ANALYSIS OF ELECTRON FLOW IN POTENTIAL CHANNEL STRUCTURES

DISCONTINUOUS IN TRANSVERSE DIMENSION

BY

KHWAJA MUSTAFIZUR RAHMAN

A THESIS
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC

ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENTSM
F%h N

DEGREE OF &, ﬁﬂ/""‘ _ g “i@
éj"ﬁéso; %

@ ¢ ore ] le ?__

MASTER OF SCIENCE IN ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

IH|IIIIII||||I||I|I||II||HIIII!| |

APRIL, 1990



Accepted as satisfactory in partial fulfilment of the
requirement for the degree of Master of Science in Engineering
{Electrical and Electronic) of Khwaja Mustafizur Rahman, Roll
number 871316P, N

BOARD OF EXAMINER

1. F&U\ﬁy“v Chairman

{Dr. M. Rezwan Khan) {Supervisor)
Associtae professor,

Department of Electrical and

Electronic Engineering,

BUET, Dhaka.

2. ‘/}-ﬂ d\ h@%wl ?' (f ?‘0- Member
(Dr. Md. Abdul Matin) (Ex-0Officio)
Professor and Head,

Department of Electrical and
Electronic Engineering, -
BUET, Dhaka.
0}’ .

3. A Member
(Dr. ,/ﬁﬁahidul Hassan)
Associate Professor,
Department of Electrical and
Electronic Engineering,
BUET, Dhaka.

(Dr. Mohammed Ali Choudhury)
Assistant Professor,
Department of Electrical and

Electronic Engineering,
BUET, Dhaka.

Member

—_—
5. It e Member
{Dr. Ahmed Shafi} (External)
Professor, Department of Physics,
University of Dhaka, Dhaka.




CERTIFICATE

L2915
(9990

This is to certify that this work has been done by me it has ‘not been

submitted elsewherelfor the award of any degree or diploma.

Countersigned Signature of the student

Fha-

{Dr. M. Rezwan Khan) (Khwaja Mustafizur Rahman)




ACKNOWLEDGEMENT

The author expresses his sincere gratitude and profound respect to his
supervisor Dr. M. Rezwan Khan, Associate Professor of Electrical and Electroni;:
.Engineering Department, BUET for his contlnuous ' guidance, constant
encouragement and stimulating suggestions throughout the progress of this

worlk,

The author also wishes to express his thanks and gratitude to Dr. Md. Abdul!
Matin, Professor and Head Department of Electrical and Electronic. )_.Engineering,_
BUET for his all-out support and encouragement to complete the work

succeesfully,

The author acknowledges the help and support provided by his departmental
colleagues. In particular he is indebted to Md. Monjurul Haque in connection

with the preparation of the manuscript of this work..

The author finally is thankful to the Machine Dialogue Computer firm and to
Tahsin Askar, Assistant ?rofessor of Computer Science and Engineering
Department, BUET for providing necessary support in some c'orhputational

process of this work,



ABSTRACT

Potential channel structures having single and dcuble discontinuities in lateral
dimensions are studied in detail. A matrix formulation has been developed'
using the (:on1;i1"1ui1l;3,r conditions for; the ‘electron wave function and its
derivative. It has been shown that the flow of current is very sensitive to the
length and. lateral dimensions of the channel segmehts. Significant vériation of
the channel width can be achieved by applying external voltage in thé
transverse direction which paves the way for the device to be used as an
amplifier. Time response of the device is computed and ig found to be wvery
fast., Dependence of the current on the gate- voltge is studied and the
calculated results are presented. Values of the transconductance for the
proposed amplifier are calculated and a rel_atively high value of

transconductance comparablé to_that of the existing FETs are obtained.
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CHAPTER ONE

INTRODUCTION



INTRODUCTION

Quantum effects have started to play an important role in governing the
behaviour of electronic devices, as the feature size of electronic devices
shrink beyond the submicron level. The wave nature of electrqn must be taken
into consideration while analyzing semiconductor structures, when
characteristic dimensions are comparable to the 'mean free path of electrons.
Prior to the development of modern thin film growth technology, it was
impossible to obtain devices less than 3 pm in sizé, as at smaller sizes
.inaccuracies in the production of photomasks causzed appreciable spréad of
geometrical dimensions and parameters of .circuit elements. Now owing to a
high resolution of optical device and photbre;aists it has become poSsibler to
Prepare structures with dimfensiﬁns of order of a few langstroms. The recent
epitaxial growth techniques,; particularly Molecular Beam Epitaxy (MBE),
Metal-Organic . Chemical Vapour Deposition'{MOCVD) and Atomic Layer Epitaxy
(ALE) has made it possible té fabricate ultrathin semiconductor layers that

are smooth on an atomic scale.



1.1 LITERATURE REVIEW

Sem‘iconductor microstructures such as metal-oxide-semiconductor, field effect
transistor {(MOSFET) and ultrathin p-n-p doping layers have provided
researchers with a tool to study <quasi-two-dimensional electronic systems
"11,2). The electrons are dynamically ltwo dimensicnal in the sense that their
motion is unrestricted in two spatial dimensions but quantized by a confining
potential in the third dimension. The properties of electrons in such two
dimensional structures have been studied extensively by Ando et al [17]. In
these experiments the microstr‘ucture is uéually in the form of a channel which
is terminated at opposite edges by uniformly doped regions in the -
semiconductor that serves asicontacts. In the contact region the electrohs’
dynamical behaviour is bullk like. At the source end, a net current of carriers
is .injected from the central region into the channel;lat the drain a net
current is ejecteci from the channel. Both injection.ahd ejection involve a
change in the dynamical behaviour of' the ele.c:tron,in two and three
dimensional. Thin potential channel structure have been studied by a number
of author's. Datta et af. [3] discussed a new configuratiqn inh which quantum
interferenées occur between two aiternative paths provided by contiguous
GaAs layers separated by an AiGaAs barrier layer, Alternatively, the
conduction channels are defined lithographically on the surface of a FET-like
structure. S. M. Fazlul Kabir [4] theoreti'cally studied a similar structure, but
much smaller in dimension. Two channels separated by a extremely thin
potential barrier ( 15 A) was considered. Gradual tunneling of elecltrons from
one channel‘ to the other was studied irl detail and the variation of tunneling
probabilities on the channel parameters was investigated. The problem of

electron transport across a Junction between two regions with very different




confining potential profiles in the transverse direction was first discussed by
Kriman and Ruden [5}. A somewhat different method was presented by Frohne
and Datta [6]. This method soclves the problem by imposing boundary condition
in some discrete lpoints across the boundary. Waveguide discontinuity
involving diaphragms, strip, change of guide cross section, change of
propagation medium etc., deals with the similar type of mathematics. A number

of such waveguide discontinuity problems are dealt elaborately by Lewin [7].

