
EQUIVALENT POTENTIAL FOR ALPHA-
DEUTERON MODEL OF 'Li

BY
MD. ABDUL MALEQUE.

A Thesis submitted to the Department of Mathematics
,Bangladesh University of Engineering and Technology,Dhaka in

,partial fulfilment for the Degree of Master of Philosophy in

BANGLADESH UNIVERSITY OF ENGINEERING
AND TEQINOLOGY ,DHAKA-1000

FEBRUARY .1992
1 11111111I/l1111111!11111I11

1!lS321Cl#



The thesis titled "Equivalent potential for alpha-deuteron

model of iLi " submitted by Md. Abdul Maleque,Roll nO. 860H'.

Registration no. 85064 of M.Phil. ( Mathematics) has been,

accepted as satisfactory in partial

of Philosophy (Mathematics ).

BOARD OF BXAMINERS

1~J,J&)d,A
D~. Syed Ali Afzal'7p'fY

Professor &; Head
Dept. of Math.
BUET,Dhaka.

Head,Dept. of Math.
BUET,Dhaka.

~
3.---- ----------
Dr.M . aker"l':'",h
Professor,Dept.of Math.
BUET, Dhala•.

4.---
Md. i
Associa
Dept.of Math.
BUET , Dhaka.

5. --~-'""'---~
Dr.Hasna Banu
Professor
Dept. of Math.
D.U. ,Dhaka.

fulfilment :fer the Degree .f Master"<....---__ _ _. _ 'w_

Chairman
(Supervisor)

Member

Member

Member

Me••ber
(External)



I would like to express my sincerest gratitude and

indebtedness to Dr.Syed Ali Af.:al, Professor, Department of

Mathematics.BUET for his invaluable suggestion constant

inspiration ,careful super;is ion and helpful advice throughout

this research work.

I am indebt,ed to all my colleagues. especially Dr.M.d.

Zakerullah ,Professor and Md. Ali Ashraf,Associate Professor,

Department of Mathematics,BUETfor their valuable suggestion

and encouragement throughout this work.

I am also grateful to Md. Amanullah, scientific

officer,Atomic energy center.Dhaka who helped me much ~n

procuring many Journals from Atomic energy center library.

Finally thanks to Md. Sohrabuddin and Md. Hossain Ali for

typing this thesis.



a

~e have presented the formalism of m+d cluster model of

'Li following resonating group method. In this procedure,

non-local, non-separable Kernel appears. The

appearance of this kernel broadly involves:

First, the calculation of analytical e"pression of the KErnel,

Second, solving the integro-d1fferential equat.ion containing

kernel by numerical method.

In the first the calculat'._on of the kernel involves huge

(complicated) work. In th" present work we have shown the

formalism in a bit detail deliberately only to show how big

and laborious the calculation are for si~-nucleon 3ystem of

'L,. not to speak of higher nuclei. That is why although the

resonating group formalism has been in application for a long

time and the results obtained are good, the detailed work

following this method hardly passes the nuclei of 15-20

nucleons.

In our pre~ent study we have replaced the non-local nOn-

scp'uable kernel by a simple non-local separahle kernel

l<eeping the other t"rms namely direct potential part and.

coulombpart as obtained from the re>;onating group m~thod into



account. The results obtained agree well with the experimental
re:;ults.This she',.,'"th"'L resonating group formalism can be
extended to any higher mass number in a modified way.
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INTROOUCTION

Numerous experimental observations and thea rat i ea 1

calculations have confirmed that the nucleus is built up of

protons an neutrons. One of our main pursuits in nuclear

physics 18 to understand the nature of the force that holds

the protons and neutrons together. Experimental lnvestigations

have shewn that the nuclei exhibit varieties of complex

phenomena. For an explanation of these phenomena different

types of nuclear models have been proposed. Some of them are

liquid drop model, :ompound nucleus model, shell model, alpha

particle model, cluster madel and resonating 'Jro,",;.. model etc.

The liquid ,jrop model is perhaps the simplest "r all

nuclear models. This model was proposed by Bohr and CS"lker

who compares the nuc 1eus t" ali qu id drop, the nuc 1eons

corresponding to the molecules of the liquid due to

several points of similarity. This model has been utilized

with a certain amount of success in the interpretation of

intra-nuclear forces and of nuclear transformations and in

particular of nuclear fission.

The compound nucleus model was proposed by Bohr. This was



specifically introduced to describp. the complexity shown by

the energy spectra of manymedium-heavyand hea',-y nuclei. It

was based On the belief that, since nucleons ln nuclei

interact strongly with one another, their motion must be

correlated to a very large extent.

The possibility that atomIc nuclei might exhibit shell

struoture was oonsidered in the early 1930'" but the real

success of the shell model dates from the year 19~3. The basic

assumption of the shell model of the nucleus is that a

sin~le nucleon travels within a complex nucleus in a smoothly

varying average field of force generated by all the other

nucleons ln the nucleus and that each par~icle moveS

essentially undisturbed in its ownclosed orbit. In the shell

modelthe nuclear potentlal is taken as static and spherically

symmetric and it gener"tes a complete orthonormal set of

single particle functions ".'(rjl where the ri indicates the

position, "cin and charile variables of nucler;ns and Vi

denotes the quantumnumbersof the state. Anyfunction obeying

the same boundary condi tions as the"" eigenfunctions can be

uniquely expressed as a linear oombination of them. This model

has been successfully applied to explain many nuclear

phenomenabut is not true for manyother properties.

