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ABSTRACT

*

Combined laﬁinar forced and free convective three dimensional
boundary layer flow over a vertical orthogonal curvilinear surface
z=0, x > 0, y > 0; hl > 0, h2 > 0, h3 = 1 is discugsed in
different situations. The aim of this study is to look for the
similarity solutions under some different conditions on the forcing
velocity and temperature difference by which reductions of partial
differential equations into ordinary differential equations are
p0551ble The numerical solution of one set of the representatlve

transformed equatlons for dlfferent values of controlling parame-

ters , m, n and B, are obtained, where hl = hz = 1.
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CHAPTER 1

INTRODUCTION

The natural flow originates frqm body force variations in fluids,
whereas the forced convection is generally introduced by moving a
body through a.quiescent fluid or by forcing a fluid past astation-
ary body. This flow regime is concerned with circumstances wherein
both "the natural and forced mechaniéms of the flow must be
considered simultaneously. The laminar boundary layer‘flow due to
such combined forced and natural convection has received consider-
able attention for both steady and unsfeady situations in evaluat—_

ing flow parameters for technical purposes.

TANAEV (1956) published an approximate analytical analysis for

laminar, compressible, mixed flow of air over an inclined flat

piagg. The external flow was ;ssumed'pafallel to the plate for all
it

plate inclination angles. His_analysis is for low Mach numbers and
for situations where the bqugncy_effeqts could be considered small
relative to the fqrced.flow effecég. ACRIVOS (1958)_ employed the
Pohlhansen-Von Karman momentum integral method tq_qpngigggdipgggp-
ressible laminar flow over a vertical isothermal plate with
buoyahcy effects. The form of_the vélocity and temperature profiles

for the combined convection were assumed to be the sum of the

purely forced and natural convection profiles. These assumptions



are wrong due to the basic non-linearity of viscous flow broblems.
Numerical results were reported for the heating and cooling of
upward flow past a vertical plate for Prandtl numbers of 0.73, 10,
and 100. The 1nf1uence of natural convection on separatlon flow
showed that heating of the upward flow. would stabilize the boundary

_layer, whereas cooling hastens the appearance of separsion.

-

SPARROW and GREGG (1959) attacked the.isothermal vertical plate
problem, considered by ACRIVOS, by a different approach. They
perturbed the equatlons of the purely forced flow circumstance to
include small effects of buoyancy. The study con51dered both the
cases where the buoyancy effects are parallel and opposite to the
external flow. The anaiysis was restricted to laminar boundary-
layer flow and calculations were made for Prandtl number of 10, 1
and 0.61 respectively. For fluids with larger Prandtl numbers the
effects of buoyancy were_found to be of smaller importance in

predicting the boundary layer characteristics.

. SZEWCZYK (1963) also investigated combined flow over a vertigg}
isothermal surface, considering two types of perturbations. First,
purely forced flow was perturbed to include small bPPY9é91“9§f99ts-
This. portion of the analysis is similar to that of éPARROW and
GREGG (1959) . However, SZEWCZYK considered the second-order term of
perturbation series. The second part of the analysis considered a

perturbatlon of the natural convectlon flow to include small forced

- - —



flow effects. Results were tabplated for Prandtl numbers of 0.01,

0.72, 1.0, 5.0 and 10.0.

‘ The case of laminar mixed flow 6ver an iso-thermal horizontal
flat plate was investigated by. MORI (1961) and SPARROW and
% MINKOWYCZ (1962). MORI considered the case for a Prandtl number of
0.72 while SPARROW and MINKOWYCZ considered Prandtl numbers of
0.01, 0.7 and 10. In both the papers the technique of perturbing
the purely forced flow equations to include small effects of
buoyancy was applied. These investigations presented formulae'for
calculating the shear stress and heat transfer rate ih the mixed

flow regime.

; GILL and DEL CASEL (1962) considered the influence of buoyanéy for
flow over a horizontal flat plate with non-uniform temperature at
the surface. They found that the boundary-laver equations had a
similarity solution for a surface temperaturé varying as one over
the‘ square root of distance- from the leading edge. With this
surface condition, however, there is no loéal heat transfer. The
physical significance of this situation is not apparent. Prandtl
numbers of 0.001, 0.72 and 10 were considered. For the plate
temperature greater than that of the fluid external to the
boundary-laver, the parallel velocity component waé fpund to
increase and temperature to decrease for the flow over the top of
the plate, relative to the corresponding forced flow results. The

opposite effects were encountered for the bottom of the plate.

-

MINKOWYCZ



These results are in agreement with those found MORI (1961) and
SPARROW(1962). Tt was similarly observed that buoyancy has less

influence as the Prandtl number is increased.

BRINDEY {1963) con51dered an approximate technique to solve the
ordinary differential equations encountered by SPARROW, EICHHORN
_aad GREGé (1959). His primary intent, however, was the comparison
of his approximate .method with respect to known numerical.

solutions.

@QGUNNESS'and GEBHART (1965) considered'mixed.flow over isothermal
wedges for a variety of included angles. The regime considered was
1ncompre551ble laminar, boundary- layer flow with Prandtl number of
0.73. Two types of wedge orlentatlon were treated. The first case
was dlscussed for horizontal wedge, i.e, the plane of symmetry
normal to the body force and the second case was for vertical

wedge.

MERKIN {(1969) considere_d the boundary-layer flow over a semi-
infinite vertical flat plate, heated to.a constant temperature in
a uniform free stream. He discusaed two cases when the buoyaacy
forces aid and oppose the development of the boundary layer. In the
former. case, two series solutions were obtained, one of which was
valid near the leading edge and other was valid asymptotically. Ia
the latter case, a series, valid near the leadlng edge was obtalaed

and it was extended by a numerical method to the point where ‘the



boundary layer was shown to separate.

COMBARNOUS and BIA {(1971) considered the combined free and forced
convection in a porous medium and had studied the effect of mean

flow on the onset of stability in a porous medium bounded by two

©

isothermal parallei plates. Numerical solutions were later obtained

by HORNE and O'SULLIVAN (1974), CHENG and LAU (1977}, and CHENG and
TECKEHANDANI (1976) to study the effect of withdrawal of fluids in
a hot-water geothermal reservoir. SCHROCK and LAIRD (1976) :

performed an experimental study on the simultaneous withdrawal and

injection of fluids in a porous medium.

PING CHENG (1977)\ investigated the combined free and force

convection boundary-layer flow along inclihed surfaces embedded in

_porous media. It was found that simjlarity solutions exist when

both the wall temperature distribution of the plate and the

velocity parallel to the plate outside of the boundary-layer vary
according to the same power function of distance, i.e x*. The value

’ G . . . . . 3
of.-—f_was found to be the controlling parameter for the mixed

Ra
convection from inclined plates in a porous medium. Numerical

solutions were obtained for mixed convection from an iso-thermal

vertical flat plate (i.e, A=0) as well as an inclined plate with
constant heat flux, having an angle of inclination 45° (i.e,

A= 1/3).



RAJﬂ, LIU and LAW (1984) considered the boundary-layer flow over
semi;infinite vertical and horizontal flat plate, heated to a
constant temperature in a uniform free stream. They discussed when
the buoyanc§ forces either aid or oppose the development of the
boundéry-layer. Different mixed~convection parameterélf were
introduced in the formation of the respective problems involving
hdrizontal and vertical surfaces such that smooth transition from
one convective limit to the other was possible;'in particular the
governing equations for the purely forced and free coﬁvectiqn cases
were respectively recovered from the zero values of Grashoff_and

Reynolds numbers.

S0 far the author's knowledge goes noAattempt has vet been made for

combined convection for three dimensional body.

The similarity solupions exist only for very special types of main )
stréam flow and for special types of c0fordinate systems. The
similarity solﬁtions of boundary laver for the three dimensional
case éas studied by Hansen 8522214 He' presenteq similarity
solutions of the three-dimensional, laminar incompressible boundary
layer equations along with a general method of analysis. Reétric-
tions on main flow velocity components and co;ordinate system which
lead to similarity solutions were tabulated. Finally a'discussionxz'

. i
was given of the practical application of similarity solution.-

HOWARTH (1951} discussed the equations of boundary layer flow in (y)



the vicinity of a stagnatibn point on a general three diménsional
surface. He showed that the equations were reducible to a pair of
simultaneous ordinary third-order differential equations conﬁaining
a single parameter C related to the exponent of the mainstream flow
velocity. The variation of C would be effectively limited to the
range from 0 (corresponding to two dimensional flow) to 1 (corre-
spbnding to the axial flow past a body of revolutiqn), and
solutions were obtained for the cases of C=0.25, 0.50, 0.75. DEVEY
and SCHOFIELD (1967) studied the same céée and presented numerical

result in tabular form.

DAVEY (1961) studied the flow of a viscous incompressible fluid in
the immediate neighborhood of saddle point of a attachment, near
which the éxternal flow was irrotational with components (ax, by,

-(a+b)z], where a>0, b<0. It was shown that the flow was of a

(e

boundary layver character, and that part of the boundary layer flow

was reversed when b/a < -0.4294. Numerical solutions were presented

in the tables and diagrams.

SOWERBY (1965) derived series expansion for the three-dimensional (9

boundary layver flow over a flat plate, arising from general main-

stream flow over the flat plate. The series involved were calculat-
ed as far as terms of the order of E?, where { is a non-dimensional

parameter related to distance measured from.the leading edge of the
plate. These calculated results were applied to an example in which

the main stream arisesrfrom the disturbance of a uniform stream by

7



uniform stream by a circular cylinder mountea;downstream.frbm the
leading edge of the piate, the axis of the cyliﬁder being nbrmai.to
the plate. Calculations were made for shear-stress componehts'on
the plate, and for the deviation of direction of the 1imiting

streamlines from those in the main stream.

.DWYER (1968) discussed a method of calculating accurate solutions
of 'Ehe three-dimensional laminar boundary layer equations. This
method was.applied to a proﬁlem that exhibits interesting cross
flow phenomena. The method of solution used was an implicit-finite
difference scheme, aha the stability and convergence propertiéé'of
this scheme were found to be good. Also the impbrtant guestion on
 initia1 conditions for three-dimensional boundary layer flow was
discussed, and a method of obtaining initial conditions was

derived.

WANG (1974) discussed general ﬁethods -for calculating .three-
dimensional iaminar boundary layers over inclined blunt bodies (not
necessarily bodies of revolution). He used the traditional integral
method and presented complete incompressible boundary layer results

for a prolate spheroid at 30° incidence.®

The similarity solution® of combined forced ahd free convective
three-dimensional laminar boundary-layer flows in curvilinear co-
ordinate is more complicated in comparison with that of two

dimensional bouﬁdary-layer flow. In the present study, discussion

8



is confined about the mixed three.dimensional béundary-lé&er.fiow
over a vertical orthogonal surface. The three dimensional bounaarf-v;
layer equations are developed for the curvilinear co-ordinate
systeﬁ and relevent paftial differential eduations are transformed
‘into ordinary differential equations - by the teéhnique of

similarity. Only one set of transformed equations are solved

numerically to predict some essential parameters.



CHRPTER 2

Physicd! puHine of the probiem




CHAPTER 2

PHYSICAL OUTLINE OF THE PROBLEM

The situation discussed in the present problem is that of a

resultant uniform free stream velocity L&(=J52+§E) flowing over a

rectangular vertical curvilinear surface { =0, h, § 2 0, hn2o

which is fixed with its leading edges perpendicular to {-axis. The
pody is heated to a temperature Ty above the ambient temperature

Te- Heat is transferred by convection from the plate, and this

heating gives rise to buoyant body forces.

10



COVERNING EQUATIONS

Heating due to viscous dissipation can be negiected and fhe fluid
may be considered incompressible. The flow of the fluid may be
considered steady state laminar . The co-efficient of viscosity |
énd the thermometric conducfivity k can be taken as constant. The
Navier-Stoke's eguation including thé body force term and energy

equation are in vector form

V.g = 0
0(g. VG = -VP+ F+puvg 1(a,b, )
@ep(@ VT = x VT | ‘ |

where & =q’(u, .v, ﬁ)

bOdS’ force ﬁ = Qg = Q(g;tgytg,)

gy ——> Dbody force in the x-direction
g, — body force in the y-direction
eg, —> Dbody force in the z-direction.
To transform the governing equations into cﬁrvilinear ca-ordinate:

du,  du . du

let oa = u + W

x - UaxTVay T ¥az
- 8 (g - - |
3% (2) 2(vW, - wi,)
T Y T |
ay = _a—}-? {-qz—) - 2(wW1 - UW3) z(alb'c)

11



and a, = = (L) -2(uk,-vi),

Hence

d = (a, ;::wa,) =V(%:)-2(axﬁ’!), (3)

@y - .3, udsviey?
where V(—z—) Ela_x(_—_i—_—) ,

and vorticity vector W = (W;, W,, W3},

‘W, = L1,0w_dv
17 35782

‘W, = 1,8u_ow

wz. z(az ax) ?

