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ABSTRACT

Potential channel structures having single and double discontinuities in lateral

dimensions are studied in detail. A matrix formulation has been developed

using the continuity conditions for the electron wave function and its

derivative. It has been shown that the flow of current is very sensitive to the

length and lateral dimensions of the channel segments. Significant variation of

the channel width can be achieved b,' applying external voltage in the

transverse direction which paves the way for the device to be used as an

amplifier. Time response' of the device is computed and i~ found to be very

fast. Dependence of the current on the gate' voltge is studied and the

calculated results are presented, Values of the transconductance for the

proposed amplifier are calculated and a relatively high value of

transconductance comparable to that of the existing FETs are obtained.
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CHAPTER ONE
INTRODUCTION



INTRODUCTION

Quantum effects have started to play an important role in governing the

behaviour of electronic devices, as the feature size of electronic devices

shrink beyond the sub micron level. The wave nature of electron must be taken

into consideration while analyzing .semiconductor structures, when

characteristic dimensions are comparable to the 'mean free path of electrons.

Prior to the development of modern thin film growth technology, it was

impossible to obtain devices less thnn 3 lun in size, as at smaller sizes

.inaccuracies in the production of phQLomasks caused appreciable spread of

geometrical dimensions and parameters of circuit elements. Now owing to a

high resolution of optical device and photoresists it has become possible to

prepare structures with dimensions of order of a few angstroms. The recent

epitaxial growth techniques, particularly Molecular Beam Epitaxy (MBE),

Metal-Organic. Chemical Vapour Deposition (MOCVD)and Atomic Layer Epitaxy

(ALE) has made it possible to fabricate ultrathin semiconductor layers that

are smooth on an atomic scale.
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1.1 LITERATURE REVIEW

""miconductor microstructures such as metal-oxide-semiconductor, field effect

transistor (MOSFET) and ultrathin p-n-p doping layers have provided

researchers with a lool to study quasi-twa-dimensional electronic systems

- I1 ,2J. The electrons are dynamicaJl.\' Lwo dimensional in the sense that their

motion is unrestricted in two spalial dimensions but quantized by a confining

potential in the third dimension. The properties of electrons in such two

dimensional structures have been studied exLensively by Ando et al. [lJ. In

these experiments the microstructure is usua1l3' in the form of a channel which

is terminated at opposite edges by uniformly doped regions in the

semiconductor that serves as contacts. In the contact region the electrons'

dynamical behaviour is bulk like. At the source end, a net current of carriers

is injected from the central region into the channel; at the drain a net

current is ejected from the channel. Both injection and ejection involve a

change in the dynamical behaviour of the electron in two and three

dimensional. Thin potential channel structure have been studied by a number

of authors. Datta et al. [3J discussed a new configuration in which quantum

interferences occur between two alternative paths provided by contiguous

GaAs layers separated by an AlGaAs barrier layer. Alternatively, the

conduction channels are defined lithographically on the surface of a. FET-like

structure. S. M. Fazlul Kabir [4J theoretically studied a similar structure; but

much smaller in dimension. Two channels separated by a extremely thin

potentia! barrier ( 15 A.) was considered. Gradual tunneling of electrons from

one channel to the other was studied in detail and the variation of tunneling

probabilities on the channel parameters was investigated. The problem of

electron transport across a junction between two regions with very different

2



confining potential profiles in the transverse direction was first discussed by

Kriman and Ruden [5]. A somewhat different method was presented by Frohne

and Datta [6]. This method solves the problem by imposing boundary condition

in some discrete points across the boundary .. Waveguide discontinuity

involving diaphragms, strip, change of guide cross section, change of

propagation medium etc., deals with the similar type of mathematics. A number

of such waveguide discontinuity problems are dealt elaborately by Lewin [7].

Ultrathin potential channel discontinuity problem studied in this thesis

involves the similar type of mathematical approach presented by L. Lewin. This

method takes the wave functkm at the interface as the unknown quantity and

by imposing continuity conditions wave function at the interface is determined.

1.2 THESIS LAYOUT

Chapter 2 of this thesis deals with the method of analyzing the problem of

electron propagation in ultra-thin potential structures, containing a

discontinuity along the plane transverse to the direction of propagation.

Chapter 3 extends the method developed in chapter 2 to apply it to the

potential structures containing double discontinuity. Numerous results are

presented in chapter2 and chapter 3 applying' the method developed, tb some.

definite structures.

Possibility of using the structure is discussed in chapter 3 as high frequency

amplifier is studied in chapter 4.

3



Chapter 5 presents the concluding discussions and recommendation for future

works.
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CHAPTER TWO

ANALYSIS OF POTENTIAL CHANNEL
HAVING SINGLE DISCONTINUITY



2.1 INTRODUCTION

The problem of electron propagation in an ultrathin potential channel,

discontinuous along a plarie transverse to the direction of propagation" is

formulated in this chapter. A quantum treatment of the problem requires a

knowledge of the spatial distribution of electron wave functions which can be

obtained from solutions of the three dimensional Schrodinger equation. The

solutions are subject to the continuity of the wavefunction and its derivative

at the interfaces. Because of the wave nature of electrons, there is a non zero

probability that electrons which are incident on the junction will be reflected.

A semianalytic method has been developed to estimate the probability that the

electrons are reflected b;' the junction, using the continuity of the wave

function and its derivative at the interfaces. This method solves for the

electron wave function at the discontinuity very accurately. A non-interacting

single particle picture is adopted here while developing the model and the

charge carriers are treated in the effective mass approximations. The effective

mass is assumed to be constant throughout the channel. The restriction to a

single mass is appropriate for doping structures in a homogeneous host

material. The length of channel is considered to be smaller than the electron

mean free path so that the phase coherence of the waves is not destroyed by

scattering.