Wheeler et. al have proposed the alpha-particle model,

according to which the nucleus contains alpha-particle at

least as substructure" ,,"llhough they cannot maintain their
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identity for a very loni! tim'O insid'O the condensed nuclear

matter, but will dissolve into more elementary particles. The

two protons and two neutrons which make up an alpha-particle

can go into the same spatial state with the four different

spin-charge combinations plplnlnl without violating the Pauli

exclusion principle. The wave function of the nucleons will

thus overlap completely, giv~ng rise to a large binding

enerlY. The basic assumption cf the alpha-particle model ~s

that alpha-particles can be regarded as stable subunits of

nuclei. At the very least this requires that there is a

pronounced clustering of nucleons close together 1.n such

subunits i.e. there is a large probability of finding a group

of nucleons close together and well separated from other such

I&roups.The fi~'st and the most obvious success of the alpha-

particle model is in the pred~ction of the binding energies of

nuclei which can be formed out of an integral number of

alpha-parti~les.

l't has been knownthat there are certain properties of

nuclei which sugges~ that nucleons tend to cluster in groups

within a nucleus. This means that the binding forces between

nucleons in the group have more effect than the binding forces

between t,hese nucleons and the other ones in the nucleus. The

basic assumption of the cluster model is that the nucleons in

the llucleus form a group of cluster among them instead of

independent entity of each nucleon.

The resonating group model was proposed HI 1931 by

3



Wheeler [1J '"hich suggests that the neutrons and protons in

~he I'lUclec:s as t;eir.5 divida:: i"tc '/arious groups which do not

maintain their identity forever but undergo continual changes,

redistri but i 1'19themse lves into new groups. It treats correctly

the motion of the total center of mass. The wave function of

the composite nucleus is writt-en as a totally anti symmetrized

ccmbinat-ioll of t-he wave funct-iot1s for the various possible

groups r1ucleons. In the resc~ating group method one obtains

for the relative motion of two groups an integral equation in

which appears an interact~o~ generated from two-nucleon

forces. Jr.1S consists of t,~,o ;:larts a direct part which

invol'/es nc partlc;e exchanse cetween the t'o'IO groups and

arwr.:1er part a;;piOanng -,1'1 t,hiO form of a non~local 1'101'1-

separable kernel interaction containing terms corresponding to

the axchange of cne, two. or ~cra nucleons tetween the groups,

Pese>nating gr:Ju;J ~ethod 'o'Iasemp,oyed ~y ';ljidermu~r. [2J Van der

spl;y[ZJ, O:<a~ or,<.1Par:< [4J ar.c T:1cmpson and Tang [5,6] to

study the problems of nuclear scattering and reaction for the

case of '8e,
,
'Be,78e, The result thus obtained

agriOed generally quite well with t~le experiment. All these

cases deal with nuclei, because of oomputational

diffjcu1~ies, H1 particular i:1 handling the non-local, non-

separable, large size Kernel.

,r,e nuclear cluster structure was also described by

~arge:1au [7J. This cluster structure was extended by Bloch and

arin~ ~3J who fQ,muiated the so-caiied alpha-cluster mode1



shell model- wave

as llC,iiO, lONeetc.

oscillatornarmonlcthrough

function. The properties of nuclei such

have been investigated 19,10,11, 12J by utilizing alpha-

cluster model. This alpha-cluster model has been further

extended by Hill-Griffin Wheeler [13,14] by introducint

generator coordinate method which is equivalent to the

resonating group method. The purpose of these extensions was

the dynamic description of clustering phenomena in nuclei.

With this method it is possible to study nuclear bound state

structures, scattering phenomenaand reaction problems.

The formation of the microscopic cluster theory was

described by Wildermuth [15J which is based on a variational

principle, with the Hilbert space spanned by a set of non-

orthogonal basis wave functions. Microscopic cluster theory

has certain :.mportant characteristics which distinguish itself

from other uethods. These characteristics are:

It utili"e" a N-Npotential whioh e'~plains the two .'hl,-,leonlow

energy scattering data.

It treats correctly the motion of the total center of mass.

It ('Jonsiders nuolear boundstate, scattering and reaction

problems from a unified point of view.

It can be used to study oases where the particles involved in

the incoming and outgoing channels are arbitrary composite

nuclei.

The formulation of the mi('Jroscopic oluster theory has been

determin~rl b). the resonating group method or by generator

5



coordinate method. ,nasa two methods are equivalent btit- may

not be the same. They are founded on exactly the same physical

viewpoint but only difference between the choice of set of

non-orthogonal basis wave functions. The microscopic cluster

theory has been found to be successful in the case of lillht

nuolei.. Beoause of above features, the oaloulations are

generally not so easy to perform. In spite of this, many

calculations have been performed by using resonating group

methodand generator coordinate method. The elastic scattering

of various nuclei has been studied by Ksmimura [16] and

Thompsonand Tang [I 7J with single-channel resonat1ng group

method formulation. And also scsttering has been studied by

Fujiwara [13J by using generator coordinate method. These

results were in good agreement with experimental f1ndings.

In the earlier studies 'the resonating g';oup method

matrix elements are computed by the so-oalled cluster

coordinate technique (15). But this t~ehnique wa~a laborious

procedure. Beoause of oomputational diffioulties, the cluster

coordina~e technique has been replaced by another teohnique,

the complex-generator ooordinate technique [15 J. This

technique is especially useful for reaction calculation.

The orthogonality condition method was proposed by Saito

[19J which avoids the derivation of the complicated Kernel

funotion that appears in the effects of the Pauli principle.

