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ABSTRACT

In this thesis, speaker identification is done by the AR model parameters of the vocal

folds. Speaker identification needs extraction of speaker discriminative features. Mel-

frequency cepstral coefficients (MFCC) and Linear predictive cepstral coefficients

(LPCC) are well known cepstral techniques which extract speaker discriminative vocal

tract properties from speech signal for speaker identification purpose. On the other hand,

the vocal folds properties of a speaker can also be used for this purpose as vocal folds

vary person to person. But in this case the correct modeling of vocal folds is essential.

AR model parameters of the vocal folds is used here as the speaker distinctive features.

Vocal folds properties are found by inverse filtering the cepstral of the output speech by

the vocal tract properties related LPCC. These model parameters called speaker features

are then used to generate the so-called codebook of a speaker by the well established

vector quantization technique. Codebooks generated in this way are then used to find the

speaker identity using feature matching technique. The result of the proposed model

found here is significantly better than that of the previous model for voiced sound.

XI



CHAPTERl

INTRODUCTION

1.1Background and Present State of the Problem

I

The motivation for understanding the mechanism of speech production lies in the fact

that speech is the human being's primary means of communication. Through

developments in acoustic theory, many aspects of human voice production are now

understood. There are areas such as non-linearity of vocal fold vibration, vocal-tract

articulator dynamics, knowledge of linguistic rules, and acoustic effects of coupling of

the glottal source and vocal tract that continue to be studied. The continued pursuit

through this field with the tools of basic speech analysis has provided new and more

realistic means of performing speech synthesis, coding, and recognition.

Early attempts for modeling and understanding speech production resulted in mechanical

speaking machines. Modern advances have led to the electrical analog devices, and

ultimately computer-based systems. One of the earliest documented efforts to produce

artificial speech was by C.G. Kratzenstein [1) in 1779 in which he attempted to

artificially produce and explain the differences among the five vowels. He constructed

acoustic resonators similar in shape to the human vocal tract and excited them with a

vibrating reed, which, like the vocal folds, interrupted an air-stream. Further

developments in mechanical speech modeling and synthesis continued into the 1800s

and early 1900s. One of the first all-electrical networks for modeling speech sounds was

developed by lQ. Stewart [:2).
'.'

Subsequently, research works on speechmodeling and synthesis take a new turn with the

development of computer. In many regards, advancement in speech modeling led to the

development of better speech coding and synthesis methods - the scientific fields of

Automatic Speech Recognition and Computer Voice Response. During the latest 20
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years, however, several new research areas in computer science have been founded, that

focus on solving problems by mimicking the nature. This has in turn led to a number of

novel approaches regarding speech understanding and speaking machines. However, the

level of expectation from these novel approaches gradually declined over the time,

nevertheless, the perpetual crave to unveil new things from this field resulted further

new techniques, some of which are very promising [3).

The mam problem of speech analysis is to determine the internal structure and

movement from speech or other measured data [4). One aspect of acoustic phonetic, for

example, deals with inferring articulatory shapes and movement from the speech

waveform or its spectrum. Usually, the success of this inverse problem depends on the

ability to accurately model the underlying biophysical processes. Constructing simple

predictive models of phonatory acoustics, tissue mechanics, and glottal aerodynamics is

formed to be very difficult. By stepwise improvement, some models have been

developed that can be used for simulating and thus improving the behavior of the

speaker identification tools. One of these early models is the recognized source-filter

model [5], which treats the vocal fold as the source of the voice and vocal tract as the

filter and they work independently during the voiced sounds. Most of the work in speech

modeling and synthesis is based on this model. Now-a-days this model is also used in

voice quality enhancement, speaker identification, voice pathology classification, speech

coding and synthesis [6-8]. As the model is simple and efficient, scientists working in

speech analysis are devoted to improve the source model (vocal folds) and the filter.

model (vocal tract) separately for the above purposes. For the source (vocal folds),

models like: LF model [9], R++model [10), KLGOTT88 model [11), two-mass model

[12), multi-mass model [13), continuum model [14-15), four-parameter model [16, 17],

body-cover model (three mass model) [18) are used for the above purposes. One of the

major issues in speech analysis area is speaker identification, which is widely used

around the world and found their appropriate places in the industry through the

assistance of opportune research. Even though a lot of efforts has already been made in
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this area [19, 20), still there is a lot of room for the improvement and this makes the

research in this area up going.

1.2 Objective ofthe Thesis

In this work, the AR model of vocal fold is studied for speaker identification. So far, the

models used to implement the behavior of vocal fold are of two types. Parametric

models use some parameters to produce the output similar to that of the vocal folds,

which works for synthesis, coding and pathology. Physical models emulate the physical

behavior of the vocal folds to understand its dynamic property. Appropriate knowledge

about these models gives a proper picture about the vocal folds characteristics and its

contribution in speech output waveform. This helps to recognize the contribution of the

vocal folds to the speech output. Conventionally, vocal tract properties are used in

speaker identification and vocal folds properties are not yet investigated thoroughly for

this purpose. In this thesis work, we try to estimate the vocal folds parametric model and

investigate it for speaker identification purpose using the available tools. It is to be noted

that the AR model parameters of the vocal folds are used here as the speaker distinctive

features. This work identifies the speaker in less expensive calculations and produces

competitive results.

1.3 Thesis Outline

Certain anatomical properties of vocal folds and vocal tract carry the information of

speaker identity. These properties are very difficult to extract through the size, shape,

tension, dimension of these limbs. But it can be realized through the output of the vocal

system. By using some establish theory; it can be extracted in some parametric form.

This thesis proposes a model for vocal folds, using well established Linear Predictive

Coding and inverse filtering which conveys the speaker discriminating properties in an

explicit form.
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In the following chapter (chapter 2) the anatomy of the voice production system has

been reviewed first. The vocal system is then ramified into three subsystems according

to the contribution they make in the output of the system and then each one is studied in

brief The first subsystem- the vocal folds, is then studied thoroughly through its existing

models.

In the next chapter (chapter 3) we try to establish the process to extract the vocal folds

parametric model from the speech output. These model parameters are then used to

generate the so-called code book of the speaker using vector quantization method.

Finally, the test speech is matched with the codebook to identify the speaker using

quantization distortion.

In the chapter 4, the data acquisition for this system is presented and specifications

related to the data acquisition, as well as the identification process, is stated. Speaker

identification rate for proposed model as well as conventional vocal tract model are

shown later. Finally, a discussion is made about the results found for both models.

The concluding chapter (chapter 5) provides a comprehensive summary of the whole

work followed by a brief discussion on the limitations of this work and some suggestions

for future works.
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CHAPTER 2

HUMAN SPEECH MODELING

2.1 Introduction

In the early days speech modeling was mainly related to the construction of speech

machines, which emulate the human speech. With the development of computer,

continuous research in this field has chronologically discovered various aspects of

speech modeling. However, the procedure to estimate a speech model has not been much

changed over the years. The essential and primary aspect for this is to know thoroughly

the physical process of human speech production (Anatomy of speech production) and

then investigate it through its existing models. This will give the necessary working

knowledge and objective to further analyze and develop human speech models. In this

chapter, the anatomy of the human speech production is discussed at the beginning.

Later some of the existing models, specially the model of vocal folds are examined to

some extent. This knowledge gives a good understanding of speech modeling techniques

and helps to extract the correct AR model parameters of vocal folds (proposed model)

for speaker identification purpose.

2.2 Anatomies and Mechanism of Speech Production

The speech waveform is an acoustic sound pressure wave that originates from voluntary

movements of anatomical structures, which make up the human speech production

system. The components of this anatomical structure are the lungs, trachea (windpipe),

larynx (where the vocal fold resides), pharyngeal cavity (throat), oral cavity (mouth),

and the nasal cavity (nose). Some finer components of this, obviously critical for speech

production, are the vocal folds, velum, tongue, teeth and lips [21) as shown in the Fig-

2.1. All these components, called articulators by the speech scientists, move to different

)
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positions to produce varIOUS sounds. Based on number of parts involved in the

production, speech sounds can be divided into voiced a!!d unvoiced speech [22, 23].

Acoustic speech output in human and many nonhuman species are commonly considered

to result from a combination of the source of sound energy (e.g. the vocal folds)

modulated by the filter (vocal tract) function determined by the shape of the

supralaryngeal vocal tract. This combination results in a shaped spectrum with

broadband energy peaks. This model is often referred to as the "source-filter theory of

speech production" and stems from the

DIAPHRAGM

.... NASAL CAVITY

Figure 2.1: Humau voice production system.

experiments of Johannes Muller [22] in which a functional theory of phonation was

tested by blowing air through larynges excised from human cadavers. In this model the
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source of acoustic energy is at the larynx (vocal folds) and the supralaryngeal vocal tract

serves as a variable acoustic filter whose shape determines the phonetic quality of the

sound.

With minor modification to the source-filter model, the speech production system can be

divided into three stages: first stage is the sound source production, second stage is the

articulation by vocal tract, and third stage is the sound radiation or propagation from the

lips and lor nostrils [14]. A voiced sound is generated by vibratory motion of the vocal

folds powered by the airflow generated by expiration. The main acoustic filter

(pharyngeal cavity, vocal cavity and nasal cavity) is then excited and loaded at its main

output by radiation impedance due to the lips. Another type of sound called unvoiced

sound is produced by the turbulent of airflow passing through a narrow constriction in

the vocal tract [22, 24]. A simplified acoustic model illustrating these ideas (source

filter model) is shown in Fig. 2.2.

