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ABSTRACT
>

Combined laminar forced and free convective three dimensional

boundary layer flow over a vertical orthogonal curvilinear surface

z=o, x > 0, y > 0, hI > 0, hZ > 0, h] = 1 is discussed in

different situations. The aim of this study is to look for the

similarity solutions under some different conditions on the forcing

velocity and temperature difference by which reductions of partial

differential equations into ordinary diff~rential equations are

possible. The numerical solution of one set of the representative

transformed equations for different values of controlling parame-

ters u;-,cr. m, n.and S, are obtained, where hI = hZ = 1.

... :.
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CHAPTER 1
INTRODUCTION

Th~ natural flow originates from body force variations in fluids,

whereas the forced convection is generally introduced by moving a

body through a,quiescent fluid or by forcing a fluid past astation-

ary body. This flow regime is concerned with circumstances wherein

both the natural and forced mechanisms of the flow must be

considered simultaneously. The laminar boundary layer flow due to

such combined forced and natural convection has received consider-

able attention for both steady and unsteady situations in evaluat-

ing flow parameters for technical purposes.

TANAEV (1956) published an approximate analytical analysis :,jfor' "
J

laminar, compressible, mixed flow of air over an inclined flat

plate. The external flow was assumed parallel to the plate for all
r----~'

plate inclination angles. His analysis i~ for low Mach numbers and

for situations where the b~~y~ncy_effects could be considered small
<relati ve to the forced flow effects. ACRIVOS (1958) _.-emRIClyedth,e

Pohlhansen-Von Karman momentum integral method to consider incomp----" . -'-_ .. - _._-'"

ressible laminar flow over a vertical isothermal plate with

buoyancy effects. The form of the velocity and temperature profiles

for the combined convection were assumed to be the sum of the

purely forced and natural convection profiles. These assumptions
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are wrong due to the basic non-linearity of viscous flow problems.

Numerical results were report~d for the heating and cooling of

upward flow past a vertical plate for Prandtl numbers of 0.73, 10,

and 100. The influence of natural convection on separation flow

showed that heating of the upward flow.would stabilize the boundary

layer, whereas cooling hastens the appearance of separsion.

SPARROW and GREGG (1959) attacked the isothermal vertical plate

problem, considered by ACRIVOS, by a different approach. They

perturbed the equations of the purely forced flow circumstance to

include small effects of buoyancy. The study considered both the

cases where the buoyancy effects are parallel and opposite to the

external flow. The analysis was restricted to laminar boundary-

layer flow and calculations were made for Prandtl number of 10, 1

and 0.01 respectively. For fluids with larger Prandtl numbers the

effects of buoyancy were found to be of Smaller importance in

predicting the boundary layer characteristics.

t SZEWCZYK (1963) also investigated combined flow over a vertical

isothermal surface, considering two types of perturbations. First,
- .. -" .-- .--" .. -.

purely forced flow was perturbed to include small buoyancy effects.- - - - -~--------- --
This. portion of the analysis is similar to that of SPARROW and

GREGG (1959); However, SZEWCZYK considered the seco.nd-order term of

perturbation series. The second part of the analysis considered a

perturbation of the natural convection flow.to include small forced

2



flow effects. Results were tabulated for Prandtl numbers of 0.01,

o . 72, 1.0, 5.0 and 10.0 .

The case of laminar. mixed flow over an iso-thermal horizontal

flat plate was investigated by MORI (1961) and SPARROW and

tMINKOWYCZ (1962). MORI considered the case for a Prandtl number of

0.72 while SPARROW and MINKOWYCZ considered Prandtl numbers of

0.01, 0.7 and 10. In both the papers the technique of perturbing

the purely forced flow equations to include small effects of

buoyancy was applied; These investigations presented formulae for

calculating the shear stress and heat transfer rate in the mixed

flow regime.

,GILL and DEL CASEL (1962) considered the influence of buoyancy for
.'.

flow over a horizontal flat plate with non-uniform temperature at

the surface. They found that the boundary-layer equations had a

similarity solution for a surface temperature varying as one over

the square root of distance from the leading edge. With this

surface condition, however, there is no local heat transfer. The

physical significance .of this situation is not apparent. Prandtl

numbers of 0.001, 0.72 and 10 were considered. For the plate

temperature greater than that of the fluid external to the

boundary-layer, the parallel velocity component was found .to

increase and temperature to decrease for the flow over the top of

the plate, relative to the corresponding forced flow results. The

opposite effects were encountered for the bottom of the plate.



These results are in agreement with those found MORI (1961) and

SPARROW(1962). It was similarly observed that buoyancy has less

influence as the Prandtl number is increased.

BRINDEY (1963) considered an approximate technique to solve the

ordinary differential equations encountered by SPARROW, EICHHORN

and GREGG (1959). His primary intent, however, was the comparison

of his approximate method with respect to known numerical

solutions.

ryGUNNESS. and GEBHART (1965) considered mixed. flow over isothermal

wedges for a variety of included angles. The regime considered was

incompressible, laminar, boundary-layer flow with Prandtl number of

0.73. Two types of wedge orientation were treated. The first case

was discussed for horizontal wedge, i.e, the plane of symmetry

normal to the body force and the second case was for vertical

wedge.

WMERKIN (1969) considered the boundary-layer flow over a semi-

infinite vertical flat plate, heated toa constant temperature in

a uniform free stream. He discussed two cases when the buoyancy

forces aid and oppose the development of the boundary layer. In the

former. case, two series solutions were obtained, one of which was

valid near the leading edge and other was valid asymptotically. In

the latter case, a series, valid near the leading edge was obtained

and it was extended by a numerical method to the point where the

4
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boundary layer was shown to separate.

COMBARNOUS and BIA (1971) considered the combined free and forced 8
convection in a porous medium and had studied the effect of mean
flow on the onset of stability in a porous medium bounded by two
isothermal parallel plates. Numerical solutions were later obtained
by HORNE and O'SULLIVAN (1974), CHENG and LAU (1977), and CHENG and
TECKEHANDANI (1976) to study the effect of withdrawal of fluids in
a hot-water geothermal reservoir. SCHROCK and LAIRD (1976) :
performed an experimental study on the simultaneous withdrawal and
injection of fluids in a porous medium.

PING CHENG (1977) investigated the combined free and force ~
convection boundary-layer flow along inclined surfaces embedded in

.porous media. It was found thil.t!'; imilarity solutions exi.st when
both the wall temperature distribution of the plate and the
velocity parallel to the plate outside of the boundary-layer vary

according to the same power function of distance, i.e Xl. The value
. G .

of -L was found to be the controlling parameter for the mixed
R~

convection from inclined plates in a porous medium. Numerical
solutions.were obtained for mixed convection from an iso-thermal
vertical flat plate (i.e, l=O) as well as an inclined plate with
constant heat flux, having an angle of inclination 450 (i.e,

l= 1/3).

5
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RAJU, LIU and LAW (1984) censidered the beundary-Iayer flew ever o?

semi- infini te vertical and herizental flat .plate, heated to. a
censtant temperature in a uniferm.free stream. They discussed when
the bueyancy ferces either aid or eppese the develepment. of.toe.
beundary-Iayer. Different mixed-cenvectien parameters were

intreduced in the fermatien ef the respective preblems invelving
herizental and vertical surfaces such that smeeth transitien frem
ene cenvective limit to.the ether was pessible; in particular the
geverning equatiens fer the purely ferced and free cenvectien cases
were respectively recevered frem the zero. values ef Grasheff and
Reynelds numbers.

So.far the auther's knewledge gees no.attempt has yet been made fer
cembined cenvectien fer three dimensienal bedy.

The similarity selutiens exist enly fer very special types ef main \~
stream flew and fer special types ef co.-o.rdinate systems. The
similarity selutio.ns o.f beundary layer fo.r the three dimensio.nal
case was studied by Hansen (1958). He presented similarity-~
so.lutio.nso.fthe three-dimensio.nal, laminar inco.mpressible bo.undary
layer equatio.ns aleng with a general metho.d ef analysis. Restric-
tiens o.nmain flew velecity cempo.nents and co.-o.rdinatesystem which
lead to. similarity so.lutio.nswere tabulated. Finally a discussien

.---was given ef the practical applicatio.n o.f similarity so.lutio.n.

HOWARTH (1951) discussed the equatio.ns o.f bo.undary layer flo.w in ('1) .

6
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the vicinity of a stagnation point on a general three dimensional
surface. He showed that the equations were reducible to a pair of
simul taneous ordinary third-order differential equations containing
a single parameter C related to the exponent of the mainstream flow
velocity. The variation of C would be effectively limited to the
range from 0 (corresponding to two dimensional flow) to 1 (corre-
sponding to the axial flow past a body of revolution), and
solutions were obtained for the cases of C~0.25, 0.50, 0.75. DEVEY
and SCHOFIELD (1967) studied the same case and presented numerical
result in tabular form.

DAVEY (1961) studied the flow of a viscous incompressible fluid in l~)
the immediate "neighborhood of saddle point of a attachment, near
which the external flow was irrotational with components [ax, by, "
-(a+b)z], where a>O, beO. It was shown that the flow was of a
boundary layer character, and that part of the boundary layer flow
was reversed when b/a e -0.4294. Numerical solutions were presented
in the tables and diagrams.

SOWERBY (1965) derived series expansion for the three-dimensionaIC~
boundary layer flow over a flat plate, arising from general main-
stream flow over the flat plate. The series involved were calculat-

ed as far as terms of the order of ~a, where ~ is a non-dimensional

parameter related to distance measured from the leading edge of the
plate. These calculated results were applied to an example in which
the main stream arises from the disturbance of a uniform stream by

7
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uniform stream by a circular cylinder mounted~~downstream from the
leading edge of the plate, the axis of the cylinder being normal to
the plate. Calculations were made for shear-stress components on
the plate, and for the deviation of direction of the limiting
streamlines from those in the main stream.

