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We have presented the formalism of a+d cluster model of
ELi following ressnating group method. In thie procedure, a

non-local, non-separable Kernel K{r,.r' Appears. The

appearance of this kernsl broadly involves:
First, the calculzation of analytical expression of the Kernel,
Second, solving the integro-diffarential equation containing
kernel by numerical method.
In the first the calculation of the kernel involves huge
{complicatad} work. In the present worlktk we have shown the
formelism in a bit detail deliberately only to show how big
and laborious the ecalculation are for six-nucleon system of
E"L:’lL,. not to speak of higher nuclel. Thzt is why although the
resonating group formalism has been in applicaetion for a long
time and the results obtaiped are good, the detailed work
Pollowing this method hardly passes the nuclei of 15-20
nucleons.

In cur present study we have replaced the non-lecal non-
separable khernel by a simple non-local separable kerael
keeping the other terms namely direct poteutisl part and

e

coulomb part as obtained from the resonating ol metiod into



account.The resuits obtained agree well with the experimental
rasdlts.This ahowz that resonating group Formalism ;:a_n- tle-

extended to any KHigher mase number in a modified way.
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GHAPTER ONE

INTRODUCTION

Numercus exparimental observations and theorstical
calculations have confirmed that the nucleus is buiit up of
protons am neutreons. One of our main pursuits in nuclear
Shysics is to understand the nature of the force that halds
the protons and neutreons together. Experimental 1nvestigations
have shcwn that the nuclei exhibit wvarieties of complex
chenomena. For an expianation of these phenomena different
types of nuclear models have been proposed. Some of them are
liguid drop modei, compound nucleus modeld, shell medel, alpha
particie model, cluster model and resonating aroup model etc.

The liguid drop model is perhaps the simplest or all
nuclear models. This meode]l was proposed by Bohr and Caiker
whao comparas the nucleus te a liquid drop, the nuclecna
corresponding  to the molacules of the liguid due to

several points of similarity. This model has been utilized
with a certain amount of success in the interpretation of
intra~-nucliear forces and of nuctear transformations and in
particular of nuclear fission.

The compound nucteus model was proposed by Bohr.This was



specifieally introduced to describe the complexity shown by
the energy speckra of many medium—neavy and heavy nuclei. It
was based on the belief that, since nucleons in nuclei
interact strongly with one another, their motion must be
correlated to a very lardge extent.

The possibility that atomic nuclei might exhibit shell
structure was considered in the early 1$30%s but the real
succe=ss of the shell model dates from the year 1948, The basic
assusption of the shell model of the nucleus is that a
single nucleon travels within a complex nucleus in a smoothly
varying average field of force pgenerated by all the other
nuclesns 1in the nucless and that each pariicle moves
essentially undisturbed in its own closed orbit. In the shell
model the nuclear potential is +aken as statie and spherically

symmetric and it generaies a com lete orthonormal set of
P

single particle functions TPWI&} where the r, indicates the

position, scin and charge wvariables of nuclecas and W,

e

denctes the guantum numbers of the state. Any function cbeying
the same boundary conditions as thaze eigenfunctions can be
uniquely expressed as a linear combination of them. This model
has been successfully applied o explain many nuclear
phencaena but is not true for many cther propertles.

Wheeler et. al have proposed the alpha-particie model,
according to which the nucleus contalns alpha-particle at

leagt as substructurez zalihough they cannot maintain their



identity for a very long time inside the condensed nuclear
matter, but will dissolve into more elementary particles. The
twa protons and tweo neutrons which make up an alpha-particle
cen go into the same spatial state with the four different
spin-charge combinations pipimlal without violating the Pauli
exclusion prineciple. The wave function of the nucleons will
thus overlap ecompletely, giving rise to a large binding
energy. The basic assumption of the alpha-particle model is
that alpha-particles can be regarded as stable subunits of
nucleii At the wvery least this requires that there is a
pronounced clustering of nucleons close together 1in such
subunits i.2. there is a large probability of finding a group
of nucleons close together and well separated from other such
groups. The first and the mest obvious sucecess of the alpha-
particlie model is in the pred:iction of the binding enerxgizss of
nuclei which can be formed ocut of an integral number of
alpha-particles,

i* haz been known that there are certain properties of
nuclei which sugges* that nucleons tend to cluster in grcﬁps
within a nucleus. This means that the binding forces bhetween
nucleons in the group have more effect than the binding ferces
between these nuclenns and the other ones in the nucleus. The
basic assumption of the cluster model is that the mucleons in
the nucleus form a group of cluster emong them instead of
independent entity of esach nucleon.

The resgnating group model was proposed in 1937 by



Wheeler [1] which suggests that the neautrons and protons in
e nuclevs as bteing dividad into varfous groups whicn do not
maintain their identity Forevér but undergo continual changes,
redistributing themselves into new groups. It treats correctly
the motion of the total center of mass. The wave function of
the composite nuslaus is writtan as a tetally antisymmetrdized
combination of the wave functions Tor the various possibie
groups nucleons., In the rescrating group method cone obtains
for the relative motion of two groups an integral eguation in
which appears an interaction ganerated from two-nucleon
forces. Thi1s consists of twe parts - a direct part which
invaivas nc partilcle exchange Setween the two groups and
8A0CAEr pars aggearing in thne fTorm of a ron-Tocal non-
separable Karnal interaction containing terms corrasponding Lo
the axciange of chne, Lwo. or more nucieons between the groups,
Fezonatirg group method was ampioyed oy Wiidermuth [2] Yan der
splyls]l, Ckai and Fark [4] and Thempson and Tang [5,6] to
study the problems of nuclear scattering and reacticn for the
cage of &Ee, 95&,?8@, Li,EHe atec. The result thus obtained
agreed gene-ally guite well with the experiment. A1l these
casss dea?l with 1icht nmuclei, because of computaticonal
difficuliies, in particular in handling the non-Tccal, non-
gseparable, large size Kernel.

