EQUIVALENT POTENTIÅ FOR AALPHA-

DEUTERON MODEL OF ${ }^{6} \mathrm{Li}$

BY
MD. abdul maleque.

The thesis titled "Equivalent potential for alpha-deuteron model of ${ }^{6}$ Li " submitted by Md. Abdul Maleque, Roll no. 8604 !. Registration no. 85064 of M.Phil. (Mathematics) has been. accepted as satisfactory in partial fulfilment for the Degree master of Philosophy (Mathematics).

BOARD OF EXAMINERS

Member
Head, Dept. of Math. BUET, Dhaka.

3: Mdollah
Dr-akerimiah
Professor, ilept. of Math.
BUET , Dhalre

Member
Associate Pbofessor Dept. of Math. BUET , Dhaka.
5. Hazra faru

Merber
Dr.Hassa Banu (External).
Professor
Dept. of Math.
D.U., Dhaka.

ACKNOWI EIDGEMENTIS

I would like to express wy sincerest gratitude and indebtedness to Dr.syed Ali Afzal, Professor, Department of Mathematics, BUET for his invaluable suggestion, constant inspiration, careful supervision and helpful adviee throughout this regearch work.

I am indebted to all my colleagues, especially $D r$. Md. Zakerullah, Professor and Md. Ali Ashraf, Associate Professor, Department of Mathematics, BUET for their valuable suggestion and encouragement throughout this work.

I am also grateful to Md. Amanullah, gcieutific officer, Atomic energy ceuter, Dhaka who helped me much in procuring many Journals from Atomic energy center library.

Finally thanks to Md. Sohrabuddin aud Ma. Hossain ali for typing this thesis.

ARSTRACT

We have presented the formalism of $a+d$ cluster model of ${ }^{\text {E }} \mathrm{L}$ following resonating group method. In this procedure, a non-local, non-separable Kernel $\boldsymbol{K}\left(\boldsymbol{r}_{r} \boldsymbol{r}^{i}\right)$ appears. The appearance of this kernel broady involves: First, the calculation of analytical expression of the Kernel, Second, solving the integro-differential equation containing kernel by numerical method.

In the first the calculation of the kernel involves huge (complicated) work. In the present work we have shown the formalism in a bit detail deliberately only to show how big and laborious the calculation are for six-nucleon system of ${ }^{\text {fifi, not }}$ to speak of higher nuclei. That is why although the resonating group formalism has been in applicetion for a long time and the results obtained are good, the detailed work Pollowing this method hardly passes the nuclei of $15-20$ nucleons.

In our present study we have replaced the non-local nonseparable kernel by a simple non-local separable kernel keeping the other terms namely direct poteutial part and coulomb part as obtained from the resonating $\underset{\text { grapl }}{ }$ method into
account. The results obtained agree weli with the experimental results.This shows that resonating group formalism can be extended to any righer mass number in a modified way.

CORFIENTH

PagE No.ABSTRACT
ACKHOWLEDGEMENTS
CHAPFER ONE : INTRODUCTION 1
CHAPLER TWO : ALPHA-DFUTERON YODEL OF ${ }^{6}$ Li 8
CHAPTER THREE : MATHEHATICAL FORMULATION
3.1 DEFPERENTEAL EGUATION 13
3.2 THE HAVE FUNCTION AND THE
DETAILED CALCULATION 16
CHAPTER FOUR : PRESENT NORKS 31
OHAPTER FIVE : NUMERICAL CALCULATION 35
CHAFTER SIX : RESULTS AND CDNCLUSIONS 41
FIGURE-1 44
FIGURE-2 45
8TGURE-3 46
REFRRENCES 47

Numerous experimental observations and theoretical calculations have confirmed that the nucleus is built up of protons an neutrons. One of our main pursuits in nuclear physics is to understand the nature of the force that holds the protons and neutrons together. Experimental investigations have shown that the nuclei exhibit varieties of complex phenomena. For an expianation of these phenomena different types of nuclear models have been proposed. Some of them are liquid drop model, zompound nucleus model, shell model, alpha particle model, cluster model and resonating ornuin model etc.

The liquid Irop model is perhaps the simplest ei all nuclear models. This model was proposed by Bohr and Caiker who compares the nucleus tu a liquid drop, the nucleona corresponding to the molacules of the liquid due to several points of similarity. This model has been utilized with a certain amount of success in the interpretation of intra-nuctear forces and of nuctear transformations and in particular of nuclear fission.

The compound nueleus mode1 was proposed by Bohr. This was
specifically introduced to describe the complexity shown by the energy spectra of many medium-heavy and heary nuclei. It was based on the belief that, since nucleons in nuclei interact strongly with one another, their motion must be correlated to a very large extent.

The possibility that atomic nuclei might exhibit sheIl structure was considered in the early $1930^{\prime} \mathrm{s}$ but the real success of the shell nodel dates from the year 1948. The basic assumption of the shell model of the nucleus is that a single nucleon travels within a complex nucleus in a smoothiy varying average field of force generated by all the other nucleons in the nucleus and that each pariticle moves essentially undisturbed in its own closed orbit. In the shell model the nuclear potential is taken as static and spherically symmetric and it generates a complete orthonormal set of single particle functions $\boldsymbol{F}^{*}\left(r_{1}\right)$ where the r_{i} indicates the position, scin and charge variables of nuclecns and v_{i} denotes the quantum numbers of the state. Any function obeyins the same boundary conditions as theze eigenfunctions can be uniquely expressed as a Linear combination of them. This model has been successfully applied to explain many nuclear phenomena but is not true for many other properties.

Wheeler et. al have proposed the alpha-particle model, according to which the nucleus contains alpha-particle at least as substructures alhough they cannot maintain their
identity for a very long time inside the condensed nuclear matter, but will dissolve into mare elementary partickes. The two protons and two neutrons which make up an alpha-particle can go into the same spatial state with the four different spin-charge combinations piplaial without violating the Pauli exclusion principle. The wave function of the nucleons will thus overlap completely, giving rise to a large binding enerry. The basic assumption of the alpha-particle sodel is that alpha-particles can be regarded as stable subunits of nuclei. At the very least this requires that there is a pronounced clustering of nucleans alose together in such subunits i.e. there is a large probability of finding a group of nucleons close together and well separated from other such groups. The first and the most obvious success of the alphapartiele model is in the predzetion of the binding energies of nuclei which can be formed out of an integral number of alpha-particles.

Yt has been known that there are certain properties of nuclei which suggest that nucleons tend to cluster in groups within a nucleus. This means that the binding forces between nueleons in the group have more effect than the binding forces between these nucleons and the other ones in the nucleus. The basic assumption of the cluster wodel is that the mucleons in the nucleus form a group of cluster among them instead of independent entity of each nucleon.

The resonating group model was proposed in 1937 by

Wheeler [1] which suggests that the meutrons and protons in whe nucleus as teirg dividきs into various groups which do not maintain their identity forever but undergo continual changes, redistributing thenselves into new groups. It treats correctly the motion of the sotal center of mass. The wave function of the composite nueleus is written as a totally antisymmetrized combination of the wave functions for the various possible groups nucleons. In the rescnating group method one obtains for the relative motion of two groups an integral equation in which appears an interaction generated from two-nucleon forces. Itils consists of two parts - a direct part which invoives no partic?e exchange cetween the two groups and gnobiter part appearing in the form of a non-local nonseparable kernel interaction containing terms cortesponding to the Excharge of cne, two. or ircre nucieons tetween the groups, Resonating group method was empioyed sy wiidermuth [2] Van der sply[今], Okai arí Fark i4] are Thempson and Tang [5,6] to study the problems of nuclear scattering and reaction for the
 agreed generally guite well with the experiment. All these casss deal with licht nucfei, because of computational difiticulties, in particular in handing the non-tocal, nonseparable, large size Kermel.

Tine nuciear ciuster structure was also described by Margenat [7]. Tinis oluster structure was extended by Bloch and Erim [ij who formuiated the so-caitied alpna-cluster model
through the usp gi narmonic oscillater shell model uave function. The properties of nuclei such as ${ }^{14} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne}$ etc. have been investigated $[9,10,11,12]$ by utilizing alphacluster model. This alpha-cluster model has been further extended by Hill-Griffin Wheeler [13,14] by introducing generator coordinate method which is equivalent to the resonating group method. The purpose of these extensions was the dynamic description of clustering phenowena in muckei. With this method it is possible ta study nuclear bound state structures, scattering phenomena and reaction problems.

The formation of the microscopic cluster theory was described by wilderauth [15] which is based on a variational principle, with the Hilbert space spanned by a set of nonorthogonal basis wave functions. Microscopic eluster theory has certain :mportant characteristics which distinguish itself from other rathods. These characteristics are:

It utilizes a N-N potential which explains the two-nucleon low energy acattering data.

It treats correctly the motion of the total center of masa. It considers nuclear boundstate, scattering and reaction problems from a unified point of view.

It car be used to study cases where the particles involved in the incoming and outgoing channels are arbitrary composite nuclei.

The formalation of the microscopic cluster theory has been determined ly the resonating group method or by generator
coordinate method. These two methods are equivalent but"may not be the same. They are founded on exactiy the same physical viewpoint but only difference between the choice of set of non-orthogonal basis wave functions. The mierosoopic cluster theory has been found to be successful in the case of light nuclei. Because of above features, the calculations are generally not so easy to perform, In spite of this, many calculations have been performed by using resonating group method and generator coordinate method. The elastio scattering of various nuclei has been studied by Kanimura \{16] and Thompson and Tang \{17\} with single-channel resoanting group method formulation. And aiso sesttering has been studied by Fujiwara $[18]$ by using generator coordinate method, These resultg were in good agreement with experimental findings.

In the earlier studies the resonating group method matrix elements are computed by the so-calied eluster coordinate technique $\ddagger 15]$. But this ícinnique was a laborious procedure. Because of computational difeiculties, the eluster coordinate technique has been replaced by another technique; the complex-generator coordinate technique [15]. This technique is especially useful far reactiou calculation.

The orthogonality condition method was proposed by Saito [19] which avoids the derivation of the complicated Kernel function that appears in the effects of the pauli principie. Siuce then, it has been extensively applied to treat especially multi-cluster structure problems, where a
straightforward appication of the resonating group method approach would be quite difficult.

Like Saito in our present study we are also trying to avotd the involvement of the kernel by another way. We know that, when two body fundamental $\mathrm{N}-\mathrm{N}$ interaction is employed to generate resonating group model calculation, then a non-local non-separable kernel expression appears in the calculation. As this expression is non-local in character it is not easy to handle. Furthermore the terms become lengthy and complicated. Moreover for higher nuclei the calculation of this expression is troublesome. So it is necessery to devise way to include the effect of the non-local kernel and at the same time it is possible to handle the calculation for higher nuclei. Keeping this in mind we shall try to replace the non-local potential term by a simple term in our calculation, although the direct interaction terms (nuclear and coliomb) obtained firm the resonating group consideration is fully taken into account.

