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Abstract

Possible similarity solutions for free convective laminar three dimensional

boundary layer flows over an inclined vertical curvillinear surface, h](;,11) > 0,

112(;,1"1)> 0, h3(;,T\) = 1, are discussed in different situations. The three dimensional

boundar) layer equations are considered in the curvillinear coordinate system and

the relevant partial differential equations are transformed into ordinary differential

equations by similarity transformations. The results thus obtained have a graphical

illustration for different values of controlling paramekr~, the Prandtl number, Pr of

the fluid, temperature power/exponent, 111, ~cale factors power/exponent, n,

a constant, c, and the angle 0 ( angle between the ;-axis and the horizontal surface).

Finally, the graphs and tables are displayed v..ith discussion.
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Introduction

There are essentially three factors \vhich govern the natural

convection process, the body force, the temperature variation in the flo\v

field and the fluid density variation with temperature. Until recently, in

studies of this mode of heat transfer, these factors were considered to be.

respectively, the gravitational force, temperature differences and normal

density temperature variations as encountered in such common fluids as oil,

water and air. Such considerations correspond to rather restricted practical

applications of the natural convection process.

However, an increase of one or more of these important physical

factors ~hould increase both the skin friction and heat transfer associated

with the natural convection phenomenon. Currently, there are many

practical situations in which these factors can be increased greatly beyond

the previously considered limits. For example, in aircraft propulsion

systems there are components (such as gas turbines and helicopter ramjets)

which rotate at high speeds. Associated with these rotative speeds the large

centrifugal forces similar to the gravitational force, are also proportional to

the fluid density and hence can generate strong natural convection flows.

Further, in nuclear power applications, very large temperature variations are

encountered as are also unusu-alfluids whose density temperature variations

may be more favourable for the natural convection process.

Laminar free convection from vertical surfaces (flat plates and

cylinders) has been studied extensively when the temperature of the surface



is uniform. The case of uniform heat f1ux rate at the surface, which is

sometimes approximated in practical applications, was first discussed by

Sparrow and Gregg[J 955]. An exact solution has been obtained for Prandtl

numbers in thc range 0.1 to 100. He published many papers [l95S - 1961]

on natural cOIl\'ections.

Ostrach [1953J analysed the ne\v aspects of natllTal cOll\'ection heat

transfer. He studied tiJe now between two parallel infinite plates oriented to

the direction of the generating body force. He [1954] later worked on

combined natural and furced convection laminar flows and heat transfer of

f1uids.

Yang [1960] studied the unsteady laminar boundary layer equations

for free convection on vertical plates and cylinders. He established some

necessary and sufficient conditions for which the similarity solutions are

possible. He dcalt with steady and unsteady cases, but numerical v,'orks

were found absent in his work.

Merkin [1969] started his work on free convection in early 60's of

this century. He studied first the buoyancy effect on a semi infinite vertical

nat plate in a uniform stream. Consequently,he[19S5] showed the possible

similarity solutions, then analysed the effects of Prandtl number. He

continued his research related to prescribed surface heat flux with Mahmood

[1990] and the conjugate free convection with Pop [1996]. Cohen and

Rcshotco [1955j' worked on the similar solutions for the compressible



\
boundary layer and Eckert and Jackson [1951] worked on the fi'ee

convection on turbulent flow.

Recently Lee and Lin [1997] studied on transient conjugate heat

transfer relating the heat conduction inside a solid body of arbitrary shape

and the natural convection around the solid. In their computational work,

they utilised Cartesian grid system.

So far knowledge goes, no attempt has so far been made for the

similarity solutions related to free convection on three dimensional surface

with curvillincar coordinates. The similarity solutions for forced convection

for three dimensional case was studied by Hansen [1958]. He presented

similarity solutions of the three dimensional, laminar incompressible

boundary layer equations on a general basis of analysis. Restrictions on

potential flow velocity components and coordinate system which lead to

similarity solutions werc given in a table.

Similar to Hansen, Maleque [1996] studied the possible similarity

solutions of Combined forced and free convective laminar boundary layer

flows in curvilinear co-ordinates. Zakerullah etc. [1998] displayed the

sImilarity requirements for orthogonal vertical curvilinear surfaces in

tabular fonn

The similarity solutions of free convective three dimensional laminar

boundary layer floVo'Sin curvilinear coordinates is more comp"iicated in

comparison with that of two dimcnsional boundary layer flow. In the



present study, discussion is confined about the free convective three

dimensional boundary layer flo\v over an inclined vertical curvilinear

surfaces. The three dimensional boundary layer equations are developed for

the cur\'ilinear coordinate system and the relevant partial differential

equations are transformed to ordinary differential equations by similarity

transformations. The set of transformed equations are solved mlmerically to

predict some essential flow parameters.
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-\ Chapter-l

Flow configuration of the problem

Free or natural convection flow arises under various reaSOllSln
nature. When the density variation of a particular fluid around healed or
cooled object comes into play, a buoyancy effects, in general, is generated.
Due to this effect heat is transferred from the surface of the object to the
fluid layers in its neighborhood and then the body experiences friction due
to velocity generated by the buoyancy effects.

Once the position of the edge ofthe surface, which is also to be the
origin of the co-ordinate system, is decided, there are two combinations of
the body force direction and the surface thermal condition that ",ill yield
flows that proceed away from the edge. If the edge of the semi infinite
surface is taken at the bottom of the surface (i.e. the surface extends to +Xl

perpendicular to the ~-directioh), the two combinations leading to flows in
the proper direction are : the body force acting dovmward with a heated
surface and the body force acting upward with a cooled surface.

The present problem is concerned with the three dimensionill
boundary layer free convective flows about an inclined vertical orthogonal
curved surface. The investigation has led to the development of a

,
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technique somewhat different from that discussed in two dimensional case,
which permils the systematic study of the conditions governing the
existence of similarity solutions. In this problem, the coordinates:; and Tj
arc considered to lie and be defined in the sUlt'ace over which the boundary
layer is flowing, while l; extends into the boundary layer. Here we restrict
ourselves h,(;,Tj) = I, so that s represents an actual distance measured
along a straight normal from the surface. The surface is such vertically
inclined with the horizonml surface so that it makes an angle 0 with the
horizontal surface. The body force is taken as the gravitational force
- g = (- g,,-go'O). The surface thermal conditions are not uniform and the
temperature variation along the surface T = TW<~,Tj),is greater than the
ambient constant temperature To<).This temperature difference generates
velocity as well as lhennal boundary layer over the surface.



Governing equations:

The frcc convective flow about an inclined olthogonal \'ertical curvilinear

surface are governed by the following equations:

continuity equation:

o 0 C-(h,u) +-(hv) +-(hAw) = 0,
,:1;- Cry' C('-

1/- momentum equation along the ;- direction:

[
u OU v eu OU uvah, u'" () (hh) [v'+w"J'ilh,]p ---+---+w-+----+---- ,- --
h,O'.; h2 Oil (7( h,h, clI h,h, or:; '- h,h, a;

1 0'P ,..,l=---,-+pg,+pv u,
h, 0';

1'- momentum equation along the Tj- direction:

>1'- momentum equation along the r:; - direction:

J U 1M v (lv (lv uw m, vw aiL (u' +v') (7 1
f-'l"h, OS+ h, ar, +w JS + hLh, O'~ -i- h,h, 0'7- hLh, ;;;(h,h,)_

(1.1 ) •

(1.2)

(13)

(1.4)



and the dissipation function

'<0 2![a(~"lr + [8~" lJ' + [8(1\h;")J')+ ['(h:' l+ 8(1"")J'+ ['(h;h Wl + 8(a" lJ'
Y' 1 0; 01) o~ 8; fJTj Ull a

+ [a(h,u) + O(h,h;W)J' _ ~[fJ(h,U) + ath, ,-)+ o(h,l1,w)J
a,; iJ~ 3 8~ fJTj 8';

For simplicity, we set ~(~,i'7)"I , so that c;, represent an actual

distance measured along a straight nonnal fi'orn the surface. As a result of

this simplifying assumptions only the choice ofthe two remaining surface

coordinates:; and Tl needs to be made. The :;, 11axes ofthe curvilinear

coordinate system are along the vertically orthogonal curved surface and 1;

axis nonna] to it. The thermal difference ofthe surface and ambient fluid

generates the free convection flows. \Ve assume that the viscosity and

thennal conductivity coefficients are constants.