Velum

Nasal
cay ity

J Nose

~put

Pharyngeal
cavity

Vocal

leods

Source

Oral ~
cavity )

Tongue
hump Mou~

Tracher~. .1 output

Filter
Lungs

Muscle
force

Figure 2.2: Schematic diagram of voice production.
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When the larynx serves as a source of sound energy, voiced sounds are produced by a

repeating sequence of events. First, the vocal folds are brought together (adduction),

temporarily blocking the flow of air from the lungs and leading to a increased subglottal

51,1PE;f(lOA
BonN OF n'lE:
THYROlD
(;AlITlt.AG{:

j~"jl'=r;~jO~
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Figure 2.3: Anatomy of Larynx and the vocal folds

pressure. When the subglottal pressure becomes greater than the resistance offered by

the vocal folds, they open again. The folds are then closed rapidly due to a combination

of factors, including their elasticity, laryngeal muscle tension, and the Bernoulli Effect.

If the process is maintained by a steady supply of pressurized air, the vocal folds will

continue to open and close in a quasiperiodic fashion. As they open and close, puffs of

;.,
• I
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aIr flow through the glottal opening. The frequency of these pulses determines the

fundamental frequency of the laryngeal source and contributes to the perceived pitch of

the produced sound.

Figure 2.4: Place of Larynx and the vocal folds in the throat.
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(a)

/.'..' ..'

?
;::
,",,'..'

(b)

Fignre 2.5: Schematic diagram of a normal cycle of vocal folds vibration.

(a) side view (b) top view

The rate at which the vocal folds open and close during phonation can be varied in a

number of ways and is determined by the tension of the laryngeal muscle and the air

pressure generated by the lungs. The shape of the spectrum is determined by the details

of the opening and closing movement, and is partly independent of fundamental

frequency.

Myoelastic-aerodynamic theory of vocal folds has construed the changes of vocal folds

frequency better. It has two parts. The myoelastic part arises from the fact that changes

in the frequency of vibration of the vocal folds occur as the muscles (myo) of the vocal

folds change the elasticity and tension. The mass of the vocal folds also affects the vocal

fold vibratory frequency. The frequency of vibration is lowered as the vocal folds

become shorter and thicker. Again, when folds are stretched to make them tenser they

vibrate at a higher frequency as they become longer and thinner. Elastic folds vibrate



II
faster because they are able to "bounce" back at a mote rapid rate. In a nutshell tense

folds vibrate faster than slack folds.

WHISi>tR

/ibbUctED

FORCED IIBDUCTION
tfoiictD'INHA'U\lkiN ')

Figure 2.6: Vocal folds in different states.

The muscles regulate the thickness and tension of the vocal folds. Theaerodynamic part

of the theory says that the driving force for vocal folds vibration is airflow. The air

expelled from the lungs activates the vibration of the vocal folds. The Bernoulli effects is

one factor that affects the vibration of the vocal folds; and another is the recoil force of

the vocal folds.

.,.
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The supralaryngeal vocal tract, consisting of both the oral and nasal airways, can serve

as a time-varying acoustic filter that suppresses the passage of sound energy at certain

frequencies while allowing its passage at other frequencies at which local energy

maxima are sustained by the supralaryngeal vocal tract. These local maxima are

determined, in part, by the overall shape, length and volume of the vocal tract. The

detailed shape of the filter (transfer function) is determined by the entire vocal tract

serving as an acoustically resonant system combined with losses including those due to

radiation at the lips. The formant frequencies, corresponding to the peaks in the function,

represent the center points of the main bands of energy that are passed by a particular

shape ofthe vocal tract. The flexibility of the human vocal tract, in which the articulators

can easily adjust to form a variety of shapes, results in the potential to produce a wide

range of sounds.

Each voiced vowel sound has its own higher characteristic frequency components of

harmonics (frequency spectrum) due to the pharynx and oral cavity acting as resonators

to reinforce and absorb different frequencies [25]. These frequencies are always higher

than that of the fundamental one and are called formants. Each vowel sound has its own

characteristic formants just as each musical instrument has, and hence the human voice

is recognized as a human voice because of its special characteristics. Therefore, we can

conclude that each individual voice has its own frequency spectrum so that an analysis

of an individual's voice could be used for person identification.

2.3 Modeling of Speech Production

The above discussion of human speech production reveals three separate areas for

modeling. These include the source excitation, vocal-tract shaping, and the effect of

speech radiation. For example, a single phoneme such as a vowel, modeled over finite

time, can be represented as the product of the following three functions:

5 (ro) = U (ro).H (ro).R (ro) (2.1)
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Where S(m), is the Fourier transform of the vowel sound (speech output), U (m),

representing the voice waveform (source excitation), H (m), representing the dynamics

of the vocal tract, and R (m), radiation effects. where the input of the system is

considered as the impulse train. For unvoiced excitation the voice source will be

replaced by noise source.

As implied by the representation in equation (2.1), the majorIty of modern speech

modeling techniques assume that these components are linear and separable.

Accordingly, the speech production system is assumed to be the concatenation of

subsystems: vocal folds (source), vocal tract (filter) and radiation from lips and muscles,

with no dependency between two adjacent subsystems. A discrete-time model of this

concept is shown in the Fig-2.7.

Pilch
period

Impulse
train

generator

Vocal folds
model
U(w)

Gain for
voice
source

Voicel
unvoice
switch

Vocal
tract

model H(w)

Radialion
model R(w)

speech
s(n)

Random
noise

generator

Gain for
noise
source

Figure 2.7: Discrete-time model of the voice production

The vocal-tract model H (m) and the radiation model R (m) are excited by a discrete-time

glottal excitation signal u (n). During unvoiced speech activity, the excitation source is a

flat spectrum noise source embodied by a random noise generator. During periods of
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voiced speech activity, the excitation uses an estimation of the local pitch period to set

an impulse train generator that drives the vocal folds model U((j)).

Throughout the history of speech modeling, voiced excitation has always received more

research attention than its unvoiced counterpart. This is due to the fact that studies in

speech perception suggest that accurate modeling of voiced speech is crucial for natural-

sounding speech both in coding and in synthesis application. Hence, the development of

this area is still open. The objective of this thesis is to explore it even further - to

identify a speaker with the help of the voice source (vocal folds) model so that its

characteristic for different speakers will be quite vivid. So far, two types of models are

used to implement the vocal folds: physical model and parametric model [26).

Parametric models fit the glottal signal with piecewise analytical functions, using a small

number of parameters, such as LF model [9] characterizes one cycle of the flow

derivative using as few as four parameters. Physical models describe the glottal system

in terms of physiological quantities. These models capture the basic non-linear

mechanisms that initiate self-sustained oscillations, and can simulate subtle features;

however they involve many parameters and are not suitable for identification purposes

[27]. Some of these existing models are briefly discuss in the subsequent article.

2.3.1 One-mass Model

This model represents the glottal source as lumped oscillator and the sub-glottal system

as an air reservoir with pressure P, that provides air flow with the volume velocity (Ug)

[8]. The lumped oscillator, model by a single mass-spring, is driven by airflow from the

lungs. This model is simple and it has low computational burden. In this model source-

tract (vocal folds and vocal tract) interaction is taken into account whereas phase-

difference between the motions offolds edges is ignored.
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Figure 2.8: Schematic diagram of One- mass model.

The glottal area and volume velocity can be simulated from this model. It is shown in the

figure 2.8.

2.3.2 Two-mass Model

In the two-mass model, the vocal folds are divided into an upper and a lower mass [28].

This is because of the anatomic and functional division between the mucosa and the

vocalis. Each part consists of a simple mechanical oscillator having mass, spring, and

damper (m, s, and r) as shown in the fig-2.9. The springs and dampers represent the

elastic properties of the folds and dissipative forces such as viscosity and friction

respectively. The coupling stiffness Sc represents the interaction between the two

masses. The coupling stiffness represents the fact that as one of the masses is displaced

relative to the other, there is a force tending to restore the masses to their equilibrium

position relative. to one another. The two-mass model considers the phase-difference



vocal tract

16
between the motions of folds edges so that the simulation of glottal properties is more

realistic. With a reasonable computational burden natural speech can be produced.

trachea
iiIlld lung,s

Ps ~1 P12I2l P22 Ug~

~c~l+ct;l\_~Xlt_+_ t'2
Ic d1 Ie g

Figure 2.9: Schematic diagram of Two-mass model.

2.3.3 Multiple-mass Model

The two-mass model is considered as a milestone in qualifying vocal folds vibration but

it models only the vocal folds as a minimal mechanical structure capable of responding

to aerodynamic forces and sustaining oscillation. It is not capable of exhibiting various

longitudinal vibratory modes observed in human phonation. Titze [17], made an attempt

to enlarge the horizontal degree of freedom, proposed a 16-mass model, which is

composed of two rows with eight masses each as shown in the figure-2.10.
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Figure 2.10: Schematic diagram of 16-mass model.

The one row of masses represents the mucosa and the other row represents primarily the

vocal ligament and the vocalis muscle. The forces Tm and Tv represent the longitudinal

tensions. Specially, the spring constants for the upper and lower rows increase

nonlinearly with elongation of the vocal folds. The 16-mass model is complex and has

high computational burden.

