0036)

" 0.0009 0.9616 (g.968~)
a, (~.936~) (~.966~\ (~.966~,

(0.0017' (omOJ' 0.0043 0,0042 0.0054 0.0040

(11=-1.8
,

7.2060 3.2936 0.1006 "~ ~1.7009 (~:~i~~\(~:~~i:)"" (2.0124) (0.5045) (0.0113) 4.1391 )

Solution 2 " -1.7587 Not found Not found O"~(true vlLluc) 31.8209 3.2006 0.0978

10,0546)

(12 = 0.97 " 0.9324 Not found Not found
(0,0491 )

"~ ~~1.39?.;'\ Not found Not found
3.5834

Example 3 Solution 1 " _0.2920 -0.8587 _0.8435 a, (_g.84~~) (-(O.849~) it",6:)
(0,0293) (0.0389) (O.O26~) 0,1088 0.0357 0,0274

" 0.4149 1.6512 1.6473 a, 1.6615 (:.66'~, (:.6111
(0.0395) (0,0593) (0.0385) (0.2539) 0.0322 0.02691

" 0.3269 (~0.760;) (-g.724
4
8\ a, ('g.148:, i,O.",;, it"':1(0.024';' 0,0787 0.0544 0.3097 0.0432 0.0316

a1 = -0.8484 '. 0.1967 1.4191 1.3821 a. L3778 'f1.391,~\ 1.4148

(0.0138) (0,0693) (0.0479) (0.2601) 0.0509 fO.0331)

" (~.036:, -0.5694 .0.5400 a, (.(0.56~~, it"':, ,0.5639

0,0200 (0.0393-' (0,036'6\ 0.1242 0.0342 iom,.'
a2 = 1.6590 " _0.0287 0.6256 0.6089 a, (~.632~, 0.6044 (~.6'6~)

(0.0243) (0,0290) (0.0204\ 0.0710 (0.0274\ 0.0179

"~ ,:.083~\
0.4487 {~.013~, "~ (ci:~~;~,f?449~\ (~.""~)

0.6082 (0.043i) 0,0052 0.0320 0.0050

a:l = -0.7312 Solution 2 " .0.329:, Not (ound Not found O'~(true value) 4.4959 0.4506 0.0142
(0.0339

" {~.50~~,
Not (ound Not found

0,0398

a4 = 1.4044 " 0.3255 Not (ound Not (ound
(0.0368)

'. {~.225;, Not (ound Not found
0,0233

as = -0.5556 " 0.0558 Not (ound Not (ound
(0,0269)

" ,?,O16;1 Not (ound Not found
0,0237

a6 = 0.6236
,

2.2367 Not found Not (ound
"" (0.4900)

Solution 3 " (-g.-::;~) Not found Not found

" 1.6525 Not found Not found
(0.3553)

" (-g.-I;:;, Not (ound Not (ound

'. 1.3985 Not found Not found
(0.4456)

'5 ;rO.56;.?, Not (ound Not found
0.2445

" 0.6059 Not (ound Not (ound
(0.20i7)

"; (:.461;~,
Not (ound Not found

0.2654

Note: numerical value in the bracket denotes the standard deviation of the respective samples
obtained from the 20 simulation runs

(



55

Table 3.5: Comparison of the accuracy of estimation and the number of iterations
for AR(2) and AR(6) systems

AR System SNR (dB) 5 15 30
Example 2 e~revious 0.0031 7.3450e-005 7.2200e-006

ol 0.0021 1.5650e-005 4.2100e-006e:;'Tonosed
al = -1.8 Minimum

step size 0.0571 0.0190 0.0015
No. of iterations: 559 185 198

a2 = 0.97 Previous method (62.774) (24.8995) (7.2909)
No. of iterations: 28 40 43
Proposed method (2.3725) (1.5174) (1.6255)

Time (sec.) required in 44.07730 12.7010 13.54
iterations: previous method (4.8969) (1.7113) (0.4998)
Time (sec.) required in 1.8920 2.7670 3.0935

iterations: proposed method (0.1695) (0.1019) (0.1614)
Example 3 ;;T. 0.0011 0.0011 0.0012enrevtous;;TO 9.6427e-004 9.3550e-004 7.1966e-004e;'ro"'osed
al = -0.8484 Minimum
a2 = 1.6590 step size 0.0389 0.0023 0.0017
a3 = -0.7372 No. of iterations: 119 232 60
a4 = 1.4044 Previous method (5.7866) (16.3272) (2.5189)
a5 = -0.5556 No. of iterations: 83 144 43
a6 = 0.6236 Proposed method (12.2022) (2.2804) (6.8748)

Time (sec.) required in 8.2345 16.16 4.1833
iterations: previous method (0.4058) (1.5502) (0.1785)
Time (sec.) required in 5.8610 10.232 3.0280

iterations: proposed method (0.8976) (0.1599) (0.4990)

Note: numerical value in the bracket denotes the standard deviation of the respective samples
obtained from the 20 simulation runs
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Fig. 3.10: Comparison of the spectral estimation results obtained from the pre-
vious and the proposed methods.
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Fig. 3.11: Estimated power spectrum by the proposed method for twenty simu-
lation runs.
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the previous one where a constant step size has been maintained throughout the

total range of iteration. Clearly, the proposed method is not one-pass and utilizes

a joint approach for spectral estimation. Nevertheless, if one is ready to pay the

price, the gain in terms of performance, especially in difficult situations such as

low signal-to-noise ratio or closely "spaced" signals may be significant.



Chapter 4

Multichannel Autoregressive
Spectral Estimation from Noisy
Observations

4.1 Introduction

The spectral estimation of a system using a parametric method involves fitting

anyone of the following; 1) autoregressive (AR) model and 2) autoregressive

moving average (ARMA) model. The unknown parameters of the assumed model

must be identified using a finite set of data obtained from the physical system.