Ultrathin potential channel discontinuity problem studied in this thesis
" involves the similar fype of mathematical approach presented by L. Lewin. This
method takes the wave function at the interface as the unknown quantity and

by imposing continuity conditions wave function at the interface is determined.

1.2 THESIS LAYOUT

~ Chapter 2 of this thesis deals with the method of anélyzing the problem of -
electron propagation in ultra-thin potential structures, containing a

- discontinuity along the plane transverse to the direction of propagation.

—

Chapter 3 extends the method develop-ed in chapter 2 to apply it to the
potentiél structures containing double discontinuity. Numerous results are
presented in chapter2 and chapter 3 applying the method developed, to some -

definite structures.

Possibility of using the st-ructure is discussed in chapter 3 as high frequency

amplifier is studied in chapter 4.



Chapter 5 presents the concluding discussions and recommendation for future

works,



CHAPTER TWO

ANALYSIS OF POTENTIAL CHANNEL,

HAVING SINGLE DISCONTINUITY

i



2.1 INTRODUCTION

The problem of electron propagation in an ‘ultrathin potential channel,
discontinuous along a plane transverse to the directioﬁ of propagation is
formulated in this chapter. A quantum treatment of the problem requirgs a
knowledge of the spatial distribution of electron wave functions which can be
obtained from solutions of the three dimensional Schrédinger equation. The
solutions are subject t;) the continuity of the wavefunction and its derivative
at the interfaces. Because of the wave nature of electrons, there is a non zero
probability that electrons which are incident on the junction will be reflected.
A semianalytic method has been developed to estimate the probability that the
electrons are reflected by the junction, using the continuity of the wave
function and its derivative at the interfaces. This method solves for the
electron wave function at the discontinuity very accurately. A non-interacting_
single particle picture is adopted here while developing the modei and the
charge carriers are treated in Lhe effective mass approximations. The effective
mass is assumed to be constant throughout the channel. The restriction to a
single mass is appropriate for doping structures in a homogeneous host
material. The length of channel is considered to bé smaller than the electron‘
mean free path so that the phase coherence of the waves is not destroyed by

scattering.

A channel structure having rectangular cross-section is analyzed by using the
method developed in sec 2.2 and the calculated results are presented in sec

2.3.

o



2.2 GENERAL FORMULATION

A potential channel containing a discontinuity in the transverse plgne is
shown in figure (2.01). In the structure chosen, i;he direction of pfdpagation
is considered to be along the z ciirection. The interface, where the cross
section of the potential channlel changes abruptly is arbitrarily chosen at z =
0. At z=0, the channel potential is assumed to. be discontinuous only along the
X direction. The regions on the two sides of the discontinuity are labelled as I

and II.

This is effectively a two dimensional electronic system in which motion of
electrons is confined along the x direction and is unrestricted along the two
other spatial directions. Now, the motion of electron in the potential structure

is described by the time-independent Schrédinger equation [8]

HY =F¥
(2.01)

Where H is the Hamiltonian operator and E is the total energy of electron. This
is an eigenvalge equation, with E representing the eigenvalue and ¥ the
eigenfunction. The eigenvalue E is infinitely degenerate. Since.the dependence
of ¥ on ¥y is not affected by the discontinuitj in potential, we can, without
any loss of generality, assume that k,=0. The wave.equation (2.01) in each

region then separates in the two space coordinates x and z



Figure (2.01). A potential channel discontinuous in the transverse plane,



(2.02)

~ We further assume that the electron motion in the channel is restrained by
perfectly rigid reflecting walls. Energy eigenfunctions ¥{x) are then
characterized by discrete eigen values. "Each of these eigenfunctions in region
I represents a mode {or subband) in x. They are normalized and are

orthonormal with each other, so that

lg

[ v, (x1=0 for p=1.2.3.....

(2.03)

Here ¥ 1n is the eigenfunction of the nth mode. As has hbeen shown later, each
of these eigenfunctions is characterized by a discrete energy level called the
eigen energy of the particular mode. Now an arbitrary wave function ¥,(x! in

region I can be expanded in a series of these eigenfunctions as (9]



(2.04)

The expansion coefficients ¢, can be determined with the help of equation

(2.03)

(2.08)

The total energy of electron E is the sum of potential and kinetic energies,
The potential energy of electron is constant throughout the structure and is
taken without loss of generality to be zero. The total energy E can then be

related to the wave vectors k, and k., as

(2.06)

The assumption of constant potential energy is valid if the carrier densii:y'is
uniform throughout the structure. Here, h is the modified planck’s constant

and m' ig the effective mass of electron.

It is to be remembered that, E in equation (2.06) is the energy of electron



excluding the kinetic energy associate with motion along the y direction.

As mentloned earlier, the motion of electron is restricted in the x direction
‘and corresponding energy assumes discrete values, wit}.x each wvalue
'characterizing a particular mode. This discrete energy level which
characterizes a particular mode is called the eigen energy of that mode. The
fundamental mode has the lowest value of eigen energy and eigen energy of
higher modes goes on increasing in discrete levels. If we define the eigen
energy of the nth mode as EM, then the wave wvector in the z direction for

the nth mode can be obtained from relation (2.06)

=\/2m¥_[£|—£'!n}

k
zin ﬁ

(2.07)

From now on suffix z will not be used to represent the wave vector in the =z
direction, so that k,, will simply mean the wave vector of the nth mode in the

z direction,

If the eigen energy of a particular mode is less than ther electron energy E
then, we see from equation. (2.07) that the mode will have real wave vector &,
and will be propagating in nature. But if the eigen energy is greater than the
electron energy, then the wave vector will be imaginary and the mode will be

decaying in -nature.