- 1,9v_3du,
Wy = S(EZ-50)

and 2 gxi =.E 21 (v, - wi,).
Equation (3) becomes,

49 - V(-‘lzf)-z(axm

dt
2 - .
(@Ng = V(L) -2(axW , (4)
where steady convective operator —d- = u-—g- + v-i + w—a-

dt ax oy oz 7

12



nd —
al dt

Equation 1(b} becomes ;

q? « i 1 -

V(—é—)-z(iz’xm = --é-Vp+§+vV’6. {5)
Convective operator' of u, v & w - components in curvilinear
co-ordinates are, | .

du . u du, vou, du, uw @

G- B X ma R EnR
ah, 1 ah,
¢ UYL 2 (w2 e op?) 2, {6a)
hh, on hb ok
dv . udv, vov, v, uv o
dt h, of h, om a hh &
vw 0 u? + w2, 9h '
—_— h,h.) : (6b)
RE % T TRE ) E
dw - £@+..‘_’.§E;w?,‘!+ uw ah‘
dt h, & b, O o . hh &
oh, 2+v2, 9
v - (E=1) = (b)) (6c)
BB on R 3¢ P
Here h3(£;n) = 1 has been set such that { represents an actual

distance measured normal to the surface.-

13



The equations governing the flow field in general curvilinear

co-ordinates become,

‘aa“e (hu) + 3"; (V) + -aa—c(blhzw) =0 ,

du , du , ou _uv oh, . _uw

u v
nEE MR fan,an Rhs % (b

- v2+w3 ah2=_ 1 _E 2y
e e bj_hg —b-ae+g!+vv

wdv, vav, v, u b w3
B,E "Hom VX E % by

; ut+wd, O, 1 Pp V2
“ER TR T Teman Th VY

u ow, vow, ow, uw ah“wﬂ
B, & "mam "X "mE ® ' hh on

- (uirviy @ - 1%
“mn ) a (b QX TH TV,
ana 4 9T, vOor oT _ _x g
R N T S T
Where
ay = 1 ;9 (B du d (B guy, 2 9u

Similarly, Vv, WVPw and V&T.

14
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For convenience dimensionless quantities have been-introducted into

the equations (7), (8) and (9) in the following way:

All lengths have been referred to a representative length ‘L', the

velocity has been made dimensionless with reference to the

resultant free stream velocity U, (HJUE + 1_/3), the density with

~respect to @, and the pressure with reference to Qeuﬁ. The

temperature in the energy equation (Eq.9) has been made
dimensionless with reference to the temperature difference

AT (=T,-T,) between the wall and the fluid at the large distance

from the body. Thus, the non-dimensional temperature function is,

T-Te
0= —
AT

L]

Thus the dimensionless quantities primes are:

E=rf/, n=Ln, =Ly, u=vuU, ve=vU,
w=wtl, @=0 D=ploUs, T-Te=0AT, p =pp,

k=kk', @ =99.' =99 and g=9g;-

Hence the eguations (7), (8) and (9) in dimensionless form are,

3 3

-3 2
3’ &’

(u'h,) + o () * (huw’) = 0 (10)

15



cul/du’ o v dul | 1au u’v! 0oh, , uw a8 (k)

tr 4 YUMo ~_ vd —_ ———
Ol S e Voo RE A | hB
views O op!, g
b, | O & F
TR, [ae"faae" o o ac'”’*”’ S 2

o' 14 u'av/ | v/av! | ol av/ . u'v/dh, _  viw a(hh,)
hy 35' h, 3"1’ aC' hh, 35’ hh, a¢’

oo XPswRy 0n | g0
R oo
p’ 3, by av, 9 (Aavy, v’
R e B B AL
(11b)
: Iaw’ ngy_l . ’awl . u'w! Bh,
h1 9’ hy, an’ 8¢’ huh, B
- (U "'V)a(hh) Vlwl%_.] =_._¢'_3&’+g’50
hﬁa ag’ h.h, o' a Fp

B’ a_ B ow! 3 haw, 8 awl,
bﬁ"zR[aE’(m agf) ‘5‘“‘7"172—) ‘(hzhzacl)]) (11c)

- 16



and

o (B VB B (1aamy + L (inaT)y
Wl St ey T Y E) Oy, (AT + o (nAT 1]
_-k'i'abzae 3 B ®, ., 3 3 .1
= k1 g Vv () e ¢ 2 43
PR.IE % B 06 5w e P
6 (8 (23 2 h, AT (12
¢ B wn) s (3 a“,)}] )
where,
BoCp,
Prandtl number P = —f.
B

co-efficient of kinemetic viscosity v, =
. : a

Reynold number Ry = Ul . 322&2
Vo Bo
Uz

and Froude number F_. = X,
gL

If 8 be the boundary layer thickneés, then fhe dimensionless

boundary layer thickness is 6’=-%<<1 Since L > » 1.

order of magnitude of each of the terms in equations, (10} , {11).

and (12) are estimated, so that very small terms can be neglected.

17



) /

Since *a.."'_’ is of 0O(1}, _q_u_’ is of 0(1}, i‘-"----0(1), v
g’/ on’ ok’ an’

also aw ~0(1), since {/ is of order &, Similarly w'~
_Therefore Pu’ -0(1) ' ‘ _a=v ~0{1), 63u 0(1) . Ev/ ~0(1)

aEn a'.ln
Since the maximum values of each u/ and v/ is 1.

*u’ aav a=w
——~o16", ~0(1/87), ~0(1/8%,
Sor O/ . SEm0a/e), ZR-00/8h

ow’
GC’ ok’

Now, since &' < < 1.

g?’;- ::;;I' g;g,’ and %_:_; can be neglected.

Outside the boundary layer Bernoulli's equation

_§+% (U3+v2) = constant,

. _ 1 ap = : aUa aV
gives E 6_5 Us 3t ok e GE
_ 1dp _ au, av,
and MQ -—Ea U,--—a 3 + V,ma a

18
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0 (3

¥ _0(1), o', 0(5'), '-‘;?“’:~0(6').R,~0(1/a") and F,~0(1).



The dimensionless form of these equations are,

: /
_ i 80, 3V
QI aEI agl aﬁl
/
ana - Lo . 00
e’ dn on/ “on
_ /
Thus -.}._‘2&’, ana - L9 are of order ,aU°+ViaV; and
QI ael QI 31']' ael ael

Hence - %%', and - 1 9p’ are of 0(1).

Let 6.1, be the thermal boundary layer thickness, the conduction term
becomes of the same order of magnitude as the convectional term,
only if the thickness of the thermal boundary layer is of the order

of (3my2._1_
L' R.p,

‘In view of the previously obtained estimation for the thickness of

the velocity boundary layer § ~

1, it is found that _6_'{ .1

/K. L

19



Assuming that h;, h; and all their first derivative of 0(1l) and

setting the order of magnitude in each terms of equafions {10),
{11) and (12), ©°ne ocbbains

"_g" / + i h ! + _Q— h ! = 0 13
aE,(h-‘,u) aﬂ'( v ac,(hl ,w') ) (13)
0 > 1 1 1
,[_1_1_’6_11’ v/ ou’ s ou’ u'v/ 0, | ulw’ 3 (hh)
h BE’ hz aﬂ’ L4 acl h-j.hz aﬂ’ h-x.hz ac; h,_h,
_, vR+wP, Oh, _ dp’ alp! ! 3 1 au
( hlh‘ ) aEI] aE’ * F: nl‘h?Ra [ aE'( h1 .aEl)
1 &7 1 1 32 1
d N du d ou’ Rul
+ (= =) —; ( )—) + ) 1
an’ B, on’ 3 hh, E hyh, %) (142)
1 1/6' . ’ 1/6!2

20



u'ov/ |, vav | ov , v 3 (hyhy) + u'v/ b,

frd 9v y Vv oV v v sV a2
Clnw " maw T Vag T mER X b, B¢/
0—>1 1 1 1 & , 1
- un,.,,n) a}:1] o ap; . glnal _ . - pl [ d (._}3?. av’)
hh, " oy/ an’ F, hhR," 38 b oF
s R T | 1 1 . 37 1

" u’ ow' | v/ ow +_w;aw’ . u'w’ Oh, L viw! oh,

“'hw T m o 3 | b, oF | Il oy

0—>1 LY 3/ -1 Y LY
_(ufsv?, 9 =% _gp . _w [0 B
( t'j_hz )ac, (.b:.hn)] ac/ + F, h‘l.}'.'ﬂRo ael }11 aE/
11 1 1/8/ 1 ar Y

a b aw ] w' Pw'
I R e ey

3/ 1 1/8/

21
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e, w8 +w’a°) +o{" (1nAT) g +if(1nar),,,}1

h, ¢! h, ay/ ac’
0—>1 1 1 ‘ 1 1 1

- X i{-2. h 290, 3 (& + — (=
PR, h hz ag' h ok’ on' B, o/ a¢’ oy’
R U3 1 1 1/84.

! AT B¢’ b, ¢ o’ h, am' . (15)
1

order of each term of equation (1l4c) when multiplied by &/, then order

' : ' ' !
of all the terms in equation (14c) become above &’ except %%,- Hence

eguation (14c¢c} can be neglected compared to the.equation (13), 14(a,b)

/ / !
and (15). Furthermore, the term i@u . 1 &u, i&’v and ...Q.V_ are

1
Ry 3E2° R, a.‘/z' R, 3E” R, g~

of order 87 also, %- (b1h:)— and -%-ai(hzhz)%‘-c’-; are of order &’._

9
o’ &K' o I/

These terms can be neglected compared to the other terms in equations

l4(a,b).

22



. x/ 1 a4 hz 60 x/ 1 a b, a8
Again, X _ = } and (== —) are of order
PR, Bh, F ‘3, PR, hh, an! B, ol
n | It’ 1 00’ ’. |
&8/% also (hﬂk) & is of order §&y.These can be neglected

R, By aC’ ¢!

compared to the other terms of equations {15). Thus the simplified
governing equations of the flow field in genéral orthogonal curvilinear

co-ordinates become:

3 3 3 - , |
E'E(_}]zu) + -grl—(h,_v) + a—c(hlhz'iV) 0, | | (16)

o (X u du, vou, du, uv oh, 2 ahz)
h, 3E ‘h, aﬂ ac hh, aﬂ " Bh, %

1

e

+ Eg! + p_g.%lz!, l l (176)

udv , v v, av uv Ooh, u? ah1)

5 “Hon VXK Rk % BB

= - -Il:lz _gﬁ + pg, + p%, ) (17b)
wdr, vor, oty . p&T | | : (18)
(L hom X ok |
and 9P - 0(1). ' (19)

23



The potential flow in the main stream outside the boundary layer is the
function of (E,n). Hence external velocity components U, and Ve and

external temperature T, (= constant) be independent of {.

To elliminate pressure terms in equations 17{({a,b), the conditions

outside the boundary layer are imposed. Imposing the boundary conditions

u —> Uy, Vv — Var @ Qe T —> Ty _Q,__>o the following equations

4

are left for onward studY:

Uy U,  V, 80, UV, 3 Vo 3. _ 1 9 ' -
S S o v e i S A

U, 8, V, %, UV, U 8, __ 13 |
ClR R BB X Bm e mon b 20t
U orT, v, 9T, k21)

and = 0.

h1 R,

But the outer temperature Te_is constant,

K1 EEE = 67; = 0.

& om
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In view of 20(a, b}, (21) and ;'-? =0, T, T,=AT, the bounéary laver
' w4

equations with the elimination of pressure terms (by 20(a) and 20(b})

3

become )
5 (u) + 3% (hyv) + (nm,w) =0, ' - (22)
2, ur B v By
1’11 o b, I X h:.hz an  hh; BE

- (p-p.) + U&U VaU+UV8h1
g{p Pe p°h1 aE h, 6r| h:.hz an

Fu (23a)

- U‘ ] a"’ (23b)

and

w®) . 0(Y (1nAT), + L (mAm,] = » &0

v 8
P A T, o - Y

+

mla

u
‘B
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where ‘v is the kinematic viséosity of the fluid.

Let e =e(P,T) be Fhe e_q);aj-lm § Shtate .

i.e, dq = %g],.dP+ R1,dr .

Then, df = okdp - @B dT, | ‘, (25)
where, B.=-= aJ-) 'y k= -];(-a—g-) . - {26a,b)
T 0 oT P=const e oP T=const
For ideal gas P, = %'
In non-dimensional form (25) may be written
; 2 ‘
as & = BrATdO + kP, -Q—EﬂdP’ . (27a)
e/ . P,
{v @ = Q@' P=Q,UzP/, T~-T,=ATO]
Qo Ur

In the case of slow motion for a gas K P, ~-0(1).. ~ 0 (M3) << 1,

5 . Ue
C= vQ—“ = the speed of sound, and M= c '
-] - .

N o ui . e
In case of ligquid %—ﬁ is more significant than for a gas.
o .

However for a liquid k Po.ic 1,

Hence the equation (27a) becomes,
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de’

; =—ﬂ,.AT6 or
e

p=p(T)

= - BpdT.

i.e, Dropping the primes ln(—ee-)' =

I

-BT( T_T.r)

or _Q_ = e"ﬂr(r'-rxl
Q-
= 1_BT(T—TI)
e = Q:{]-"'BT(T—TI)} :
Similarely, e, = o1 -B(T, - T)}

Then it may be written that

1l

{e - ¢.) = - o, B, (T-T) [~ T, T, .,

-oprAT O

considered to be

the Boussinesq approximation.

