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Abstract

Possible similarity solutions for free convective laminar three dimensional
boundary layer {lows over an inclined vertical curvillinear surface, h;y(E,1) > 0,
h2{&m) = 0, hs{E,n) =1, are discussed in different situations. The three dimensional
boundary layer equations are considered in the curvillinear coordinate sysiem and
the relevant partial differcntial equations are transformed into ordinary differential
equations by similarity transformations. The results thus obtained have a graphica]
illustration for different values of controlling parameters, the Prandt] number, Pr of
the fluid, teinperature power/exponent, 111, scale Taclors power/exponent, n,

a constant, ¢, and the angle & ( angle between the Z-axis and the horizontal surface).

Finally, the graphs and tables are displayed with discussion.
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Introduction

There are essentially three factors which govern the natural
convection process, the body force, the temperature varialion in the flow
field and the fluid density variation with temperature. Until recently, in
studies of this mode of heat transfer, these factors were considered to be,
respectively, the gravitational force, temperature differences and normal
density temperature variations as encountered in such common fluids as oil,
waler and air. Such considerations correspond to rather restricted practical

applications of the natural convection process.

However, an increase of one or more of these important-physical
factors should increase both the skin friction and heat transfer associaled
with the natural convection phenomenon. Currently, there are many
practical situations in which these factors can be increased greatly beyond
the previously considered limits. For example, in aircraft propulsion
systems there are components (such as gas turbines and helicopter ramjets)
which rotate at high speeds. Associated with these rotative speeds the large
centrifugal forces similar to the gravitational force, are also proportional 1o
the fluid density and hence can gencrate sirong natural convection flows.
Further, in nuclear power applications, very large temperature variations are
cncountered as are also unusual fluids whose density temperature variations

may be more favourable for the natural convection process.

Laminar [ree convection from vertical swrfaces (flat plales and

cylinders) has been studied extensively when the temperature of the surface



R

is uniform. The case of uniform heat flux rate at the swlace, which is
sometimes approximated in practical applications, was first discussed by
Sparrow and Gregg[1955]. An exact solution has been obtained for Prandtl
numbers in the range 0.1 to 100. He published many papers [1958 - 1961]

on natural convections.

Ostrach [1953] analyvsed the new aspects of natural convection heat
transfer. He studied the MNow between two parallel infinite plates oriented to
the direction of the generating body force . He [1954] later worked on

combined natural and [orced convection laminar flows and heat transfer of

fluids.

Yang [1960] studied the unsteady laminar boundary laver equations
for frec convection on vertical plates and cylinders. He established some
necessary and sufficient conditions for which the similarity solutions are
possible. He dealt with steady and unsteady cases, but numerical works

were found absent 1in his work.,

Merkin [1969] started his work on free convection in early 60°s of
this century. He studied first the buoyancy effect on a semi infinite veriical
flat plate in a uniforin stream. Consequently,he[1985] showed the possible
similarity solutions, then analysed the effecls of Prandtl number. He
continued his research related to prescribed surface heat flux with Mahmood
[1990] and the conjugate free convection with Pop [1996]. Cohen and

Reshotco [1955] worked on the sinilar solutions for the compressible



boundary layer and Eckert and Jackson [1951] worked on the fice

convection on turbulent Now.

Recently Lee and Lin [1997] studied on trausient conjugate heat
transfer relating the heat condnction inside a solid body of arbitrary shape
and the natural convection around the solid. In their computational work,

they utilised Cartesian grid system.

So far knowledge gocs, no atlempt has so far been made for the
similarity solutions related to free convection on three dimensional surface
with curvillincar coordinates, The similarity solutions for forced convection
for three dimensional case was studied by Hansen [1958]. He presented
similarity solutions of the three dimensional, laminar incompressible
boundary layer equations on a general basis of analysis. Restrictions on
potential flow velocity components and coordinate system which lead to

similarity solutions were given in a table.

Stmilar to Hansen, Maleque [1996] studied the possible similarity
solutions of Combined forced and free convective laminar boundary layer
flows In curvilinear co-ordinates, Zakerullah ete. [1998] displayed the
similarity requirements for orthogonal vertical curvilincar surfaces in

tabular form

The similarity solutions of free convective three dimmensional laminar
boundary layer flows in curvilinear coordinates is more complicated in

comparison with that of two dinensional boundary layer flow. In the



present study, discussion 15 confined about the free convective three
dimensional boundary laver flow over an inclined vertical curvilinear
surfaces, The three dimensional boundary layer equations are developed for
the curvilinear coordinate system and the relevant partial differential
equations are transformed to ordinary diflerential equations by similarity
transformations. The set of transformed equations are solved numerically to

predict some essential flow parameters.
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Chapter-1

Flow configuration of the problem

>

w

Free or natural convection flow arises under various reasons in
nature. When the density variation of a particular fluid around heated or
caoled object comes into play, a buoyancy effects, in general, is generated.
Due to this effect heat is transferred from the surface of the ohject to the
{luid layers in its neighborhood and then the body experiences friction due
to velocity generated by the buovancy effects,

Once the position of the edge of the surface, which is also to be the
origin of the co-ordinate systens, is decided, there are two combinations of
the body force direction and the surface thermal condition that will yield
flows that proceed away from the edge. If the edge of the semi infinite
surface is taken at the bottom of the surface (i.e. the surface extends to +w
perpendicular to the g-direction), the two combinations lcading to flows in
the proper direction are : the body force acting downward with a heated
surface and the body force acting upward with a cooled surface,

The present problem is concerned with the three dimensional
boundary layer {ree convective flows about an inclined vertical orthogonal
curved surface. The investigation has led to the development of a



technique somewhat difTerent from that discussed in two dimensional case,
which permils the systematic study of the conditions governing the
existence of similarily solutions. In this problem, the coordinates £ and 1
arc considered to lie and be defined in the surface over which the boundary
layer is flowing, while Z extends into the boundary layer. Here we restrict
ourselves hi{&.n}=1, so that { represents an actual distance measured
along a straight normal from the surface. The surface is such vertically
inclined with the horizontal surface so that it makes an angle & with the
horizontal surface. The body force is taken as the gravitational force

-F= (—- .8, ﬂ). The surface thermal conditions are not uniform and the

temperature variation along the surface T = T {E,n), is greater than the

ambient constant lemperature T, . This temperature difference generates
velocity as well as thennal boundary laver over the surface,

L

»*
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Governing equations :

The free convective flow about an inclined orthogonal veriical curvilinear

surface are governed by the following equations :

continuity equation :

7 7 2
%(h:u]+%(hjv}+;%(hjhzwj={]} (1.1)

¥- momentum equation along the Z- direction :

udu v Cu Fu  uv Fh ouw & v +wt | Fhy
LRSI +2C hi)- -
hd& hén &0 hh Fn RA, T b, ) 8E
Ll g i, (1.2)
hy &&

v- momenturo equation along the - direction :

p[iﬂ.,. vov, L W af | ww i(hthzj_[u‘+w"}§_ﬁl]

——tW— '
h & by Py & by & ARy & hyh, an
18 1.3)
== 4 + vz s ( -
B, Ly, T HY Y

w- momentuin equation along the £ - direction :

uds vew  dwo owwdy ww d [u4+v| @

——t——t W+ =+ — — (A A}

hy 2% By On & Ak, &5 Ak O hhy, & |
=—%§+p?3w, {1.4}

=



Energy equation :

lwear vor  dr
S sl =k VT4 1.5
‘ip\_h,ﬂf h, & &L ’ué (1)
- . 2 .Iir = = _':' 1.6
where v? = —— iL;—I'-iJ Tﬁi(—i’ufr—) +%((h]hﬁ ip) \ (1.6)
h | ZEVR &) dplh A S0 T A

and the dissipation function

g (0] (2] s s s )

N [5{?‘121{) s EJ(hlh:w)J: 2 (5{??21/«) , Ol | ()Y

w

B¢ ae 3 a¢ T 8p &

For simplicity, we set h{&.n)=1, so that { represent an actual

distance measured along a straight normal from the surface. As a result of
this simplilying assumptions only the choice of the two remaining surface
coordinates £ and 1 needs to be made. The &, 1 axes of the curvilinear
coordinate systern are along the vertically orthogonal curved surface and £
axis nonmnal 1o it. The thermal differcnce of the surface and ambient fluid
generates the free convection flows. We assume that the viscosity and
thennal conductivity coefficients are constants.

In our case, heating due to viscous dissipation is neglected and fluid is

considered sieady and incompressible.




Since the equation of state plays a vital rule for a Muid, we consider this in

general fonm as

p=p(P.T), (1.7

For small change the above equation may be expressed as

dp=[£] dP+(ﬁ—‘ﬂr] dT
ar ), ar),

(1.8)
= plK dp- p, dr]

where K =l{(§]:| is the isothermal compressibility coefficient
2 r

and £, :_l[;_pj is the volumetric expansion coefficient
IS P

From the volumetric expansion, the relations may also be derived as follows

(@Y __\(p-p,
= = | = &L=, 1.8
R A
= p—p, =—pATE = —p i OAT, (1.85)
F—T_=AT8H, AT=TF, -T7., (1.8¢)

for ideal gas , in fact 4, =TL.