DWYER (1968) discussed a method of calculating accurate solutions
of the three-dimensional laminar boundary layer equations. Thi&
method was, applied to a problem that exhibits interesting cross
flow phenomena. The method of solution used was an implicit finite
difference scheme, and the stability and convergence properties of
this scheme were found to be good. Also the important question on
initial conditions for three-dimensional boundary layer flow was
discussed, and a me~hod of obtaining initial conditions was
derived.

WANG (1974) discussed general methods for calculating three-
dimensional laminar boundary layers over inclined blunt bodies (not
necessarily bodies of revolution). He used the traditional integral
method and presented complete incompressible boundary layer results
for a prolate spheroid at 300 incidence .l'l.) "

The similarity solution" of combined forced ah'd free convective
three-dimensional laminar boundary-layer flows in curvilinear co-
ordinate is more complicated in comparison with that of two
dimensional boundary-layer flow. In the present study, discussion

8



is confined about the mixed three dimensional boundary-layer flow

over a vertical orthogonal surface. The three dimensional boundary-

layer equations are developed for the curvilinear co-ordinate

system and relevent partial differential equations are transformed

into ordinary differential equations by the technique of

similarity. Only one set of transformed equations are solved

numerically to predict some essential parameters.

9
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CHAPTER 2
PHYSICAL OUTLINE.OF THE PROBLEM

The situation discussed in the present problem is that of a

resultant uniform free stream velocity UR(=ii?+~1 flowing over a

rectangular vertical curvilinear surface C = 0, h1 ~ :t 0, h, 'I:t 0

which is fixed with its leading edges perpendicular to C-axis. The

body is heated to a temperature Tv above the ambient temperature

Te. Heat is transferred by convection from the plate, and this

heating gives rise to buoyant body forces.

T

10



GOVERNING EQUATIONS

Heating due to viscous dissipation can be neglected and the fluid
may.be considered incompressible. The flow of the fluid may be
considered steady state laminar . The co-efficient of viscosity ~
and the thermometric conductivity k can be taken as constant. The
Navier-Stoke's equation including the body force term and energy
equation are in vector form

V.q = 0

(I (q. V) q = - Vp + i + ",V2q
(lCp(q. V) T = It V2T

->where q ='l:(u,v, w)

body force i= (lg = (I(g", gy' g.)

(lg" --> body force in the x-direction

(lgy --> body force in the y-direction

(lg. --> body force in the z-direction •

1(a,b, c)

To transform the governing equations into curvilinear co-ordinate:

let ax = u au + v au + w auox oy . az

a 3= (..!l.:) - 2 (VWJ - WWz) .ax 2

=

11

2(a,b,c)



and

Hence

=

= V (~) - 2 (q x W) ,
2

(3)

2Where V(!L)
2

and vorticity vector W = (W1, W2, W3) ,

. W
1

= 1:. ( aw_ av)
2 ay az ,

Equation (3) becomes,

dq- 2
dt = V( ~ ) -2 (ilxW>

(4)

where steady convective operator

12

d = u~ + v~ + w~
dt ax ay az ~



and dq = =tdt a.

Equation l(b) becomes;

(5)

Convective operator of u, v & w - components in curvilinear

co-ordinates are,

, (6a)

(6b)

+ (6c)

Here h3(~I~) = 1 has been set such that' represents an actual

distance measured normal to the surface.

13



The equations governing the flow field in general curvilinear
co-ordinates become,

a (~ u) +....£..(~ v) a 0 (7 )en + ac (~h2 w) = ,
01}

u au +...Y. au + wou uv oh1 + ~ ..£. (hl~)~ o~ +--~Ott oe ~~ Ott ~~ oe

(8a)

(8b)

(8c)

(9 )

'Where

Similarly. V2v, V2w and VolT.

14



For convenience dimensionless quantities have been.introducted into
the equations (7), (8) and (9) in the following way:

All lengths have been referred to a representative length 'L', the
velocity has been made dimensionless with reference to the

resultant free stream velocity Ua (••Ju! + ~), the density with

respect to II" and the pressure with reference to The

temperature in the energy equation (Eq.9) has been made
dimensionless with reference to the temperature difference
AT ("T,,- T,,) between the wall and the fluid at the large distance

from the body. Thus, the non-dimensional temperature function is,

e •• T-Te
AT •

Thus the dimensionless quantities primes are:

~=~', 11 .= L11', e = Le',

II •• II"II', T-Te = eAT,

k = kJe',

Hence the equations (7), (8) and (9) in dimensionless form are,

...i- (U'h) ~
a~1 '''2

..E.... (h v') +
011' 1

...i- (h h w') •• 0ae' 1'''2

15
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+ (llal

= -

(llbl

+

. 16
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and

v.'c' [( ~ ae _+ v' ae + w' a~) + e< ~' (loAT) t'.+ ~' (loAT) II' } l
p ~ a~' ~ c3q' ....1 '"2

=.

+ 8 {a (~ a (AT» + ..!..
. AT a~' ~ a~' c3q'

where,

(12)

Prandtl number

co-efficient of kinemetic viscosity Vo = ,",0,
Cle

Reynold number =

and Froude number Fr
u~= gL.

If li be the boundary layer thickness, the.n the dimensionless

boundary layer thickness is &' = !«1 Since L > > 1.
L

Order of magnitude of each of the terms in equations, (10) , (11),

and (12) are estimated, so that very small terms can be neglected.

17



Since au' is of 0(1),
a~'

au' is of O(l),
c7q'

av' -0 (1), av' - 0 (1) then
a~' al1'

~u' -0 (1)
c7q /2 .'

also aw' -0(1), since " is of order 6',. a,'
Therefore ~u'-O(l) . ~v'_O(l),

a~/2 . 'a~/2

Similarly w' - 0 (6')

Since the maximumvalues of each u' and v' is 1.

Now, since 6' < < 1.

~w'
c7q /2 '

':>..., a'd'_uw_ and W can be neglected.a~' c7q'

Outside the boundary layer Bernoulli's equation

p +..! (U:+~) = constant,
C! 2

gives -

and au. aVe
= u. al1 + V. al1

18



The dimensionless form of these equations are,

and

Thus and are of order and

,au~..1 a~ .u.---+v.--- respectlvely.
01)' 01)'

Hence - ..!. EI!!., and -
0' a~'

are of 0 (1)•

Let 5T be the thermal boundary layer thickness, the conduction term
becomes of the same order of magnitude as the convectional term,
only if the thickness of the thermal boundary layer is of the order

of

In view of the previously obtained estimation for the thickness of

the velocity boundary layer a - -1- , it is found that aT
If> T
V".

19
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Assuming that h1, h2 and all their first derivative of 0(1) and

setting the order of magnitude in each terms of equations (10),
(11) and (12), o.•.•e. olo\::-o.i1'\!>

(13 )

0-> 1 1 1

, a 'Q' [.E... ...E... +
h1 a~'

0-)1 1

v' au'
h2 aq'
1

+ w,au'
ac'
1 1 &'

1 1

a - Eli.a~'
l' 1

",' a ~ au'
+ b~R [a~'{h a~')

1. ••• 1."

6'2 1

+ ...E- ( h1 au')aq' ~ aq'
1

a au'
+ ac' (~~) ac')

1/&'

20

+ (n n ) ~ u']
'"1'"2 ac' •

1/&'2

(14a)



'a 'c!' [E.. .-!.. +
h,. a~'

0-)1 1

v' av' + w' av'
hz iJrI' ae'
1 1

v'w' a
+ h1~ ae' (h,.~) +

&'

_ ( u/2+w/2) ah,.]
h,.~ iJrI'

1 6'2 1

a '•• - EE.: +
iJrI'
1 1

. Ii' a ~ av'
+ h,.~R.[a~'( h,.a~')

&/2 1

+~ (h,. av')
iJrI' ~ iJrI'

1

a av'
+ ae' (~~) ae')

1/6'
(14b)

, u' aw'
c! [ h,. a~'

0-)1 6'

v' aw'+ ---
~ iJrI'

6'

+ w,aw'
at;'

6'

u'w' a~
+ ----
h,.~ a~'
&'

v'w' ah1+ ----
h,.hz iJrI'

&'

u/2+v/2 a
- ( h,.~ ) ae' (h1~) ]
1 1 1

=-2E.ae'
1/&'

a h,. aw'
+ iJrI' ( ~ iJrI')

6'

+ a (h)\,) aw'ae' 1''2 ae'
1

21

+ h )\, CPw')
1'"2 ae2 ,

1/&'
(14c)



Q'C'[(~ ae +
j) h1 a~'

0-)1 1

v' ae
~ Oq'

1

+ 'II' ae)ac'
1 1 1

= r! 1 [{ a (h2 ae)
Pz;R"hl.~ a~' h1 a~'

612
2' 1

+a(~ae)
Oq' ~ Oq'

1

+ ~~ a~'(;,)
1/612

2'

+ a~'(h1~) ;,}
1 1/6~

+ 8 { a (~aAT)
AT a~' h1 a~'
1 1

+ ...£...(h1aAT)}]
Oq' ~ Oq'

1

(15 )

Order of each term of equation (14c) when multiplied by 6', then order

of all the terms in equation (14c) become above 6' except ap'ac' . Hence

equation (14c) can be neglected compared to the equation (13), 14(a,b)

and (15) .

of order 6/2 also, ...!..-£.. (h h ) au' and 1 a (h h ) av' are of order
R" ac' 1"2 ac' R" ac' 1'"2 ac'

These terms can be neglected compared to the other terms in equations

14(a,b).

22



Again,

6'2 alsoT
J! 1 a (~~) 00' is of order 6i. These can be neglected

R.,pr ~~ ac' . iJC'

compared to the other terms of equations (15). Thus the simplified

governing equations of the flow field in general orthogonal curvilinear

co-ordinates become:

(16)

= (17a)

= - (17b)

and ~f= 0 (1).

23
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The potential flow in the main stream outside the boundary layer is the
function of (~,~). Hence external velocity components Ue and Ve and
external temperature Te (=. constant) be independent of C.