(28)

Hence the simplified boundary iayer equations become -

9 d - a
3_E (hyu) A+ -é—n— (h,v) + Fld (hlbzw) =0,
u Q_L_t + v Ou  ou uv Oh, vz 3h _
h, o¢ h, on o hh, on hh, ok
, U, 98U,  v,8u, UV, Vi

hh, dn hh, 3

27

(29a)
{29b)
e~ el
{29¢)
{30a)
- g prATE
ng‘; {30b)



EqE

28

v uv Oh, _  u? -
VX hE B ORE o ATl
AL AN A A vs dh ,  Pv
h, on hh, o hh, on og?
. J8 u v = v a
*W'af*e['ﬁ: ‘1‘1‘51"):*7;; (lnAT),] E z

(30c¢)

(304)



CHRPTER I

Simitarity transformations




CHAPTER 3

SIMILARITY TRANSFORMATIONS

" Equations (30) are non-linear, simultaneous partial differential
equations -and the solutions of these equations are extremely
difficult to obtain. Hence our aim is to reduce equations
30(a.b,é,) to ordinary differéntial equationé with the help of
30(a) which permits possible variations in AT, Ue' Voo hl, and h2

with respect to & and 7.

Let the variables E,n. and { be changed to a new set of variables
X, Y and ¢. where relations between two sets of variables are

given by,

X=g, Y'—‘Tl:a;‘?—(";{;—n- (31)

y(X,Y) is considered here to be prportional to the square ro@t.of

the local boundary layer thickness.

2 .2 &, 8 ov, 9 A
o " 9x " % Or " X B %

2 .2 _89, 2 |
%, B ._32
where oF 1, 3% ny

29



Similarly,

.9 _39 3 32b
m S YT 1320)

and F .1 & (32c)
acz 72 33’,

Let two stream functions ¢(E,n,{) and ¢(£,q,() be defined as the
mass flow components within the boundary layer for the case of
incompressible flow. -

The following equations can be written
Ye=hu e =hv .
- (¥ to) = Lhw

{33a,b,c)

to satisfy the equation of continuity (30a). Guided by the idea of

similarity procedure of Hansen (1964) we are allowed to write

% u T - —
fo U(X,Y) dé F(X, ¥, )
(34a,b)

$ v - '
and Lm d¢ = S(X, Y,$).

In gttempting seperation of variables of F(X, Y,$), S{X, Y,$) and

0(x,v,$). Let it be assumed that

F(X,Y,®) = L(X,V) F($).
S(X, v, = M, 5@, _ " 35(a,b,c)
0(X, Y. 9) = NX, V) 0P,

where F, §, and- 0 are the functions of the single variable ¢

From (34), and 35 {a,b) it is found that

30



=F3=LF% S u = ULF‘:

cls

| 36(a,b)
> = % =M% . v= VMG
Again, from 33(a)
¥ = By > = b = 4= B (GE
- Y - L __ 2%,
U hy(X,Y) ap U
= 99,
a hYU
. ffu 7 o 1 B - . 3N
. fo = dé YT (X, Y7, - ¢¥(X,Y,0)] | _(

From 34(a) and (37) expression for F(X,Y,é) and ¢ (X, Y,$) are

FiX, Y, = (XI'YI - (X:Y.ro)]
( ¢) T (¢ $) - ¥
A YXY® = ByULF(E) + y(X, Y,0) L (38)
Similarly,l |
9(X, Y, ¢ = hyvMS(¢) + @ (X, Y,0) - (39)

and |
hhw = - (LyULP, - %, (X,Y,0) + %yxh,yULi%

- (BY VM) ,5(®) - 9, (X,%,0) + %azyhiv VM5 (40)

31



If Lim ¢—>0, then.

W (X,Y,0) = - Talﬁ; [y (X,7,0) + &y (X,¥,0)] - (41)

When the surface is porous, W, represents the suction or injection

velocity normal to the surface, Since U, and V, are independent of

{. Hence (Ue); = (V,); =0.

S0 equation (40) becomes,

hh,w = - (h,YULY;F+ &Y, h, ULFs - (hlyVM),,_E

+ Gy, VMS5 + by b, w (X, ¥,0) . ' (42)

The convective operator

d _ 1 0 d 3 ‘

in terms of new set of variables X, Y and ¢ may be derived, Thus

the convective operator is,

- d - = 9 = 8
- % [,y UL F + (b Y VM), 5 + by B, ,] 3%. | (44)
32



Using equation (44), Equations 30(b,c,d) become,

u - momentum equation: .

= Yy ULy == y (Yh, VM) y == =
VP35 ¢ —qop  FREt g STes T YVeFa

B, B ! L
P _vamrh, 3 - L Y
T NTARTE L 9xBNO (AT + pXor U, U
- .
hzuLVOUOY I]lthL U. V. bly - -hlhz ULhzx L) 0 )

v - momentum equation;
Y Bly WYMVIrSS FE (hYUR S

' = MV —
+ -YWOS‘;—.hL: (MV)YE;? - YZIEL [ (MV)X + };:2.!] Fs‘gs

L2 qznl,Fl" - 'givg" B, NO(AT) + Xy, v,

Y
h, h, MV h MV

y? 3 v:h,, R =
-]

X . A S S & 28
+‘ .h:_MV VO VOY + hlh,MV UO V.hQX .hlthV 2

33

(45}

(46)



Energy equation:

V55 + E;YB; (h,yUL)xE'&“; + E:YE; (h,y VM), 505

v
PZ'
= _ Y*UL —

- yw, b5 - 3—}—1-;— [(1oM), ’ (lnAT),) T 5

- EuvummH (InAT) 18 5 = o. Ty}

Here the boundary conditions which must be imposed to determine the

solutions of fhe equations (45), (46) and (47) are,

(a) The fluid adheresto the transformed surface and this surface
must be a stream surface. However, if the developable surface be

porous then mathematicaily on this sdrface,

u(X,Y,0) =0 = Fg(0),
V(X,Y,0) =0 = 54(0),
w(X,Y,0) = ~W,.

. where W, is considered here to be the surface suction or injection

velocity for the developable'surface, then

0(X,7,0) =N(X,Y) (0) =1 =N(X,Y) =1 and 0(0) =1.
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(b) The fluid at a large distance from the said surface must be

undisturbed.by the presence of the boundary layer. Then

Lt u(X,Y, ) =U, = ULFj(®) = UL=U, Fgp(w) =1,
-
Lt v(X,Y,§) = V,=VMS (w) = VM=V, S(=)=21,

-«
Lt B(X, Y, §) =0=N(X,Y) O(=) =B (=) =0, N# O .
¢~ |

In conditions (a} and (b) 1if gengral boundary condifions
[F(0)=5(0)=0, B(0)=1 and Fj(=) =5(=) =1, V(=) =0] be

‘ introduced, without loss of generality it may be written that

UL = U, and VM =V

el
Then the two momentum equations (45), (46) and the energy equation
(47) take the following forms: -

u- momentum eugtion:

T + Y(thUg)x 7 Fex + y (¥ hj_ V.)y -
v Fg33 ~ h by F Fg3 h. b, S Fg3

by h,
2 2 2 Vi _
tha Va Ua!"" h’.\.hz Veh'.l}’- h1h2 “&:hﬂx = 0,
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‘._ Y (-yh2 Ua)x"""" Y (-yh1 V’)r__
[] —_— = F + —m—ll s .
or. VE Y TR h LX) B B, F§3 |

. - ?2 Uex 1_? _ i. —‘12.- ’ 1 _ -2
MR D e A A
2 ’ — am ' -—
+ L4 Ve( UGY + hll’) (1 'F*s;) - _g gxpr(AT) o = 0 48 (a)

h, U, B

- v-momentuilm equation:

— h y oz L
vipe + LRI S5 s 2y U F B

- 2 . . y3 u,, v, h, ——
+‘7wo‘9$3+'£_zver.(_1_§£)+ hz_(Vf+hzx) (1“&55)

vz[ﬁ 2 - .
\-_mhl"(l-‘?f) —Jﬁg,ﬂ, (AT) 0=20 ‘ 48.(1))

"Energy equation:

Y P+ Y YU 55 . XY (yh V). 5T
P, 8" T h h ' hm YRV

Y U,
‘bl-

Y* v,

+ yw, —0-5 -

(lnAT), 0 5 =0  48(c)
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But

YUY _ 1 Tty YUMo 2
Y WhYelx o 1 (el J ~Tealx _ (=2—), 1.
B, 2z R st TRy T RRER
and
Y (Yhi Vo)!' - 1 'szo "Yz(h:l.ve)r_, 1

= [( )r'l'—I’;—E;-—-— Yalhvo(ﬁ)r]o

Lk 2 N

Therefore, the momentum and energy équations.become,

u- momentum equation:

vEgst 3 (@ ra-a) Fhgr3(a+a,-a) Shy+a Ry

+ 2, (1-FF) + (3, +a;) (1-Fg5) -a,(1-5F) +a,d = 0., (49)
v-momentum eugation:

v§;;$+% (a°+a1-a,) F§;3+% (a3+a‘-a5) E%;

+ & §$$ +'a12(1 ‘-53?) + (ap +a,) (1 - F& '-9-;)

- a; (L-F) +a,0=0, - {50)

fnergy equation:

%33;+% (a, + a, - a;) 175';+%(a,+a‘ -~ ag) §05 + a; 03
Ir . .
-(a, 0 Fg+a,05) =0, | (51)
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where a,, a;, a5 ..... a;g are the function of X, and Y given 'by,

g
(1) a, = .(tha)x ,
(ii) . a; = =(h,u),h1hz}
(iii)  a, = 3“"””1@,")
2 .
(iv) a, = ("’h:’ﬂ),r )
(v} a, = Y(BV,))y —2-
4 1 e/ ¥* h1}12 2
(vi) ag, = Y:hV, ( hz
(vii) ag = YW, ;
e 1 .,
(viii) aq = 5 Y2 U, »
(iX)' | ag = 1 Ve 72 Uey »
h, U, -
(x} ag = - v y2 :
9 h, h, o Y Dy s
2
(xi) ayp = Lo Y Vel

38



(xii)

(xiii)

(xiv)

(xv)

{xvi}

{xvii)

{xviii)

{xix)

411

413

214

a15

216

i}

]

- '.‘% dy BT (AT)

1

,fa

.y

h,

2
Y2 U, (InAT), )

Y3 V,(lnAT), ;

39
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Similar solutions fof (49), (50) énd (51) exist only when all the
aﬂs are finité and independent of X and Y; that is to say that all
a's must be constants. Thus the boundary layer momentum equatiéns
and the energy equation will become non-linear ordinary

differential equations, if U(X,Y), V,(X,Y), h(X,Y), h(X,¥Y) and

~ y(X,Y). satisfy the equations (52).

To find Ug: V and y in different situations for simplicity we

e

first ignore the injection or suction effects i.e, ag = 0.

From the expressions for a's, one have

gi + a, = 13(;%)1 . 53{a)
similarly,
ar = ya( Yoy 53 (b
a4. ag = ¥ (E)y )
From 52 (i),
a = (YZUe)x = Yz(—‘)x*zYYx'gg
° hy h, h,
_ h,
- 2YYy = TJ-(ao-al-a,) - . ) 53 (¢}
-]
Similarly,
2YYy = %(a, -a, - ag) 53(4)
&
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By virtue of equation 52(i),

iy
(7h19)x - ao

which, when integrated gives

Y2 U,
'h:l.

= g, X +A(Y) ., 54 (i)

where A(Y) is either constant or function of Y only.
Differentiating 54(i) with respect to Y, and in view of similarity
requirements (54)

da . (XU,
dy h,

)x

4
= '{”E‘),+-}T: 2 7Yy

h U,-U, h U :
= y2 (2 erhz e avy ii 2 Y vy

1

BU, Y Uhb U b

= g2 + 2, _=(a, -a - a.)
h:l V. Yz 8 hf Va Yz_ a9 h1 Vs 3 4 ' -]
da h, U, C.
—_— = £ = - - - 5 :
av A, v, (a, - g,- a; + g, - &) 4(ii)
In view of equation 52(iv)
Y v, | | C s
= a, Y+ B(X) . . 54(iii)
hz 3 !
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where B(X) is either constant or function "of . X only.

Differentiating 54(iii) with respect to X, it is found that

d _ V h ‘
7& = —[]—: . El (aol - al_"' az + 613 _al‘) . ' (55)
Taking the product of 54(ii) and (55) it is found that

%’% - (a; - a, - as +ay - a;) (8 -~a, - a; +a; —a,). (55a)

The form of similarity solution, the scale factors Ue(x,Y), Ve(X,Y)
and y(X,Y) depend wholly on the equation (55a). This situation

leads to the following four possibilities:

A. Both -%% and -%§ are equél to zero

B. .g"?-ao but 2B = o,

c. %=o but %;ao

D. Both -%% ;nd -gg are finite and constant separatély.
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CHRAPTER 4

Study'oF dif fFerent cases
[For rectanguiar surfaces) |




CHAPTER 4

STUDIES OF DIFFERENT CASES

[hy=hy=1]

For rectangular surfaces equations (52) become ,

(1) 3 = (Tzuo)x 2

(iii) a, = o,

(iV) a3 = (Yz Vg)r)

(V) a4 = 72 VSY ]

(Vi) as = 0 ?

{vii) ag = 0>

(viii)  a; = a,, - (56)
, ) Vv

{ix) . ag = de{T:U""’

(x) ag = 0,

(xii) fayq = - L Y2 g; B, (AT),

UO
(xiii) Jayp = Ay,
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C{xiv)

(xv)

{xvi)

(xvii)

(xviii)

{xix)

218

1}

0,

3
7

Y U, (lnA Ty,

Y? V,(lnAT)y -

- ¥* gy By AT,
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- CASE-A(i)

dA
Let —— and
dy

A ='constant and B

And equations 54(ii) and (55) become,

and =2

But =

k!

ao-

YZ

and

{a, — a, + a)

(ao - a,_ + ala)

Bl&

constant.