When noise-free input-output data are available, many of the algorithms proposed

so far can be used to estimate the system parameters and consequently the power

spectrum. However in most practical cases the output signals cannot be measured

accurately due to the presence of noise. Therefore, the problem of estimation of

multichannel AR spectrum using noise-corrupted output is one of the central

issues of modern signal processing, providing a powerful means of extracting

useful information from a given data set.

Several methods have been proposed for the spectral estimation of single-input

single-output AR system using noise-corrupted output signals. If the additive

noise is white, then the bias effect of the noise may be reduced using noise power

cancellation schemes [17]' [64].

Multichannel generalization, which is particularly useful in the sonar and gee-

seismic fields, of the Burg method and its variants has been examined by Marple

and Nuttall [65] for the noise-free case and by Gupta and Fairman [66] for the

case with noise. The latter approach, however, requires input data as well as the
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noise-contaminated output data. Recently, a method based on the maximum like-

lihood estimation was proposed for the identification of multichannel AR models

[67J. However, in this method it is assumed that the observations are noise-free.

In other methods based on the scalar representation of the multichannel processes

[68]' it is also considered that the observations are noise-free, an assumption that

is seldom valid in practice.
In this paper, we propose two methods for the spectral estimation of mul-

tichannel AR processes contaminated by additive white observation noise. The

noise-compensated multichannel Yule-Walker method is used to estimate the pa-

rameters. Accurate noise compensation is shown to be feasible by means of new

methods for estimating the multichannel observation noise variances. The meth-

ods, based on Newton-Raphson technique and Fuzzy iterative searh, are proposed

for estimating the observation noise variances. The multichannel spectral esti-

mation scheme that we introduce here is based on the method to estimate the

parameters proposed by Yahagi and Hasan [20] for single-channel AR processes.

4.2 Problem Formulation

Consider the M -channel pth-order AR process

p

x(n) = - LA (t)x(n - I) + u(n)
1=1

(I) (I) . (I)
all al2 aIM
(I) (I) (I)

A(t) = a21 a22 a2M

(t) (I) (I)
aMI aM2 aMM

Xl (n) Ul (n)

]x(n) =
X2(n)

u(n) =
U2(n)

'-
XM(n) UM(n)

(4.1)

where A(I) (I = 1,2,'" ,p) are the MxM autoregressive parameter matrices, x(n)

represents the M x 1 output vector and u(n) is the M x 1 vector representing the

input signal. It is assumed to be zero-mean stationary multichannel white noise.

The signal components xi(n) and ui(n) (i = 1,2,"', M) denote, respectively, the

output and input of the ith channel. The order p of the autoregression is assumed
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to be known and the AR parameter matrices A (I) are constrained such that the

roots of
det Ap(z) = 0

lie inside the unit circle [69]' where

(4.2)

(4.3)

I is the M x M identity matrix, and Z-I is the backward shift operator, i.e.,

z-Ix(n) = x(n - 1). The matrix transfer function from input to output of an

M-channel pth-order AR process can be represented as

(4.4)

Now the multichannel AR power spectrum [65]of x(n) is given by

(4.5)

evaluated on unit circle i.e., z = ej2~f. Clearly, P AR(J) is Hermitian, i.e., P1R(J) =

(P~R(J))'.
In many practical situations, observation noise corrupts the data samples. We

assume that y(n) is the noise-corrupted output of an M-channel AR process

v(n) =y(n) =

y(n) = x(n) + v(n)

YI (n)
Y2(n) VI (n.) ]v2(n)

. ,

vM(n)

(4.6)

where the M x 1 vector v(n) denotes additive zero-mean stationary white obser-

vation noise of unknown covariance matrix I:v = diag (a;j ,a;" ... , a;M)' The
signal components Yi(n) and vi(n) (i = 1,2,"', M) denote, respectively, the

noise-corrupted output and the observation noise on the ith channel. It is as-

sumed that the observation noise v(n) is uncorrelated with the input u(n), i.e.,

E[v(n)uT(t)] = 0 for all nand t, where E[.] is the expectation operator and T

denotes the transpose operation.

Let

y = [y(O), y(l), ... , y(N '- 1W (4.7)
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denote the vector containing N observed samples from the M-channel stationary

AR process. In row block vector form the unknown AR coefficient matrices are

defined as
(4.8)

Therefore, from Eq. (4.5) it is clear that the problem of spectrum estimation

by AR method solely from a set of noisy observations Y depends on finding the

values of A (I), the AR parameters, where 1 = 1,2, ... ,p.

4.3 Parameter Estimation Method

If Yin) = 0, then the Yule-Walker equations for an M-channel AR process [1,

Chap. 15] are

Rxx(O)
Rxx(-l)

Rxx(p -1)
Rxx(p - 2)

(4.9)

Rxx(-p+1) Rxx(O)
r = [Rxx(l), Rxx(2),"', Rxx(p)]'

where R is the p x p block Toeplitz matrix (i.e., a matrix with equal submatrices,

or blocks, on any block diagonal) with block entries Rxx(m) each of which has

dimension Mx M, r is the 1xp block row vector and Rxx(m) = E[x(n)xT(n-m)J

(m = 0, 1,"', p) with Rxx( -m) = Rrx(m). A recursive technique can be used

to solve Eq. (4.9) which greatly reduces the amount of computation required [70]'

[71].
When noise is present, we cannot estimate Rxx(m) since only Yin) is known.