CHAPTER TWO

ALPHA-DEUTTEFON MODEL OE ${ }^{6}$ Li

The nucleus of ${ }^{\text {E }}$ Li contains three protons and three neutrons. Inside the nucleus the nucheons behave difyerently sometimes like independent particles and sometimes collectively. The famous shell model is based on the independent particle concept. It is also well known that there are certain properties of nuclei which suggest that the nucleons tend to cluster structnre within a nucleus. The pattern of cluster structure which is preferred depends on the form and strength of the interaction forees, the type of nucleus and excitation jevels of this nucleus. From the experimental observation we know that the nuclear force between two nucleons acts in a short range (2fal and this force is strongly attractive within this range but at a very short distance $\{0.5 \mathrm{fm}$) it becones strongly repulsive. The effect of Pauli's exclusion principle in a system of nuclear dimension is to allow low energy nucleons to move relatively undisturbed throughout the nuclear volume, because these nucleons may not be scattered into other already occupied energy levels.

The nucleons move oompletely correlated with nne anather, otherwige they will be outside the range of each other's attractive forces and there will be little mutual potential energy among them. Alpha particle consists of two protons and two neutrons. Theae four nucleons can ocoupy the lowest level position to the maximum. It means that the alpha particle is a very stable nucleus. So we should expect that the four of the six nucleons of ${ }^{6}$ Li are to correlate as an alpha-cluster. Next comes what happens when two or more nucleons are added to the strongly tight alpha particle. The fact that ${ }^{5} \mathrm{He}$ and ${ }^{5}$ bi are not stable implies that one nucleon will not be bound with the first closed shell of nucleons, Hence there can be two assumptions consistent with the facts: i) That a proton and neutron simultaneously joining alphacluster leads to the destruction of the alpharoluster and the formation of a complex system of six nucleons.
ii) an alpha-cluster is not destroy'ed in forming the nucleus of ${ }^{\text {fix }}$ and binds effectively not with each nucleon but with a system of $\underset{\sim}{\text { a }}$ proton and a nentron as a whole. In the first. case the nucleus of ${ }^{\text {b }}$ Li consisting of gix independent particles is studied from the stand point of sheil model theory. And in the second case se can say that the proton and neutron above the closed shell of the nuclens of ${ }^{\text {b }}$ Li mugt form a bound system. If they are not bound system, then these nucleans will be independent which igplies that the formation of ${ }^{6}$ Li nucieus is impossible. This contradiets the
existence of stable nucleus of ${ }^{-\quad}$ Li. Hence the proton and the neutron in this nucleus are not independent but are correlated stroagly with each other forming a deuteron cluster. Thus the lowest states of ${ }^{5}$ Li can be described as a system of alpha and deuteron clusters. In the $a+d$ structure, the two dusters are bound together by only 1.47 MeV , which means that they are on the average rather far apart and behave more or less like free particles. Now we shall study the ${ }^{6}$ Li nucleus as a cluster of alpha and deuteron particles.

Two distinct approaches are generally pursued in case of employing the alpho-deuteron cluster model. In one case antisymmetrization effect is assumed to ba negligable. Main argument in faver of this assumption is that as the cluster binding energy between alpha and deuteron is small, both the particles move rather freely inside the ${ }^{6}$ Li nucleus. As a result there is no appreciable effect of exchange force between thear so that the exchange ferms between the two clusters have little overlapping with the direct potential term. Purther there is an argument that the $a+a$ mode $=$ of ${ }^{6} \mathrm{Lj}$. has a meaning only and only when there is clearly expressed isolation of the alpha particle and the deuteron. On the other side those who take antisymmetrization effect into account have the argument in their favor that although the alpha deuteron relative energy is small but it is not that small for the two olusters in 'Li so that they may be treated as free particles. Since the generalized cluster model is the
generalization of shell model such that in the limiting case both are same. As such the cluster model should naturally incorporate appropriate antisymatrisation effect which 15 so vitally important in the case of shell model studies. Along this line many warks have been done in the alpha-deuteron cluster model by the different authors $[33,34,4]$.

The experimental calculation for the phase shifts of a+d scattering was performed by different groups, e.g. Senhouse and Tombrello [20] in the energy range of 2.9 to 11.5 Mev. Another experiment was performed by MoIntyre and Haeberli [22\} in the energy range of 2 to 10 Mev . In these two groups studies the value of S and D wave phase shifts are quite similar in he energy range of 2 to 6.7 Mev . but the value of the p-wave phase shifts are very different. Thus while the P wave phase shifts of Senhouse 120 \} are small and show no such behavior. Darriulat and his coilaborators [42$]$ extended the experimental measurement of phase shifts for a+d system from 10 to 2 F NeV .

The elastic acattering of deuteron by alpha-partiale has been studied by Thompson and Tang [5] with the resonating group method in one channel approximation. In that study the calculation was simplified by introducing the assumption that the deuteron cluster can be described by single Gausaian function and obtained good fitting to the a+d phage shifts \{20,21,22]. In a subsequent study $[6]$ the same authors introduced more representative wave function which can be
described $b y$ sum of two Gaussian functions for deuteron maxnly to clear up the ambiguities faced eariier to large ratio of Serber force. Wildermuth and his eollaborators [23] calculated the $a+d$ s-wave phase shift by introducing distortion effect in the deateron wave function and obtained good result. Thompson and Tang [24] calculated distortion effects in $a+d$ system by using microscopic procedure and obtained good fitting to the $a+d$ phase shifts $\{20,21,22]$. Kanada et.al studied the $a+d$ scattering system with multichannel resonating group wethod. They have used the multichannei resonating group R-matrix theors together with a variational method and obtained good result to the experiment. In the next chapter we shell describe in detail the mathematical formalism which is pursued in the calculation of alpha-deuteron model of ${ }^{\text {B }} \mathrm{L}$ in the resonating group formalism.

OHAPTER THREE MATHEMATICAL FORMULAATION

3.1 Differential Equation

${ }^{6}$ Li nucleus consists of six nucleons - three neutrons and three protons. We shad consider that they can be divided into alpha-cluster $\{a$-elustert and deuteron-cluster \{tcluster). Let the nuclenns $1,2,3, f$ form the struoture of an a-particle and 5,6 that of a deuteron where $1, a^{5}$ are neutrons and 3,4,6 are protons.

Starting with the Hamiltonlan

$$
\begin{equation*}
H=T+Y \tag{3.1.1}
\end{equation*}
$$

where the kinetio energy T and the jotential enargy V are respectıvaly.

$$
\begin{equation*}
T=-\frac{5^{2}}{2 M} \sum_{i=1}^{6} \nabla_{i}^{2} \tag{2.1.2}
\end{equation*}
$$

and

$$
v=\sum_{i=j}^{\vdots} v(i j)
$$

Nuckeon-Nıoseon interaction Vis.j is given by

$$
V(i j)=\left\{\omega+m F_{x}(i j)+b P_{0}(i j)+h F(i j)\right\} V(i j)
$$

shere ω, m, b, zre coeffiojents of wigner, Majorana, Bartieft and Heısanberz exphange operators respectively satiafying the relation.

$$
\omega+\pi+b+h=1
$$

and
$\omega+\Delta-b-h=0.63$
the operators Px(ij), $P_{\sigma}(1 j)$ bejng the space and spin exchange operators for ith and j th particles. The operator tidil $1 s$ the Heisanberg exchange operator, exchanging both space and spin coordinates of particles i and j and $v(i j)$ the common radial dependence of the eentral exchangs type Nucleon-Nuoleon force.

Thr six-body Schrodinger equation is

$$
\begin{align*}
& H \Psi=E \Psi \\
& \text { or. }\left[-\frac{\hbar^{2}}{2 M} \sum_{I=1}^{6} \nabla_{1}^{2}+\sum_{i<j=1}^{6} V(i j)\right] \Psi=E T \tag{3.1.6}
\end{align*}
$$

where Ψ is the total have function of the six particle system. We define independent internal coordinates ρ_{F}, the relative coordinate r and the center of mass coordinate R_{f}
in the following way:

$$
\begin{align*}
& \vec{p}_{1}=\vec{r}_{1}-\bar{I}_{2} \\
& \vec{p}_{2}=\vec{I}_{3}-\frac{\vec{I}_{2}+\vec{I}_{3}}{2} \\
& \vec{F}_{3}=\vec{I}_{4}-\frac{\vec{I}_{1}+\vec{r}_{2}+\vec{I}_{3}}{3} \\
& \vec{\rho}=\vec{I}_{5}-\vec{r}_{6} \\
& \vec{r}=\frac{\vec{I}_{2}+\vec{I}_{2}+\vec{r}_{3}+\vec{I}_{4}}{4}-\frac{\vec{r}_{6}+\vec{I}_{4}}{2} \\
& \vec{R}_{c}=\frac{\vec{r}_{1}+\vec{r}_{2}+\vec{r}_{1}+\vec{I}_{6}+\vec{I}_{5}+\vec{I}_{6}}{6} \tag{3.1,7}
\end{align*}
$$

By using these relations, the kinetic energy part of Hamiltonian H can be written as

$$
-\frac{\hbar^{1}}{2 M} \sum_{1=1}^{6} \nabla_{1}^{a}=-\frac{\hbar^{2}}{2 M}\left[2 \nabla_{p_{1}}^{2}+\frac{3}{2} \nabla_{p_{2}}^{2}+\frac{4}{3}+\nabla_{B}^{2}+2 \nabla_{p}^{a}+\frac{3}{4} \nabla_{r}^{a}+\frac{1}{6} \nabla_{R_{2}}^{2}\right]
$$

We are not interested in the center of mass motion whict generally gives rise to spurious state. So the kinetic energy of the c, n motion $\nabla_{R_{e}}^{2}$ is neglected. Then the Schrodinger equation for six particles becomes

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 M}\left\{2 \nabla_{p_{2}}^{a}+\frac{3}{2} \nabla_{p_{2}}^{a}+\frac{4}{3} \nabla_{p_{s}}^{a}+2 \nabla_{p}+\frac{3}{4} \nabla_{x}^{a}\right\}+\sum_{1<j} V(i j)\right] \Psi=\Delta T \tag{3.1.8}
\end{equation*}
$$

$$
\begin{equation*}
\text { or. }\left[-\frac{B^{i}}{M}\left(T_{a}+T_{a}\right)-\frac{3 \Delta^{2}}{8 M} \nabla_{x}^{0}-B+\sum_{i \neq j=1}^{6} V(1 j)\right] \Psi=0 \tag{3.1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{F_{k}}=\nabla_{\rho_{2}}^{0}+\frac{3}{4} \nabla_{p_{2}}^{\infty}+\frac{2}{3} \nabla_{\rho_{5}}^{\infty} \tag{3.1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{a}=\nabla_{t}^{a} \tag{3.1.11}
\end{equation*}
$$

are kinetic energy operator in the $c . m$ system of a-cluster and d-cluster respectively.
3.2 The wave function and the detailed calculation:

Following the resonating group formalism the overall antisymmetrized wave function $\boldsymbol{\Psi}$ for six-nucleon system may be written as,

$$
\begin{equation*}
\Psi \quad A\left[\Psi_{s}(12,34) \Psi_{d}(56) F(I)\right] \tag{3.2.1}
\end{equation*}
$$

Hhere A is an antisymmetrization operator and is given by

$$
\begin{equation*}
A=\{1-H(15)-H(25)][1-f(36)-H(46)] \tag{3.2.2}
\end{equation*}
$$

Here $H(i j)$ is the Heisenberg exchange operator, exchanging both space and spin coordinates of particles i and j. Then $\Psi_{e}(12,34)$ is the internal wave functions of the a-particles and have the from

$$
\Psi_{s}(12,34)=X(12,34) \phi_{\varepsilon}(12,34)
$$

where $x(12,31)$ is the antisymimetic spin part and $\boldsymbol{m}_{4}(12,34)$ the syirinetric space part of \boldsymbol{T}_{*}

$$
x(12,34)=\frac{1}{2}[\alpha(1) \beta(2)-\beta(1) \alpha(2)][\alpha(3) \beta(4)-\beta(3) \in(4)]
$$

is the spin wave function fith a, β corresponding to np and down spin respectively. gimilarly,

$$
\Psi_{d}(56)=x\{56) \phi_{d}(56\}
$$

is the 1 nternal wave function of the d-cluster, $F(\bar{F})$ deseribes the relative motion of alpha cluster and deuteron eluster. From the eqnations (3.2.1) and (3.2.2) the wave function P can be rewritten as

$$
\begin{align*}
\Psi= & \Psi_{4} \Psi_{q} F(\vec{I})+[-H(15)-H(25)-H(36)-H(46)+\{H(15) \\
& +H(25) H H(36)+H(46) \ \Psi_{.} \Psi_{a} F(\vec{I})
\end{align*}
$$

Since 1,2 ard 5 are neutrons, the evohantes operators H(15) and H(25) effectively represent the same operation and 3, 4 and 8 are protons exchange operators $4(36)$ and $H\{46\}$ effectively represent the same operation. Hence one operator can be replaced by the other. i.e the operators $H(25)$ and $H\{46$ can be replaced by $H(15)$ and $H(36)$ respectively. The equation (3.2.3) becomes,

$$
\begin{align*}
\Psi= & \Psi_{a} F(\vec{y})+[-2 H(15)-2 H(36) \\
& +1 H(15) H(36)] \Psi_{c} \Psi_{G}(\vec{I}) \tag{3,2,4}
\end{align*}
$$

To otiain an equation for the relative wave function $F(I)$, the nucleon coordinates must be integrated out. Thus (3.1.9) is multiplied by $\Psi^{*} \Psi_{d}^{*}$ and integrating over the space and spin variables of alpha and deuteron particles, we get

$$
\begin{equation*}
\int \Psi_{\varepsilon}^{*} \Psi_{d}^{*}\left[-\frac{\hbar^{2}}{M}\left(T_{a}+T_{d}\right)-\frac{3 n^{2}}{\theta M} \nabla_{I}^{2}+\sum V(i j)-E\right] \Psi d T=0 \tag{3.2!5}
\end{equation*}
$$

twhere dT is a differential volume element in the combined space and spin coordinates of aipha and deuteron partioles.)

$$
\begin{align*}
& \text { or, } \int \Psi_{a}^{*} \Psi_{d}^{*}\left[-\frac{\hbar^{2}}{H}\left(T_{a}+T_{d}\right)-\frac{3}{8} \frac{\hbar^{2}}{M} \nabla_{z}^{2}-E_{z}-E_{d}-\left(E-E_{a}-E_{d}\right)\right. \\
& \left.+\sum_{1234} V(i j)+\sum_{56} V(i j)+\sum_{1234,56} V(i j)\right] \Psi d T=0
\end{align*}
$$

where E_{e} and F_{d} are binding energy of alpha and d-cluster: respectively. Combining equations \{ 3.2 .4) and \{3.2.6) we set,

$$
\left.\sum_{1.5} V(i j)=\sum_{1234} V(i j)+\sum_{56} V(f j)+\sum_{1234,56} V(i j)\right]
$$

$$
\begin{aligned}
& \int \Psi_{E}^{*} \Psi_{d}^{*}\left[-\frac{\Lambda^{2}}{M}\left(T_{a}+T_{d}\right)-\frac{3}{8} \frac{\Lambda^{2}}{M} \nabla_{r}^{2}-E_{a}-E_{d}-\left(E-E_{-}-E_{d}\right\rangle+\sum_{i=l_{1}, 6} V(i j)\right] \\
& \Psi_{\&} \Psi_{f} F(\mathcal{I}) d T+\int \Psi_{i}^{*} T_{d}^{*}\left[-\frac{\hbar^{2}}{M}\left(T_{\sigma}+T_{\theta}\right)-\frac{3}{8} \frac{\hbar^{2}}{M} \nabla_{I}^{a}-E^{+} \sum_{i=1 . .6} V(i f)\right] \\
& {[-2 H(15)-2 H(36)+4 H(15) H(36)] \Psi_{A} \Psi_{\alpha} F\left(I^{\prime}\right) d F=0}
\end{aligned}
$$

$$
\begin{align*}
& \text { or. } \int \Psi_{*}^{*} \Psi_{d}^{*}\left[-\frac{\hbar^{*}}{N} T_{*}-E_{a}+\sum_{1234} V(1 f)\right] \Psi_{*} \Psi_{a} P\left(\mathcal{D}^{\prime}\right) d T \\
& +\int \Psi: \Psi_{d}^{*}\left[-\frac{\hbar^{2}}{M} T_{d}-E_{d}+\sum_{56} V(i f)\right] \Psi_{a} \Psi_{a} F(\bar{I}) d T \\
& +\int \Psi_{e}^{*} \Psi_{d}^{\prime}\left[-\frac{3}{8} \frac{\dot{E}^{2}}{M^{2}} \nabla_{x}^{2}-\left(E-E_{d}-E_{d}\right)\right] \Psi_{s} \Psi_{d} F(\vec{Z}) d T \\
& +\int \Psi_{i}^{*} \Psi_{i 2}^{*} \sum_{54,56} V(i j) \Psi_{*} \Psi_{\sigma} F(\vec{x}) d T \\
& +\int \Psi_{a}^{*} \Psi_{d}^{*}\left[-\frac{\hbar^{2}}{M}\left(T_{n}+T_{d}\right)-\frac{3}{9} \frac{\frac{X}{2}_{2}^{M}}{M} \nabla_{r}^{2}-B_{+}{ }_{12 \ldots 6} V(i j)\right] \\
& {[-2 H(15)-2 H(36)+4 H(15) H(36)] \Psi_{A} \Psi_{j} \vec{F}(\vec{Z}) d T=0} \tag{3.2.7}
\end{align*}
$$

Then the variational alpha and deuteron equations are respectively

$$
\begin{align*}
& \int \Psi_{*}^{*}\left\{-\frac{\hbar^{2}}{M} T_{a}-E_{a}+\sum_{i 234} V(i j)\right\} \Psi_{a} d T=0 \tag{3.2,8}\\
& \int \Psi_{d}^{*}\left[-\frac{n^{2}}{M} T_{s}-E_{d}+\sum_{56} V(j j)\right] \Psi_{d} d T=0
\end{align*}
$$

From equations (3.2.7), (3.2.8) and (3.2.9) we get

$$
\left[-\frac{3}{8} \frac{n^{2}}{M} \nabla_{r}^{a}+E-E_{r}-E_{d}\right] F(\vec{I})=\int \Psi_{n}^{*} F_{d}^{*}\left[-\frac{B^{2}}{M}\left(T_{k}+T_{d}\right)-\frac{3}{8} \frac{\hbar^{2}}{M} \nabla_{r}^{*}-E\right]
$$

$$
\begin{align*}
& \left.+\int \Psi_{4}^{*} \Psi_{d}^{*} \sum_{I, .6} V(i j)\right][-2 H(15)-2 H(36) \\
& +4 H(15) H(36)) \Psi_{n} \Psi_{d} F(\vec{I}) d T+\int \Psi_{d}^{*} \Psi_{d}^{*} \Gamma_{1234,56} \\
& V(1 j)] \Psi_{*} \Psi_{\alpha} P(\vec{y}) \pi T \tag{3,2,10}
\end{align*}
$$

After finding the value of spin operator, the equation (3.2.10) becomea,

$$
\begin{aligned}
& {\left[\frac{3}{8} \frac{\hbar^{2}}{M} \nabla_{*}^{q}+E-E_{d}-E_{d}\right] P(F)-\int \Phi_{s}^{*} \Phi_{d}^{*}\left[-\frac{\hbar^{2}}{M}\left(T_{d}+T_{d}\right)\right.} \\
& \left.-\frac{3}{8} \frac{n^{2}}{H} \nabla_{x}-E\right]\left[-2 P_{x}(15)+F_{x}(15) P_{x}(36)\right] \Phi_{x} \Phi_{d} F(\mathcal{I}) d P \\
& \left.+\Psi^{\prime} \Psi_{d}^{*} C_{1234,56} V(1 y)\right][-4 H(15)+4 H(15) H(36)]
\end{aligned}
$$

where $d P$ is differential volume element in the space coordinates of alpha and deuteron particles.Also we consider that the exchange effect between two protons and two neutrons is same and hence one can be replaced by the other. In that case

$$
\begin{gather*}
V=\int \Psi_{\pi}^{*} \Psi_{d}^{*}\left\{\left[\sum_{i<j=1} V(1 f)\right][-4 M(15)+4 M(15) H(36)]\right. \\
\left.\left.\Psi_{a} \Psi_{\sigma} F(\vec{y})+\sum_{12} \sum_{\overline{4} .56} V(i j)\right] \Psi_{*} \Psi_{\sigma} F(\vec{y})\right\} d T \tag{3.2.12}
\end{gather*}
$$

From equation (3.1.4) and (3.2.12) we get

$$
\text { or, } V-V_{0} \int_{*}^{*} \Psi_{a}^{*}\left\{\sum _ { i \langle j = 1 } v (1 f) \left[\left\{\omega+b P_{d}(f j)\right\}+\left\{\pi+h P_{g}(i j)\right\}\right.\right.
$$

$$
\left.P_{x}(i j)\right][-4 F(15)+4 H(15) H(36)] \Psi_{4} \Psi_{\sigma} F(\vec{P})+8 v(15)
$$

$$
\left.\left[\omega+m P_{x}(15)+b P_{s}(25)+h P_{x}(15) P_{s}(15)\right] \Psi_{d} F_{\sigma} F(\vec{y})\right\} d T
$$