0

being not equal to zero,

T Ay t* ag

a; + a13 =

From equations 54(i) and 54(iii) it is found that

% (a, Y + B)

= (a,X +4)

45

both be zero, then,

SO

57(i,ii)

58 (i,ii)

59(i,1ii)



From equation (59),

U, _ (aXx+ A - (60)
v, (a, Y + B) '

In view of 56{ii) and 59(i)

a; = YU, = -51- Uy (8, X + A)
. e
or jﬂﬁ = 4
A a,X+A
o
i.e, U, = K(Y)(a, X+A)™ - 61(i)

s

Similarly, from equations 56(v) and 59(ii)

Vo, = K(X)(aY+B)™ 61(ii)

where Kl(Y) and Kz(x) are integrating constants,

From equations, {(60) and (61)

&
U, _  (ax+a) _ K (V) (ax+a)*
Ve (a, Y + B) . 2,

K (X) (a,Y +B) ®

Comparing with (60), one obtains

: ‘ -3!-1 _
K(X)_ (a,Xx+A)% X
%D _ et | {62)
" (ay Y +B®
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. a a ) e
Assuming —X=m, -—2=p, it can be shown that,
a a .

0 3

KN = (a ¥+ B)=-1,
cand K (X) = (g, X + A)=1.
Hence,

U,= (g, X+A)* (a, Y+ B)""1 - 63(a)
and V,=(a,X+A)™(a,Y+B)". : . 63 (b)

From equations (58)
ag = (n-l)a3 and aqqy < @m-l)ao.
The similarity requirements furnish the relation between constants

(a's);‘These.relations are,
§2=as=as”?9=a1o=a1¢=a1s=°'
alama;,a4=na3,a§=maa,a3=(n-1)a3.
a,,=Na,, 8, (m;l) a,, a,,=(2m-1)a,,

a,5=(2n-1) &,

where ao.and ay are arbitrary.

Hence the general transformed equations take the form

u-mqmentum:

— a, —_— a —_
v Fygg + 52 (m+1) FRg+ S (n+1) 5 Fgg + na,(1-Ff)

+ a(n-1) (1-F5) +a,% =0, s4(a)

47



v-momentum:

— 1 ' —_— 1 e —
VHEs 38 (mr1) Foy s 5{nvl)a, 555 na(1-5)

+ a,(m-1) (1-F;5) +a,8 =0,

energy equation:

1

+ a,(1-2n) 50 =0,

subject to the boundary cqnditions.

F(0) = Fg(0) =0,  Fg(w) =1,
S(0) = F0) =0,  Flw) =1,
0(0) =1, - O(=) = 0.

;

Substitution of F = a,f, S = a,s, -0 =0 and
above eguations we have
u-momentum equation,

3 ) 3

+ m(
o, v v 1

a a
+ ._E,ao__a_.o = 0,
o Ve,

48

64 (b)

O35+ 5 a,(m+1) Fy +-% (n+1) a, S0 +a, (1-2m) O Fy

64{c)

(65)

., in the

a,fy) + (n-1) (-;3 ~ &, &y £, 5,) -%3-

66(a)



v-momentum equation,

1 L8, @y &y 1 a, @; &,
s,“+3(m+1) fs¢’+—2-(n+1) 95
na, , a3 2 a a3
+ 3 —_ - + =2 (m~- — £, 8
—-V (az o, &, S.) - {(m-1) (ag @, &y L, .)
s .
B g S5 5 = 0, 66 (b)
K a,
and energy equation,
-1 m+1, 2 % &, n+l, 9,%; &,
Pl gy + (Bil) BoT1fe o 4 (B2 220,
: a g, a, &, &
+ (1-2m) =2 2f£, 0+ (1-2n) —’—-vl—’ s, ¥ = 0. 66(c)
e / a a? . A,
If it is assumed that a«, = @, = &, = &, : =1 and —= = B. the
° |

equations (66) take the form

u-momentum equation

ZYTR mzl) Ffyy+ ( 7‘;1) Bsfy+m(l-£y)

+ B (n-1) (1-£,8) * 67 (a)

sls
>

v-momentum equation

49



Seee * % (m+1) £3,4 + % (n+1) PSSy, +nB(1-5§)

Va :
+ (m-1) (1-£,8,)+—10 =0 - 67(b)
Vi :
and energy equation

Pl Oy, + (F22) £0,+ B(EZD)a 0, + (1-2m) £, 0

+ B(1-2n) 3‘0 =0, - - 67(c)

subject to the boundary. conditions;-

-.t_'(O) = £,(0) =0 Ly{w) =1
5(0) = 5,(0) =0 gy(w) =1 - (68
6(0) =1 0(x) =0
where, '
_a_"i' = o gl . 1
2, Y*gxBr (AT) . 2 U,
X+ X,
= - (A T) ( ) [}
gx BT , Ui
L t R l; (say).
a, uv?
Here UZ = - g, B, (AT) (X+X,) .

-g, Br (AT). x {characteristic length}.
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It

where characterisitc length (X + X,).

"Similarly,

L (say),

a,

S

here v§ = -Pg,Pr (AT) x (characteristic length)

where characteristic length = (Y + Yo).

A B

In this case X, =-=— and Y, = — are set.
' ay a,
- Up Ve, - .
The terms —¢% and —9¥ in the momentum equations represent
vs va — |

bouyvancy effects compared with the forced flow effect.

s v VR
The controlling parameters are Pr' B, -~ == m and n.

v, Vi

(72 Ve) Y = _93
. (12 U’)x cl
(697f) and (69.g).

where p = » where C, and C; are given by equations

The similarity functions f(¢) and s{¢), the similarity variable
. the velocity component ( = u, Vv, w), the skin-frictions

(=%,’s), heat flux (=q ) and Nusselt numbers (=N,'s) associated

with the equations (67) are
= Z |U,(X+Xo) = Z - 1/2
‘b (X"'Xo) v ‘ (m) Rex

)\IV(Y+Y° = (—Z_y | Rex
v+5,  \ B

or, ¢ Y+Y
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_ U (X+X,)

V,(Y+Y,)

u = [gf;, v = ‘Qs¢ and

- _ UV 3 ., m+1 | m-1 n+1l n-1
w = (X+Xo)?[( > ) £+ ( 5 Yb £+ P ( > )3“'("-5—)54’349]

Skin-frictions are,

Te, © l"(—g%)z-o
1
Dr = Rox
b 1'-'1_ kU, (ﬁ) fap (0)
and tv, = l‘l(-g—;:)z-o
1
2
Tw, ~ “Va(x:;o ) Se(0) -
Heat flux,
- ar, -
1 - _K.(a_z)z-o

here x is the thermal conductivity of heat.
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gy

‘A 3
-x(AT) (V—(—X_:’fj) 0¢(0)

R
SR(AT) (%) 0,(0)

1

Nusselt number's are

. @ (X+X) : -
~uX | x (A T)

: 1
N, . = Rox 04 (0)

and

Y+7Y
Nyy % o)

kK (AT)

1
Ny = - (ZH70,00) .

Hence similarity variable,

1 1 :
- z 3 - Z .2 .
¢ (X+X°) Rox X, Rox, {69.a)
or
- VA Rer ; = zZ R"Y: 1
( ) ( ) = = )y1/2 (69.b)
Y+Y%, p Y, p
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U, £, v = V, 85, {69.c.d)

u =
woom o (BT AL £a (B2 gg, s poRil) g
X, 2 2 ¢ 2
+ (B2 p o sy, | (69.¢)

U, = ¢ (X+X)8(Y+Y,)n"!? = ¢ X ¥ (69.f)
V., = c(X+X)?1 (Y+Y,)" = o XY, {69.49)
AT = o, (X+X)%™ (Y +Y)%2 = ¢ X" yi™? (69.h)

i-m i-n i-m i-n
Y = ¢ (X+X) 2 (Y+Yy) 2 = ¢ X2 v?,
and stream functions are,
¥(X,, Y, 2 = /vax® n® f(¢) ' (69.1)

' 3o S L3 § '
and @(X,,%,2) = P e (X) 2 (y,) * s(¢), (69.3)
T - T, = AT0(¢$) (69.Kk)

c, .(Xl)-zm-l (Y,)?22 8 () ,

w@ere ( X+X0) = X7,
( Y+Y0) = Yl )
c]. = a:, a-f-l .
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Skin

and

. Heat

frictions,

LY

7
n

=

o

Nusselt Numbers,

o X
Nuy = -Rx ,(0)

55

{69.1)

{(69.m)

{69.n)

(69.p)



. ROY —: - ’ : 9
Nuy = -(=2)70,(0) . (69.q)

R

The physical behaviour of the controlling parameters

2
(=P,, B, -[-I%,- ) used in equations 67(a,b,c) are now discussed.
‘ - e

NAKH

The Prandtle number f§(=£§?) depends on the properties of the
media. For air at room temperature its value is 0.72, for water at

temperature 62°F its value is 7.0, where for oil this value is of

the order 1000. (AT is equal to c, (X,)*™1(y,)33). For m =n =1 and

g = 1, f = s and this gives the flow at an axi-symmétrical
stagnation point. When 8 = 0, c, = 0 i.e. v = 0 and the flow is
in the neighbourhood of a two-dimensignal stagnetion point. The
solufions were obtained by Howarth for 8 = 0.25, 0.50, 0.75
in absenge of bouyancy effects. For intermediate values of B\ the

velocity profiles and temperature profile given by L(d) 55 (¢)

and 8 (¢) are of boundary layer type.

The third and fourth parameters are the coupling agent between the

‘momentum and energy equations. These parameters have been replaced

G e . '
by —=X and -—%! by Sparow, Eichorn and Gregg (1959). Where ervand
. R:x Rgy ' .
GrY are the local Grashop numbers based on AT, X, and Y; where Rex

and ReY are the Reynold numbers based on the components of outer
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by Gzzx and ‘G;Y by Sparow, Eichorn and Gregg (1959). Where Gy and
ROX ROY ' |

GrY are the local Grashop numbers based on A7, X, and Y; where Rex

and ReY are the Reynold numbers -based on the components of outer

stream velocity, X and Y. However AT as well as Ue and Ve are

, G G .
functions of X and Y and neither - ;x nor ;Y can appropriately
. Rax = Rey ,
represent this term. The use of Grashop numbers here are rather

2

misleading. Since it introduces pu®, which is eleminated by using

Rex2 or ReY2 in the denominator. The non-dimensional sclutions
' 2
should not depend on Rex and ReY‘ The use of U} and Vﬁ are

preferred here, since Up and Vg defined by Ostrach (1953) give the

measure of order of magnitude of velocity caused solely by buoyancy
2

effects. More precisely, the parameters -—- and ';5 are defined
Us o

as the square of the ratio between the velocity caused by the

buovancy effects, and the external velocity components for the
2 -

' U
forced flow. The flow is said to be aided when —£ or

_F
Us Vi

greater than zero and is called to be the opposing flow when the

is

parameters are less then zero.

When U2 << U? and V? << V2 the flow becomes forced flow; whereas
rorced £10

as UZ>> U2 and VE >> V2 the flow becomes free convection flow.

In absence of bouvancy effect the equations 67 (a,b,c} (= the

forced convection) are dealt with Davey (1961) when m = n = 1.
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CASE A(1i)

The case A (i) 1is characterised By,arbitrary constant in the
similarity requirement namely a, and aj. Setting the arbitrary

constant a, equal to zero but a,»0 the problem changes to different

type. In addition to the traditional conditions of case A, if one

sets a 0 the equation for y2 reduces to

0O

2= 2, | (70
Y= . (70

L4
Setting the value of y2 in 56(ii),
Ay '
g,=K(Net. , : 70(a)

From 56(iv) it is found that

2 o B Y+B 70 (b)
Vd
From 56(v) and 70(b) the following equation is found as
, Ay | '
V, = 5 (X) (a,y+B) ™. - 70 (c)
From (70) and 70(b) the following relationship is obtained
j& - A _ 70(4)
V. a,¥+B

Here Kl(Y) and K,{(X) are constant of integrations.
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Again,. from 70(a) and 70(c)

. - i}x
O - KYe . 70 (e)
v, 2
K, (X} (a,Y+B) ™

From 70{(d) and 70(e) it can be found that

. &_1
ol _ A(a,y+B) ® 70(£)
c (X} a
et -
Hence from 70(f)
.ﬁx - . &-1
Ko(X) = o4 and K (Y) = A(a,v+B) ™
The equations 70{(a) and 70(c} take the following form
24 &
U, = Ala,y+B) ™ e
‘ Ly -?
Ve = e? (ay+B) "
Hence
U, = ces(ry,)"?
Vo = e (y+y)® , 71(a,b,c)
72 = cae"ﬂ(y.'.yo) 1-n
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and AT = 3% (y + y, )31

a

- 2, N W/ % = @ = 9
where cq = Aa,) & cy = ay s = =’ n = ;; and Y,

'Setting-the expression of Ug: Vg and y? in equation (56},

8, =,=8s~ag=q;=a=a,,=a,, = 0

Let aq and a, are arbitrary, then

a, =a,=na, =a,;<=a &-°*=(nl)a, a,-=2a

a,s = (2n-1) a,-

Hence the general transformed equations (49), (50) and (51) take

the following forms:

u~momentum equation,

VF*;; + %FE; + %a,(n+i)§ﬁ;; + 61(1 - 1?%)
+ .a,(n-1) (1-F3S;) +a,,0 = 0

v-mementum equation,
VIHIFt ZF FHy r 7a(n+ 1)S S5

+ na,(1-3) +a,(1-FS) +a,0 =0
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72(b)



Pnergy equation,
Vs + ~a,F05 + X(n+1)a,s 05 - 2a,0 P,
P Uss t S U oA a;> Vg WU Fg
I
-+ a(1-2ml 5 = 0  72(0)

‘'sub ject tb the boundary conditions:

F(0) = F5(0) =0 Fy(=) =1
5(0) = 5(0) =0 Fyle) =1 73
3(0) =1, “ E(m) =0,

Substituting F=af, S=as, $=ap and O =90 in the above

equations and setting {

The above equations (72) take the form

2me 4cm 2
f¢¢¢ + Sf¢¢ + n+1ff‘¢ + m(l"f¢)

' 2
' 4 2 Up
+ - - fd A
(2 n+1)(1 £o8,) + (n+1) U’ﬁ 0,
. . [ ]
8 + 8S8,, + 2mcfs +_ﬂ.(1—s’) 74{a,b,c)
¢¢‘ ’. n+1 “ n+1 ¢ . r '




The boundary conditions applicable for the above equations are,

£(0) = £,(0) =0, fu(=) =1

5(0) = 8,(0) =0, Spf(=) =1 (75)
0(0) =1,  0(=) =0,
where, i E R ..HE, f!'i = L:,
a,. 2 a, v3

0§ = -'cg;B,(Ai?, ¢ plays the role of characteristic length,

and V¢ = - (y+yo)gyp,AT .