Tnour case, heating due to viscous dissipation is neglected and fluid is

considered steady and incompressible.



Sinl;e the equation of state plays a Yitalrule for a fluid, we consider this in

general fonn as

p=p(P_T.),

For small change the above equation may be expressed as

dP=(oP] dP+(oP] dT
OF r c7J'"

= p[KdP-P'rdT}

( 1.7)

(1.8)

where K =1(:)1is the isothermal compressibility coefficient

and fi, ",_.!-(op] is the volumetric expansion coefficient,
pOT,

From the volumetric expansion, the relations may also be derived as follows

P __ ~[dP] --~(p-p-l
T - p OF p - P T -T", '

::::;,p - p", '" -pfirb.TB '" -PfirBAT,
T-T~=b.TB, AT=Tu-T",

for ideal gas, in fact fiT = L .

(L8a)

(1.8b)

(1.8e)

The boundary conditions to be imposed on the present problem may be

determined as follows:

(a) The fluid must adhere to the surface (the no slip condition).

That is, mathematically for the surface

U(~,l1,O)=O=V(~,l1JO), (1.9)

(b) The temperature of the fluid at the surface must be function

of~ and 11(non-isothennal surface):

T(;,7),O) = T. (;,'1} ) _. (l.JO)



(c) The fluid at large distances from the surface must remain

undisturbed:

ue;,'ll ,00)=0= v(;. 'll ,00) , (L1I)

(d) The temperature at large distances from the surface must be

equal to the undisturbed fluid temperature

(1.12)

The tem1S pg" pgo represent the body force components exerted on

fluid particle. The pressure gradients in the;- & TJ- directions result from

the change in elevation up the curved surface. Thus the hydrostatic

conditions are,

similarly,

Thus the elimination of pressure terms yields the equations (1.2), (J .3), (I A)

as,

{
ueu viii iii uviJJ, uwo [I'O+w')a,,]---+---+w-+----+----(hh)- --- --
hi a; h!8rI a; h,h,rJl] h,h,a; " h,h, c,;

'" (p --Pro )g; + 11'11'1',

.,

(1.13)



Similarly,

{
u 1\' V,N ,-,",' IIV /h. lW () l(U' +14'"),,,,]--"---+\1'-+----. +----(hho)- -- _
h,t3.; 11,i!r) OS lI,h,8; n,n, rJ( '- lI,h, Or!

== (p - p~)g" + j./v'v, (1.14)

}1I ii.' v av (1" U11' [k VH <31, (u' + v'] C 1---+---+w-+----" +----- --- --(lIh)Lh, OS 11,8r) OS h,h, 0; 1,,", C'l h,n, OS E'_

respectively.

(1.15)

Introducing the expression p- p~== -p Ii, e 6.T in equations (1.13-1.15),we

get,

{uro v ill Oil ul' w, uw rJ Ih (v'+w']rl'o]--+---+w-+----+----(, ,j "
h, a; h, i!r) 0,;- n,h, i!r) li,h, 0;; '- h,h. a;

{
UIV v& IV uvr]" VIVO [u'+w']m'j---+---+w-+----" +----(hh,)- _
h,a; n, i!r) OShLh,a; h,h,0'( L - hLh, 8r)

{
U eM' V elv 6i<' uw alo vw m, I( u' + v'] Ii ]---+---+\1'-+----- +----- ~__ -(hh,)
h, Us h, Or, 0;; h,h, a; h,h, 8r) '/),h, 0("

(1.16)

(J,I7)

(1.18)



We now introduce the following non-dimensional variables,

,
v=-U.

- cc=-. L

ww==,
U

- p - p
Po_ Uo-'. .

p~ flo

- kko-k •
o

(1.l9a)

T-~, T-T~00---0---
T. - T., !:J.T

where Land U=)gj3~!!J(sJ)L(;,II) as some reference length and

characteristic velocity generated by the buoyancy force, Introducing (1.19a)

into the equations l.l), (1.16), (1.17), (1.18) and (1.5),

we obtain the following non dimensional equations:

continuity equation:

,J-,J-rJ -
~(h,u) -!- ~(h,v)+~(h.h, 11') ,,0,~!'. ~ ~("u., 017 0_

u-momentum equation:

[ \ [ -] [ -1 [ -]]= (-g,B)-!-.I.; _I. ~ h,O':: + ~ ~ c:: + ~ hJh, 0:: ,
R,. h,h, 0; h, Os 0'17 h,017) rJC; - 0';

(1.19)

(1.20)



v-momentum equation:

- ! - -] [ -] - -']- 1-11 (., ",c:". i3 ",Ov 8 Ov-(-Bg-)+-"-- -- -- - +- --- +- hh -
- " Rf l",",-8~lhl 84 8~", o~ o,l, 20() ,

\V-momentum equation:

Energy equation:

(1.21)

(1.22)

•

+el~(~[h, ()(l:"'T)]+ ;:;_[h,8(l:"'T)j+ O_[h,h, o(l:I'l.T)J]]-os h, (-'s 2'1 h, 011 8( o(

Here R, = UL (..Jg fiT I'l.T L ~ is the Reynold's number based on fluid
" "

velocity generated by the buoyancy effects.

The boundary conditions in dimensionless tonn are
- -

u(~,1),0)= V"(4', 1),0)'" 0,

8(4,1),0)=1 ,

u(l,I),C1J) '" V(?,I),C1J) == 0

o ([,rr,C1J) = 0,

(1.23)

(1.24)

(1.25)

(f:26)

(1.27)



If is be the boundary layer thickness, then the dimensionless boundary layer

thickness is 6 '"~«1, since L» I.
L

Now in order to determine the boundary layer equations, we have to

estimate the order of the above equations (1.19 -- 1.23), so that very small

terms ean be neglected.

Since 0" ,m '"- , ory , ~,0; 0'
0:: is of O(1), so by equation of continuity (1.19),8,

ow
-= is of 0(1).

vo~

Since -; is of 0(6), so that w is of 0(6).

,,' [1 1and~-o --2 -)'a; 0

OW 8w 1'1 Cw (-)-=-0(1), -=-00, -=-05.a; oq 0'1

Let 0, be the thermal boundary layer thickness, the conduction term

becomes the same order of magnitude as the convectional term, only if the

thickness of the thermal boundary layer is the order of [i J' - ,--
RF P,

In view of the previously obtained estimation for the thickness of the

velocity boundarY laver g - jR;1 ,it is found that• ., R ,

L
1 0, 5 0, 1--- ~----~----IR, P,' L ,jP, 5 ,jP,

Assuming that hj, h2 and all their first derivatives is of 0(1),



setting the order of magnitude in each tcrm of equations (1.] 9-1.23), we get

equation of continuity

0-0-(7 -
--=(h,u) +--=(h, v) -i- --=(h,h, w) = 0~,," '" ~;"c~ ulJ o~ ,

(0)---+ (I) (1) (1)

u - momentum equation

[
II rJu ~ eu - ou u~ ,;n, u;:;; 0 r~'+;:;;' J ",,]-~+---=+w--=+---=+ ----=(1.1..)- _ ~
I., Os h; elJ of; h,h, OIJ hJh, er; '" ,h,h, (7s

(0) ---+ (1) (1) (1) (1) (1)

(1)(1)(1)

-1(-J(-I[-J -)_ ~ 1 v <3 h, flu <3 h,'-Ju 13 014 8'u
-(-19g";)+--- ~ ----= +-= --= +-= 1.,1.,---= +h,h,~.