Integrating over the spin variables of alpha ani deuteron particies and gimplifying we obtain

$$
\begin{align*}
& V=-2 V_{0}(4 \omega-2 \pi+2 b-2 h) \int \Phi_{d}^{*} \Phi_{d}^{*} V(15) \Phi_{d} \Phi_{\sigma} F(\vec{Z}) d F \\
& +V_{0} \int \Phi_{s}^{*} \Phi_{d}^{\prime}[-6(\omega+m) v(12)+2(4 m+5 h-2 b-\omega) v(15) \\
& -2(\omega+m+b+h) v(16)-6(\omega+m) v(23)+2(2 m-b-3 \omega) \\
& v(26)-6(\omega+m) v(25)-2\{\omega+m+b+h\rangle v(56\}] P_{x}(15) \\
& \Phi_{s} \Phi_{\sigma} F(\bar{F}) d F+V_{0} \int \Phi_{s}^{*} \Phi_{d}^{*}[2(2 \omega+2 m-b-h) v(12)+ \\
& (\omega+m+b+h) v(13)+2(\omega-3 m-b+2 b) v(15)+2(b+\omega) \\
& \left.v(16)+\left(\omega+b+(2 \pi+h) v(2 a)+\omega-3 a-b+{ }_{2} b\right) v(56)\right] \\
& P_{\mathbf{I}}(15) P_{x}(36) \Phi_{*} \Phi_{d} F(\vec{I}) d P \tag{3,2.13}
\end{align*}
$$

$$
\begin{aligned}
& V_{=} V_{0} \int \Psi_{a}^{*} \Psi_{a}^{*}\left(\sum_{i<j=1}\left[\omega+m P_{x}(i j)+b P_{s}(1 j)+b P_{x}(j f) P_{\sigma}(i f)\right]\right. \\
& {[-4 H(15)+4 H(15) H(36)] v(i j) \Psi_{4} \Psi f(F)+\sum_{1234,56}[\omega} \\
& \left.\left.+\mathbb{R} P_{x}(i j)+b P_{q}(i j)+h P_{x}(i j) P_{g}(i j)\right] v(i j) \Psi_{s} \Psi_{\sigma} F(\bar{I})\right) d T
\end{aligned}
$$

Then the equation (3.2.11) can be written as

$$
\begin{equation*}
\left[\frac{3}{8} \frac{\hbar^{2}}{M} \nabla_{I}^{0}-V_{D}(\Sigma)+\left(E-E_{m}-E_{d}\right)\right] F(\vec{I})=\int K\left(\vec{L}, \vec{I}^{\prime}\right) F\left(\vec{I}^{\prime}\right) d \vec{I}^{\prime} \tag{3.2.14}
\end{equation*}
$$

Where $V_{f}(r)$ is the direct interaction between the clusters originating from the identity element of the antisymmetrization operator A and is given by

$$
\begin{equation*}
V_{p}(r)=2 V_{0}(\Delta \omega-m+2 b-2 b\} \int \phi_{\varepsilon}^{*} \phi_{d}^{*} v(15) \Phi_{a} \phi_{d} \tag{3.2.15}
\end{equation*}
$$

The kernel $\boldsymbol{K}\left(\overrightarrow{\boldsymbol{r}}, \bar{r}^{\prime}\right)$ represents the non-local interaction between the clusters and is given by

$$
\begin{aligned}
& K\left(\bar{Y}, Y^{\prime}\right)=\int \Phi_{4}^{*} \Phi_{d}^{*}\left[-\frac{\Lambda^{2}}{M}\left(T_{e}+T_{d}\right)-\frac{3}{8} \frac{\Pi^{2}}{M} \nabla_{r}^{0}-E\right]\left[-2 P_{x}(15)\right.
\end{aligned}
$$

$$
\begin{align*}
& v(12)-2(\omega+2 b-4 m-5 h) V(15)-2\{\omega+m+b+h) \\
& v(16)-6(\omega+m) v(23)-2(3 \omega+b-2 m) v(26)-6(\omega+m) \\
& v(25)-2(\omega+\mu+b+h) v(56)) F_{x}(15) \Phi_{*} \Phi_{a} F(\bar{I}) d P+V_{0} \int \\
& \varphi_{c}^{*} \omega_{\alpha}^{*}(2(2 \omega+2 m-b-h) v(12)+(\omega+m+b+h) v(13)+2 \\
& (\omega-3 m-b+2 b) v(15)+2(b+\omega) v(16)+(\omega+m+b+h) \\
& v(24)+2(2 \omega+2 m-b-h) v(25)+(\omega+m+b+h) v(56)] \\
& \Phi_{a} \Phi_{d} P(P) d P \tag{3.2.16}
\end{align*}
$$

We consider the radial dependence of the Novison-ftucleon inceraction $v(i j)$ as

$$
\begin{equation*}
V(i j)=-V_{0} e^{-p r_{i j}^{4}} \tag{3.2.17}
\end{equation*}
$$

The direct part $V_{f}(r)$ of the coulomb interaction is also added to $V_{0}(r)$ to give a total direct Part. Thus total direct part is

$$
\begin{equation*}
V_{D}^{\prime}(I)=V_{D}(I)+V_{e}(x) \tag{3.2.17}
\end{equation*}
$$

From the equation (3.2.14) it is clear that in order to know $F(\vec{I})$ at the point r in space, it is necessary to know $F\left(\vec{I}^{\prime}\right)$ at alt other points I^{\prime} in space. Thus equation (3.2.14) describes a nonlocat process. The kernel of the integral equation $K\left(\bar{F}, F^{\prime}\right)$, involving both r and r^{\prime} represents a nonjocat interaction and is symmetric. We can separate the partial waves by making the following expression in terms of iegendre polynomials

$$
\begin{equation*}
F(\vec{r})=\frac{I}{I} \sum_{I} f_{1}(r) P_{1}(\cos \theta) \tag{3,2,19}
\end{equation*}
$$

and

$$
K\left(\vec{Y}^{\prime}, \vec{P}^{\prime}\right)=\frac{1}{4 \pi r r^{\prime}} \sum_{1=0}^{\infty}(2 I+1) k_{1}\left(r, r^{\prime}\right) p_{2}(\cos \theta)
$$

Thus

$$
\begin{equation*}
k_{1}\left(r, r^{\prime}\right)=2 \pi r r^{\prime} \int_{-1}^{1} K\left(\vec{Y}, \vec{F}^{\prime}\right) P_{1}(\cos \theta) d(\cos \theta) \tag{3.2.30}
\end{equation*}
$$

Where θ is the angle between \vec{F} and \vec{r}^{\prime}. Now combining equation (3.2.14), (3.2.18), (3.2.19) and (3.2.20) we obtain

$$
\begin{gather*}
{\left[\frac{3 \bar{K}^{2}}{8 M}\left\{\frac{d^{2}}{d r^{2}}-\frac{1(1+1)}{r^{2}}+E-E_{a}-E_{d}-V_{D}(r)-V_{c}(r)\right] f_{I}(r)\right.} \\
\left.=\int_{0}^{\pi} k_{I}\left(r, I^{\prime}\right) f_{I}\left(r^{\prime}\right) d r^{\prime}\right\} \tag{3.2.21}
\end{gather*}
$$

Where M is the reduced mass. The wave functions for alpha particle and deuteron are respectively.

$$
\begin{equation*}
\Psi_{*}(1234)=\exp \left[-\frac{a}{2} \sum_{i=1}^{4}\left(\vec{Y}_{i}-\vec{R}_{x}\right)^{2}\right] \tag{3.2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{d}(56)=\exp \left[-\frac{a_{1}}{2} \sum_{i=5}^{6}\left(\vec{I}_{i}-\vec{R}_{d}\right)^{2}\right]+c \exp \left[-\frac{a_{2}}{2} \sum_{i=5}^{6}\left(\vec{x}_{i}-\vec{a}_{d}\right)^{2} j\right. \tag{3.2.23}
\end{equation*}
$$

Where $R_{\text {a }}$ and R_{d} are the pcaition vectors of the center of mass of alpha and deuteron cluster respectively. The direct potential $V_{0}(r)[6]$ in equation (3.2.21) is given by

$$
\begin{gather*}
V_{D}(r)=-\frac{V_{0}}{G_{0}}(8 \omega-2 a+4 b-4 h) \sum_{i=1}^{4} K_{i}\left(\frac{\pi^{3}}{4 a^{3}}\right)^{\frac{3}{2}}\left(\frac{\pi}{2 \lambda_{i}}\right)^{\frac{3}{2}} \\
{\left[\frac{4 a \lambda_{i}}{4 \pi \lambda_{i}+\beta\left(2 a+3 \lambda_{i}\right)}\right]^{\frac{3}{2}} \exp \left[-\frac{4 \pi \beta \lambda_{i} I^{2}}{4 \pi \lambda_{i}+\beta\left(2 a+3 \lambda_{i}\right)}\right]} \tag{3.2.24}
\end{gather*}
$$

where

$$
\begin{equation*}
G_{0}=\sum_{i=1}^{4} K_{i}\left(\frac{\pi^{3}}{4 \alpha^{3}}\right)^{\frac{3}{2}}\left(\frac{\pi}{2 \lambda_{i}}\right)^{\frac{3}{2}} \tag{3.2,25}
\end{equation*}
$$

and

$$
\begin{align*}
& K_{1}=1, K_{2}=K_{1}=C, K_{4}=C^{2} \\
& \lambda_{1}=a_{1}, \lambda_{2}=\lambda_{3}=\frac{a_{1}+a_{2}}{2}, \lambda_{4}=a_{2} \tag{3.2.26}
\end{align*}
$$

The coulomb potential $V_{c}(r)\{6]$ in $\{3.2 .21\}$ is given by

$$
\begin{equation*}
V_{c}(r)=\frac{z Z^{\prime} e^{2}}{r E_{0}} \sum_{i=1}^{4} K_{i}\left(\frac{\pi^{3}}{4 a^{3}}\right)^{\frac{3}{2}}\left(\frac{\pi}{2 \lambda_{i}}\right)^{\frac{3}{2}} \Psi\left[\left(\frac{4 \pi \lambda_{i}}{2 \pi+3 \lambda_{i}}\right)^{\frac{1}{2}} r\right] \tag{3.2.27}
\end{equation*}
$$

Where z and z being the atoric numbers of the alpha and deutaron olusters respectively and

$$
\begin{equation*}
\mathbf{Y}(w)=\frac{-2}{\sqrt{\pi}} \int_{0}^{0} \exp \left(-t^{2}\right) d t \tag{3.2,20}
\end{equation*}
$$