The similarity functions f£($), s ($), the similarity variable ¢,

the velocity components u, v, w ; the skin-frictions t,'s heat flux

qy and Nusselt number (Nu) associated with the equations (74} are

4cCv '% %
( Y2 Ot £,

X v = (25
_ o 2vY 4 3
w(leJ¢) b { n+1) Vo 5(¢) [

and ¢ = _?z. (L‘%}_, 1/2 R:l{f'
’ 1

V71,
where R,y = "T’“ and Y, = Y+Y,.
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u = Uef., v = V, S,

w o= - | “)3( )3[mcf+mc¢f¢+(n+1

skin-frictions are,

1

1 Rer
(Bt "*)f“(o),

La ]
X
[}

- 2 e
R
. 1 1 & _
= n+ 2 f1
and <, k(= ) Y,( Y ) 844 (0).
Heét flux,

q, = -1:( 2 se0 ~x(AT) [(‘“1) °1=0.(0)

. __ x(AT) n+l. 3 .3 |
. ay A (B21)3 R, 0,(0) -

Nusselt Number,

11 |
) 2 Rey,0,,(0) -

n+l
NUY1 = -( 2

63
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In this case, if ¢ = 0 ==> A = 0, i.e, 'Ue = 0 ww> u= 0. Then the
fluid moves with two velocity components (= v, w). The velocity
components are independent of X. Therefore, the similarity
functions ‘f' is negligible, let -ﬁ?% = 51

The equations (74) take the form,

Spee+SSee*B1(1-54) +(2-B,) ';Po =0,

0¢¢+ Pz[sﬂt + (2"'351) °S¢] = 0 - 76(a,b}
The boundary conditions are

8(0)

L}

8,(0) =0, . Gp(w) =1,

0(0)

1, ‘ B(=) =0,

Here, V§a=—-g&pT(A10 x characteristic length,

where characteristic length = Y1

#y 3p,-2
V=Y,  and ATw=(Y) >

Hence the non-dimensional stream function, similarity variable, the
velocity components (=v, w) within the boundary layer and skin

friction (= <,), heat transfer co-efficient (=q,) are given Dby

following equations.

' i
] = [(2-B,) vV, Y;] ?3(d),
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v = V.9,
P IO L% J PTG gy
‘ 1“2—51-’ Y, e
L
t = —B___epl 5 (0)

k(AT)

Yﬂi _Blj

. 1
qw == Rog', 0‘,(0} 7 '

and Nusselt Number,

l -
Ny = - —=L_R3, 8,(0)

1

The above case is a steady flow problem for combined forced and
free convection. The parameter 8 is well known wedge flow
parameter (infact nﬁl is the wedge angle) related to the exponent

of Ve and AT.

Detail of physical significance of 8 was explained by Falkner-35kan
(1931). This problem‘has been explained previously by Sparrow,
Eichorn and Gregg (1959) with new similarity function s(i) and
similarity variable ¢ related to our'present function and variable.
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The equation (76) is. transformed pair of equations dealt with by
Sparrow, Eichorn and Gregg(1959). They tabulated skin-friction and
heat transfer factors (=8,,(0); #,(0)) for uniform wall temperature

. _3 . . 3 : Gry
(i.e, p_i) and uniform heat flux (i.e, 51=T) in the range —=

Roy

= 100 down to the point of.speration for air P, = 0.7.
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CASE-A (ii1)

In this case, setting the arbitary constant a equal to

a, » 0, the equation for y? reduces to,

Setting the value of y? in 56(v), one obtains.

w2

Y

Vo = K (X)e 7,

From 56(i),

2 . 1
= = (g, X+A .
1= g lakea) .
Substituting y? in 56(ii),

Ay

U, = K(Y) (a,X+4) * ,

where Kl(X) and KZ(Y) are constant of integrations.

From {(77) and 78(b),

Us _ a,X+A
B

and from 78(a) and 78{(c) we get,

a,

U, _ K (1) (aX+a) ™

a,
K(xe?

67

zero and:

(77)

78 (a)

78 (b)

78(c)

79{a)

79(b)



From 79(a) and 79(b),

a
a,X+A K, (Y) (g x+A) *

B B

' K(X)e?®

2

s RO Baxa
K{Y) Sy
e B

From equation (80},

e Y
K, (X) = B{a,X+A)
Ny

and K(Y) =e¥®
Substituting the expressions of Kl(x)'
78{(a,c) ene zbtoins,

U, = (a,X+A)%e™ = ¢, (X+X;)%e™

Ve = B(-aOX+A)n-len!' = c,2 (X+x°)n-lenY .
"and,

¥2 = (a,X+A)1 e = g, (X+X,) 1 Pe™ ™ ,
where, ¢, =a, ¢ =aiB, ¢ =a™",

68

it may be written that

(80)

81 (a)

81 (b)

and KZ(Y) inrequation
82(a)
82(b)
52(c)
a, a,
—_— = ad —_— =
5 n an B m



The  similarity requirements furnish. the relationship among the
constants A, 89, A3 ¢ .« . . . o a7 and aig-

Hexe a, and a, are arbitrary,

These relations are, '

8 =8, = 8 =8 =8y =8 " 8" 4" 0

a, = a, = na,, 8= &,; = a, a;; = (n-1)a,,

'a,, = (2n-1)a, and a,3 = 2a,,

Hence the general transformed equations (49), (50), and (51) take

fhe form,

V553 * (,ngl)aol_?f_%; + %ﬁ; + na, (1-F§)

+ a,(1-FS) +a;d =0, ~ 83(a)

.VE$3$ + (ngl)aOFE;": + %ﬁ;; + a,(1—§;’)

+ (n-1)  a,(1-F3S) + a0 = 0 83(b)

and

v Byg v (Bil)aF g+ 25T

- (2n-1)a,0F; - 24,0 55 = 0., | ' 83(c)



The boundary conditions are

1}
o
hl

F(0) = F5(0) = 5(0) = 55(0)
F%(w) = g;(,) =1, 83(4d)

P(0) = 1, O(e) = 0,

Substituting F=af, S =&9, ¢ =a¢ and & = 0 in above equation and

setting

a,a? '
(n;]') : =1, a, = Bm and i 2c,
. 0

the above equations (83) become,

2cm 2n 2

dcm ' 2 \UB, _
+ A asgey v (FEpEe o 84 (a)

2cm 4cm 2
Spee * LSpe * (n+1)ss¢¢ + (n+1) (1 - 85)

2
n+1)

=20, 84 (b}

b

+ o (2-=) (1-fysy) +

and

2cm g 2(2n-1) 0,

-1
PzFQ. + f0¢ + +1 Py a1

18:?:08’ = 0, 84 (c)
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The boundary conditions are,

] F(o) = f@(o) =0, f¢(“’) =] )
S(0) = 5,{0) =0, Sy{w) =1, . (85)
0(0) =1, O(Q) a0 .,
Here,
Su _[E (say) and T E y
& Ul ' a, vi
where Ut = -g;kBT(AT') (X+X,) ,
Vg’ = _ZgYpT(AT')c )
and AT = (X+X,) 2n-1 g20Y

The similarity functions f(¢)., 5(¢); similarity variable ¢, the

velocity components u, v, w, the skin frictions =</ 's ; Heat

transfer co~efficient dy and Nusselt number Nu associated with the

equations (84) are

1
2vX, . 5 3

Y(X, Y, ¢) (n+1)2 Us £($),

-

1 =
eX, v, 4) = (25T V! s,

(Al

Z = -
iﬁ =3 , u ULy v = V.S,

_g ol

¢ - R
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and

v, 2

1
o S 1 n-1 '
W [_X1 .——-—(ml)] [(-—-—2 Y £+ ( 3 )¢f¢+c.'ms+lcm¢s¢] 5
) UX. ) _ ‘
where R, = vl and X, = (X + X))

gkin-frictions are,

- n+l —; Ue %
T = B( 2 ) -)?;R,;lf‘,’(()) )
1.2 v 3
and th = I.l( ﬂ2 ) 2 _X—l Rgle5¢¢(0) *
‘ (AT) , n+l,3 3
-— 2 F
Heat flux, ay = X X, . > ) 2R, 04(0),

where x is the conductivity of heat and u is co-efficient of

viscosity.

1
, = (D*tlyn,3
§nd Nusselt number, N, ( > )R&HﬁQ(O).

It is interesting to note that if ¢=0 i.e, B=0 then V, =0 mm> V=0,

That is the flow moves with two velocity component u and w, and the

flow becomes 2-dimensional. Hence the other component of
similarity function S is negligible and ;f; = (say) .
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Therefore, equations (84) become,

2

f‘¢¢+ff¢¢+p (1"f:)+(2_ﬂ)'1: 0 = 0 )

L

O, + P [£0, + (2-3p) £,01 =0

The bounary conditions are,

I
= .

F(0) = £,(0) =0, fy(=) =
5(0) =5¢(0)‘=0’ 5@(“) =1,
(o) =1, () =0,
In this case Us = - g’xﬂT(AT)Xl, | U,«XEE’

Hence the non-dimensional stream function,

velocity components are

¥ (X,

kY
z) = [(2-P)vUX] “£(P),

V=0

vU,
X

a
YIL£(@) + (B-1)0L,).

73

86(a}

86(b)

86(c)

3Ip-2
and AIH%AQ)?%F‘

similarity variable and



Skin-friction,

1
- B Yepa .
T = XlR.x“'f“(O)
heat flux,
K AT, .3 .
q, = ~—— (=) 20, (0) .
A i

and Nusselt number,

This case is.a steady.flow problem for combined forced and free
convection. The parameter 8 is well known wedge parameter related

to the exponent of U, and AT.
Detail of physical significance of B was explained by Falkner-Skan

(1931). This problem has been explained previously by Sparrow,

Eichorn and Gregg {1959) and is same as case A(ii).
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CASE A (IV)

Setting the arbitrary constants (ao, a3) to zero in addition to the

traditional conditions of case A, the equation for y? reducesto

2 ‘A . and 2 5 _'B;
=, Ty,
From (87}, EE = A . constant
vV, B )

Hence it can be said that Ue is prpportional to Ve,
From equations 56(ii) and 56(v),

‘ ~2x b 4
U,=¢C(nNet and V, = ;{0 e

wle

where cl(Y) and cz(x) are the constant of integrations.