To elliminate pressure terms in equations 17 (a,b), the conditions
outside the boundary layer are imposed. Imposing the boundary conditions

aac->O the following equations

are left for onward study:

= - 20(a)

[ u. av" V.
o lI. ~ a~ + ~

u..a a'll_1]
~~ ~

= - 20(b)

and = O. (21l

so

But the outer temperature Te is constant,.

aT. = aT. = 0a~ ~ .

24



In view of 20(a. b). (21) and T-T••-6 A h b d' 1_~_, T••-T••= T. t e oun ary ayer
T••-T ••

equations with the elimination of pressure terms (by 20(a) and 20(b»

become
(22) .

= ( ) [u.. au.. v.. au.. u.•v.. a~
g~ p - P.. + P.. ~ a~ + ha c7'I + ~ha c7'I

=
( .) [u.. av.. v.. av.. u.•v.. aha
C!- C!. g~+ ll... ~ a~+ ha c7'I + -~-ha- -a~-

and

J
(23b)

v <126= --- ,
Pr aC2

(24)

25



where v is the kinematic viscosity of the fluid~
Let l! = l! (P, T) be. :the. ~0Tl 1- s I-o..te.

,i.e, do = ~:] T dp + ~~] p dT

Then, dQ = l!kdp - l!lh. dT ~ (25)

where, 1 ank = - (..=.>La ) T CQDBt •l! P •
(26a,b)

For ideal gas ~T = ~

In non-dimensional form (25) may be written

as dl!' = - Ii ATde
g' , T

a
+ kP l!••UR dP'•• P••

,(27a)

[... II = lI••lI', P = 0••u; p', T-T -ATe)••

In the case of slow motion for a gask Pe - 0(1),

c=~v p••
lI••

= the speed of sound> o:n'"

In'case of liquid
a

lI ••UR is more significant than for a gas.
p••

However for a liquid k Po« 1,
Hence the equation (27a) becomes,

26



~ = - PT.i T e or p=p(T) (28)
Il'

= - BTdT.
i.e, Dropping the primes In ( .J!.. I = -PT(T-Trl

Ilr

or .J!.. = e-~r(T- Trl

llr

= l-PT(T-Trl

.. Il = Ilrt1- PT(T- Trl} (29a)

Similarely. (29b)

Then it may be written that

(29c)

considered to be the Boussinesq approximation.

Hence the simplified boundary layer equations become

(30a)

+ (30b)

27



and

+ (30e)

28
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CHAPTER 3
SIMILARITY TRANSFORMATIONS

Equations (30) are non-linear, simultaneous partial differential

equations and the solutions of these equations are extremely

difficult to obtain. Hence our aim is to reduce equations

30 (a,b,c,) to ordinary differential equations with the help of

30(a) which permits possible variations in AT, Ue' Ve, hI' and h2

with respect to ~ and ~"

Let the variables ~,~ and , be changed to a new set of variables

x, Y and .' where relations between. two sets of variables are

given by,

x •. ~, y •.•• , ..•..•. ,
"' ••• y (X, Y)

(31)

y(X,Y) is considered here to be prportional to the square root of

the local boundary layer thickness.

a a••a~ ax
ax aa~ + ay

a.. a~ •. (32a)

where ax
a~ •. 1, .. -
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Similarly,

iJ iJ=iJrI iJy
'" iJ.% Y r ....•••..Y a+

(32b)

and (32c)

Let two stream functions .(~,Tl,') and 'P(~,Tl,') be defined as the

mass flow components within the boundary layer for the case of

incompressible flow.

The following equations can be written

'P,= h,. v ,
(33a,b,c)

to satisfy the equation of continuity (30a). Guided by the idea of

similarity procedure of Hansen (1964) we are allowed to write

and /.' v -o vex, y) d. = SIX, y, +) .
(34a,b)

In attempting seperation of variables of F(X, y,.) , sex, Y,.) and

e(X, Y,.). Let it be assumed that

F(X, Y,.) = L(X, Y) F(.) ,

sex, Y,.) = M(X, Y) S(.) ,

e (X, Y, .) = N(X, Y) i) (.) ,

35(a,b,c)

where F, S, and i) are the functions of the single variable •.

From (34), and 35 (a,b) it is found that

30



.. u = ULpt,
36(a,b)

; .• st .•Mst .. V" VMst.
Again, from 33(a)

.•) u = 1 a (.1)
U ~y (X, Y) . a; U

(37)

From 34(a) and (37) expression for F(X, Y,.> and .(X, Y,.) are

F(X,Y,.) 1 - - • (X, Y, 0) 1•• ~yu [.<X,Y,.)

:.• (X, Y,.) = ~yULF(.) + 111(X, Y, 0) (38)

Similarly,

cp (X, Y, .) = ~yVMS(.) + cp (X, Y, 0 ) (39)

and

31
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If Lim 41-)0, then.

1wo(X,Y,O) = - ~~ [1jrz(X,Y,O) +41y(X,Y,O)] (41)

When the surface is porous, Wo represents the suction or injection
velocity normal to the surface, Since Ue and Ve are independent of

C, Hence (u,,). = (V,,>. = O.

So equation (40) becomes,

(42)

The convective operator
d 1 a a a
dt = ~~ [~u a ~ + h1 VafJ + ~ ~ w ac 1 (43 )

in terms of new set of variables X. Y and 41 may be derived. Thus

the convective operator is ,

= h UL1iJ..~ + ~MV.q..~
2 -. ax -. ay
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Using equation (44), Equations 30(b,c,d) become,

u - momentum equation: ,

+

+
. 3 3 3
YVU+ Y UVh- Y h~-Oha UL" "I' ~ ha UL " ,,11' ~ ~ UL 6'3% ,,- }

(45)

v - momentum equation;'

+

33

(46)
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,-' \. ,.: :.,~J;.'. "::1;'"" ':~.';-:. ... )



Energy equation:

2i; MV[ ( in N) y + (in b. T) yl 0 8+ = o. (47)

Here the boundary conditions which must be imposed to determine the

solutions of the equations (45), (46) and (47) are,

(a) The fluid adheres to the transformed surface and this surface

must be a stream surface. However, if the develop~ble surface be

porous then mathematically on this surface,

u (X, Y, 0) = 0 = ~ (0) ,

v(X, Y, 0) = 0 = st (0) ,

W(X, Y, 0) = -wo'

where Wo is considered here to be the surface suction or injection

velocity for the developable surface, then

6(X, Y,O) = N(X, Yl 0 (0) = 1 •• N(X, Yl = 1 and 0 (0) = 1.
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(b) The fluid at a large distance from the said surface must be

undisturbed by the presence of the boundary layer. Then

Lt u(X, Y,.) = U" = ULii(oo).- UL = U", Fl(oo) = 1 ,.~oo
Lt v(X,Y,.) = V" =VMst (oo) - VM= V,,; st(oo) = 1.~oo
Lt 6(X, Y,.) = 0 = N(X, Y) i)(oo) - i) (oo) = 0, N'" 0 •"'~oo
In conditions (a) and (b) if general boundary conditions

i)(0) =1 and 1'i(oo) =st(oo) =1, i)(oo) =0] be

introduced, without loss of generality it may be written that

UL = Ue and VM = Veo

Then the two momentum equations (45), (46) and the energy equation

(47) take the following forms:

u- momentum euqtion:

+

+ . --.r.- v:V" ~y - h" U ~z = 0,
1 '"2 "
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or,

y2 V; =- .....>...- - h (l - !~~)
~~ U

ll
-:IX -.

v-momentum equation:

48(a)

Energy equation:

36
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But

and

= 1 [(y2 V••) r + y2 ( ~ V••) r _ y2 h V (_1_) ]
2 ~ ~h2 '''1 •• ~~ y •

Therefore, the momentum and energy equations become,
u- momentum equation:

v-momentum euqation:

- a15 (1 -~) + au 0 = 0 ,

Energy equation:

37
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where ao' aI' a2 ..••. al8 are the function of X, and Y given 'by,

(i)

(ii)

=

=

(iii) a2 = y2 (h:zU ••) ( h,,\ )J[ )

2 .
(iv) a3 = ( y V,,) )h:2 r

(v) =

(vi) a5 = y2 h1 V•• ( h
1

1
h:2) r "

(vii) a6 = y"o J

(viii ) a7 = I 2 U ,h" Y .•J[

(ix)

(x)

=

=

(xi) 1
h" h2
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(xii)

..t.<,., \...

(xiii) aU = ..!. y2 V"r ~
~

(xiv) a13 = 1 U" y2 V"x ,
h1 V"

(xv) (52)

(xvi) 1
h h . ~r ~

1 2

(xvii)

(xviii ) an = . ~ y2 U" ( 1n A T) x ~

(xix) al8 = ~ y2 V" ( 1n A T) r •
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Similar solutions for (49), (50) and (51) exist only when all the

a '.s are finite and indepen.dent of X and y; that is to say that all

a's must be constants. Thus the boundary layer momentum equations

and the energy equation will become non-linear ordinary

differential equations, if U. (X, Y), V. (X, Y), h,. (X, Y), h2 (X, Y) and

y(X, Y). satisfy the equations (52).

To find Ue, Ve and y in different situations for simplicity we

first ignore the injection or suction effects i.e, a6 = O.