=

The boundary conditions to be imposed on the present problem: may be
determined as follows -

(a) ‘The fluid must adhere to the surface ( the no slip condition).
That is , mathematically for the surface
u(g,n,0)=0=v({Em,0), (1.9)
(b) The iemperature of the fluid at the surface must be function

of £ and 1 ( non-isothennal surface):

T(En0 =T, &0}, . (1.10)



() The flutd at large distances from the surface must remain

undisturbed :

u(Sn,00)=0= v(.n,0} (1.11)

{(d) The temperature at large distances {rom the surface must be
equal to the undisturbed fluid temperature
Lt, . T(E 75} = T.(= const.), (1.12)

The terms  pg,, pg,. represent the body force components exerted on

Muid particle. The pressure gradients in the &- & n- directions result from
the change in elevation up the curved surface. Thus the hydrostatic

conditions are,

1
h &%

1 4P
= = PuBe

h ok

+p.8,=0.

1aP
h': 4:"???_ Jﬂmgp??

similarly, —

Thus the elimination of pressure terms yields the equations (1.2), (1.3}, (1.4)

as,

Hod v O & w Ay ouww & v: e w? ) A

Tt Tttt (R ) - —

2 R & bk Op R G0 hhy S &
=(p-p. g + ¥, (1.13)

10
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Similarly,

& v A & ouv A vw @ (ut +wt )

————— e = (k) - | =

R &8 h on &b & hho& T k. &
=(p~p.)g, + 18, (1.14)

sz S v A B A o A (e &
——t—— + W = 4 - —{hh)
(o & R By A iy G hh gy \ hh )&

oF o (1.15)

=——=+ FILA TN
5

respectively,

Introducing the expression g—p_ =-p 4,6 AT in equations (1.13-1,15),we

get,
A v v cii A it )
— =t w— —{F] B E
h & h, on & Ak (9!} hh kA, GE
=—p D0 ATR, + 4V, {1.16)

vd vaAd& H ow h, ovw S w +wi |
——t——tw— — () - —
hy &  h, &n f:"!"* hA, .c?ﬁ hh, &

=—p £,0 ATz, + 4V, (3.17)

e I TR 1L A uw S v (Wt v &
1 . O _V‘H_]_|Lf v]a{h];h}}

— - w4
hoGE m Ay & mhy, G5 R dn N ki )&
2] -y
P (1.18)
dg

11



We now introduce the fellowing non-dimensional variables,

T_~ T_7 =_g
E=—=, =—, ==
- L 7 L L
- ¥ - v = W
H=—=, V==, W==—,
L £ &
P P B (1.192)
.pm -IHI:I kl:l
- Ry — _ £
gg——!:zq—j
I- T I
0 Fi
T T, AT

where I and U= g f, aT(&p)L(&,n) as some relerence length and

characteristic velocity gencrated by the buoyancy force, Introducing (1.19a)

inte the equations 1.1), (1.16),(1.17), (1.18) and (1.5},

we obiain the [ollowing non dimensional equations:

continuity equalion:
%{hzﬂw Z (kW _{hh ) = (1.19)

u-momentum equ ation:

N AN v AN -ou - ﬁl HW ..:9 vz +T &h
h] ,{:“é: h: (??; (’?é’ Llh f?f? IIIJ&) ﬁ’g’ h|h1 5\.’?

=

5 2 A 1.20
(- gEE?]*—I» l & h é‘u L& , mﬂ*_i hjhgﬂ—i , { )
R, c'?‘a_'," h cr.ﬁ é‘r;r i, dn, 80 &g

12



V-mOTIentium equatinn:

e R o R
u vV aGY = ov 5?1 1y w o+w |
=t =t W = _{h] .,:I' —
.{?l cE i dn o i, g’_ff .;? L A A, Jen

_ L N
=(—9§5)+i;! 1 L_Lh—g)+ [h WJ szhh ﬂJ
Re | b |28\k 8] &nq\hy on) aC\ "7 a

w-momentum equat lon:

- = - - — — = -2
[12+L2+¢2+W ST V*VJ4m1

W PE B dn . ae R GE | Ry g

8 1 1 [S(méw) 5(hiw) o Sw
=——— 4= = e | —=| ———= [+ —=| . —= ||,
T8 Re |k |52\ B 62 ) eq\m on ) oC 5
Energy equation:

_ Hﬁ a, m+;@]+{iﬁ{1nan 7 AT — JlnAT)

koot kop A b éE Mmoo ar

:EL_”“"‘HJ (h-:ﬂ 5[ @J
. R [[“g[h ag] n h;m;J a hi}ﬁéf}

Lo R, F{lnAT) L E A c?(]nf_'iTJ Wi, r:?(lnﬁT}
c?.:f B FE r:'?; by &n 5"{ 5C

i f AT LI,
Here R, = Ut _ ('"' 8 br )L is the Reynold’s number based on fluid
1Y 1"

velocity generated by the buoyancy effects.
The boundary conditions in dimensionless form are

#(E,7.0)=v(F7.0=0,

(& 7.0=1,
B, 7.0) =V(, 7.0y =0
O(E. 7w} =0,

(1.21)

(1.22)

ﬂ

(1.23)

(1.24)
(1.25)
(1.26)
(1.27)

T



1£ & be the boundary layer thickness, then the dimensionless boundary laver

thickness is 3:%«:«: 1, since L>>1,

Now in order to determine the boundary layer equations, we have to
eslimate the order of the above equations {1.19 -- 1.23), so that very small

terms can be neglected,

Since 22, 2% -'5—1 ad is of 0(1), so by equation of continuity (1.19),
as o g &n
— is of 0(1).
g4

Since ¢ is of 0(5), so that w is of 0(&).

Let &, be the thermal boundary layer thickness, the conduction term

becomes the same order of magnitude as the convectional term, only if the

1
R, B

F
thickness of the thermal boundary laver is the order of (%) ~

In view of the previously obtained estimation for the thickness of the

velocity boundary layer & ~ -1—, it is found that

JR:
S V8 & & 1
A O JRRT L JR T s B

Assuming that /n, h; and all their first derjvatives is of (1),

14



setting the order of magnitude in each torm of equations (1.19-1.23), we get

equation of continuity

Zha u)+ﬁ,(h )+ E(Eﬁh W) =0

i 5

(0 — {) {1 (1)

U - Inomentumn equation

wiu vu — c?E 2y chy ;; g voew h,
—+ ——— W ={Ah.1- —
h fjr§ h.. &n c:rr”' f’.rha, .f;jl? .ra”.! .;2 &e - s :Irlfr, ;:?é—'

@—> @ D (1) (1 ()
v | afh, du b Su W Ay
= (- - o et P N L2
-0 g " R 1Ay {05(31 a§]+:§'q[hz c??;r,]+¢/'[ L,.J + A, g;f}
—2 1 | J
1 & 1 ] - —_
() (1) (1) = =

vV - momentum eguations

(1) R ) WS S ¢ ) SN ¢ ) WS 5 W
P I I - (5(;?&)[ J &y
=(-F oo ] - _ -
(-og,) Ry | hh, {Eﬁ(h, chJran(k ﬁr;J 5L \or A, 5{2}
O & ) ) nm o+ 2
& 8

15



W - TNOMEniun] egquations

S v Aw —Ew I R N e

L& 1! I’.:"W H'H 1 TH F I 4

[— + ad " —J—[ ]—(h,hz}:|
-~

—+ W

hog: h fm & hh AE hh, Bn | kb |00
Q)= (&) &y () (5 (5)
__ Ll v aihowl dh ow i, 22 o, 2|
B R, Wb | 2E\ Rk BE ) En\h &n C”‘f &y &g
(2,=0) @) 3 @ % [%)
=-L o)
e[

Encrey equ Ation

— HE 5 589~ _H?{u AnaT) | v a{lni*aT}Jr;ﬁ(mf.T}H

i ]

PCr TS .
b2 Iy ifn F¢ B & FI: & &L
(=1} (1) 1y 1y (1) {1 (1} (0
P H é (hz 5&) [h é‘ﬁ] & [ 59)]}
—_ J— — |4+ — — h]hl—_
PR B | GER FE) Sn\h En) O ae
) (1) (1 (1)
. ﬁj [h ﬂ(]nm‘"}] é [h_ aumr)] 4 [}h A a(xn_ﬂ}] -
lf" Y an\h &n 7l & s
(1) (1 (0)
—oCp Eﬂi R i, £§(1”§T}+j— (InAT)
hoBE b Fn AC h & hy Ay
(0)— (1} {1y (1) (1) {1) (1}
_ K 1F§[h pﬁ)] [ﬁé&?}_c}{hh]é‘ﬂ Ham
PR, hh ko SE ] Snlh én 6L 8¢ ae?
@n 1) () S
81
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r.:‘

&E

\.

[ it r{lnj? )] [h g{lnjﬂj
WA 2N i !