A channel structure having rectangular cross-section is analyzed by using the

method developed in sec 2.2 and the calculated results are presented in sec

2.3.
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2.2 GENERAL FORMULATION

A potential channel containing a discontinuity in the transverse plane is

shown in figure (2.01). In the structure chosen, the direction of propagation
,

is considered to be along the z direction. The interface, where the cross

section of the potential channel changes abruptly is arbitrarily chosen at z =

O. At z=O, the channel potential is assumed to, be discontinuous only along the

x direction. The regions on the two sides of the discontinuity are labelled as I

and II.

This is effectively a two dimensional electronic system in which motion of

electrons is confined along the x direction and is unrestricted along the two

other spatial directions. Now, the motion of electron in the potential structure

is described by the time-independent Schrodinger equation [8]

H'F=E'F

(2.01)

Where H is the Hamiltonian operator and E is the total energy of electron. This

is an eigenvalue equation, with E representing the eigenvalue and " the

eigenfunction. The eigenvalue E is infinitely degenerate. Since the dependence

of " on y is not affected by the discontinuity in potential, we can, without

any loss of generality, assume that ky=O. The wave, equation (2.01) in each

region then separates in the two space coordinates x and z

6
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Figure (2.01). A potential channel discontinuous in the transverse plane.
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If'(x . z) = If'(x )If' (z )

(2.02)

We further assume that the electron motion in the channel is restrained by

perfectly rigid reflecting walls. Energy eigenfunctions 'fir x I are then

characterized by discrete eigen values. Each of these eigenfunctions in region

I represents a mode (or subband) in x. They are normalized and are

orthonormal with each other, so that

f~If"P[X)If';q[X)=O for p=I.2.3 .

q= 1.2.3 .

p'!q

=1 for p=q

(2.03 )

Here Yin is the eigenfunction of the nth mode. As has been shown later, each

of these eigenfunctions is characterized by a discrete energy level called the

eigen energy of the particular mode. Now an arbitrary wave function 'F ,(:<: in

region I can be expanded in a series of these eigenfunctions as [9]

8



Y',(x)= 2,>nY"n(x)
n'" I .

(2.04 )

The expansion coefficients c, can be determined with the help of equation

(2.03 )

(2.05)

The total energy of electron E is the sum of potential and kinetic energies.

The potential energy of electron is constant throughout the structure and is

taken without loss of generality to be zero. The total energy E can then be

related to the wave vectors k. and k., as

(z"k2 f'J2k"
E =--"+ --'

2m' 2m'

(2.06 )

The assumption of constant potential energy is valid if the carrier density' is

uniform throughout the structure. Here, TI is the modified planck's constant

and m' is the effective mass of electron.

It is to be remembered that, E in equati~n' (2.06) is the energy of electron

9



excluding the kinetic energy associate with motion along the y direction.

As mentioned earlier, the motion of electron is restricted in the x direction

and corresponding energy assumes discrete values, with each value

characterizing a particular mode. This discrete energy level which

characterizes a particular mode is called the eigen energy of that mode. The

fundamental mode has the lowest value of eigen energy and eigen energy of

higher modes goes on increasing in discrete levels. If we define the elgen

energy of the nth mode as E '"' then the .wave vector in the z direction for

the nth mode can be obtained from relation (2.06)

(2.07)

From now on suffix z will not be used to represent the wave vector in the z

direction, so that k," will simply mean the'~ave vector of the nth mode in the

z direction.

If the eigen energy of a particular mode is less than the electron energy E

then, we see from equation (2.07) that the mode will have real wave vector k,

and will be propagating in nature. But if the eigen energy is greater than the

electron energy, then the wave vector will be imaginary and the mode will be

decaying in nature.

10



Like the WAve function' "tlxl, the wave funcHor, !PI/Ix'! in region Jr, can be

expressed as a summation of infinite number of orthonormal eigenfunction, with

each eigenfunction representing a particular mode (or subbandl

¥ll(X)= Lan¥2n(X)
n'" I

(2.08 )

Where, as before, all the eigenfunctions are normalized and are orthonormal to

each other so that

f~¥2P(X)¥;q(X)=O for p=I.2.3 .

q= 1.2,3 .

p1>q

= I for p = q

(2.09)

The propagation vector in region II can be expressed by a similar relation as

(2.07 )

(2. 10)

11



where, E •• Is the olgon QI'I(lI'g~' "r Lhe nth mode in region II.

Let us consider an electron of a particular subband (mode) incident on the

junction from the left with energy E. Because of the need to match both wave

functions and its derivative at the junction, it wlll give rise to reflected and

transmitted waves, in all the different subbands. The numbel' of propagllt;ing

modes (including the incident mode), that the reflected waves contain,

depends on the total electron energy E and the eigen energies of the

different modes. Those modes will be propagating in nature for which the

electron energy is greater than the cOrl'esponding eigen energy and the rest

of the modes for which the electron energy is less than the elgen enel'gy will

be decaying in nature. Far from the junction the effect of the decaying modes

die out, but they must be taken into account in order to satisfy the boundary

conditions at the junctions between regions I and II. The total wave function

in region I, can be written in context to the relation 12.04) and the foregoing

analysis, as

'If ( )'If ( ) -Ik"z. '\ 1 >f' ( ) Ik"rT l,X'.:?: ••••T '{' X e + LIl'H,T J;~ .X: g
q=1

(2.11).