Since then, it has been extensively applied to treat

especially mult, i -c lllster stl"'ucture

,
prob1F.ms, where



strai ghtforward app1 i cat ion of the resonating group method

approach would be quite difficult.

Like Saito in our present study we are also trying to

avoid the involvement of the kernel by another way. We know

that, when two body fundamental N-N interaction is employed to

generate resonating group model calculation, then a non-local

non-separable kernel expression appears in the calculation. As

this expression is non-local in character it is not easy to

handle. Furthermore the terms become lengthy and complicated.

Moreover for higher nuclei the calculation of this expression

is troublesome. So it is necessary to devise way to include the

affect of the non-local kernel and at the same time it is

poss;ole to handle the calculation for higher nuclei. Keeping

this in mind we shall try to rac1ace the non-local potential

term by a simple term in our calculation, although the direct

int",raction terms (nuclear and coulomb) obtained fl'om the

resonat i ng group consi der-at; on is full y taken into account.
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CHAPTER TWO
ALPHA~DEUTER:ON l'1ODEL OF 6Li

The nucleus of fLi contains three protons and three

neutrons. Inside the nucleus the nucleons behave differently -

sometimes like independent particles aod sometimes

collecti vely. The famous shell model is based on the

independent particle concept. It is also well knownthat there

are certain properties of nuclei which suggest that the
,

nucleons tend to cluster structure within a nucleus. The

pattern of cluster structure which is preferred depends on 'the

form and strength of the iuteraction forces, '.he type: of,
nucleus and excitation levels of this nucleu:,. From the

experimental observation we know that the nuclear force

between two nucleons acts ~n a short range (2fm) and thi,;;

force is strongly attractive within this range but at a very

short distance (0.5 fm) it becomes strongly repulsive. The

effect of Pauli's exclusion principle in a syste~ of nuclear

dimension is to allow low energy nucleons to moverelatively

undisturbed throughout the nuclear volume, because these

nucleons may not be scattered into other already occupied

energy levels.

8



The nucleons move oompletely correlated ",ith "n.e

another, otherwise they will be outside the range of each

other's attractive foroes and there will be little mutu.al

potential energy amonll them. Alpha particle consists of two

protons and two neu.trons. These four nucleons Can occupy the

lowest level position to the maX1mum.It means that the alpha

particle is a very stable nucleus. So we should expect that

the four of the six nuoleons of 'Li are to correlate as an

alpha-cluster. Next comes what happens when two or more

nucleons are added to the strongly tight alpha particle. The

fact that :He and 5Li are not stable implies that one nucleon

will not be bound with the first closed shell of nucleons.

Hence there can be two assumptions consistent w1th the facts:

i)That a proton and neutron s1multaneol,lsly Joininli alpha-

cluster leads to the destruction of the alpha-cluster and the

formation of a complex system of S1Xnucleons.

ii}an alpha-cluster is not destroY'3d in forming the nucleus of

5Ll and binds effectivel}- not with each nucleon but with a

system of ~ proton and a neutron as a whole.

In the first case the nucleus of "Li consisting of S1K

independent particles is studied from the stand polnt of shell

model theory. And in the second case we can say that the

proton and neutron above the closed shell of the nucleus of

;Li must form a bound system. If they are not bound system,

then these nucleons will be independent which implies that the

formation of 'Li nuo.leus is impossible. This contradiots the



existence of stable nucleus
,

of Li. Hence the proton and the

•

neutron in this nucleus are not independent but are correlated

strolllfly with each other forming a deuteron cluster. Thus ,the

lowest states of iLi can be described as a system of alpha 'and

deuteron clusters. In the e+d structure, the two clusters are

boundtogether by only 1,47 MeV,which meanSthat they are on

the average rather rar apart and behave mOreor less like free

particles. Nowwe shall study the 6Li nucleus as a cluster of

alpha and deuteron particles.

Twodistinct approaches are generally pursued in case of

employing the alpha-deuteron cluster model. In one case

antisymmetrization effect is assumed to be negliglble. Main

argu~ent in favor of this assumption is that as the cluster

binding energy between alpha and deuteron is small, both the

particles move rather freely inside the 'Li nucleus. As

result there is no appreciable effect cf exchange force

between them so that the exchange teems between the two

clusters have little overlapping with the direct potential

term. Further there is an argument that the llt+d iIIodt",of 6Li

has a meaning only and only when there is clearly expressed

isolation of the alpha particle and the deuteron. Onthe ot,her

side those who take antiS;l".,..metrization effect into account

have the argument in their favor that although the alpha

deuteron relative ener~y is small but it is not that small for

'.he two <) Lusters in iLi sO that they may be treated as t-ree

particles. Since the generalized cluster model lS

10
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generalization of shell model such that in the limiting case

hoth are same. As such the cluster model should naturally

incorporate appropriate antisymmetrisation effect which 15 so

vitally important in the Case of shell model studies. Along

this line many works have been done in the alpha-deuteron

cluster model by the different authors [33,34,4 ].

The experimental calculation for the phase shifts of

llt+d scattering was performed by different groups, e.g.

Senhause and Tombrello [20 J in the energy range of ;:.9 to 11.5

Mev. Another experiment waS performed by McIntyre and Haeberli

[22 J 1n the energy range of 2 to 10 Mev. In these two groups

studies the value of Sand D wave phase shifts are qui'te

similar 10 he energy range of 2 to 6.7 Mev. hut the value of

the P-wave phase shifts are very different. Thus while the P-

wave phase shifts of Senhouse (20) are small and show no such

behavior. Darriulat and his collaborators [22] extended the

experimental measurem",nt of phase s':l1fts for u+d system from

10 to 2;- NeV.