(1} (1]

s

Neglecting the terms higher than order of & and & and omitting the dashes,

we obiian,

1.28)
—(hm]*—(h v)+ _(th w)=0, (
5 o
R P I L) T g v 2, ()
W oo A& ki Ry & hy & N
wd vy A& w Fy, oww @ w o v (1.30)
Tt tw— ot = — ) —— =t ==b g +Vv—,
h, &5 JI 77 f::f wh, G5 Wk, & kb, & ' 7
and
ud v AN ié‘(ln&?}_kl&{lnai’"ﬂ:ié‘ﬂ?, (1.31)
k& h g a4 hoo& ok, &g | DG
where £ =~ —% 15 the Prandtl number of the fluid,
K
The boundary conditions are,
u(§.n0) = v{g. 5,0y =0, (1.32)
8, ml=1 , (1.33)
u(g.no)=w{,ne)=0, (1 ‘34}
O, 70y =0 . (1.33)
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Chapter-2
Similarity transformations:

Equations (1.28-1.31) are non-linear simultaneous partial differential
equations. Our aim 1s 10 reduce these equations to ordinary differential
equations in order to predict some essential flow parameters,

Guided by the idea of the similarity analysis and following the
method of Hansen [1958], the variables & , n,  be changed to a new set of
variable X.Y and ¢ , where relations between two sets of variable arc given
by :

. S__¢
X=%, Y=pandg= : 2.1
7 e ¢ y(X, T} 21

y(X.Y} 1s thought here to be proportional to the square root of the local

boundary layer thickness. From equations (2.1), we have ( by chain rule )

the following expressions :

g & ¢ 7
Rl L - (2.2}
AL 82X ¥ ag
d 4 & &
—— = —ﬂ?r? , (2.3)
cn &Y y' o g

7 1 & A4 2
L2, &. 2o =L2—§_2. (2.4)
I Y ac” ¥y pg

Let two stream funclions w(£.7,&) and P&, 7.0) be defined as the mass flow
components within the boundary layer for the case of incompressible
viscous flow. To satisfy the equation of continnity, we mnay introduce the

components of the inass flow in the following way,

I8



v, =, ‘?‘ff: Iy (2.5)
and =, +ﬁ,’} = h

In order to seek the similarity functions, we introduce the following
equations,

. - _ (2.6)
DJU( Y70 = FOLE.d)

where I7 = J¢f, AT L represent the characteristic velocity (maximum)

generated by the buoyancy effect & L denoles soime characteristic length.

Similarly we are allowed to write,

" _ " (2.7)
— da=5XF,
EIU{X?},} ¢=S(X.Y,8)

In attempling separation of variables of F(X.Y,¢).S(X.Y,¢) and 8(X,V.9),

it 15 assumed that

F(X,Y.8)=L(X.Y)F(g)

(2.8)
S(X, ¥, )= M(X.FIS($) (2.9)
B(X.Y,8)= F(X, 1)@ (2.10}

where F,Sand 8 are the functions of single variable ¢. From (2.6} and (2.7},
it 18 found that

© —

LR =IF;,

g 0 (2.11)
—u=ULF;

& y —E.EE;

14



Theretore,

.
G
b, =h:u:v—#=h3u

]

zgz_Lﬂ:L_ﬁ[EJ

U kU8 b, 82\
=;i(£)
by (X, Y) g \U
=_ﬁ_[_w_]
Go\hyU)
“u = ¢ gl — 1 =
—_-dn;ﬁ= —"_-{ _]ﬁ‘r = _[ (X,F, - X,Y,U
!U Djﬁé T il ) - w(X,Y,0)]

From equation (2.6), (2.8} and (2.12) , we get

F(‘)‘,? }’43) = 1 :(E [W{A’! }r,g] - W(X }'ﬂ:lJ

ry

= L(X,7)Fg)= hﬁ;g[:;v(X,}'-E)—w(X,I’,GJ]

A

= w(X,Y, 8y =hyULF(g)+w{X,Y,0)
Similarly,
FX,7.6) = hyUMS(@)+HX.Y.0)
and

= —(y; +$:.)

= —[}IEYEIF(;}L - ;r'l/,;' (X: Ysﬂ) - Ihi ?’EH@)]:? _ﬁ;(xa YE}

= [y ULF( )], — v (K.Y 0)+ vfjr th,y UL (R )

~[hyUMSIP N, — ¢, (X,¥,0)+ % y, [7UMS(E Iz

(2.12)

(2.13)

(2.14)

(2.15)



If # -0, then

w, (X, F.0)=— P L

B2

[ 5 (X.Y.0)+ & (X, £.0}] (2.16)

If the surface be porous, wg represents the suction or injection velocity

nonmal to the surface. Since U is independent of &, so U5 =0.

Thus the equation (2.13) becoincs,

Bw =—(hyULF), +£;«, (hyULF), ~(hyUMS), +ﬂyv (UM )= + by (X .Y 0)
¥ ¥

= —(hyULY, F + 9y M ULF; — (hyUM), § + @y h UMS3 + hh,w( X, T .0V, (2.17)

The convective operaior

i= 1 hﬁui+hlvi+hlh,w—(;—
dt hm | & U ap VY A

in terms of new set of variables X, ¥ and ¢ may be derived. The convective

operator in terms of new set of variables &, ¥, ¢ is

d 1 ———_ & ——= & 1 — = —— = g 1(2.18)
e | R UL Fi—==+ R UMS, — ——{hyULY F+ (k)i - R hw, — 1
" F?,h:[?" #ﬂ,'[' 4 # a7 ;V{ 2y ULY . (M), § hth_Hﬂ}ﬂ‘?ﬁ]

In view of equation (2.18), equations {1.26), (1.27), (1.28) become,

RO, == Y(YRUM), — — oyt = —a
—..-..-._.:_..FF +—r‘5jq — . F - LFI' .-_F;
hhy w i, A a (L)

Eﬂ[@* o };-; ¢ UM, 2 (2.19)

_ i }r" -
Se = —— b S —ELI=—p. A ATEH=
h, N T R 7 A ATE=0,

Ve t

oL A




TTAL _ a Irr P — 1 ——— —_
vSsw +-—?’(:”TEUM)* SSg + LUy ‘:fL )2 FS33 - pw, Sz u;—(UM}],S;

1772 1772

(2.20)

a Efz . a
r LL) F—'*g—ﬂ?gnﬂfﬁTﬁ=ﬂ,

UL UMy P .
7 hh, UM "¢

o RS
B | UM h1:| e

%5;; L 7UUL)y F, +L;w)*'§§a — 07 —?‘;ﬂ[(mﬁ?)x +({InaT), [Fs9

v 1y by L

- ?’;IL_M [l ¥}, + (lnar), [5;6=0 {2.21)

The associated boundary conditions are,
U(X .Y 0)=0=F{0}=5;(0), .
w( X, Y.0) = —w,
where w, 1§ considered to be the surface suction or injection velocity for the
curved surface. For the impervious surface we may put w,=0Then from
(1.10} & (1.33) we have,

T(X.Y.0)= T (X 1)
= B(X,V,0)= N(X,D)e(h=1,
Fx.n=1, and B(0)=L

In order to satisfy the boundary conditions {1.32) & (1.34), without loss of
generality, we pul,

L=M=1.
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The boundary conditions at large distance satisfy

ULF (w)=0= F (=)=
UMS_(w)=0= §, (x)=10,
arnd (=) =10,

Thus the two momentum and cnergy equations become:

— — ]—.. [—
1’FEEE+—{'yh Uy FFy+ —‘/(?h‘m* SFs—

h P wi, F 33 AT Fi
o 1772

VB 1+ ZU D g5 YORUL FT L S [U)r 53
2

wrraiT oo l— — z
—*”; {”_j‘% 2l ]F;S,a hf iy I %gaﬁ?ﬁ?"ﬁ:ﬂ

H__ 3’(!;1 '["'}.1 Ep ME;HP -y 5;} ——{IﬂﬁT}A F*‘ﬁ
) hh, hh, Ay

277 _
—:"; (Ina7), $:6=0 ,

1

with the boundary conditions
(0 =5(®=0 .
F () =5;{w)=0
F(=1 O(x)=0,

(2.23)

{2.24)



The coefficients of FF; & 58 in (2.22) & (2.23) may be expressed as

J“()”hzﬁ)x =_]‘. (?:E +’Yz(h2§)}f —y Uh. —-l— _
B, 2 A ), Ik A,

i }'(]}".r'U}} =l U +T_(h:U)r —?'E-"Th1 .L_
PP 20U h ), Rk Ay Jy |

Thus the momentum and energy equations become:

— 1 — 1 —— — —:
vF;ﬁ+5{a,] +d, —a:)FF;;+E(a3 +ta,-a)8Fp-a,Fa~a, Fy

—{a; +a,)F35; +am§§ +a,0=0 (2.25)
VS35 + é{ag +a, - as}Efga + _;, (a, +a, - al)F_S;; - aﬁ;g - aaﬁ
—(a, +a,)F;3 85 + agf‘-: +a,f=10 {2.26)
By +%(au +a, —a,)F 0% +%(a; +a, —a,)885 ~ a8 —(a,Fi+a,S5)0=0 (2.27)
where the constants «'s with the differential equations involving the
independent variables X and Y are given by the following relations :
PRATE L
= T (2.28.1)
X
2 farh
y i KAT2ER),
= (2.28.2}

A W
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» VoL
K AT [
a,= yKAar
;12 1
i ¥
[ - R S
o v (hKAT-L7),
* hh
p
. 01
%=rhmT"’5f1L—}
'I"Iihl ¥
G =¥
A Ik
K TP,
? =
f
. TRt
Y& AT,
a; =
A
- L
_FKATRE Ry
hy A
y v Y
YK AT Iy
=
A hy
?ngf)ﬁi ﬂr}:
B T
K17
}f'
_ Vg, A AT?
12~ ¥
KL;Z
AT
a”:—(l r'e
h
"
- KM—'J;LE .
g =-/2_'—"“U'M)}’

7,

— fo
where K=¢'Eﬁr_ and U=«_."gﬂrf_"~.TL=f{hT’}2£:2.