However, using the relation

R (~) = { Rxx(O) +Rvv(O),
yy Rxx(m),

m=O
mfO

(4.10)

the block matrix R in Eq. (4.9) can be calculated by replacing Rxx(O) =

Ryy(O)-~v and Rxx(m) = Ryy(m) for m f O.where Ryy(m) = E[y(n)yT(n-

m)J (m = 0,1,"', p) and ~v = Rvv(O) is the M x M diagonal matrix if the

noise is uncorrelated from channel to channel, i.e., E[v;(n)vj(t)] = 0 for if j and

for all nand t. The diagonal element a; (i = 1,2,' ", M) denote the variance of. ,

•
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the observation noise on the ith channel. We are now faced with another prob-

lem since the noise variance on each channel must be known a priori in order

to calculate R from Eq. (4.9). In most practical cases, noise variances are not

known in advance. Therefore, in order to estimate the AR parameter matrices

a method for estimating the noise variances is required. This can be done using

the following algorithm. Consider an M-channel AR process corrupted by noise

V(Il)

urn)
H(z)

X(Il) + I''': Y(Il) Bpk(Z)
'If.,1l)

Fig. 4.1: Inverse filtering of AR(p) plus noise system.

with a filter Bpk(z) as shown in Fig. 4.1. The matrix polynomial Bpk(z) is defined

as

(4.11)

where k is the iteration index. Note that the order of Bpk(z) is set equal to the

known order p of the M-channel AR process and B(Ok) = I is assumed without

loss of generality. Our objective here is to estimate the noise covariance matrix

.Ev and 1!by matching Bpk (z) with Ap (z). Therefore, Bpk (z) can be regarded as

the inverse filter of H(z) in Eq. (4.4), i.e.,

H(z)Bpk(z) = I

The filtered output z(n) (see Fig. 4.1) is given by
p

z(k)(n) = y(n) + 2:B(lk)y(n -I).
1;1

Substituting Eq. (4.6) into Eq. (4.13) gives

(4.12)

(4.13)

p p

z(k)(n) = x(n) + ~ B(lk)x(n - I) + v(n) + ~ B(lk)v(n - 1).(4.14)
1;1 1;1

Then using the time-delayed autocorrelation lags of z(n), we get

E [Z(k) (n)z(k)T(n -1)] = E [U(k) (n)u(k)T(n -1)] +
(B(lk)Ev + B(2k)EvB(lk)T + ... + B(Pk)EvB((P-I)k)T) (4.15)
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u(k)(n) = x(n) + l::B(lk)x(n -l)
1=1
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(4.16)

Substituting E [U(k) (n)u(k)T(n -1)] = R~}(1) and E [z(k)(n)z(k}T(n -1)] =
R~)(I) into Eq. (4.15), we get

B(lk)I:y + B(2k)I:yB(lk}T ... + B(pk)I:yB«p-1)k)T = R~)(I) - R~)(1)

(4.17)

If the additive noise on each channel is unequal, in general, we can find the noise

covariances (diagonal elements of matrix I:y) as follows. We define

b(lk) b(lk) b(lk)
11 12 1M

B(lk) =
b(lk) b(lk) b(lk)
21 22 2M (4.18)

b(lk) b(lk) b(lk)
M1 M2 MM

then lth (l = 1,2,'" ,p) term of left side of Eq. (4.17)

T(lk) - B(lk} I:y B«I-I)k)T

b(lk} b(lk} b(lk) 2 0 011 12 1M O"V1

b(lk) b(lk) b(lk) 0 2 021 22 2M O"V2

X

b(lk) b(lk) b(lk) 0 0 2
Ml M2 MM

O"UM

b«I-I}k} b«I-I)k) b«I-I}k)
11 12 1M

b«I-I)k) bW-l)k) b«I-I)k)
21 22 2M

X

b«l-l)k) b«l-l)k) b«I-I)k)
21 22 2M

T(lk) T(lk) T(lk)
11 12 1M

T(lk) T(lk} y,(lk)
21 22 2M

-

T(lk} T(lk) T(lk)
Ml M2 MM

where

T(lk)
11 -

T(lk)
12 -

T(lk) -1M

y,(lk)
21 -



",(lk)
'22

r.(Lk)
2M

T(lk)
Ml

T(lk)
M2

T(lk)
MM

2 b(lk)b«l-I)k) + 2 b(lk)bW-I)k) + ... + 2 b(lk)b«(l-I))k
- 0Vl 21 21 0V2 22 22 GUM 2M 2M

2 b(lk)b«l-I)k) + 2 b(lk)b«(l-l)k) + ... + 2 b(lk)b«l-l)k)- aU1 21 Ml 0V2 22 M2 (TVM 2M MM

2 b(lk)b«l-I)k) + 2 b(lk)b«l-I)k) + ... + 2 b(lk) b(l-I)k)
O"UI Ml 11 aV2 M2 12 °VM MM 1M

2 b(lk)b((l-l)k) + 2 b(lk)b«l-I)k) + .. ,+ 2 b(lk) b(l-l)k)aVI Ml 21 0V2 M2 22 0VM MM 2M

0';, b<;ilb'ii~l)k) + 0';2b<;i~b'ii~I)k) + ... + 0';Mb<;i1b'iiM')k)
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Adding the matrices of the left side of Eq. (4.17) and equating the diagonal

elements of the resultant matrix to the corresponding diagonal elements of the

right side difference matrix, we get

2 b(lk) + T(2k) + ... + T(pk)
O"U1 11 11 11

2 b(lk) + r.(2k) + ... + r.(pk)
(JV2 22 22 22

= zi~)(1) - ui~)(1)

Z22(1) - UJ~)(I)

(4.19)

(4.20)

2 b(lk) + T(2k) + + T(pk) -_
O'VM MM MM ... MM (4.21)

(4.22)

(4.23)

Putting the values of T8k)(l = 1,2,'" ,p and i = j = 1,2,"', M) in above Eqs.

and rearranging, we get

2 (b(lk) + b(2k)b(lk) + + b(Pk)b((P-')k») + 2 (b(2k)b(lk) + + b(Pk)b«p-I)k»)
0VI 11 11 11 ... 11 11 aV2 1212 ... 1212