Here, the first term is representing the incident wave of a particular mode p.

The second term is representing the sum of all the reflected (decaying and

propagatfng) modes. A" is the reflection amplitude of a particular mode q

generated from the incident mode p. k's are the wave vectors given by the

relation (2.07). As mentioned earlier, the wave vectors k along the z direction

12



for the evanescent modes are imaginary. It is also important to choose the

proper sign of the imaginary wave vectors in equatIon (2.f1) so that the wave

functions decay exponentia\l,' from the junction at z = O.

Region II contains transmitted waves only, so that the wave function for

region II can be written as

(2.12)

Region II contains no discontinuity to its right so that there are no reflected

waves in region II. Here, Tn is the transmission amplitude of the qth mode of

region II generated by the incident pth mode in region 1. k,,- is the wave

vector of the q'th mode for region II given by the equation (2.10).. k,,- is

imaginary for those modes which are nonpropagating. As in region I, proper

sign for these imaginary wave vectors should be chosen in equation (2.12) so

that their corresponding modes decay exponentially from the junction.

The continuity of the wave function fI at the interface gives us

.....

1[/IP(X)+ LAqp 1[/lq(X)= L Tq'P1[/2q'(X)
-7::: I .~ ::: I

(2.13)

13



Now multiplying both sides b)'1JI,,-i x) and integrating with the help of

equation (2.09) we obtain

(2.14)

where

(2.15)

The derivative (J lJ' / J z] In region I and II, respectively are given by

(2.16)

and

(2.17)

By imposing continuity condition on oJ! /0;;; at z=O by using equation (2.14) we

obtain

14



•

- j kiP rIP (x) + J I k I q A qp r I q (x)
Q"'1

(2.18)

To hold the above equality, all modal components of the Jf / function in

equation (2.18) must coincide with the corresponding modal components of the

f/ II' function.

equating the component of the incident mode VI •• (x) from equation (2.18) and

rearranging we have

+App[Jk,P+ J f k2q/l~q.J+ .
1 '1

(2. 19)

Equating the component of any arbitrary nth mode (" ••ex)), when the selected

mode is not the incident mode we have

15



(2.20)

Our objective is to determine the reflection amplitude As. In order to satisfy

the boundary condition at every point at the junction we require infinite

number of modes to be considered and by equating the modal components

from equation (2.18) we will have infinite number of equations to solve the

infinite number of unknown As. But to solve the problem numerically (on a

computer) we must limit the number of modes and it will be shown later in

this chapter, that, if we consider just a few decaying modes in addition to the

propagating mode we will be able to predict the nature of the fI function at

the interface with reasonable accuracy.

If n modes are considered we will have n equations by equating individual

modal components from equation (2.18). Solving the equations n number of

reflection amplitudes can be determined. In matrix form we can write these

equations as

16
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where

"' ..

Bl\ B\2 BI3 Bin Alp CII

B2\ B 22 B23 B 2n A2p C 21

Bpi B p2 B p3 B pp B pn

Bnl B n2 Bn3 B nn Anp en'

Baa= jkln+ j Lk2n,1;n
n"'f

a ~l .2,3 .

Bap= Bpa = j L k2n,,1anApn
n=l

a~ I ,2.3 .

fJ = 1.2.3 .

a"fJ

C pi = j k,P - j L k 2n A ~n
n=\

17

(2.21)

(2.22)

(2.23)
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C.I =- JIk2nApn.'1.n
n"'l

a = l, 2 ,3" .."" ..

atp

(2.24)

2.3 RESULTS AND DISCUSSION

An illustrative result is presented in' this section by applying the method

developed in section 2.2 to a definite potential structure containing

discontinuity in the transverse direction, Throughout the calculation infinite

potential wall is assumed so that electron wave function yr vanishes outside

the channel. Although the calculation is made on the basis of infinite barrier,

the method is applicable if the potential wall is finite. But in such case the

overlapping constants A's are to be calculated numerically.

We consider a simple structure of rectangular section, as shown in the figure

2.2. Since infinite potential barrier is assumed, the normalized wave function

'F(x) in the two regions can be written as

~

n:n:x
Vln(x)= -sin--

a a

=0 forx2a

forx < a

18

(2.25)
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x
------------.,---------

1
b

----- .--J'-- -'- Z

o

Figure (2.02). Transverse dimensions of a potential channel discontinuous at

the plane z=O. The channel cross-section is rectangular throughout the

structure.
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where

and

~
nnx

¥ (x)= -sin--
2. 'b b

=0 forx?'b

IFn2n2

E =----
2n 2m'b2

for x <b

(2,26)

Here a and b are the transverse dimensions of region I and II respectively.

Calculation of the overlapping constants Am" defined by the relation (2.15) is
, -.,

shown in~ppendix BJ

In our calculation we have considered the transverse dimension 'b' of the

second region to be 100 A, energy of electron E to be .140 mev and effective

mass m'=O.lm •• where m. is the free mass of electron. The transverse

dimension of the first region 'a' is varied from 52 A to 100 A. Energy of

electron is chosen in a way such that only the fundamentai mode can

propagate in the two regions. Using the method developed in section 2.2 the

variation of the reflection and the transmission amplitude of the propagating

mode with 'a' are calculated and is shown in the fig (2.3). We see from the

20
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1.0
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--N=20

c
0 0.6~
tl IQ)' . ,
'+-

~

Q) b=100 AL..

