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Abstract

Harmonic pollution has become a serious problem in power systems due to

non linear loads connected to the utility line. The injected harmonics can

result in a low power factor and various other problems such as: voltage

distortion, heating of transformers and reduction of system efficiency etc. In

order to prevent harmonic currents from entering the utility system,

corrective measures (e.g. active filtering) can be adopted within the power

electronic converter that would result almost sinusoidal currents at nearly

unity power factor. In this work, a single phase full bridge rectifier will

supply the dc input for a high frequency resonant inverter from the utility 50

Hz ac supply. The inverter will be switched so as to produce an output with

40 kHz frequency. In between the rectifier inverter stage a Boost

configuration active filtering scheme has been used to improve the power

factor and to make the input ac current wave-shape nearly sinusoidal. Input

current and power factor improvement using boost rectifier is common for

ordinary passive loads. In this thesis, the rectifier output do not directly feed

the load, rather it has another conversion stage in the form of a resonant

inverter. So, the rectifier load is an inverter and passive element

combination. Hence, the design and implementation of boost rectifier

filtering technique is different from the reported works. In the resonant

inverter, the load and rest of the series element in the circuit have to be

resonating. The complete circuit has been studied by simulation in this work

so as to obtain the design procedures of a boost rectifier filter for a resonant

inverter load to a rectifier. The study provides an alternative for passive

filters for input current shaping of rectifier - resonant inverter circuit

together with improved input power factor.
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Chapter 1
Introduction

1.1 Introduction

The function of an inverter is to change a dc input voltage to a symmetrical ac

output voltage of desired magnitude and frequency. Inverters are widely used in

industrial and household applications (e.g. variable-speed ac motor drives,

induction heating [I], standby power supplies, uninterruptible power supplies, high

frequency fluorescent lighting [2] etc.).

In most cases inverters use dc power obtained from utility power system through

rectification. Generally a diode-bridge rectifier is used for this purpose followed by

a bulk capacitor which causes input current to be pulsating in shape. Thus rectifiers

inject non-sinusoidal (harmonic) current in the power line causing distortion of

waveforms, increased losses, deterioration of power factor and electromagnetic

interference (EMI) [3], [4], [5]-[7].

This fact have forced to the incorporation of regulations such as IEC 1000-3-2 and

IEEE 519-1992 to limit the harmonic content of the currents drawn from the AC

power line.

Resonant inverters in large sizes are used in heating applications and in small sizes

are used in electronic ballast [9]. Since they have rectifiers at the front and

inductive loads, the line current become non-sinusoidal and power factor degrades.

To meet the specifications of standard regulations we have to take steps to reduce

the amount of harmonics injected to utility power line and improve the input power

factor. Usually passive filters [10] are used for improving the input current shape to

reduce harmonic loss. But, the power factor remains low despite passive filtering

process. To obtain high power factor and sinusoidal input currents it is necessary to

employ active filtering [4, 6-10] by high frequency switching of static devices.

Static active filters have the advantage of smaller sizes due to high frequency

1
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switching [3], [4], and [8]. Generally both passive and active filters are employed to

mitigate the problems of harmonic injections in lines by static power converters.

In recent years conversion of ac line voltages form utilities has been dominated by

the use of a single-phase diode rectifier followed by a single switch (i) a buck

converter or (ii) a boost converter or (iii) a buck-boost converter. Although

different research and experiments are going on to improve input power factor and

input current shape, most of them suffer from the disadvantages of increasing cost

and complexity in comparison to conventional rectifier-inverter. In our experiment

we employed a buck-boost converter for the said purpose which may be used in a

low or medium power high frequency resonant inverter system.

1.2 Previous Work

The expected imposition of the line-current harmonic limits for power supplies

intended for the European markets are described in the IEC 1000-3-2. These

regulations prompted many manufacturers to intensity their efforts toward finding

cost-effective solutions for complying with these specifications. Majority of these

efforts are related to improving the performance and reducing the cost of the

existing active power- factor-correction (PFC) circuits based on continuous or

discontinuous conduction mode boost converter, and on finding practical single-

stage PFC topologies which would integrate the PFC function and dc/dc conversion

step in one circuit. Besides these mainstream efforts, a number of manufacturers are

still exploring the merits and limitations of passive solutions [16].

Experiments have been done mostly on input current quality improvement for

single phase or three phase diode rectifiers [II]. Resonant inverter characteristics

have been studied with pure dc source [I, 22] and dc input obtained from diode

rectifier stage [6, 9]. A number of passive wave shaping circuits have been

introduced and analyzed in literature [8, 16]. The line current wave-shaping method

•
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using a series connection of a parallel LC circuit on the ac side and the rectifier is

introduced and analyzed in [II, 14].

It is a common practice to use a passive LC filter on input side to limit line current

harmonics. Passive approach for power factor correction can meet the regulation

with reliability and low EMI [5). The filter capacitor voltage of the rectifier varies

with line voltage, which affects the performance and efficiency of the converter. To

get large hold-up time and dc output with less ripple, the bulk capacitance has to be

increased making it bulkier. Small valued inductance degrades the power factor.

Harmonic series and/or parallel resonances between the passive filter and the power

system impedance may occur at a lower frequency than each tuned frequency [4].

Moreover, a passive filter may sink specific harmonic currents from other non-

linear loads on the same feeder and/or from the power system upstream of the

passive filter. This may make the passive filter overloaded and ineffective. Thus,

passive power conditioning approaches seem to be attractive for narrow voltage

range and low power applications.