Therefore,

Liy
u Gginet
Vo %Y

cz EX) e

a,

From equations {(88) and (90}, the resuists is,

75

—_X
c {Ne?

ay
c,(xeB

87(a,b)

(88)

89{a,b}

(90)

ES



21y

) G(X) | Be?
Cl(Y) :!f

Ae B

From equation (91) ,expression for CZ(X) and Cl(Y) are

ﬁx -&Y
¢, (X) = Be 4 and c,(Y) = Ae ®

Substitution of c; and c,; in equation {(89) gives
Ue = Ae {mx+nY) Ve = Be {mX+nY) .'.2 = e-(,nxmr )
and AT x g2lmx+nY)

a a
where —X =m, and -2 =n-
A B

The similarity requirements furnish the relations

constants a's. These relations are,

n
(=]

8, =8, =8 =85 =8 T 8 = 85 % 84 = 5

a, =a;, =a, a;=8,;¢°%38, a;=24a;
and 8,4 = 28,

where a, and a, are arbitrary,

(91)

92(a,b,c)

(93)

among the

Hence the general transform equations (49), (50), (51) take the form,

vFgs + FFRs + F5Ry + 4 - R/
+ a,(1-F S + a,0 =20,

76

" 94 (a)



+ a,(1-85) + a(1-F8) + agd =0, - 94(b)
Byg + 2FB; + 1a50; - 220 R
X} 2 [ 274 [ _ 1

- 2a03 =0, 94 (c)

subject to the boundary conditions,

0, Fyl=) =1,
0, S(=) =1,. | (95)

F(0) = Fg(0)
3(0) = 55(0)
- %¢0) =1, ¥(») =0

Let us now substitute F = af, S = as, $ = a¢p and =0 in

' . ala
the above equations . and choose 1

= 1 and ;? = B the above
1

equations {(94) are further simplified to

fooe * Efyy + Psfyy + 2(1 - £)

+ 2B(1-£,3,) + 250 = 0, S 96 (a)
_ Ue - |
Bepe * L84 *+ Bss“ +2p(1-5; ) |

+ 2(1-£,8,) +2-§ v = o, 96 (b)
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The boundary conditions are,

£(0) = £,(0) =0, f£y(=) =1,
5(0) = 5,(0) =0, sy(=) =1, (98)
9(0) =1, 0(w) =0,
2
where, Au % g B . E.
1 UE 2 Vf
Here, Ut = - 2g B (AT).
m-x
Vi = - ZBg Pr(AT),
:},‘-’ -}; aCe the mgspgc_ta['\yc_ choxaeterislic Lenghhs,
' = .....a.i = H_B = ..12 / B’ = ._'E .
and p a,  m mp p where B =

The similarity functions f(¢) and s(¢), the similarity variable
¢. the velocity components (= u, v, w), the skin frictions (=t 's),

heat transfer co-efficient (=qw) associated with the equations (97)

are

A - 1 R
P Y0 = (20 %)% 24y, @ = (2BYYey T gq)

m 7’
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1
¢ = ﬂ"Rsi' u = Uef¢, V = VGS¢'
w-—(U°v)31[mf+m¢f +nﬂ’s+nB’;bs]

2m " e ¢
: I 1
' m
t':l. = l'an -Z—ER& f0¢(0) ’
1

l m

t'n = |.I.Ve —2-.2Re§ S¢¢(0)

m .7 u,x
and q, = -x{AT) ﬁ.R,x 0¢(0) where R, = =

The variation of B/ would be effectively limited to the value

ranging from 0 to 1. If B/ = 0 then B = 0 and A«0, So that V, = 0

=> v = 0. When B/ = 1 then A=B so that the U, = V, => f = 5 and the

flow is two dimensional.
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CASE B (i)

In view of the equations 54(ii) and (55) the condition imposed on

the case B may be written as

dA (Y} U,
= — (a, —a, +a ¢ 0
dY Vg ( 3 4 0) ‘
| 99{a,b)
. v _ )
[
here a, ; ag f ag = aqq = 0, because hl = h2 = 1.
Since if is nonzero and finite,the equation 99(a) suggests that

Q
U, and V, are either function of Y or constant. Hence equation
99(b) yeilds,
ao“al+a13=0

==3 -

13 T 31 7 9
and B(X} = constant = B.

Thus y? becomes for this case

42 = %}(a3y+3), ' < (100)

Substituting the value of y? in 54(i) [y?U,=a,X+A(Y) ] one obtains

-“-’;-'(aawg) =g, X+ A(Y), (101)
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To maintain the consistency on both sides of the above relation, we
have to put a; = 0 in equation (101) then

e (a, ¥ +B) = A(¥). (102)

o

From equation 99{a) and equation {102) it is found that

d (U, ' ' U

?{?{.F: (a, Y"‘B)} = -?:‘(aa—a‘-k.ae)
== d U, U
==> aa_f+(a,Y+B) _C-ﬁ(..‘.i) = 7:(33'54“%)
== d (Y, U, (8 - a)

dy "V, v, (a, Y+ B)

Integrating both sides gives

a8
. e (Y+x)®
Ve A
c, (Y+Y, )™

If we choose U, = ¢, (Y+Y)" and V, = c, (Y+Y,)* ,

a a ) '
where -8 = m, 4 = n, ¢ = 83., c, = aaﬂ and £ =Y, *
a, ay a,
h 2 1-n h R
we have y G, (Y+Y,)*™@, . where Cy = &

and AT = (Y+Y,)22
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Substituting U, Vo and y?> in the similarity requirements,

equation (56) .gives

[}
L -]
1]
i}
")
L}
[\
N -
#
1}
w
n
1)
-]
n

& = 8 = @ = 83 T8y T @3 =8, -0

ag = ma,, a, f a; = na,, a;g = (2n-1)a3:

where a, is arbitrary.

Hence the general transform equations {49, 50, 51) take the form,

vFigs + Sn+1aF Ry + m,(1-FKI + af =0’ 103
V535 * %(ﬂ +1)a,5 555 + nay(1 - 5§) + 2,0 =0 103 (b)

v E 1 — —
EO;; + 3(n+1)a330; + a(1-2mb g =20 103 (c)

subject to the boundary conditions

F(0) = F5(0) =0, Fy(w =1,

5(0) = 55(0) =0, S(=) =1, ©(104)

%(0) =1, C B(w) =0,

Let now substitute F=af, §=as, & =ad and % = 0; and choose
(821lyq24, =1, 2m g and -2 o B/ in the above equations
2v 3 n+1 n+1

(103) and (104).
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Thus the above equations are changed to

. 2
foep * SEop + B(1-£y3y) + (z-p')%o = o,

Seee * 554 + B(1-8) + (2-P) go =0, 105(a,b,c)
L]
P;'0,, + sb, + (2-3p/)0s, = O.
The boundary conditions-are
£(0) = £,(0) =0, . fo(=) =1,
8(0) = g,(0) =0, 8y(w) =1, (106)
9(0) =1, 0(w=) =0,
where Bu . E‘, and = 26 - E,.
a, U3 4, V2

here Up = - A(Y) (AT) Brgy and  Vf

- gyB(AT) (Y+Y,) .
4,y

To have the meaningful characteristic length we have to put either
m=n or gy=0 resulting the equations 105(a) and 105(b) identical

implying p=p' or 105(a) becomes a force flow equation where U§=0.

The similarity functions f(¢) and s(¢).' the similarity variable
¢. the velocity components (= u, v, w) the skin frictions, the heat
. transfer co-efficient and the Nusselt number associated with the

eqguations (105) are,

1
" Vv
¢ = -z Rey: where (Y + Y,) = Y, (say) and R, = o1

U, =Y V,=qcY" AT«Y}"?,

u=UJg, v=V.5g,

1 -
and w= (y2-§) (%) s+ (‘;L’—;-',)¢S¢]'
A -
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Stream functions,

2v.yr™@ 1

¥(X, Y, ¢)

= [ 211 172 '
Loy ® G £,
QX Y, ) = (‘2“")_“t V% g(d).
s 4y . PYSl o ]

Skin frictions are

kU, 3
T, = e Roy £44(0)
e ) y L4pl0),
v 1
and ¢, = B e RE See (0)+
Y,/(2-p) ‘
1
Heat flux, g, = - x(AT) R,y 0, (0),
Y./(2 - pY) '
1
and Nusselt number Nu, = - RGi 0,(0)
Y viz-py ¢V

when B = p/ then m = n, ¢4 = ¢, and Ue-é Vo => £ = s. Therefore
equations 105(a) and 105(b) are identical. If 8 = 0 then cy =0, =>
Ug = 0 =>u = 0. The flow moves with the velocities v and w having
no velocity aibng Xx-axis in the boundary layer. Again if §/ = 0
then Cy = 0o = Ve = 0 => v=0, then the flow moves with the

velbcities u and w like Z-diménsional flow.
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CASE B(11)

Case B{i) is characterised by the arbitrary constant a; in the

similarity requirement. The possibility case B(i) reduces to
special form when § =0 or ﬂ’= 0. Setting the arbitrary constant

a; to zero, the problem changes to a different type. In addition

to -the traditional conditions of case B, if one sets a;=0 the

equation for y2 reduces to

In view of similarity requirements Eq. 56(v) and Eq. 56(ix) the

following two equations are obtained

& ag
—EY - Y

where cq and c, are constant of integrations. Thus for'this type of
scale factors, the relation aﬁong constants are |

80=8,28; 8,7 8578=8, =8, =8, 8)3°8,,,5~a;,~ 0

a,,=4a,, &5 = 2a,,

when a4‘and-a8 are arbitrary.

Hence the general equations (49), (50}, (51) take the form

v P35 * %aﬁl—"u + ay(1 - F, 35 + a,0 =0 107 (a)

"EW'«F + %a..?.?u + a‘(1-§§) + a0 = 0, 107 (b)
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asS0; - 2a05 =10, 107 (c)

(X

o=
- X B

subject to the boundary conditions

F(0) = F5(0) =0, Fy(w) =1,
5(0) = 55(0) =‘o. S5(e) =1, (108)
= 1, 0(9) = 0.

o (0)

Setting F=a«f, S=as, ¢ =ap, U =90 in the above equations and

a?a, 2a,
= 1 =
2v ’ a, B>

assuming

the above equations are changed to

Ua
f¢¢° + Sf¢‘ + ﬂ(l‘f¢S¢) + 2??'0: 0 3

S¢¢¢ + 3 3@@ + 2(1 - 5:) + ZE ﬁ = 0 ) 109(arbrC)
Ve
subject to ﬁhe boundary conditions;
E(0) = £,(0) =0, fo(=) =1,
S(O) = S¢(0) = 0; s‘(x) =1, (110)
0(0) = 1'- o(“) =0
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a Vi
where 2 = —,  and S . F.
a vi

here Up = --‘%gx(ATj B and Vﬁ = —-‘-aB—g'r(A-T') Br.
: 4

$, U, V,, AT and the velocity components within the boundary layer

“for the above equations are,

¢ = Zal — 'Rezr, U’ = czeﬂr‘ VO = clenl',

AT = @2, u=1Uf, V=VS,,

v,vn 3
W= - (5 )2 (s +¢ sy,
= _2_V -a %
v(X, Y, ¢) (ncle N2y, £(P)»
1
ey, = (2207 s@).

Skin frictions are,

1
1'1 = FUO\—ZP? « Rezy f00(0),
- 1
Tw, = B Von| 5 - Re¥ Spe(0)e
1
Heat flux, . gq, = -~ x(AT) ~|2—nr-,R,§rﬁt(0)

4

. spechindy,
where 2% - p and 8y gee the vmverse of tamglhn scate reesp Wy .
B B o
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CASE C

gimilar to case B, two possible situation arise again in dealing

with the case 'C’'. These are,

CASE C(i)

In view of equations 54(ii) and (55), the condition imposed on the

case C may be written as

da(yy _ U -
: 'dlf) --ir-i(a3~a‘+aa) = 0
and dBd(;) - ,g.e(ao_a1+a1,).- 0, | 111(a,b)

Since é%_¢.0=otk and V, are either constant or function of X only,
a

EE = constant, will be found to be a special form of the present
&
case. Hence from 54(i) and (55).

y? = —E]I'-(aox+A) and ¥2 = _B;ér_X)_ 112(a,b)

-] L]

From (112) it is found that

Vo . BLO ' , 112 (c)

T, a,X+A
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Setting '%% in 111(b), and integrating, the following equation
Y
results

1-21, 80
a 4

B(X) = (a,X+A) +C o (113)

here C 1is integréting constant, let C=0. Substitufing B(X) in

112(C) ,expressed for é% is
) o .

Ue | G{XHX)T | (114)

Ve ¢y (X+X;)n

where -1 = m, —= =1, c1 = aon' cz = aol and — xo.
0 a, 2
If from Eq(l114),it is assumed that
U, = cX" V,=cX® and y =% 115(a,b,c)

where ¢, = g, and (X + X;) = X

Substituting ¥3, U, and V, in the similarity requirements are

obtained,
8, =8 =8 =8 =8 T8 =8 = 3, = @33 % 8147 85 = 33 =0

a = a, = ma,, a,, = Da,, a,, = (2m-1)a, and a, is arbitrary.

-+ 89



The general t;ansformed equations (49, 50, 51) take the form,

VF‘$3 * %(M+ l)aoFF;; + may(1 - 1_“;2) + 81-1-0- = 0,
"5866"‘31-(1"*‘_1)&0?5;; + na,(1 - F5 55) + a,0 = 0, 1l6(a,b,c)
v 7. 1 —— =

-5;0;; + -i(m+ 1)a,F 05+ (1 -2m) a, 0 Fg = 0,

subject to the boundary conditions:

F(0) = Fg(0) =0, Fy(=) =1,
5(0) = §(0) =0, Sg(w) =1, (117)
6(0) =1, - O(=) =0.

As before substituting F=af, S=a3, $ = ad, =0 and

3
writing Soo(m+l) , -2M .8 ana -2 -p/,
2v m+1 m+1

the above equations (116) are changed to

fooo* Fpg + B(1L - £2) + (2 - p)go =0,

Spee * I8¢ * B/(1 - fo5y) + (2 - p)_:a_:o = 0, '119(a,_b,c)

P[0, + £0, + (2 -3B)£,0 = O,

90



the bouhdary conditions become

£(0) = f¢(0) =0, f¢(") =1, .
5(0) = §,(0) =0, sp(= =1, | (119)
8(0) =1, ¥(=) =0,
where 2 = E, o L E,
& u % Vv

U2 = -g,B ATV X,

"

and V2 —-%g,B(XL)B,-(AID-

To have the meaningful characteristic length we have to put either

m=n or gy=0 resulting the equation 118(a) and 118(b} identical

implying B =p/ or 118(b) becomes a force flow equation where ve=0.