2.3.4 Continuum Model

The vocal folds are represented as a continuous deformable medium in continuum model

[15, 16] as shown in the figure-2.I1 where the origin of the co-ordinate system is

centered at the vocal processes. The rectangular parallelepiped represents the vocal fold

part of the vocal folds. Surface 1,2 and 3 are fixed, and others are free. If/ represents the

displacement vector of the differential element and r is the longitudinal stress of the
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differential element. A coupling between the horizontal and vertical motion exists, which

is understood by the

T

\jf

x
D

Figure 2.11: Schematic diagram of Continuum model.

incompressibility of the vocal folds. An important consequence of the incompressibility

of the vocal folds is that the most easily excited vibratory mode appears to involve

vertical phase differences, since this mode tends to preserve the volume of the vocal

folds. It was also shown that the layered structure of the vocal folds is ideally adapted to

support vocal folds vibration. The longitudinal fibrous structure is looser in the vertical

direction than in the longitudinal direction. This allows vertical phase differences to

occur.

The continuum model gives clear information about the relationship between the vocal

folds structure and the vocal folds vibratory modes. But it has the limitation that the

shape of the vocal folds in this model is restricted to a rectangular form. The tissue

properties are uniform in the plane normal to the longitudinal direction for ease of

manipulation. It has another limitation that the model lacks a complete representation of

\
•
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the interaction between the aerodynamic airflow and the elastic vocal folds tissue

because the normal modes of the vocal folds vibration are derived based on an eigen-

value analysis ofthe fold tissue.

2.3.5 Ribbon Model

Vocal folds vibration occurs mainly in a thin layer of the non-muscular tissue at the

vocal folds surface. It is estimated that the effective depth of vibration into the vocal

folds is on the order of Imm. Hence, one can think of the vibrating portion as a stretched

ribbon that is fixed at the horizontal endpoints (Y=O at the posterior arytenoids part, Y=L

at the anterior part) but is free to bend and flex in the vertical dimension between those

endpoints. So the motion of the ribbon can be described by a wave equation with

appropriate boundary conditions, and its eigen-function will give the approximate

vibration patterns of the vocal folds. Using this concept, a kinematics four-parameter

z

y

x

o
T

Figure 2.12: Schematic diagram of ribbon model.

model for three-dimensional glottis was presented by Titze [17-18] as shown in the

figure-2.l2. The four-parameter model can provide the glottal flow, glottal area, and
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vocal folds contact area waveforms. The static glottis is controlled by the abduction

quotient (Qa) and the shape quatient (Qs) and the bulging quotient (Qb). The phase

quotient (Qp) and fundamental area frequency (Fa) control the dynamic glottis. The

displacement function is sinusoidal and is used to calculate the glottal area.

2.3.6 Body-cover Model

In body-cover model the vocal folds is divided into two mass tissue layers with different

mechanical properties. The body layer consists of muscle fibers and some tightly

connected collagen fibers of the vocal ligament [29]. The cover layer consists of pliable

non-contractile tissue that acts as a flexible sheath around the body layer. The layer

typically is loosely connected to the body during vibration. The motion of the cover

layer is usually observed as a surface wave. This wave propagates from the bottom of

the vocal folds to the top and so experiences movement in both the lateral and vertical

directions. Self-sustained vocal folds oscillation is highly dependant on this surface-

wave behavior and is the primary mechanism for transferring energy from the glottal

flow to the tissue to fuel the vibration. The body layer is primarily involved in lateral

motion. Based on his findings, Hirano in 1974 suggested that the vocal folds should be

treated as a double structured vibration with stiffness parameters that should be based on

the relative actions of the thyroarytenoid and cricothyroid muscles. Thus, the resultant

vibration of the vocal folds is composed of the coupled oscillations of the body and

cover layers. In the two-mass model, the lower mass is made thicker (vertical dimension

in the coronal plane) and more massive than the upper element in an attempt to include

the effects of the body layer. But, because a provision does not exist for coupled

oscillation of both layers, the two-mass model is essentially a "cover" model rather than

a "body-cover" model. In order to present more realistically the body-cover vocal folds

structure, Story and Titze in 1995 extended the two-mass model to the body cover model

as shown in the figure-2.13.
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The three-mass model consists oftwo "cover" masses coupled laterally to a "body" mass

by nonlinear springs and viscous damping element. In this model body mass represents

muscle tissue which is further coupled laterally to a rigid wall (assumed to represent the

thyroid cartilage) by a nonlinear spring and a damping element. The two cover springs

are intended to represent the elastic properties of the epithelium and the lamina propria,

while the body spring simulates the tension produced by contraction of the

thyroarytenoid muscle. Thus, contractions of the cricothyroid and thyroarytenoid

muscles are incorporated in the values used for the stiffness parameters of the body and

cover springs. The two cover masses are coupled to each other through a linear spring,

which can represent vertical mucosal wave propagation.

Vocal
tract

k4

3 d2

k1

Thyroid
certilage

Trachea
and
lungs

Figure 2.13: Schematic diagram of the body-cover model.
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2.3.7 Interactive Model (electrical analog version)

In this model the glottal constriction can be thought of as a purely dissipative flow

resistance which is inversely proportional to the glottal area [30J. In addition, the

acoustic impedance of the supraglottal and subglottal system can be approximated by an

inertive reactance at Fa (fundamental frequency) and those glottal harmonics falling

below Fj (first formant) and below the lowest subglottal acoustic resonance (for the

subglottal system). This is because that the supraglottal acoustic impedance as seen by

the glottis is inertive for frequencies more than a few percent less than Fj and the

subglottal acoustic impedance as seen by the glottis also tends to be inertive for

frequencies between the highest respiratory tissue resonance, which of the order of

magnitude of 10 Hz in adults [31J, and the lowest acoustic resonance, which roughly 300

to 400 Hz in adults.

Since the subglottal and supraglottal air masses can be considered to be more inertive

(mass-like) than compliant (compressible), if the vocal folds open after remaining closed

a long time, there will be a delay or lag in the build-up of air flow relative to the increase

in area, as the lungs pressure acts to overcome the inertia of the combined air mass. This

lag is shown fig-2.14 by the left-most horizontal arrow of the sketch of the glottal area

and flow waveforms. Fig-2.15 shows the solution of the nonlinear differential equation

that results when glottis is represented by a time-varying resistance, and the subglottal

and the supraglottal acoustic system by a single constant inertance [31J. The system is

shown in the figure 2.15 in its analogous electrical circuit form, where

Yg= 1/R= the glottal conductance;

PL= the average alveolar pressure in the lungs;

L,= the sum of subglottal and the supraglottal inertance near Fa

Ug=the glottal volume velocity.
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Figure 2.14: Glottal area and glottal air flow during phonation.

The R, L model in the figure 2.15 does not include the interaction with the first formant.

To include a first-order approximation of the first formant, the model can be modified by

adding an oral compliance, Co. This oral compliance can be considered a lumped

approximation to the compressibility of the supraglottal air and at lower values of F}, a

small component due to the effective compliance of the walls of supraglottal tract. In this

model, the supraglottal inertance is split into two parts, one on the either side of the ora!

compliance.
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Figure 2<15: Electrical analogous of vocal folds<

In this model, a back vowel such as "a" would have a high value for the pharyngeal

inertance and a low value for the oral component, while the reverse would hold for a

front vowel such as "i".

The dissipative elements associated with the vocal tract, Roc, RoL, and RoN in the figure-

2.16 are shown dashed, since not all may be needed in a simple model. Roc primarily
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represents the dissipation associated with the compressibility of the air flow and the

compliance of the cavity walls. RoL represents the dissipations associated with the
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Figure 2.16: Electrical analogous of vocal system.

velocity of the air flow (boundary layer effects, etc,), and RoN represents any shunting

effects, such as a small velopharyngealleakage. For non-nasal vowels with a high value

of FI, the main effect of oral dissipation is to determine the damping of FI during the

period of glottal closer. Since the total dissipative loss is generally very small in this

case, anyone of these components can be used. However, for low value of FI or

\.'
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nasalized vowels, the placement and the distribution of the dissipative loss elements

should be reconsidered.

2.3.8 Parametric Model

Parametric models use parameters to show the vocal folds properties. Though there are

various types of parametric models, all of them utilize almost the same method for

estimating the parameters. Among the parametric models, LF-model is considered as the

best [32]. LF-model is a 5-parameter model and the estimation of this parameters are

done by fitting the LF-model to the glottal flow signal which is procured by means of

inverse filtering [32,33). Inverse filtering, in one way, is similar to deconvolution. If the

transfer function of the vocal tract is known, glottal volume velocity can be determined

through the deconvolution of the sound pressure waveform and this is called the inverse

filtering of speech waveform. The vocal tract transfer function is generally estimated

over the closed phase interval (during the shut of the vocal folds) of the pitch period to

obtain an all-pole model. Since the estimated function is all-pole, vocal tract

configurations with dominant spectral zeros (such as nasals) are poorly represented.

Additionally, the inverse filtering paradigm assumes a time-invariant vocal tract over

each pitch-period.