"0 0.4 E=140 meV
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0

c
0
rnrn0.2
E •
rnc amplitude
0
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f- 0.0
50 60 70 80 90 100 110

Width of channel . • 1 (A)In region
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Q)
"0
::J.•...
.a. 0.8
E
o

Figure (2.03). Transmission and Reflection amplitudes as functions of channel

width in region I for an electron energy of.J.40 meV.
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figure, reflection becomes zero when the channel contains no discontinuity (a

= 100 A). Reflection and transmission amplitude are calculated for n = 5 and

20, where n is the number of modes (including the propagating mode), those

are considered while calculating the two amplitudes. It is found that n=5 gives

a reasonably good result. So we observe though infinite number of modes are

required to be considered to satisfy the boundary conditions, only a few mode

can give quite accurate result.
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CHAPTER TIHREE

ANALYSIS OF POTENTIAL CHANNEL
HAVING DOUBLE DISCONTINUI~Y
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3.1 INTRODUCTION:

The problem of electron propagation in a potential structure having double

discontinuities is analyzed in this chapter. First a mathematical model is

developed extending the solution technique presented in chapter 2 then some

results are presented for different channel structures having double

discontinuities.

3.2 MATHEMATICAL FORMULATION:

Let us consider two abrupt junction. in a potential microstructure between

three regions I, II and III of dissimilar transverse width as shown in figure

(3.01). The motion of electron in the structure is bounded along the x

direction by potential barriers but is unrestricted along the two other spatial

directions y and z. The direction of propagation is considered along the z

direction only. Region II of the structure is of finite length 1 but the two

other regions are of semi-infinite in extent along the direction of propagation.

The discontinuities are chosen at z=Oand at z=l.

The electron wave function vr( x) has different distributions lit the three

regions I, II and III. In order to match the electron wave function and its

derivatives at the two interfaces infinite number of modes are needed to be

considered at each junction. Some of these modes are propagating and the

23
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Fi3ure (3.01). A potential channel having double discontinuities in the

. transverse plane.
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rest are attenuating. Though the effect of the attenuating modes die out with

distance from the junction, their effect is significant near the junction.

The method for solving single junction channel problem presented in the

previous chapter, is extended here to solve the wave functions in all the

three regions. The wave functions at the respective regions are written in

terms of their decaying and propagating modes, the continuity conditions are

then imposed in order to determine the reflection and transmission amplitudes

for each region. The assumptions made for single junction channel problem are

also valid for our present analysis.

Let an electron of a particular mode a incidents the junction at z=Ofrom left,

the incident electron gives rise to reflected wave in all the different

subbands, so the total wave function 'If for region I can be written in terms of

the reflected and the incident waves as

( ) () -Ik,.' '\" ( ) Ik,,'VI I X. Z = VI 1a X e + L A j3a VI 1j3 X e
8=: I.

(3.01)

25



where A.. is the reflection amplitude of mode fJ generated from the incident

mode a, the k's are wave vectors and are imaginary for those modes which are

decaying, 'fI" are the eigenfunctions for region I, they are normalized and are

orthonormal with each other.

In a similar manner the transmitted wave in region II from region I contains

propagating and decaying modes. The number of modes that propagate in

region II depends on the energy of electron E and the eigen energies of the

region. Region II not only contains these transmitted modes travelling In the

positive z direction but also contains propagating and decaying modes In the

negative z direction. These second set of modes have been generated by the

first set of modes when they are incident at the junction. The decaying modes

in region II generated at each junction will be able to reach the other

junction before dying out, if the intermediate region length 1 is not' large

enough. So their effect must be considered in both the junctions.

The total wave function at region II can be expressed in terms of these

transmitted and reflected waves as

(3.02)

26
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here T" is the transmission amplitude of the yth mode at junction 1 and R" is

the reflection amplitude of the mode at junction 2. K" is the wave vector for

the 'yth mode at region II arid it is imaginary if the' mode is nonpropagating.

The non propagating modes in region II are of greater importance, since they

can significantly contribute to the current flow (appendix A).

The total wave function for region III can be written as

(3.03)

Region III has no discont,nuity to its right, so '1'111 contains no r.eflected wave.

Here T" is the transmission amplitude of the mode 6, at the junction 2.

To detel'mine the reflection and the transmission amplitudes we impose the

boundary conditions at the two interfaces. We first apply the continuity

condition for the wave function at the two junctions

Applying the continuity condition for function 'I' at z=Owe have

27
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(3.04 )

or

(3.05 )

From conhnuit::: of V' at junction 2 (z=!) we have

(3.06)

or

-L T2y'F 2ylx)e -J',,' +L R2y'F 2Y(X) = L T,y'F Jy(xl
:('" I y= I 6= J

(3.07)

i'lultiplying both sides of the of equation ((3.05) by v;,.(x) and integrating, we

get

28
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(3.08)

or

(3.09)

where

m = 1.2.3 .

n= 1.2.3 .

(3.10)

Similarly from equation (3.07). we can get

(3.11)

29



or

(3.12)

where

m= 1,2,3 .

n= 1,2,3 .