Tre nucisar ciuster structure was also described by

Margenau [7]. This cTuster stiructure was extended by Bloch and

Brins (3] who vormuiated the so-caiizd alpha-cluster moded



through The ussz o1 narmonic oscillabtor shell model wave

1

funection. The properties of nuolei such as C,”O, HHe etc.
have been invéstigated [9,10,11,12}F by utilizing alpha-
cluster wmodel. This alpha-cluster model has been further
extended by Hill-Griffin Wheeler [13,14] by introducing
generator o¢oordinate method which is equivalent to the
resonating group method. The purpose of these extensions was
the dynamic description of clustering phenomena in nueclei.
With this method it is possible to study nuclear bound state
structures, scattering phenomena and reaction problems.

The formaticn of the microscopic cluster theory was
described by Wildermoth [15) which is hased on 2 variational
principle, with the Hilbert space spanned by a set of ron-
orthogonal basis wave functions. Microscopie cluster theory
has certain -mportant characteristics which distinguish l1tself
from other nethods. These characteristics are:

It utilizes a N-N potential which evplains the two-nucleon low
energy scattering data.

It treats correctly the motion of the total center of mass.
It cohsiders nuclear boundstate, scattering and reaction
problems from a unified poiant of view.

It can be used to study cases where the particles involved in
the incoming and outgoing channels are arbitrary éGmPGHitE
nuclei,

The formulation of the microscopic ecluster theory has been

determined Ly the rescnating group method or by generator



coordinate method. Thaess two methods are eguivalent but may
not be the same. They are founded on exactly the same physical
viewpoint but Dﬂl? difference between the choice of set of
non-orthegonal basis wave furctions. The microscopic cluster
theory has been found %to be successful in the case of light
nuclei. Because of above features, the calculationg are
generally not so easy to perform. In zpite of this, many
calculations have been performed by using resonating group
method and generator coordinate method. The elastic scattering
of wvarious nuclei has been studied by Kamimure {16! and
Thompscon and Tang [17) with single-channel resocoating group
method formulation. And also scsttering has been studied by
Fujiwara [12}] by using generator coordinate method. These
results were in good agreement with experimental findings.

In the earlier studies the resvnating gvoup method
matrix elements are computed by the sSg-calied cluster
eoordinate technique (15]. But this technigue was a laborious
procedure. Because of computational difficulties, the cluster
coordinate technique has been replaced by another technique,
the complex-generator coordinate technique [15}. This
technique i35 especially useful for reacticu calculation.

The orthogonality condition method was proposed by Jaito
[19] which awvoids the deriwvation of the complicatéd Hernel
function that appears in the effecks of the Pauli principie.
Siuce then, it has heen extensively applied to treat

especially multi-cluster structure rroblems, where &



straightforward application of the resonating group method
approach would be quite difficuls.

Like Saitoc in our present study we zre alsoc trying to
avoid the invalvamsent of the kernel by anocther way. We know
that, when two body fundamantal N-N interaction is amployed to
generate rescnating group medel calculation, then 2 non-local
non-separable kernel expression appears in the calculation. As
this expression 1s non-local in character it is not easy to
handle. Furthermors the terms become lengthy and cemplicated.
Moreover for higher nuclei the calculation of this expression
is troubiesome.50 it is necessary to devise way to inciude the
avfvact of the non-loccal kernel amd at the same time it is
possizle te handle the calculation for higher nuclei. Keeping
this in mind we £hall try to repiace the non-local potential
term by a simple term in cur calculation, although the direct
interaction terms {nuclear and couiomb) obtained from the

regonating group consideration is fully taken into account.



CHAPTER TWO

ALFHA-DEUTERON MODEL OF °%Li

The nucleus of i contains three protonz and three
nautrons. Inside the nucleus the nucleons behave differently -
sometimes jike independent particles and somet imes
collectively., The famous shell model is hazsed on the
independent particle concept. It is also well known that thare
are certain properties of nuelei which suggest that the
nucleons tend to cluster structnre within a nucleus. "The
pattern of cluster structure which is preferred depends on the
form and strength of the iutsraction forees, the type;ﬂf
nucleus and excitation levels of this nucleus. From the
experimental observation we know that the nuclear force
between two nucleons acts in & short range (2fm} and this
force is strongly attractive within this range but at a very
short distznce (0.5 fm} it becomes strongly repulsive. The
effect of Pauli's exclusion principle in a system of nuclear
dimersion is to allow low energy nucleons to move ;elatively
undisturbed throughout the nuclear volume, because thiese

nucleons may not be scattered into other already oeocupied

enerdy levels,



The nucleons move oompletely correlated with one
ancther, otherwise they will be outside the range of each
other's attractive forces and there will be little mutual
potential enersy among them. Alpha particle consistas of tﬁo
protons and two neutrons. These four nucleons can occupy ithe
lowest level position to the maximum. It means that the alpha
particle is a very stable nucleus. So we should expect that
the four of the =ix nucleons of ELi are to correlate as an
alpha-cluster. Next comes what happens when two eor more
nucleons are added to the strongly tight alpha particle. The

‘Li are not stable implies that one nucleon

fack that *He and
will not be bound with the first closed shell of nucleons.
Hence there can be two assumptions coansistent with the facts:
i }That a proton and nsutron simultanecusly joining alpha-
cluster leads to the destruction of the alpha-cluster and the
farmation of a complex system of six nucleons.

iitar aljpha-cluster is not destroyzd in forming the nucleus of
5Li and binds etffectively not with each nucleocn but with a
system of a proton and a nentron as a whole.

In the first case the nucleus of tiL'1 congisting of =3ix
independent particles is studied from the stand point of shell
model theory. And in the second case we can say that the
proton and neutron above the closed shell of the nuclens of
EL'1 must form a bound system. If they are not bound system,

then these nucleons wili be independent which implies that the

formation of ELi nucleus is impossible. This contradicts the



existence of stable nuéleus of bLi. Hence the proton and ‘the
neutren in this nucleus are not independeni but are enrrel;ted
strongly with each other formipg 2 deuterocn cluster. Thusgthe
lowest gtates of i1,i can be described as a system of alpha ‘and
deuteron clusters. In the @+d structure, the two clusters are
bound together by only 1,47 MeV, which means that they are on
the average rather far apart and behave mere or less like free
particlies. Now we shall study the ELi nucleus as a cluster of
alpha and deuteron particles.