• RF h,h, 0,; I., Os ory h, elJ) (/1; &; - rJ;"
,

1
~
5

"Ii - momentum eguations

[u,i;; ;; av -0;; II;; 101" -"'t" a hh [;;'+;:;;']",,]---=+---=+w-=+--~+ __ --=( ,)_ _ ~
h, 0; I., ury Os h,h, os 1.,1.,or; '" h,h! ,fry

(0) -Jo (1) (1) (1) (1) (1 )
-,
6 (1)



w - momentum eguatiom

(O)-l- (0) (5) (5) (6) (5)

(1)(5)(5)
-,

(5 )

- [ ( -J ( -) ( -) -]= _ BP + _1 '_ ~ h,. 0::'" + c_ !.l 0::: + 0_ h,h, o~ + hJh
o

(~: •

oC; R, h,h, 0; h, 0; 01) h, 0'1 oC; . de; - 0;-

m
ap

~--=O(O)oe;
Encrgv I:guation

-C' [1;; iJ8 ~. iJ8 -081 -1;; o(lm'iT) ; o(lnLl.T) -0(1"'.\T))]p ? ---=+---=+w-= +'" _ +- _ +w~~~'h -I I - ?J h - h - --1 0,. "0'7 0, L cq; ,'"'7 US
(O)-l-(l) (I) (1) (1) (I) (1) (I) (O)

=_k _1 [1O_(hl iiII)+ "_(5.00)+ 5 (h,h, 011)))
p,RF It,h, 01; It, 01; 01] It, 01) (7; (JC;

(5i) (I) (I) (I)

+01 ~(h, J(ln~T)J+~(!.lO(l~Ll.T}J+~(h,h,otI:~T)J)j-
lo, h, Ci; 0'7 h, 01/ o~ '"~ '

(1) (I) (0)

=>pC p[J;; ~+v ~ +; '!)+01;; o(ln~T) + v O'(lnL'l.T))]1h, 0; h, 0'1 ,-7; h, o{ h, 01]

(0)-+ (1) (l) (l)' (l) (1) (1)

= -'---1--1 0_(h, iiIIJJ+ "_(5. 011], "(h,ho1 011+ [h h 0-01])
P,RF h,h, 0; h, 0; or; h, (JI) oC; oC; " or;'

-r. I
(,5Tj (1) (I) (1) (51)

I

&.



+0 f ~~r ii, o(l~~nJ + ~ (~ ii{l~:--TjJ)].lm;,hJ c", 0'1 11, cII '

(I) (I)

Neglecting the tenus higher than order of Sand 5T and omitting the dashes,

\\e obtian,

~(h,u)+-.£(h,v)+ &"-(h,h,\1")=O, (1.28)
~- fIrJ- e;-

U OU v cu iii UI' m, mr 13 v' i'm, (J'u (1.29)--,---+I>'-+----+----(h h,)-----= -0Ii +\'--
h, 0; h, m, OS 1I,h, f!rJ h,h, a; 1 - h,lI, a; ! 0(' '

1/ 01- v Cv Cv IIV 111, VI>' C u' al (J'v (1.30)--+---+n-+----+----(h h)-----' =-() a+1'--
h, C.:: h_011 C( h,h, a; l1,h,OS 1., h,h, iJr) 0'1 OS' '

~d

where p. = Ji~ P is the Prandt! number of the fluid,,
The boundary conditions are,

ul.;. '1,0) = v(,g, 1/,0)= 0,

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

,



Chapter-2

Similarity transformations:

Equations (1.28-1.31) are non-linear simultaneous partial differential

equations. Our aim is to reduce these equations to ordinary differential

equations in order to prc~ict some essential flow parameters.

Guided by the idea of the similarity analysis and follO\ving the

method of Hansen [1958], the variables ~, Tj, 1;be changed to a new set of

variable x.Y and~, where relations between two sets of\'ariable arc given

by:

Y='1and~= ,;
y(X,Y)

(2.1)

y(x. Y) is thought here to be proportional to the square root of the local

boundary layer thickness. From equations (2.1), we have (by chain rule)

the following expressions:

(Jo,po
-=---" -
rJ!: eX y" c~ '

C ,3 rjJ 0-_-=-_---i'Y~ ,
o'loYro,p

(2.2)

(2.3)

,3 1 f)

0(=--; (7~' & iJ' J 8'
o('=7at" (2.4)

Let two stream functions w(,;.,?,t;) and 'P\s,'?,O be defined as the mass flow

components within the boundary layer for the case of incompressible.
viscous flow. To satisfy the equation of continuity, we may introduce the

components of the mass flow in the follo'wing way,

'" -<I



1//( "h,u, (2.5)

and -(1//, +-;:)= h,",11'.

In order to seek thc similarity functions, wc introduce the following

equations, ,IU(;,y) d~"F(X,Y,if;),
(2.6)

(2.7)

'-"here U = ,lgfJl'!'IT L represent the characteristic velocity (maximum)

generated by the buoyancy effect & L denotes some characteristic length.

Similarly we are allowed to write,
,
r v d~"S(X,Y,~)
o U(X,Y)

In attempting separation of variables of F(X,Y,~),S(X,Y,~) and B(X,Y,~),

it is assumed that

F(X,Y,~)= I(X,Y)F(~)

-sex, Y, rj» =M(X.Y)S(rj»

(2.8)

(2.9)

(2.10)

where F,S and g are the functions of single wriable ~. From (2.6) and (2.7),

it is found that

" --~= F_ =LF';,I} f .,

::::;>Ii-=ULF~

& v=UMS~.

(2.11)

•



Therefore,

j ; -( J 11I-0'fl- -
-". f=dql = f-= ~ dql =~['fI(X,Y,qI) - \,,(X, Y,O)]

o U 0 rJqI h,yU h1yU

From equation (2.6), (2.8) and (2.12), we get

- 1 -
F(X, LqI) = h1yU ['fI(X, Y,~) - 'fI(X, Y,O)J.

-- 1 -
:::;> L(X ,Y)Fq\) = h1rU [V(X,Y .qI) - 'fI(X,Y,O)]

:::;> W(X,Y ,~) = h,yUIF(h + If(X, Y,O)

Similarly,

't(x, Y,~) = hLyUM S(0)+1{x,Y ,0)

and

h,h,.w = -(VI; +1,;)
'"-[h,yUI F(~)J; - \'1, (X,Y,O) - [h, rUM SCi»)" -l,,(X, YU)

= -[h, "vI F(jn ,.-If x(X,Y ,0) +t r x [h,yULF{jn-'. y - •

'"

(2.11)

(2.13)

(2.14)

(2.15)



If ~ ---+ 0, then

wo(X,Y,O)=- h ~ [,'lx(X,Y,O)+'1,.(X,LO)], ,
(2.16)

If the surface be porous, 1.1'0 represents the suction or injection velocity

n0n11al to the surface. Since U is independent of S, so u~= o.

Thus the equation (2.15) becomes,
- -

11""w = -(h,yUU)x +fy, (h,yULF), -(h,rUM S), +fy" (h,yUM 5), + l1,h,''',(X.Y.O)y 0 y

'" -(h,yUI)xF + '0y,h, UIF; - (h,yUM), S+ ;Py, h, [IMs~+ hLh,,,;{X, 1',0).

The convective operator

d 1 [c U (7]-=-- h,,-+h,-+I1",w-
dl h,h, - os 'Crj L. Of

in terms of ne,\' set of variables X, Yand ~ may be derived. The convective

operator in tenus of new set of variables X, Y, ~ is

(2.17)

d 1 [ --- a --- a 1 -_ - -_ - c](2,lS)
- = -- ",ULFi-, + ",rIMS. ---{h,yUL)xF +(h,yUM)rS-h,h,wo}~ .
dl ",h: t3\ BY y of/!

In view of equation (2.18), equations (1.26), (1 ,27), (1.28) become,

- -(vh uI) , - ,(yh LiM) - -- y' -_ -,'F---- + / " A FF-- + ' , S']'-- . F-- (PI) F-'.~. hh " Ih '</f-J'Wo I.--v x'
L , l, : h,

,UM[(UI)) h,,] __ -_ yO riM' _, y' r,
-y -- _ +- F.S,+-- _ h",St-=g,fi,ATe=o,

h, UL hL ",h, UL UL •

(2.19)



-5~~~+ rCr',,u-M-),-5S~~+ ;-(rh,uIlx F-5-- '-5-- y' (U") 0~)' "r ---- " ----~. <iI>- /"0 '0 -- lV" r'-"
h,h, h,h, h,

(2.20)

~e~~+ ,(J'h,[f[)x FB, + r(rh, UM)" sei _ {'<'a0j' _ r'UL [(In N)x + (In AT))' ]F;; 9
P, I1,h, h,h, hL

- y2UfJ [(In .IV), + (lnAT)) J$'.B '" 0
h.