The kernel [6] $k_{1}\left(r, x^{\prime}\right)$ is written as

Where E^{\prime} is given as

$$
E^{\prime}=E+E_{\varepsilon}+E_{a}
$$

with

$$
E_{a}=\frac{n^{2}}{2 M} \frac{9}{2} a-6(m+\omega) V_{0}\left(\frac{a}{a+2 \beta}\right)^{\frac{3}{2}}+\frac{z(z-1) e^{2}}{2}\left(\frac{2 a}{\pi}\right)^{\frac{1}{2}}
$$

and

$$
\begin{align*}
& E_{a}=\frac{1}{G_{0}}\left(\frac{\pi^{3}}{4 \alpha^{3}}\right)^{\frac{3}{2}} \sum_{i=1}^{4} K_{i}\left(\frac{\pi}{2 \lambda_{1}}\right)^{\frac{3}{2}}\left[\frac{\hbar^{2}}{2 \mu}\left(3 v_{i}-\frac{3 v_{i}^{2}}{2 \lambda_{i}}\right)\right. \\
& \left.-(\omega+m+b+h) V_{0}\left(\frac{\lambda_{i}}{\lambda_{i}+2 \beta}\right)^{\frac{3}{2}}+\frac{z^{\prime}(z-1) e^{2}}{2}\left(\frac{2 \lambda_{i}}{\pi}\right)^{\frac{1}{2}}\right] \tag{3.2.32}
\end{align*}
$$

and the quantities X_{i}, Y_{1} and Z_{i} are defined as follows

$$
\begin{align*}
& X_{i}=2 \epsilon_{2}\left[6 \alpha+3 v_{i}-\frac{6 \alpha^{2}+9 v_{1}^{2}}{4 \alpha+6 \lambda_{i}}+9 a_{i}-\left(\frac{3}{2} T_{a}+4 a_{i}^{2}\right) r^{2}\right. \\
& \left.-\left(\frac{2}{3} T_{b}+\frac{1}{3} C_{1}^{3}\right) r^{2}\right\} G_{1}\left(-\frac{3}{2} c_{1}\right)+\left(\frac{3}{2} T_{c}+\frac{4}{3} a_{1} C_{2}\right) \leq r^{\prime} \\
& \left.T_{2}\left(-\frac{3}{2} c_{4}\right)\right] \operatorname{exc}\left(-\frac{2}{3}\left(a_{1} I^{2}+b_{1} r^{2}\right)\right]-c_{2}\left[\left\{\frac{25}{2} d\right.\right. \\
& -\frac{3 a^{2}}{3 \alpha_{1}+\pi-\vartheta_{1}}+\frac{3 \pi v_{1}}{a+v_{i}}-\frac{11}{2} \frac{\pi}{2} \alpha^{2}\left(r^{2}+r^{2}\right) s_{1}\left(\frac{-2}{3} c_{2}\right) \\
& \left.-\frac{208}{27} a^{2} I I^{\prime} T_{1}\left(\frac{-2}{3} c_{2}\right)\right] \text { exp }\left[-\frac{2}{3}\left(a_{2} r^{2}+b_{2} I^{2}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& y_{i}=e_{1}\left(\omega_{23}^{2}-(6 \omega-6 m) S_{1}\left(\frac{-2}{3} c_{1}\right) \exp \left[\frac{-2}{3}\left(a_{1} x^{2}+b_{1} I^{m}\right)\right]\right. \\
& c_{15}^{1}(-2 \omega+8 m-4 b+4 h) S_{1}\left(\frac{-2}{3} c_{15}^{\prime}\right) \operatorname{ax\Phi }\left[-\frac{2}{3}\left(a_{15}^{\prime} I^{2}+b_{15}^{\prime} I^{2}\right\rangle\right] \\
& +e_{26}^{1}(-6 \omega+4 \pi-2 b+6 h) S_{1}\left(-\frac{2}{3} c^{\prime}{ }_{26}\right) \text { exp }\left[-\frac{2}{3}\left(a^{\prime}{ }_{26} T^{2}+b^{\prime} 26 r^{\beta}\right)\right] \\
& +\varepsilon_{16}^{1}(-2 \omega-2 m-2 b-2 h) S_{j}\left(-\frac{2}{3} c_{16}^{\prime}\right)\left(\exp \left[-\frac{2}{3}\left(a^{\prime}{ }_{16} r^{2}+b^{\prime}{ }_{16}{ }^{f}{ }^{f a}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\exp \left[-\frac{2}{3}\left(b_{16}^{\prime} r^{2}+a^{\prime}{ }_{16} r^{3}\right)\right]\right)+{ }_{12}^{1}(-6 \omega-6 m) s_{2}\left(-\frac{2}{3} c^{\prime}{ }_{24}^{\prime}\right. \\
& \left.\left(\operatorname{axp}\left[-\frac{2}{3}\left(a^{\prime}{ }_{12} r^{2}+b^{\prime}{ }_{12} r^{\prime a}\right)\right]+\exp \left[-\frac{2}{3}\left(b_{12}^{\prime} r^{2}+a_{12}^{\prime} r^{\prime}\right)\right]\right)\right] \\
& \varepsilon_{2}\left[\left[e_{12}^{2}(2 \omega+2 m+2 b+2 h)+e_{34}^{2}(\omega+m+b+h)\right] S_{1} t-\frac{2}{3} c_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{ex}\left[-\frac{2}{3}\left(a_{15}^{2} T^{2}+b_{15}^{2} r^{2}\right)\right]+e_{23}^{2}(4 \omega+4 m-2 b-2 h) S_{1}\left(-\frac{2}{3} c_{13}^{2}\right) \\
& \left.\left(\operatorname{exD}\left[-\frac{2}{2}\left(a_{13}^{3} I^{2}+b_{13}^{2} I^{2}\right)\right]+\exp \left[-\frac{2}{2}\left(\dot{b}_{13}^{3} I^{2}+a_{23}^{3} F^{2}\right)\right]\right)\right] \tag{3.2.34}
\end{align*}
$$

$$
\begin{align*}
& z_{1}=2 e_{1} s_{1}\left(-\frac{2}{3} c_{1}\right) \operatorname{exF}\left[-\frac{2}{3}\left(a_{2} x^{2}+b_{1} x^{2}\right)\right] \\
&-e_{2} s_{i}\left(-\frac{2}{3} c_{2}\right\} \exp \left[-\frac{2}{3}\left\{a_{2} x^{2}+b_{2} x^{2}\right\}\right)
\end{align*}
$$

with $S_{1}(\omega)=\frac{4 \pi}{\omega} J_{\mathrm{I}+\frac{1}{2}}\left(\omega I r^{\prime}\right) \quad$ and

$$
T_{1}(\omega)=\frac{4 \pi}{\omega}\left[J_{2+\frac{3}{2}}^{\prime}\left(\omega I I^{\prime}\right)-\frac{1}{\omega I I^{\prime}} J_{1+\frac{1}{2}}\left(\omega I I^{\prime}\right)\right]
$$

Where $J_{f}(x)$ is hyperbolic spherical Bessel's function. Also i_{11} equations $(3.2 .29),(3.2 .30),(3.2 .31),(3.2 .32),(3.2 .33)$, (3.2.34) and (3.2.35) the following definitions have been made:

$$
\begin{aligned}
& v_{1}=v_{2}=a_{1}, v_{3}=v_{4}=a_{2} \\
& c_{2}=\left(\frac{4}{3}\right)^{3}\left(\frac{\pi}{6}\right)^{3}\left(\frac{\pi}{46+6 \lambda_{1}}\right)^{\frac{3}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& s_{2}=\left(\frac{4}{3}\right)^{3}\left(\frac{\pi}{2 a}\right)^{\frac{3}{2}}\left(\frac{\pi}{\alpha+v_{i}}\right)^{\frac{3}{2}}\left(\frac{\pi}{2 \lambda_{1}+a-v_{i}}\right)^{\frac{3}{2}} \\
& a_{1}=\frac{c_{1}}{6 \pi+9 \lambda_{1}}, \quad b_{1}=\frac{g g_{1}}{6 \pi+9 \lambda_{i}}, \\
& c_{2}=\frac{h_{1}}{6 \pi+9 \lambda_{1}} \\
& a_{2}=h_{2}=\frac{5}{8} \alpha, \quad c_{2}=-\frac{8}{3} \alpha, \\
& T_{2}=\frac{2 \alpha^{2}}{\left(2 \alpha_{3} \lambda_{1}\right)^{2}}\left(\alpha^{2}-2 a \lambda_{i}+2 \alpha v_{i}-2 v_{i} \lambda_{i}+v_{i}^{2}+\lambda_{i}^{2}\right) \\
& +\frac{v_{1}^{2}}{3\left(2 a+3 \lambda_{i}\right)^{2}}\left(\sigma^{2}-12 \pi \lambda_{i}+6 a v_{i}-36 v_{i} \lambda_{i}+9 v_{i}^{2}+36 \lambda_{i}^{2}\right) \\
& T_{b}=\frac{2 a^{2}}{\left(2 a+3 \lambda_{i}\right)^{2}}\left(\alpha^{2}+4 a v_{i}+4 v_{i} \lambda_{i}+v_{i}^{2}+4 \lambda_{i}^{2}\right) \\
& +\frac{v_{i}^{2}}{3\left(2 \alpha+3 \lambda_{i}\right)^{2}}\left(25 a^{2}+60 \pi \lambda_{i}-30 a v_{i}-36 v_{i} \lambda_{i}+9 v_{i}^{2}+36 \lambda_{i}^{2}\right) \\
& T_{c}=\frac{2 a^{2}}{\left(2 a+3 \lambda_{i}\right)^{2}}\left(2 i^{2}+2 a \lambda_{i}+4 a v_{i}+2 v_{f} \lambda_{i}+2 v_{i}^{2}-4 \lambda_{i}^{2}\right)+ \\
& \frac{v_{2}^{2}}{3\left(2 a+3 \lambda_{i}\right)^{2}}\left(-10 \alpha^{2}+4 B a \lambda_{i}-24 \alpha v i-72 v_{i} \lambda_{i}+28 v_{i}^{2}+72 \lambda_{i}^{2}\right) \\
& a_{15}^{2}=b_{15}^{2}=\frac{5 a\left(a+v_{i}\right)\left(2 \lambda_{i}+\alpha-v_{i}\right)+\beta\left(12 a^{2}+14 a \lambda_{i}+4 v_{i} \lambda_{i}-2 v_{i}^{2}\right)}{3\left(a+v_{i}\right)\left(2 \lambda_{j}+a-v_{i}\right)+3 \beta\left(2 \alpha+2 \lambda_{i}\right)} \\
& \sigma_{15}^{2}=-\frac{8 a\left(\alpha+v_{i}\right)\left(2 \lambda_{1}+\alpha-v_{i}\right)+\beta\left(12 \alpha^{2}+8 \lambda_{1}-8 \lambda_{1} v_{1}+4 v_{1}^{2}\right)}{3\left(\alpha+v_{1}\right)\left(2 \lambda_{i}+\alpha-v_{1}\right)+3 \beta\left(2 a+2 \lambda_{1}\right)} \\
& a_{k}^{2}=\left[\frac{2 a\left(\alpha+v_{i}\right)}{2 a\left(\alpha+v_{i}\right)+\beta\left(3 a+v_{i}\right)}\right]^{\frac{3}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{23}^{1}=\left[\frac{a}{a+2 \beta}\right]^{\frac{2}{2}} \\
& \varepsilon_{15}^{1}=1 \\
& a_{15}^{1}=a_{2}+\frac{8}{3} f \\
& b_{15}^{2}=b_{1}+\frac{8}{3} \beta \\
& c_{13}^{1}=c_{1}+\frac{15}{3} 0 \\
& e^{\frac{1}{2}}=\left[\frac{2 a^{2}+3 a \lambda_{1}}{2 \pi+3 a \lambda_{1}+\beta\left(2 a+2 \lambda_{i}\right)}\right]^{\frac{3}{2}} \\
& a_{26}^{1}=\frac{\alpha f_{2}+2 \beta\left(6 \alpha^{2}+7 \alpha \lambda_{1}+2 \nu_{i} \lambda_{1}-v_{i}^{2}\right)}{\alpha\left(6 a+9 \lambda_{i}\right)+\beta\left(6 \alpha+6 \lambda_{i}\right)} \\
& b_{34}^{1}=\frac{a g_{1}+2 \beta\left(6 a^{\pi}+7 a \lambda_{i}+2 \varphi_{i} \lambda_{i}-\varphi_{i}^{3}\right)}{a\left(6 a+9 \lambda_{i}\right)+\beta\left(6 a+6 \lambda_{i}\right)} \\
& C_{25}^{1}=\frac{a h_{1}-2 \beta\left(6 a^{2}-4 a \lambda_{1}-4 \lambda_{1} v_{1}+2 v_{1}^{2}\right)}{a\left(6 a+9 \lambda_{i}\right)+\rho\left(6 a+6 \lambda_{i}\right)} \\
& \varepsilon_{26}^{1}=\left(\frac{2 a+3 \lambda_{ \pm}}{2 a+3 \lambda_{1}+6 k}\right)^{\frac{3}{2}} \\
& a_{16}^{2}=\frac{f_{2}+\beta\left\{10 \alpha+24 \lambda_{1}-12 \nu_{i}\right)}{6 a+9 \lambda_{i}+18 \beta} \\
& b_{15}^{1}=\frac{g_{2}+\beta\left(34 a+24 \lambda_{1}-12 v_{1}\right)}{6 \alpha+9 \lambda_{1}+18 \beta} \\
& \sigma_{16}^{1}=\frac{h_{2}+\beta\left(8 a+48 \lambda_{1}-24 y_{1}\right)}{6 a+9 \lambda_{1}+18 \beta}
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}^{1}=\left[\frac{2 a^{2}+3 a \lambda_{j}}{2 a^{2}+3 a \lambda_{i}+\beta\left(4 a+2 \lambda_{i}\right)}\right]^{\frac{3}{8}} \\
& a_{12}^{1}=\frac{\alpha f_{1}+\beta\left(10 \alpha^{2}+54 \pi \lambda_{i}-20 \pi v_{i}+4 v_{i} \lambda_{i}-2 v_{i}^{\lambda}\right)}{\alpha\left(6 a+9 \lambda_{i}\right)+\beta\left(12 \pi+6 \lambda_{i}\right)} \\
& b_{12}^{3}=\frac{\alpha g_{1}+\beta\left(10 \alpha^{2}+6 \alpha \lambda_{1}+4 \alpha v_{1}+4 v_{i} \lambda_{1}-2 v_{1}^{2}\right)}{a\left(6 \varepsilon+9 \lambda_{1}\right)+\beta\left(12 \alpha+6 \lambda_{i}\right)} \\
& c_{12}^{1}=\frac{\sigma h_{2}+\beta\left(20 \alpha^{2}+24 \alpha \lambda_{i}-16 \alpha v_{i}+8 \psi_{2} \lambda_{i}-4 v_{i}^{2}\right)}{\alpha\left(6 a+9 \lambda_{i}\right)+\beta\left(12 \pi+6 \lambda_{1}\right)} \\
& c_{i \alpha}^{3}=\left\{\frac{a+v_{i}}{a+v_{i}+4 \tilde{\beta}}\right\}^{\frac{3}{2}}, e_{3 i}^{3}=\left[\frac{a}{a+2 \beta}\right]^{\frac{3}{2}} \\
& e_{15}^{2}=\left[\frac{\left(\alpha+v_{i}\right)\left(2 \lambda_{i}+a-v_{i}\right)}{\left(\alpha+v_{i}\right)\left(2 \lambda_{j}+\alpha-v_{i}\right)+\beta\left(2 a+2 \lambda_{i}\right)}\right]^{\frac{3}{2}} \\
& a_{13}^{2}=\frac{10 a^{2}\left(a+v_{i}\right)+a \beta(31 a+21 v i)}{6 a\left(a+v_{i}\right)+3 \beta\left(3 a+v_{i}\right)} \\
& b_{13}^{2} * \frac{10 a^{2}\left(\alpha+v_{i}\right)+\alpha \beta\left(19 a+9 v_{i}\right)}{6 a\left(a+v_{i}\right)+3 \beta\left(3 a+v_{i}\right)} \\
& c_{13}^{2}=-\frac{16 \alpha^{2}\left(\alpha+v_{i}\right)+\alpha \beta\left(40 \alpha+24_{i}\right)}{6 \alpha\left(\alpha+v_{i}\right)+3 \beta\left(3 \alpha+v_{f}\right)}
\end{aligned}
$$

with
$f_{1}=3 a^{2}+17 a \lambda_{i}-6 \llbracket v_{i}+6 \lambda_{i} v_{i}-3 v_{i}^{2}$
$g_{i}=3 a^{2} 5 a \lambda_{i}+6 a v_{i}+6 \lambda_{i} v_{i}-3 v_{i}^{2}$
$h_{i}=6 a^{2}+4 a \lambda_{1}+12 v_{1} \lambda_{1}-6 v_{1}^{2}$

CHAPTER FOUR PREESENT WORKS

Now if one follows the resonating group formalisil then one is to solve the equation (3.2.21) namely

$$
\begin{array}{r}
{\left[\frac{3}{8} \frac{\hbar^{2}}{N}\left\{\frac{d^{2}}{d r^{2}}-\frac{1(1+1)}{r^{2}}\right\}+E-E_{e}-E_{d}-V_{D}(r)-V_{e}(I)\right] f_{1}(r)} \\
\quad=\int_{0}^{\infty} k_{1}\left(r, r^{\prime}\right) f_{1}\left(x^{\prime}\right) d r^{\prime}
\end{array}
$$

numerically to obtain the desired result. In the first, the Kernel $k_{j}\left(x_{1} x^{\prime}\right)$ is non-local and non-separable in character. Further for the tiny ${ }^{6}$ Li nucleus the term $k_{1}\left(x, r^{\prime}\right)$ costains a number of terms as can be seen from (3.2.29) and after words. The numerical calculation of the above equation may not be too difficult for this case. But for nuclei of higher mass number wheie more and more nucieons will be involved the analytical calculation of the Kernel will be very lengthy and complicated. In that casa numerical calculation will get unmanageable. That is why although the resonating group formalism has been in application for a long time and the results following this approach are good, the detailed calculation following this method hardly passes the nuclei of

15-20 nucleons.
In that case we see that we can not apply this beautiful, elaborate and systematic method of resonating group formalism except to a handful of light nuclei for nuclear study. So in our present study we are trying to test how this non-local, non-separable part namely, Kernel $k_{1}\left\{r, r^{\prime}\right\}$ can be replaced by a simple non-local separable potential namely
 calculation could be made manageable but also nuckei of any number of nucleons can be studied with this resonating group formalism. We have fully taken into account of other effects of resonating group such as direct potential termand coulomb energy term ctained from resonating group formalisg. In our present study we are following the widdie path. is stated earlier in the cluster model approach one group tatally ignores antiaymetrimation effect while another group taifes full account of it resulting to inability in calculation of higher nuclei. In our present study we have taken the direct part of nuclear potential and coulomb energy from antisymmetrization and replace the non-local part by phenomenological potential.

In the present study we shall take the wave functions for te and deuteron as

$$
\begin{equation*}
\text { क. }=\operatorname{axp}\left[-\frac{\pi}{2} \sum_{i=1}^{4}\left(\underline{Y}_{i}-\vec{R}_{*}\right)^{2}\right] \tag{4.1}
\end{equation*}
$$

and
$\omega_{\alpha} \exp \left[-\frac{a_{1}}{2} \sum_{i=5}^{6}\left(\vec{I}_{i}-\vec{R}_{d}\right)^{2}\right]+C \exp \left[-\frac{a_{2}}{2} \sum_{i=5}^{5}\left(\vec{r}_{i}-\vec{R}_{d}\right)^{2}\right]$
for alpha-cluster and d-cluster respectively with
$\boldsymbol{a}=0.514 \mathrm{~F}^{-2}$
and

$$
\begin{equation*}
a_{1}=0.157 \mathrm{~F}^{-3}, \quad a_{2}=1.137 \mathrm{~F}-2 \text { and } C=2.747 \tag{4.4}
\end{equation*}
$$

$\mathrm{N}-\mathrm{N}$ Potential is given by [6],

$$
\begin{equation*}
v_{i j}=-V_{0}\left(\omega+m P_{i y}^{T}+b P_{i j}^{i}+h P_{i j}^{\tau}\right) \exp \left[-\beta r^{2}\right] \tag{4,5}
\end{equation*}
$$

$V_{0}=72.98 \mathrm{MeV}$ and $\beta=0.46 \mathrm{~F}^{-2}$
From the expression of $V_{0}\{r\}$ and $V_{c}\{r\}$ one notes that the constants ω, m, b, h oecur only in the combination of (3.1.5) and
$V_{1 j}=y V_{\text {serbei }}+(1-y) V_{\text {sjazetris }}$
where $v_{\text {serber }}$ is given by potential (4.5) with $\omega=$ mand $b=h$ and $V_{\text {sfustric }}$ given by potential (4.5) with $m=2 b$ and $h=2 \omega$.

The value of y is 1,004 as given by Thompson[6]. With the above consideration, the integro differential equation becomes,

$$
\begin{align*}
{\left[\frac { 3 } { 8 } \frac { S ^ { 2 } } { M } \left\{\frac{d^{2}}{d x^{2}}\right.\right.} & \left.\left.-\frac{1(1+1)}{I^{2}}\right\}+E-V_{0}(I)-V_{D}(I)\right] f_{1}(I) \\
& =\int_{0}^{-} A e^{-Y_{1} I} e^{-\gamma_{2} x^{\prime}} f_{1}\left(x^{\prime}\right) d x^{\prime} \tag{4.8}
\end{align*}
$$

where the expression for $V_{i}(r), V_{Q}(r)$ are given by equations (3.2.24) and (3.2.27) respectively and E is the relative energy of $a+d$ system. We shall calculate the phase shift for different energy levels by employing the numerical method which we have described in detail in the next chapter.