Two distinct approaches are generally pursued in case of
employing the alpha-deuteron cluster model. In one case
antisyometrization effect is azsgumed to bs negligaible. Main
argument in faver of this assumption ig that as the cluster
binding energy between alpha and deuteron is samall, both the

ELi nucleus, As a

partieles move rather freely inside the
result there is5 no appreciable etfect of exchange force
between them sco that the exchange ferms between the two
clusters have little overlapping with the direct potential
term. Further there is an argument that the a+d mode: of Pl
has & meening enly and only when there is clearly expressed
iselation of the alpha particle and the deuteron. On the other
side those who take antisymmetrization effect into account
have the argument in their favor that although the alrpha
deuteron relative energy is small but it is not that small for

Fhe two olusters in 'Li so that they may be treated as tree

particles. Since the generalized cluster model 1s the

10



generalization of shell model such that in the limiking case
hoth are same. A5 such the cluster model should naturally
incorporate eppropriate antisymmetrisation effect which 1s so
vitally important in the case of shell model studies. Along
this line many works bhave been dome in the alpha-deutercon
cluster madel by the different authors [33,34,4 1.

The experimental calculation for the phase shifts of
@+d =scattering was performed by different #roups, €.£.
Senhouse and Tombrello {201 in the energy range of 2.9 to 11.35
Mev. Another axperiment was performed by MclIntyre and Haeberli
122} in the energy range of 2 to 10 Mev., In these two groups
studies the wvalue of § and D wave phase shifts are quite
similar in he energy range of 2 1o 6.7 Mev., but the wvalus of
the P-wave phase shifts are very different. Thus while the P-
wave phase shifts of Senhouse [20) are zmall zund =how no such
behavior. Narriulat and his collaborators [22] extended the
experimental measurement of phase shifts for a+d system from
10 to 27 MeV.

The elastic gcattering of deuteron by aipha-particle
has been studied by Thompson and Tang [5] with the resconating
group method in one channel approximation. In that study the
caleulation was simplified by introducing the assumption that
the deuteron cluster can be described by s:ingle Gaussian
function and obtained good fitting to the a+d phase shifts
120,21,22]. In a subsequent study |6} the same authors

introduced more representative wave functioa which can be

11



daseribed by z sum of two Gaussian functions for deuteron
mainly to clear up the ambiguities faced earlier to large
ratio of S?rber force, Wildermuth and his mollaborators (23]
caloulated the a+d S-wave phase shift by introducing
diztortion effect in the deuteron wave funection and obtained
good result. Thompsaen and Tang [24] calculated distortion
effects in &+d system by using microscoplc procedure and
cbtained good fitting to the a+d phase shifts [20,21,22].
Kanada et.al studied the a+d scattering system with muiti-
chanrel Tesonatlng SHroul methad.They have usad the muiti-
channel resonating grvoup R-makrix Ebheory together wlﬁh a
variational method and obftained dood result to the experlﬁent.

Tn the next chapter we shell describe in datail the
mathematical formalism which is pursued in the calculation of

alpha-deutercn model of 914 in the resgnating group formalism.

iz



CHAPTER THREE

MATHEMATICAT. FORMULATION

3.1 Differential Eguation

ﬁLi nucleus consizts of six nucleons - thres neutrons
and threse protons. ¥We shall consider that they can be dividscd
into alpna-cluster {a@-cluster! and deuternn-clustar {d=

clustert. Let the nucleoms 1,2,3,1 Eorm the structura of an

a-particle and 3,8 that of a deutervan where 1:.2:5 are
neuvtrons and 2,4,6 are protons.,

Startingz with the Hamilionian
H = T+V¥ Li.1.k)

where the Kinetiz ensrgy T and the potantizl energy Voare

respectively.

n
tl

. e
T = -2V -y
le:.l (2.1.4)

[

and



Nuciesn-Nuotesn tnteraction Vizgt i1s 2iven by

4 -r

Viifl = lw+mP {iF)+EP, (iFy+RE(i7)Ivid (3.1.4}

Loy
L

where w , m, B, b =zre ceoefficiants nf Wigner, Majorana,
Qurtistt and Heis=nberz exchange oOperaicrs respectbively
satisfying the relation.

w+mtb+h = 1

and i2.1.5}
w+rmb-h = 0.83

the operators Pxtij}), Py l13} being the space and spin exchange
operators for ith and jth particles., The aperator Hiigt 1s the
Heissnberd sxchange operator, 2xchanging both: space and spin

coordinates of particles i and j and viij} the common radial

dependence of the ceniral exchangz type Nucleon-Nucleon force.

The six-body Schrodinger equation is

AP = E‘F
[
or, -= ¥ Wi+ V(ij) 1 T~ET {31.1.6)
2}12:1 12;=1

where ¥ is the total wave function of the gix particle

svstem. We define independent internal coordinates p, . the

relative coordinate v and the center of mass coordinate l:l'J

14



in the frllowing way.

51 = f1_f:a I
f':+i'= [
ﬁﬂ. f!- ' g
3 4 3
P = I
P I +F, v B+, TotX,
q 2
% - B D e D v I T, (3.1.7)
A

B¥ using these realations, the kioetic energy part of

Hamiltonian H can he written as

PR i 3 4 3. 1
2 A i A A% e e A -A

We are not interestad in the center of mas=s motion which

generally gives rise tc spuricus state. 8o the kinetie enerzy

|
of the c.n motion ‘?:E is neglected. Then tle Schrodinger

equation for six particles becomes

a
- 0¥+ 2V e 48,02V 2V By vid)) 1 TR

{31.1_B)
K =Y.} s !
or, (-2 (T,+Tp) ~ﬁv§-5+i§=lvuj>l? -0 (3.1.9}

15



3 2 2.1.10

Ts = ‘;.;'1‘-1.9:2"":‘;"?:& ¢ :.
and

T, W (3.1.11)

are kinetic energy operator in the c.m system of a-cluster

and d-cluster respectively.
3.2 The wave function and the detailed calculation:

Following the resonating group formalism the overall
antisvmmetrized wave function T for six-nuclecon systed may
be written as,

¥ . A[Y, (13,34} ¥,(56) F(F)] (3.2.1)
|

k

where A is an antisymmetrization operator and 1s given by

A= [1-H(15)-H(35) ] [1-H(36) -Hida)] (3.2.2)