The associated boundary conditions are,

U (X,Y,O),. 0 '" Fe(O)'" 5,,(0),

w(X,Y,O) '" -Wo

where Wo is considered to be the surface suction or injection velocity for the

curved surface. For the impervious surface we may put wG=OThen from

(J .10) & (J .33) we have,

T(X,Y,O): T..-(X,Y).
:::::> O(X ,Y,O)= N (X ,Yle (0) = 1,
N(X,ll=l, and B(O)=!.

In Ordl:f to satisf): the boundary conditions (1.32) & (1 ,34), without loss of

generality, we put,

(221)



TIle boundary conditions at large distance satisfy ,

L'LF" (00) = 0:::::>

UMS.(oo) = 0:::::>

@d

Fo(oo)=O,

S,,(oc)=O,

0(00) = 0,

Thus the two momentum and energy equations become:

" [" 1 -j I ',v vr ILJ -_-_ ! - -!. 1-
-y - ~+- F,S~+--Uh".S~-~g"R,t,TO=O,", U h, h;h, -. U ,I-',

- r('" U) -- ,(-,11 U) -- - y' ~ -,vS-;;-+' f", 'SS--+ ' , .'FS---vwS----(U) So
"hh "Ih M'O'''h ,I

I , " , ,

;'U[ux h"J----';" -, y' .--- ~+- F,S.-,--Lh F--~g fi !'J.10=0,
", U h; h,h, ". U"'

with the boundary conditions

F,,(O) = S.(O) = 0

F,,(oo)=S,;(oo)=O,

0(0) = 1, 0(00) '" 0,

(2.22)

(2.23)

(2.24)



The coefficients of FF,~& SS.~in (2.22) & (2.23) may be expressed as

r Uh,[~lJ ]hi'" ,

rUh[_l J]'1 !I,k, ,.

Thus the momentum and energy equations become:

-[ --I ---,
I'Sii; +2(a, + a, - a,)SS;~ +2 (a, +a, - (1)F S"i - a,S". - a,S.

- (a, -;-a",)F. S.•+ a,~' + a"l1=0

where the constants a"s with the differential equations involving the

independent variables X and Y are given by the following relations:

(2.25)

(2.26)

(2.27)

"fK~Y,&l

"~[;l(I;Kt!FY,&),]
, " I;

(2.28.1 )

(2.28.2)



I< h,
,..-0 " sr);",,,M

KIP

.?g fI !'J7i
, 'I Pr

25

(2.28.3)

(2.28.4)

(2.28.5)

(2.28.6)

(2.28.7)

(2.28.8)

(2.28.9)

(2.28.10)

(2.28.11)

(2.28.12)

. (2.28.13)

(2.28.14)

(2.28.15)



Similar ~olution~ for(2.25)--(2.27) exist only when all the a's are
finite and independent of X and Y jthat is to say that all a'", must be
constant. Thus the boundary layer momentum and energy equations will
become non-linear ordinary differential equations if
(',.7 (X.Y), ",(X.Y). h,(X.Y) and y(X,Y) satis£)' equations (2.28).

To find "'T(X.YJ, h,(X,Y). h,(X,Y) and y(X,Y) in different situations,
we first ignore the suction or injection effects, I.e. G, =0.

From the expressions for a'"" we have,

..

[
K t;rv,IJI]~+a,=I---

~ x

il:J +a
4
=r[K tJ}~J;]

'" ..
From (2.28.1),

[
;?K 'T1, IJIl ,[MT1, IJ; ] KEr1,IJI

ao= ---- =1' ---- +2(7,-----
h, '" '. '"x

::::;> 2(7x = \)/ (Go-al -a2)
KtJ'"L2

Similarly, from (2.28.4),
h

::::;> 2.Y}'y - ']1 1/ (a, -a. -a,,)
KtJ"If2

By vinue of (2.28.1),

,?K !J,.T'~1fi
, =aoX+A(Y),

'"where A(Y)is either constant or function ofY only.
Differentiating (2.29.5) with respect to Y, we get,

dA,lJ ["J(&JoIJo] '"--=' =-[a;-a4-a,+a,;-a,J,
dY h, 11,,

(2.29.1 )

(2.29.2)

(2.29.3)

(2.29.4)

(2.29.5)

(2.29.6)
•



Similarly, in view of equation (2.28.4),wc get
,,2K !JT,l;[Ii
. -aJY+B(X)

h,
where B(X)is either constant or function of X only.

and d;::) "'~ lao -~ -02 +07 -alo]

Taking the product, we gel

(2.29.7)

(2.29.8)

The fonus of similarity solution, the scale factors
"'T(X.Y), hJ(X.Y), ",(X.Y) and r(x.Y)depend wholly on the equation
(2.29.9)."1fi.is situation leads to the following four possibilities:

Case CA):
dA(Y)

(COnSI_),
dB(X)

(COIlSI.) ,--.0 .0
dY dX

Case (B): dA(Y) ~ 0 dB(X) =0
dY dX

Case (C): dA(Y) =0 dB(X) ",0
dY dX

Case (D): dA(n =0 d.B(X) _ 0
dY dX



Chapter-3

Study of different similarity cases:- -
3.1 Case A:

d4(Y)
Let 'dY - con st.

dA h,
:::::> dY '" -;;:(a, -0, -0, +a, -a,)

= k,l,

h_
where -- = k, and I, = G, -04 -a, +08 -0'1"

h,

dR(X) _ const.
dX

where I, = Go-0, -0, +0, - OW"

(3.1.1)

(3.1.2)

:. A(Y)=kJ,Y+Ao

Now from (2.28.1) and (2.28.4). we have

r'Kj,:Y,L~ =ooX+A(Y)
,

I
B(X)=-' X+Bo'

k,

(3.1.3)

where L = Lt, along X - ax,s, and L == Ly, along Y - lUIS

(3.1.4)



In order to the requirements

L1 G,X+k,!;Y+A"•
L!I, ,,X +G,k,Y + k,B",

If \'ie let. I, = Go and I, '= a.1 & Ao '= k,Bo then we get,

Lx '= Ly " L" QoX + kjQ)Y + A(CQllSt3nt).

l1mfore. (3.1.3) & (3.1.4) becomes,

'K!lTY, LYo
r h "ac,X + k,a,Y + A (constant).,
and a,+0, =a,-a,

G,+a, =G,-G,o'

Now from (2.28.10),

r' KtJ.T}~ LY:' h"Go=-------
he h,

"::::} h,(X,n=k,(X~GoX+k,a3Y+AF'

Similarly, from (2.28.1 I)

'"h, (X, Y) = k, (Y)[ a"X + k,G,Y +-Aj-;;O_

h2(X,Y)---= k, (const.), we have to set
h1(X,y)

GlO a,
-=n=-,
ao aJ

(3.1.5)

(3.1.6)

••



Let ao = a, k,a, = b, A=aXu+by;'

x = X +Xo

y=Y+};,.

Then we get, h,(x.y) = (ax +by)".

and h: (x,)-) = k, (at" + by)' .

Now from, (2.28.8) & (3.6). we get

(3.1.7)

'/'/" ]/1/(y' KIJ.T/l U'),. iy' Kt:..TIl C'

Il, I h,
",

a,X + k,a,Y + A

", [ ", ]
au a"X + k,a,Y + A

::::> (K!lTll V'S)= (ax + bJY where m =!!.1...
",

From (3.1.6),

I " ,
=:>:'J.T=K' (ax+b.~)"'"-

y'K!lTXLY:

h,

(3.1.8)

::::>y'= (ax + by)"'-"

Substituting, the valm:s of y' ,!IT.L,h, & h" we get tlle values of a's, Le.

(3.1.9)

a,=a, a, = 0, - g~ a
all = -- = -coso ("")")

a, =(m+n)a. ", = rna, g 4

", =-2na, mb - g~ a ,
al2 ~ -- = ~aslllo (sa)")a, =-" g 4

aJ=~, '
k, (3.1.10)
nb

a" =(2m-l)a

(m+n)b G, =-" ;
a " k, a.• =(2m-l)-",

k, """
a",= na

2n;
a, = ---"

k,



where [, is thc angle bdween the s- direction and the horizontal surface.