(3.13)

We next appb' the continuitJ' of the function J fllJ z at the respective junctions

Applying to junction 1 at z=O we have

OZ oz

(3.14)

30



or

- j k ,., 1fI," [x) + j L k ,~A. e.) 1fI'8 (x)
$"'1

~
'\ k 7Tr')' '\ k R 7Tr [' ) - i' ".'=-lL 2,T2y1' 2ylx +lL 2y 2y1'2y X e
\' '"I )'= I

(3.15)

Equating the modal component of the incident mode from equation (3.15) and

rearranging we have

'\" k T.I . '\" R k- A -it,,'}L .2y 2>.....1 c~y - J L 2y' 2v aye +
I' '" I "'" 1

(3.16)

Equating the component of any arbitrary mode J!", from equation (3.15) when

the selected mode is not the incident mode we have

. \ k T" . '\" K R ,I - it,,' 'k' a1L '2, 2y,'lny- 1L 2y 2yI1nye + 1 "nll.n« =
y=i y=l

(3.17)
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Next applying to junction 2 at z=1 and using equation (3.2) and (3.3) we have

,H'fll(X.Z) o7Jfll,(x.z)
a::: 02;

(3.18)

or

- j f k 2,- T 2" 7Jf2.,.( x)e ~i
l
:,"' + j f k 2.,.R 2.,.7Jf2.,.( X) ~ - j f k 36 T 36 7Jf36(X)9

v~J y-! ~=l .

(3.19)

Equating any arbitrar~' mth mode iI',..) from equation (3.19) we have

(3.20)

where the constants A." and 8m" are defined earlier.

The boundary condition must be met at every point along the two interfaces

and this is only possible if we include an infinite number of modes in all the

three regions. But to solve the problem numerically on a computer, we limit

the modes to a reasonable number n as we have done for single junction. If

we consider n modes, we have to solve for the n reflection amplitudes for
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region I, n transmission and n reflection constants for region II and n

transmission constants for region Ill. So we requIre tIn simultaneous

independent equations to solve these tin unknowns. Out of these 4n equations,

2n number of equations can -be obtained by equating the modal components '"at

the t,,'o junctions frolll equations (3.15) and (3.17) and the other 2n number of

equatiuns can be obtained f'"Om the oyerlappi:ng integral equations (3.09) and

(3.11)' So the number of unknoh"ns match with the number of equations, hence

the 4n unh:no' .•..ns C;]l'I be soh-cd b;\. soh~ing Lhe 4n equatiuns.
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3.3 RESULTS

The solution technique presented in section (3.2) is applied to some potential

structures to observe the effect of varying channel dimensions on the current

flo,,'. Heetangular structures with infinite potential barrier are assumed

throughout. Effective mass of electron is taken to be O.lmo, where rna is the

free electron mass. The structure is shown in figure (3.02) where 'a' and 'c'

~are the width of region .1 and Il.1 respective.1,-, band .1 are the width and

length of region II.
"' ..

3.3.1 EFFECT OF VARYING LENGTH OF REGION II

We first observe the effect of varying the length 1 on current, transmission

and reflection amplitudes.

STRUCTURE SYMMETRICAL ABOUT THE CHANNEL AXIS:

A structure is considered which is symmetrical about the channel axis as

shown in figure (3.03). The transverse dimensions are, 80 A for region I, 140

A for region II and 80 A fOl' region III. Electron energy is chosen to be 100

meV. Calculations are made for the reflection and transmission constants of the

first and the third region respectively, for the first four modes and are

shown in the figure (3.04), the even modes are found to be absent which is
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Figure (3.02). Top view of a potential channel having double discontinuities in

the transverse plane. The channel cross-section is rectangular throughout the

structure.

r-------~--I

Figure (3.03). Transverse dimensions of a potential channel with double

discontinuities in the transverse plane. The channel cross-section throughout

the structure is rectangular and is symmetrical about the channel axis.
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Figure (3.04). Transmission and Reflection amplitudes as fupctions of channel.

length in region II for an electron energy of 100 ,pleV.
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expected due to the symmetry of the structure. For the chosen energy and

dimensions only the fundamental mode in the respective two regIons IS

propagating, the other modes are attenuating in nature.

CURRENT IN THE STRUCTURE FOR TWO DIFFERENT ENERGIES:

The variation of current with length I in the structure is claculated and is

shown in figure (3.05) and (3.06) for two different energies, 100 meY and 200

meY respectively. We can see from the figures that current for 100 meY shows

slight variation with I, whereas the current for 200 meY varies sharply with I.

At 100 mev only one propagating mode can exist in region II. On the other

hand two propagating modes (1st and 3rd) can exist at region II when

electron energy is 200 meY. Owing to the difference in wave vectors k, the

phase difference of these two modes change continuously with distance.

Depending on -length I they interfere constructively or destructively producing

the observed variation of current. For 100 meY there exists only one

propagating mode in region II and therefore no sharp variation of current is

observed. It is worth mentioning that the shape of these curves are not only

defined by the propagating modes; decaying modes can also contribute

significantly to the current. Horeover amplitude and phase of the propagating

modes are different for differ'ent length I, which results in a complex variation

of current.

The variation of the reflection and transmission amplitude in the intermediate

region are also shown in figure (3.07 ), for electron energy of 200 meY.
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Figure (3.06). A plot of current versus channel length in region II for an

electron energy of .200 meV.
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We next chaase a structure with a=80 A, b=140 A and c=80 A. Energy E is

chasen to. be 100 meV. The variatian af the reflectian amplitude af the first

regian and the transmissian amplitude af the third regian, with variatian af

length 1 is calculated and is presented in figure (3.08). We can see fram the

figure that far 1=0, reflectian is 0 and transmissian is 1. This is expected

since far 1=0 the structure passesses no. discantinuity. With the increase af

length 1, reflectian increases and transmissian decreases. The reflectian and

transmissian amplitudes shawn in the figure are af the fundamental made, the

anly prapagatingmade in the twa regians I and II.