Her= H{ij}) is the Heisenber§g exchange operator, exchanging
both space and spin coordinates of particles i and j. Then
T, (12,34) is the internal wave functions of the &-particles

and have the from

¥, (12,34) = x(12,34)6 {12,34)

16



where %{1%,34} is the antisymmetric spin part and®, (12,34)

the symmetric space part of ¥,.

r{12,34) = %[u(llﬁiﬂ]—ﬁil)uu)][u(ﬂﬂid'ﬁ-ﬁmuw]

is the spin wave function with a&,p corresponding to np and

down spin respectively. Similarly,

¥,(56) = x{56)dy(56)

iz the 1nternal wave function of the d-cluster, F{f) describes
the relative motion of alpha cluster znd deuteron cluster.
From the eqnetions (2.2.1} and 12.2.2) the wave function ¥

can be rewrittien as

¥ = § T F(E) +[-H(15) -H(25} ~H{36) -H{46) +H{15)
+H(25)HH (36} +H {46 NP P I (D) (3.3.3}

Since 1,2 ard 5 are nmeutrons, the exchzanz= operaters Hil5) and
H{?5) effectively represent the same operation and 3,4 and &
are protocns exchange operators H135) and Hid46t effectively
represent the same operation. Hence one operator can be
replaced by the other., i.e the operators H{25} and H{46} can
be replaced by H(15) and H{36} respectively. The equation

(3.2.3) becomes,

Y =P FF(O+[-2H({15)-2H(36)
+AF{15) ({16} 1T ¥ Fi (3.2.4)

17



I
1
Ts abiain an eguaticn {or the relative wave function

Fi{f) , the nucleon coordinates must be integrated out. Thus

{3.1.9) is multiplied by ¥;¥3; and integrating over the

space and spin variables of alpha and deuteron particles, we

get

Iy 3
[ER -2 AT T - 3LV T VIS B WdT = 0

8N (3.21%)

twhere dT is = differentisl volume element in the combined

space and spin coordinates of alpha and deuteron partickes. )

Ve-Ep-Eqm | E-Ey-Ey)

x|,

or, IT:TEI-% (Te+ T, -%

(3.2.6}

r L vtig) sl viin - V(i) 1Pt = 0

1234 1234,54

where E, and E,; are binding energy of alpha and d-clustern
|

respectively. Combining equaticms {3.2.4) and {3.2.8) we get,

e M : .
[ 2 ACENE AT S 3R g B, (B-E 2 +i=§ V]
ey _Iﬁ - _3 B _
R FIOT. N A AEE-NT RSP B E+i_§_6vtij}]

[-3H(15) -2H{36) +44(15) H{(36) 1T T P(INdT = @

11;61’(1'.1} = 1£4V{ij} + %%v{ij} + 123);'5‘5?{1;;) 1

18



F|
or, fERi-Lr -5 & vUMEELD S
2 .
ferwi-2 T,,-Ed+§5 V(1711 T F D) T

f\r Td[ai_ﬂv* (B-B -E) ] ¥ ¥ #(2) dl

Y y _
f? Tdm%sﬁvtum,?;{:wr

1N ) SN
¥ —— i o Ry -5
f‘!l’ i l: T -2 VeiBe L VU]
[-2H(15) -2H(36) +aH{15) H(36) 1 F ¥ 7 (L) dT'=0 {2.2.7}
Then +the variational alpha and deuteron equations are

respectively

.. K Y v
Pel-FTaEer, viijy} P ol = C
f M 234 (A.2.8)

IT,;E*—-—T E,,+E V(iF11¥ 4l = 0
13.2.9)

From equations (3.,2.7),(3.2.8) and {3.2.9) we gat

3n 3 3 B
(22 Ve m-B B P (D) = [T~ (T TP B AR

15



[-2H{L1S) -2H{36) +4A{15} #{36) ] P P F(Z) T

+fT;T;[1A“::E Vuﬁ. ] [-2H(15} -2H(36)
+4 H{15) H{36} } ¥ P F() a‘l‘+f‘!l”..‘i'.,,{123_);‘1:r <5

VIN1IF.F 2T (3.2.10)

After finding the wvalue of spin operater, the eguation
{3.2.10) becomes,

(289« 55,51 ren -foiei- Lz

x|,

£xa | 4w

Vi-8] [-2P_{15) +F_{15} P (16} 1 ® O F (D) dP

o] L
x|,

T
s

1247, EEVUJJ ] [-4H{15) +4H (15} H(36}]

+fw;w;{

P ¥ (I dT+ E':'P;[u?; SEV{ij}]T.‘PdF{f}d[' (2.3.11}

where dP is differential volume element in the space
coordinates of alpha and deuteron perticles.dlso We consider
that the Exchanée effect between two protons and two neutrons
is same and hence one can be replaced by the other. Ia that

casc



v-f'r;'r;{[,

KFIVUJH (-aH(15} +4H(15) H(36)] !

‘Fq‘l’ﬂfﬂfu?; g VD VE TP T (3.2.12)
From equaticn {3.1.4) and (3.2.12] we get

V=V,,f?.?d { i<);=1 [w+mP, (1]} +bP,{(11) +hP (171} P (1) ]

[-dH{15) +45 (15} H{(36} ) v{if) ¥ ¥ F{F) *13%:, 56 12 |

+aP, (173 +bP, (1) +AP (1F) P, {ii) I w({if} ¥ T F(I | aT

or, v-vﬂfw;?; i?;:l-.r(ij) [ { w+bP, (1) } +mehP, (1) }

P (if}] (-4A(25) +aH(15) H(36} ] T ,PF(F) +8v{15)
[w+mP, (15} +hP, (15) +MP {15) F {15)] P, FF( } dT

integrating over the spin variables of alpha anz deuteron

particies and simplifying we obtzain

Y = -2V, (do-m2b-2h) [Ri0w(15) 9 O F(F) dF
0 o

+Vaf¢;¢;[—e (w+m) v(12) +2 {4m+S5h-2b-w) v(1i5)

“2{o+mbeh) v{16) -6 {w+m v{23} +2 {(Zm-b-3w)
¥{26) -6 {w+m) v{25) -2 {w+m+b+h} v(56} 1 P, (15)

O 0,7 (2) dEY, [0.0;(2 (20 +2m-b-h) v(12) +

{@+m+b+i)v{i3)+2 {w-3m-h+2b} v{15) +2 (b+w)
vi{16) +lw+b+mth) v(24) +@-3mh+, bl v(56) }

P(15) P, (36} B F(7) dP (3.2.13)
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Then the eguation {3.2.11% can be written as

2 | 3.2.14
(2L V(0 +(B-E,-B} 1P(2) = [R(2, Y FOE) O { !