10



Like the wave function ¥,(x!}, the wave funetion ¥,(x) in region II, can be
' expressed as a summation of infinite number of orthonormal eigenfunction, with

each eigenfunction representing a particular mode {or subband)

¥, (x)= Zani”h[x]
n=1

(2.08)

Where, as before, all the eigenfunctions are normalized and are orthonormal to

each other so that

gq=1.2.3........
b*q
=1 for p=gq

(2.09)

The propagation vector in region II can be expressed by a similar relation as

(2.07)

(2.10)

11



where, £« is the cigen enargy of the nth mede in region II.

Let us consider an electron of a particular subband. {mode} incident on the
Junction from the left with energy E. Because of the need to match both wave
functions and its derivative at the junction, it will give rise to reflected and
transmitted waves, in all the different subbands. The number of propagating
modes (including the incident mode), that the reflected waves contain,
depends on the total electron energy E and the eigen energies Iof‘ the
different modes. Those modes will be propagating in nature for which the
electrdn energy is greater than the corresponding eigen energy and the rest
of the modes for which the electron energy is less than the eigen energy will
be decaying in nature. Far from the junction the effect of the decaying modes
die out, but they must be taken into account in order to satisfy the boundary
conditions at the junctions between regions I and II. The total wave function
in region I, can be written in context to the relation (2.04) and the foregoing

analysis, as

¥V,ix,2)= ?F,P(x)eh}k'“z+ Z )LMHVH,[.X')Q”C”Z
g=1

(2.11)

Here,the first term is representing fhe incident wave of a particular mode p.
The second term is representing the sum of all the reflected (decaying and
propagating) modes. A,, is the reflection émplitude of a particular mode g

generated from the incident mode p. k’s a.t"e the wave vectors given by the

relation (2.07), As mentioned earlier, the wave vectors k along the z direction

12



for the evanescent modes are imaginary. It is also important . to choose the
proper sign of the imaginary wave vectors in equation (2.11) so that the wave

functions decay exponentially from the junction at z = 0.

Region II contains transmitted waves only, so that the_ wave function for

region II can be written as

~ : -1k, .z
¥, (x, z)= Z T, ¥, (x)e 2
e

(2.12)

Regiq"n II contains no discontinuity to its right so that there are no reflected
waves in region II. Here, T7,, is the transmission amplitude of Vthe ath Iﬂode of
region I1 generated by the incident pth mode in region 1. ki, is the wave
vector of the ¢’th mode for region II given by the equation (2.10). k., is
imaginary for those modes which are nonprdpagating. As in region I, proper
sign for these imaginary wave vectors should be chosen in equation (2.12) S0

that their corresponding modes decay exponentially from the junction.

The continuity of the wave funclion ¥ at Lhe interface gives us

(2.13)

13



Now multiplying both sides by V¥,,ix} and integrating with the help of

equation (2.09} we obtain

Tq,p=f:?[flp(x]?[f;q.(x)dx+Zlqu:il”-lq'(x)v;q'(x)dx

=1

g=1
(2.14)
where
Amn-—-f_ v, ) (xldx
(2.1%)
The derivative {#¥/2z) in region I and II, respectively are given by
ayjf iy , - iky g2
'SET= jﬂ;prp(x)e 4'j§:quaqulq( ) ‘
q=1
(2.16)
and
a;tf” s s ‘ft-z -4
-—j > kT, ¥, [x) ¢
0% Q*Z:| ‘e ¥eT 2
{2.17)

By imposing continuity condition on 2¥/2z at z=0 by using equation (2.14) we

obtain

14



—jk V(X)) kAT ()
qg=1

(2.18)

To hold the above equality, all modal components of the ¥, function in
equation (2.18) must coincide with ‘the corresponding modal components of the

'f” * function.

equating the component of the incident mode ¥,,(x] from equation (2,18) and

rearranging we have

A]P[j > kzq,A,q._.qpq]m:p i) 'kzq.Azq,qu.]

7'=1

+Asl T Z} KogAgg Apg |+
=

+_A'pp jklp+j Z kzq'/qf,q-:l"'..........

(2.19)

Equating the component of any arbitrary nth mode (F..(x)}, when the selected.

mode is not the incident mode we have

15



(2.20)

Our objective is to determine the reflection amplitude is. In order to satisfy
the boundary condition at every point at the junction we require infinite
number of modes to be considered and by equating the rr;odal components
from equation (2.18) we will have infinite number of equations to solve the
infinite number of unknown As. But to solve the problem numerically {on a
computer} we must limit the number of modes and it will be shown later in
this chapter, that, if we consider just a few decaying modes in addition to the

propagating mode we will be able to predict the nature of the ¥ function at

the interface with reasonable accuracy.

If n modes are considered we will have n equations by equating individual
modal components from equation (2.18). Solving the equations n number of
reflection amplitudes can be determined. In matrix form we can write these

equations as

16



Bl'l Blz B]S Bln l,'p C!l
B2l B?Q B23 an 2p C2\
Bpl sz Bp3 . BPP N Bpn
_Bn! Bn2 Bn3 : . . Bnn_]__lnp_J _Cnl_]
where
Bua fk]n'!'jz,k?n“ an
n=|
a=1,2,3..........
(2.21)
BuB=BBa=jZk2nAanBn
n=t1
a=1,2,3..........
B=1,2,3..........
a#pB
(2.22)
Cor=rikip=1) koAl
. . n=1 .
(2.23)

17




Car==7) konApAg,
n=1
a=1.,2,3......... .
a%p
(2.24)

2.3 RESULTS AND DISCUSSION

An illustrative result is presented in this section by- applying the method
developed in section 2.2 to a definite potential structure containing
discontinuity in the transverse direction. Throughout the calculation infinite
potential wall is assumed so that electron wave function v vanishes outside
the channel. Although the calculation is Vl_nade on the basis of infinite barrier,
the method is applicable if the potential wall is finite. But in such case the

overlapping constants A's are to be calculated numerically.

We consider a simple structure of rectangular section, as shown in the figure
2.2. Since infinite potential barrier is assumed, the normalized wave function

¥(x) in the two regions can be written as

(2.25)

18




Figure (2.,02). Transverse dimensions of a potential channel discontinuous at
the plane 2z=0. The channel cross-section is rectangular throughout the

structure.