The elastio scattering of deuteron by alpha-particle

has been studied by Thompson and Tang [5] with the resonatlng

group method in one channel approximation. In that study the

calculation was simplified by introduoing the assum~tion that

the deutflt'on oluster oan be desoribed by s1nllle Gaussian

function and obtained good fitt1ng to the u+d phase shifts

l:W,21,22], In a subsequent study [6) t.he same aut.hors

introduced more representative wave funotion ••hioh Can be



described b;r " sum of two Gaussi.an functions for deuteron

maInly to clear up the ambiguities faced earlier to large

ratio of Serber force. Wildermuth and his collaborators [23]

calculated the 4+d S-wave phase shift by introducing

distortion effect in the deuteron wave function and obtained

good result. 'thompson and Tang [24) calculated distortion

effects In «+d system by USIng mIcroscopic procedure and

obtained good fitting to the fI+d phase shifts [20,21,22].

Kanada et.al studied the «+d scattering system with multi-

channel resonating group method. They have used the multl-

charu1el resonating group R-matrix theor" t.ogether ;nth a

variational method and obtained good result to the experIment.

Tn the next chapter we shell describe In detail the

mathematical formalism which is pursued in the calculat"on of

alpha-deuteron model of 'Li in the resonatic.g group formalism.

12



CHAPTER THREE
MA.THEMATICAL FOR!"lULATION

3.1 Differential Equation

6Li nucleus consists of si.x nucleons - three neutrons

and three protons. We"hal,l consider that they can be divided

into alpha-cluster I «-clu~t",r) "nel deuteron-cluster (d-

cluster). Let the nucleons 1,2,3,~ form the structure of an

«-particle and 5,6 that of a deuteron where l,~,5 are

neutrons and 3.4,6 are protons.

Starting with the HamiltonIan

H _ T+V tL1.1j

where the kinetic energy T "'.nd ~ne potentl"l eneriY V are

respectl\'",ly.

T -
, "

1'( " ..,"'- <- .,
2M .1-1.



(3.1.3)

O1uclec;n-NucLeon,nteraGtion \'Il,): is given hy

(3.1.4l

"he rIO to) m, b, h "rIO coeffir.Jii'mts of Wii,nf>r. :1ajoranil.,

B~rtle~t and Helsenherg exchange operators respectlvely

satisfying the relation.

w+m+b+h ~ 1

,nd (3..1.5)

w+m-b-h 0.63

the opera tors Px ( ij ) , p~11J \ bei ng the space and spin exchanlle

operator" for ith and jth particles. The operator Hlijl 1S the

Heisenberg exchange operator, exchanging botb space and spin

coordinates of particles; and j and v(ij) t~e commOnradial

dependence of the central exchani"'" type Nucleon-Nucleon force.

Th~ slx-body Schrodinger equation is

(3.1.6)

where 'I' ~!1 the total wave function of the six particle

system. We define independent internal coordinates P. the

relative coordinate r and the center of masS coordinate Rc

14



'" <he followin!! wa~':

;, " ;,-I~

;, • f _f:+r., ,

"
.I1+f.+1',• r-• 3

; • i,-f,

f • 1,+1'.+1'3+1'4 ?+t,

• 2

Ro •
r, +i'•.•..r,+z,+i',+?, (3.1.7)

6

By using these relations, the kinetic energy part of

Hamiltonian H call be written as

1l 6--r'lj.
2Mb1

We are not interested ,II the center of mas" motion whiel:

g"nerally gives rise to spurious state. So the kinetic .merg;-

of the C.11 moti on v"R" is neglected.
,

Then the Schrodinge!'

equation for six partic;les becomes

(3.1.8)

=. ,
(3.l.9)

15



where

(3.1.l0)

and

(3.1.11)

are kinetic energy operator in the c.m system of a-cluster

and d-cluster respectively.

3.2 The waVe function and the detailed calculation:

Followlng the resonating group formalism the overall

antisy-mmetrlzed wave function 'P for Slx-nucleon system llIay

be "ritten as,

'I' " A ['I'. (12.34}"".(56)FCl)] (3.2.1),,
whel'e A is an antisymmetrization operator and lS liiven oy

A ~ [1-H(15) -H(25) J [1-H(36) -H(46) J 13.2.2)

Here H(ij) is the Heisenbere: exchange operator, exchanging

both space and spin coordinates of particles i and j. Then

'1'.(12,34) is the internal wave functions of the "-particles

and have the from



!,here X\12,34) "is the antisymrnetric spin part and~.(12,34)

the symmetric space part of 1'•.

is the spin wave function with e,p corresponding to up and

down spin respectively. Similarly,

is the 1nternal waVefunction of the d-clust.er, F(!) describe"

the relative motion of alpha cluster and deuteron cluster.