(2.28.6)

(2.28.7)

(2.28.8)

(2.28.9)

(2.28.10)

(2.28.11)

(2.28.12)

" (2.28.13)

(2.28.14)

(2.28.15)




Similar selutions for{2.25)--(2.27) exist only when all the «'s are
finite and independent of X and Y ;that is to say that all #'s must be

constant. Thus the boundary laycr momentum and energy equations will
become non-linear ordinary differential equations if
AT(X.Y) B{X.Y). h(X.¥)and »(X,¥) satisfy equations (2.28).

To find AT(X.T), h(X.¥7) h(X,}) and y(X.Y) in different situations,
we first ignore the suction or injection effects, i.e. 4, =0.

['roin the expressions for o's, we have,

xAThLS ]
a+a =y B (2.29.1)
L AT
g, +a, =y |~ (2.26.2)
hl ¥
From {(2.28.1),
AKATLE || kAT KA1
hy=|——— | =¥ |—— | *¥H——
h A A
Ay
2=ty a3 ;
= = 7y Wy T T (2.29.3)
KAT L2
Similarly, from (2.28.4),
h,
= 2y :ﬁ(ﬂa —dy _ﬂsJ (2.29.4)
KM".-’ZL.-"E
By virtue of (2.28.1),
VoY

VK ATE?

—— =g, X +A[T) (2.29.5)
where A(Y)is either constant or function of Y only.
Differentiating (2.29.5) with respect to Y, we get,

“ v i
dAY)_| FRATE |k
T ‘E[ﬂz —a,—a,+a,-a,) . (2.29.6)

¥




Similarly, in view of equation (2.28.4),we get

a LI l.-
yKATL? ,
———— =g, Y + B(X) (2.29.7)
where B(X}is either constant or funcltion of X only.
d
and %zg[% =&~y T (2.25.8)

Taking the product, we get

dA(Y) dB(X)
a¥ =~ dx

= [ﬁr.-:-l - ﬂ'4 - CIS + aa - ag].[an - Iﬂ] - ﬂ'2 + ﬂ-’ - ﬂ-!ﬂ] (2.29.9)

The forms of similarity solution, the scale factors
AT{X.¥Y, H(X.F), h(X.¥) and y(X.Y)depend wholly on the equation
(2.29.9)his situation leads to the following four possibilities :

Casc (A): % =0 {(comst.), dB;f] =0 (const),
Case (B): % =0 dif) =0

Case (C): %‘:}:’:u “’if}in ,

Case (D): %zﬂ %ﬂl
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Chapter-3

Study of different similarity cases:

3.1 Case A:
Let 4{) = ¢onst.
dy
dd  k
:'E=h_j(”3 —d; —@s+a;~dy)
= k1
where ==k and /| =a,-a, ~a,+a,-4a,.
|
dBY) _ ¢Oonst.
dx
:ﬂ—i{a -, =yt )
dl’ h': I 1 2 7 10

&
K,
where /. =g, —a, —a. +a, —a,,.

I

AWV = k1Y + 4, amd  B(X)=-LX+B,

Now from (2.28.1) and {2.28.4). we have

y KAL)

- = a, X + A(Y)

1

where L=1L,, along X -axs,and L=7L,, along ¥V - axs

yIKATHA LY
h,

and =a,Y+B(X)
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(3.1.2}

(3.1.3)

(3.1.4)



y2KAT 1L f Y KATZLG  q X + A(Y)

Hence ,
l A, a, ¥+ B(X)
Lié @ X+ LT+ 4
— .I:é | = ,|ir2
L, a.F +-— X+ By
= k}
-

Uf a X+ kT + 4,
;'é LX+a,kY+k B,
If welet. /, =a, and ], =a, & 4, = & B, then we get,
Ly =1, =L=a,X+ka ¥+ A{constant). (3.1.5}
Threfore. {3.1.3) & {3.1.4) becomes,

o {3.1.6}
?’_j:é;??;'L— =d,A + k]aﬂ ¥+ 4 (constant).
1

and o, + e, = a, —a,

ﬂ+ﬂ:2ﬂ'

I 7 -

Now from (2.28.10),

= },ZKﬁT}'f:L}E hl:‘
: Ay my

I3 hy ask, a, kia,
= h—:agkj - y ]/ = . - ,,
: VIEATAL) au X +hay+ 4 a;|aX+haY+ 4

= RXLP) = b (X0 X +ka,Y + A]s
Similarly, from (2.28.11)

h(X.Y) =k (V) a, X + ka,¥ +‘A]%_

. (X,
In order to the requirements 2(£.7) =k, {const.), we have to set Ml:k“
By (X, F) K, (X)
g a; :



letag,=a, ko =5, A=aX +b},
x=X+ X
y=Y+¥.
Then we get, A, (x. 1) =(ax + )",
and A.{x,)) =k {ax + &)". {3.1.7}
Now from, (2.28.8) & (3.6). we get

(FKATALR) [y kaThrhh a
b5

7

] i1, g, X +ka,F + A4

(RAT"DY), o 2,
{R’!_*LT’IEL’I?E} - a, | g, X +kat+4 .

= (KATP I Y= (ax + by)™ where mr= 2L,

al]

1 (ax +b}}"_-m—l {3.1.8)

i

= AT =

v KATE [
From {3.1.6), — =g, A +kaf+ 4

1
=y = {ax + by (3.1.9)

Substituting, the values of y° ATVL A &k, we gel the values of a’s, e,

a, =a, a, =1, -
n 6 a, :H-—If::air'c:)ﬂﬁ{ﬁa}')
a,={m+na. | a, =ma, &
_ -8
(, = —2na, g = ﬂb apn = 7 =£asj_n:5(say}
5 A (3.1.10)
o= ‘ 1.
3 AI . b G, ={(2m-1)a
q _—
) a__M. k, ﬂtdz{z’”_”%+
k, L
a,., = Ha
2nb
d; = e
k,
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where & is the angle belween the £- direction and the horizontal surface.

Hence the transform cquations (2.23), (2.26) & (2.27). reduce to

VFas: 4= (Cn+m+ DaF i —E—%(.’in - ijiS_F;a - maF 5
“ I

*(”T‘”}%FEES +naSs +acoss.g=0 (3.1.11)

1

g 55 I T b =2
VS + %(3” T 1}%:‘:5;; +2 (303 m+ DaF S5 —%S;«

o b ,
'(”H”)ﬂFSSE+z—bFE +asind.8=0 (3.1.12)
L
Y s+~ (3n+m+ DaFO; +~(n +m+1) 565
Mo ln 1 13
_Pr L 2 L3 2 kl @
— b= (3.1.13)
_{2??1— 1)|:HF$ +L_S;i|€: [}
1

In order to simplify the above type of equations, we substitute,
F=af.S=zas, 0=0. g=ao..
The constant ¢ can be defined later so as to provide convenient simplifications in

the above forms of equations. Thus the above eguations are changed to

,

3nem+1Y ac’ m4+m+1y b o’ mac” .
-‘{www'l-( J ﬁw+[—J_—gr - I
1

2 v 2 kovw % Vv
2 T 2 3.1.14
—{m+njia—fwsm +rma—s; +acossZg=0 & )
ko ov 15 v
S +(3n+m+l]£a_lﬁ J_(Bn+m+1]ﬂa_3ﬁ —@a—:f
oo 2 k,ovo® 2 T
: . - 3115
winemy 2 s +£Ei-‘3~—fw- +asing.Z-9=0 ( )
1% k| v v
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Se+m+1Y et n+m+1y b ool
o +(‘ 9 +(—-—)—-—.ﬁ'6‘
T 2 J p 78, 2 kv O F

R aert b oo {3.1.16}
—I:Lm'-' ]][T fw + E-“;‘Sm]az ]

1

b e
Choosing °? -4 and k—zc,and k=1, then the final form of the similarity
v ld’

solutions stand as
Fre2@n+ma N +es)f —4mf? — 4(m+ n)ef ¥ (3 L.17)

+4ns'? +(cosd) =10

e 2(3?1 +ms 1}{“{ + cj-)_g" — 4}?’?3’3 — 4(}?‘! + ”}f&’

+4ncf'? +{sind) f =0

(3.1.18)
PO 4 2(3n+m+ D + e —42m -1 "+ s} =10 {3.1.19
with the boundary conditions.
FOy=rm=0  f'=)=0Q,
(0 =5 (0)=0  s'(0)=0, (3.1.20)

#0) =1 B(ea) = 0.
Now
Rz =a"(x+a).

2m-1
a
AT =T (x+ey¥*™"  where I,= T
g4

n+l-m

}’ =a.l.+'|-m(x+f}:)

For n=0, m=0.3, ¢=0, 6=0 and f=s, the equations {3.17}—(3.19} with the boundary

conditions coincide with the free copvection Flow of air subject to the gravitational



force about an isothermal. vertical [al plate. analysed and verified experimentally
by Schmidt and Backmann [1930], which was also discussed by Ostrach [1933].

If we choose n=0 . then this case coincides with case (D). If we choose n=0.
m=0.5, ¢=0, =0 ,then the problem c¢oincide with the most noteworthy of the more

genera) analysis miven by Sparrow and Gregg [1958] for the power law case.

The transformed equations can be solved with the help of the controlling parameters

ucC .
P, c.m, n,and & . The Prandtl number Pr —Tp depends on the properties of

the media. For air at room temperature P, =0.7, for water at lemperalure EZDF:

P.=7.0. for O1l, P,=1000.