19



2 ni
WZH(x)=\/_;sin bx forx<b

=0 forx2b

(2.26)

where

win’n?

E, = —F—
2m'a?

In

and

#%n?p?
2m'b?

EIn

Here a and b are the transverse dimensions of region I and II respectively.

Calculation of the overlapping constants Amny defined by the relation "(2.15) is’

shown in ‘. Ap;ndiﬁj

In our calculation we have considered the transvex;se dimension ’b’ of the
second region to be 100 A, energy of electron E to be.140 mev and effective
mass m'=0.1m,, where m, is the free mass of electron.r Thé transverse
dimension of the first region ‘'a' is varied from- 52 R to 100 A. Energy of
electron is chosen in a way such that only the fundamentai mode can
propagate in the two regions. Using the method developed in section 2.2 the
variation of the reflection and the transmission amplitude 6f the propagating

mode with ’a’ are calculated and is shown in the fig (2.3). We see from the

20
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figure, reflection becomes zero when the channel contains no discontinuity (a
= 100 A). Reflection and transmission amplitude are calculated for n = 5 and
20, where n is the number of modes (including the propagating mocie), those
are considered while calculating the two amplitudes. It is found that n=5 gives
a reasonably good result. So we observe though infinite number of modes are
required to be considered to satisfy the boundary conditions, only a few mode

can give guite accurate result.

22



CHAPTER TIHRER

 ANALYSIS OF POTENTIAL CHANNEL

HAVING DOUBLE DISCONTINUITY



3.1 INTRODUCTION:

The problem of electron propagation in a potential structure having double
discontinuities is analyzed in this chéi)'tt‘r. First a mathematical model is
developed extending the solution technique presented in chapter 2 then some
results are presented for different channel structures having double

discontinuities.

3.2 MATHEMATICAL, FORMULATION:

-

Let us consider two abrupt junction in a potential microstructure between
three regions I, II and IIl of dissimilar transverse width as shown in figure
{3.01). The motion o.f electron in the structure is boundéd along the x
direction by potential barriers but is unrestricted along the two other épatial
directions y and z. The direction of propagation is considered along the z
direction only. Region I1 of the structure is of finite length 1 but the two
other regions are of semi-infinite in extent along the direction of propagation.

The discontinuities are chosen at z=0 and at z=l., .

The electron wave function ¥(x) has different distributions &t the three
regions I, II and III. In order to match the electron wave function and its
derivatives at the two interfaces infinite number of modes are needed to be

considered at each junction. Some of these modes are propagating and the

23



Fizture (3.01), A potential ' channel havi_ng double discontinuities in the

-transverse plane.
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rest are attenuating. Though the effect of the attenuating modes die out with

distance from the junction, their effect is significant near the junction.

The me.thod for solving single junction channel problem presented in the
previous chapter, is extended here to solve the wave functions in all the
three regions. Tl.ue wave functions at the respective regions are written in
terms of their decaying and propagating modes, the continuity conditions are
then imposed in order to-determine the reflection and transmission amplitudes
for each region. The assumptions made for single junction channel problem are

also wvalid for our present analysis.

Let an electron of a particular mode a incidents the junction at zz=0 from left,
the incident electron gives rise to ref]écted wave in all the different
subbands, so the total wave function ¥ for region I can be written in terms of

the reflected and the incident waves as

jklﬁz
S la

¥ (x,2)=¥  (x)e T r ) A, ¥ Llx)e
1. :

(3.01)

25



where 1,, is the reflection amplitude of mode B generated from the incident
mode a, the k's are wave vectors and are imaginary for those modes which are-
decaying, ¥,, are the eigenfunctions for region I, they are normalized and are

orthonormal with each other.

In a similar manner the transmitted wave in region II from region I contains
propagating and decaying mod‘es. The number of modes that propagate iﬁ
region II depends on the energy of electron E and tile eigen energies of the
fegion. Region II not only contains these transmitted modes travelling in the
positive z direction but also contains propagating and decaying modes in the
negative z direction. These second set of modes have been generated by the
first set of modes when they are incident at the junction. The decaying modes
in region II generated at each junction will be able to reach the other
junction before dying ouf., if the intermediate region length 1 is not large

enough. So their effect must be considered in both the junctions.

The total wave function at region II can be expressed in terms of these

transmitted and reflected waves as

Vilx,z)= Z Tzwwzy(ﬂe_lk”z* Z Rzywzy(xle-ik’*“_ﬂ
y=1

y=1

(3.02)

26



here T,v is £he transmiss.ion amplitude of the yth mode at junction 1 and R,, is
the reflection amplitude of the mode at junction 2. K., is the wave #ector for
the yth mode at region II and it is imaginary if the mode is nonpropagating.
Tﬁe nonpropagating modes in region II are of grea.ter importance since they

can significa.ntly contribute to the current flow (appendix A).

The total wave function for region III can be wfitten as

?’Uu:(x-z)' ZTM?FM(X}Q"HHZ-H

fi=1

(3.03)

Region III has no discontinuity to its right, so ¥,, contains no reflected wave.

Here T,, is the transmission amplitude of the mode 6, at the junction 2.

To determine the reflection and the transmission amplitudes we impose the

boundary conditions at the two interfaces. We first apply the continuity

condition for the wave function at the two Jjunctions

Applying the continuity condition for function ¥ at z=0 we have

27



(3.04)

or
= L — -yt
¥, Axl ) AL ¥ L xl= ) TL¥ xRy ¥ dxle 77
= v= y=1
(3.05)
From conthnﬂtg of ¥ at junction 2 (z=1) we have
%
v, ix.zl=¥,,{x. 2
(3.06) :
. 3
or
o SRt -
L’_Tﬂhl%) * ZRZ,,VQ,(-\) ZTgyV”[‘c}
v | y=1 5=1
(3.07)

Multiplying both sides of the of equation ({3.05) by ¥:.(x) and integrating, we

get

28
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¥ lx)¥ [x)dx

T2Y+R2ye_}k2”l=f W,a(x)?lf;y(x)dx-v-ZA“f
- A

(3.08)
or
- fkg -
T,,+R,e —A“\+;AMAB,
(3.09)
where
Apn = ] {Vlm(x)ilf;n(x)dx
m=1,2,3...........
n=1,2,3............
(3.10)
Similarly from equation (3.07), we can get
sze_j‘-j;zya_‘_ R::) = ZT:}OI?]/Sé(x)y/;y(x)dx
5=1 - _
(3.11)

29



or
—th'_‘v: -
T,,0 R,y =2 TasBs, )
5=1
(3.
where
an=f ¥ ix)¥l ix)ldx
m=1,2,3.. ...,
n=1,2,3............
(3.