CHAPTER FIVE
 NUMERICAL CALCULATION

Generally the kernel $k_{1}\left(r_{1} r^{\prime}\right)=A e^{-y_{1} x} e^{-\boldsymbol{r}_{2} \boldsymbol{r}^{\prime}}$ on the right side of equation (4.8) decreases rapidly as x of x^{\prime} increases to enable us to replace the infinite upper limit in the integral by some finite value R_{3}. To solve the integrodifferential equation (4.8), this equation can be converted into a set of simnltaneons-linear-algebraic equations following the method of Robertacn[28] in the region $\boldsymbol{I} \leq \boldsymbol{R}_{0}$. This method is described as follows:

The equation (4.8) can be written as

$$
\begin{align*}
& \left\{\frac{3}{8} \frac{\hbar^{2}}{N}\left\{\frac{d^{2}}{d r^{2}}-\frac{1(1+1)}{r^{2}}\right)+E^{\prime}-V_{D}(r)-V_{e}(r)\right\} r_{1}(r) \\
& =\int_{0}^{\prime \prime} k_{1}^{1}\left(r, r^{\prime}\right) f_{1}\left(r^{\prime}\right) d r^{\prime}+E \int_{0}^{-} k_{1}^{3}\left(r, r^{\prime}\right) f_{I}\left(r^{\prime}\right) d r^{\prime} \tag{5.1}
\end{align*}
$$

where E is the total energy of the $a+d$ system $i, E \dot{E}=E^{\prime}+E_{\dot{*}}+E_{a}$ and

$$
\begin{align*}
& k_{1}^{1}\left(r, I^{\prime}\right)=A e^{-T_{2} I} e^{-\nabla_{2} x^{\prime}} \\
& k_{1}^{2}\left(r, I^{\prime}\right)=B e^{-\theta_{2} x} e^{-\theta_{2} x^{\prime}} \tag{5.2}
\end{align*}
$$

At the point $r=r_{n}$, the integral and derivative are replaced by sum and difference respectively as follows:

$$
\begin{align*}
& \int_{0}^{R_{n}} k_{l}^{1}\left(r_{n}, r^{\prime}\right) f_{1}\left(r^{\prime}\right) d r^{\prime}=\sum_{m=0}^{N} T_{m}^{1} k_{l}^{1}\left(r_{n}, r_{n}^{\prime}\right) f_{I}\left(r_{n}^{\prime}\right) \tag{5,3}\\
& \int_{0}^{R_{n}} k_{1}^{1}\left(r_{n}, r^{\prime}\right) f_{1}\left(r^{\prime}\right) d r^{\prime}=\sum_{m=0}^{N} I_{\infty}^{2} k_{2}^{2}\left(r_{n}, r_{n}^{\prime}\right) f_{1}\left(r_{n}^{\prime}\right) \tag{5.4}
\end{align*}
$$

and

$$
\begin{equation*}
\delta^{2} f_{z}=h^{2}\left(1+\frac{\delta^{2}}{12}-\frac{\delta^{4}}{240}+\cdots-\cdots\right) f_{z}^{\prime \prime} \tag{5,5}
\end{equation*}
$$

Substituting (5.3), (5.4) in equation (5.1) we obtain,

$$
\begin{aligned}
& \frac{3}{8} \frac{Z^{2}}{H} f^{\prime \prime}{ }_{a}+\left[E^{\prime}-Y_{n}-\frac{3 A^{2}}{8 M} \frac{1(1+1)}{x^{2}}\right] f_{n} \\
& =\sum_{\Delta=0}^{N} T_{m}^{-} k_{1}^{1}\left(x_{n}, r_{m}^{\prime}\right) f_{m}+E \sum_{M=0}^{N} T_{m}^{1} k_{m}^{2}\left(x_{n}, r_{m}^{\prime}\right) f_{n}
\end{aligned}
$$

where $Y_{p}=V_{D}\left(r_{n}\right)+V_{c}\left(r_{n}\right)$
This equation can be written as

$$
\begin{align*}
& f_{n}^{\prime \prime}+U_{a} f_{a}=\sum_{n=0}^{N} T_{a} k_{n, a} F_{a} \tag{5.6}\\
& \text { where } u_{n}=\frac{8 M}{3 n^{I}}\left[E^{\prime}-Y_{n}-\frac{3 n^{2}}{8 M} \frac{1(I+1)}{x_{n}^{2}}\right] \text { and } T_{a}^{1}=T_{n}^{1}=T_{n}
\end{align*}
$$

and
$k_{n, \text { m }}=\left[K_{1}^{1}\left(I_{n}, r_{a t}^{\prime}\right)+E K_{1}^{2}\left(r_{a}, I_{0}^{\prime}\right)\right] \frac{8 M}{3 A^{2}}$
Also the equation (5.5) caid be wititern as
$\delta^{2} f_{n}=h^{2}\left(1+\frac{\delta^{2}}{12}\right) f_{n}{ }_{n}+c$

Comining (ㅌ.5) and (5.7) we get.
$\delta^{2} f_{n}=h^{2}\left\langle I+\frac{\partial^{2}}{12}\right)\left(-u_{n} F_{n}+\sum_{m=\mathbf{D}}^{N} T_{m} k_{n_{r}} F_{\pi}\right)$
ineglecting other terms]
or, $f_{n+1}-\hat{z} f_{n}+f_{n+1}=-\frac{\hbar^{2}}{12}\left(u_{n+1} f_{n+1}+10 u_{n} f_{n}+u_{n-1} f_{n-1}\right)$
$+\frac{h^{2}}{12} \sum_{M=0}^{N}\left\{T_{m} k_{n+1, n} f_{m}+10 k_{n, m} f_{n 1}+T_{m m} k_{n-1, \sigma_{m}} f_{m}\right.$
or, $\left(1+\frac{h^{2}}{12} u_{n+2}\right) f_{n+1}-\left(2-\frac{10}{12} h^{2} u_{n}\right) f_{n}+\left(1+\frac{h^{2}}{12} u_{n-1}\right) f_{n-1}$
$-\frac{h^{a}}{12} \sum_{\#=0}^{N} T_{a}\left(k_{a+1, m}+10 k_{n, \infty}+k_{n-1, b}\right) f_{m}$
Then by applying the houndary conditions $f_{i}=0$ and $f_{N+1}=0$ the above equation becomes

$$
\begin{aligned}
& \frac{1}{D H}\left[D A-\left(Y_{n-1}+\frac{D A}{I_{n-2}^{2}}-E^{\prime}\right)\right] f_{n-1}-\frac{1}{D H}\left[2 D H+10\left(Y_{n}+\frac{D A}{r_{n}^{2}}-E^{\prime}\right)\right] F_{n} \\
& +\frac{1}{D H}\left[D F-\left(Y_{n+1}+\frac{D A}{I_{n+1}^{2}}-E^{\prime}\right)\right] f_{n+1} \\
& =\frac{T_{1}}{D H}\left[k_{n-1,1}^{ \pm}+10 K_{n, 2}^{1}+K_{n+1,1}^{1}+E\left(k_{n-1,2}^{2}+10 K_{n, 1}^{2}+k_{n+1,1}^{2}\right)\right] f_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{T_{1}}{D H}\left[k_{m-1,2}^{2}+10 k_{m, 2}^{1}+k_{m+1,2}^{1}+E\left(k_{D-1,2}^{2}+10 k_{2,2}^{2}+k_{p+1,2}^{2}\right] E_{2}\right.
\end{aligned}
$$

Where $D=\frac{3 n^{2}}{6 H}, A=I(I+1)$ anc $H=\frac{12}{h^{2}}$
substituting $n=1,2,3 \ldots \ldots$ in equation (5. 8) we get a set linear algebraic equations

$$
\begin{aligned}
& \frac{1}{D H}\left[-T_{1}\left[10 k_{2,1}^{i}+k_{2,1}^{1}+E\left(10 k_{1,1}^{2}+k_{2,2}^{2}\right)\right\}-2 D H-10\left(Y_{1}+\frac{D A}{I_{ \pm}^{2}}-E^{d}\right)\right] f_{1} \\
& +\frac{1}{D H}\left[-T_{2}\left\{10 k_{1,2}^{1}+k_{2,2}^{1}+k^{\prime}\left(10 K_{1,2}^{2}+k_{2,2}^{2}\right)\right\}+D E-\left(Y_{2}+\frac{D A}{r_{1}^{2}}-E^{d}\right)\right\} f_{2} \\
& +\frac{1}{D H}\left[-x_{3} i 10 k_{2,3}^{2}+k_{2,3}^{1}+E\left(10 k_{1,3}^{2}+k_{7}, 3^{2}\right)\right\} f_{3} \\
& +\frac{1}{D H}\left[-T_{4}\left[10 k_{1,4}^{1}+k_{2,4}^{2}+E\left(10 k_{1,4}^{2}+k_{2,4}^{2}\right)\right\}\right] f_{4} \\
& \text { + --- --- --- --- --- --- -- } \\
& + \text {-- --- --- --- --- --- -- } \\
& +\frac{1}{D H}\left[-T_{w}\left\{10 k_{1, x^{1}}^{1}+k_{n, N}^{1}+E\left(10 k_{1, x^{2}}^{2}+k_{2, ~}^{2}\right)\right\}\right] f_{N}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\bar{I}}{D H}\left\{-T_{1}\left\{k_{1,2}^{2}+10 k_{2, \pm}^{2}+k_{2, \pm}^{2}+E\left(k_{1,1}^{2}+10 k_{1,1}^{2}+k_{3,1}^{2}\right)\right)+D E-\left(Y_{2}+\frac{D A}{I_{1}^{2}}-E^{\prime \prime}\right\}\right] f_{1} \\
& +\frac{1}{D H}\left[-T_{2}\left\{k_{1,2}^{1}+10 k_{2,2}^{1}+k_{3,2}^{2}+B\left(k_{1,2}^{2}+10 k_{1,2}^{2}+k_{3,2}^{2}\right)\right\}-2 D H-10\left(r_{2}+\frac{D A}{r_{2}^{2}}-E^{\prime}\right)\right] f_{2} . \\
& +\frac{1}{D H}\left[-I_{3}\left\{k_{1,3}^{1}+10 k_{2,3}^{2}+k_{3,3}^{1}+E\left(k_{1,3}^{1} 10 k_{2,3}^{2}+k_{3,3}^{2}\right)\right\}+D J^{\prime}-\left(Y_{3}+\frac{D A}{I_{3}^{2}}-E^{\prime}\right)\right] f_{1} \\
& +\frac{1}{D H}\left[-T_{4}\left(k_{1,4}^{2}+10 k_{2,4}^{1} k_{3,4}^{1}+E\left\{k_{1,4}^{2}+10 k_{2,4}^{2}+k_{3,4}^{2}\right)\right\}\right] f_{4} \\
& \frac{1}{D H}\left[-T_{y}\left\{k_{1, N^{2}}^{1}+10 k_{2, Y^{1}}^{1}+k_{3, N}^{1}+E\left(k_{1, H^{2}}^{2}+10 k_{2, H}^{2}+k_{3, N}^{2}\right)\right\}\right] f_{N}=0 \\
& \frac{1}{D H}\left[-T_{1}\left\{k_{2,1}^{1}+10 k_{3,1}^{1}+k_{4,1}^{1} \div E\left(k_{2,1}^{2}+10 k_{3,1}^{2}+k_{4,1}^{2}\right)\right\} f_{1}\right. \\
& +\frac{1}{D H}\left[-T_{2}\left(k_{2,2}^{1}+10 k_{3,2}^{1}+k_{2,2}^{1}+E\left(k_{2,2}^{2}+10 k_{3,2}^{2}+k_{4,2}^{9}\right)\right\}+D H-\left(Y_{2}+\frac{D A}{I_{2}^{A}}-E^{d}\right)\right] f_{2} \\
& \left.+\frac{1}{D H}\left[-T_{3}^{1} \mathcal{K}_{2,3}^{1}+10 k_{3,3}^{1}+k_{4,3}^{2}+E\left(k_{2,3}^{2}+10 k_{3,1}^{2}+k_{4,1}^{2}\right)\right\}-2 D H_{1}-10\left(Y_{3}+\frac{D A}{I_{3}^{2}}-E^{\prime}\right)\right] \hat{I}_{3} \\
& +\frac{1}{D H}\left[-T_{4}\left\{k_{2,4}^{1}+10 k_{1,4}^{1}+k_{4,4}^{I}+E\left(k_{2,4}^{2}+10 k_{1,4}^{2}+k_{4,4}^{2}\right)\right\}+D H-\left(\bar{x}_{4}+\frac{D A}{I_{4}^{2}}-E^{\prime}\right)\right] E_{4} \\
& +\frac{1}{D H}\left[-T_{y}\left[k_{2, v}^{1}+10 k_{3, w}^{1}+k_{4, v}^{1}+E\left(x_{2, y}^{2}+10 k_{3, w}^{2}+k_{4, N}^{2}\right)\right]\right] E_{w}=0 \\
& \text { and so on }
\end{aligned}
$$