From the equations (1. Z. 1) and 13.2.2) the wave function !'

can be rewritten as

'I:' ~ 'f.'"qF(il + [-H(lS) -H(2S) -H{36) -H( 46) +iH( 15)

+H(25)l1.H(36) +H(46)}j '¥. '¥ "F(i'} (3.2.3)

Since 1,2 ar,d 5 are neutrons, the exeh""g" operators H115) and

H(25) effectively represent the same operation and 3,4 and 6

are protons exchange operators H(35) and H(46) effectively

represent the same operation. Hence one operator can be

replaced by the other. i.e the operators H(25) and H146> can

be replaced by H(15) and H(36) respectively. The equation

(3.2.3) becomes,

1f' = If. l' J'Ci') + [-JH{lS} -2H(J6)

+:lH( 15) H(36) 1'P. 'P~(n

17
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!.'0 ""JUlin an equa-::.iCfi fo•..the relative wave function

Fer) , the nucleon coordinates must be integrated out. Thus

(3.1.9) is multiplied by ":"'4 and integrating over the

space and spin variables of alpha and deuteron particles, we

,
(3.215)

Iwhere dT is a differential volume element in the combined

space and spin coordinates of alpha and deut.eron particles. I

..L v(ij) .•LV(ij)+ E V(ij)l'i'dl' = 0
1234 56 12.34.56 •

where Be dlld E.; are b~nding energy of alpha

(3.2.6}

and d-cluste'."

respectiv.~ly. Combining equations (J.2.41 and (3.2.61 we get,

, ,
f'f':'l4[ - ll

H
{T. +Tdl - ; ~I ~-E" -E,r (E-E. -Ed) .•. ~LV(ij) 1

~ _,~ J. 1,,6, ,
'1'.'f ,I'{r) clr+f'l":"";' [_l!. (Tg +Td' _.1..l!.. ~- E+ . E V( ij) 1

M 8 M ~.L.6

[-2H(lS}-2H(36)+4H(15)H(3611'l'.";'(.f)dI' - 0

E V(ij) .•EV{ijl.. E v(1j) 1
1234 56, 1234.56

18



,
+f'l':'f'~ [- ; ~ ~- (E-8. -Ed)1 'P. 'I'aF(t) dI'

[-ZH(lS) -2H(36) +4H(15) H(36) J 'P~'P'aF( 1) df-Q (3.2.7)

Then the variational alpha and deuteron equations are

respectively

(3.2,8)

(3.2.9)

Froll equations (3.2.7), (3.2.8) and (3.2,9) we get



[~2H(15) -2H( 36) +":Ji(15) H( 36) ] Y~'Y,!'( l) dI'

'!'I';'I'4( L V(lj) ) [-2H(15) -2H(36)
1 •• 6 ,

V(lj) 1V~'P,!'(l) ar (3.2.10)

After finding the value of sp~n operator, the equation

(3.2.10) becomes,

[1. t~
8 M '

,
- ~ ~ V;-E) [-2P;<"( 15) 1"P"IlS) P" (36)] f).f)#(l) dP

! '.• V;'I"d(123"t,56 V(ij) l [-4H(15) +4H(:l.5)H(36) 1

(3.:1.11)

where dP is differential volume element in the space

coordinates of alpha and deuteron particles.Also we consider

tbat the excbanlie effect between two protons and two neutrons

~s same and hence one can be replaced by the other~ In that

case

20



v • f'l':'P~ l[ .I; V(ij) 1 [-4H(15) +4H'(15) H(36) 1
.l()=l '

'P~'l' /(X) .•112ft.56 Veij) 1'l'. 'I' r?(f) }ar

From equation (3.1.4) and 13.2.121 we get

[-4B(1S) +- •• He15) H(36) 1v{ ijl ':P.'P,E{f} "12ft, 56 [Co)

oz, v.vofV;'l';j ( . I; v(ij) [ { w+bp. (1j) } +tm+bP.(1j) f
.1.()-1

P",(ij) 1 !-4E(15) +4H(15) H(36) 1 'f.lJ' aPC!) +8vt1.5)

[w+illP:r(l.5)+bF. (15) +.'lPx!15) p. (15)] '1'. 'f' ,/'(I) } dI'

(3.2.12)

Integrating over the spin variables of alpha ~_,...c:.deuteron

partic~es and simplifyin~ we obtain

v • -2V, (4(o)-m+21:l-2b) I~:~~V(15) •• oI',.f'(i') dP

"Vof41:41~[--6 (6)+m) v(12) +2 {4m+Sh-2b- •••) v(tS)

-2 (Iol+m+b+h) v\lG) -6 {",,+m} v(23} +2 (zm-b- 31•.0)

v(26) -6 (l<l+m)v(25) -2 (•.•.•+m+b+h) v(56) J Pr(lS)

It.tI''p(f) dp+Vof .:.; [2 (Z(01+2m-b-h) v(lZ) •.

(w+m+b+h) v( 13) +2 «,)-Jm-1l+2b) v(lS) +2 (b+(,l)

v(16) •. (w+b+m+h) v(24,+w-3m-h+,b) v( 56) J

P.J15) P~(36) e&41 ~(I' dP
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Then the equation (3.2.11\ can be written as

(3.2.14)

Where V~{rl is the direct interaction between the clusters

origLnating from the identity element of the antisymmetrL-

zation operator A and is gLven by

(3.:1.15)

The kernel K(i',i'I) represents the non-local interaction

between the clusters and is gL ven by

, ,
KIf,I') = f«'~~;[-~(T~-+Td)-~~V;-E] {-2P.,(lS)

v(12) -2 {f.<l+2b--4111-5h)V{15} -2 (til+III-+b+h)

v{ 16) -6 (•••+m) V (2J) -2 (:3•••+b-211l) v( 26) -6 (•••+/Il)

(Oil-3m-h+2b) v(15) +2 (b+",) v(16) + (",+m+b+h)

v(;H) +2 (Zf.<l-+zm-b-h) v(Z5} + (l<>+m+b+h) v(56) J
(3.2.16)



we consider the radial dependence of the Nt.;c;ac..,-~-!,-"cleon

interaction v{ij) as

(3.::1.17)