12)

13)

We next apply Lthe continuity of the function 4¥/2z at .the respective junctions

Applying to junction 1 at z=0 we have

(3.14)

30



or

"fklaw}atxy*ji:AHﬂksawnsixJ
K

.‘ﬁ i . = ; - ik ‘,I
=-7) kz,,‘Tz),?{f”lej E ko R, ¥, Mx]e T
y=1

v=1

(3.15)

Equating the modal component of the incident mode from equation (3.15) and

rearranging we have

= < . - kgt
jzk2yT2x"'4i(y_jZRzyR}:_vAaye 7
y=1 ’ y=1

jk]ukuu‘:jkla

{(3.16)

Equating the component of any arbitrary mode ¥,, from equation (3.15) when

the selected mode is not the incident mode we have

-
—

. _ o . “jkg
Jo ko Ty A=) Ky Ry Aye "'+ jk, A, =0
y=1

y={

(3.17)
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Next applying to junction 2 at z=l and using equation (3.2) and {3.3) we have

59’f”(x,z}=a¥f”l[x,z) 7 ;
2z

(e %)
M

(3.18)

or

R . cial e _ = T
_j‘g'“kz"'ThV?"'(x.)e ) +jzk2vR2>'W2y(~'x')=_fZkﬂﬁTsdwa.s(x):;_{j
¥=1 =1 .

v=l

(3.19)

Equating any arbitrary mth mode |¥,,) from equation (3.19) we have

-1 LT . . .
lflkzyTZmeye ? —]ZkaR2mey_jk3mT3m=o

y= y=1

(3.20)

where the constants 4.. and B.. are defined earlier.

The boundary condition must be met at every point along the two interfaces
and this is only possible if we include an infinite number of modes in all the
three regions. But to solve the problem numerically on a computer, we limit
the modes tc a reasonable number n as we have done for single junction. If

we consider n modes, we have to solve for the n reflection amplitudes fo_r
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region I, n transmission and n reflection constants for region II and n
{ransmission constants forr region III. So we require 4n simultaneous
independent equations to solx-?e thege 4n unknowns., Out of these 4n eqgualions,
2n number of equations can be obtained by eguating the modal components-at
the Lwo junctions from equalions (31.15} and {3.17) and the other 2n number of
equations can be oblained from the overlapping integral equations (3.09) and
{3.11}. So the number of unknowns match with the number of eguations, hence

the 4n unltnowns can be solved by selving the 4n equations,
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3.3 RESULTS

The solution technique presented in section {3.2) is applied to some potential
structures to observe the effect of _varying channel dimensions on the current
low. }eecf,aﬁgulal' structures with infinite potential barrier are assumed
throughout. Effective mass of electron is taken to be 0.lmo, where mo is the
free electron mass. The structure is shown in figure {3.02) wlhere 'a’ and ‘¢’
.are the width of region 1 and J1l respectively, b and 1 are the width and

length of region II,

3.3.1 EFFECT OF VARYING LENGTH OF REGION 11

We first observe the effect of varying the length 1 on current, transmission

and reflection amplitudes,

STRUCTURE SYMMETRICAL ABOUT THE CHANNEL AXIS:

A structure is considered which is symmetrical about the channel axis as
shown in figure (3.03). The transverse dimensions are, 80 A for region I, 140
A for vegion II and 80 & for region III. Electl_‘on energy is chosen ‘to be 100
meV. Calculations are made for the reflection aﬁd transmission constants of the
first and the third region respectively, for the first four modes and are

shown in the figure (3.04), the even modes are found to be absent which is
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Figure (3.02). Top view of a potential channel having double discontinuities in

the transverse plane., The channel cross-section is rectangular throughout the
structure.

80° 140A° 80 A°

Figure (3.03). Transverse dimensions of a potential channel with double

discontinuities in the transverse plane., The channel cross-section throughout

the structure is rectangular and is symmetrical about the channel axis.
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Figure (3.04). Transmission and Reflection amplitudes as functions of channel.

length in region II for an electron energy of 100 eV,
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expected due to the symmetry of the structure. For the chosen energy and
dimensions only the fundafnenta} mode in the respective two regions is

propagating, the other modes are attehuating in .nature.
CURRENT IN THE STRUCTURE FOR TWO DIFFERENT ENERGIES:

The variation of‘ current with length 1 in the structure is claculated and is
shown in figure (3.05) and (3.06) for two different energies, 100 meV and 200
meV respectively. We can see from the figures that current for 100 meV ghows
slight variation with 1, whereas the current for 200 meV varies sharply with 1.
At 100 mev only one propagating mode can exiét in region II. On the other
hand two propagating modes (1st and 3rd) can exist at fegion II when
electron energy is 200 me‘V. Owing' to the difference in wave vectors k, the
phase difference of these two modes change continuously with distance.
Depending on length 1 they interfere constructively or destructively producing
the observed wvariation of current. For 100 meV there exists only one
propagating mode in region II and therefore no sharp variation of current is
observed. It is worth mentioning that the shape of these curves are not only
defined by the propagating modes; decayving modes can also contribute
significantly to the current. Moreover amplitude and phase of the propagating
modes are different for different length ], which results in a complex variation

of current.

The variation of the reflection and transmission amplitude in the intermediate

region are also shown in figure (3.07 ), for electron energy of 200 meV.
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Figure (3.05), A plot of current versus channel length in region II for an

electron energy of 100 meV.
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Figure (3.08). A plot of current versus channel length in region II for an

electron energy of 200 meV,
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length in regioﬁ II for an electron energy of 200 meV,.
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We next choose a structure with a=80 A, b=140 A and <$=80 A. Energy E is
chosen to be 100 meV. The variation of the reflection amplitude of the first
region and the transmission amplitude of the third regic;n, with variation of
length 1 is calculated and is presented in figure (3.08). We can see from the
figure that for 1=0, reflection is 0 and transmission is 1. This ié expectgd
since for 1=0 the structure possesses no discontinuity. With the increa;.se of
length 1, reflection increases_ and transmission decreases. The reflection and
transmission amplitudes shown in the figure are of the fundamental mode, the

only propagating mode in the two regions I and II.