Where E#{r} is the direct interaction between the clusters
originating from the identity element of the antisymmetri-

zation operater A and 1s given by
Yalz) = EV,,{Am—mﬂb—gbjfﬁ;@;vug,)q'.'.;.d (3.2.158)

The kernel K(F,7/) represents the non-local interactien

between the clusters and i= given by
y 3n
Kz, = f@:m;{uiwgni-i-ﬂ-ﬁ-m [-2P_ {15}

+B,{15) P, (36) | 0,0 F(£) dP+Y, [@104(-6 (w+m)

v(12) -2 {@+35--4m-5h) V(15} -2 {w +m+b+h)

v{la) -6 (aw+m) v{23) -2 {(3w+b-2m) v{26) -6 {@+m)

v(25) -2 (@+nrbrh) v(58) } PA15) O @7 (D) dP+V, |

.03 {2 (2w+2m-b-h}v(12} + {w+m+b+h) v{13) +2
{o-3m-h+2b) v{15) +2 (b+w) vi{1l6} + {@+m+b+h)
vi24) +2 {20+2m-b-h) v(25} + (w+m+b+h) v(56) ]

2 Q{1 dP {3.2.16)

P



we consider the radisl dependence of the MNuc

interaction v{iJ) as

viif) = ___vne—ﬂf;j (3.2.17}

The direct part vc{r} of the coulomb interaction is also

added to Hn{r} to give a total direct Part. Thus total direct

part is I

Vplr} = v () +v_(1) (3.2.17)

From the equation (3.2.14) it is clsar that in order to khow
F(Ff) at the point r in space,it is necessary to know F{F/) at
2171 other points r’ in space. Thus squation (3.2.14) describes
& nhonlocal process. The kernel of the integral equation
K(F, FY, involving both r and r’ represents a nonleocal

interaction and is symmetric. We can separate the partial

waves by making the following expression in terms of iegendre

polynomials

{3.2.19)
P(Z) = %g £, () B, {cos8)

and
1 [ ]
K(?, F) = 21+)k (r, X' cosl
{ } 4“1'1'!];:0[ YK, J = )
Thus ;
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kylr, ) = Enr:’f_llﬁ'{f. #7) P, (cosB) d{cosb) (3.2.30)

Where & is the angle between # and I/ . Now combining equation

fa.2.14), {(3.2.18), (3.2,18) and (2.2.20) we obtain

2
{ :}I‘!i{dd::_ l{;—l] +B-E ~E~V,{r) -V (r)]1 £, {r)

=fu.k1{r':f} f;(r"}dr’} {3.2.21)

Where M is the reduced mass. The wave fTunctions for alpha

particle and deuteron are respectively.

4

¥,(123¢) = exp[-2 ¥ (£,-F,17 (3.2.22)
2} 2.

and

[ 6
T (56) mexp (-2 T (2;-Rp) %] +caxp[—%2: (2,-2°]
i=5 =5
(2.2.23)

where R and Ry are the pceition vectors of the center of mass

of alpha and deuteron cluster respectively.The direct

potential ¥y {r) {6] in eguation {(3.2.21} is given hy

4

L/ I R
Vo(r) = -2 (8w-2m+ab-ah} ¥ K, (-T_) 2 ()32
i Gy .'.'.E=1 1 aa? 211

4ai,; ]%Exp[— d4afl r?

dad +P(2a+3d;} 4““"1‘*“2“*3*‘-1}]

[

(3.2.24)
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where
4 o 2o 3 {3.2.25)
L R -
% 12=1 T aw? 234 |
and

jﬂl'l,Kz-KJ'E,K‘-E‘z

_ &y, _ (3.2.26}

The coulomb potential \Tctr} {6] in (3.2.21) is given by

2k, 2m+34, {3,2.27}

4 2 2 1
v i) = ”’e’?: PR T B JTELLLI P
CU =1 4“'1

Where z and z' being the atomic numbers of the alpha and

deutaron clusters respectively and

¥ig = "E_J.uexp{_t::'dt {3-2.23}
ﬁ a
The kernel [8]1 Kk {(r.x) is written as
1 - -3
'f ; — . - — Pl . 1

kr, " G;.Ef‘ AT VY, +EZ) (3.2.29)
Where Ff is given as

Ef - E"‘E“fﬁld ‘ {3.3.35}

withk
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[

3
- g a .3, e{z-1)e*,2a.3
E = 5gat -6 (m+w) ¥y ( +2ii} + 3 {'} {

L

L2.31)

2
bed 3v;
Al rzy .-
P [EH Vi 24,

qh:l
It
][
=9
" A
"

[ [
Ly IS
e

I
E
[EIpe

}

LR 2 21. X
-{m+m+b+h}V{l zﬁ}““zzﬂe (=57 (3.2.33)

and the quantities I{E, Yl and Et are defined as fellows

Eai+9v}
¥, = 26 ety a9, (S Tsal r

z 1 3 3 4
- KETT-""ECE} g, {_EC1} + (ET;E.:lci]' rr!