3.3.2 EFFECT OF VARYINGTHE WID1'HOF 1ST REGION

The effect af varying the width af regian I is studied in this sectian. We first

chaase a structure with 1=350 A, b=300 A and c=90 A (fig 3.02). Variatian af

current far three different energies with a is shawn in figure (3.09). A

randam variatian af current far different energies are abserved in the figure.

Decreasing the length and width af regian II to. 125 A. and 175 A. respectively,

a smool:h variatian of current is abtained as shawn in figure (3.10), a

similarits. in the shape af the curves far different energies is also. abserved in

the figure. Fram the results abtained in this sectian we can canclude, a

slJlaath variatian af curren!: can be obl:ained bs' an effective chaice af the

channel dimensians.
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Figure (3.09). Plots of current versus channel width in region I as a function

of electron energy. The channel width and length in region II are 300 A and

350 A, respectively.
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3.3.3 EFFECT OF VARYINGTHE WIDTHOF REGIONII

We chose the structure shown in fig (3.11), where the width of the

intermediate region is varied and effect of this variation on current is

calculated and is shown in figure (3.12). With the increase of width 'b' number

of modes propagating in region II increase, so we have a strong interference

in region II, resulting in a random variation of current.

. 3.3.4 EFFECT OF VARYINGTHE WIDTHOF REGIONIII

We take ,a structure with a=80 A, b=140 A and 1=250 A and the variation of

current with transverse dimension c is clllcubted for four different energies

as shown in the figure (3.13). Current is found to vary randomly. However

reducing the length I and increasing the wi<ii.h b, a smooth and consistent

variation of current can be obtained as shown in the figure (3.14); The

structure chosen has a=90 A, b=175 A and 1=125A. A family of curves is shown

in fig (3.15) showing variation of current with c for different energies. The

chosen structure has a=60 A, b=100 A and 1=250 A. In this case number of

modes in each of the three regions is 1. Hence there is no interference and

variation of current is not much.
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Figure (3.11). Transverse dimensions of a potential channel with double

discontinuities in the transverse plane.
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3.3.5 'EFFECT OF CHANNEL POSITION VARIATION

OF REGION I AND REGION III

We finally observe the effect of the channel position variation of the 1st and

3rd region, on current. The structures those have been chosen are shown in

figure (3.16). Since the two structures are identical the effect of channel

position variation on current should also be identical. From fig (3.17) and ;,'

(3.18) we observe an identical variation of current for both the cases.

3.4 DISCUSSIONS

From the results obtained in this chapter we see current in a structure can

be varied widely by varying different dimensions of the structure. The

intermediate region in between the two discontinuities plays the most

important role in the variation of current. The interference between different

modes in this region governs mostly the shape of the curves. Moreover the

decaying modes in this region also have a denominating part on the current,

they also contribute to the current flow. The discontinuities give rise to cross

coupling of the modes which may result in a higher amplitude of the reflected

wave compared to the transmitted one. This cross coupling along with the

interference of the modes control the magnitude of the current. The most

important feature of this current variation is that, by a proper choice of
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channel dimensions the interference between modes can be controlled and a

consistent variation of current for different energies can be obtained which

can have interesting practical applications.
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4.1 INTRODUCTION

From the results obtained in chapter 3 it has been found that for certain

choice of channel parameters, variation of current in the channel is consistent

with the variation of dimensions. As mentioned earlier, this variation of

current is mainly due to the interference among various modes in region II

(fig. 3.02). Choosing channel dimensions properly this interference among the

modes can be controlled. The channel dimensions can be varied by applying

voltage externally. If the rate of change of current with respect to the

" .applied voltage is large then the device can be used as an amplifier. The

possibility of using the device as an amplifier is studied in this chapter.

4.2 A PROPOSED AMPLIFIER

The basic structure of the proposed amplifier is shown in figure 4.01(a). Two

gates are ,~ placed on the structure separated by a distance 1. With the

application of negative voltage (considering n type channel) at the gates,

channels near the gates will be constricted due to the charge depletion. An

abrupt depletion layer is assumed (fig. 4.01 b) and the change in potential

profile is considered to be rectangular (fig. 4.01 c). Hence three distinct

segments of channels are obtained having different widths. In figure 4.01 (b)

a and c are the width of the channels at region I and region III respectively

band 1 are the width and length of channel at region II.

\4e have seen in chapter 3, the interference of different modes in region II

determines the shape of the current variation. In order to avoid an erratic
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Figure (4.01c). The assumed potential profile ..
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variation of current resulting from interference among various modes, number

of propagating modes in region II is reduced to some controllable number.

This can be done by reducing the width of this region thereby lowering the

probability of higher mode propagation. Length of the channel of this region

is also chosen to be small in order to contr.ol the phase of the interfering

modes.

Choice of the width of region I is also importanL Reducing the channel width . ;"

adequately, probabilities of higher mo.de propagation can be lowered

considerably. Only the fundamental mode is considered to be propagating in "

region I. Higher propagating modes are avoided since the phase constants of

the incoming higher modes are unknown. However reduction of the channel

width of region I will also reduce the current flow, hence width of this region

must be chosen carefully.

Abrupt depletion layer which is assumed earlier, is not practically achievable.