Hence the transform equations (2.25), (2.26) & (2.27). reduce to

- I - 1 b - -,"F", +-(3n + m + l)aF Fe;;,+-(3" + "1+ J)-S F,i - maF~2 2 k,

b-- -,
~(m- n)- Fi S; +naS, + acoso.B == 0

k ,
- 1 b - I - mb-,
vS.;;. + -(3n + "I -'- 1)-S5,. + - (311-;-m + l)aF5j;f - - S,

2 k, 2 k,

- - nb-, ._
-(m+ n)aF;Sj; +-F, +asmb.B==O

k,

v- 1 - I b--B..-. +-(311 +"1+ l)aFO;; +-(3n + "1+l)-SOf
P,2 2 k,

[- b-]-(2"1-1) aF;;+ k, 5i B=O

Tn order to simplify the aboYe type of equations, we substitute,

F=oj. S=(.(s, ()=B, rp==arp.,

(3.1.11)

(3.1.12)

(3.1.13)

The constant a: can be defined later so as to provide convenient simplifications in

the abo\'e form~ of equations. Thus the above equations are changed to

f ,(3/17m+1)aa' if +(311 +m + 1J.!3...-a' sf. _maa' j'
,eo. 2 V "'" 2 k l' "" V •,

bal al, a'
-(m+n)---j.s. + na-s~ + acos5,-B= 0

k, v v v

(
311+"1+1) b a' (3n+m+l) a' ~ mb a' ;, ,---- ----.ss + ---- "-" ---r

- 2 k " 2 ""k", v v, v

aa' lIb a' 0 • a'
-(n17n)--j~s~ +--f- + asm 5.-0= 0

v k, v • v

(3.1.14)

(3.1.15)



_, (3n+III+J') oa' -m (311+nt+l) b a'P 0 -'- ---- --'" + ---- --,1-8
''N 2 v~ 2kv~ ,

[
"a' b a' 1-(2m-1) --( '---s 8=0v-k,v-J

(3.1.16)

Choosing
b- == c,and kj=l. then the final form of the similarityk,a - ,

solutions stand as

f'" -"-1(3n + In -;-1)(( + cslf" - 4nlj" - 4(m+ n)cf.~'

+4ns,2 +(cos6) 8= 0

S'" -'-2(3n +m -;.1)(/ + cs)s" - 4ms" - 4(m + 11)!s'

+ 4ncf'" + (sino) g '" 0

P,-I 13"+ 2(3)1 + m + 1)(/ + cs)f}' - 4(2m -1)(1' + cs')O = 0

with the boundary conditiollS.

(31.17)

(3.1.18)

(3.1.19)

Now

f(O) = F(O) = 0
seD) = s'(O) " 0
8(0) = 1

F(w) = 0,
s'(w)=o,
BC"") '" o.

(3.1.20)

hi (x,]!) '" a" (x + cy)".

whrre ]~ " a'm-'
gjJ,

For n=O, m=O.5, c=O, 0=0 and [=s, the equations (3.17)-(3.19) with the boundary

conditions coincide with the free convection flow of air subject to the gravitational

•



P,

force about fUl isothermal. vertical nat plate. analysed fUldverified experimentally

by Schmidt and Backmann [1930J, which was also discussed hy Ostrach [1953].

If we choose n=O , thcn this ca~e coincides with case (D). If we choose n=O.

m=0.5, c=O, 8=0 ,then the problem coincide with the most noteworthy of the more

general analysis given by Sparrow fUldGregg [1958] for the power law case.

The trfUlsformed equations can be solved with the help of the controlling parameters

" C"C. m, n, and 8. TIle l'randtl number Pr = -- depends on the properties of
K

the media. For air at room temperature P, =0.7, for water at temperatlUe 62°F,

P,=7.0. for Oil, P, =1 000.

The similarity variable (jl IS

Z Z II~ ~ - ~ -------- __Gr/4at J4u "~l_", ")'
~-;(ax+by) ~ ( )'"x+cy 2

[
' y, ]1,a 4-2: gf3rlJ.T(hl-'(x+cy)3\vhere, the modified Grashofnumber, Gr,y = 42' v.

The veldty components

11 = uj'(q»

v=Us'(q»

( )Y( )"-'-'[(3''''''+1)( ) ("+1-"') ( .)]:::;> -w= 41'a' -x+cy 2 \ 2 "f+cs+ 2 q>f'+cs ,(3.1.21)



and the stream fum;tions are

,y, ~
FI'","") ~("+ql ' 1(9)

V '"_" .• 1

1'o(4w"~"HH") ',1,91
Skin frictions are

3,,_,_, I 3m_,

',,'I =fI(X-;-CV)-,-r41' 1"(0)
,,,-,-1 I--';;=;;-

r, = pix +cy)--o-\,-'-s"(O)". 4v
and the heat transfer

so the heat transfer coefficient is

(3.J .22)

(3.1.23)

(3.1.24)

(3.1.25)

h h d'fi dN~ I b qw(x-'-cv)w eret emo lie 'ussetnum er, Nu = -
"Y K tJ.T

and primes denote derivatives with respect to the similarity variable!p.



3.2 Case B:

dA(Y)
Let - const.

dY
dB(X)
---. '" const.
dX

Let h, '" const., thena,-a,-a5+a,-a9"'0",!, (say)h,
and ao-a, -a, +a, -a" ",I, (say)

Let hi "'1, U, ",0 and h, ",h,(x), then from (3.1.6), we get,

I I

y' KL1T' L' '" G,X + A

h dB(X) h, "Nowwe ave, . --(ao -a,-a, +a,-a,,)"'--
d)( 11, h,(x)

=>B(X)",I,J J dX
. h,(X)

[' '''']. ;r K6.T I:J [I'
Agam, form a, =0 h)

I

(3.2.1)

(3.2.2)

Since a, ,,0.

'K" ! 1 [ . ( )]=> y-Kf:.T "[/- =h,(X).I, 11,(X) dX By usmg 3.2.2

=> (LX+A=oI, h,(X)! I dX [Bv using (3.2.1)]
v -- h,(X) .

(1) Choosing A'" 0, we get

aoX + A '" 1,11,(X) f h;~)
I.,-~

=> h,(X)=(a,X) "

(3.2.3)



for
1,

,,=)--'-

"0
when: an ,t 0 is an arbitrary constant.

By using (3.2. J), we get,

(
L' I',

Kt..TI'[I') x Or

------~
)
/ l' ,.

KAT'L/o a,,""
A", O.

Therefore, r' = o~""x,-m
•

By choosing L=aoX and

TIlerefore, the constants are,

a, '"G"

a, = -na"

a,=O,

a, = o.
a, =-0

a, = rna,.

a, = 0

a, = 0

o",0" =--=ao cos,,"
g

0,
0'1 '_~

a,,=--' =GoSllu
g

alJ =(2m-l)o,

0" = o.
(3.2.4)

where 0 is the angle between the c,- direction and the horizontal surface.

The corresponding equations are

- [2"+m+l] - ~ - ,-))5;,,+ 2 aoF5';i-(m+n)a"F~S, -'-a"sllloB=O

(3.2.5)

(3.2.6)

(3.2.7)

,

•



In order 10 simplify the abo\'e type of equations, we substitute,

- - a a'
F", aj, S '" us, e = 0, rp'" ("I'. and choosing -'- = 1,

"
\Ve get,

( m+1J '"l"'+ ,,+-- ff"-m(' +11S"+(cos5)t!=0, 2

(
111+ 11

so" -;- n + --I (s" - (m + n)1' s' + (sinS)[)'" 02 ~

With the boundary conditions,

(3.2.8)

(3.2.9)

(3.2.10)

frO) = ('(0) = 0

s(O) = s'(O) '" 0
e(o) = I

1'(",,)=0,
s'(<>e)=O.

11(",,) '" 0,

(3.2.11)

(3.2.12)

If n"'O,m=0.5, 8 =0, then this equations is similar to the problem dealt with

by Schmidt & Backmann [1930].

The transformed equations can be solved with the help of the controlling

parameters Pr.ill, n, and 8.

The similarity variable tp is,

, 'm=~=("O)}' Z __ [ao'gA 87J4. Z 11Z~ ay y _,'" y' ~ = Gr:'.-;
(aox) , (oax)'

where,the ~odified Grashof number is,Gr,= ( O~g)I'ITxj

•



The velocity components

- ..
v=Us'lrp) where U =.,{gfJr!:lTx (3,2,13)

( )1, "'[(2,,+m+I) ('-m) ]:::::; -W= a,~'v-x' 2 f- -2- rpf'.