From the expressions for a's, one have

53{a)

Similarly,

53{b)

From 52 (i),

=

53{c)

Similarly,

53{d)
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By virtue of equation 52(i),

which, when integrated gives

54 (i)

where A(Y) is either constant or function of Y only.
Differentiating 54(i) with respect to Y, and in view of similarity
requirements (54)

U U
= y2 (~) r + ~ 2 Y.Yr

~ ~

Ue
+ ~ 2 Y Yr

ciA
dY

54 (ii)

In view of equation 52(iv)

a) Y + B (X)

41
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where B (X) is either constant or function' of X only.
Differentiating 54(iii) with respect to X, it is found that

dB
dX

= v.•
U••

(55)

Taking the product of 54(ii) and (55) it is found that

ciA dB
dY. dX

(55a)

The form of similarity solution, the scale factors Ue(X,Y), Ve(X,Y)
and y(X,Y) depend wholly on the equation (55a); This situation
leads to the following four possibilities~

A. Both ciA and dB are equal to zero
dY dX

B. ciA .,. 0 but dB = 0,
dY dX

c. ciA = 0 but dB .,. 0
dY dX

D. Both ciA and dB are finite and constant separately.
dY dX
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CIHIAP'TlER A
St"udY of diFFerent" cases

(For rectangular surfaces)



CHAPTER 4
STUDIES OF DIFFERENT CASES

For rectangular surfaces equation~(52) become,

(i) ao = (y2U.l Z )

(ii) al = y2Uez )

(iii) a2 = o ,
(iv) a3 = (y2 V.l l')

(v) a4 = y2 V.l"

(vi) as = o }
(vii) a6 = o ,
(viii ) a7 = all (56)

(ix) as = 2 V.
Y 7j"U.1'I

•

(x) a9 = o I

(xi) alO = o }

(xii) all = - 1 2 P (4 Tl....•7j" y gil T
•

(xiii) al2 = a4 I.
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(xiv)

(xv) a14 = 0 ,
(xvi) a15 = 0

(xvii) a16 = - ;. y2 gr PT ~T)
•

(xviii)

(xix)

,/
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CASE-Ali!

Let ciA dBand dX both be zero, then,dY

A ='constant and B = constant.
And equations 54(ii) and (55) become,

= 0

57(i,ii)

But being not equal to zero, so

58(i,ii)

ao - al + al3 = 0
From equations 54(i) and 54(iii) it is found that

and

45
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From equation (59),

= (60)

In view of 56(ii) and 59(i)

or

=

UeJl =
U.

y2 U.x = ~ U.x (ao X + A)
•

!J
= K1 (Y) (ao X + A) eo 6l(i)

Similarly, from equations 56(v) and 59(ii)

••
= 1C2(X) (a3Y+B)"

where K1(Y) and KZ(X) are integrating constants,

From equations, (60) and (61)

6l(ii)

U•. =
V.

=

4,.
IG. (Y) (aoX + A) eo

~
1C2 (X) (a3 Y + B) e,

Comparing with (60), one obtains

1C2(X) =
IG.(Y)

4,._1

(aoX + A) eo

~ -1
(a3Y+B)e,

46
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Assuming a,_ =n, it can be shown that,
a3

Hence,

From equations (5B)

63(a)

63(b)

and
The similarity requirements furnish the relation between constants
(a's). These relations are,

where ao and a3 are arbitrary.
Hence the general transformed equations take the form
u-momentum:

+ a3 (n - 1 l (1 - pt SJl + all t = 0,

47
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v-momentum:

+ 8o(m-1) (l-ptBt) +8160 = 0,

energy equation:

subject to the boundary conditions.

64(b)

64(c)

F(O) = pt(O) = 0,

8(0) = 8+(0) = 0,

0(0) = 1,

pt(oo) = 1,

Bt(oo) = 1,

0(00) = O.

( 65)

Substitution of

above equations we have.
u-momentum equation,

+

48
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v-momentum equation.

+

+ a au b = 0)
D a

D

66(b)

and energy equation,

+
66(c)

If it is assumed that Cl1" CIa •• Cl3 •• CI,

equations (66) take the form

u-momentum equation

and ~ = p. the
'aD

f. •• +' ( m; 1) f f.. + ( :n; 1) P s f.. + m( 1- fl )

+ = 0 ) 67 (a)

v-momentum equation
49



+v; ••. =0
u )v: 67(b)

and energy equation

subject to the boundary conditions:

67(c)

s(O) = S.(O) = 0

0(0) = 1

where,
Oleo) = 0

(68)

_y2g P (4.T)x r .

(say).

lfere u; = -gxPr(4.T) (X+XQ)

= -gx Pr (4.T) . x (characteristic length).
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where characterisitc length" (X + Xo).
. Similarly,

(say) ,

here ~ •• -Ii gr liT (A T l x (characteristic length)

where characteristic length" (Y + Yo)'

In this case Xo" are set.

The terms
2

UPi) and
U~

in the momentum equations represent

bouyancy effects compared with the forced flow effect.

U; ~The controlling .parameters are Pr, S, -, -, m and .n.
U~ v:

where Ii".

(69.f) and

(y2 V••lr =
(y2 U••l;r
(69.g) .

where C2 and C1 are given by equations

The similarity functions f(.) and s(.), the similarity variable

.' the velocity component ( = u, v, w), the skin-frictions

(=~••'s), heat flux (••qw) and Nusselt numbers (=Nu's) associated

with the equations (67) are

U••(X+ Xol
v

or, Z
.=(Y+y'l o

= ( Z l
Y+ Yo

51



where and

and

w =

Skin-frictions are,

't = Il(au)
., r a z .-0

= ) f•• (O)

and 't ., = I.L ( ~;) .-0
1

R2
s•• (0).. 't ••• = I.L V ( ex ) .

e X+Xo

Heat flux,

=

here K is the thermal conductivity of heat.
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..q" = 0", (0)

= - IC ( 4 T)

Nusselt number's are

= q" ( X + Xo)
IC (4 T)

1

.. Nux = -R ••~O",(O)

and

Nur = q" (Y+ Yo)
1C(.1T)

=

Hence similarity variable,

=

or

1
Z -

(X+K,,) R••~ = (69.a)

= =

53
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u = (69.c.d)

w ,-

+ (69.e)

Ue = Cl (X + Xo)m (Y + yo)n-l = c Xm yn-l
1 1 1 I

Ve = C2 (X+Xo)m-l (y + YO) n = x:'-l nC2 1 Yl•

4T = C3
(X +Xo) 201-1 (Y + yo) 2n-2 = C X2m-l y'2n-2

3 1 1 J

1-01 l-n 1-01 l-n

= ( X + Xo)
-2-

(Y+ yo)
-2- = -2- -2-

Y C4 C4 Xl Yl ,

and stream functions are,
m+l n.,l

= {VC;. Xl-.- yl""T f (ell)

m-l n+l

and cP(Xl' Ylf) = ~ Jv Cl (Xl) -.- (Yl) -2- s (ell) ,

(69.f)

(69.g)

(69.h)

(69.i)

(69.j)

T - To =

= c (X) 201-1 (Y
l
) 2n-2 i) (ell) I

3. 1

(69.k)

where X+Xo) = Xl
Y+Yo) = Yl

cl = aom n-la3
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c2 = agrl a3n

c3 = all 2m-l 2n-2

gg Pr ao a3 '

and =

Skin frictions,

= I.L U" (69.1)

and = .(69.m)

. Heat - flux,

= - It (.1 T) (69.n)

Nusselt Numbers,

=

55

(69.p)



= (69. q)

v;) used in equations 67(a,b,c) are now discussed.v:
The physical

u;p, -2;
U,;

behaviour of the controlling parameters

The Prandtle number Pr(= I&Cp) depends on the properties of the
K '

media. For air at room temperature its value is 0.72, for water at

temperature 620F its value is 7.0, where for oil this value is of

the order 1000. (AT is equal to c3 (Xi.) 2m-l (Yl) 2n-2). For m =n = 1 and

S = 1, f = s and this gives the flow at an axi-symmetrical

stagnation point. When S = 0, c2 = 0 i.e. v = 0 and the flow is

in the neighbourhood of it two-dimensional stagnetion point. ,The

solutions were obtained by Howarth for S = 0.25, 0.50, 0.75

in absence of bouyancy effects. For intermediate values of S the

velocity profiles and temperature profile given by f.(+) ,B.(+)

and 0(+) are of boundary layer type.

The third and fourth parameters are the coupling agent between the

momentum and energy equations. These parameters have been replaced

G .by ...E! and
2 .

Rex
Gry are the

G~r by Sparow, Eichorn and Gregg (1959). Where GrX and
Rer
local Grashop numbers based on AT, X, and Y; where Rex

and Rey are the Reynold numbers based on the components of outer.
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by Grx and
R:X

Gry are the

G~y by Sparow, Eichorn and Gregg (1959). Where GrX and
R"y
local Grashop numbers based on AT, X, and Y; where Rex

and Rey are the Reynold numbers -based on the components of outer

stream velocity, X and Y. However AT as well as Ue and Ve are

functions of X and Y and neither GrJl nor Gry can appropriately
R:X R;y

represent this term. The use of Grashop numbers here are rather

misleading. Since it introduces ~2, which is eleminated by using

Rex2 or Rey2 in the denominator. The non-dimensional solutions

should not depend on Rex and Rey' The use of U~and ~ are

preferred here, since Up and Vp defined by Ostrach (1953) give the

measure of order of magnitude of velocity

effects. More precisely, the parameters

as the square of the ratio between the

caused solely by buoyancy
2. v:

UF and -!:. are def ined
U; V;

velocity caused by the

is

for the
~
V;

when the

buoyancy effects, and the external velocity components
U2forced flow. The flow is said to be aided when -!:. or2 .
U"

greater than zero and is called to be the opposing flow

parameters are less then zero.

When U~< < U; and

as U~» u; and

~ « V; the flow becomes forced flow; whereas~----~ » V; the flow becomes free convection flow.

In absence of bouyancy effect the equations 67 (a,b,c) (= the

forced convection) are dealt with Davey (1961) when m = n = 1.
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CASE A(ii)

The case A (i) is characterised by, arbitrary constant in the

similarity requirement'namely ao and a3. Setting the arbitrary

constant ao equal to zero but a)~Othe problem changes to different

type. In addition to the traditional conditions of case A,.if one

sets ao = 0 the equation for ..,2 reduces to

Setting the value of ..,2 in 56(ii),

From 56(iv) it is found that

a)Y+B..,2 = ~ __
v.

From 56(v) and 70(b) the following equation is found as

From (70) and 70(b) the following relationship is obtained

Here K1(Y) and K2(X) are constant of integrations.
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Again, from 70(a) and 70(c)

=

. ~x
Ki(Y)eA 70(e)

From 70(d) and 70(e) it can be found that

=
.'ze A

70 (f)

Hence from 70(f)

~z
= e A and

The equations 70(a) and 70(c) take the following form

~z ~Ve = e A (a]Y+B).'