The direct part vc{rl of the coulomb interaction is also

added to V~(r) to give a total direct Part. Thus total direct

part is

(3.2.17}

From the equation (3.2.14) it is clear that in order to know

F(!) at the point r in space,it is necessary to know F(!'} at

all other points I' in space. Thus equation (3.2.14) describes

a nonlocal process. The kernel of the integral equation

K(!,!'), involving both r and I' represents a nonlocal

interaction and is symmetric. We can separate the partial

w<lves by making the following expression in terms of legendre

polynomials

F(i'l '" ~~f1(I)P1(Cos6)

aM

•
K(i',!'}" :l. ,E (21+1}k1(I,I'}Pl(cos6l

4'll:II 1"0

Thus

0.2.19)



Where & is the ang 1e between 1and l' . Nowcombi ni ng equat i on

(3.2.14), (3.2.18), (3.2.19) and (3.2.20) we obtain

(3.2.21)

Where M is the reduced mass. The wave functions for alpha

particle and deuteron are respectively.

,
'l".(1234) - eXP[-; E (1;-R.)2]

~-1

aM

(3.2.22)

(3.2.23)

Where R. and Rd al.e the pcsition vectors of tha center of mass

of alpha and deuteron cluster respectively. The direct

potential Vo (r) [6J in equation (3.2.2t) is given by

>

4d; )1 [ 4ulil;r2
[4d

j
+1i (2(1+31

j
) exp - 4u1

j
+P (2(1+31

j
) 1 (3.2.24)



where

and

(3.2.26)

The coulomb potential Voir) [61 ~n 13.2.21) is !liven by

(3.2.27)

where z and !ZI being the atomic numbers of the alpha and

deuteron clusters respectivel~. and

The kernel [6J k,(.r,r0 is written as

(3.2.28)

Where 11' is given as

wi til

(3.2.29)

{3.2.30i



(3.2.31)

(3.2.32)

and the quantities \' Y, and Z, are defined as follows

{3.2.33l

Yj" ~1oIi.-(6(..;>-6m)Sl( -;291lexp[ -32(a,I~+blI"')]

l!.~5{-2(..;>+gm-4b+4h)Sj( -]2c'HlaXP[- ~ (alt~z'2+b'15z'J3)]

+ei~(-611l+4m-lb+6h) Sj(- ~c',.)"'xp! - ~ (a'~~I~+b'26z""))

+G. (-2w-Zm-lb-2h) SJ (- ; ci,,) (exp [- ; (a').z'+b'urf") 1



,o~[-~ta' r""b' r"'lJ'Oxp[-' ,'b' r2+a' r12I'IJ-.... 3 - n: 12 .3 ,) 12 '

Zj-2«, SJ (- ~ e,) axp [- ; (a,I'+b1 rt.:) ]

-«1S;{- ~c~)exp[-; {a~r2+t}rl2}]

with Sj (lJ» ~ ~ JJ~~(lion') and

T! (t..ll-~ [J
j
+.1(<<lUi)__ l_,J,.1. (lllrII) 1

<ol, fiJII 2

(3.2.34)

(3,2.35)

Where JG(,,) is a hyperbolic spherical Bessel' 8 function. Also

i" equations (3.2,29),(3.2.30), (3.2.31), (3.:L32), (3.2,33),

(3.2.34) and (3.2.35) the following definitions have been

made:
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c ~-.!(l, 3'

"+ 1 \25lt •.•.6Olt.1i -JOlt" i -36"11. 1+9"~+361.~)
3(2"+3Al)~

Te~ 2") (2{i2+2ltl.j+4~"j+2Y.fl.i+2Y~-4l.~) +
(2lt+)1.)"

,
'"

~s =

c(lu "

8" i"+Yj} (21t+lt-" j) "II (12u2+S1e8l.j" i+4V~)
3 (<<+"i) (21t+«-"1) +3Ji (<i«+2},.i)

[ 2"("+"jl J i
2" (<<+vj) +1)(3lt+" j)
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,, • ,
'" • [ ••.•2pl

0\, • 1

, ,
a" • a.+-p. ,
bi, • b ".!13, ,
, • C+U~e" , ,

ol. •
[ 20;2+3«"';1 i

2«+3«A.j+1l (2cr;+211, )

a' •
«[1."21l (6([2+7 aA.j+2V )'1-V~)

~ If (64+91;) .•.p (64+6A..1)

bi, •
C'gl +2 II (6G~ +7 «}. i" 2v ,,'\i -,,~)

II (611+911)"P (64+6.1j)

ah,.-211{6"'-4alj-41;iv 1+2v~J
11(6« +911) +~(6 ••+611)

( 2(l+311.} i
2a+3A.j+6k

f~"1lt 100:+2411-12\' i)

6«+911+18P

gt"P (34«+24.\1-12'" j)
6«+91:/+181J

h,. .•p (Sa+481,1-24V:/)

6«+91j+18P



at •

[ 24~+3.1J J i
2.3+31'/.11+1' (44+21,)

«f 1+11(l 0.3 +54.,1,.-204".; +4."j1 ,:-2"1)
« (64 +9") +11(12«+6")

CIlg, +11(10«"+60:1.1+4•V 1"'4"J1j-::<v7)
0: (6«+911) +11(12«+6l1}

o:h1+t3(20.
3 .•24411-16«V ;+8",A j-4V;)

«(6«+9A1) +11 (12cr:"'6.l.,l

,
[ • J'

4+213

,'n

[ (4+V,1 (21.+II-v) l ~
(a+Vj) (21 i+a -v 1) +11- (2a+2.1.j)

10.2 (4+\1;1 +a~(3111+21vi)
6« (a+,,;l +3P (3«+,,;)

10«" itl+V1) +II~(19«+~h)
611(<<+";1 +3~ {3a+" oJ

1611~(<<+',,) +ap (404+2d ••~i)
64 (4->'Vj} +311 (3«+"1)

with
fj = 3«2+174.\i-6«"1+6'\jVC3V~



CHAPTER FOUR
PRESENTWO~

Nowif one follo,",s the resonating group formalism then one

!s to solve the equation (3.2.21) namely

d'",'[--eM
{
dr'

1(1+1) }

r'

numerically to obtain the desired result. In the first, the

Kernel kJ(I,I') is Don-local and non-separable in character.