The equation (3.2.10) & (3.2.14) is independent ofs because of

~T- variation in this case is free ofy variations.

The stream functions are

Skin frictions are

Jm_l I '"
- '"'" = J.lX 2 \----;:;-,("(0)
'm_l I'a;v

'" =.I!X ' ,1----;:;-s"(O)

and the heat transfer

q",=_JclT(gfi~!:lT)Y, ~(:)0
~t;J "c:'j' ,'",'l:]"

Hence the coefficient of heat lransfcr

(3.2.14)

(3,2.15)

(3.2.16)

q ,
Nu =-'-.

, KAT (3.2.17)

where primes denotes derivatives with respect to the similarity variable {J).



(ii) if we choose a,. = 0, A '" arbitrary constant,

then A = I. h,(X) I' 1 dX_. 'h.(X)

_-'-'-x
=> h,(X)=e".

x .to I,=> ho(X)=r" , Jorn=--'-,, A

?\'owfrom (2.28.8) and (3.2.1) with ao = 0

, ,
=> KAT"" L'i = ('"'x,

where,
1

To=-, where L=J (let).gfJ,
'V' = Aa-~x. ..

Therefore, the constants become,

a,,=O,

a,=(m-'-n)A,

a, =-nA,

a3 = 0,

a, = O.

a =0,

a, = 0

Q, =rnA,

Q, '" 0

(I, = 0

g,
aLi =--A=Acoso

g

g,
• A A' ,G,,=-- = Sill"

g

all = 2mA

a'4 = O.

(3.2.18)

The corresponding equations are

VF~ff+[;+ n]AF F;;;; -m4F~ + nAS~+ AcosS 0= 0 (3.2.19)

(3.1.20)

•



(3.2.2J)

where 0 is the angle between the ;- direction and the horizontal surface

In order to simplif)' the above type of equations, we substitute,

a'AF= cif, S=as, B= 0, ~=mp. and then set __ 0= 1, we get the final fonn,,
f'" -'-(;1+ n)ff" _mf" + ns,2 + (cos8)l! 0= 0,

S'" + (;1-i-Il)ft" _ (m + Illf' s' -i- (sino)l! 0= 0,

with the boundary conditions,

(3.2.22)

(3.2.23)

(3.2.24)

flO) '" f'(0) 0= 0

s{O) '" s'(O) '" 0
8(0)0=)

I'(oc) 0= 0,

S'("") 0= 0,
8(",,) '" O.

(3.2.25)

Ifn=O, m=2 and 0 =0 and FS, then the problem may be comparable ,vith the

problem discussed by Ostrach [1964].

The transformed equations can be solved with the help of the controlling

parameters Pr, m, n, and is.

The similarity variable <r is,

(3.2.26)

•



The velocity components

where, u == )gh6.T.1 (3.2.27)

( )1, "[l""'"')1 (m) f']=> -w== v -e- -- + - '" .., J ""-- '-
(3.2.28)

The equations (3.2.24) & (3.2.28) are independent of s because of

6.7"- variation is independent of y.

The stream nmetions are

Skin frictions are

~rA
f., ",u4e 1 \1-f"(0), ,.

and thc heat transfer

q = _"".j_gp~,"_T)Y.~(_i!8J
"'lL acrpo

Hence the coefficient of heat transfer

(3.2.29)

(3.2.30)

(3.2.31 )

where, Nu =q",.L,
, K!'o.T . hereL " [~,

•



3.3 CaseC:

dA(Y)
Lee -- '" consL

dl
dB(X) '" COliS!.
dX

Let!i-", cons!., then a, -a4 -a.I +a, -ao =1, (~ay)
h,

and a, -a, -a, +a, -alO =0

Let h, = hL (Y), ao '" 0 and h) '" I then from (3.1.4), we get,

, ,
yO K1J.T' L'
-------a,Y"'"B (constant)

h,

dA(Yl h. I
Now we have, ----;:tY '" h; I, '" h, ('y)

;) A(Y) "", f h, ~Y)dY

(3.3.1)

(3.3.2)

, [y1 K!J.Tjf [Yo]
"'gam, from ao '" h, ,

y' K1J.TY,[]I,
--~--~-aQX+A(Y)=A(Y) ,

h, Since a" = 0.

;) a,Y + B = IL hL (Y) f_l- dY [By using (3.3.1) & (3.3.2)J
h,(Y)

(1) Choosing B = 0, we get

a,Y = I, h, (Y) f h, ~Y) dY
I

;) h, (Y) '" (a,Y)''- for n '" 1- -', where as ;t a is an arbitrary constant.. ",

(3.3.3)



,( c ")y' \.K.1.P' I/'
Again. from G, '" h, )

By using (3.3.1), we get,

( "')KI;.T"L'" ,
J0.1'/; II';

B= O.

Therefore, y' =a;-~y'-m_

Therefore, the constants arc,

a" = O.

a, '" 0,

0, = o.
11,=0,"

", =(m+n)a"

<1,=-na,"

a, = 0

Q, '" 0

a, = rna,_

g,
" = ----'-" Q_ cos5 ('",')"g' .

g" '~~--=a,5mu(say)
g

G" = 0

By choosing L =a)' and

(3.3.4)

G" =(2m-J)a,

VI/here8 is the angle between the s- direction and the horizontal surface



The corresponding equations are

- 1 -- - -
vF;;<;+ - (2n + lJ1 + l)a,SF~, - (m+ JI)a,F~S- + a, cos"; 0 ~ 0, .
-1 --_.
vs;;;;;;+'2(2n+m+ l)a,SS~;; -ma,S~ +0; Slll<>O",O

L'- 1 -- --
pO;;;; +"?(2n4 m+ l)SB; -(2JJ1-I)a,S;;B", O.
, -

In order to simplify the above type of equations, we substitute .
•

a{ - :; e - d h . a,a"F~. ,S"'as,o~ ,i/!"'a~'.an eooslllg-'-~l,
We get,

( m+1J('''+ n+-- sf"-(m+n)f's'+(cosOlB",O. \ 2'

(
m+l' •s"'+ n+----Iss"-ms'. + (Slll<'i) 0=0 02 +

, ( m+1JP,- (J"+\"+-2- s(J' -(2m~ l)s'O"'O

TIle boundary conditions are,

(3.3.5)

(3.3.6)

(3.3.7)

f(O)", f'(O)~O

:;(0) '" 8'(0) '" 0
B(O) '" 1

f'(c<;)~O,
s'(,,") =0 0,
B(",,) '" o.

(3.3.8)

The transformed equations can be solved with the help of the controlling

parameters P, _ill, n, and 8.

The similarity variable <jl is,

z
(a,Y)'

)',Gr '.-, y

where the modified Grashofnumber is



The velocity components

(3.3.10)

(3.3.11)

The equations (3.3.7) & (3.3.11) are independent of the stream fWlction f

due to the reason that AT- variation dcpends only on y.

The stream functions are

Skin frictions are

'",_1 I '"- ",
T = Ii J" -'-/'(0)
"I. I v

,,-. po:-
- "

T".,"')lV l \ --;-s"(O)

and the heat transfer

Hence the coefficient of heat transfer

(3.3.12)

(3.3.13)

Nu
-8'(0)= y

(c,,)1,
where, (3.3.14)

where prime denote derivatives with respect to the similarity variable cp.

•



(ii) Ifv.'e choose a, = 0, n = arbitrary constant.

then (5.3) implies.

B=/, h,(Y)f-l_dY,
h,{Y)

_"-J'
=; h,(Y)=e B •

=; h,Ol=e"', for i1=-~,
B

Now from (2.28.9) and (3.3.1) \vith a, = 0

, ,
K'T' L~ ~, h ",=; '-' "=f ,\",'ereJJ1=~.