Hence

Ue = C1eall:(Y+ Yo) "-1

Ve = caeall:(y+yo)" 71(a,b,c)

y2 = c]e-aIl: (Y+Yo) 1-"
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and !J. T oc e2JltZ (y + Yo) 2»-1

m = B

Setting the expression of Ue, Ve and y2 in equation (56),

Let al and a3 are arbitrary, then

Hence the general transformed equations (49), (50) and (51) take'

the following forms:

u-momentum equation,

v-mementum equation,

60
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energy equation,

subject to the boundary conditions:

72(c)

S{O) = .'%{O) '" 0

~(O) = 1,

ii{oo) = 1

.'% (oo) =1

~ (oo) = 0 ,

(73)

Substituting F = uf, S = us, and in the above

equations and setting (n+1) a3u2 = 1 and
2 v

A = 2c •a3

The above equations (72) take the form

+ (2 - _4_) (1 - £.s.) +
n+l

2
(_2_) Up~ = 0
n+l U~ '

s••• + ss•• + 2mc fs + .2E..{1-S.2)
n+1. •• n+1

74(a,b,c)

+ 4mc (1 - £.s.)
n+l

+ _2_ ~O = 0
n+1V:

,

2cm ff)
n + 1 •

8mc f) £ +
n + 1 •

61
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The boundary conditions applicable for the above equations are,

flO) = f$(O) = 0, f. ("')= 1

s(O) = 8.(0) = 0, s.("')= 1 (75)

b (0) = 1, t ("')= 0,

~l u; au v:Zwhere, = = It-, -,a) u.Z a) v:Z•• ••

u: = - C'~~(5r(AT), c plays the role of characteristic length,

The similarity functions f(.), s (.), the similarity variable .'
the velocity components u, v, w ; the skin-frictions 't.'sheat flux

qw and Nusselt number (Nu) associated with the equations (74) are

•

t(X, Y,.)

s <+) ,

and • =
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w =
Vv.! 2 .! 1 1_ (_"_) a (-l a [mer + mC+r• + (~) s +. (E.::-)cjls.l
Yl n + 1 2 2

Skin-frictions are,

and

Heat flux,

:. q., = -

1 1
Ie (A T) (.B..!..!) 2 142 ~ (0).., 2 y••

~1

Nusselt Number,
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In this case, if c = 0 _> A = 0, Le, Ue = 0 _> u = O. Then the

fluid moves with two velocity components (= v, w). The velocity

components are independent of X. Therefore, the similarity

functions 'f' is negligible, let 2n = An+1 1'1

The equation~(74) take the form,

The boundary conditions are

76(a,b)

s{O) = s.{O) ="0,

8(0) =1) 8 (oo) = 0 •

Here, V; = - g/r{A7? x characteristic length .•

where characteristic length = Y1
~,

vocy~e 1 and
3~ -2

AToc (Yo) ~1 •

Hence the non-dimensional stream function, similarity variable, the

velocity components (=v, w)" within the boundary layer and skin

friction (= ~.,), heat transfer co-efficient (=qw) are given by

following equations.
1

cp = [{2-P1)VVeY1(aS{~) ..•
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v

w

. =

=

=

=

=

and Nusselt Number,
1. •

=_ 11)21)(0)
~."'Y1 •

The above case is a steady flow problem for combined forced and

free convection. The parameter 81 is well known wedge flow

parameter (infact n81 is the wedge angle) related to the exponent

of Ve and IJ.T.

Detail of physical significance of 8 was explained by Falkner-Skan

(1931). This problem has been explained previously by Sparrow,

Eichorn and Gregg (1959) with new similarity function s(l) and

similarity variable + related to our present function and variable.
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8 (ell) = SIll ,
';~(~2~-P~1~) ell =

The equation (76) is. transformed pair of equations dealt with by

Sparrow, Eichorn and Gregg (1959). They tabulated skin-friction and

heat transfer factors (=8U (0); 0", (O)) for uniform wall temperature

(i.e, l}=2.) and uniform heat flux (i.e,
2

l}1 = 2. ) in the
4.

Grange--£!2.
R.r

= 100 down to the point of.speration for. air Pr = 0.7.
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CASE-A (iii)

In this case, setting the arbitary constant a3 equal to zero and

.ao '"0, the equation' for y2 reduces to,

B
V••

Setting the value of y2 in 56(v), one obtains.

"'y
V•• = Ki. (Xl e B •

From 56 (il,

y2 = ~ (aoX+A) •
••

Substituting y2 in 56(ii),

where Kl(X) and K2(Y) are constant of integrations.

From (77) and 78(b),

(77)

78(a)

78(b)

78(c)

u••
V.
••

aoX+A
= --- B

79 (a)

and from 78(a) and 78(c) we get,

u••
V••

el
K2 (Y) (aoX+A) e.

= ---~---
eoy

Ki. (Xl e B

67
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From 79(a) and 79(b), it may be written that

==> Xi. (X)
K2(Y)

~
K2 (Y) (aoX+A) a.=-------a, y

Xi. (X) e B

.!!-1
B(aoX+A) ao

= ------ a,y
eB

(80)

From equation (80),

a,y
and Ka(Y) = e T

8l(a)

81 (b)

Substituting the expressions of K1(X)' and K2 (Y) in equation

78 (a, c) .",e. I:IiDh:un!> >

'and,

82(a)

82 (b)

82(c)

where,

68
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The similarity requirements furnish_ the relationship among the

constants aI' a2' a3 •.

HV(~ aO and a4 are arbitrary,

These relations are,

Hence the general transformed equations (49), (50), and (51) take

the form,

83(a)

83(b)

and

83(c)
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The boundary conditions are

F(O) = El(O) = 5(0) = 8+(0) = 0)

83 (d)

0(0) = 1, o (ao) = O.

Substituting F = uf, 5 = us, + = u+ and 0 = 0 in above equation and

setting
2

(n+1) aoCil = 1,
2 v

a, = Bm and B = 2c,ao

the above equations (83) become,

+ (_2_) rrrO = 0,
n+1 U:

84(a)

and

+ (2__ 4_) (l-f .•s.) + (_2_) V;o = 0,
n+1 .• n+1 tr. 84(b)

p/O.. + fO. + 2 em sO. _ 2 (2n-l) 0f.
n+1 n+1

~Os = O.
n+1 •
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where

The similarity functions f(.), s(.); similarity variable .' the

velocity components u, v, w, the skin frictions ,; 's
"

Heat

transfer co-efficient qw and Nusselt number Nu associated with the

equations (84 ) are

{2vx,)i 1

1jJ (X, Y,.) = u: .f (.) )
n+l

• (X, Y,.)
1 1

= (4 CV)"2 v:"2 s (.•..) )
n+l • •••
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and

w = _ [ VUe
X.
1

where Rex, = U"xl
V

Skin-frictions are,

and =

Heat flux, = K (4T)
Xl

where It. is the conductivity of heat and j1 is co-efficient of

viscosity.

And Nusselt number, =
1

_( n;l>RJ.O.(O),

It is interesting to note that if c=O i.e, B=O then Ve =0'__ > v=O.
That is the flow moves with two velocity component u andw, and the
flow becomes 2-dimensional. Hence the other component of

similarity function s is negligible and
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n+l

(say).



Therefore, equations (84) become,

o , 86(a)

86(b)

The bounary conditions are,

£(0) = £.(0) = 0, £. (GO) = 1 I

8(0) = 8.(0) = 0 J 8. (GO) = 1 I 86(c)

l) (0) = 1, l) (GO) = 0

3P-j
and AToc(X} 2-1 ,

Hence the non-dimensional stream function, similarity variable and

velocity components are
1

1JI(X,Z) = [(2-fi)vU.,K1j2£(cII),

V -;:;0

It' = -
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Skin-friction,

't =•

heat flux,

and Nusselt number,

1

N.••. = - 1 R..1o (0).-,. J2-lf ,.

This case is a steady flow problem for combined forced and free

convection. The parameter S is well known wedge parameter related

to the exponent of Ue and t.T.

Detail of physical significance of S was explained by Falkner-Skan

(1931). This problem has been explained previously by Sparrow,

Eichorn and Gregg (1959) and is same as case A(ii).
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CASE A (IV)

Setting the arbitrary constants (aO' a3) to zero in addition to the

traditional conditions of case A, the equation for y2 reduce~to

From (87),

and

UtI =
V"

A =
B

constant

87(a,b)

(88 )

Hence it can be said that Ue is ~r?portional to Ve,

From equations 56 (in and 56 (v),

and 89(a,b)

where cI(Y) and c2(X) are the constant of integrations.

Therefore,

UtI

V"

o.

(90)

From equations (88) and (90), the resulsts is,
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c1(Y)eA

.~r
c2 (X) e B

= A
B



-> =
~z

Be A

.Cy
Ae B

(91)

From equation (9ll,expression for C2(X) and C1(Y) are

and
!!r

c,(Y) = Ae B

Substitution of ci and c2 in equation (89) gives

and

where

U = Ae (JIIlf+nr)

"

a,
= m, and

A

v = BeeJOr+nr)

"

a-! = n'B .

n(a,b,c)

(93)

The similarity requirements furnish the relations among the

constants a's. These relations are,

where a1 and a4 are arbitrary,
Hence the general transform equations (49), (50), (511 take the form,
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94(b)

94(c)

subject to the boundary conditions,

F(O} = pt(O} = 0, 11(.•.) = 1,

S(O} •• st(O} ••0, st( •••} = 1, .

i) (O) = 1, i) (00) ",0

(95)

Let us now substitute F •• fir, S = flS, + = fI+ and i) •• i) in

the above equations and choose •• 1 and
equations (94) are

fl2a1
2v

further simplified to

a, A= II the abovea1

+2rr,i) = 0,rr. 96(a)

+
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= 0, ,96 (b)



97(c)

The boundary conditions are,
flO) = f.(O) = 0, f. ( •••) = 1 J

s(O) = S. (0) = 0; S. (00) = 1, (98 )

6 (0) = 1, 6 (00) = 0 )

where. and v;
= v:.

lfere.

v; = - ~P~T(~T),

~,~ INN.. "t •..•e. rt~reLLo..nVt. e-hc."o.e.h .•..istic. Le.1'l~:'.

and p = a4 = nB = ~P' ,
a1 mA m

where . pi = B.
A

The similarity functions f(.) and s(.), the similarity variable

.' the velocity components (= u, v, w), the skin frictions (=~.'s),

heat transfer co-efficient (=qw) associated with the equations (97)
are

• (X, Y,.)
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glm -
cI> = Z 2X .R"i ' u = U"f~. v = V"s~,

and q" = - It (AT) ~ 2~ . where U"XRex = --.v

The variation of ll' would be effectively limited to the value

ranging from 0 to 1. If 13' = 0 then B = 0 and A••O, So that Ve = 0

=> v = O. When 13' = 1 then A=B so that the De = Ve => f = 5 and the

flow is two dimensional.
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CASE B (i)

suggests that
l.