The sunilarity variable @ is

&2 g AT (x + )’

42 2

where, the modified Grashof number, Gr,, =
W

The veleily components

= Ef’(;ﬂ}

V= I,_fs“{;:r} where [J = x."l(gﬁ;-ﬁ?"(x + o)
i — — = — = =

and w=—— |~ (rar T} F o Oy xh, UF 5 = (hyT), 5 4 Gy TS5 + i, |
17

m=pr]
- _H,:(41,ﬂn,-n)}£(x+C},) [fw}(fﬂé) (#)@(fucs')}.(m.z])




and the stream functions are

. % In+m+1
v =(4va’"”") '(I+C_].) : f((_?jl
!r') L ENIAY |
P-4V (x+a) * o) (3.1.22
Skin fmictions are
Si=n=] IE13.111--'.-
T =_,r,4s{x+cy) : l.l[ Ay S (o)
S e (3.1.23)
J."I:ﬂ'- a =H .
T —.H(x"‘f{l’) - ‘]'i[ 4 s{0)
and the heal transfer
|
o ’gﬂTﬁTﬁi[&ﬂ“
QH =K TL _L A or 5\‘3‘}0
o
[ - ][aﬁm—z_\'/ﬁ{ L)ﬁn:nﬂ-(@) 3194
__gﬁr 4vJ X+ ) g u (3.1.24)
50 the heat transfer coefficient is
Nul},
- §'(0) = — {3.1.25)
(Grly)
where the modified Nusselt number , Nu_ = dulx* )
¥ w AT

and primes denote derivatives with respect to the similanty variable ¢.
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3.2 Cuse B:
Let adir) = const. M
dx

= corst.

A,
Let == const., thena,-a, —a, +a

s~y = 0=1 (say)
i1,

and a,—a, —a, +ta, —a,, = {, (say)

Let h, =1, 4, = 0 and &. = h,(x), then from (3.1.6}, we pet,

11 7
Y KAT?[? =a X + 4 G2
Now we have, dﬂ(/_n = a b2, —a,—a, +a, —ayl= —'L“-
. it (x)
= BAy=1, |——=X (3'2‘2}
(X)= J TS
Again, form a, = —
? 1
y KATA L .
L -4, F+B(X)=BX), Since a, = 0.
1, (X))
= pEATE L = p (00, N (X dX [By using (3.2.2)]
dx [By using (3.2.1 (3.2.3)
= a, ) [By using (3.2.1]]

(I) Choosing A =0, we get

a, X+ A=, b (X

h(XJ

I-' e

]=a2

= hi{&Xt=(a,X) *.



L

1

= h(X)={a,X}. Joru=1-—
: a,

where a, = {0 is an orbitrary constant.

y*( kAT %)
3

I

Agdin, ftom a, =

By using {3.2.1), we get,

(Kﬂ\TH Llféj
x o O A=0,
Kﬁ?'ﬁl}é ﬂ{,}f ’
asm—|

By choosing L=a,X and m= iy

= AT =7 X" "where, T, = ——
i} LR 1 K_, 1 aﬂ

Thercfore, ¥* =g, X'™.

Theretfore, the constants are,

by =y, a; =0 8e
g, =—-—=ua,cosd
' g
a, ={m+ma,. | 4, =ma,,
g_
d. = —Hiy, ay =0 au:——"‘:nﬂsi_nﬁ
£
a, =0, a, =1
a,; = (2m=1)a, y
a, =0 &y = nay (3.2.4)
thy = U
a, =—0

where 6 is the angle between the £- direction and the horizontal surface.

The corresponding equations are

= 2 . e —* — _ o
I3 Tc e = 2
& aae + |:2”+—T'}-i|ﬂu F.EZ; -—(m + H:jﬂ'u F&S; +a, sind =10 (3“6_)
] (3.2.7)

Lé;; + %FE‘; —{(2m- IJQHFEE =0

2n+m+l}



In order to simplify the above type of equations, we substifute,

2

F=af,S=wus, 8=0. =ap. and choosing 225 =1,
1
We get,
f’”-l-[n‘i'mTHJﬁ”—mf'l+HS’E+(CDSE}E?={] (3.2.8)
-
S”+(n+”:J]ﬁ”—(m++ﬂfﬁ’+&m5]9=ﬂ (3.2.9)
Pr_lfi'"+[11+—m; l)fb"—(ﬁm—l}f't?:[} (3.2.10)
With the boundary conditions,
FAQ=r00=0  f'ec}=0,
(0 =50 =0  sex)=0. (3.2.11)

80} =1 Hoe) = 0,
If n=0, m=0.5, & =0. then this equations is similar to the problem dealt with
by Schmidt & Backmann |1930].
The transformcd equations can be solved with the help of the controlling

parameters P, m, n, and 0.

The similarity variable ¢ 1s,

1

K : a ,
g —[“—”] Z_ =[”“ &fr MJ —Z __ghZ (32.12)
x

ay v ! P

1
{aax)T (ﬂnsz

VE

where, the modified Grashof number isGr_ = (‘m—ﬁhj
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The velocity components

u=0f o)
¥ = {Ts'l{@:}l where {7 = .,Jrgﬁrsh'ﬁ: (3.2,13)

1 —_ —= - —_— . —
and w= H[' {hy T}, Ft gy UFs - {hy T}, S +¢rh US3 +Fr]h:w{,].

1712

:}-qy:@5@ﬁx%{[”*ﬁﬂ+gf_[l;m]gf}, (3.2.14)

4

The equation (3.2.10) & (3.2.14} is independent of s because of
AT —variation in this case is free of y variations.

The slream functions are

Wex 2 rlp)

2+m
v ={a;

1/ m=l

p={ay )" x 7 s{g] (3.2.15)

Skin frictions are

Im=] / m

ﬁfIT'\i al f”{ﬂ)

|

|
" v

o (3.2.16)
g

L= HY 1 1lI|| LV.S‘ {0}

and the heat transfer

g =-ar{ A7) L(2)

L rxé‘;r.rb

(&)
- &5 b p

Hence the coeflicient of heat transfer

Nu :
Sg0 =— Nu, = E;; (3.2.17)
(er)”'

1]

where primes denotes derivatives with respect to the similarity variable .
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(i} If we choose a, =0, A = arbitrary constant,

then 4=1. h{4) |;{ﬂ’
} A (AT}

= h(X)=e 4 .
- ny "'ir"
= h{Iy=e", for n=——=.
) A
Now from (2.28.8)and (3.2.1) with a, =0
(kAT 1)
s

A _ 0

[K.iT}EL%) A

1
= FKATYIY =™,
Iml 1
= AT=Te where, T, =E‘:, where L=1 (jet).
M4

.
¥ o= Arg

Therefore, the constants become,

a, =0, a, =0 g;

¢ ¢ a, ==——d4=Acosd

a={m-md, | a, =m4, £

a,=-nd, g = 0 G =——L A= Asiné

a,=0, ay =0 ) (3.2.18)
? d; =2mAd

a =0 ay, =nd

! a, =0

a, =0

The corresponding equations are

(3.2.19)

viTaag +

Vi +

Aﬁ;; —mAF3 + HAE% + AcosS0=0

AFS3; ~ {n + n]AF;E; + Asind#=0
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(3.2.21)

B33 + {? + H}AFE; _ ZmAFEE =0

r

where 8 is the angle between the E- direction and the horizontal surface

In order to simplify the above type of equations, we substitute,

K

F=af,S=as, 8=6, ¢=cp. and then set a4 =1, we get the final fonm,
Vv
5
f"’+(f.,i+”)ﬁr”—f?gf'2 +n5't +(cos8)¥ =0, (3.2.22)
5+ (i;i + H]ﬁ'" —(m+n)f's' = (smHHE=10, (3.2.23)
Plg s @ + n) JO - 2mf " 6=0, (3.2.24)
with the boundary conditions,
F=700)=0  fle=)=0,
H{H=s(M=0  s{eo)=10, {3.2.25}

F0y=1 H(wo) = (.

If n=0, 1n=2 and & =0 and f=s, then the problem may be comparable with the
problem discussed by Ostrach [1964].

The transformed equations can be solved with the help of the controlling
parameters P; m, n, and o .

The similarity variable ¢ is, -

== Z=Gr'.z (3.2.26)

Z (gﬁ, Mﬁ

40



The velocity components

u =T {p}
v =Us'{ ) where, I = Jgf AT (3.2.27)
and w = k];q[ (U} Fady UFg—{hyU} S+gr.mUSs +iyhyw ]

i ?x ‘fE + -
I (V]}ZE' [L ;12 m]f_i_[?} o f':|- (3.2.28)

The equations (3.2.24) & {(3.2.28) are independent of s because of
AT —variation is indcpendent of v.
The stream functions are

+n1x

w={v 2 fle)

0 }'53?5(,;,] (3.2.29)

Skin frictions are

4
T, = ade ? J;f "(0)

o — (3.2.30)
Tw" =;UI-AE o ,ﬁsrr{ﬂ]
B Vv
and the heat iransfer
—mr( 2f. M"] A [a&}
e/,
(3.2.31)
e R
g8, sy
Hence the coefficient of heat transfer
N WL
- {0 = u"l where,  Nu, = q“—,' herel = 1=
(Gr )xﬁ kAT

4]



33 Case O
Let dA{}) N dB{ X))
4 ek

= COTLE]

= COIAET.

h
Let E'—# const,, then a;-a, —a, +a, —a. =1, (say)

and a, —a, —a, + a4, —u,; =0

Let & =~ (¥}, a,=0 and A, =1 then from (3.1.4), we get,

S KATE [T (3.3.1)
JT =a,¥ + B {constant)
™ow we have, dd(¥) = h_~ I = _E.'._
dar o R(Y)
= A(¥)=1 I_L_ J¥ (3.3.2)
By ()
_ S KATY I
Again, from g, =| —————
JE?l
.
y RATH 1 |
= _?—zﬂnX+A(Y)=A(Y) : Since «, = 0.
L
= a, ¥+ B=] h{¥) jﬁ dY [By using {3.3.1} & (3.3.2)] (3.3.3}
1

(T) Choosing B =0, we get

@ ¥ =1 k(¥) Iﬁ% ar
|

{
= m()=(a,¥)" for n=1-—, where a, =0 is an arbitrary constant,
- a,




, ;
y‘[Kﬁ.T“Lé L}l)

3

Again. from o, = .