The integral involving the kernel function is evaluated by Simson formula. In the region r>R is obtained by solving the equation (4.8) with a method given by Fox and Gooduin \{29]. The function $f_{1}(r)$ will be matched to coulonb function at a distance which is large enough to fulfil the requirement of a gimple method of calculation for coulomb function given by Erogbera [30].

Numerical calculation of phase shift is performed from 2 to 18 Hev for the incident energy of $\alpha+d$ system in the C .4 . System of each partial waves for $1=0,2$ and f by adjusting the parameters $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{Y}_{\mathbf{1}}, \boldsymbol{\gamma}_{2}, \boldsymbol{\beta}_{\mathbf{1}}$ and $\boldsymbol{\beta}_{2}$,

CHAPTER SIX

RESULTS AND CONCLNSIONS

Using the value of width parameters $\boldsymbol{\alpha}_{1}=0.157 \quad \boldsymbol{a}_{\mathbf{2}}=1.137$ F^{-2} and $\mathrm{C}=2.747$ in equation $\{3.2 .3 .2\}$ the binding energy of deuteron is -2.04 Mev and corresponding deuteron ras radius is 1.68F. These values are in good agreement with the experimental values -2.22 Mev and 1.93 F .

Scattering calculation for the $\boldsymbol{a}+\boldsymbol{a}$ sy日tem will be made in the range of the bombarding energy upto 18 HeV in the e.m system. As was mentioned in the previous section, the parauleters $A, B, \gamma_{1}, \gamma_{2}, \beta_{2}$ and β_{2} of the kernel functucn are adjusted to yield a best agreement with experimental results. The results are given by the curves infigs. (1), (2) and (3). In this figs, we have also given the experimental values of the phase shift as obtained by MeIntyre end Haeberli [21] in the energy range of 3.3 to 6.3 MeV and by Derriulatel $[22]$ in the energy ranges of 6.7 to 18.2 MeV . The calculated phase shifts for $1=0$ is shown by the three Solid curves in fig-1 which indicated by curve a, curve b, and curve c, where the parameters $A, B, \gamma_{1}, \gamma_{2}, \beta_{1}$ and $\boldsymbol{\beta}_{\mathbf{2}}$ are Chosen to have the

Curve \boldsymbol{A}	B	$\boldsymbol{Y}_{\mathbf{1}}$	$\boldsymbol{\gamma}_{\mathbf{2}}$	$\boldsymbol{\beta}_{\mathbf{1}}$	$\boldsymbol{\beta}_{\mathbf{2}}$	
a	-0.88	-42.49	0.236	0.144	0.795	0.8025
b	-0.88	-42.49	0.125	0.124	0.695	0.762
c	86.00	94.00	0.247	0.598	0.795	0.557

Here one sees that, a-curve is in good agreement with experimental results in the high energy region but poor agreement in the low-energy region, c-curve is in best agreement in the low-energy region. Among these ourves bcurves is the best fit with experimental results over the entire energy ranges considered. The calculated phase shifts for $1=2$ is shown by the solid curve in fig. 2, where the set of parameters of kernel are given below:

Curve A
-0.948
0.145
0.255
0.343
0.256
0.249
b $\quad-0.948$
0.145
0.265
0.333
0.256
0.269
c $\quad-0.948$
0.075
0.165
0.183
0.201
0.239

Here it is seen that, the phase shifts for $1=2$ agree quite well with the experimental results in the low-energy region but poor agreement in the high energy region which goeg down ward sharply. In the $1=4$ case, the results $i s$ shown by the solid curve in fig-3, where the value of kernel parameters
$A_{1}, B_{1} \gamma_{1}, \gamma_{2}, \boldsymbol{B}_{1}$ and β_{2} are given below:

Curve	A	B	Y_{2}	\boldsymbol{r}_{2}	β_{1}	β_{2}
a	98.0	88.0	0.228	0.883	0.985	0.597
b	98.0	88.0	0.228	0.879	0.976	0.593
c	98.0	88.0	0.204	0.784	0.895	0.537

It is seen that, the agreement between the calculated and experimental values is satisfactory. In the figures (1),(2), and(3) we have also given the comparative results of ours with those of Tang and Thompson by dashed curve for $1=0,2,4$.

So we see that in our present study we have fully taken into account of the direct part of the interaction (both nuclear and coulomb calculated from the exchange of particles and replaced the non-loca: non-separable kernel by a simple non-loral separable interaction. This simple separable interaction gives us good fit to the experimental results. So it is an encuuraging sign that such a simple separable nonlocal, interaction can do the needful for the non-local, nonseparable kernel. In that case this sort of calculation following resonating group method can be extended to any nucteons of higher mass number.

Fig. 1 Calculated phase shifts of alpho-deuteron scotting are shown by solid curves, the phose shift colculated by Thompson and Tang is shown by dashed curve. The experimental phose shifts are shown by asterisks(*).

Fig. 2 Calculated phase shifts of alpha-deuteron scaiting are shown by solid curves, the phose shift calculated by Thompson and Tang is shown by dashed curve.The experimental phase shifts are shown by asterisks,crosses and squares.

Fig. 3 Calculated phase shifts of alpha-deuteron scatting are shown by solid curves, the phase shift calculated by Thompson ond Tong is shown by dashed curve.The experimental phose shifts are shown by asterisks,crosses and squares.

REFERENCES

1. J. A. Wheeler, Phys. Rev. 52, (1937), 1083, 1107;
2. K.Wildermuth and T.Kamellopoulos, Nucl. Phys 7,(1958) 150;Nucl. Phys 9(1958)449;
3. E. Van der spuy, Nuci. Phys 11(1959) 615.
4. S. Okai and S.C. Park, Phys. Rev. 145 (1986) 787.
5. D.R. Thompson and Y.C. Tang. Phys. Letters 26B, (1968), 194 ;
6. D.R. Thompson and Y.C. Tang, Phys. Rev. 179, (1969), 971;
7. H. Marsenau, Phys. Rev. 59(1941), 37;
8. D. 4. Brink, Proc. of the Intern. School of Physics, edited by C. Blocin (Acadmic Press, New York, 11966) p247.
9. C. Abciaffio and J.H. Irvine, Phys. Lett. 38B, 11972) 492.
10. D.M. Brink, H. Friedrich, A. Weiguny and C.W. Wong Phys. Lett. 33B, (1970), 143.
11. H. Friedrich and A. Weiguny, Phys. Leth. 35B, (1971), 105;
12. H. Friedrich, H. Husken and A.Weiguny, Phys. Lett. 388, (1972\}199;
13. D.L. Hill and J.A. Wheeler, Phys. Rev. 89 (1953)1102.
14. J. Griffin and J.A. Wheelar, Phys. Rev. 108, (195\%), 311.
15. K, Wildermuth and Y, C. Tang. A unified Theory of the nucleus (Vieweg, Braunschweig, Germany 1977):
16. M. Kamimura, Proc. Intern. Symposium on nuclear collisions and their Mieroscopic description, edited by M, Poljsak, 1977 p-159.
17. D.R. Thompson, H. LeMere and Y. C. Tang, Nucl. phys A286(1977),53;
18. Y. Fujiwara, Prog. Theor. Phys 62(1979)122, 138;
19. S. Saito, Prog. Thegr. Phys. 41 (1969) 705;
20. L.S. Senhouse, Jr. and T.A.Tombrello, Nuel. Phys, 57, (1964). 624.
21. L.C. HeIntyre and W. Haeberli, Nucl. Phys. A91(1967:, 382.
22. P. Darriulat, D. Garreta, A. Tarrats, and J, Arviaux, Nucl. Phye A9i, (1967) 653;
23. H. Jaoobs, K. Wildermuth and E.J. Wurster, Phys, letters 29B, (1969), 194;
24. D.R. Thompson and Y. C. Tang, Phys. Rev. C8, (1973), 1649;
25. H. Kanada, T. Kaneko and Y.C. Tang, Nucl. Phys. A 789 , (1982) 285;
26. H. Kanada, T. Kaneko, and Y.C. Tang, Nucl. Phys A380(1982), 87;
27. H. Kanada, T. Kaneko, S.Saito, and Y. ©. Tang Nucl. Phys. A444, (1985), 209 .
28. H. Robertson, Proc. Cambridge Phil. Sow. $\overline{3}$, 119561. $538:$
29. L.Fox and E.T. Goodwin. Proc, Cambridge Phil. Soc. 45, (1949), 373.
30. C.E. Frogberg, Rev. Mod. Phys 27, (1955), 399;
31. Y.C. Tang, E. Schmid and K. Wildermuth, Phys. Rev. 131, (1963), 2631.
32. S.A. Afzal, A.A. Z. Ahmad and S. Ali Rev. mod. Phys. Vol. 41, (1969). 247.
33. S.Ali and S.A.Afzal Nuovo cimento 49 A (1967) 103
34. Y.C.Tang and K.Wildermuth Phys. Rev. 123 (1961) 548