99(a)
here a2 = as = ag = a14 = ~ because h1 = h2 =
Since Uti is non.<:eroand finite, the equation

V"Ue and Ve are either function of Y or constant. Hence equation

99(b) yeilds?

aO - a1 + a13 = 0

==> au = a1 - aO
and B(X) = constant = B.

Thusy2 becomes for this case

(100)

Substituting the value of y2 in 54(i) [y2u.=aoX+A(Y) lone obtains

Uti (a3 y + B) = ao X + A ( Y) •
V"

(101)
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To maintain the consistency on both sides of the above relation. we
have to put aO = 0 in equation (101) then

= A (Yl. (102)

From equation 99(a) and equation (102) it is found that

...E... (U" (a) Y + B)} =
dY V"

==> d
+ (a)Y+B) dY = U"

V"

==> = U"
V"

Integrating both sides gives

U"
V"

=

~
c1 (Y + Yo ) ",",
c2 (Y+ Yo)4,

If we choose U" = c1 (Y+Yo)- and V = c2 (Y+Yo)" J"
where as = m, a. = n, c1 = a)., " " and B Yo"- c2 = a) =

a) a) a) ,

we have y2 = c) (Y+Yo) 1-"," where
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Substituting Ue, Ve and y2 in the similarity requirements,

equation (56) gives

aa = ma3, a12 = a4 = na3, ala = (2n-lla3,

where a3 is arbitrary.
Hence the general transform equations (49, 50, 51) take the form,

103(b)

103(c)

subject to the boundary conditions

F(O) = Fi(O) = 0, ~(oo) m 1,

8(0) = .9+(0)= 0, Si(~)= 1, (104)

I)(0) = 1, I)(00) = 0 •

Let now substitute F = uf, 8 = us, ell = uell and I)= I);and choose

(103) and (104).

2m A
n+1 = I" and ~ = pI in the above equations

n+1
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Thus the above equations are changed to
2

f... + sf.. + P (1-f.s.) + (2-P') UpO = 0,cr.

s••• + ss•• + P'(l-S.) + (2-P') V;0 = 0,v:
p;10•• + sC. + (2-3P') Os. = O.

The boundary conditions are
f(O) = f.(O) = 0, f. (00) = 1,
s(O) = s.(0) = 0, s. (00) = 1,
0(0) = 1, 0(00) = 0,

where au = u:. and au = V;-, -,
a3 cr. a3 v:

10S(a,b,c)

(106)

here U; = - A(Y) (AT) P ga
3

T 1t
and

To have the meaningful characteristic length we have to put either
man or gX=O resulting the equations lOS (a) and lOS (b) identical
implying pap' or lOS (a) becomes a force flow equation where U;=O.

The similarity functions f(+) and s(+), the similarity variable
+, the velocity components (= u, v, w) the skin frictions, the heat
transfer co-efficient and the Nusselt number associated with the
equations (lOS) are,

• =
1

Z "2
----ReYt
Y1.f2=P'

() V••Y1= Y1 say and.Rey= v

U y,•• V y,11 AT" "1211-1,e = 01 l' e = 02 l' <& ~,

11'=

U = Uef., v = VeSt

Vv .!
(J2-Pl) (_e_) 2 [S +

Y1
and

. 63



Stream functions,

cp (X, Y, +)

Skin frictions are

and

=

=

Heat flux, q" = It(4T)

Y1~(2 - p')

and Nusselt number NUr =

when p = P' then m = n, cl = c2 and Ue= Ve => f = s. Therefore
equations 105(a) and 105(b) are identical. If S = 0 then cl = 0, =>
Ue = 0 => u = O. The flow moves with the velocities v and w having

no velocity along x-axis in the boundary layer. Again if P' = 0
then Cz = 0 => Ve = 0 => v=O, then the flow moves with the
velocities u and w like 2-dimensional flow.
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CASE B(iil

Case B(i) is characterised by the arbitrary constant a3 in the
similarity requirement. The possibility case B(i) reduces to

special form when p = 0 or pi = O. Setting the arbitrary constant

a3 to zero, the problem changes to a different type. In addition
to the traditional conditions of case B, if one sets a3=O the

equation for y2 reduces to

y2 = .!!...
V"

In view of similarity requirements Eq. 56(v) and Eq. 56(ix) the
following two equations are obtained

~y
V =ceB8 1 and

where c1 and c2 are constant of integrations. Thus for this type of
scale factors, the relation among constants are

when a4 anda8 are arbitrary.
Hence the general equations (49), (50), (51) take the form.

107(a)

107(b)
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v - 1 -- 2a.~5l •• o , 107(c)-~H + "2a•s ~. -
Pr .

subject to the boundary conditions

F(O) = Fi(O) ••0, ~(oo) ••1 I

S(O) = st(O) = 0, st(oo).= 1, (108)

~ (0) = 1, ~ (00) ••0 •

Setting F = uf, S = us, 4> = u4>, ~ = ~ in the above equations and

assuming = 1,

the above equations are changed to
2

+ 2 U, 0 = 0 ,rr.

+ 2V;0=v: 0, 109(a,b,c)

-1 0 sO. 40s.=O,Pr •• + -

subject to the boundary conditions,
flO) = f. (0) = 0, f. (oc) ••1 ,

s (O) = s. (0) = 0, s. (oc) ••1, (110)

~ (0) = 1, o (oc) •• O.
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where u~= -,
u~

and tr,
= -;v:

here u~= -.A g (AT)I!r and
a4 x

+, U"" V"" AT and the velocity components within the boundary layer
.for the above equations are,

+=zj;;'""~2Y
1
2R",y,

AT oc e2J2Y,

111 (X, Y, +>

lp (X, Y, +> = (2VV",> i s(+>.
n

Skin frictions are,

12.
Rey s•• (0 > •

Heat flux,

where . as
= nand

B
= m
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CASE C

Similar to case B, two possible situation arise again in dealing

with the case 'C'; These are,

CASE C(i)

In view of equations 54(ii) and (55),the condition imposed on the

case C may be written as

and

dA(Y)
dy

dB (x)
dx

111(a,b)

USince -! .,.O=>U and Ve are either constant or fun,ction of X only)
V . "
"

U" = constant, will be found to be a special form of the present
V"
case. Hence from 54(i) and (55).

y2 = .J.. (aoX+A) and
U"

y3 = S(X)
V"

112(a,b)

From (112) it is found that

V" =
U"

112(c)
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Setting V. in 111 (b), and integrating, the following equation
U.

results
41 lOu

1--+-
B{X) = (aoX+A) "0 "0 + C (113)

here C is integrating constant, let C=O. Substituting B (X) in

112(C) ,expressed for

C2 (X+Xo)"= -----
C1(X+Xo)"

U" is
V..

(114)

where and

If from Eq(114) ,it is assumed that

115(a,b,c)

1-.
where c3 = ao3 and

Substituting y2, U. and Ve in the similarity requirements are

obtained,

au • (2m-l)ao and ao is arbitrary •

. 89



The general transformed equations (49, 50,51) take the form,

v - 1 -- ---(tit + - (m + l}aoF (t. + (1 - 2m) Cio (tpt = 0,
Pr 2

subject to the boundary conditions:

F(O) = pt(O) = 0, l'l(oo} = 1,

S(O} = 5+(0) .= 0, -%(00) " 1,

(t (0) = 1, (t (00) " O.

(117)

As before substituting F = uf, S = us, • = u., (t = (t and

writing u2ao (m+1)
-~-- = 1,

2v
2m fl

m+1 " I"
and 2n = ~',

m+1

the above equations (116) are changed to

v;
(2 - ~)-(t" 0,

~
116(a,b,c)
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the boundary conditions become
flO) = f.(0) = 0, f. (ao) = 1,

s(O) = S.(O) = 0, s. (ao) = 1, (119)

C (0) = 1,. C (ao) = O.

where u;
= -,cr.

v:= -,v:

To have the meaningful characteristic length we have to put either
m=n or gy=O resulting the equation 118 (a) and 118 (b) identical

implying P = P' or 118 (b) becomes a force flow equation where V:=O.

here where u.x,.
Rex •• -v-'

Stream functions are,
1

1jJ(X, y,t) ••(2.!.. . XU)"2 fIt)m+1 1 ••

91.



and 4p (X, Y, ~)
2 l .•m 1

= [_V_X_l_l2 V.S(~)
Cz(m+l)

The skin frictions are

or ="'1

1

Ii R..1 u f. (0)
~ Xl •••

and

The heat flux, q", =

and Nusselt number

Nu =
1

- _l_RJO (0)
~ .