B

IfwechooseL=l,

. ,!1T=Toe-~, where,
I

T --
" - K' ' (3.3.15)

(3.3.16)

Therefore, the constants become,

ao = 0,

ti, = 0,

a, = O.

a, =0.

a, =(m+Il)B ..

a, = -nB.

a, =0
a, = 0

a, =mE

(3.3.17)

•



Bg~
a" == ---' = Bcos5 (s"y)

g

BK'I B' •a" = --- = sma ,(say)
g

",,=0
ill< =2mB

The conesponding equations are

- J -- - - .-
IF.:/, + '2(m + 2n)BSF" - (m + I1)BF~5'1 + Bcoso 8 = 0

-] -- -'-',-
l'S:;:;~ + -(m + 2n) BSS:;:; - mBS, + nEFf + B smb 0 = 0

2

v- I -- ---0,. +-(m +2n)BSO. - 2mBS.8= O.
P, 2

In order to simplil) the above type of equations, we substitute,

- - - - [!'B
F=rrj, .'>=as, 8=8. ifi=wp. andthenset--=l, ,.
Then we get,

('" '\f"'+ -:;-+nJV"-(m+n)f's'+coso,O=O

, (m J ','.s"+ 2+11 SS"-Jt1S' +nf -+S1l1o.8=O

p.-IO" + (; + ")sO' - lms' 0= O.

Where prime denote <;!erivativeswith respect to <jI.

With tile boundary conditions,

(3.3.18)

f{O)==f'(O)==O

s(O)=s'(O)=O
O(O)=l

f'Cx)=O,
s'(o:»=O,
0(<>:)=0.

(3.3.19)

The transfonl1~d equations can be solved with the help of the controlling

parameters P"ill, TI, and (5.

•



The similarity variable (jl is,
,

Z (gj3, !;'T)4 Y,~o-ol 0 .Z=Gr .'.z
u)' v-

The ye1city components

U=lJ)'(op)

v=Us'(op)

(3.3.20)

(3.3.2])

and Il' = h ~ [- {"2yUl x F -'-1rrxh.U FJ -lhlyUl yS + ~fr"l US~ + "lh2H'o]', ,
(3.3.22)

The equations (3.3.18) & (3.3.22) are independent of the stream function f

due to the reason that iJ.T -yariation depends only on y.

The stream functions are

Skin frictions arc

(3.3.24)

,



and the heat lran~fer

Hence the coefficient of heat transfer

N"
-8'(0)= ,II

(a,r where, (3.3.25)

where primes denote derivatives with respect to the similarity variable <p.

•



3.4 CmeD:

Let dA(Y} = 0,
dr

dB(X) =0
dX

:::::;.A(Yl = A (cons!.), B(X) = B (const.)

h,
and ~(a, -a, -a, +a, -a,)=O

h,

Since ~' ""k,(""0) (say) So a, -a, -a, + as -a, = 0,
and ao-a, -a, +a, -aw = O.

Therefore from (2.28.1), and (2.28.4), we get,

["''''TiL;] [r''''TiL!]. '-aX+Aand '- 0
h, h,

o ' ,

(3.4.1)

(3.4.2)

, ,
v' K!'lT' L'
" = aoX -;-A

, ,
"v' K!'l T' L'

and' r ooa,Y+B.
h,

, L , ,

y' K!'lT' LI y' K.1lT' L' a X + A" I ,. __ , _

h
L

• h, a,Y+B'

::::> Lx=aoX+A, and L,. ooG,Y+B.

and hj & h2 must b~ constant, let hj = 1, h2 = I,

(3.4.3)



Then the constants (2.28), become,

( ,,,
a, = r\KtlT' i' J \,'
t1, = O.

0) "'(r:KtlT~L~J,

a,=r'(KtlT~L~J"

a, '"0

a, =r'( Kt.T~L~J "'a,.,

{/,=O

{/" = 0

,
r'g-j3,./!.T'

- 'ail - - 1

KL'

r:g-fJr8T'
'"=--~'---- ,

KL'
, ,

0" '"r'Ktlt' L' (In t'>Dx

, ,
aJ' = i"K8T'L'(lntlDy

(3.4.4)

Now from (2.29.9), we have,

dA dBdY' dX = (a, -a, -a, +a, - a,,)(oo- 0, - a, +a, -awl = o.

=a,_"" =0 r By using (3.4.4)]

This implies either ao = ° or a, = O.nol both.
Let ", = 0, ao ""° orbitrary constant. then L = "oX + A (from(3.3.3).

We have, r'f2,T~L~"'aoX+A and a, =r'(f2,T~L~L

"r KOTiLl
r'( Kt.T~L~J

"&T, =-
(I. K'

, ,
KH'L' =(ooX+A)" where

where, x=X+Xo, A = "oXo
(3.4';5)



o ( , )'_" 1_"" L_mand y- = GoA -'-A '" 0, x _

llu'efore the constant me,

as" -0

The corresponding equations are

(3.4.6)
0" =(2m-l)a"

gy aQ•a,~=--.-sm{i(say)
g 4

a" = O.

a, = maO"

G, = 0

a]O = 0

a, = 0

<1, = rna".

<1.1 = 0,

a, = O.

",=0.

(3.4.7)

(3.4.8)

,- [",+1]-- --P, e~~+ 2 aoFt/i -(2m-l)acF~8=O
(3.4.9)

- - - u a'
Let F = of, S = as, e = e, rp=arp. and choosing_'_=4, we get,

o

f'''+2(m+l)ff''-4mj'" + (CllSO) 61=0 (3.4.10)

S'" + 2(m + l)ft" -4mf' s' + (sino) B= 0 (3.4.] J)

F;-I B" + 2(m + 1)10' - 4(2m - 1)1' 0 '" 0 (3.4.12)

with the boundary conditions,

/(0)=/'(0)=0
.1'(0) = s'(O) = 0
8(0) = 1

j'("") '" 0,
s'(::o) = 0,
B(ce) = O.

(3.4.13)

For m"'O.5, 0 =0 and f=s, the present problem turns to a case discussed by OSlrach

[1953], with the omiso;ion of lhe equation (3.4.11).



"lbe transformed equmions can be solved 'with the help of the controlling

pnrameters Pr, m and (i,

TIle similarity variable ((l IS,

1/ zGrf4._

, " (3.4.14)

where, the modified Grashof number,

The vclcity components

,,=L~r'{9)

(3.4.15)

(3.4.16):::; - w= (4va(~,)JI,/;'[( m; I) f + e ~m) ~ f'}
The equations (3.4.12) & (3.4.16) are independent of s because of fj,T - variation in

this case is free ofyvadations.

The stream functions are

(3.4.17)



"kin frictions are

and the heat transfer

q",= -K"~g;3~ATt ~(:J,
c

0_[-"- )l( ,;0-'( , -':--l' ,701
gfJr, 4v / Crp10

so the heat transfer coefficient is

where. the modified Nussdt number, Nux = q",x .
K "T

(3.1.19)

(3.4.18)

Here primes denote derivatives with respect to the similarity variable <p.

Similarly, if we set Go = 0 and G, ;t 0, arbitrary constant, then we get

s"'+2(n+l)ss"-4ns" +cosO"'.8=0 (3.4.20)

(''' + 2(n + l).II" - 4ns'1' +sino'a =0 (3.4.21)

p,-'e" + 2(" + 1).\"8' - 4(2n - 1).1"B '"D (3.4.22)

where" =.::.:.., with the same bo~ndaI)' conditions and S' is the angle between the
",

ll-direction and the horizontal surface

f(O) " 1'(0)" 0
s{D) '" 8'(0) = 0
0(0) = 1

1'('10)" 0,
8'('10)=0,

8{"O)=0.

(3.4.23)



The tral1sfomled equations can be solved with the help of the controlling

parameters P" 11. and O.

The similarity variable Q IS.

[
" ]X,--

. a 2 gfJ, "T~)
where, the modified Grashof number, GrJ, '" T' 'v2'

The vclcity components

(3.4.24)

lI=L/'(q»

1'= [,'s'(",) where, U '" ,1gfJ,. 6.Ty (3.4.25)

-Yo "-'[("'+1' (1-"') ]=> -w=(41'a;j 'y' -2-)s+2 q>s'.

The equation (3.4.22) & (3.4.26) is independent off because of

AT- variation in this case is free of x-variations.

The stream fimetions are

55

(3.4.26)

(3.4.27)



Skin frictions are

',,_L J~
- "~ =U}., 1-'-('(0)',,1 V 4v.