+ + 2 (b(2k)b(lk) + + b(pk)b«P-I)k») - z(k)(I) U(k)(I)
• • • 0UM 1M 1M . . . 1M 1M - 11 - 11

2 (b(2k)b(lk) + + b(Pk)b((P-I)k») + 2 (b(lk) + b(2k)b(lk) + + b(Pk)b«P-I)k»)
O'v, 2121 .•• 2121 O'v222 1212 ..• 1212

+. + 2 (b(2k)b(lk) + .+ b(Pk)b«P-I)k») - Z(k)(I) U(k)(I)• • O'VM 1M 1M . • 1M 1M - 22 - 22

0'2 (b(2k) b(lk) + + b(Pk)b«P-I)k») + 0'2 (b(2k)b(lk) + + b(Pk)b(P-I)k»)
VI Ml Ml . . . Ml Ml V2 M2 M2 . . . M2 M2

+ + 0'2 (b(lk) + b(2k) b(lk) + + b(pk) b((P-I)k») - Z(k) (1) U(k) (1)
••• VM MM MM MM ••• MM MM - MM - MM

(4.24)

Above simultaneous linear equations can be expressed in matrix form as

C~d =D

where noise co-variance vector (diagonal of ~v) :Ed is

(4.25)
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zl~)(1) - Ug)(l) Gil GI2 C,. ]
zg)(1) - uJ;) (1) G21 G22 G2M

D= c=
Z~~(l) - U~~(1) GMI GM2 GMM

Gil
(b(lk) + b(2k)b(lk) +. + b(pk)b«P-I)k»)
11 11 11 .. 11 11

GI2
(b(2k)b(lk) + + b(pk)b«P-I)k»)12 12 . . . 12 12

GIM - (b(2k)b(lk) + .+ b(Pk)b«P-I)k»)
1M 1M .. 1M 1M

G21 = (b(2k) b(lk) + .+ b(pk) b«P-I)k»)
21 21 • . 21 21

G22
(b(lk) + b(2k)b(lk) + + b(Pk)b«P-I)k»)22 2222 .,. 2222

G2M
(b(2k) b(lk) + + b(pk) b«P-I)k»)2M 2M . . . 2M 2M

GMI
(b(2k)b(1k) +. + b(pk)b«P-I)k»)
Ml MI .. Ml MI

GM2
(b(2k)b(1k) + + b(Pk)b«P-I)k»)M2 M2 . • . M2 M2

GMM - (b(lk) + b(2k) b(lk) + ..+ b(pk) b«P-l)k»)
MM MM MM' MM MM

b(lk) 0 011

0 b(lk) 022C -

0 0 b(lk)
MM

b(2k) b(lk) b(2k) b(lk) b(2k) b(lk)
11 11 12 12 1M 1M

b(2k) b(lk) b(2k) b(1k) b(2k) b(lk)

+ 21 21 22 22 2M 2M + ...

+

b(2k) b(1k) b(2k) b(1k) b(2k) b(lk)
MI Ml M2 M2 MM MM

b(pk)b«p-l)k) b(pk)b«p-l)k) b(pk)b«p-I)k)
11 11 12 12 1M 1M

b
(pk)b«p-I)k) b(pk)b«P-l)k) b(pk)b«p-I)k)
21 21 22 22 2M 2M

b(pk)b«P-I)k) b(pk)b«p-I)k)
Ml MI M2 M2 b

(pk) b«p-I)k)
MM MM

Using Eq. (4.18) C can be expressed as

C = B(1k). * I + B(2k). * B(lk) + ... + B(pk). * B«p-I)k)) (4.26)

where ". * " denotes element to element multiplication of matrices. Therefore,

the noise covariance vector is given by
I ,
\. -,

(4.27)
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. Since u(k)(n) cannot be measured, it is impossible to use Eq. (4.27) directly.

Consequently, we define

(4.28)

where
(4.29)

Note that R~)(l) = 0 holds when Bpk(z) = Ap(z) is satisfied. This is the only
case for which Eqs. (4.27) and (4.28) become identical, they differ in all other

instances. We exploit this point in estimating the noise covariance vector and

hence the AR coefficient vector.
Since our aim is to match Bpdz) with Ap(z), the coefficient matrices of Bpk(z)

can be calculated in the same way as those of Ap(z). We rewrite Eq. (4.9) as

12 (R' - Qk.) = -r' (4.30)

R'

Ryy(O)
Ryy(-I)

Ryy(p - 1)
Ryy(p - 2)

Ryy( -p + 1) Ryy(O)

r' = [Ryy(I), Ryy(2), ... ,Ryy(p)]

_b _ [B(lk) B(2k) ... B«p-l)k) B(Pk)]
1 " 1 ,

where R' and r' are the p x p block matrix and the 1 x p block row vec-

tor, respectively, calculated from the observed data sequence y(n), 12 is the

1 x p block row vector to be determined and Qk. is the p x p block diago-

nal matrix with identical block entries a(k). The M x M diagonal matrix

ark) = diag (O<l(k), 0<2(k), ... , O<M(k)). Eq. (4.30) is solved iteratively for differ-
ent arbitrary matrices a(k). Using these values of B(lk), B(2k), ... , B(pk) and the

. corresponding filtered output vectorz(k)(n), we can determine each time I:d(k)

from Eq. (4.28). Thus O<l(k), 0<2(k), ... , O<M(k) are the auxiliary variables of el-

ements of matrix :Ed' As O<l(k), 0<2(k), ... and O<M(k) approach a~" a~2"" and
a~M' respectively and simultaneously, 12 approaches Q. Therefore, at equality, the
relationship R~)(l) = 0 holds due to the properties of white noise. Under this

condition, Eqs. (4.17) and (4.28) give the same value for the noise variances.