Since Ve, Ve and ~T are independent of Y, the case C(i) is a two

dimensional (X,Z) problem for combined forced and free convective

flow. The parameter Sand S' are well known wedge flow parameter

.related to the exponent of Ve, Ve and ~T. If P = p' then m = n ->

Ve = Ve and equations 118(a) and 118(b) are ideritical. Details of
physical significance of Ve, Ve' ~T and S

Sparrow, Eichorn and Gregg (1959).
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CASE C (ii)

Similar to the case B(ii), another situation arises if one of the

constants considered in C(ii) be zero. Thus setting ao=O and in

view of equations (Ill) one may derive the following expression for

y2, Ue and Ve. These are,

2 _ A
Y --,

U~

~.z
U=ceA~ 1 and

where cl and c2 are constant of integrations. Substituting the

values of y2, Ue and Ve in similarity requirements, the relations

between the constant a's become

a13 and al are arbitrary.

Hence the general transform equations (49, 50, 51) take the form,
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subject to the boundary conditions,

F(O) = l'i(0) = 0, ~(co) = 1,
8(0) = ~(O) = 0, 9+ (co) ••1, (121)

0(0) = 1, o (co) •• O.

Setting F = a.f, 8 = a.s, 41" a.41, 0 = 0 in the above equation and

8 a.2choos ing _,_ = 1
2v

changed to

and 28'3 = P the above equations (120) are
8,

••0 >

p;'0 •• + fO. - 40f ••• 0 •

And the boundary conditions are

f(O) •• f.{O) •• 0, f. (co) ••1 ,

s(O) = s.(O) •• 0,. s. (co) ••1•

0(0) = 1, o (Go) •• 0 •

•• 0 > 122(a,b,c)

(123)

Where
u;= and
U2
•
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here

Here,

AT'" e2mx,

. 1

111 (X, Y,.> = ( 2v Ue) "2 f(.>
m

. 1

and cp (X, Y, .> = (...!!.. e -JDx>"2 VeS(.> )
elm

where au = n (say) and
A

Skin frictions are,
1

'fw,. = 11( :'xRex> 2 Uef •• (0)

and

Heat flux, qw
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CASE D

In view of the equations 54(ii), (55) and the condition stated for

this case it is obtained as

= constant,

A{l')

B{X)

124(a)

124(b)

where d1 and d2 are two integrating constants.

Substituting A(Y) and B(X) in equations 54(i) and 54(iii), y2 is

found to be

and

125{a)

125(b)

Comparing above equations of y2, the following relation can be set

(126)

and =
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Again from equations 54(i), 54(iii) and (126),

aoX+A{Y)
= -----a3Y + B{X)

= K1 (= constant)-

==> aoX + A(Y) =. K1 [a3Y + B(X)] -

From the above equation (127), it can be written as

Then equations 54(i) and 54(iii) take .the form,

(127)

and Y2 = 1 ( 1 a X + a Y)V.. IC:L 0 3-
128(a,b)

Substituting y2 from 128(a] in 56(ii),

U•• = c1 (ax + bY)" ,.

where c1 is a constant of integration,

129(a,b,c)
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Similarity requiremen~furnish the relations among the constants
(=a's) as

where ao and a3 are arbitrary.
Hence the general transform equations (49,50, 51) take the form,

130(a)

130 (b)

130(c)

subject to the boundary conditions,

F(O) '" ~(O) = 0, ~(oo) = 1 ~
S(O) '"9+(0) = 0, 9+(00)•• 1. ~ (131)
~ (0) = 1, ~ (00) ••0 •
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Let now the following substitution be made

F = uf, S = us, 41 = u4l, 0 = 0 along with the assumptions

2
(m+1) aou = 1,

2 v
and 2m _ A

m+1 -.1'.

Hence equations (130) become,

132(a)

='0 132(b)
J

132(c)

where and ,

here U~

99



and ~ = - ~Sly(AT) (aX + bY) fir .

If c = 0 ==> a3 = O,then the velocity components are independent of

Y. The equations (132) are similar to the Sparrow, Eichorn and

Gregg (1957)' s equation.

The similarity functions f(.), and s(.), the similarity variable

.' the velocity component u, v,w, the skin frictions(=~w's), heat

flux (=qw) and Nuselt number (-Nu) assbciated with .the equations

(132) are

lP(X, Y,.)
1

(aX+bY)"2 s(.),
aKi

1
• = [m; 1. •a Rel "2

where

Z
(aX + bY) ,

w =
U 1 1

( e av )"2 ( m + 1.) "2 [f _ • 1.
aX + bY. . 2 1.
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v = c (aX + bY)-•• 2 .)

AT" (aX + bY) 2•.• 1•
Skin friction are,

and t = 11[m+l •aR.,l ~ V.. s•• (0) •••• 2 (aX + bY)

Heat flux,
. . 1

q" = _ lC(AT) (m;l .a) '2

and Nusselt number

where 11 and 1C are co-effecient of viscosity and thermal

conductivity of heat respectively.

•
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CIHIAPTffR !5
The arbit-rary surFace



CHAPTER 5
The arbitrary surface

In this case, hI and h2 are not constants and not equal to zero

In view of equations 54(ii), (55) and condition stated in case D

one obtains

u" =
V.•

Constant, 134(a)

A(Y)

B(X)

134(b)

134(c)

where d1 and d2 are two integrating constants.

Substituting A(Y) and B(X) in equations 54(i) and 54(iii), y2 is

found to be

dh
- ag) Y+ -L.!

. U"
135(a)

and ~~--,
V"

135(b)

comparison of above equations for y2, gives

= 0,
136(a,b)
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From.equations 52(xi) and Eq. 52 (xv)

v••= ~ U••, I. where (137(a)

F~om Eq. 134(a) and Eq. (137), it is found that

h2 = ~h,.I . where K2 = Constant.

From equation 52(viii) and 54(i)/

~
U.. = c1(aoX + A (Y» •••J

~
and V.. = c2 (aoX + A (Y» "0 I

where cl is constant of integration and c2 = c1k1'
Again from 54(i) and 54(iii),

aoX + A(Y) = K) (constant). where K3 = ~.a)Y + B(X) ~

137(b)

138(a)

138(b)

Hence it can be written and B(X)

Substituting A(Y) and B(X) in Eq. (138)

U••= c1(ax + bY)-, 139(a)

and V•• = c2(ax + bY): 139(b)

where ao = a, a)K3 = b.
a8 = ~ = m •
a ao)
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In view of equation 52 (ii) and Eq. 54 (i),

h
l
= c3(ax + bY)D-llI,

~ = c
4
(ax + bY) D-llI

and y2 = Cs (ax + bY) D+l-2m..•

where c4 = c3IC2,
al =n and Cs = c3 •
ao cl

140(a,b,c)

Similarity requirements furnish the relations between constants a's.
These relations are

al = naO' a2 = 2(m-n)aO' a4 = na3' as = 2(m-n)a3'
a6 = 0, a7 = maO' a8 = ma3, a9 = (n-m)a3, a10 = K12(n-m) aO'

1= -(n-m)a3'K:
al7 = (3m-n-l)aO' al8 = (3m-n-1)a31

where aO and a) are arbitrary.

Hence the general transfeorm equations (49), (50), (51) take the
form,

141(a)
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+ 141(b)

subject to the boundary conditions.

14l(c)

F(O) = I'l(0) = 0;

S(O) = 8+(0) = o.
~(O) = 1.

I'l(CD) = ~.

8+ (CD) '" 1 ,

~ (CD) a 0 •

(142)

Substituting F = CDE. S "'.us. Ijl '" 1I1jl. ~ '" ~ and

u2a a)assuming (3n - 2m + 1) __ 0
'"1. and = C.

2v ao

The equation (141) takes the form.

+ ( 2nC ) (1 f. s) k2 2( n-m ) (1 - .q~).
3n - 2m+1 -.. - 1 3n - 2m+1 ..••

+ 2 ~ ~ =
3n -2m+ 1 •.2u.
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s••• + (f s•• + c s s•• ) + ( 2mc ) (1- sl) + 2n (1- £.. S.)3n-2m+1 3n-2m+1

_ 2c ( n - m ) (1 _£.2) +
Kf 3n - 2m + 1 •

2 V; .•..•
---- u 0,
3n-2m+1 v:

143(b)

p;lC •• + (fC.+csC.)-2(3m-n-1) (C£..+cCS.)" O.
. 3n-2m+1

The boundary conditions are,

143(c)

flO) •• f.(O) = 0,

s(O) = s.(O) = 0,
.C(O) =1,

f.(eo) •• 1,

s.(eo) =1,.

Cleo) •• 0

(144)

where allao
~= -,rr.

v;
= -,v:

here U; = - gz(A T) P2'~ x characteristic length

and V; = - gJ"(AT) PT ~ x characteristic length,

where characteristic length ••

The similarity variables are,

aX + bY
a

(3n-2m+1)
2~
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Ue = C1 (aX + bY)lII,

Ve = C2 (aX + bY)lII,

h1 = c] (aX + bY) n-,.,

~ = c. (aX + bY) n-lII, .

aToc (aX + bY) 2,.-n-1,

The velocity components are,

1 U 1-- [e va -2w = - (3n+1-2m) 2 ---I2h . ax+bY1

[(3n-2m+l) (f+cs)

The stream functions are,

• (X, Y,~) = ~~

and
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The skin' frictions and heat flux associated with the equations

(143) are

1 . 1 U._. = II [ (3n-2m+l) )2 R2 a " £ (0)
ow. •• 2h

1
" (aX + bY) •• '

1 1
= II.[ (3n-2m+l) )2 R:-

. 2~

and heat flux,

q., = - It ( I!J. T) • [
1 1

(3n-2m+l) )2 R,,2
2h1

where It is conductivity of heat and p is co-efficient of viscosity

and R" = u" (aX + bY)
v a

If c = 0 => a] = 0 => b = 0, then the velocity components are

independednt of Y.