1
1)'5

Z(_1_ - UA
XI(Z-B where R,

V.'

a»lu

here ¢ = R

2p-2 :
AT=(X,) *P, U, = X" V,= i

us= U°f¢' V= Ves¢l

' Uv 2 1 |
and w=~-(—2-)% [(£-(1-p)dL,].

Stream functions are,

Y
Y . xU)? £(é)

e (2
LT = (S
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2v X0

1
2
= @) 12 v,s(d)

and e@(X, Y, d) = [

The skin frictions are

.
_ _p Rex
t":. = = Tlvef“(O)
and <, = ——BLRES“(O)
' XW2-B
_ A JE SR
The heat flux, g, = -t(—x-@.—(z -B) ? Rax 0,(0)

1

and Nusselt number

1
1 2
Nu = - —=——Rx0,(0)
vz=B

Since Uge V and AT are independent of Y, the case C{i) is a two

e
dimensional (X,2) problem for combined forced énd free convective
flow. The parameter 8 and f' are well known wedge flow parameter
related to the exponent of U,, V, and AT. If B = B/ then m = N e
U, = Vv, and equations 118(a) and 118(b) are identical. Details.of ‘
physic&l significance of U,. Ve' AT and 8 are ekplained by

Sparrow, Eichorn and Gregg (1959).
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CASE C{1i)

Similar to the case B(ii), another situation arises if one of the
constants considered in C(ii) be zero. Thus setting a =0 and ‘in

view of equations (111) one may derive the following expression for
y?, U, and V,. These are.

a et
Ax b 4

- A -
Y2 = F,' U, = c,e and V, = c,e A

where cy and c, are constant of integrations. Substituting the
values of ¥2, U, and V, in similarity requirements, the relations
between the constant a's become

8y =8, =@y =Q, =8y =8 =8, =8 Ty =8 =8, = &5 =a -0
a, = a,, a,; = 24,

ajy and a; are arbitrary.
Hence the general transform equations {49, 50, 51) take the form,

VRgs t pFRp a1 - B +ayl - 0

V553 +%F§5$ *a;, - Fg 55) +agt =0 _ 120(a,b.c)

— 1 — — — _
%03; + —z-a,_F ’0; - 2a10F‘ = 0
r
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subject to the boundary conditions, -

F(0) = Fg(0) =0, Fg(=) =1,
S(0) = 5(0) =0, Sp(=) =1, - (121)
(o) =1, V(=) =0. |

Setting F=af, S=as, ¢ =ad, 0 =0 in the above eguation and

. a,a? 2a,, o ' .
choosing o =1 and =222 =B the above equations (120) are

a,

changed to
, 2
fose + Fhyp + 2(2-£5) + 250 =0

Va .
Spee * LSgg + B(1-1y5,) + 2—V—‘;o =0, 122(a,b,c)

P;lo“ + f°¢ = 40f¢ =0 .

And the boundary conditions are

£(0) = £,(0) =0, fL(») =1,
s(0) = 5,(0) =0, sp(w) = 1> | (123)
8(0) =1, - O(w) =0.
2
Where i - Y ang 2 _V_"z.
1 Ut a, vi o
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- gx(AT) pTA

here U
a,

- A
Vi =-g (AT B2

Here,
_ -!.- . )
R A A G R

w = _(mUaV) 2(f+¢f¢)

(Z\H:I‘9

¥(X. Y. ¢) ) 2 £(¢)

and @{(X,Y,¢)

2v 3
-mXI\ 2
(—--—c1m e =) ? V.s8(d),

a a UX
where .—f = m, —;-1 = n (say) and Ry = ——-

gkin frictions are,

1
= m 2
‘le = p(-é-:‘-{Rd) 2U’f“(0)

MR... =
and T":L = p(-—-z-;-!) 2 VeSQQ(O) '
o ' ‘ 1
Heat flux, g, = -n(Am(%R,,)w,(o).
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CASE D

In view of the equations 54{(ii), (55} and the condition stated for

this case it is obtained aé

' EE‘ = constant,
v, |
Ua ' 2
Al = ?(aj—a¢+a,)l'+ d,, 124(a)
4
B{X) V’( -a, + X + 124 (b}
= T a, - a + aj;) 4,

where d1 and d2 are two integrating constants.
Substituting A{Y) and B{(X) in equations 54(i) and 54{iii), y? is

found to be

- 1 1 d |
Ya_.ﬁoao_x+.v‘(a3'—a‘+a‘)1’+—ﬁ; 125({a)
! 1 ‘ d,
and Ta = anal’ + —(T(ao - a; + a11).x + --‘-’—- : 125(b)

Comparing above equations of ¥2, the following relation_can be set

d, u, '

1 = & = K say), ==> U, = K,V_, 126
dz . Ve 1 { Y) e 1%e ( ) )
g = ay, anq a;3 = aj-
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- Again from equations 54(i), 54(iii) and (126},

U, = aX+A(Y)

—. = 0 = K, (= constant)-
V. aY+ B(X) 1

==> aX + A(Y) = K; [a;¥ + B(X)] .. (127

From the above equation (127}, it can be written as

V-A(Y) = K;ja,Y, and B(X) = ‘]%:aox-

Then equations 54(1) and 54(iii) take the form,

1
Y2 = . (a,X + K,a,Y)

[+1]

]
o7

-
by

i

_:L(Laox-p a,y) . 128(a,b)
vV, :

K

Substituting y? from 128(a) in 56(ii),

U, = c,(ax + b)® .
V, = ¢, (ax+by) ™ | 129(a.b,c)
and 12 =, (ax + by‘) l-ll’

where Cq is a constant of integration,

0

=

= m (say), a_, = a and a3K1 = b.
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Similarity requirements furnish the relations among the constants
(=a's) as

az=as=a6=asl=a1o"au”a:.s':O’

a = &, d;; = ma,, a; = a, =-a12=ma3,

8,, = (2m - 1) a,, a,s = (2m-1)a, ,

where a, and a; are arbitrary.

Hence the general transform equations (49,50, 51) take the form,

v gsr (B3 ya, FRg+ (Bl)a, 5 Fg + ma, (1 - )

+ ma,(1-FgS;) +a,,0 =0, - © 130(a)

Vet (mzl)ao F S+ (m;l)a3 555 + a,m(1-35§)

+ omag(1-FgBp + ayB = 0 | 130(b)

%;—;;4' (mzl)aogs';_._ (m+1)aa.§"§3 '

[Ny

- (2m-1) a0 Fg - (2m-1)a, 0 5 = 0 , 130(c)

subjectrto the boundary conditions,

F(0) = F5(0) =0, Fp(=) =1, |
5(0) = 5(0) =0, Gi=) =1, | _ - (131)
0(0) =1, O(x) =0.
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Let now the following substitution be = made

F=af, S =asg, $ = ad, ¥ = 0 along with the assumptions
m+1l, 202 a, - 2m
—_ ) =1, - = an = .
(- 5 ) 3 2, d ) i

Hence equations (130) become,

f¢¢¢ + ffw + C'Sf“ + ﬂ(l—f:) + cp(l—fQSQ) + (2"5) —g'%ﬁ =0 » 132(&) _
. a
- ' . 2 Vi :
Spee * L£5pe * €38y * cB(l-5) + B(1-£,8,) + (2-P) 750 = 0, 132(b)
2
P10, + 0, + csd, + (2-3) [0f, + cs] =0 | 132(c)
subject to the boundarj conditions,
£(0) = £,(0) =0, fu(=) =1,
8(0) = 5,(0) =0, S4(=) =1, (133)
(0} =1, '0(00) =0,
: 2
where 2u . U ,na ﬂ=fﬂ
v o

U a,
here U2 = -gx(ﬁ_g_ﬂ) By (AT 5
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and  Vp = - {a(AT) (aX + DY) fPr.

If c = 0 ==> a3 = 0,then the velocity components are independent of
Y. The equations (132) are similar to the Sparrow, Eichorn and

Gregg {1957)'s equation.

The similarity functions f(¢), and s{(¢), the similarity variable

¢, the velocity component u, v,w, the skin frictions(=%,'s), heat

flux (=qw) and Nuselt number {=Nu) associated with the equations

(132) are
S
v 7.0) = (AT (BRI T £y,

VX Y, ) = (Bore )3 (8XhY)T g4y,

m+1 aK
1
¢=[P*L ap)7 (axfbr) ,
where R, = U;(ax;+:bY) >
u = UJZ,, V'f Ve Sy
T e L= IR R = L

1100



U, = c(aXx + bN)®,  V, = c,(aX + b1)®,

AT « (aX + by)*™}!

S8kin friction are,

t, = p[orl ar1% P £, (0)
" 52 "Te (ax + by) * )
and < =|.|.[m+1.aR,]-; _—f— 3 (.0) .
" 2 (aX + by) "%
. 1 ‘
| hﬂl 3 Re2
= - v s
Heat flux, g, x(AT) ( 3 '?) (2% + B7) 0¢(0)f,
and Nusselt number
m+1 3.3
Nu = - (Z—=.a) 2R, 0,(0) .
2
where B and «x are co-effecient of viscosity and thermal

conductivity of heat respectively.
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CHAPTER 5

The arbitrary surface




CHAPTER 5

The arbitrary surface

In this case, h, and h, are not constants and not equal to zero

In view of equations 54(ii), (55) and condition stated in case D

one obtains

% Y% . constant,
b v,
Ue
AW = 2 (e - a st a -V d
B(X) = Vel (2, - &, - ;f’z ta, - X+ d.

&

where dl and d2 are two integrating constants.

134(a)

134(b)

134 (c)

Substituting A(Y) and B(X) in equations 54(i) and 54(iii), y2 is

found to be

hy _ h . d,h
12=Feaox+-f,~i(a3—a‘-a5+a,-a,)Y.+ L,:
and y2? = —}l'-a3Y+ ﬁ(‘ﬁ‘, -8 —a, ta, - a,)X+ d,h,'
v, U, _ v

comparison of above equations for y3, gives .
a, +a;-a +a =0,
a +a; -a;+a, = 0.
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From equations 52(xi) and Eq. 52(xv)

a N
vV, = KU, ., where Kk = |22, (137(a)

Fram Eq. 134(a) and Eq. (137), it is found that

h, = Kh, ., . where K2 = Constant . | 137(b)

From equation 52(viii) and 54(i),

"_

u, = cl(a;,x+ A(Y));;, . ’ 138{a)
' ]
and V, = c,(a X+ A(N) %, ‘ ‘ 138 (b)

where Cq is constant of integration and €y = CqK;.
Again from 54(i) and 54(iii),

a,X + A(Y)

—_— K, (constant), where =
a3Y+B(X) 3 ) KJ

LIk

: X
Hence it can be written that A(Y) = K3a3Y and B(X) = i% .
Substituting A(Y) and B{(X) in Eq. (138)
U, c, (aX + bY)*®, 139{a)
and V, = c,(aXx + bV)® _ 139(b)
a &,
wh = , = ’ —_— -t = me.
ere a, =a, ak=>b a, a,
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~In view of equation SZ(ii) and Eq. 54(i),

h, = cy(aX + bV)™™
h, = ¢ {aX + by) "™ - | 3 140(a.b,c)
and YZ = ds (ax + bY) n+1-2.n)

a .
where . ¢, = ,K,, _a_lo =n and ¢ = =2 -

Similarity requirementﬁfurnish the relations between cons%ants a's.
These-relétions are |

a; = nag, ag; = 2(m-n)ag, ag = na,, ag = 2(m—n)a5,

ag = 0, a; =ma;, ag =ma;, ag = (n-m)a;, ayg = Klz(n—m) ag.

1 Y
—2-(n m)a,,

ajq = may, aj3 = mag, ajg = (n-mlag, @5 = ©
1

aqq = (3m-n-1)a0, ag = (3m-n—1)a3,

where a, and a; are arbitrary.

Hence the general transfeorm equations (49), (50), (51) take the

form,

(3n - 2m + 1)a, F Fy5 + %(Bn - 2m + 1) a,F53S

X1

VPt
+ ma,(1 - F}) + na,(1 - F5 5)

- Ki(n-m a{1-5) +a,? =0 , 141(a)
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VS35 -%-(3n - 2m + 1) 8,F G55
+ —;-(311 -: 2m +1)a,§§;; + ma, (1 - 5;?)

+ na,(1 - F; 3 - —é‘z-(n -ma,(1 -FF) +ad =0, 141(d)
1 ' .

VR 4, - 7 1 - 57
053 Gn-2me 1)Fb5 + 5 Ba-2m+1)a,5 0

-~ (3m-n-1)a,0 Fy - 3m-n-1)ad0 5 =0 , 141 (c)
subject to the boundary conditions;
F(0) = Fg(0) =0, Fgl=) =1,
5(0) = 55(0) =0, Sp(e) =1, " | (142)

0(0) =1, ¥ () =0 .