Electroglottography (EGG) is used to determine the instant of closer and the information

about opening location. Inverse filtering is performed based on this information and then

the LF-model is fit to the inverse filtered waveform. The LF-model of Fant, Liljencrants

and Lin describes the smooth derivative of the glottal pulse waveform, referred to as

differentiated glottal volume velocity (DGVV) waveform in terms of an exponential

growing sinusoid in the open phase and a decaying exponential in the closed phase. The

estimated DGVV obtained through inverse filtering will be used to resemble the shape of

the LF-model waveform.
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There are some techniques to find the parameters from the inverse filtered output. Prony

[34) proposed a method for solving the parameters with the help of the equation of the

form

N

X (n)=L u;ePin•
i=O

(22)

The technique, known as Prony's method, decomposes the problem into two sets of

linear equations. First, the modes Pi of the signal are calculated, and then the residues ai
are calculated. Both ai and Pi are complex. The equation (2.2) is in the form of a sum of

complex exponentials in both the closed and open phases. Therefore, Prony techniques

can be applied in each phase to fit these equations to the inverse filtered output.

Another method, called Gradient Descent Technique, a very common iterative search

technique, can be used to estimate the open phase LF-model parameters that can best fit

the inverse filtered waveform in a least square sense.
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Figure 2.17: The derivative of glottal flow signal (LF model).
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In the figure-2.17 a five-parameter glottal flow model (LF-model) is given. Several

points on the voice source pulse serve as parameter for minimizing errors between the

model and the source. These points are usually the following major features of the glottal

flow derivative (U'):

TIF the length of the entire pulse;

Tp= the length of the time that U'>O;

Te= the time of the maximum negative value of U';

Ee= the value ofthe maximum negative U';

Ta= the experimentally determined effective duration of the return phase.

The glottal signal flow waveform found from DGVV is shown in the figure 2.18.

i

adduct

t

Figure 2.18: Glottal flow signal.

In the figure 2.18 the three phases of the glottal cycle are shown. When the pressure

difference becomes sufficiently large, the vocal folds are forced apart and air begins to
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flow through the glottis; this is the abduction phase. When the pressure difference

between the sub-glottal and supreglottal passages is sufficiently reduced, airflow begins

to reduce and the glottis begins to close; this is adduction phase. Adduction occurs more

rapidly than the abduction. Then glottis quickly closes, resulting in the closed phase of

the glottal cycle.
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2.4. Conclusion

In this chapter the anatomy of the voice production system is discussed at the beginning.

Then three major subsystems of the voice system -vocal folds, vocal tract and lips and

nose are explained briefly with their particular role in the voice production. Finally the

major emphasis was given to the vocal folds, starting with its anatomy to understand its

contribution to the voice output followed by some of its existing models. Physical

models of the vocal folds describe the glottal system in terms of physiological quantities.

Parametric models fit the glottal signal with piecewise analytical functions, using a small

number of parameters.
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CHAPTER 3

EXTRACTION OF VOCAL FOLDS PARAMETERS FOR SPEAKER

IDENTIFICATION USING INVERSE FITERING

3.1 Introduction

The basic of the speaker identification is to extract the speaker discriminative properties

from the speech. There are some methods used to extract these properties such as Linear

predictive cepstral coefficients, mel-frequency cepstral coefficients [22]. Every method

has it advantages as well as shortcomings. In this thesis work, a new model (vocal folds

model) is proposed here to investigate the speaker identification process. The whole

process is divided into two parts: finding the vocal folds model parameters through

cepstral coefficients and inverse filtering, identifying the speaker by vector quantization

(VQ) and feature matching technique. Generally, cepstral analysis separates vocal tract

properties from the speech output and cepstral coefficients carry the information of the

vocal tract. These coefficients are used with the help of inverse filtering to get the vocal

folds model parameters. On the other hand, VQ process is used to produce the code of a

speaker from the vocal folds model parameters and matching the test speech with this

code does the identification. In this chapter, the process for obtaining the cepstral

coefficients and finding the vocal folds model parameters from these is explained. Then

the VQ method that produces the speaker code is described. Finally, the feature

matching technique is presented to identify the speaker.

3.2 Basis for the Proposed Model

Vocal folds act as the source of voice production. Its oscillation produces a quasi-static

air pressure, which is further modulated by the vocal tract, mouth and nasal cavities. It is

interesting to observe that only the change of size and shape of the vocal tract cavity can



32
produce different sounds although the vibration of the vocal folds remains unchanged.

Hence, it is quite clear that the variation in sound is caused mostly by the variation of

vocal cavities (mainly vocal tract) but properties of vocal folds do not vary much during

that time. Therefore, there is a strong that the properties of vocal folds can be

investigated for speaker identification.

Speaker identification needs to extract speaker discriminating features from the speech

signal. Mel-frequency cepstral coefficients (MFCC) and Linear predictive cepstral

coefficients (LPCC) are well known cepstral coefficients derived from two different

techniques which extract speaker discriminative vocal tract properties from speech

signal used for speaker identification purpose [22). But according to the above

discussion vocal folds properties (proposed model parameters) are more likely to give

better speaker discriminative features.

To extract the vocal folds model parameters from the speech output it is necessary to

know the over all model for the vocal system. Early but still recognized model of human

speech production is the source-filter model, which treats the vocal folds as the source of

the voice and vocal cavities (mainly vocal tract) as the filter and these two parts work

independently during the utterance especially for the voiced sounds. This implies that

these components are linear and separable as shown in the figure 3.1.

train
Output

(speech)

J\J\A Nasal
Vocal folds Laryngeal t---- and.

Discrete cavity Mouth
impulse cavity

ill

Figure 3.1: Block diagram of the vocal system for voiced sounds.
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According to the above block diagram if s(n) represents the speech output with a

predetermined sampling rate satisfying the Nyquist criteria for sampling, the relation of

the components of the vocal system with the output utterance in the frequency domain

will be

5(m) = G(m).Hv(m).He(m).H,-(m) (3.1)

Where the G(m) is the Fourier transform of the input, Hlm),He(m) and H,(m) are the

transfer functions of vocal folds, vocal cavity (vocal tract) and nasal and mouth cavities

respectively. But in the sample voice data only the s(n) is known. Primarily the G(m) is

taken as a discrete-time impulse train (i.e. G(m) = 1). Again, the overall system can be

considered as the Autoregressive Moving Average (ARMA) model where the zeros of

this model are basically produced by mostly the nasal and mouth cavities. Generally,

zero of a model corresponds to the phase of the output waveform. But for recognition

purpose the magnitude of the Fourier transform will correctly resemble the output of the

voice system. Hence taking the AR model of overall system considering the dominant

poles only ignores the most part of the contribution of nasal and mouth cavity. Then the

system can be represented in a reduced form as in the equation (3.2)

5(m) =Hv(m).He(m) (32)

That is the output is the multiplication of the two major parts of the vocal system: vocal

folds and vocal tract in the frequency domain.

The salient feature of the He( m) is found in the Fourier transform of the output where the

resonance of the sound gives the indication of the poles of the vocal cavity (vocal tract).

The above equation (3.2) is more precise for sounds that come through the vibration of

vocal folds. This type of sounds is called voiced sound Hence, all vowels are voiced

sounds. Unvoiced sounds are generated by forming a constriction at some point along

the vocal tract, and forcing air through the constriction to produce turbulence. As for



34
example the lsi sound in "six" is an unvoiced sound. In the model for unvoiced sounds,

the G( aJ) and Hv( aJ) are replaced by flat spectrum white noise source [22).

For speaker identification purpose Cepstral method is used to get the speaker distinctive

features from some parts (vocal tract) of the vocal system. Conventionally the cepstral

coefficients generated by this cepstral method are used to get these features where the

cepstral coefficients carry the information of speaker discriminative vocal tract

properties. Again, according to the equation (3.2) if the speech output is subjected to

inverse filtering by the cepstral coefficients in the cepstral domain the outcome will be

the properties ofthe vocal folds especially for voiced sounds. In this research work, only

the vowels (voiced sounds) are used. Hence, the filtered output produced in the way just

mentioned, is the correspondence of the output of the vocal folds. AR model parameters

of this vocal folds output are used as the features of the speakers and according to above

discussion it can serve a very useful element for speaker identification purpose.

3.3 Cepstrum

The human speech signal s(n) can be represented as a "quickly varying" source (vocal

folds) signal ern) convolved with the "slowly varying" impulse response h(n) of the

vocal tract represented as a linear filter [22) as shown in the figure 3.2 conforming to the

equation (3.2). It is often desirable to eliminate one of the components though only the

output speech signal can be accessed. Separation of the source (vocal folds) and the filter

(vocal tract) from the mixed output is in general difficult problem when these

components are combined nonlinearly [22]. The cepstrum is the representation of the

signal where these two components are resolved into two additive parts [22) as shown in

the figure 2.3-a and figure 2.3-b.
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Figure 3.2: Component of speech in speech spectrum.