By using (3.3.1}, we get,

Lo
(K’&T'EUJ}

&
L : = : L e B= ﬂ'
Kaphpn a. ¥
Zri-1
LT a,
= AT=TY"" where T, =TT

Therefore, y* =a)"¥"".

Therefore, the constants are,

ay =0,

a, =0,
G, =0,
a4,=4a,.

iy =(m+ iy,

Ac = =hl;.
g, =0
a.=0
d, = md,.
dy = 18,
€, =0
E:
a, =—— =g, cosd (s}
£r
o
E .
G, =——=a, siné (say}
iy, =0

a,, ={2m— l)aﬂ

: , u
, By choosing L=a,F and m=—"
iy

Where & 1s the angle between the £- dircction and the horizontal surface
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The corresponding equations are
vF s + %—(Er:r + B+ i)nzﬁaﬁ —{m=+ }r]a3FE§; +a,casd =10

1@;;; + %(En +m+ 1]{:3E33 - maj% +a,sing =10

Vo=
—If;'.;.,g. -+

F

r

(24 m+1)80: ~ (2m~1a,§:6=0.

2| —

In order to simplify the above tvpe of equations, we substitute.

a1
—=].
v

F=af,S=as, #=0, ¢ =ce. and choosing

We zet,
1 3.3.5
f”'+[n+m: ]sf"—{m+n}f’S'+{cosé'}9=ﬂ ( )
1 o 3.3.6
.!.'”'+(n+m; ]Ss"—mx" +{sindy =0 (5.3.6)
Fr_lt?”+1(n+ mgljsﬁ“-(imu—])s“&':ﬂ (3:3.7)
kN
The boundary conditions are,
f=7F0=0  Fi=)=0,
AN =s(H=0 s'(e0) =10, {3.3.8)

G(0) =1 () = 0.
The transformed equations can be sclved with the help of the controlling
paramelers P, m,n, and §.
The similarity variable ¢ is,

’ |

X 2 ]
z a, - z a, g AT |1 z sz
NEN LI BT R

v ¥

{3 * (':I:-..}‘]i

1

z 3N
i . a;“gfr ATy 14
where the modified Grasholnumberis  Gr, =( 80 z 4 J
k" ¥

-,
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The velocity components

u=Tf {o]
= _J;'{ﬂ:'} ‘l."."h&l‘ﬁ, F:ﬁgﬁr.,ﬁ]’}' . (33*1{})
1 _ = - — = = ——
and = [ {ry T} F o B UF 2 - (T}, 5+ 8, 055 + Iy |
L1
- m,zl'é "?T4FK211+FJ1+1J (]—m] r_ 3311
= —14_(a3|) ¥ L 5 s-l5 ) esTt (3.3.11)

The cquations {3.3.7) & (3.3.11) are independent of the streain [unction f
due to the reason that AT —variation depends only on v.

The stream functions are

1 PMLEFLED

ml .
A= {af"‘"‘)}é}’ 2 S((p} (3.3.12)
Skin frictions are

im-1 Er]
m Iﬂ3m

ful = 'ﬂ ']IJ : ‘1||| V fﬂ{ﬂ} L | Fal
Sm=h im (-J-J-]J)

T.=HV* e S”(D}

bl - '||‘ .

and the heat transfer

] m{ﬂﬁl[ﬁ]
‘?‘n, = _L- J o ﬁqﬂ .

(e
gl jh 4v J T s

Henee the coefficient of heat transfer

MNu
-0y = yy where, Ny, =-—= {3.3.14)
4

(GrJ J | -

where prime denote derivatives with respect 1o the similarity variable .
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(i) If we choose @, =0, DB = arbilrary constant.

then (5.3) implies.

: 1 .
.B:f] h]{}} md},
1 E

Ir
Ly

= h{l}=e®,
= h(N=¢" fDl‘n=—f—].
[ - B

Now from (2.28.9) and (3.3.1) with g, =0

(xarh %)
., Ay HH

Kﬁjr}ff_}{ - B

| 1
- a
= KAT2I:=¢" where m=--.

If we choose L.=1,

- 1
AT=Te™", where. T, = ek

m}

and ;fz = fe”

Thercfore, the constants become,

a, =0,
a, =0,
a, =0,
a, =1{.

a, ={m+nB..

a,=-nAh.

a, =

a, =

i, =mb .
a, =nf

iy =

46

{3.3.15)

(3.3.16)

(3.3.17)



B,
a),, =— £: = Boosd {sa)
£
a. = m—gl = Baind (sav}
£
a; =1
a,, =2mb

The corresponding equations are

V355 + %{m +2mBSF 5 — (m+n)BFS; + Beos& =0

U +%(m + 28) BSS3 —mﬂf% + nﬂFi +BsinS =0

¥

— 5+ i{m +2nBST; — 2mBS:8=10.
P 2

¥

In order to simplify the above type of equations, we substitute,

T

F=of,S5=as, #=8. ¢=ap. and then set ef_,

'1.‘

Then we get,

Y
f’~+[§+,w)w—(m+n}f’s’+cnsf=‘~ 0=0

i ) .
sf"+(§+ Hj-ss” —ms'”? +nf 7 +5ing. 0=0

P4 (-? + 11}.&'5" —2ms'@=0

Where prime denote derivatives with respect to @,
With the boundary conditions,
HAG=1=0  fi=}=0,

f{M=5(M=0 5'{o0) =10,

20 =1 (=)= 0.

(3.3.18)

(3.3.19)

-,

The transformed equalions can be solved with the help of the controlling

parameters P, m, n, and & .
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The similarity variable @ is,

‘g :
w=i=L°ﬁ?,—~Mj Z-GHz (3.3.20)

V

The veleity components

u=Uf {]
v="0Us'(g) (3.3.21)
L[ f, o =, =, == = = = e
and w= o [_ Iy U} F = by ph, UFa - {hy T} 5+ 87o0 U85 + by |
™ " i
= —w:{v]fl'{eﬂ [[2”:”']5+|g) gps'} (3.3.22)
2 L

The equations (3.3.18) & (3.3.22) are independent of the strearn function f

due 1o the reason that AT - variation depends only on y.

The stream functions are
12 i
y=(v)"*e? /(e)

o (L,}}é e{“%]ys[g?)

Skin frictions arc

Fam)
[}
b
b
i}

 —

B
- (3.3.24)

o = e * [ 25(0)
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and the heat {ransler

. ,(M) 8 i[f"‘ﬂ]
T L a\dp),

AL
{282

Hence the coefficient of heat transfer

Nu

—8(0)=—— where,  Mu =ﬂ—é_. (3.3.25)
(Gr Jx4

where primes denole derivatives with respect to the similarity variable .
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34 Case D:

dA(Yy _ . dBX)
JY Toax

Let

= A(Y)= 4 (const.), B({X)= B{const.)

=0 (3.4.1)

h
and =(a, —a, -a, +a, —-a
L

3
and :_](ﬂa —a — i+, — ) =0 (3:4.2)

. i1,
Since ;Z-‘—:tklfi 0 (say) So g, —a, —a, +a,—a, =0
1

and a,—a,—-a,+a,—a,=0
Therefore from (2.28.1}, and (2.28.4), we get,

I 1

2 P i Tre

PRATE | g xedand| ZEATE D

JFI:I 2
A ~ ¥
11 1]
TKATTIA EraTIre
et S ; =g, + 4 and PR Ly =a, ¥+ B.

7

1 L 1 |

Y KaT 1% [y KAT'LE @, X+ 4

A, i, a, ¥+ B
! 3.4.3
Lk _aXses -
L? , a,F+8H

= L,=ag,X+4 and L, =a¥Y+B

and /1y & A must be constant, letf, =1, A =1,

S0



Then the constants {2.28), become,

1] !
a, =(v:KﬁP IF} a4 =0 _ ;f‘gEﬂzﬁTi
43 S (R 7
(a1 4T 0 Ki
a, —f:LK.!lT:LjJ ) I . :
"t a =?‘{KH1EJ =0 r g beAl”
Ay =——— =
a, =0, A [%E (3.4.4)
I . 11
=" ERE g, =y | KAT?L? | =a, . 11
£ -u{:r' KAT- L ] . s =¥ [ ]} “ | 4, =y KAT L3 (InAT)
¥
11 @y = .
o, =?"[KM’ ij | a,=0 a,, =y KAT? L2 (InAT},

Now from (2.29.9), we have,
— . ——={a,—a, —a: +ay —a gy — 6y —a, +d; —ay) =0

=a;.a,=0 [ By using (3.4.4}]
This implies either a, =0 or a, = 0. 1ot both.

Let a, =0, a,=0 orbitrary constant, then L=ga,X + 4 (from(3.3.3).

1 1 [
We have, y KAT L2 =g, X + 4 and g, =}fl{Kﬁ.T3L3] .