3 a 25
T, {'Ec.t} Jexp ‘:‘3 (a.z2+D,r?) ] -e, [{T“

___3q* | 2@¥, 132
3l +m-v, a+v, 27

af{r*+r2)ls, f-TEc',}

_208 5 ¢ Ta __ 2 2

ﬂurrT( ::,.}je:q:-[ (a,r*+b,1?) ] (1.2.33)
Y, = ol - (6w-6m) 31{*?2%}&:9{;33- (a,r3+b, 4} 1

& {-2w+Bm-4b+4h) 5, {——c.""h} BXp [-— {afygr2+p/ g r?} ]

+€5s (~6w+dm-2b+61) 5, --% ol ) @XD {“% (al, ;7% +b726r"))

vele (-20-2m-3b-28) 53 (- 2 /i) (exp [~2 (@l x4 2]
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1
o
[T

L....tl X

+E_xp£—% l:b"llirz-ka‘fli :’] ! +¢12{-6m—5m13 [

(o[- 2 (2, 124, 0™ ] vexp [ 5 (B +a'0 ™) 31

e i€}, (2w+2m+2b+2h) +8i, (@ +tm+b+h}] 5, E_% )
P2 F 2 2 _ 2 2
exp - £ {a,ri+h,r} ] +eis (dw-6m-6b-20} 5, (-2 &s)
Z 2 2 2 -
E:{E[_T{ Sr h‘---'t" }]*e:_::; [4m+4:n_2b_2h} SIE_ECE.:#"!
-

texp (-2 (abyr#+Bhr®) | veu -5 (Bl r*+alr™) )]

-

{2.2.34}

c,_}expl-'— (a,r?+b ™ =y ]

o -—ar+ *)}
} g { by (3.2.35]

vith 5;{w) !—%Jj+_1 {wrrfy and
2

_dx - i -
Tl{u} '-"E" [JJ,,__% Emﬁr") "WJI,% {W‘I'{}}

Where Jﬁlx} iz g hyperbelic spherical Beggel’s function. also
in =quations (3.2.25),{3.2.30}, !3.2.31), (3.2.32), {3.2.33},
(3.2.234) and {3.2.35)} the following definitions have been

made:

\‘1‘\'2=ﬂ.1, \\‘3#?“&2

= (3709 e,
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]

a,=ti}3“}=t } 2 (B

palia

3 E"'V'J 211"“"’“1
a,l:: gi -] =l_g:'._....JII I‘
sa+3h,’ "1 6m+9d; .
"hl
AN TTTY

8
az=h15%¢r Cln_iu‘
2a?

28" (aZ-dah,+20v,-2v A HvieAY)

2

v

. 1
3{2a+3d, j2

fa?-120d,+6av ~36v 1, +9v1+I6A] ) :

2
i0 (@h=dav +dv;A;+virdr})

T = —
5 fam+3d))?

vi

W{ZE"E*EUE]’ 35“\“ 35?_{11*9\“1‘*351}
TrIAg

21!': 2 2z F
T = & {2al+2ad t4oV, 2V A v2¥i-4A3)
vi

Yo veTmE (-10a2+4Bal,-2davi~72v h +18vi+T21})
i2a i

Sala+v,) (24,+a-v )+ {12a%+2dad +4v A, 2v%)
3{@+v ) (21,+a-v,) +3P{2a+24 ;)

2
a;; = big=

_Sala+v,) (24,+a-v,) +f (1242+83,-B1,v +4v])
3(a+v,) {24, +a-v,) +IP (20 +24,)

) 2a{@+v,} 2
% £2a[¢+vi}+ﬁi3¢+vi}]
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a+2f
1
B
agaﬂ
8
.b1+EB
16
+ =
4 3
2a?+3ar, ]%

2¢+3ak, +P(2a+2i))

aff +2P (6a?+Ta@d +2¥ A -v])
a{6a+Sh ) +p{6a+6L,)

_ u:gfzﬁ{6:’+?u1i+2¥£1i—¥i}

2 (6a+3i,)+P(6a+6i)

ah,—aB (6aZ-dah,;-4d v +2v])

2 (6a+dA,) +B {(Ga+6A)

2a+311_}%

¢ 2a+3i,+6k

£ 4P {10@+241,-12v;)
6a+3 A, +18p

g+ (3da+244,-12v;)
6a+94,+1Rp

h +f (Ba+d8A -24dv;)

FX+IA,+1BP

is



L 2a2+3ad, 3
207364, (4a+22,)

e af,+P (L0 45484 -20@v - +4v A, ~2v])

Bz @ (60104 ) +P (122 +64)

1 u§'1+ﬂ (1ﬂuz+6¢11+4¢ui+4'ili_2,‘i,
Foop GEﬁEﬂili} +ﬂE12ﬂ+ﬁli}

eh +p{(2 Dair24ad,-16av +8y % ~d¥]i)

k.
(

G (6C+94,) +P (12&+64,)

3
2

a+v, = B a
t?_z - fm] *, ¢§4 = [l+2ﬂ1

{arv,} (ZA,+@~v;)

T
- F
%15 [ {a+¥,) (24 +a-v,) +p(2a+24 )

]

N o2 {m+v ) +af (31a+2lvi)
Ga{a+v,) +3p(3a+v )

10a2{a+v;) +af (19&+9v )

bz

"‘3 6a (@+v, ) +3P (3m+y )
2 = “1'5'12{1*"{:-_] +af {40z +24% ;)
1 Ga (v} +38 (3a+v )
with

£, = 3a3+17aA-6wV 64V, -3v]
g = 3@35aA r6av +61 v ~3v]

b = 6ai+dal +12v A -6V}
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CHAPTER FOUR

PRESENT WORKS

Now if one follows the resonating group formalism then one

is to solve the equation (3.2.21) namely

[

2
A g2 10141} % cpem RV v} -
N { iR } +E-E ~E4~V,(x) -V (D)1 {1}

o | L

=-f-.k1 {r,r’y £, (zH dr’
2

numerically to obtain the desired result. In the first, the

Kernel k;(r.z) is pon-local and non-separable in character.

Further for the tiny ELi nucleus the term k}ir,zJ} conksins A

qumber of terms as can be seen from (3.2.29! and after words.
The numerical calculation of the above equation may not be too
difficult for this case., But for nuclei of higher mass number
wheie more znd more nucleons will be involved the apalytical
ealculation of +the Xernel will be very lengthy and
complicated. Im that case numerical ecalculation will get
unmanageable. That is why although the resonating group
formalism has been in application for a long time and the
results Ffollowing this approach are good, the detailed

calculation following this method hardly passes the nuclei of

3t



15-22 nucleons.