Mathematically, according to the discussion above:

IS(m) I ~ IE(m) I. IH(m) I (33)

Where, E(m) = G(m).Hv(m) = Hv(m) and H(m) ~ Hc(m) according to the equation (3.1)

and equation (3.2). Taking log on both sides of equation (3.3) will convert the product in

the right hand side ofthe equation (3.3) to additive form.

log IS(m)] = C,(m) = logIE(m)I + logIH(m)I (3.4)

Hence the two components of the vocal system are now linearly combined. It is shown

in the figure 33-a. These additive components will then be converted to the cepstral

coefficients in the cepstrum. It is computed by taking the inverse Discrete- Time Fourier

Transform (DTFT) of the logarithm of the magnitude spectrum of a frame of a speech.
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Figure 3.3: Compouents of speech in speech cepstrum

(a) conforming to equation (3.4) (b) conforming to equation (3.6)

This is represented in the equation (3.5).

cepstrum(frame) =IDTFT(log (IDTFT(frame) I)) (3.5)
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Taking the IDTFT in bothsides of the equation (3.4) according to the equation (3.5) will

convert the equation (3.4) to its cepstrum counterpart. It is given in the equation (3.6).

c,(n) ~ ce(n) + cv(n) (36)

Where c,(n), is the IDTFT of C,(m), cern) is the IDTFT of logIE(m)I and cv(n) is the

IDTFT of loglH (m) I.

The block diagram to get the cepstral coefficients from the speech output is shown

schematically in the figure 3.4

truro

()sn c,(n)
DTFT Logl.1 IDTFT

voiced Ceps
speech

Log IS(w) I=C,(w)

Figure 3.4: Computation of the cepstrum

In the speech magnitude spectrum IS(w)I, two components IE(w) I and IH(w) I is

multiplied. Once the logarithm of the spectral magnitude is taken, the two components

have their additive correlates in the new "signal," C,(w).When the IDTFT is taken, two

parts of the voice system are found clearly distinctive as shown in the figure 3.3-b.

Conventionally, the cepstral coefficients found from the cepstral analysis carry the

characteristic of vocal tract. LPCC and MFCC are generally used as the cepstral

coefficients for this purpose.

3.3.1 LPCC

LPCC are the cepstral coefficients derived from the linear predictive coding (LPC)

technique where the system is taken as all-pole model (AR model). For speech

Di~

0/
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production system LPC is based on the source-filter model conforming to the equation

(3.2). The main idea behind LPC is that the given speech sample can be approximated as

a linear combination of the past speech samples as given in the equation (3.7).

p

sen) = -I ak.s(n-k)
1Ft

(3.7)

where s(n) is an approximation of the present output, s(n-k) are past outputs, p is the

prediction order, and ak are the model parameters called the prediction coefficients.

Prediction error e is defined as the difference between real and predicted output.

Autocorrelation and covariance methods are usually applied to procure these

coefficients.

In speaker recognition task, we can use LPC based on the short-term analysis approach.

Because of the quasi-stationary nature of speech, we can compute a set of prediction

coefficients from every frame. The prediction order depends on the sampling rate and

frame size.

The preoccupation with the AR model (all-pole model) of the speech production system,

however arises from the fact that the very powerful and simple technique, LPC is used to

derive the AR model parameters from a given speech utterance. The main problem with

this model is that it can exactly preserve the magnitude spectrum but it may not retain

the phase characteristics. Nevertheless, a waveform with correct spectral magnitude is

frequently sufficient for coding, recognition and synthesis [22].

However, in speaker identification the major disadvantage of LPC is that it does not

resolve the vocal-tract characteristics from the vocal folds dynamics. In LPC derived

cepstral coefficients, the cepstral coefficients are not computed directly from the speech

utterance, rather it is computed from the impulse response of the LP model (AR model).

\.
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Therefore, the cepstral coefficients are computed from a sequence that has already been

"smoothed" in the sense that the excitation has been removed [22].

It has already been mentioned in the forgoing article that the MFCC and LPCC are

derived from two well-known techniques used in speaker identification to describe

signal characteristics, relative to the speaker discriminating vocal tract properties. There

is no general agreement in the literature about which method is better. However, it is

generally considered that LPCC are computationally less expensive while MFCC

provide more precise result [35] at the cost of higher computational complexity.

However, it is well known that certain phoneme classes, most notably the vowels,

involve vocal tract configurations that are acoustically resonant, and are therefore

appropriately modeled by all-pole AR model structure [22]. Hence, for the voiced sound

this LPCC derived from the all-pole model LPC will provide better result and can be a

strong competitor for MFCC [36].

3.4 Estimation of Proposed Model Parameters

Before the estimation of the vocal folds parameters, the speech output needs to be

preprocessed. Speech framing and pre-emphasis and windowing are the preprocessing

steps. Then the preprocessed data will be used to find the vocal folds parameters as

describe in the following sub-articles.

3.4.1 Speech Framing

When the speech is examined over a sufficiently short period of time (20-30

milliseconds) it has quite stable acoustic characteristics [22]. It leads to the useful

concept of describing human speech signal, called "short-term analysis, " where only a

portion of the signal is used to extract signal features at one time. It works in the

following way: the' speech is broken into fixed length frames typically between 20 ms

and 40 ms in duration with an overlapping (usually 30-50% of the window length)

,"'\.
I ,
. I, I
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between the adjacent frames. Overlapping is generally needed to avoid losing of

information. It is shown schematically in the figure 3.5.

3.4.2 Pre-emphasis

In many cases pre-emphasis is applied to the input signal. This is done mainly because

the recording device attenuates the higher frequencies more than the lower ones. Higher

frequencies get attenuated while propagating through air and the human ear also

emphasizes the higher frequencies. Pre-emphasis is typically done by a simple first order

high pass filter that increases the relative energy of the higher frequency spectrum [37].

" "0 0
" "(I) (I)
<Jl <Jl
<Jl <Jl5. 5.

Xu
lC X21

lC X31

x= X12 x= X22 x= X32

1 2 3

X1k.J X2k X3k

Window
function

Voice Frame N
utterce

,_ r)
y
encO.
=>
"a
"(I)
~.
=>
lC

x =NFeature _
vector

Figure 3.5: "Short term analysis" of speech utterance
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The Z-transform of this high pass filter can be given by the equation (3.8),

H(z)=1-az.1 (38)

Where a is around 0.96 to 0.99. The frequency response of this filter with a =0.99 is

shown in the figure 3.6 where the scale is normalized with respect to sampling

frequency.

3.4.3 Windowing

In order to prevent an abrupt change at the end points of a frame, it is usually multiplied

by a window function. These processed frames are called windowed frames. There are

. several window functions used in speaker recognition area, but the most popular one is

the Hamming window.

. .....~.
,

Normalized frequency

(a)

~-.. '" •...
.... p -, .....-.. '.•.••.. -.,,

.. -. Y" ,. '.. .
•••••• ". ; •• _ •••••• ';" .Co '. '"

< •• , }" •••,
..•.•. ':'" •.•• ". ,•.; •. '.<0 "'",. . . ,

, • < •
. ••••• , '•.... _,.• ', •.•. ~.• u " .,.. ,.•• ,. <0 ••• , -" ••••• , ••••• ' •••••. . . .

, < I < I

",' '._ .' ••• ; •• •• •. .". " " '{ ••• ", ",', .' <o~ ,. " .-, ,'.

Normalized frequency

(b)

Figure 3.6: The frequency response of a pre-emphasis filter;

(a) magnitude response (b) phase response.
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The equation of the Hamming window is stated as in the equation (3.9)

Wen) = 0.54 - O.46cos ( ~: )

Where n ~ O.1 N-l

3.4.4 Speech Features

(3.9)

A set of features extracted from a frame is called speech feature (or speech vector).

Speech information is usually conveyed in the spectrum of the speech. The logical

choice of a speech feature should represent the spectrum of the speech in a compact way.

It is clear that any feature will contain information about both the speech and the

speaker. Over short period of time the features represent the sounds and in a lesser way

the speaker. Over a longer period many sounds are uttered and the accumulation of the

features represent the speaker more clearly. Figure 3.7 illustrates how features arrange

themselves in two-dimensional feature-space for three different speakers. As can be seen

from the figure, the features of each speaker are concentrated at a specific location in the

feature-space. Extracting speech features with the proper model makes Speaker

Identification possible. Speech features should be extracted in such a way that it will

reduce the data while retaining the speaker discriminative information.

3.4.5 Linear Prediction Cepstral Coefficient (LPCC)

The LPCC carry the information of the vocal tract properties of a speaker and the

calculation to find the LPCC is less expensive compared to MFCC. These LPCC are

procured from the speech signal through some steps. First the data is preprocessed as

described in the framing, pre-emphasis and windowing sub-articles.
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Figure 3.7: Schematic of speaker location for three different speakers in a two

dimensional feature space.

Then Linear Predictive Coding (LPC) of each windowed frame is calculated according

to the Equation (3.10).

1
H(z'm)=--

, A(z;m)
G

p

1+La;(m)z~;
i=l

(3.10)

Where H(w) = Hv(w).Hc(w) (according to equation (3.2)), m is the frame index, P is the

order of the LPC, a;{m) is the set of model parameters of the mth frame and A (z;m) is the

Z-transform of the inverse filter. Hence the parameters found from this equation are the

. AR model parameters of the speech system (entire vocal system).

"1' \ I •

Ii
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Now the cepstral coefficients (LPCC) related to the vocal tract properties of the voice

system can be found recursively from the model parameters derived by the equation

(3.11) as follows,

n-l .

c'p(n) = an + L(~)c'P(i)an_i
i=l n

(311)

With c,p(0) = In(e) and c,p(1) = -ap where e is the minimum prediction error describe

in art: 3.3.1.