Again, if n = m.and 2m--m+ 1
= Ii then hI and h2 will be constant and

equations l43(a,b,c) are similar to equation (132).
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CHAPTER 6

Result and Discussions:

The ordinary differential equations 67(a,b,c) were solved

numerically by Swergert iteration technique. The calculations were

carried out for several values of Prandtl numbers (Table-3, 4) and
parameter 8 (Table 1 and Table 2). Solutions of equations 67(a,b,c)

subject to the boundary conditions (Eq.68) were obtained for twenty

positive values of 8 and in particular for 8=0, 0.25, 0.50, 0.75

and

and

G1.00. For --.:..= '100 and
R2••

~/(O) are given in table

G .--.:..= 100 initial values f"(O), s"(O)R;
1 and table 2. All twenty cases consi-

dered and the. corresponding quantities for 8=0 are also given for

comparison. From the solutjons results have been listed in Table 3

and Table 4. The values. for f", s" and ~I may be obtained at the

rectangular body surface (.=0) which are required in evaluating the

skin-frictions and heat-transfe~ calculations, where the primes

denote differentiation with respect to .-

It is often advisable to compare, wherever possible, the results

obtained for two cases and 8=0.75 only,

i.e, ==> 0.10 (natural convection is negligible)
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and Gr -> 100 (forced convection is negligible)R;

where

The comparison is shown below.

Case (a): ____ > 0.100

In this case components of skin friction factors for the forced

convective flow.

".., ----::i ~ -
QU.

and

f"(O) = 1.3315

gil (0)

.fJf
= 1.20993 = 1.3971

~

On the other hand. the expression for the Nusselt numbers (=Nu)

depend on Prandtl number (-Pr), and it is found that

for Pr = 0.73, N.
-!!!. • - 0. (0) = 0.9030
.fK;z

and
1.0427
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for Pr = 10,

N.---!!!.. = -t.(O) = 2.2771,.pr;;

and = - = 2.6294

for Pr = 1000

Nux = _ t.(O) = 10.8392
.pr;; .

and = -

Case (b): Gr _~~_> 100.00
R2•

In the case of the free convection problem it can be shown easily

that,

For, Pr = 0.73,

T
-!i .pr;;; = f" (0) = 22.6893 ,
QU~ .x

'f •••-- .pr.; =
Q~

g" (0)

.fJ
= 26.7847,
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and

2.0532

2.0532/If = 2.3709.

For P = 10r ,

't"Q;; .fIG = 13. 8713,

't •••
QV: .{If;; = 16.0634,

and

4.4907

5.1856.

For Pr = 1000,

't""
Q U~ .fIG = 5.3831,

't"
Q~.{If;; = 6.1030,
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and

= 15.9776

= 18.4499

It is observed from Table (1-4) that there are large variation of
the skin-frictions and heat transfer rate with the rise buoyancy
effect and any Prandtl number.

Representative velocities and temperature profiles for several

values of Gr are shown in Fig (l-G). It is seen from Fig.1 that
R~

GFig.S for ~
2R.x

for

wall

Grx = 100 and Grr = O.100,the u-velocity gradient at the
~x ~r

increases as buoyancy force (Grx) increases. Similarly from2 .R;x .

= 100 and Grr > 0, the v-velocity gradient at the
2R.r

wall increases as buoyancy force increases.

This is accompanied by an increase in the velocity near the wall,
and forPr = 0.7 an overshooting of the velocity beyond its free
stream value occurs. The buoyancy force reduces the velocities and
the velocity gradients at the wall as compared to those for pure

forced convection ( Gr =0). With regard to the temperature profiles
. R~

(Fig.3,G), the temperature gradient at the wall is seen to increase
as the buoyancy force increases.
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A method was presented for calculating the shear stresses and the

convection. The parameter err ., Grll and 'V: ., Grr are of
cr. 2 ~

2
Rell Rer

fundamental importa~ce in such problems. Natural convection is

negligible as Gr% .. 0, Grr .. 0 and forced convection has
R:%

2Rer

little influence as Grll .. •• and
Grr .. •••

2 2
Re% Rer

heat transfer in external flow for combined laminar free and forced

Numerical results are reported in table for the heating of upward
flow past a rectangular body surface for several Prandtl numbers.
It is found that the mechanisms of forced and free convection are
non additive. Moreover the numerical results for the heating
problem from a body surface indicate, that the transition from a
pure forced to the pure free convection is gradual, especially at
high Prandtle numbers. It is very difficult therefore to draw any

specific conclutions concerning the values of parameters
Gr% and Grr It is observed that for the body surface and for-.
2 2

Re% Rer
Gr% < 0.1 and Grr < O.l,free convection is negligible whereas
2 R:rRez

for Gd > 1
2ReI:

influence.

and > 1 forced convection has little

Experimental data for three dimentional case are not available in
literature to make a comparison with these theoretical predictions.
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TABLE - 1
B f"(O) s"(O) "'CO)

.00000 1.28151 .63747 -.72623

.05000 1.28375 .68649 -.73637

.10000 1.28620 .73336 -.74700

.15000 1.28887 •77821 -.75807

.20000 1.29172 .82120 -.76949

.25000 1.29475 .86253 -.78117

.30000 1.29793 .90232 -.79306

.35000 1.30125 .94074 -.80510

.40000 1.30470 .97788 -.81724

.45000 .1.30827 1.01386 -.82946

.50000 1.31195 1.04878 -.84173

.55000 1.31573 1.08271 -.85401

.60000 1.31960 1.11572 -.86630

.65000 .1.32355 1.14790 -.87858

.70000 1.32759 1.17928 -.89082

.75000 1.33169 1.20993 -.90303

.80000 1.33586 1.23988 -.91519

.85000. 1.34009 1.26920 -.92730

.90000 1.34438 1.29790 -.93935

.95000 1.34871 1.32603 -.95133
1.00000 1.35310 1.35361 -.96324

For m = n = 1. Pr = .73 and = 0.100



TABLE - 2

B f" (0) 5" (0) ~(O)
.00000 24.91593 30.24675 -1.71825
.05000 24.67527 29.19215 -1.75258
.10000 24.46186 28.33895 -1.78338
.15000 24.26708 27.62093 -1.81159
.20000 24.09045 27.00884 -1.83768
.25000 23.92649 26.47300 -1.86209
.30000 23.77310 25.99744 -1.88511
.35000 23.62869 25.57058 -1.90695
.40000 23.49202 25.15385 -1.92776
.45000 23.36214 24.83074 -1.94769
.50000 23.23824 24.50620 -1.96682
.55000 23.11968 24.20622 -1.98525
.60000 23.00593 23.92759 -2.00304
.65000 22.89653 23.66766 -2.02025
.70000 22.79110 23.42427 -2.03694
.75000 22.68931 23.19558 -2.05315
.80000 22.59086 22.98006 -2.06892
.85000 22.49551 22.77638 . -2.08427
.90000 22.40303 22.58344 -2.09925
.95000 22.31323 22.40023 -2.11387

1.00000 22.22593 22.22593 -2.12816

For m = n = 1, Pr = .73. and v;
= - =
~
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TABLE - 3

Pr f" (0) 5" (0) b"(0)

.10000 1.34898 1.22900 -.44169

.50000 1.33528 1.21341 -.78423

.70000 1.33198 1.20973 -.88811
1.00000 1.32807 1.20539 -1.01137
5.00000 1.31467 1.19094 -1.79200
7.00000 1.31229 1.18842 -2.01368

10.00000 1.30993 1.18594 -2.27706
100.00000 1.29897 1.17461 -4.98737
1000.00000 1.29194 1.16933 -10.83923

For m = n = 1, B = .75 and v;
=-
~

=*100

TABLE - 4

-c-

Pr f" (0) 5" (0) b"(0)

.10000 29.80584 31.01480 -1.90145

.50000 24.04605 24.65360 -1.80924

.70000 22.82095 23.33331 -2.02514.
1.00000 21. 51700 21.93623 -2.27406
5.00000 15.98244 16.10094 -3.69433
7.00000 14.96159 15.04165 -4.06831

.10.00000 13.87129 13.91091 -4.49069
100.00000 8.67774 8.61242 -8.50366
1000.00000 5.38310 5.28520 -15.97760

For m = n = 1, B = .75 and u~ V;= = 100~ 'V;
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Fig.1 Representative velocity profiles of u-component for differ-
ent values of ~ for the equation (67).
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Fig.2 Representative velocity profiles of v-component for differ-
u'ent values of 7ft for the equation (67).
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SIMILARITY CASES IN TABULAR FORM

Similarity
Variables cfI

CASES

A (i).

Ue

C X my n-l
1 1 1

Ve
C Xm-ly n2 1

hl

1

h2

1

aT",

X2n-ly2n-2 z j,XR.J., or
1

Z R 1_ ( or1) "2
Y1 P

~

A(ii)

A(iii)

A(iv)

B (i)

B(ii)

C emxy n-l
. 1 1

ClXlnemY

A e(mX+nY)

Clylm

c2emY

C emXy n2 1

C2Xln-lemY

B e(mx+nY)

C2yln

clenY

1

1

1

1

1

1

1

1

1

1

e2mXy 2n-l
1

X 2n-le2mY1

e2(mx+nY)

y 2n-l
1

e2nY

1 1
Z .( n+l ) '2RO~,
- 2Y1

Z(n+1 .! .!y __ ) 2 R 2
'0]. 2 ex.

~

1m -
Z\ 2X.RJ

Z .1__ R2

Y
1
..f2-P' . or

~r-;- .!
~ 2YRe~



SIMILARITY CASES IN TABULAR FORM

C1(aX+by)m IC2(aX+by)n IC3(aX+by)1H1I I C4(aX+by)1H1I I (aX+by):m-l
or

(aX+by)3rHJ.-l

Cl(aX+by)m IC2(aX+by)n

CASES

C(i)

C(ii)

D

Ue

m
C2Xl

ClernX

Ve
nClXl

C~nX

hl

1

1

1

h2

1

1

1

~T",

(X
1

> 2m-1

e2rnX

(aX+bY) :m-l

Similarity
Variables ~

1 1
~ (_1_>"2 R"2
X1 2-P eX

J;;1m "2
Z 2X Rex-

1
( m+l "2 Z
-2-,aRe> . (ax+bY>

( aZ )~ (3n-2m+l) R1
ax+bY 2~' e

•

where Xl=X+Xo' Yl=Y+Yo'
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