In practice formation of depletion layer is more gradual as has been shown in

figure 4.02 (a). The assumpt1:]ion of rectangular potential profile is also an

approximation. The actual potential profile will change gradually with x, as

shown in figure 4.02 (b). However a sharp depletion can be achieved by

increasing the doping density inside the channel. The analysis that follows are

based completely on the assumption of abrupt depletion and rectangular

potential profile.
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4.3 MATHEMATICAL FORMULATION FOR CURRENT

Wave function fI in the channel can be written as

¥= ¥ xfx)¥ z(z)

(4.01)

where wave function ¥ has a spatial distribution in x (bound in this direction

by potential barrier), is propagating in the z direction and is invariant in y.

The probability current s in the channel is given by the relation [11)

s = :R(¥' _h_Vlf/)
2im'

(4.02 )

where

_0 _0 ,-0
V=i-+j-+IC-

OX oy oz

and :It stands for real part.

Since fI is invariant in y and is bound in the x direction, current per meter

of the y direction is given by
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(4.03)

since Y, IS normalized the integral

(4.04)

Using the relation (3.01) current in the channel for a particular mode n can

be determined as

(4.05 )

where k •• is the wave vector In z direction and A= is the reflection amplitude.

This current is contributed by a single electron having a wave vector k,.

Actual current contribution of the electron having wave vector k.. can be

calculated by multiplying equation (4.06) by the number of electrons available.

Actual number of available electrons can be determined from the knowledge of
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the density of state and the Fermi Dirac probability of occupancy.

The two dimensional density of states changes by m'/nh, [12] (fig. 4.03) at

each energy E" for which a new sub band appears. For the fundamental mode

density of state g(E) is given by

•mg(E)=-;
It fi. •

(4.06)

where E is the sum of the kinetic energies due to the motion of electrons in y

and z direction. It is inter:esting to note that two dimensional density of state

is independent of energy.

According to Fermi Dirac distribution the probability of occupancy with total

energy E, is given by

/(E,)= __ I__
I /E,-E,)"r+ e

(4.07)

where E F represents the fermi energy, k is the Boltzmann's constant T is the

absolute temperature and E, is the total energy of electron given by
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E,=E+E

(4.08 )

here £, is the eigen energy.

Total number of electrons available over an energy element dE is given by

n( E)d E = I( E ,)g( E)dE

(4.09 )

For a given value of k", k, can vary from 0 to =. Hence the absolute

propagating constant k can be expressed as k~.;,r .• k:, which makes an angle 9

with k" as shown in figure (4.04). From the figure, we can also express k as

k., n
k=--

cose

(4.10)

Hence, the total energy, corresponding to .the propagation constant k is

1'12k2

E = --+ E12m, In

!k 'olcose):1'12

= -------+ E 1/1

2m'

(4.11)
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Using relation (2.06) we have

(4,12)

where E, is the energy of electron due to the motion. of electron in the z

direction.

The total number of electron having a propagation constant KI, in the z

direction and making an angle 9 in the k diagram (4.04) can be expressed as

N(E)d(JdE z = g( E z If( E I)d(JdE z

(4.13)

Hence, number of electrons having propagation constant kI• is

(4,14)
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current contributed by these electrons is obtained by multiplying' equations
•

(4.14) imd (4.05)

(4.15)

Total current in the channel 1S now given by

eh foo[, .. 2 j"f2{ 1 } J!=- •. 9(Ez)kln(1-Ann) ( _) de dEz2m 0 . -"/21+eEtEFlkT .

(4.16)

TIME RESPONSE

The ultimate speed of operation of the device will depend on the time required

for the wavefunction to reach its steady state value. The total charge enclosed

in the device divided by the rate at which charge is flowing will give the

build -up time [13]

iTf{r~(e¥2N(E))dx }dZ JdE.
r = ------------------

d !
(4.17)
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4.4 RESULTS

The structure we choose first has the dimensions b=200 A, 1=100 A and c=120

A. The signal is applied at the gate at region I. In our calculation we have

assumed a doping density of 2XIO"cm.', an effective mass of O.067m, and a T

of 300. K. The location of the fermi level with respect to the conduction band

edge can be determIned by the relation [14]

(4.i9)

taking the bottom of the conduction band to be zero. Where N, is the effective

density of states in the conduction band and N, is the doping density.

The calculated values of the channel current as a function of channel

dimension is shown in figure (4.05). The dimension axis of the curve can be

converted to a voltage axis by using the relation [15]
"' ..

(4.20 )

which relates the width of the depletion layer x to the gate voltage V. Here €,

is the relative permittivity of the material of the channel.
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Figure (4.05). Calculated current as a function of channel width in region I

for a doping density of 2x1017 cm-3•
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While calculating the gate voltage contact potential between the gate and the

channel is neglected. Rescaling the dimension axis of the figure (4.05) in terms

of the applied voltage, the variation of current with the gate voltage is found

as shown in the figure (4.06). The linear portion of the curve in figure (4.06)

can be used to amplify a signal without appreciable distortion.

Transconductance gm calculated from this linear portion of the curve is found

to be 1600 ampere/volt per meter length in the y direction. Considering a

length of 1 micron in the y direction gm is found to be 1.6 rna/volt which is

reasonably a high value and is comparable to the transconductance of the

field effect transistors. A time response of .0885 pico second is obtained for

the chosen parameters. This fast time response will enable a high speed

operation of the device.

Changing the doping density of the current structure to 4,7XIO"em-' a

variation of current with the channel dimension is calculated and is shown in

figure (4.07). The corresponding variation of current with the gate voltage is

shown in figure (4.08). Transconductance calculated from the linear region of

the curve is found to be 1800 mho per meter. Time response is also calculated

and a response of .08836 pico second is obtained.