3.3.2 EFFECT OF VARYING THE WIDTH OF IST REGION

The effect of varying the width of region 1 is studied in this section. We first
choose a structure with 1=350 A, b=300 A and ¢=90 A (fig 5.02). Variation of
current for three different energies with a is shown in figure (3.09). A -
random variation of current for different energies are observed in the figure.
Decreasing the length 'and width of region II to 125 & and 175 A- respectively,
a smooth variation of current is obtained as shown in figure (3.10}), a
similarity in the shape of the curves for different energies is also observed in
the figure. From the results obtained in this section we can conclude, a
smooth variation of current can be obtained by an effective. choice of the

channel dimensions.

41



1.0 —— —
@ - a=80 A
- b=140 A
e
R c=80 A
= 0.8 - E=100 meV
e R _
o] 1 Transmission amplitude
c ] ——~-— Reflection amplitude
o ] |
= 0.6
U —
o -
g
O —
— —
T 0.4 —
- -
D —
- -
9 -
go2-
E : . —-"’f’
n —-"”
5 I e
= 0.0 I-I-—I__l_—fllll|lllllllllllli

0 10 20 30 40 50
| Lenght 1 (A)

Figure (3.08). Transmission ‘and Reflection ami:litudes as a function of channel

length in region II for an electron energy of 100 meV.
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Figure {3.09). Plots of current versus channel width in region I as a function

of electron energy. The channel width and length in region II are 300 A and

350 A, respectively.
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Figure (3.10). Plots of current x-rersus channel Widfh in region 1 as a function
of electron energy. The channel width and length in region II are 175 A and

125 A, respectively.
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3.3.3 EFFECT OF VARYING THE WIDTH OF REGION II

We chose the structure shown in fig (3.11), where the width of the
intermediate region is varied and effect of this variation on current is
calculated and is shown in figure (3.12). With the increase of width 'b’ number
of modes propagating in region Il increase, sé we have. a strong interference

in region IiI, resulting in a random variation of current.

.3.3.4 EFFECT OF VARYING THE WIDTH OF REGION III

We take a structure with a=80 A, b=140 A and 1=250 A and the variation of
current with transverse dimension c¢ is calculated for_four different- energies
.as shown in the figure (3.13). Current is found to vary randomly. However
reducing the length 1 and increasing the w1drh b, a smooth and consistent
variation of current can be obtained as shown in the figure (3.14). The
structure chosen has a=90 A, b=Z175 A and 1=125 &. A family of curves is shown
in fig (3.15) showing variation of current with ¢ for different energies. The
chosen structure has a=60 &, b=100 A.and 1=250 A. In this case number zof

modes in each of the three regions is 1. Hence there is no interference and

variation of current is not much,
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Figure (3.11). Transverse dimensions of a potential chénnel with double

discontinuities in the transverse plane.
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Figure (3.12). A plot of current versus channel width in region II for an

electron energy of 100 mev,
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Figure (3.13). Plots of current versus channel width i_n region III as a

function of electron energy.
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3.3.5"EFFECT OF CHANNEL POSITION VARIATION

OF REGION 1 AND REGION II1

We finally observe the effect of the channel position variation .of the 1st and
ard reéion, on current., The structures those ‘h}'ave been chosen are shown in
f'igure (3.16). Since the two structures are identical the effect of channel
position variation on current should also be id;entical. From .fig (3.17) and

(3.18) we observe an identical variation of current for both the cases.

3.4 DISCUSSIONS

From the results obtained in this chapter we see current in a structure can
be varied widely by wvarying different dimensions of the structure. The
intermediate region in between the two discontinuities plays the most
important role in the variation of current. The interference between different
modes in this region governs mostly the shape of the curves. Moreover the
decaying modes in this region also have a denominating part on the current,
they also contribute to the current flow. The discontinuities give rise to cross
coupling of the modes which may result in a higher amplitude of the reflected
wave compared to the transmitted one. This cross coupling along with the
interference of the modes control the magnitude of the current. The most

important feature of this current variation is that, by a prop-er choice of
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Figure (3.16). Potential channel étructures used to study the effect of varying

the channel positions in regions I and III on the current.
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channel dimensions the interference between modes can be controlled and a
consistent variation of current for different energies can be obtained which

can have interesting practical applications.

b5



CHAPTER FOUR

POSSTBL.E DEVICE APPLICATION

-



4,1 INTRODUCTION

From the results obtained in chapter 3 it has been found that for certain
choice of channel parametersi, variatién of current in the channel is consistent
with the wvariation of dimensions. As mentionea earlier, this wvariation of
current is mainly due to the interference among various modes in region II
{(fig. 3.02). Choosing channel dimensions properly this interference among the
modes can be controlled. The channel dimensions can be varied by applying
voltage externally. If the rate of change of current with respect to the
applied voltage is large ﬂxen the device can be used as an amplifier.. The '

possibility of using the device as an amplifier is studied in this chapter.

4.2 A PROPOSED AMPLIFIER .

The basic structure of the proposed amplifier is shown in figure 4.01(a). Two
gates are ﬁ placedlon the structure separated by a distance l. With the
application of negative voltage (considering n type channel) at the gates,
channels near the gates will be constricted due to the charge depletion. An
abrupt depletion layer is éssumed (fig. 4.01 b) and the change in potential
profile is considered to be rectangular (fig. 4.01 c}. Hence three distinct
segments of channels are obtained having different widths. In figure 4,01 (b)

a and ¢ are the width of the channels at region I and region IIl respectively

b and 1 are the width and length of channel at region II.

We have seen in chapter 3, the interference of different modes in region II

determines the shape of the current variation. In order to avoid an erratic
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Figure (4.01a)., The basic structure of the proposed amplifier.
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Figure (4.01b). A schematic diagram illustrating the effect of gate voiages on

the potential profile of figure (4.01a),
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Figure (4.01c). The assumed potential profile.
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variation of current resulting from interference among various modes, number
of propagating modes in region Il is reduced to some controllable number.
This can be d'on.e by reducing the width of this region thereby lowering the
probability of higher mode propagation. Length of the channel of this region

is also chosen to be small in order to control the phase of the interfering

modes.