[
yz[KMsz)
x__#
] 1LY g X+ A
y3| KAT? L

11

= KAT!I? =(ﬂ',:,X-'r A]m where m=a—]

a[l
1 2m -l
= ¢T=?(aﬂX+AJ =Fx"", where, x=X+X,, A=aX,
K . {3.4:5)
&T, =—=
T-Ij;l'- K-
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and y* ={a,x + A)]'m =a, "5

| lrefore the eonstant are,

= Ay = {] o

Gy = @, (53Y) iy a, __H:Tﬂcﬂsg{sa}.}
@, = ma, . a; = Hidg. £

v
ety =}, ay =1 fy3 =—£‘—=Tﬂsin5{s¢1}"}

g
a. =0, a, =0 3.4.6
; &, =(2m=-1a, ( )
a, =0 =0

dy =

ag =~

The corresponding equations are

m?;;; + [HH_ 1}%@;; - maef% + a, cosd =10 (3.4.7)
v er + |-m i 1}:0}5;; - ”mil‘EEEE +a,snd #=0 (34.8)
- +1] =~ — 3.4.9
?9;;{""2 }aDFE?;—(Em—i)aGFEH=ﬁ (3.4.9)
= - = - Y
let F=af, S=as, #=6., p=ap. and choosing ——=4, we get,
Fredm+ DT —4mf 7 + (cosd) 8=0 (3.4.10)
S+ 2m+ 1} 5" —4mf s +(sind) =0 (3.4.11)
P 4 2m+ )0 - 42m—1)f ' @=0 (3.4.12)
with the boundary conditions,
SO=710=0  f'lwe}=0,
{0 =50y =0  s(e)=0, (3.4.13)

B0y =1 8s) = 0.
For m=0.5, & =0 and f=s, the present problen: turns to a case discussed by Ostrach

[1953]. with the emission of the equation (3.4.11).




The iransformed equations can be solved with the help of the coniroling

parameters P, mand & .
The similarity varable ¢ 1s,
1
Z Z ay gfr AT |4 z 1/ z
Q== [ : gzﬂrz ] 1 :G'r.xf4'_ (3'414)
ay Mu( 4y 47y { A]E x
—(agx + - X +
1'|I"fq"‘f1 !
T H % ‘
a * g ATy
—

where, the modified Grashof number, Gr, =

{3.4.15)

The veleity components
w=Tf {p}

v=Ts'(g)
I- mw f’]

i
2,»@

[— {hz}fUJ &-?"‘E'?’J.'hzﬁﬂ - [hlyﬁ}}j + .%:»fﬁh EE; + b v, .
(3.4.16)

and w=
1112
n w4l
J[ESl

L !
* [L 2
The equations (3.4.12} & (3.4.16) are independent of s because of AT —varation in

= —w=(4va{,"}

this case is free of ¥ varjations.

The stream functions are
(3.417)

ma]

Vix 7 flo)

s P+

Lo

W= (4"’”0

1

ﬁ":[flvag’)”x 2 s{p)
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Skin frictions are

= ja)”
= )
ot 3 (3.4.18)

= |a
T, = px * 1.|| ;V 5"{0)

and the heat transfer

_ M{M}}Q(ﬂ]
':?w =K .|i|_: it fﬂ}w ;

] N
_ [L]FQ§M—1\]/€IWNE—:[KEEW
gﬂI/L '41‘; £ ffﬁ}/'ﬂ

so the heat transfer coctfficient 1s

M
_ gy = “ly (3.1.19)
(er) +
X
where. the modified Nussell number , Nu, =LM.
-

Here prumes denote dertvatives with respect to the similarity variable .

Similarly, if we set @, =0 and &, #0, arbiirary constant, then we get

5+ 2(n + Nas” — dny'? + cosd'.H=0 (3.4.20)
Fr+2n+)sf " —4ns'f " +sindd=0 (3.4.21)
PG+ 2n+ e ~4H2n— 13" 8=10 (3.4.22}

a : : . :
where n=—, with the same bonndary conditions and &' is the angle between the
ety

1-direction and the horizontal surface

F=710=0 _ f{==0,
{0 =s(0)=0  s'(x)=0, (3.4.23)
0(0) = 1 &) =0,
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The transformed equations can be solved with the help of the controlling

parameters P, n.and 6.

The similarity variable ¢ is.
1

V4 z Cef AT z oz
P — Jﬂ* gl , —=Grt S (3.4.24)
oy 4u e R R T ] sy
—{(a,y+ B) ta;y + B)
Y aq
" }{1'(
-3 3
: a * ghhaTh
where, the modified Grashof number, Gr, = PERE —
3 i
The veleity components
w=0f (o)
v = E’;’[gﬂ) where, U = Jgf, ATy {3.4.25)
and = — [F [myT} Pely mUF5 {hyU} 5+ @y USs + hhywy |
1t
. o ""1_' m+1 1—m ) -
= -—w=[4val}y? ) Js+ 5y eS| (3.4.26)

The equation (3.4.22) & {3.4.26) 1s mdependent of f because of

AT —varlation in this case is free of x-variations.

The stream functions are

m+|

£ ==

v=tavas)’y r(o)
17 Al

Felavar |2y 7 slo)

(3.4.27)

-

LA
L)



Skin frictions are

Jg

el Jﬂim
T =uy "’ 1,k,l;v £(0)

e (3.4.28)
ot
Tu"'_'l =4y 1[.' _E?x”(ﬂ)
and the heat transfer
1.7
g ATV 1| G0
qﬂ =_m7{ J _ -~
L a\aps
. 1 .
N
= - 'l,.' = 'T
gﬁ?’ 4V # ’ I"‘-()gl) ]
so the heat rransfer coefficient is
Nuj,
— @0} = — {3.4.29)
S

(G’"}' )

iy ¥

where the modified Nusselt number, Nu, = T

where primes denote derlvatives with respect to the similarity variable .
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0.8
t () Pe=0.7
! n= 0.1
c=01
-0.2 - . .
O 9 2 3 5
- O

Fig {1): Dimensionless veloeity distrbutions along u-direction for several values of

m@DL&i&ﬁJﬂj(gT:E&+q¥mq

0.8
4 Pr=0.7
n= 0.1
c= 0.1
02 - , ) ,
¥ q 3 3 4

- O
Fig (2): Dimensionless velocity distributions aleng v—direction for several values of

m{= 01,03, 0.75, 1.0) @T=E&+@ﬁ“]



&)

Pr=0.7
o= 0.1
c= 0.1

] 1 2 3 4 )
Fig (3): Dimensionless temperature distributions for several values of

mi= 01,05 075, 10) (AT = T(x+ )
1 ! T

£y
W 0E}
0.6 -
Pr=0.7
04} =07 -
c=0.1
ozt g
0 0.2 04 0.6 0.8 1

IFig(4): Skin friction facter along x-direction against
m(01=10] (AT =7Z(x+ SORE R
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50
gs

0EF

04 n= 0.1

02 ¢

0 .2 04 0.6

Fig(5): Skin friction factor along v-direction against m(0.1 - 1.00 (!.-.T =TNix+ cy}z”"‘) .

0.8

— 1m

1

1
o |

e+
TGE-

0.4 F

a 0.2 04 06

ig{6): Heat transfer against m(0.1 - 1.0) (;iT = Tfx+ ry}l”"') .
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X

()

-0.2

—
Fig (7): Dimensionless velocity distributions along u-direction for several values of

n(=—02.-01,00,01,02,03) (b =(x+¢)", h=kh)

O 1 2 3 4 5

0.2

—+
Fig (8): Dimensinnlegi veloeity distributions along v-direction for several values of
m(=—-02,-01,00,01,02,03) (h =(x+a, by = k)

L

0 1 2 3 4 ]



1.2

]
Hr
i) .
1 0.8
06
04
0.2
02 1 Fl . v
0 1 2 3 L 5
—- ¢
Fip (9): Dinlensionless temperature distributions for several values of
n(=-02,-01,00,01.02,03) (b =(x+cv), k= k)
1 : T T r
)
et .
D.E r \
Pr= 0.7
04 ¢ m=0.5 -
c= 11
02t 4
G i L . L E L
-0.2 0 0.2 04 0.8 o0& 1
- n

Fig (10): Skin friction factor against n(={-02) — 1.0) (h=(Grap), b =hh)
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T 0s .
Pr=07

c=01

o
M

0.2 i 02 .4 .6 0.8 1
— 1
Fig (11)- Skin friction facter along y-direction against

r(-02)~ L) (k= (x+a), Bo=kh) .

- 9'{1’_]} —

0.8 |
’[ 0.6 ]
Pr=07

0.4 - m= .3 .

1

0.2 {2 o2 0.4 0.8 0.8 1
~ 1

I'ig (12): Heat transfer factor against n{=(-0.2) - 1.0) (}rl =f{x+c), b= k1hl) .
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X

) Pr=0.7

02 : : :

0 1 2 3 4 o
—

Fig (13): Dimensionless velocity distributions along u-direction for several values of

o= —02, 0.0. 0.5, 1.0)

I

s ') Fr=0.7

I 04 F m= 0.5

.02 . . . .