Further for the tiny °Li nucleus the term kJ(I,I') CO!Jt:;,ins a

number of terms as can be seen from (3.2.29) and after words.

The numerical calculation of the above equation may not be too

difficult for this case. But for nuclei of higher mass nUlllber

whei.e more and more nucleons will be involved the analytical

calculation of Kernel will be very lengthy and

complicated. In that case numerical calculation will get

unmanageable. That is why although the resonating group

formalism has been in application for a long time and the

results following this approach are good, the detailed

ealeulat!on following this method h3.rdly passes the nuclei of

31



15-20 nuc180ns.

In that case we see that we can not apply this

beautiful, elaborate and systematic method of resonating group

formalism except to a handful of light nuclei for nuclear

study. So in our present study weare trying to test hm, this

non-looal, non-separable part namely, Kernel kjlr,r') can be

replaced by a simple non-local separable potential namely

So that not only ttle

calculation could be made manageable but also nuclei of any

numberof nucleons can be studied with this resonating group

formalism. Wehave fully taken into account of other effects

of resonating group such as direct potential term and coulomb

energy term obtained from resonating group fot"malism. In oUr

present study we are following the mi.ddle path. As stated

earlier In ttle cluster model approach one group totally

blneres anti.,ymmetrlzation effect whil" another group takes

full account of it resulting to inability in calculation of

higher nuclei. In our present study "e tlave taken the direct

part of nuolear potential coulomb energy from

antisymmetrization replaoe non-local part by

phenomenologioal potential.

In ttle present study we shall take the wave functions

for ~e and deuteron as

•• •

32
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ond., (4.2)

for alpha-cluster and d-cluster respectively with
•« ~ 0.514 F-'

aoct

«,= 0.157 F-~, lX. = 1.137 F-2 and C = 2.747

N-NPotential is given by [5J,

14.3)

(4.4)

(4,5)

IL6)

From the e"preSSlon of VDlr) and Velr) one notes that tl:le

oonstants 1,), IT!, h, h occur only in the combination of {3. 1.5)

v V II-IV1) = Y ,.rl" ,. Y ', ••etno I 4. '7 I

where Vmb"r is given by potential (4.5) with IN = IT!and b=h tlon::i

V"•••tde given by potential (4.5) with m=2b and h=2/,).

The value of y is 1.004 as given by Thompson{5]. With the

above consideration, the integrD differential equation
becomes,

d'
dr'

(4.8)
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where the expression for V~lr), V I r), ar~ given by equat;ons

l3.2.24} and (3.2.27) respectively and E is the relative

energy of a.+d system. Weshall calculate the phase shift for

different energy le,'els by employing the numerical method

which we have described in detail in the next chapter.
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CHAPTER FIVE
Nl..JMERICAL CALCULATION

of equation (4.8) decreases rapidl~. as r or r' increases to

enable us to replace the infinite upper limit in the integral

by some finite value R., To solve the integrodifferential

equation (~.8), this equation Can be converted into a set of

simultaneous-linear-algebraic equations following the mRthod

of Robertso':'.[28] In the region

described as follows:

The equation (4.8) can be written as

I :s;R." This method is

,
[2l!. j L_l(1+1) J +E1-V (I)-V (r)]f1{I)
8Ndrl z' "c

• L"1c}(z. x') t] (x') dz'+eL"ki (r. I') [1 (I') dr' (5.1)

,,,here E is the total energy of the <II + d system i, e E-E'+E.+E,j



k~(I,I')
,

'" Ae ""T,'- e ""T,'-

,(5.2)

At the point r = r~, the integral and derivative are replaced

by sumand difference respectively as follows:

Nr-k} (I", I') fl(I'l dI' "':E r,.k~(I",IIJfl(I' ••)
o m=O

N
fR-Jc;(I",I') fl (I') dI' = L r,.kf(I",I' .••)fl(I',.}

o _0

aa at/J't ••b'(l+----+ ------)f"- 12 240 "
Substituting (5.3), (5.4) in equation (5.0 we obtain,

1. zl t" + [£'_y _ 31l.~1(1+1) 1f
8M" "8M I' "

N N
'"E r.,k~(I",I' ••}j:"'+EL T',.k~(I",I'.Jtll

nr-O m=0

This equation can be written as

(5.3)

(5.4)

(5.5)

N
til +uf • 'r'Tl. F

" "" L. -""..•••.••
m=O

whereu.8MEB'_y_31l1U+l)j• ,,,,, •• 8H '
•• I" _

(5.S)



=d

k".~~Lt}lr", r' ••) +Eki(r",r'.ll ::

Also c1l<;) ,<,quaeciQIl (5.5)

0"[ •.h'(l+~)f'i+1!:
" 12"

C"fu1 bff! w.ritten <IS

,

[!'leglecting other terms]