Therefore, using Eq. (4.28) instead of Eq. (4.17) does not affect the desired
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result. Since the true noise covariance matrix ~v is unknown, the key idea is

to match QI (k), Q2 (k), ... and QM (k) with 0';, ' 0';" ... and O';M' respectively and

simultaneously instead. When these quantities become identical simultaneously,

at least theoretically, an estimate ~d of the observation noise covariance matrix

can be determined from QI(k), Q2(k), ... and QM(k). In addition, the block row

vector Q obtained by substituting :Ev = diag (&;" &;,,"', &;M) for a(k) in Eq.

(4.30) gives an estimate of the desired block row vector $!. Since QI(k),Q2(k),'"

and CiM(k) denotes the auxiliary variables for the elements of matrix !:d' we can

write

-2 =(Jv,

h(Cil, Q2,"', CiM)

h(CiI, Ci2,"', QM)

4.4 Estimation of Noise Variance

In this section, we propose two methods to estimate the noise variances of different

channels. The AR parameters are obtained simultaneously as a by product which

are then used to compute the power spectrum.

4.4.1 Approach I: Gradient search technique

In order to match Cil(k),Ci2(k), ... and CiM(k) with 0';,,0';,,'" and O';M' respec-
tively and simultaneously, we can write at matching condition

-2 0 (4.31 )Ql - 0V} -

I.e,

Cil - h(Cil,Ci2," .,CiM) - 0

=} F1 (Cil, Ci2, ... , CiM) - 0 (4.32)

-2 0 (4.33)Q2 - O"V2

i.e,

Ci2 - h(Cil,Ci2," .,CiM) = 0

=} F2(Cil' Ci2, ... , CiM) = 0 (4.34)
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(4.35)

o (4.36)

We do not know the analytical expression of FI, F2,'" and FM. But we can use

numerical method to solve these M simultaneous nonlinear equations. In this

approach, we propose a numerical method based on Newton-Raphson technique

to solve the above set of nonlinear simultaneous equations. And consequently we

can estimate the noise covariances. In the review of Newton-Raphson method,

let us consider the initial guess value of the roots of these non linear Equations

are a?(i = 1, 2 ... ,M). If the exact roots are a? + 6ai then we get,

(4.37)

Expanding the functions as a Taylor series about the point (a?,ag, ... ,a~) we

get,

( 0 0) ~ oFi ~ oFi ( )2Fia1,"',aM +LJ-6aj+LJ- 6aj + ... =0
j=1 oaj j=l oaj

Truncating the series gives,

From Eq. (4.39), we can write for i = 1,2,"', M
ill. ill. BF,

6al [ ';B'f;I, B'?, B,,~
'2D. '2D. .!i£.l... 6a2 F2B"1 B", B"M =-

BFM BFM BFM 6aM FM
B"1 B", B"M

(4.38)

(4.39)

(4.40)

, Since we do not know the analytical expression of the functions, we will approx-

imate the partial derivatives of the functions by recalculating the functions with

a small perturbation as follows:
F(al ... a. + <5 ••• aM) - F(al ... a.... aM)t , ,) " 1 1 , t 1

<5
(4.41)
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where 0 is small increment of variables' values. To achieve our goal, we propose

the following algorithm.

The Algorithm:

1. Initialize ai(k) = 0, i = 1,2,"', M.

2. Calculate iT;" i = 1,2,"', M from Eq. (4.28).

3. Calculate Fi = (ai(k) - 0';,) at ai(k) = 0, i = 1,2,' ", M.

4. Similarly calculate Fi at ai(k) + 0, i = 1,2,"', M.

5. Calculate partial derivatives offunctions with respect to 001>002, .•. , aM from

Eq. (4.41) with the calculated values of function at steps 3 and 4.

6. Calculate ,0,001, ,0,002,"', 6aM from Eq. (4.40).

7. Calculate ai(k + 1) = a;(k) + 6ai, i = 1,2,"', M.

8. Repeat steps 2 to 7 until FI, F2,"', FM converge simultaneously to zero.

Though this method converges vary fast its final result depends on the initial

value of the noise power. Moreover the method may fail to converge to the global

minimum. In the next approach we overcome the problem of dependency of the

estimated noise power on the initialization of the search technique.

4.4.2 Approach II: Fuzzy iterative search

Arbitrary matrix a(k) is changed iteratively and as a(k) approaches the actual

matrix of noise variance, i.e., :Ev, h approaches l! and R~)(l) approaches to

zero due to the properties of white noise. Consequently :Ea(k) - Ed(k) also

approaches zero. The performance index for fuzzy iterative search technique is

therefore defined as

(4.42)

where :Ea(k) = [al(k), a2(k),"', aM(k) ]T Now we are going to present fuzzy

incorporated iterative search technique which will give the desired solution, i.e.,
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I:a(k) = I:d and h = Q at the global minimum of the above defined performance

index. Here it is assumed that the desired solution lies where the global minimum

occurs. In this approach only one noise power on each channel of the noise power

vector I:a = [aI, a2,"', aM jT is changed at a time. Noise power a;(k) of

the i-th channel where i = 1,2,"', M is changed iteratively from 0 to a;m.,

with a variable incremental step size si(k) such that a;(k + 1) = a;(k) + s;(k).

Here a;m., is the maximum limit of ai(k) which is assumed to be known. While

a;(k) is changed, all noise powers of the other channels kept unchanged. A

Fuzzy Inference System (FIS) determines si(k) in accordance with value of J(k)
which is discussed in the following section. Through out the range of iteration

a: = arg{min J(a;(k))} is determined which corresponds to the minimum value

of J(k). When a;(k + 1) exceeds aim., the iteration of the i-th channel stops and

iteration of the noise power ai+l(k)of the next i + 1-th channel starts keeping

a; = a; and all the noise power of the other channel kept unchanged. In this

way when the iterations of channel-1 to channel-M are completed one cycle is

completed and another new cycle starts. The concerned channel whose noise

power is changed iteratively is a particular phase of the cycle. To illustrate

the approach additional superscripts can be assigned on the variable I:a, a;, s;.