0 1 2 3 4 o2
- o

Fig (14): Dimensionless velocity distributions along v-direction for several values of.

o(=—02,00, 0.5, 1.0}
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0y 1.2

0.8t
0.6 Pr=07
m= 0.5
o4l n= 0.1
02}
]

-0.2 . ' : '

8] 1 2 3 4

- ¢

Fig {15}: Dimensionless temperature distributions Tor several values of

o(=-02,00,05, 1.0)

1
£1(0)
08}
06 | %EEx”‘hhH‘Hﬁ‘h"‘*ﬁ—-hh_____ﬂ_h_h%%—_h‘;
Pr=0.7
0.4 | m= 0.5
n= 0.4
02t
02 0 0.2 04 06 08
- - ¢

Fig {16): Skip friction factor against (= (-0.2) — 10)
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s ()
0.8 7
06 | \
Pr=0.7

04 F m=05 4

n= 00t
D2t 4
0.2 o 0.2 0.4 0.6 og 1

- C
Fig {17} Skin friction facior along y-direction against ¢({-02} - 1.0)
1 T r T T T ;
a8t 4
W 0&a .
e —— Pr=107

04k m=05 -

n=01
0.2 1
Or ]
-2+ .
L4t i
0.6 ]
08 .
02 0 0.2 0.4 0.8 0.8 1

—= G

Fig (18): Heat transier factor against o{= (-02) — 1.0}
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0 1 2 3 4 ) & 7
Fig {19): Dimensionless velnoiry distibulions along u-direction for several Prandt] numbers P,

5 "p) —_
5r ]

L] _> m
Fig (20): Dimensionless veloeiry distibutions along v-dircetion for several Prandt] numbers P,

e



0

Fig (21): Ihmensionless temperature distributions for several Prandtl numbers F, .

iy 1

]

a 2 -4 (5] & 10
: P
Fig {22): Skin friction factor against P= (0.1--10.0).
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Fig (233 Skin friction factor along y-direction against = (0.1--10.0%

(0
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Fig (243 Heat transfer factor against Pe={0.1--10.0].
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Table -1

m E 5"{0} -2
.10000 0.98723 (91391 -0.1e7E2
0.15000 O B9Ba7 [ B304 003202
0, 200 {1 83724 78515 0.16621
0.25600 (L7REST 0.745641 0.26781
O 0HCHCHD 073008 71324 033546
0 35000 071864 068505 040816
0 200000 {1.68252 066302 046025
0.45000 {Le6980 (ed337 0.50459
0 50000 {65038 DE2625 054309
1. &0000 {1 61807 059746 0.60737
0, 80000 {.57118 L55343 0.70404
{1 90000 .55305 0.33904 0.74246
1.00000 ,53730 £0.52480 0.77639

For Pr=0.7, n=0.1, ¢=0.1
Table - 2
m {1 57 ({00 -0y
0. 20000 0.67094 079445 0.47174
{1 1 504 {1 67454 {74714 344978
{1, 1030 0.67247 (h71302 0.47292
-0.G5600 066813 0.GESAG 49322
RNV {Le6270 (66252 0531130
(03000 06367 hG4206 (L527R8
0.10000 G.65048 062598 0.54342
(20000 L3802 {1.39767 57011
0 30000 {62603 0.57477 029304
0.40000 .61475 (F35366 hal1328
0, 5000 0.60420 {1.53935 63467
0.7 00 0.58520 {51267 e6Ra94
.G [HH} 0.36362 48144 k69872
1.00004) 56117 {.48238 {.71230

For Pr=0.7 m=0.5, ¢=0.1,

a9




Table - 3

c | fry | s 8(0)
-0 20000 070397 065873 150739
-0.10000 0.68456 0.64755 0.51973
605000 0.67540 0.64200 0.52573
{1 Qo000 [An6EeE MGinsn 0.53162
010000 0.G5047 0.62604 0.54303
0.15000 0.64202 (.62097 0 54856
{1 20000 0.63572 0.6 603 0.55397
0.30000 0.62226 0.60656 0.56445
0.40000 0.60094 0.59761 0.57449
0.50000 0.59862 0.38916 0.58413
0.60000 0.38817 0.58118 1.59338
{75000 57393 RLETO01 Le0ssl
£.90000 0.36114 6.55973 061911
{1 S5000 (15576 R.5504% 0.62313
1 6OORO 0.55331 0.55331 {t 62708

For P=0.7, m=0.1, n=0.1

Table-4
T, U1 sy -0'(0)

(L 30000 054221 (. 78884 025208

(30000 0.68576 065767 0 48024
072000 (.64753 062381 054451
10000 061318 L59294 {1 A1558
1.50000 0.57140 (155491 070598
200000 (.54247 0.52823 0.77544
2.50000 0.52041 0.50781 0.83253
3.00000 A02TS 0.49133 0.88134
350000 0.48%07 0.47761 0.02419
4.00000 0.47555 046584 .06253
430000 0 46465 145537 0.99730
5.000040 0.45503 0.44848 1025920
550000 0.44642 43834 1.05871
£.00000 0.43865 0.43097 108621
A5 000 043158 £1.42425 111199

700000 142514 0.4150% 1.13628
8.00000 0 41357 040710 1.18107
10,0000 0.39476 {38915 ™ 1.25902

For m=0.5, n=0.1, ¢=0.1
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Table -5

Similarity Cases in tabular form:

Case | Mix, 1) | A {x,yv}e AT(x. y)a Similarity variable ¢
A £
A | Groy | A (x + ey Ot
{x+m»}2
B(1) 1 x" x=! G A E
Torx
o 2 Gr¥ 2
(ii) !
EHJ.
C(l) —}n ] }2'"1_] .
Gr%.i
Ty
G | ! d Gri .z
(i) 1 | x* G Z
x T
dhr= | }; z
y 1 1 ¥ Grt—
{i1) ¥
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Result and Discussion:

The ordinary differential equations (3.1.17)-(3.1.19) are solved
numerically by Sweggert iteration technique for & = 45", Dimensionless
velocity and temperature profiles for the ]:;(}WE:I‘ law surface
temperature case are presented in figures (13-(3) respectively, for P, =0.7,

n = 0.1 and ¢ = 0.1 with several values of m. The velocity profiles vary

as usual with the parameter m. However, the temperamre profiles for
negative power (m=0 .1) differ notably in shape from the uniform wall
temperature case (m=0.3). An unusual observation for m=0.1, we may infer
that the surface receives heat from the fluid. Similar behaviour was noticed
in 2-D situation also by Sparrow and Gregg [1955,1956,1938] for free
convection over a vertical plate and by Schuh [1948] for forced convection
over a plate with a power law surface temperature variation. For positive
power, the temperature distributions are similar in shape to that of uniform

wall temperature case.

Velocity profiles displayed in figures (4)-(5) & in table {1) show that
the skin friction decreases as the power of the temperature increascs. While

the heat transfer factors are as usual as in Sparrow and Gregg[1958].

Representative velocity and temperature profiles for the power law
curvature affect (different values of n) are shown in figures (7)-(9), for fixed

values of P, =0.7, m=0.5 and c=0.1. These figures shows the limitation of

curvature afiect.



Within the Hmit -0.2<n<0.3, the velocity and temperature
distributions are regular. I'or negative valucs of n, the velocity distribution
along y-direction is higher than the x-direction,so that , we find the variation

of the skin friction at the edges in figures (103 & (11},

In our equation (3.1.17)-(3.1.19), if ¢=0.0, n=0.0, then the equation
coincide with (6.9)-(6.11). In addition ifwe set m=0.5, then these equations
are similar to the case defined by Ede, A L[1967].

The velocity and temperature profiles for different values of c are
shown in fig.(13)-{13) and the associated skin friction and heat transfer

factor are in figures (16)-(18) as well as in table(3).

Dimensionless velocity distributions along u and v direction [or
scveral values of Prandt! number, Pr are shown in fig {19} & (20). In this
situation small Prandt] number, (Pr—0) generates large lemperature
distributions on the surface, shown in fig. (21). The variations of skin
frictions (f"{0),5"(0)} arc displaved in figures (22} & (23}, heat transfer
coefficients (-8'(0)) is shown in figure (24) for the variation of the fluid
properties P, (the Prandt] number). A nuinerical Table (4) displays the

effects of skin friction factors and heat transfer coefficient with the variation

of P,.

Finally, the resiricted variation in {x,¥) of AT, A;, A, under which the
partial differential equation governing the natural convection flow in three

dimentional curvilinear coordinates are reducible to ordinary differential
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equation, arc displayved in table 5, This table also exhibits the nature of
stmilarity variable in terms of modified Grashof mumber embeded with AT-

variation
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Nomenclature

a.b,c constants

Cp specific heat at conslant pressure

F.8 dimensionless scaled stream functions
f.s dimensioniess stream functions

o acceleration due to gravaty

hi; Its by scale Tactors for curvilinear surface

Gy modified Grashof number

K constant

the coefliclent of thermal diffusivity

L characieristic length
m teImperature power/exponent parameter
o powerfexponeni of hy & hs
Nu,, modifiad Nusselt number
P Pressure
P, Prandt] number
Qw heat flux
R modified Reynolds number
T temperature of fAuid
Te temperature of ambient fluid
T surface temperature
(TIRURRE velocity components in the boundary layer
L/ characteristic velocity generated by buoyancy effecls
Xy coordinates along the edges of surface
z coordinate normal to surface
75
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Greek letfters

constant

the coefficient of volumctne expansion
hoandary layver thickness

thermal boundary fayer thickness
dimensionless temperature function
mass flow componants (stream functions)
dissipation function

similanty variable

the kinemalic coefficient of viscosity
the density of amnbient fluid

coefficient of viscosity

the coefficient of thermal diffusivity
nondimensional skin friction

scaled coordinate defined in equations

the square root of the local boundary layer thickness
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