~
]v_1 1 ,.
- "r =" v' _'_S"(O)

".' 1". \14"
and the heat transfer

so the heat transfer coefficient is

where the modified Nusselt number, Nul' = q"y .dT

(3.4.28)

(3.4.29)

where primes denote derivatives with respect to the similarity variable <:po

'1

I
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Table - 1

ill f"(O) ,"(O} -e'(O)
0.10000 0,98723 0.91591 -0,16'82
0.15000 o 8~867 0.g4046 0.03292
0.20000 ()R37~4 0.7881~ 0,16691
0,25000 0.78857 0,74641 0,26761
0.31l000 0.75008 0.713~0 034546
035000 0.71864 0.685~5 0.40816
040000 0.6n32 0.66302 0.46025
0,45000 0.66986 0.64337 0.50459
050000 0.65038 0.6~6~5 0.54309
0,60000 061807 0.59766 0,60737
0,80000 (I,57ll8 0.55543 0,70406
090000 0.5531l5 0.53904 0,74246
1.00000 0.53739 0.52480 0,77639

For Pr=O.7, n=O.I, c=O.l

Table - 2

" 1"(0) 5" ((0) -0'(0
-0,20000 0,67099 0,79445 0-42174
.015000 () 67450 0.74714 0-44978
.0,10000 0,67247 0.71302 0.47292
-0,05000 066815 0.68546 0,49322
0.00000 0,66270 0.66252 0.51139
0.05000 0.6567H 0.64296 0.52788
O.JUOOH 0.65048 0.62598 0.54302
0.20000 0.63802 0.59767 0.57011
0.30000 0,62603 0.57477 0.59394
0,40000 0.61475 1l.55566 0.61528
0.50000 0,60420 0.53935 0.63467
0.70000 0,58520 051267 0.66894
0.90000 0,56862 0,49149 0.69872
1.00000 0.56111 0-48238 0.71230

For Pr=O.7.111=O.5, c=O.l,

." I



Table - 3

, f "(0) s" ((0) -W(O)
.020000 0.7039, 0.65873 0,50739
-0.10000 0.68~56 0.64755 0.51973
-0.05000 0.67540 0.64200 052573
lJ 00000 0.66668 0.63656 0.53162
o 10000 0.65047 0.62604 0.54303
0,15000 0.64292 0.62097 054856
020000 0.63572 0.61603 0,55397
0,30000 0.62226 0.60656 0.56445
0040000 0,60994 0.59761 057449
0.50000 0.59862 0.58916 0.5&413
0.60000 0.58817 0.58118 059338
075000 0.57393 0.57001 0.60661
0,90000 0.56114 0.55973 061911
095000 1l.55716 0.55648 0,62313
1 00000 0.55331 0.55331 062708

For P,=O.7, m=O,l, n=O.l

Tablc-4

" f "(0) s"(O .W(O)
0,10000 0.84211 0.78884 025208
0,50000 0.68576 0.65767 048029
0,12000 Il.M753 062381 0,54851
1.00000 0.61318 0.592~4 061558
1.50000 0.57140 055491 0.70598
2.()O()(){) 0.54242 0.52823 0,77544
2,50000 0.52041 0.50781 0,83253
3.00000 0.50275 0.49135 0.88134
350000 0.48807 0,47761 0.92419
~.OOOOO 0,47555 0,46584 0,96253
4.50000 046465 0,45557 0.99730
5.00000 0,45503 0,44648 1.02920
5.50000 0,44642 043834 1.05871
6,00000 0,43~65 0,43097 L08021
6.51HlOO 0,43158 0,42425 111199
7,00000 () 425JO 0,41809 Ll3628
8,00000 041357 0,40710 1.18107
10.0000 0,39476 o 3&911 ~ 1.25902

Form=O.5, n=O.l, c=O.1



Table -5

Similarity Cases in tabular form:

Case ", (x,y) '" ",(x,y)« !\.T(x,y)", Similaritv variable qJ

A

BCi)

(ii)

qi)

Oi)
D(i)

(ii)

(x + cy)"

I

I

",

eO'

I

I

I
I

1

'm 1

"

)- ,,, 1

'm 11

GI~;{,
(x + CV)~+l
1/ Z

Gr" -, . .
"

l/ ZGr/' .-. y

1. zGr,.. -. y



Result and Discussion:

The ordinary differential equations (3.1.17)-(3.1.19) are solved

numerically by Sweggert iteration teelmique foro == 45°. Dimensionless

velocity and temperature profiles for the power law surface

temperature case are presented in figures (1)-(3) respectively, for P, =0.7,

n == 0.1 and c = 0.1 with several values ofm. The velocity profiles vary

as usual with the parameter m. However, the temperarure profiles for

negative power (m=O .1) differ notably in shape from the uniform wall

temperature case (m=O.5). An unusual observation for 111=0.1,we may infer

that the surface receives heat from the fluid. Similar behaviour was noticed

in 2-D situation also by Sparrow and Gregg [1955,1956, 1958J for free

convection over a vetiical plate and by Schuh [1948] for forced convection

over a plate with a power law surface temperature variation. For positive

power, the temperature distributions are similar in shape to that of uniform

\vall temperature case.

Velocity profiles displayed in figures (4)-(5) & in table (1) show that

the skin friction decreases as the power of the temperature increases. \\'hile

the heat transfer factors are as usual as in Sparrow and Gregg[195S]'

Representative velocity and temperature profiles for the power law

curvature affect (different vaitles of n) are shown in figures (7)-(9), for fixed

values ofP, =0.7, m=0.5 and c=O.,l. These figures shows the limitation of

curvature affect.



Within the limit -0.2.:O:n.:O:O.3,the velocity and temperatllre

distributions are regular. For negative \"alues ofn, the velocity distribution

along y-direclion is higher than the x-direction,so that, we find the variation

of the skin friction at the edges in figures (10) & (11).

In our equation (3.1.17)-(3.1.19), if e=O.O,n=O.O,then the equation

coincide with (6.9)-(6.11). In addition ifwe set m=0.5, then these equations

are similar to the case defined by Ede,AJ.[1967].

The velocit)' and temperature profiles for different values of care

sho\vn in fig.(13)-(15) and the associated skin friction and heat transfer

factor are in figures (16)-(18) as well as in table(3).

Dimensionless velocity distributions along u and v direction for

several values ofPrandtl number, Pr are shown in fig (19) & (20). In this

situation small Prandtl number, (Pr--?O) generates large temperature

distributions on the surface, shown in fig. (21). The variations of skin

frictions (f'(O),s"(O)) arc displayed in figures (12) & (23), heat transfer

coefficients (-8'(0)) is ShOVillin figure (24) for the variation of tile fluid

properties Pr (the Prandtl number). A numerical Table (4) displays the

effects of skin friction factors and heat transfer coefficient with the variation

ofP,.

Finally, the restricted variation in (x,y) of ,iT, hI, h2, under which the

partial differential equation governing the natural convection flow in three

dimentional curvilinear coordinates are reducible to ordinary differential

"



equation, are displayed in table 5. This table also exhibits the nature of

similarity \'ariahle in tem1s of modified Grashof numher embeded with.6.T-

variation.



Nomenclature

a.b,c

Co

F,S

f,s

g

K

k

L

m

p

P,

R,
T

T,
T,

u
x,y

constants

specific heat at constant pressure

dimensionles~ scaled stream functions

dimensionless stream functions

acceleration due to gravity

scale factors for curvilinear surface

modified Grashofnumber

constant

the coefficient of thermal diffusivity

characteristic length

temperature power/exponent parameter

power/cxponent of hi & h2

modified Nusselt number

Pressure

Prandtl number

heat flux

modified Reynolds number

temperature of fluid

temperature ohmbient fluid

surface temperature

velocity components in the boundary layer

characteristic: velocity generated by buoyancy effects

coordinates along the edges of surface

coordinate normal to wrf~ce

•



e
ll';¥

P

p

p

Greek letters

constant

the coefficient of volumetric expansion

boundary layer thickness

thermal bOlIndary layer thickness

dimensionle8s temperatw'e function

mags 110w componants (stream functions)

dissipation function

similarilY variable

the kinematic coefficient of viscosity

the dEn,ity of ambient fluid

coefficient ofviscosity

the coefficient ofthemlal diffusivity

nOlldirnensional skin friction

scaled coordinate defined in equations

the square root oftlle local bOlUldarylayer lhickness
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