In that ocmse we see that we fan not a2pply  this
heautiful, elaborate and systematic method of rescnating group
formalism except toc 2 handful of light nucliei for ouclear
gtudy. S0 in our present study we are Lrying to test how this
non-local, non-separable part namely, Kernel klfr,r'} can be
replaced by a simple non-local separable potential namely

e

Ae'"e™"  {A,y,,vy,,4T6 parameters). So that not only the

calculation could be made manageable but alse nucle: of any
number of nucleons can be studied with this rescnating group
formalism. We have fully taken into account of other sffects
of resonating group such as direct potential term and coulomhb
energf term cbtained from resconating group formalism. In our
prasent study we are followiny the middie path. aAs stated
sarlier in the cluster model approach one group totally
ignores antisymmetrization effect whils another Zroup takes
full account of 1t resulting to inakility im calculatien of
higher nuclei. In ocur present study we have taken the direct
part of nuclear potential znd coulocmb energy From
antisymmoetrization and replace the non-local part by
phenonenclogical potential.

In the present study we shall take the wave functions

for he and deuteron as

4
& = awpl-=Y (P-E )%
] 221 i ™= (4.1}

iz



and

6 ' A
- _2 -2 -5 Y 4.2
&, = expi Ef‘;ﬁ(fl Rd}}.+ C expl 2?:::5{.?1 ) 21 (4.2)

for alpha-cluster and d-cluster respectively with

@ - 0.514 F* (4.3)
and
a, = 0.157 F°, &, = 1.137 F-2 and C = 2.747 (4.4}

N-H Potential is given by [B6],

vy = -V, (w+mP+bFPi+hPi) exp [-pr?] (4.5)

_I'I-
Vy = 72.98 MeV and p =0.15 F“ (1.6}
From the expression of Vh!r} and Vﬁlﬂ one notes that the

constants @, m, b, h occur only in the combination of {3.1.35)

and

ulj = szer'ne: + 1 1_!'T}“"Fs_ﬂina-l:l'le t4.%)
where vnwﬁris given by potential (4.5) with @ = m and bzh znd
vnnﬂxh given by potential {4.5} with m=2b and h=2@.

The wvalue of ¥ is 1.004 as given by Thompsoni{f]. With the
above consideration, the integro differential equation

becomes,

2
2 4 _20I4D) y vgy, (2} V(1) ) (T

[ dr? I

o |w

- - £
-J' Ae W T E (rf)y dr!
Lt}

(4.8)
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_ where the expression for Vﬁ{r], Vﬂlr} ars given hy eguations
{3.2.24} and (3.2.27) respectively and E is the relative
energy of m+d system. We shall calculete the phase shift for
different energy levels by employing thE': numerical method

which we have described in detail in the aext chapter.
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CHAFTER FIVE
NUMERICAL, CAT.CULATION
-y’

Generally the kernel k,{r, I =Ae™" e on the right side

f

of eguation {4.8) decreases rapidly as r ar r’ incregses to

enable us to replace the infinite upper limii in the integral
by soma finite wvalue R, To solve the integrodifferential
egquation (3.8), this eguatien can be converted inteo a set of

gimnltaneons-linear-algebraic eguations following the method

of Robertscn[28] in +the rTegion I s B, This method is

described as follows:

The eguation {4.8) can be written as

)
(22 1 ;:i_ e RS AR AL AL

- f:x}{r, ) £, (rhydr'+Ef ki (r, ') £(x") ar’ (5.1)

where E is the total energy of the a + d system 1, e E=F/+E +E,

and



¢
kilr, r') = AeTF 7T

Kir, r) = Bt ot (5-2)

At the peint r = r , the integral and derivative are réplaced

by sum and difference respectively as follows:

N
f:‘k}{rn.r’} £lrhdr! = Y Takp(r,. o) £,(r) (5.3)
=0
. N
[, ) £itrhar = 3 T2k (2 xa) £, (') (5.4)
’ =0
and
82f, e mr(ae - B Y (5.5}

12 240

Substituting (5.3), (5.4) in equation {(5.1) we obtain,

h!frfn,,_ [E-Y _an .Hl:l] 1£,

38
8 M EoogM

N N
= ¥ Taki(r, ') £,+EY. Takilr,. ') £,
=0 =0

where Y = V,(r))+v_(r.)

This equation can be written as

N
fﬂn"‘unfn = EGlen.nf. (5.6}
m=
P
. BM .y o _ 38 1(1+1) - =
where u_ ?ﬂ:[E‘ Y, _B—JE“-;:__] and Tp = To = T,

a6



- and

BM
= LKz, X' +ER (10, T S '

Also the egquation {5.5) can be writtsn as ,

Sf ‘h1{1+ }f"‘ +e

(5.7

Combining {E.8} and (8.,7) we gef,

N
l!l- —hE{J.."'-'l—-—.r{ Uf"‘z Tlr‘can-mj
m=0

{neglecting other terms]

or, fm-2f5+fn-1—-~i:~;- (U, £oo #10U_E, b U, £, ) i

h? X
t Z {ankn-l.nf--"lnkn.ufm*'iﬂ n—lfﬂfm}
12 22

or, {1+ A JE {2——-—-h=u]lf +||,’1+'ﬂ ) L
r Eunu} o+l E R n-1
k3 ¥
- ﬁ" T Eka-ﬁl u*lu‘k n-i l} fn
m=0

Then by apply.ing the houndary conditions €, =0 and f,, =0

the above equation becames

DA gy n_l——[ZDH+lﬂ{f+—— -EN] L,

ﬂ—l i)

'E'F:’ ] fm:.