Supstituting F=.of, Se=as, $=ap, 0 =0 and

2
assuming (3n - 2m + 1) &% . 1, and % =C.
. o -
The equation (141) takes the form,
2m - 2
Tooo* L Lyg* Clyys + gp—noy (1 - 5y)

3n-2m+1

2nC _ _ 2 n-m a3y
Y Gpmzner) - fesd) -l 2l (S

—_— = 143(a
3n-2m+1 0 0 (a)

Sl%
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2n

. 2 ' .
S(MHD + (f8¢¢ + CSS¢¢) + (m) ( S‘) + -m (1 -f.s.)
2¢c 2 Ve |
- - 25 Y(1-£2) + w2 Eg=0, 143(b)
Kz 311 2m+1 ‘3n—2m+1 Vf

- am-n-1 =
P, 10¢¢ + (fﬁ + csﬁ‘,) '2(m—+—1) (°f¢+c°‘3¢) = 0. 143(c)

The boundary .conditions are,

£(0)

£,0) =0, £(=) =1,
5(0) = 5,(0) =0, Sy(w) =1,. - (144)
8(0) =1, 8(w) =0
where i = EZ’:, ﬁﬁ = _V.;.,
- U; 2 vi
here U2 = -g,(AT) Pph, x characteristic length
and  V: = -g,(AT)P, h, x characteristic length,
where characteristic length = igsiigz.
The similarity variables are,
o = y [Ba= 2m+1) 73
ax+by " Te !
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u, = ¢ lax+ by~

Vv, = c,(aX + bY)”,

- h = cglaX+ bi’_)““’.
h, = c(axXx+ bY)""",..

- AT = (aX + by)2e-m1,

The velocity components are,

U = Uﬂf0' V = Ves¢ !

L _
[ZU;; . ax"fby] 7 [(3n-2m+1) (£f+c8)
1

Wl

w = - (3n+1-—2m)-
- (n+1-2m (£, + ¢5,) ]

The stream functions are,

¥ (X, Y, &) =h2d U,h, (aX+DbY) . (3n —22vm+1) . £($)

a

and (X, ¥, §) =n;%dvehitax+by) : (s—n'—_z-%) . s(d) -
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The skin frictions and heat flux associated with the equations

{143) are
: _1
_ (3n-2m+1) 1% o3 aU,
S = BT 1? R g+ pyy T e (0
1 1
o (3n-2m+1) 3 o3 aV, :
‘th I-I-[ 2}11 ] Ry -'_(ax+ bY) S¢¢(0)r
and heat flux,
' 1
- - (3n-2m+1) 15 o3 ___a
g, x(AT) . [ 2. 1% R, (2% +B7) ¥, (0)

where x is conductivity of

: U
and R, = -2
. v a
If ¢c = 0 => a; = d =) b

independednt of Y.

2m

m. and
+ 1

Again, if n =

heat and p is co-efficient of viscosity

= 0, then the velocity components are

= P then h; and hy, will be constant and

equations 143(a,b,c} are similar to equation (132).
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CHAPTER 6

Result and Discussions:

The .orQinary differential equations 67(a,b,c) were solved
numérically by éwergert iteration technique. The calculations were
‘carried out for several values of Prandtl numbers (Table-3, 4) and
parameter 8 (Table 1 and Table 2). Solutions of equations 67(a,b,c}
subject'to the boundary conditions (Eg.68) were obtained for twenty

positive values of B and in particular forrﬁéo, 0.25, 0.50, 0.75

and 1.00. For _f; =100 and _E; = 100 initial wvalues f£"{(0), s"{0)
R2 R2

and 0/(0) are given in table 1 and'table 2. All twenty cases consi-
defed and the corresponding quantities for 8=0 are also given for
comﬁarison. From the solutions results have been listed in Table 3
and Table 4. The values for f", s" and O/ may be obtained at the
rectangular body surface (¢=0) thch are required in evaluating the
skin~frictions and heat-transfer calculations, where the prihes

denote differentiation with respect to $.

It is often advisable to compare, wherever possible, the results
obtained for two cases and $=0.75 only,

. G : . " .. :
i.e, I ==3 (.10 {natural convection is negligible)

R;
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and -E% -> 100 (forced convection is negligible)
Re

where a1
Ry

The comparison is shown below,

Case {a): ‘ E-{ mcreme? 0.100

R}

In this case components of skin friction factors for the forced

convective flow.

T
% JRex = £"(0) = 1.3315
QUE X
and
T

/]

On the other hand, the expression for the Nusselt numbers (=Nu)
depend on Prandtl number (=Pr), and it is found that

for P, = 0.73, 2L = -9,(0) = 0.9030

I
“rak

NuY = “"'00 (0)

and JR:; , VB

1,0427
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for P 10,

= = '0¢ (0) = 2.2771,

ana  Nur o _ 900 - 2.6294

VRer '

for P = 1000

N
uf = - 9,(0) =10.8392
eX -
and ur _ _ 0,00) 12.5164
VEer
G
Case (b): i ey 100.00
RZ

In the case of the free convection problem it can be shown easily
that,

For, P. = 0.73,

T

= JRx = £7(0) = 22.6893 ,
eUs

T [/

“ Ry~ = (0) . 26.7847
ev2 V' VB
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N,
~E = 2,0532

aX

ang Ner _ 2.0532

. = 2.3709.
B B
For Pr = 10,
"1 _
JFox = 13.8713,
QU: aX
T VFor = 16.0634
aY = . ’
eVi :
Nox - 4.4907
VEox
and Der - 5,1856.
VEer

T

= fRox = 5.3831
aX ¢ ’

QUS

T JFor = 6.1030,

eVe
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~ —= = 15.9776

and —2I = 18.449%9

It is observed from Table (1-4) that there are large variation of
thé skin-frictions and heat transfer rate with the rise buoyancy

effect and any Prandtl number.

Representative velocities and temperature profiles for several

G . ;
values of -_§ are shown in Fig (1-6). It is seen from Fig.1l that

er G:r ° . . . )
for = = 100 and — = 0.100,the u-velocity gradient at the
Rox - Ray
G, ..
wall increases as buoyancy force (—{?) increases. Similarly from
. Rex '
Fig.5 for ;‘ = 100 and Ga' > 0, the v-velocity gradient at the
Rex Roy :

o G .
wall increases as buoyvancy force { —2X) increases.

Rex

This'is”accompanied by an increase in the velocity near the wall,
and for~Pr = (0.7 an overshooting of the velocity beyond its free
stream value occurs. The buoyancy force reduces the velocities and

the velocity gradients at the wall as compared to those for pure

. G . .
forced convection (-—§=0). With regard to the temperature profiles

' R, _ )
(Fig.3,6), the temperature gradient at the wall is seen to increase

as the buoyancy force increases.
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A method was presented for calculating the shear stresses and the

heat transfer in external flow for combined laminar free and forced

- Ui Vi G

convection. The parameter £ = G‘: and — = —-521 are of
u; Rir . Vi Riy
fundamental importance in such problems. Natural convection is
. G G : A , .
negligible as —=f - 0, :r -~ 0 and forced convection has
| Rex Rey
. . : G:x G:Y

little influence as = = @ and —=2 - =

ROZ R'Y

Numericél results are reported in table for the heating of upward
' flow past a rectangular body surface for several Prandtl numbers.
It is found that the mechanisms of forced and free convection are
non additive. Moreover the numerical results for the heating
problem from a body surface indicate, that the transition from a
pure forced to the pure free convection is gradual, especially at
high Prandtle numbers. It is very difficult therefore to draw any
specific conclutions concerning the values of parameters

G,z Gy

—= and
R3r Ry

. It is observed that for the body surface and for

G G . . .
—{g' < 0.1 and —{g < 0.1,free convection is negligible whereas
Rox ' Ray

G, Gr , .
for =% > 1 and 2' y 1 forced convection has little
Rox Ray ’ '
influence.

Experimental data for three dimentional case are not available in

literature to make a comparison with these theoretical predictions.
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TABLE - 1

8 £ (0) s"(0) 2(0)
.00000 1.28151 .63747 ~.72623 .
.05000 1.28375 .68649 -.73637
.10000 1.28620 .73336 -.74700
.15000 1.28887 .77821 -.75807
.20000 1.29172 .82120 -.76949
.25000 1.29475 .86253 -.78117
.30000 11.29793 .90232 -.79306
.35000 1.30125 .94074 ~.80510
..40000 1.30470 .97788 -.81724
.45000 ©1.30827 1.01386 -.82946
.50000 1.31195 1.04878 -.84173
.55000 1.31573 1.08271 -.85401
.60000 1.31960 1.11572 ~.86630
.65000 1.32355 1.14790 -.87858
.70000 1.32759 1.17928 -.89082
.75000 1.33169 1.20993 -.90303
.80000 1.33586 1.23988 -.91519
.85000 1.34009 1.26920 ~.92730
.90000 1.34438 1.29790 -.93935
.95000 1.34871 1.32603 © -.95133

. 1.00000 1.35310 1.35361 -.96324
For m = n =1, Pr .73 and “U_ﬁ_ = E = 0.100
® v




TABLE - 2

B £"(0) s"{0) #/(0)
.00000 24.91593 30.24675 ~1.71825
.05000 24.67527 29.19215 -1.75258
.10000 24.46186 '28.33895 '-1.78338
.15000 24.26708 27.62093 -1.81159
.20000 24.09045 27.00884 -1.83768
.25000 23.92649 26.47300 -1.86209
.30000 23.77310 25.99744 ~-1.88511
.35000 23.62869 25.57058 -1.90695
.40000 23.49202 25.15385 -1.92776
.45000 23.36214 24.83074 -1.94769
.50000 23.23824 24.50620 -1.96682
.55000 23.11968 24.20622 -1.98525
.60000 23.00593 23.92759 -2.00304
.65000 22.89653 23.66766 -2.02025
.70000 22.79110 23.42427 -2.03694
.75000 22.68931 23.19558 ~2.05315
.80000 22.59086 22.98006 -2.06892
.85000 22.49551 22.77638 ~2.08427
.90000 22.40303 22.58344 -2.09925
.95000 22.31323 22.40023 -2.11387

1.00000 22.22593 22.22593 -2.12816
For m = n=1, Pr = .73 and -ze—: = 100

NN
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- TABLE - 3

Pr £"(0) s"{0) 2(0)
.10000 1.34898 1.22900 -.44169
.50000 1.33528 1.21341 -.78423
.70000 1.33198 1.20973 -.88811

1.00000 1.32807 1.20539 -1.01137
5.00000 1.31467 1.19094 -1.79200
7.00000 1.31229 1.18842 -2.01368
10.00000 1.30993 1.18594 -2.27706
100.00000 1.29897 1.17461 -4.98737
1000.00000 1.29194 1.16933 -10.83923

For m =1, 8 = .75 and .EE .EE =100
vV
TABLE - 4

Pr £4¢0) s" (0) 8/(0)
.10000 29.80584 31.01480 -1.00145
.50000 24.04605 24.65360 -1.80924
.70000 22.82095 23.33331 -2.02514

1.00000 21.51700 21.93623 -2.27406
5.00000 15.98244 16.10094 -3.69433
7.00000 14.96159 15.04165 -4.06831
©10.00000 13.87129 13.91091 -4.49069
100.00000 8.67774 8.61242 -8.50366
1000.00000 5.38310 5.28520 -15.97760
For m = n =1, .75 and = = 100

-U:
W
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Fig.1 Represénta.tive velocity profiles of u-component for differ-
ent values of TU,}; for the equation (67).
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Fig.2 Representative velocity profiles of v-component for differ-
2
ent values of %4} for the equation (67).
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Fig.? Representative Temperature profiles for different values
of %‘;1 for the equation (67).
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Fig.4 Representative velocity profiles of u-compeonent for differ-
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ent values of 75 for the equation (67).
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Fig.5 Representative velocity profiles of v-component for differ-
3
ent values of %% for the equation (67).
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SIMILARITY CASES

IN TABULAR FORM

CASES Ue Ve h1 h2 AT Similarity
: _ Variables ¢
. f m,, n-1 m-1, n 2n-1,,2n-2
: —R,x or —( )
X Y, B
.. mX., N-1 mX%., N 2mX., 2n-1
A(ii) Ce77Yy Cye Yy 1 1 ey, Z  nel, 4 E
?;( 2 } Refi
n_mY n-1_mY 2n~-1_2mY N
A(iii) CiXq'e CoXq" e 1 1 X1 e _§_(n+1)'%R'5
X, 2 *h
A(iv) A e(NX+nY) B e(mx"'nY) 1 1 eZ(mX'HlY) ' 1
z| B RrR2
\ 2x" 7
. m n 2n-1
B(i) C1Y1 C2Y1 1 1 Y1 z _;
) IR.r
Y,/2-B
B(ii) c e c, e 1 1 e2n¥ — 1
n .z
Z'\ Z_f'RBY




SIMILARITY CASES IN TABULAR

FORM
CASES Uy Vo hq hy AT Similarity
‘Variables ¢
C - I'II Il - . .
(i) CoXq C1Xq 1 1 (Xl) 2m-1 | i( 1 )_; R%
X 2-P oX
C(ii) Cle"Ix ' Czenx 1 1 o 2 — 1
z 2= R
D |ciax+bV)™ | Colax+by) D 1 1 (ax+by) 21 el 1 2
: ,aR)?* | (—=—
| (e aR) * (T
C1(aX+bY)™ | co(aX+bY) ™ | C4(aX+bY)™™ | C4(ax+by) ™ x+by) 21 —— 1
1(a )7 Cal ) 3{a ) gla ) (a or) (_az )J Gozml) o3
. a
(ax+by) Il ax+by 2h,
where X1=X+Xo, Y1=Y+YO.
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