The next structure we choose has the dimensions a=100 A, b=200 A and 1=125

A. The signal is applied to the gate at region III. The assumed doping density

is 2X 10" em-'. The variation' of current with channel dimension c and applied
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Figure (4.06). Variation of GlIrI'ent with voltage applied at the gate of region I

for a doping density of 2:-;] 0" Gm-3,
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Figure (4.07). Calculated current as a function of channel width in region I
for a doping density of 4.7xl017 cm-3.
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for" doping density of 4.7,,1017 crn-'\
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Figure (4.09). Calculated current as a function of channel width in region III

for a doping density of 2xl017 cm-3•
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Figure (4,10), Variation of current with voltage applied at the gate of region

III for a doping density of 2xl017 cm-3,
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voltage. V is shown in the figures 14.09) and (4.10) respectively.

Transconductance calculated from the curve of figure (4.10) is found to be

1076 mho per meter.

DISCUSSION

When channel dimensions and other parameters (doping density, channel

material etc.) are chosen careftJ!1;I-, the device is found to exhibit high

transconductance and faster time response which wiU make the device

applicable in high gain and high frequency operations.
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CHAPTER. FIVE
CONCLUSION



5.1 SUMMARY

Theoretical analysis have been performed to study the electron propagation

process in ultrathin potential microstructures, discontinuous in a plane

transverse to the propagation direction. Mathematical model has been

formulated to solve single as well as double discontinuous channel problems.

The method is developed based on the microwave theories on waveguide

discontinuity. The developed method solves the wave function at the

discontinuities and in the channel regions quite accurately.

An illustrative result is presented in chapter 2 showing the dependency of the

reflection and transmission amplitude of a single discontinuous channel, on the

variation of the channel dimensions. Unity transmission is obtained while the

discontinuity is removed. This shows the validity of the method developed.

Numerous results on double discontinuous channels are presented in chapter

3. The variation, of the channel current on the channel dimensions are

thoroughly investigated. A sharp variation of current with change in channel

dimensions is observed. The interference among various modes controls mainly

the shape of the current variations. By controlling the interference a

consistent variation of current is obtained.

An attempt is made to use the double discontinuous channel as an amplifier

using simplifying assumptions. Some results are presented in chapter 4

illustrating the performance of the device as an amplifier. The

transconductance was found to be reasonably uniform over a considerable
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range of current. Transit time of the order of 10-" sec is obtained. This fast

response along with the high gain might make .the device applicable in various

high speed, high gain operations.

5.2 SUGGESTION FOR FUTURE WORK

The results presented in this work are based completely on the assumptions of.

rectangular potential structure with infinite potential barrier in the transverse

direction. However the methods formulated are generalized and can be applied

to potential structures of arbitrary shapes containing finite barrier. But in

this case the overlapping constants (A ••• 8 •• 1 are to be evaluated numerically

by solving the Scrodinger equations at the boundaries.

The mathematical models are developed assuming an abrupt transition between

different regions .. But in real devices transitions are more gradual. Such a

gradual junction can be approximated as a succession of abrupt junctions. A

set of equations for each junctions can be obtained, then by solving all the

equations as a whole, overall performance of the graded junction can be

obtained. But this procedure will increase the computational time considerably.

The method pres.ented here calculates the eigenfunctions of potential structure

at the absence of any external electrical field. On. the application of the

external electric field the entire potential profile will be tilted. However the

problem of electron transport in the potential structure can be solved taking

the tilting of the potential structure into account.
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APPENDIX A

DERIVATION OF THE EXPRESSION
FOR CURRENT IN REGION II

Current in the channel per unit length in y direction is given by the relation

(4.02 )

f~(".en dlfl)I=';R Iff -. -;- dx
-~ 1m dz

(A. I)

Wave function for region II is given by the relation (3.02). Assuming number

of propagating modes in region II to be I and replacing jk,. by y,. for the

nonpropagating modes we have

(A.3)

"...



The limit of integration of equation (A.l) for region II is from 0 to. b, since

outside the channel electron eigenfunction vanishes everywhere.

Using equation (3.02) and (A.3) in equation (A.l) and integrating we have

eh f- ( 2 2}1=-. L k2n T2n - R2nm n=1

(A.4)

where the symbol 2 means the imaginary value



APPENDIX B

DERIVATION OF THE EXPRESSION FOR
CONSTANTS Am", 8m,

We determine the expression for the' constants Am,8m, considering any

arbritrary rectangular potential structure, shown in figure (B.I).

Normalized wave function "'Ix) for region III can written, using relation (2.25),

as

jr;z . marx-c). 1Jf 3m (X) = \ d _ c SIn (d _ c)

(8. I )

Similarly wave fun'ction for region II is given by

(8.2)

Using relation (3.13) we have



I
"

Figure (B.I). The potential structure for the purpose of calculating the
overlapping constants.



Jd 2 mn(x-c) mnx
B = -;====Sin-----Sin--dx

mn ,.jb (d - c) (d - c) b

(8.3)

Integrating we get

[( )
m+1 nnd nne]Bmn=K -1 Sin-b-+SinT

(8.4)

where

2)b(d- c)bm
K=----------

n[(bm)2- (n(d - eW]
(8.5)

when bm = n(d-c), the expression takes 0;0 form. Using L' Hospitals theorem

expression for 8m, is found to be

fiEJ[( )m+1 mnd mnc]Bmn=- ( ) -1 dcos +ccos--b,d-c d-c d-c

(8.6 )

Making proper substitution, the same expressions can be used for the constant

'.,~

It

Amno
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