3.4.6 AR Model of Vocal Folds

In our proposed model the AR model parameters are used to find the speaker distinctive

features for speaker identification. The speech signal can be represented as a "quickly

varying" source signal convolved with the "slowly varying" impulse response of the

vocal tract represented as a linear filter. The separation of the source (vocal folds) and

the filter (vocal tract) parameters from the mixed output is generally difficult. In this

case cepstrum technique can be a useful tool as representative of the component signals

will be separated is the cepstrum [22] LPCC is one of the techniques which represent the

vocal tract properties of the speaker [22]. It is already mentioned through the equation

(3.2) that the voice system can be represented as the multiplication of the two major

parts of the vocal system: vocal folds and vocal tract. Therefore, if the speech output is

subjected to inverse filtering in the cepstral domain by these vocal tract related LPCC,

the information about the vocal folds of the speaker can be found. This is illustrated in

the figure 3.8.

Well-established cepstral coefficients carry the vocal tract information as the

identification tool for speaker. As both vocal folds and vocal tract vary from person to

person, therefore, our vocal folds model can also be used for speaker identification

purpose. As in the voiced signal the vocal folds property remained almost unchanged, it
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is possible that vocal folds related properties can give even better results for speaker

identification than the conventional vocal tract related LPCC.

The output of the vocal folds in the cepstral domain found from the inverse filtering by

LPCC is used to find the AR model parameters of the vocal folds using Yule-Walker

equations, which are solved by the Levinson-Durbin recursion [38]. These AR model

parameters will be considered as the speech features, which carry the information of the

speaker.

Speech
cepstrum

(output of the
mouth)

• LPCC
(Properities of vocal tract)

Output of vocal
folds
•

(cepstrum)

Figure 3.8: Inverse filtering to get vocal folds output

3.5 Speaker Identification

In this phase the AR model parameters will be used for speaker identification purpose.

Speaker identification is a decision making process of determining the author of a given

speech signal based on the previously stored or learned information [39). This step is

usually divided into two parts, namely coding and matching. The coding is a process of

enrolling a speaker to the identification system by constructing a so-called codebook of

that speaker, based on the features extracted from that speaker's speech sample. The

matching is a process of computing a matching score, which is a measure of the

similarity of the features extracted from the unknown speech sample and the speaker

codebook [24). For text independent speaker identification scheme coding is done by

first averaging the features over a relatively long period of time. This average features,
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which are less than the total number of features extracted from an unknown speech, will

be the codebook of the speaker. The process of averaging of the features is known as

vector quantization, which is the part of the coding in speaker identification. Then this

codebook will be used to test the unknown speech for speaker identification.

There are mainly two kinds of speaker identifications: close set and open set. In close set

identification, the speaker to be tested is already enrolled in the identification system i.e.

his/her codebook is constructed in the system before. In open set identification, the

speaker may not be enrolled in the system.

3.5.1 Vector Quantization

Vector quantization (VQ) is a process of mapping vectors from a vector space to a finite

number of regions in that space. These regions are called clusters and represented by

their central vectors (centroid) or code vectors. A set of code vectors which represents

the whole vector space, is called code book. In speaker identification, VQ is applied on

the set offeature vectors extracted from the speech sample and as a result, the speaker's

code book is generated. Such code book has a significantly smaller size than extracted

vector set as shown in the figure 3.9.

This VQ creates clusters with rigid boundaries in a sense that every vector belongs to

one and only one cluster [35] and all the vectors within a cluster is represented by the

code vector. The generated codebook in this process represents the speaker i.e. each

speaker has its own code book. In this connection it is worth mentioning that the feature

should be extracted in a way so that it better represents the speaker than the speech for

the purpose of speaker identification.

To get a proper code book for a speaker it needs a sufficiently long speech so that all the

statistical properties of the speaker are captured in the speech feature. Each frame

produces one set of speech features called feature vector, which corresponds to a point in
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the vector space. The dimension of the vector space will be equal to the number of

elements (coefficients) in a set of speech features, which of course depends on the

technique used to extract these features.

Code book for speaker 1 Code book for speaker 2

•

Feature vector space

o
•••

o Centroid

• sample

Speaker 2

o Centroid

• Sam pIe

Figure 3.9: Feature vectors along with code vectors in a two dimensional vector

space

One feature vector thus found can be represented by the equation (3.12)

Xi = (X i,l'X i,2"" .,X i,K)' i = 1,2, ..... ,N. (3.12 )

Where X; is the feature vector of the i'h number of frame, K is the number of elements Xi,k

(coefficients) in the feature vector. In this work, AR model parameters of one frame is

the set X;, where the elements Xi,k are the poles of that frame. Hence each frame will

produce a set of AR model parameters which will be a point in K dimensional vector

space. If the total number of frames is N for a speaker, then N number offeature vectors
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are procured, each of which has K number of elements. It can be expressed as in the

equation (3.13)

(3.13)

Hence, T represents the entire set of feature vectors of a speaker, which can be

visualized as N number of feature vector points in the K dimensional vector space. The

feature vectors are clustered in some particular regions in the vector space that

corresponds to the characteristics of that speaker. Different speakers would produce

different clustered regions.

Now, VQ is applied on these feature vectors to find the code vectors of the speaker,

which are the representatives of the clusters. The set of all code vectors of a speaker is

called the codebook of that speaker and is given in the equation (3.14)

(3.14)

Where, B is the codebook of the speaker, C/,j = 1,2, ...M, are the code vectors generated

by VQ from T, and M is the total number of code vectors for that speaker. The value of

M is a low as 4 to as high as 128, and of course depends on the process of the extraction

of the speaker features. Generally, the higher is the number of speakers, the higher will

be the value of M. Each code vector has the same number of elements as that of the

feature vector as given in the equation (3.15).

n=1,2, M (3.15)

When these code vectors are plotted in the vector space along with the feature vectors

these will represent the centroids of the clustered feature vectors as depicted in the figure

3.9.



49
Let Sn be the encoding region in the K dimensional vector space associated with code

vector Cn and R be the set of these encoding regions, then the set R can be writer as in

the equation (3.16).

(316)

The set denotes the partition of the vector space and if the feature vector X is in the

encoding region Sn, then VQ quantizes X (denoted by Q(XJ ) in the region Sn as en :

Q(XJ ~ en, if X is in Sn

Hence, en represents all those X that fall within Sn.

In other way, every Cn will fulfill two criteria:

(3.17)

1. The encoding region Sn should consists of all those feature vectors that are closer

to en than any of the other code vectors. For those feature vectors lying on the

boundary, any tie-breaking procedure will do.

2. The code vector en should be the average of all those feature vectors that are in

the encoding region Sn. And at least one feature vector belongs to each encoding

region.

If the speech features are extracted in a proper way, then these code vectors of different

speaker will fall in different encoded regions, which can be very useful and efficient

speaker discriminative tool for speaker identification.

There are several algorithms used to generate a codebook from the extracted features.

The LBG design algorithm is the most efficient method [22]. This algorithm is an
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iterative one, which alternatively solves the above two optimality criteria. The algorithm

requires an initial code-vector C and it is set as the average of the entire feature vectors.

This code-vector is then split into two. The iterative algorithm is run with these two

vectors as the initial codebook and each of them is split into two in the same way and the

process is repeated until the desired number of code-vectors is obtained.

This is summarized below in the following steps:

1. Find the average of the entirefeature vectors ofa speaker,

c= 1 N
~£Xi;=1 (3.18)

Where C is the initial code vector, x" is the feature vector of the ith frame, N, is

the total number of frames or feature vectors.

2. Calculate the average distance of feature vectors with respect to the initial code

vector,

(319)

Where N*K is the total number of elements in the whole vector space of that

speaker and C is the initial code vector.

3. Split the initial code vector into two,

Cl=(1+e).C

C2=(1- e).C

where e is a small positive number.

(320)
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4. For i = 1,2, , N, find the minimum value of

where, t '= 1, 2. Let t be the index which achieves the minimum set, then

Q(XJ =Ct

(3.21 )

(3.22)

where Q is an operator indicates that X, is quantized into Ct. That is, Ct is the

centroid of all the vectors who produce minimum distance with Ct. In this way

the feature vectors will be clustered into two sets.

5. Find the average of the two clustered feature vectors to get two new code vectors

C1 and C2.

6. Calculate the average distance of each set of clustered feature vectors with

respect to its code vector and then find the total average distance Dat by

averaging these two distances.

7. Then

Go to step-4.

if
Dave - Dat

Dave

D = Dave at

> &

In summery the whole process can be illustrated as in the figure 3.10
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Yes

•

No

1 U
Cl=- ~XU ~.c1

c1=1

1 U
D = -- nX -C I'

ave1 U*K.£J' c1 1
cl=1

N-U
C2= _1_ ~X

N-U~. c2
c2=1

1 N-U
D =- ~IX -C I'

ave2 (N-U)*K.LJ .:2 2
c2=1

Figure 3.10: Schematic diagram ofLBG technique

In this way the initial code vector C is split into two vectors C) and C2, then each of

them is split into two (total four) and the whole process is repeated until desired number

of code-vectors are obtained for the code book of the speaker. Generally, the number of

code vectors depends on the number of speakers enrolled, and the number of frames

taken for processing the code vectors.

This same process is applied for generation of codebook for each and every speaker.