Tbenby lJpply.Lngthe boundary conditions f. ~0 and fR., ~ 0

the above aqua tion becomes

37



•

(5.8)

Where A ~ l{l+l) and H~ "h'
Substituting n~l, 2, 3., ... ine~tion (5.8) weget a set
linear alg6braic equations

•
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in {-T1Utt1 +J.oki,1 +.ki,1+E(.k:'1+J.O..rc;.l +kt.l)/+DH- (Y, + D~-$) 1 £1
r,

+ ;n I-T~Ut;.~+J.Ok;.~.•.k;,~"'E(k:,~+J.OJcl,3+kf.3)}-2DH-J.O (Y2'" ~ -E') ~f3, ,
,

•
• ---+

+ in [-T,:i<i.3 +10k;.3 ;'Jr.;.3+Elk;., +10ki.1 +.t:.,) }-2DH-l0 (Y, + n.:- -.8') 1i,
r,

+ in (-T40:l,. +:lOki,. +J::i,. +E(k~ .• +10k: .• +X;.• ) I+DH- (.l'. + ~ -E') 1f.r,

•
•

and so on



'i'he integral involving- the kernel function is evaluated by

Simson formula. In the region z>R", is obtained by solving the

equation (4.8) with a method given by Fox and Goodwin (29].

The function fj(,r) will be matched to coulomb function at a

distance which is large enough to fulfil the requirement of a

simple method of calculation for coulomb function given b-;-'

Frogberg [30 J .

NUmerical calculation of phase shift is performed from 2

to 18 Mev for the incident energy of 4+d system in the C.M.

System of each partial waves for 1 = 0,2 and 4 by adjusting

the parameters A, B. Y1' Y~.~1 and ~,.
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CHAPTER SIX
RESULTS AND CONCLUSIONS

Using the value of width parameters ", ~O.157 II, =1.137

F-1 and C=2.747 in equation (3.2.3.2) the binding energy of

deuteron is -2.04 Mevand corresponding deuteron rMSradius is

1. 68F. These values in geod agreement with

experimental values -2.22 Mevand 1.93 F.

Scattering calculation for the a .•d s)"stem will be made

~n the range of the bombarding enerlty upto 18 MeVin the c.m

5yst.em. As was mentiOl,ed in the previous section, the

f'aT""~leters A,B'Yl,Y,,1J1and~. of the kernel functJoil are

adjusted tu yield a best agreement with experimental results.

The results are given by the curves in figs. (1), (2) and {3}.
In this figs, we have also given the experimental values of

th~ phase shift as obtained by McIntyre and Haeberli [21] in

the energy range of 1.3 to 6.3 MeVand by Darriulatel [22] in

the energy ranges of 6.7 to 18.2 MeV. The calculated phase

shifts for 1:0 is shown by the three Solid curves in fig-l

which indicated by curve a, curve b, and curve c, where the

parameters A.B'Yl'Y"~l and II. are Chosen to ha,-e the



f~llowing values

Curve A

a -0.88

b -0.88

c 86.00

,
-42.49

-42.49

94.00

y,

0.236

0.125

0.247

y,

0.144

0.124

0.588

P,
0.795

0.695

0.795

P,
0.8025

0.762

0.557

Here one sees that, a-curVe is in good agreement with

experimental resul ts ~n the high energy region but poor

agreement in the low-energy region, c-curve is in best

agreement in the low-<onergy region. Amongthese curves b-

curves is the best fit with experimental results over the

entire energy ranges considered. The calculated phase shifts

for 1;,2 is shown by the solid curve in fig. 2, where the set

of para<oeters of kernel are /liven below:

Curve A

a -0.948

b -0.948

c -0.948

,
0.145

0.145

0.075

y,

0.255

0.265

0.165

y,

0.343

O.33~

0.183

P,
0.256

0.256

0.201

p,
0.249

0.269

0.239

Here it is seen that, the phase shifts for 1~2 agree quite

well with the experimental results in the low-energy region

but poor agreement in the high energy region which goes down

ward sharply. In the 1~4 case, the results is shown by the

solid curve in fig-3, wh",re the value of kernel parameters

42
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Curve

a

b

A

98.0

98.0

98.0

,
88.0

88.0

88.0

y,
0.228

0.228

0.204

y,
0.883

0.879

0.784

p,
0.985

0.976

0.895

p,
0.597

0.593

0.537

It is seen that, the agreement between the calculated and

experimental values is satisfactory. In the figures (1),(2),

and(3] we have also given the comparative results of ours with

those of Tang and Thompson by dashed curve for 1 = 0, 2, 4.

So we see that in our present study we have fully taken

into account of the direct part of the interaction (both

nuclear and coulomb calculated from the exchange of particles

and rep 1aced the non-1 oca: non-separab 1e kerne 1 by a simp 1e

non-loo:al separable int"ra:ction. This simple separo.ble

interaction gives us good fit to the experimental results. So

it is an enc"u"aging sign that such a simple separable non-

local, interaction can do the needful -For the non-local,non-

separable kernel. In that case this sort of calCUlation

following resonating group method can be extended to any

nucleons of higher mass number.
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Fig.1 Calculated phase shifts of alpha-deuteron .scatting are
shown by solid curies • the phose shift calculated by Thompson
and Tang is shown by dashed curve.The experimental phose shifts
are shown by asterisks(*)_
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Fig.3 Calculated phase shifts of alRha-deuteron scatting are
shown by solid curves ,the phase shift calculated by_ Thompson
and Tang is shown by dashed curve.The experimental phase shifts
are shown by asteriskS,crosses and squares.
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