For example I:b, denotes the iteratively changed noise power vector I:a of i-

th phase of the q-th cycle. In the i-th phase of q-th cycle we get a( by using
i I I ( 1)'I:h(k) = [a~ , ag , ... , a;(k), ... , a/tt- jT. a{(k) is varied from 0 to known aim.,

with a variable incremental step size s{( k) according to the following equation

a{(k + 1) = a{(k) + s{(k), i=1,2,"',M (4.43)

The superscript on ai and s; denotes the number of cycle. The value of a( =
arg {minJ(a{(k))} is determined which corresponds to the minimum value of J(k)

for the i-th phase of the q-th cycle. When a{(k) is changed iteratively, the noise

of the previous channels kept unchanged to their respective values where J(k)
was minimum in the q-th cycle in each respective phase. The noise power of the

channels following the i-th channels remain also unchanged to their respective

values where J(k) was minimum in the (q -l)-th cycle in each respective phase.

After completion of the q-th cycle I:h = [aj', ag', ... ,a:Gy is obtained.

(q + 1)-th cycle starts with I:~+l)l (k) = [a\q+l) (k), ag', ... , a:GjT . Again a~+l(k)
is varied from 0 to aIm.,' After completion of the (q + l)-th cycle
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Fig. 4.2: Flow diagram of fuzzy iterative search

I:~+1)1= [a\q+l)' (k), a~q+I)',... ,a~+l)'jTis obtained. The iterative method con-

verges to the value of global minimum after the l-th cycle when I:~ = I:~-l).

First cycle of the Fuzzy iterative approach is shown in Fig. 4.2. The algorithm

of iteration technique is summarized as follows.

The Algorithm:

1. Initialization:

I:~(O) = [aUO),a~, ... ,altr

where aHa) = a~ = ... = alvr = °
2. Find I:t,(k) = [a(, ag', ... , al(k), ... ,a~-l)'jT and hence find

at = arg {min] (al( k))}

where i = 1,2,"', M. When i = M, i.e. after completion of the q-th cycle
q [q' q' q' ]Twe get I:a = aI' a2 , ... , aM

3. Repeat step 2 until q = 1,2, ... , I such that I:~ = I:~-1)

We can visualize the way of convergence of Approach-2 from the surface plot

shown in Fig. 4.3 and Fig. 4.4. At the starting, noise power of ch-2 is kept
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Noise pow-or, channel 2 o 0 Noise poW'or. channel 1

Fig. 4.3: Surface plot of performance index vs. noise power at SN R1 = 10 dB,
SN Rz = 20 dB for first-order, two-channel, AR process where aW = -0.85, a\~) =
0.75, aW = -0.65, a~~)= -0.55

Fig. 4.4: Closer view of surface plot of Fig. 4.3 at the neighborhood of the global
minimum
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zero, we search along the axis of ch-I to get the minimum value of performance

index. Again,the obtained minimum value of ch-I is kept constant and search

starts along ch-2. In this way after few search we reach the global minimum of
the error surface. The searching technique can be thought as if one ball is thrown

from the top of the surface and it starts rolling according to the curvature of the

surface and ultimately it stops at the lowest point of the bottom.

4.4.2.1 Determining the step size: Fuzzy approach

In Eqn. (4.43) sl(k) denotes step size whose value depends on the performance

index J(k). We are searching the minimum value of J(k) in the range 0 to known

ai
m
•
x
' by increasing a; (k) with a step size s; (k). The step size can be deter-

mined as a function of the performance index instead of keeping it to be constant

throughout the iteration range. That is if the performance index becomes smaller

then the step size can be adjusted reasonably smaller to achieve the minimum
,

value of J(k) and the corresponding a; . If the performance index becomes larger

then the step size will be larger to skip the less concerned region of iteration. We

should be careful in selecting the maximum step size of the iteration so that the

iteration does not miss the minimum. The minimum step size depends on our

desired accuracy of the estimation. In this way, we can reduce the number of iter-

ations as well as computation time significantly without sacrificing the accuracy

of estimation since we keep the step size smaller in the region of iteration where

we approach the minimum.
For determining the step size in accordance with the value of the performance

index a Fuzzy Inference System (FIS) is designed which maps non-linearly the

input, performance index J(k), to the appropriate output, the step size sl(k) for

the i-th phase of the q-th cycle. We consider the following criteria in designing

the FIS:

1. This is a Mamdani fuzzy model.

2. The input to the FIS is the performance index calculated using Eqn. (4.42).

We select the universe of discourse of the input to be the value obtained from

Eqn. (4.42) when ~a = [all a2, ... , aMjT, where al = a2 = ... = aM = O.

Universe of discourse for the input is same for each channel.
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1-'-'-'-'-'-'-'-
I Rule 1:; \. :; Rule 2

Input ;L Defuzzifier OutputPerformance
index ~ Rule 3

Step size

1-~\
I

I Rule 4
I_._._._._.-._.-.

Fig. 4.5: Designing a fuzzy inference system for determining the step size: System
consists of 1 input, 1 output, and 4 rules.

3. We define four membership functions (MFs) for the input. They are 'verys-

mall', 'small', 'significant' and 'large'. The type of membership function

and their ranges are depicted in Fig. 4.6. Normalized error can be obtained

dividing the error by universe of discourse calculated in step 2.

4. The output from the FIS is the effective step size sHk). We have calcu-

lated the universe of discourse of the step size to be (1/ K) x aim" for

i = 1,2,"', M. It is apparent that the universe of discourse of output is

different for different channel. We have found K = 10 as an well performed

approximation. But in some cases where the error function falls rapidly we

may have to increase the value of K to avoid any chance of missing the

minimum. We can choose a smaller value of K where the cost function

changes slowly. It makes the total number of iteration less.