These code books are then be compared to identify the speaker from an unknown speech.
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3.5.2 Feature Matching

Matching step in VQ consists of computing the quantization distortion between feature

vectors produced from the unknown speech and code vectors of the codebooks that are

already enrolled. Usually the nearest distance between feature vectors and the code

vectors is used as the quantization distortion. Commonly it is done by partitioning the

extracted feature vectors, using the minimum distance between the feature vectors and

code vectors from the speaker code book, and calculating the quantization distortion.

Another choice for matching score is mean squared error (MSE), which is computed as

the sum of the squared distances between the feature vectors and the code vectors,

divided by the number offeature vectors extracted from the speech sample.

Let us assume that after feature extraction from an unknown speech, we have N number

of feature vectors, and V number of speakers is enrolled in the system and each speaker

has P number of code vectors. The number of operations needed for matching step is

equal to N*V*P as we need to calculate the distance between that feature vector (test

vector) and every code vector of a code book and select the code vector with the smallest

distance. This process should be repeated for codebook of every speaker. This process is

illustrated schematically in the figure 3.11.

Hence, each and every feature vector will select a code vector from every code book

according to smallest distance. In this way, there will be N number of smallest distances

between N number of feature vectors and the selected code vectors for a code book.

Average of these distances will be the quantization distortion between the feature

vectors of the unknown speech and the codebook of that speaker. Therefore, the number

of quantization distortions will be equal to the number of speaker enrolled. Finally, the

speaker that produces the minimum quantization distortion will be the identified

speaker.

" ';:



54
Code vectors for
speaker m ode! A

Distance
ea leu la tio n

Test vector

Code vectors for
speaker m a del B

Figure 3.11: Schematic diagram of matching technique

According to the figure: 3.11, the shortest distance of each codebook will be measured

for each and every codebook, then the codebook that produces the smallest shortest

distance will be considered the speaker of the test speech.

Hence, each and every feature vector will select a code vector from every codebook

according to smallest distance. In this way, there will be N number of smallest distances

between N number of feature vectors and the selected code vectors for a code book.

Average of these distances will be the quantization distortion between the feature

vectors of the unknown speech and the codebook of that speaker Therefore, the number

of quantization distortions will be equal to the number of speaker enrolled. Finally, the

speaker that produces the minimum quantization distortion will be the identified

speaker

,
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For close-set speaker identification, the unknown speech will belong to one of the

speakers who are already enrolled. Therefore, the minimum quantization distortion will

be sufficient to find the speaker identity. But for open-set speaker identification,

unknown speech may not belong to the set of speakers who are enrolled in the system. In

that case the threshold quantization distortion will be used to identify the speaker from

its unknown speech. It can be found from the average of the all quantization distortions

as stated in the equation (3.23):

Dn= f. Dav (3.23)

Where Dn is the threshold quantization distortion, Dav, average of all quantization

distortions produce by all the speakers to the unknown speech except the minimum

quantization distortion. The value off can be determined empirically, which is a part of

training the speaker identification system.

In summery the whole process, starting from the extraction of feature and identification

of the speaker, is schematically depicted as in the figure 3.12.

Model for Matching

speaker 1 score

•••I Model for Matching "e
Speech Feature Feature speaker 2 score '" Index of identifi•sIgnal extraction vectors i ,S speaker

.5... •I:l
Model for Matchin"
speaker N score

ed

Matching against all models

Figure 3.12: Schematic diagram of speaker identification process
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3.6 Conclusion

In this chapter, the basis for the proposed model is given at the beginning. Then one of

the two well-recognized techniques for cepstral coefficients derived from LPC (LPCC)

is discussed to extract the properties of vocal tract. Later, the process of procuring the

proposed model parameters is put forth thoroughly. This procured model parameters are

used as the speaker discriminating features and with the help of VQ it is converted into

the code book of a speaker. Finally, the codebook that is used to identify speaker with the

help offeature matching technique is discussed. This chapter gives a detailed description

of extracting the vocal folds model (proposed model) parameters and identifying the

speaker from these parameters.

" ,:'

\
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CHAPTER 4

RESULTS

4.1 Introduction

At the beginning of this chapter the data acquisition process along with some of its

specification for this research work is given. Following the discussion of the previous

chapter, the speech data is processed to make the codebook of each individual speaker

and test speech is matched for identification. For open set identification a test speech of

a speaker is chosen whose codebook is not generated in the scheme. Then the results are

made on both open-set and close-set for proposed method and for conventional method.

Finally, a discussion is made upon the results as well as the comparison with previous

method.

4.2 Data Acquisition

The experiment was carried over 4 individuals (2 males and 2 females). Each person

performed monotonic speech of utterance in several voiced sounds in different pitch.

The types of voiced sounds and the pitch are discussed below.

4.2.1 Selected voiced sounds and pitch:

Six different vowel-like sounds are chosen for this purpose:

1. la!, as pronounced in the word 'father'.

2. laul, as pronounced in the word 'autumn'.

3. 101,as pronounced in the word 'low'.

4. Iii, as pronounced in the word 'fish'.

5. lui, as pronounced in the word 'bull'.

'\
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6. lae/, as pronounced in the word 'cat'.

Each speaker has to utter one vowel-like sound in eight different pitches. Pitch is

increased from lower to higher in a fashion that the last pitch is one octave higher than

the first one. As each speaker has to utter the same set of pitch sounds like every other

speaker we have chosen the eight common pitch used in the musical domain. They are in

Bengali, 'sa'(low), 're', 'ga', 'ma', 'pa', 'dha', 'ni', 'sa'(high) where the scale is fixed

in the B-flat.

All 48 (6 sound *8 pitches) utterances are concatenated to produce the long speech of a

speaker. Then, this long speech is subjected to framing, pre-emphasis, and windowing.

Next, this windowed frame is used to find LPCC and from LPCC AR model parameters

are found for that speaker. Each frame produces one set of AR model parameters or

feature vector. Finally, these feature vectors are subjected to VQ and feature matching

technique for speaker identification.

4.2.2 Technical Specification:

The sounds were recorded with a microphone, which is kept at a certain constant

distance from all the speakers' mouth. Careful attention was made on the invariability of

the mouth cavity. Other important notes are-

Sampling Frequency

Qnantization

Channel

Recorder software

File Format

44.1 KHz, CD quality

16 bit

Mono

the default windows sound recorder

'*.wav' format.

Typical speech utterance (wave form) is attached in the appendix B

\)
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4.3 Procedural specification

The procedure to find the proposed model and identify the speaker with these model

parameters is already discussed in the previous chapter (chapter 3). Here the

specification is given related to the procedure:

Speech Framing

High pass filter coefficient

Prediction Order

Code Vectors

LBG specification

Threshold coefficient

Program software

4.4 Results

1000 samples, 23 ms (approximate),

50% overlapping

a = 0.99

24

16

1'=0.01

f=0.65 (chosen empirically)

MATLAB6.5

Here the AR model parameters of vocal folds are used for speaker recognition through

vowels using the VQ and feature matching technique, which is discussed in the

foregoing chapter. This is also compared with results found by standard LPCC of vocal

tract using the same VQ and feature matching technique For the generation of the

codebook, all 48 utterances (six vowels and eight pitches) of a speaker are used. And

each utterance takes more than 60 fames. The results are given in the tabular form. In

the following tables [4.1-4.4], the column indicates the pitch of an utterance and the row

indicates how many vowels are taken for that particular pitch for identification purpose.

For close set speaker identification, four individuals are used, but for open set speaker

identification, another speaker's speech is taken, whose codebook was not in the system.
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Table 4.1: Close set speaker identification through vowels using LPCC

Number Pitch
of vowel sa(low) re I!a ma na dha ni sa(hi)

One 63% 71% 75% 67% 71% 67% 71% 63%

Two 70% 78% 68% 70% 79% 84% 88% 91%

Three 81% 79% 85% 86% 92% 87% 84% 80%

Four 89% 78% 84% 89% 93% 95% 91% 87%

Five 94% 96% 97% 95% 89% 93% 96% 92%

Six 97% 98% 97% 96% 94% 91% 89% 93%

The results of the conventional LPCC and vector quantization based close-set speaker

identification shown in the table: 4.1 using voiced sound. It is found from the table that

the percentage matching is as low as 63% and the highest is 98%.