Choiée of the width of region I is also importﬁntt Reducing the cﬁannel width
" adequately, probabilities of higher mode propagation can be lowered
<;011siderably. Only the fundamental mode is considered to be propagating in :
region I, Highef propagating modes are avoided since the phase constants of
the incoming higher modes are unknown. However reduction of the channel
width of region Irwill also reduce the current flow, hence width of this region

must be chosen carefully.

Abrupt depletion layer which is assumed earlier, is not practiéally achievable,
In practice formation of depletion layer is more gradual as has been shown in
figure 4.02 (a). The assumptilion of.- rectangular potential profile is also an
approximation. The actual potential profile will change gradually with x, as
shown in figure 4.02 (b). However a sharp depletion can be achieved by
increasing the doping density inside the channel. The analysis that follows are
based completely on the assumption of abfupt depletion and rectangular

potential profile.
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4.3 MATHEMATICAL FORMULATION FOR CURRENT

Wave function ¥ in the channel can be written as

?}’=¥fx(x)§Vz(z]
(4.01)

where wave function ¥ has a spatial distribution in x (bound in this direction

by potential barrier), is propagating in the z direction and is invariant in y.

The probability current s in the channel is given by the relation {11]

s=m(w‘ h,vw)
2im
(4.02)

where

-0 .2
V=l—+j—+ 9

Ax ay Az

and ¥ stands for real part.

Since ¥ 1is invariant in y and is bound in the x direction, current per meter

of the y direction is given by

60



=, ¥ =)
Rjn(w;w;)dx en [ )w(z)
- 2im° 9z

(4.03)

since ¥, is normalized the integral

'f%WLWde=1

(4.04)

Using the relation (3.01) current in the channel for a particular mode n can

be determined as

(4.05)

where k,, is the wave vector in z direction and A, is the reflection amplitude.
This current is contributed by a single electron having a wave vector k..

Actual current contribution of the electron having wave vector k,, can be

! calculated by multiplying equation {(4.06) by the number of electrons available.

Actual number of available electrons can be determined from the knowledge of
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the density of state and the Fermi Dirac probability of occupancy.

The two dimensional density of states changes by m'/rn, [12] (fig. 4.03) at
each energy £.,. for which a new subband appears. For the fundamental mode

density of state g(E) is given by

(4.0éj

‘where E is the sum of the kinetic energies due to the motion of electrons in y
and z direction. It is interesting to note that two dimensional deﬁsity of state

is independent of energy.

According to Fermi Dirac distribution the probability ofl occupancy with total

energy £, is given by

1

|+ QfE,—E,-]H:T

flE )=

(4.07)

where E; represents the fermi energy, k is the Boltzmann’s constant T is the

absolute temperature and £, is the total energy of electron given by
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‘Figure (4.03). The two-dimensional density of state function.
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E,=F+F,

(4.08)

here £, is the eigen energy.

Total number of electrons available over an energy element dE is given by

MEWdE=f[§JgMWdE

(4.09)

For a given wvalue of k., k, can vary from 0 to <« Hence the absolute
propagating constant k can be expressed as x=/tL+ k!, which makes an angle 8

with k. as shown in figure (4.04}). From the figure, we can also express k as

(4.10)

[J‘rf,n/cosf}']:'i‘i2

2m'

+ F

in

(4.11)
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Figure (4.04). A diagram illustrating the relationship between wave vectors in

different directions.

65 -



Using relation (2.06) we have

E,=E_/cos’0+F,,
(4.12)

where F, is the energy of electron due to the motion. of electron in the z

. direction.

The total number of electron having =a propagation constant &;. in the =z

direction and making an angle 6 in the k diagram {(4.04) can be expressed as

N(E)dedE ,=g(E,)f(E,}JdedE,

(4.13)
Hence, numberlof electrons having propagation constant k,, is
r/2
N(Ez)dfz=[f_ Rt E,)f(fc)}de]dfz
(.4. 14)
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current contributed by these electrons is obtained by multiplying "eguations

(4.14) and (4.05)

"2 dedE,

dl= gh,g(E,)kln[l -3 2)f

2m (Et"EF}”‘T

?!/2-1 +e

Total current in the channel is now given by

1=20 71 g(E, )k [1—i‘ﬂjmu L de |dE
2m’Jo g #AAn nn -nt2 1_,_9(5:‘5;)’” . *

TIME RESPONSE

(4.15)

(4.16)

The ultimate speed of operation of the device will depend on the time required

for the wavefunction to reach its steady state value. The total charge enclosed

in the device divided by the rate at which charge is flowing will give the

build-up time [13]

[T ew omenasaz]a

? I
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4.4 RESULTS

The structure we choose first has the dimensions b=200 A, 1=100 A and c=120
A. The signal is applied at thé gate at region I. In our calculation we have
assumed a doping density of 2x10”cm™*, an effective mass of 0.067m, and a T
of 300° K. The location of the fermi level with respect to the conduction band

edge can be determined by the relation [14)

N,
E.=~kTIn N

(4.19)

taking the bottom of the conduction band to be zero. Where N. is the effective

.density of states in the conduction band and N, is the doping density.

The calculated values of the channel current as a function of channel
dimension is shown in figure (4.05), The dimension axis of the curve can be

converted to a voltage axis by using the relation [15]

(4.20)

which relates the width of the depletion layer x to the gate voltage V. Here ¢,

is the relative permittivity of the material of the channel.
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Figure (4,05), Calculated current as a function of channel width in region I

for a doping density of 2x1017 cm~3,
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While calculating the gate voltage contact potential between the gate and the
channel is neglected. Rescaiirng the dimension axis of thg figure {(4.05) in térms
of the applied voltage, the variation of current with the gate voltage is found
as shown in the figure (4.06). The linear pbrtion of the curve in figure (4.08)
can be used to amplify a signal without appreciable distortion.
Transconductance gm calculated from this linear portion of the curve is found
to be 1600 ampere/volt per meter length in the y direction. Considering a
lgngth of 1 micron in the y direction gm is found to be 1.6 ma/volt which is
reasonébly a high wvalue and is comparable to the transconductance of the
field effect transistors. A time response of .0885 pico second ris obtained for
the chosen parameters, This fast time response will enable a high speed

operation of the device.