1 -
S5 WP~ Xy ¥

+_ [M { nl-l
Tprt

T T, |
= D—;’IIk;—l.1"'1'3}5:1.1"5;1-1.1“'3{k:ﬂ.l*lﬂk:.z* SR A

ar



T
a [kn -1, 3+10kn st 1. z"'E{kn-:. 2"1an 1"‘3':::*1 21 L,

+

T,
+ E;-fE.i:i_;,;,+1ﬂk.§,,+k§.,,,3+£'{k2-1,,+10k§,,+ IS B I A

- ' 5.8
b =2 L, gt 10K, oK e By w1 0KD, etk ) | £y (5.8)

3?} i2
A=1{1+1 grnd H=* ==
aM’ { ) h? I

Where D=——o

Substituting n=1, 2, 3.....1in equation {5.8) we get a set
linear algebraic ecquations

—[ T, 00k, +k;, +B{ 10k, ,+i5,,} I~2DH-10 (¥, +——E'}]f

..,

+

D—;E*T;{lﬁki'_;+kiz+ﬁélﬂkf_z i HDE- {1?4_ -EN1E,

1'1

+ D—} [~Tyi104 ,+kE ,+B{10KE 4 +k,, 35111 £,

. .i% [T (10K} ,+k} +Et10K +k2 DN L,

+ o [-T10k ok BXL0KD, i )] £ =
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1 i r{ki +:I.ﬂk; ,_+k, 1+E’Ek,_ \+10k) vk} Y eDE- (T, e —E‘}If
I'-._

+ -ﬁ:!ﬁ{—Tziki'_,+101c,1_,+k}_,+3{k§f,+1uk§ln+k§,,}}-ZHH-JEI{Y2+_‘S‘:‘ -E‘}]f, |
2 _

|

I

¢ -0 010K 51K st B, 10K+ ) b DR- (1 + R - 1
. I

L [~T,lk +10k; i +E(K] +10k] +k3 N F

DH
+ ——— e ——— —_— — [ [
+ - - - —_——— ——— —— -
DH [-Tylky p+10k; gthy g+E(KkS, w+10K3 pid N £=0

D—lH E-Tl{k;,l'*lﬂk;'l*_k:"1+E{k§'1+lﬂk§:rl+k‘1’l) 1 £, |

+,.-.[ Tkl s 10k} ekl +Eik] +10k% ,+i] y}+DH- (y,+ 28 -E‘)}f
3

+ L pomkd  r10k] Rk HEUE 01042 K 0120010 (Y, + 2R g0 | £y

I,

+ “_Elﬁ {-T,t{k;"‘-ﬁlﬁk}*‘ kl JHEKG, Y10K] (RS O HDH- (T, *E':" -EN} 1 £,
.

+  —— - ——— = pmm mm— ma——-

+ —— — —— — —— — ——— —— — ——— ——

ﬁlﬁ [-Tyk} y+10KE yrkl o+ ELRE o+ 10K2 4 k2 N £y = O

and so cn
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Phe integral invelving the kernel function is evaluated by

Simson formula. In the region r>R, is obtained by solving the

equation {4.8) with a method given by Fox and Goodwin [29].

The function £ (r} will be matched to couleomb function at &

distance which is large encugh to fulfil the requirement of a
gimple method of calculatiom for coulomb function given by
Frogherg[30].

Numerical ecalculation of phase shift is performed from 2
ta 18 Mev for the incident energy of a+d system in the C.M.
System of each partial waves for 1 = 0,2 and 3 by adjusting

the parameters A, B. ¥,, ¥;. B, and B,.
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CHAPTER S1LX

RESUTLTS AND CONCLIJSTONS

Using the wvalue of width parameters a, =0.137 a, =1.137

F* and C=2.747 in equation (3.2.3.2) the binding emer#y of
deutaron is —-2.04 Mev and corresponding deuteron rme radius is
1.68F. These values are in #ood agreement with the
experimental values -2.2Z Mev and 1.93 F.

Scattering calculation for the a+d system will be made
in the range of the bombarding energy upto 18 HMeV im the c.m
s¥stem. As was mentioned in the previcus section, the

paraueters A, F,¥,,¥,;,f, and P, of the kernel functicn are

adjustedrtu yield a besl agreement with experimental results.
The results are given by the curves in figs. {1}, (2] and {3}.
In this figs, we have also given the experimental values of
the phase shift as obtazined by Melntyre end Haeberli [Z21] in
the energy range of 1.3 to 6.3 MeV¥ and by Derriulatel [22] in
the enerdy ranges of 6.7 to 13.2 Me¥. The calculat?d phase
shifts for lzo 1is shown by the three Solid curves in fig-1
which indicated by curve a, curve b, and curve &, where the

parameters A,B8,¥,.¥;,B, and B, are Chosen to have the

11



fallowing values

Curve A B ¥, ¥, B, g

a -0.88 -42.49 0.238 0.144 0.795 0.8025
b -0.88 -42.48 0.125 0,124 0.695 0.762
C 8§.00 54.00 0.247 0.538 0,785 0.557

Here one sees that, a-curve i=s in good agfreement with
experimental results in the high enerdy region but poor
agreement in the low-energy region, c-curve is in hest
agreement in the low-snergy region. Among thess curves b-
curves is the best fit with experimental results over the
entire energy ranges considered. The calculated phase shifis
far 12 iz shown by the solid curve in fig. 2, where the set

of parameters of kernel are glven below:

Curve A B \ £ 12 B, B

3 -0.348 0.145 0.255 0,343 0.256 0.249
=1 -0,5948 0.145 0.255 0.333 0.256 0.269
c -0.948 0.075 0.165 c.183 0.201 D.23%

Here it is seen that, the phase shifts for 1=2 EE?EE quite
well with the experimental results in the losi-energy regicn
but poor agreement in the high energy region which goez down
ward sharply. In the 1=4 case, the Tesults is shown by the
solid curve in fig-3, where the value of kernel parameters
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A B, Y,.v,.:8, and B, are given below:

Curve A B Y, ¥, B, B,
a - 88,0 88.0 0.228 0.883 0.985 0.597
b $8.0 88.0 0.228 0.879 0.976 0.593
c 8.0  88.0 0.204 0.784 0.895 0.537

It is seen that, the agreemant between the calculated and
experimental values is satisfactory.In the figures (1},(2),
and(3) we have also given the comparative results of ours with
those of Tang and Thompson by dashed curve for 1 = o, 2, 4.
So wa see that in our present study we have fully taken
inte acccunt of the direct part of the interacticn (both
huclear and coulomb calculated from the exchange of particles
and reptaced the non-l1oca’l non-separable kermnel by a simple
non-iocal separable interaction. This simple separable
interaction gives us good fit to the experimental results. So
it is an encouraging sign that such a simple separable non-
local, interaction can do the needful for the non-local,non-
separabla kKernel. In that case this sort of calculation
following rescnating group method can be extended to any

nucTeons of higher mass number.
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