5. We define four membership functions(MFs) for the output also. They are

'verysmall', 'small', 'significant' and 'large'. The type of membership func-

tion and their ranges are shown in Fig. 4.7. Step size is shown in nor-

malized scale. Normalized step size is the ratio of stepsize to the universe.

of discourse. The accuracy of the iterative technique depends on how the

'verysmall' MF is defined. We choose the 'verysmall' MF as a zero-mean

gaussian type membership function

f(x; (J, c) = e-I';:;V', c = 0

r
\



75

very small
1 (Gaussian

0.8

]-

~E~ 0.6
ID
E

"~ OA

l
0.2

o

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9

Normalized performance index

Fig. 4.6: Membership function of the input variable, the cost function, to the
FrS.

Fig. 4.7: Membership function of the output variable, the step size, to the FrS.
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An increase in the value of a will increase the value of the step size in

the region where the error is 'verysmall'. It decreases the total number of

iterations but the cost must be paid in estimation accuracy.

6. Following rules are implemented in the FIS

• If (error is verysmall) then (step size is verysmall)

• If (error is small) then (step size is small)

• If (error is significant) then (step size is significant)

• If (error is large) then (step size is large)

In this Fuzzy model no logical operator is used as there is only one input. The

implication method we choose is min (minimum), the aggregation method is max

(maximum), and we defuzzify the output by centroid calculation. The following

algorithm can be followed to implement the above mentioned FIS.

1. Set the maximum error range and the maximum step size (universe of dis-

courses) by executing respectively step 2 and step 4 of the aforementioned

criteria of the FIS. Set the desired accuracy of the estimation by adjusting

the parameter a of the gaussian membership function 'verysmall' of step

size according to step 5 for each channel.

2. Set initial value of al(O) = ° and final value to aim•• for i-th phase of the

q-th cycle. Where i = 1,2, ... ,M and q = 1,2,"', l.

3. Calculate the error using Eqn. (4.42).

4. Supply 'error' calculated in step 3 as input to the FIS.

5. Determine sl(k), the 'step size', as the output of the FIS.

6. Calculate al(k + 1) = al(k) + sl(k).

7. If al(k + 1) ::; aim•• ' repeat steps 3 to 6, otherwise terminate.

This approach is particularly suitable for a single minimum error surface or

when the multiple minima align at one particular noise power of one of the chan-

nels. Another point is that the maximum limit of the noise power of each channel

should be known a priori. Most of these preconditions can be satisfied at high

SN R level but at low SN R these could be hardly realized.
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4.5 Simulation Results

To illustrate the performance of the proposed estimation methods, a second-order

(p = 2) two-channel (M = 2) auto regressive process was used to generate data

samples. Data was generated according to the recursion

x(n) _ -A(I)x(n - 1) - A(2)x(n - 2) + u(n)
Yin) - x(n) + Yin)

in which the auto regressive coefficient matrices are

A (1) = [0.30 0.038],
-0.18 0.78

A(2) = [ 0.97
0.9

-0.108 ]
0.50

and u(n) is two-channel stationary white noise, uncorrelated between channels

and of unit variance on each channel. It is also assumed that Yin) is two-channel

stationary white noise, uncorrelated between channels and with u(n). The vari-

ance on each channel is adjusted to obtain different signal-to-noise ratios (SNRs)

defined as SNR; = 10loglO (a~)a~.)(dB), where a;, denotes the ith channel sig-

nal power and SN R; represents the signal-to-noise ratio on the ith channel.

4.5.1 Simulation results of gradient based technique

In the experiment N = 4000 data samples for each channel was used. The results

obtained using the proposed method for different combination of SN Rs and initial

conditions are presented in Table (4.1) and Table (4.2). The results shown are the

mean value of 20 simulation runs. The quantity in bracket represents standard

deviation of 20 simulation runs. From Table (4.1) and Table (4.2) it is evident

that the mean values of estimated noise power and AR parameters are very close

to their true counter parts. The standard deviation is also reasonably good.

4.5.2 Simulation results of fuzzy iterative search

The simulation conditions were kept unchanged. The results obtained using this

method for different combination of SNRs are presented in Table (4.3) and Table

(4.4). The entries represent the mean value of 20 simulation runs. The quantity

in bracket represents standard deviation of 20 simulation runs. As can be seen

from Table (4.3) and Table (4.4) the mean values of estimated noise power and
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Table 4.1: Estimated noise variances for 2-channel AR(2) process by gradient

based technique (N = 4000, 0<1(0) = 0<2(0) = 0)

Channell Channel 2

SNR u"' a;l SNR 0"~2 0'-;2
(dB) (true value) (estimate) (dB) (true value) (estimate)

5 1.2156 1.2627 10 1.0640 1.0560
(0.1418) (0.1008)

10 .3847 .4076 5 3.4077 3.3620
(0.0640) (0.2213)

Table 4.2: Estimated AR coefficients for 2-channel AR(2) process by gradient

based technique (N = 4000, 0<1(0) = 0<2(0) = 0)

True AR Estimated AR coefficients
coefficients SNR1 5dB,SNR2 10dB SNR1 10dB,SNR2 5ilB

agJ == 0.3 0.3095 0.3070
(0.0266) (0.0256)

ai;J = 0.038 0.0307 0.0356
(0.0144) (0.0151)

a~~)== -0.18 .0.1791 .0.1875
(0.0308) (0.0452)

~~;) == 0.78 0.7827 0.7844
(0.0187) (0.0294)

a~~) == 0.97 0.9923 0.9868
(0.0669) (0.0363)

a~~) == -0.108 .0.1213 .0.1174
(0.0292) (0.0200)

a~;J_ 0.90 0.9188 0.9130
(0.0649) (0.0348)

a~?) 0.4931 0.4934Q22 == 0.50
(0.0338) (0.0191)