Table 4.2: Close set speaker identification through vowels using proposed model

Number Pitch
of vowel sa(low) re I!a ma va dha ni sa(hi)

One 100% 100% 100% 100% 100% 100% 100% 100%

Two 100% 100% 100% 100% 100% 100% 100% 100%

Three 100% 100% 100% 100% 100% 100% 100% 100%

Four 100% 100% 100% 100% 100% 100% 100% 100%

Five 100% 100% 100% 100% 100% 100% 100% 100%

Six 100% 100% 100% 100% 100% 100% 100% 100%

The results of the proposed vocal folds AR model parameters and vector quantization

based close-set speaker identification shown in the table: 4.2 using voiced sound.
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Table 4.3: Open set speaker identification through vowels using LPCC

Number Pitch
of vowel sallow) re I!:a ma pa dha ni sa(hi)

One 42% 45% 47% 41% 46% 45% 44% 48%
Two 54% 49% 56% 48% 55% 53% 49% 52%
Three 58% 59% 57% 61% 60% 59% 58% 62%

Four 65% 63% 61% 62% 67% 65% 64% 63%

Five 67% 68% 64% 69% 65% 67% 69% 70%

Six 80% 81% 79% 76% 78% 77% 76% 73%

Results for open-set are presented in Tables 4.3 and 4.4 for the existing LPCC and vector

quantization based identification and the proposed model respectively. The results in

Table 4.3 show that it is really difficult to identify a speaker from the conventional for an

open set. The percentage matching is as low as 41% and the highest is only 81%. The

open-set identification is done by threshold quantization distortion. This is done in this

way. The average of the quantization distortions (D.v) made by the test speech to all

codebooks are taken apart from the minimum distortion. It is found in the experiment

that wrong speaker produce quite larger quantization distortion compare to that of the

right speaker. The minimum quantization distortion will be quite smaller to the Dav if

this is produced by the right speaker. It is also found that the right speaker produce

distortion 0.65 or less than the Dav.
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Table 4.4: Open set speaker identification through vowels using proposed model

Number Pitch
of vowel sa(low) re I!:a rna pa dha ni sa(hi)

One 91% 93% 90% 92% 95% 94% 95% 96%

Two 99% 97% 9S% 97% 99% 9S% 9S% 97%

Three 100% 100% 100% 100% 100% 100% 100% 100%

Four 100% 100% 100% 100% 100% 100% 100% 100%

Five 100% 100% 100% 100% 100% 100% 100% 100%

Six 100% 100% 100% 100% 100% 100% 100% 100%

It is seen in the table-4.4 that the proposed model can identify the speaker if the

combination of vowels is at least three. This is for open set identification where the

speaker identification is done if the unknown speech produces quantization distortion

with any of the codebooks less than the threshold quantization distortion.

4.5 Discussion

For close set speaker identification the result is positive for the proposed model and not

so convincing (can not identify speaker thoroughly) for the previous LPCC method. The

reason why the LPCC did not do well in this test is that, the number of various

utterances taken for generation of the codebook is very small (six), which cannot

produce the average vocal tract property of the speaker. Instead it produces more the

information of the speech uttered by the speaker than the speaker distinctive properties.

On the other hand, the new model gives better result (identitY speaker thoroughly) for

the same data sequence as LPCC. It may be concluded that vocal folds carry detectable

signature of the speaker whose properties are more consistent for speaker identification.

In the vowel output, the vocal folds property is found to be more pronounced. When the

inverse filtering of the LPCC was taken, the properties of vocal tract were filtered out
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from the overall properties and the properties of vocal folds are exposed. As vocal folds

vary from person to person, it carries the information of a person (speaker). From the

experimental results two important decisions can be made.

I. The vowels carry little information of the speaker as a property of vocal tract.

Vocal tract only holds the property of the vowel i.e. the information of the

speech.

2. Vocal folds properties vary very little when vowels are produced. Variation of

vowels and pitch has little effect in the variation ofthe vocal folds properties.

The first decision is almost inevitable. But the second one is very interesting. These

methods serve as a basis for future investigations in two ways: researchers can

investigate the vocal folds properties which helps them for speech synthesis, voice

pathology, speech coding and voice quality enhancement. Secondly, it can serve as a

strong tool for speaker identification purpose especially for voiced sound.

For open set speaker identification, it is seen that the speaker identification is done if

three vowels are taken at a time. This is because of vowels less than three, the property

of the speaker is not very pronounced. When more than two vowels are taken the

speaker's characteristics are strongly found in the codebook so that a threshold

quantization distortion can be set to find whether the speaker of the unknown speech is

in the system or not.

Another important aspect of this model is that, once the model (code book) is produced

for a speaker it can identify the speaker if he/she speaks only a single vowel for close-

set identification. For open-set it takes at least three vowels.

In this proposed model we use four speakers for identification purpose and it needs

further investigation with larger number of speakers to establish the robustness of the

proposed method. However, our objective was to investigate whether the vocal tract or
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vocal folds carry the better speaker discriminative information. From our results, it is

clear that not the conventional vocal tract but the vocal folds (proposed model) carry the

better speaker distinctive information.
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CHAPTERS

CONCLUSIONS

5.1 Discussions

In this thesis the AR model parameters of vocal folds are studied for speaker

identification. Conventionally, speaker identification process works with the property of

vocal tract. But throughout establishment of our method we try to make a point that the

vocal folds properties can also be used for this purpose. The reason behind is that both

vocal folds and vocal tract vary from person to person. LPCC and MFCC methods are

base on the known evidence that the information carried by the low-frequency

component of the speech signal is phonetically more important for human than that of

the high-frequency components [22] which is related to vocal tract. LPCC separates the

low-frequency information of speech from its higher one using LPC and convert it to its

cepstrum where as MFCC warp the frequency to place more emphasis on the low

frequency. In the proposed model LPCC are used to inverse filter the speech output so

that the information of the high frequency is found which corresponds to vocal folds.

This is tested for speaker identification purpose and gets very promising results for

voiced sound. So it is evident that the high frequency information corresponding to vocal

folds carry the information of the speaker especially for voiced sound.

5.2 Limitations

In the analysis presented here, the number of persons is taken four (two male and two

female). As we have to acquire the data using the musical domain pitch, it was not

very easy to get sufficient number of persons. However, if the number of person

increases, some modification should be needed to identify a speaker.
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For close set speaker identification it is thoroughly identity the speaker using only a

single vowel, but for open set it needs at least three different vowels to identify a

speaker.

Here we use only vowels for identification purpose, but consonant can be included

here for increasing the robustness ofthe identification system.

5.3 Suggestions for Further Work

Based on the limitations discussed above, following works can be carried out in future:

In the future work, the number of persons will be increased for this purpose. In that

case the number of code vectors should be increase to accommodate higher number of

speakers. Frame size and number of prediction order may need to be increased in this

purpose.

Again, this model can be tested for some other method like inverse filtering of MFCC

or inverse filtering of first-order derivatives of cepstrum called delta features. There is

another method based on MFCC found on [40] that can also be tested for this purpose.

Further, any kind of speech can be tested with this model. In that case, first the voiced

part of the speech will be extracted from the speech. Then this will be used for

procuring AR model parameters. Finally, identification will be done by the same way

as it is done here.

Though the proposed model produces better results for vowels uttered at the right

pitch, the same model may also be suited for normal speech. In that case, at first we

have to extract the voiced part of the normal speech, and then the rest of the process

will take exactly the same way. And that will also produce the similar results as the

voiced sound carry the information of the speaker, whereas the uncharacteristic

I
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constriction produced by the unvoiced sound is independent of the speaker. As for

example, lsi sound of 'six' never carry the information of the speaker.

This new system can be tested for the Gaussian Mixture Model (GMM) [41] instead of

VQ model.

The vocal folds model so derived can be utilized for pathology, speech synthesis or

speech enhancement for the future work.
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Appendix

Typical speech utterance wave-form for different vowels.

Figure 1: voice: "aa" pitch: sal(low)

Figure 2: voice: "aa" pitch: re
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Figure 3: voice: "aa" pitch ga
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Figure 4: voice: "aa" pitch: rna
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Figure 5: voice: "a a" pitch: pa
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Figure 6: voice: "aa" pitch: dha
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Figure 7: voice: "aa" pitch: ni

Figure 8: voice: "a a" pitch sa(hi)
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Figure 9: voice: "au" pitch: sa(low)
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FigurelO: voice: "au" pitch re
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Figurell: voice: "au" pitch: ga
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Figure12: voice: "au" pitch: rna
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Figure14: voice: "au" pitch: dha

Figure15: voice: "au" pitch: ni

Figure16: voice: "au" pitch: sa(hi)
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FigurelO: voice: "uu" pitch: sa(low)

Figure18: voice "uu" pitch: re

Figure19: voice: "uu" pitch: ga
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Figure20: voice: "uu" pitch: rna

Figure21: voice: "uu" pitch: pa
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Figure22: voice: "uu" pitch: dha



Figure23: voice: "uu" pitch: ni

Figure24: voice: "uu" pitch: sa(hi)
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Figure25: voice: "00" pitch: sa(low)
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Figure26: voice: "00" pitch: re

Figure27: voice: "00" pitch: ga

I
nWiiKdMJ9mm1!E1ig3.9jMlMmgmW?gnn;gf!EnM19;nMmi!mj!,19!nrjm!MgE~JI!llI

Figure25: voice: "00" pitch: rna
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Figure29: voice: "00" pitch: pa
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Figure30: voice: "00" pitch: dha
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Figure3l: voice: "00" pitch: ui
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Figure32: voice: "00" pitch: sa(hi)
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Figure33: voice: "ee" pitch : sa(low)

Figure34: voice: "ee" pitch: re
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Figure35: voice: "ee" pitch: ga
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Figure36: voice: "ee" pitch: rna
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Figure37: voice "ee" pitch pa
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Figure38: voice: "ee" pitch : dha

Figure39: voice: "ee" pitch: oi

Figure40: voice "ee" pitch sa(hi)



Figure41: voice: "ii" pitch: sa(low)
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Figure42: voice: "jj" pitch: re

86

Figure43: voice: "jj" pitch: ga
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Figure44: voice: "ii" pitch: rna

Figure45: voice: "ii" pitch: pa

Figure46: voice: "ii" pitch: dha
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Figure47: voice: "ii" pitch: oi

Figure48: voice: "ii" pitch: sa(hi)
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