Changing the doping density of the current structuré‘ to 4.7X10"em™® g
variation of current with the channel dimension is calculated and is shown in
figure (4.07). The corresponding variation of current with the gate voltage is
" shown in figure (4.08). Transconductance calculated from the linear region of
the curve is found to be 1800 mho per meter. Time response is also calculated

and a response of .08836 pico second is obtained.
The next structure we choose has the dimensions a=100 A, b=200 A and 1=125

A. The signal is applied to. the gate at region III. The assumed doping density

is 2X10” em™, The variation'of current with channel dimension ¢ and applied
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Figure (4.06). Variation of current with voltage applied at the gate of region 1

for a doping density of 2x10'7 cm-3,
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Figure (4.07). Calculated current as a function of channe! width in region I

for a doping density of 4.7x107 cm-2,
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for a doping density of 2x1017 cm-2
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111 for a doping density of 2x10!7 cm-3,
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voltage 'V is shown in the figures (4.09) and (4.10) respectively.
Transconductance calculated from the curve of figure (4.10) is found to be

1076 mho per meter.

DISCUSSION

When channel dimensions and other parameters (doping density, channel
material etc.}) are chosen carefully, the device is found to exhibit high

transconductance and faster time response which will make the device

applicable in high gain and high frequency operatibns.
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CHAPTER FIVE

CONCLUSION



'5.1 SUMMARY

Theoretical analysis have beén performed to study the electron propagation
process in ultrathin potential microstructures, discontinuous in a plane
transverse to the propagation direction. Mathematical model has been
formulated to éolve single as well as double discontinuous channel probléms.
The methéd is developed based on the microwave theories on waveguide
dizcontinuity. The cieveloped method solves the wave function at the

discontinuities and in the channel regions quite accurately.

An illustrative result is presented in chapter 2 showing the dependency of the
reflection and transmission amplitude of a single discontinuous channel, on the
variation of the channel dimensions. Unity transmission is obtained while the

discontinuity is removed. This shows t}_le validity of the method developed.

Numerous results on double discontinuous channels are .present';ed in chapter
3. The wvariation. of the channel current on the channel dimensions- are
thoroughly investigated. A sharp variation of current with change in channel
dimensions is observed. The interference among various modes controls mainly
the shape of the current variation.s. By controlling the interference a

consistent variation of current is obtained.

An attempt is made to use the double discontinuous channel as an amplifier
using simplifying assumptions. Some results are presented in chapter 4
illustrating the performance of the device as an amplifier. The

transconductance was found to be reasonably uniform over a considerable
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range of current. Transit time of the order of 10" sec is obtained. This fast
response along with the high gain might make the device applicable in various

high speed, high gain operations.
5.2 SUGGESTION FOR FUTURE WORK

The results presented in this work are based completely on the assum'ptibns of
rectangular potential structure with infinite poténtial barrier in the transverse
direction. However the lmethods formulated are generalized and can be applied
to potential structures of arbitrary shapes cohtaining finite barrier. But in
this case the overlapping constants [A,, B8..] are to be evaluated numerically

by solving the Scrodinger equations at the boundaries.

The mathematical models are developed assuming an abrupt tranéition between
different regions. But in real devices transitions are more gradual. Such a
gradual junction can be approximated as a succession of abrupt junctions. A
set of equations for each junctions can be obtained, then by solving all the
equations as a whole, overall performance of the. graded junction can be

obtained. But this procedure will increase the computational time considerably.

The method presented here calculates the eigenfunctions of potential structure

at the absence of any external electrical. field. On. the application of the
external electric field the entire potential profile will be tilted. However the
problem of electron transport in the potential structure can be solved taking

the tilting of the potential structure into account.
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APPENDIX A

DERIVATION OF THE EXPRESSION

FOR CURRENT IN REGION II

Current in the channel per unit length in y direction is given by the relation

(4.02) ' f

(4.1)

Wave function for region 1I is given by the relation (3.02). Assuming number
of propagating modes in region II to be 1 and replacing jk.. by y,, for the

nonpropagating modes we have

oV i{x, =)

t : . | _-2
Az == ZkznTznyfzn(x)Q_jkznz"' ] ZKQRRMZI’“(X)Q_M“” ]
= _ i

I n=

= “Yap ¥ = _'mt - 2]
- Z )’2nT2n¥f2n(x)9 . Z YQanV:n(x)Q Yaml!

m={+] m={+ |

(A.3)



The limit of integration of equation (A.l) for region II is from 0 to-b, since

outside the channel electron eigenfunction vanishes everywhere.

Using equation {2.02) and (A.3) in equation (A.1) and integrating we have

t
I= eh: Zk’ln{TQn - Rzn 2}

n=1

3

¢33 [Yane (T s Ron RonT o) ]

m=1i+1

{(A.4)

where the symbol § means the imaginary value



APPENDIX B

DERIVATION OF THE EXPRESSION FOR

CONS’]‘.‘\NTS Af."m, [} BH\P-.

We determine the expression for the constants Am:Bma considering any

arbritrary rectangular potential structure, shown in figure (B.1).

Normalized wave function ¥(x)} for region III can written, using relation (2.25),

as

(5.1)
Similarly wave fup'ction for region 1I is given by
2 nmx
¥, [x)= /iSin ,
Vo b
(8.2)

Using relation (3.13) we have
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Figure (B.1). The potential structure for the purpose of calculating the

overlapping constants.



mnr(x-c} | mrx

d 2 .
anzj:JBF;:thn (d-c) S 5

(B.3)
Integrating we get
nrd nic
Bn,=K|{~1)™'Sin——+Sin——
ma [( }™" ' Sin . *Sin— }
(3.4)
where '
2yb(d-clbm
nl(om)*={n(ad-c)}?]
(B.5)

when bm = n{d-c), the expression takes 0/0 form. Using L' Hospitals theorem

expression for B,, is found to be

B . =~ _ (-1)™"'dcos
bld-c)

+CCcos

mimd minc
-C d—-c¢

(B.6)

Making proper substitution, the same expressions can be used for the constant

4 A
. .
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