[Note: numerical value in the bracket denotes the standard deviation of the respective 8amples
obtained from the 20 simulation runs]
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Table 4.3: Estimated noise variances for 2-channel AR(2) process by fuzzy itera-
tive search technique (N = 4000, al (0) = a2(0) = 0)

Channell Channel 2

SNR U~l d~l minimum SNR ~ 0'~:1 minimum

(dB) (true value) (estimate) stepsize (dB) (true value) (estimate) stepsize

5 1.2366 1.2174 0.0076 10 1.0827 1.0795 0.0076

(0.1260) (0.0844)

10 .3790 .3919 0.0078 5 3.3645 3.3966 0.0228

(0.0725) (0.1842)

Table 4.4: Estimated AR coefficients for 2-channel AR(2) process by fuzzy iter-
ative search technique (N = 4000, a1(O) = aHO) = 0)

True AR Estimated AR coefficients
coefficients SNRI 5dB,SNR2 IOdB SNRI IOdB,SNR2 ,5dB

;;;V = 0.3 0.2945 0.3014
(0.0345) (0.0202)

a\;' = 0.038 0.0398 0.0350
(0.0169) (0.0144)

~ = -0.18 -0.1913 -0.1928
(0.0267) (0.0291)

7fJ 0.7846 0.7868a22 = 0.78
(0.Q208) (0.0199)

~=0.9 0.9672 0.9733
(0.0613) (0.0398)

.(2) _ -0.1085 -0.1104a12 - -0.108
(0.0339) (0.0199)

~ =0.90 0.8864 0.9115
(0.0380) (0.0524)

a~~) = 0.50 0.5034 0.5005
(0.0163) (0.0255)

[Note: numerical value in the bracket denotes the standard deviation of the respective samples
obtained from the 20 simulation runs J

rv
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Fig. 4.8: True and estimated AR spectrum by the proposed gradient search
method for SN R1 = 5 dB, SNR2 - 10 dB
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AR parameters are very close to their true counter parts. The standard deviation

is also within the acceptable limit.
The power spectrum plots using the estimated AR parameters are shown in

Fig. 4.8 and Fig. 4.9 for gradient search and fuzzy iterative search techniques,

respectively. We see that estimated multichannel AR spectrum by the proposed

methods is very close to true spectrum.

4.6 Conclusion

In this chapter the problem of power spectral estimation of multichannel AR

processes corrupted by white observation noise of unknown power has been ad-

dressed. The noise-compensated Yule-Walker method has been used to solve the

problem. Accurate noise compensation has been shown to be feasible by intro- .

ducing new methods for estimating the multichannel observation noise variance

on each channel. A new close form relation between the auxiliary variable for

true and estimated noise variance vectors paves the way of estimating the noise

power. Two different techniques have been proposed for estimating the observa-

tion noise variance. The proposed gradient based method converges very fast but

depending on the initial value of the noise power it may converge to a false solu-

tion and even the estimated noise power may become negative. Fuzzy iterative

search overcomes the problem of initialization. This approach is mostly suitable

for an error surface with single minimum. The results shown for different SNRs
demonstrate that the proposed schemes are very effective for multichannel AR

spectral estimation from noisy observations.



Chapter 5

Conclusion

A new fuzzy incorporated noise compensation technique for autoregressive (AR)

spectral estimation from noisy observations has been proposed. The major focus

of the research was to develop a highly accurate estimation algorithm for AR

parameters from the noise corrupted signal to eliminate the smoothing effect of

noise on AR spectrum. To achieve this goal, unlike conventional approaches,

uncompensated lattice filter (LF) algorithm, to avoid any possible instability,

is employed to estimate the parameters of a high-order AR model fitted to the

observed process. It is shown that this model preserve the true AR system roots

precisely with some extra roots due to noise. As such a root matching technique

has been adopted to extract the true system roots from the mixture of noise

plus system roots. This technique has utilized the solution(s), single or multiple,

from the low-order Yule-Walker (LOYW) equations as auxiliary solution. It has

been shown that the iterative method based on the noise compensated LOYW

equations [20] is blind to the desired solution of AR parameters particularly at

low SN R due to strong inherent nonlinearity. As a by product, the proposed

scheme has also resolved this problem of multiple solutions case of the LOYW

equations.
We have also proposed a nonlinear iterative technique for finding the auxiliary

solution using the LOYW equations. Nonlinear iteration is performed by fuzzy

modeling the error index for calculating the step size adaptively. This has reduced

the number of iterations significantly as compared to the previous one where a

constant step size has been maintained throughout the total range of iteration.

Clearly, the proposed method is not one-pass and utilizes a joint approach for

spectral estimation. Nevertheless, if one is ready to pay the price, the gain in

83
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terms of performance, especially in difficult situations such as low signal-to-noise

ratio, or closely "spaced" signals, may be significant.
The power spectrum estimation problem of multichannel AR processes with

additive white observation noise of unknown power is also addressed. The noise-

compensated Yule-Walker method has been used to solve the problem. Accurate

noise compensation has been shown to be feasible by introducing new methods for

estimating the multichannel observation noise variance. Two different techniques

have been proposed for estimating the observation noise variance. Both these

methods have some advantages and disadvantages. Gradient based method con-

verges very fast but depending on the initial value of the noise power it may con-

verge to false solution and even the estimated noise power may become negative.

Fuzzy iterative search overcomes the problem of initialization. This approach is

mostly suitable for an error surface with single minimum.
However, unlike single channel AR processes, the case of multiple solutions

particularly at low S N R have not been addressed. Further investigation is re-

quired to solve this problem.
The order of the process has been assumed to be known. However, the es-

timation of order of the system from noisy observation should be given further

consideration.
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