Active filters or power conditioners have overcome much of the limitations faced in

passive filtering scheme. Unlike traditional passive harmonic filters, modern active

filtering, damping, isolation and termination, reactive-power control for power

factor correction and voltage regulation, load balancing, voltage-flicker reduction

and/or their combinations. Modern active harmonic filters are superior in filtering

performance, smaller in physical size and more flexible in application compared to

traditional passive harmonic filters. In active solutions, a converter with switching

frequencies higher than the power line frequency is placed before rectifier. Reactive

elements of this converter are small due to higher switching frequency. The

frequency of this converter is to make the load behave as an ideal resistive load and

thus eliminate the generation of the line current harmonics. However, addition of a

high frequency switching converter in series with the input circuit causes reduction

in overall efficiency of the whole converter due to losses contributed by the active

PFC circuit. Moreover the active PFC circuit contributes to an increase in overall

cost, increase in EMI and reduction in reliability due to an increase in the number
t

of components. So the target is to reduce the cost and enhance the performance of

3



the active PFC. Many research have been done on enhancing the performance of

active approaches. Normally two stages active PFC is widely used which consists

of two converters to achieve both power factor correction and output voltage

regulation in addition to the rectification circuit and the input EMI filter. These

converters are proposed with separate switches and control circuits. To reduce the

cost and complexity of the two-stage structure, the single stage PFC is used. But as

the voltage across the storage capacitor is not regulated (because the control is to be

used to regulate the output voltage), output voltage can vary greatly.

Power factor correction can be done by harmonic injection method, which IS an

involved and expensive approach. Nonlinear Carrier Control (NLC) method is also

used. But the technique is complicated due to the NLC controller.

Input current wave shaping by Buck, Boost, Cuk, Buck-boost etc. converters offer

different aspects of active filtering. Normally boost topology is used [II] as the

converter due to its advantages of input inductor and switching simplicity. But

Boost PFC converter has a low bandwidth which implies a loosely regulated output

voltage across storage capacitor. Only the step-up (boost) voltage option is

available here. Boost configuration has another problem of achieving stable,

symmetrical ac input current with simple circuit configuration. Buck-boost and Cuk

converters offer good performance to some extent.

1.3 Objectives of the Work

The objective of this work is to make the input current of a Rectifier - Resonant

inverter combination circuit near sinusoidal and at the same time in phase with the

supply voltage.

In order to prevent harmonic currents from entering the utility system, corrective

measures (e.g. active filtering) will be taken within the power electronic converter

that would result almost sinusoidal currents at nearly unity power factor.
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In this thesis, the rectifier output will not directly feed the load, rather it will have

another conversion stage in the form of a resonant inverter. So, the rectifier load

will be an inverter - passive element combination. In the resonant inverter, the load

and rest of the series element in the circuit have to be resonating.

In this study, the complete circuit will be studied by simulation to obtain the design

procedures of a boost rectifier filter for a resonant inverter load to a rectifier. The

study will provide an alternative for passive filters for input current shaping of

rectifier - resonant inverter circuit together with improved input power factor

which is not possible by normal passive filters.

1.4 Thesis Outline

This thesis includes four chapters.

Chapter-I provides a general introduction followed brief overview of earlier works

done and objective of the thesis.

Chapter-2: In this work, a single phase full bridge rectifier will supply the dc input

for the inverter from the utility 50 Hz ac supply. So, a single phase full-bridge

diode rectifier will be studied at various conditions. It starts from simple full-bridge

rectifier, which follows with input and output filters. Then, the single phase

rectifier with active filtering approach is studied. First, a boost regulated rectifier is

studied and then the study has been done with Buck-boost regulator. A boost

scheme is used to raise the output voltage level of the rectifier stage. A modified

buck-boost regulator is studied to find out a better solution of the problem than the

reported works.

Chapter-3: In this chapter a resonant inverter is formed using pure dc source and

then with the rectified dc output obtained from ac main (as discussed in chapter-2),

will feed the inverter. It includes the study of the converters, individual and overall

5



efficiency of these power conversion stages. The overall work will be carried out

by simulation.

Chapter-4 is the conclusive discussions and remarks. Some suggestions leading to

future scope of work is also presented in this chapter.

6



Chapter 2
Single Phase Diode Rectifier

2.1 Performance Parameters

A rectifier is a power converter that gives a dc output voltage preferably with

minimum amount of harmonic contents. At the same time, it should maintain the

input current as sinusoidal as possible and in phase with the input voltage so that

the power factor is near unity. The power processing quality of a rectifier requires

the determination of harmonic contents of the input current, output voltage, output

current and input power factor.

Power and Power Factor:

The output power of a rectifier can be defined as,

2.1

Where, Vde is the average output (load) voltage of the rectifier and Ide is the average

output (load) current of the rectifier.

From the definition of average (ac) power for input side of the rectifier, we get _

'I' T

Pin = Hp(t)dt = Hv,(t)i,(t)dt
o 0

Where, Vs is the utility input voltage at fundamental frequency,

2.2

2.3

and is is the utility input current in steady state as the sum of its Fourier (harmonic)

components,

2.4
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2.5

here, lsi is the fundamental (line-frequency fi) component and Ish is the component

at the h harmonic frequency fi,(=hfi). Is denotes the nns value of is.

Power factor is a measure of how effectively the load draws the real power. For

sinusoidal quantities,

p
Power factor (PF) = - ; here S = VI which denotes Apparent Powers

or, PF V51s1 cos "'1 151 '"
= --cos '1'1

V51s 15
2.6

Here cos ~I is the displacement factor (DPF), which is same as the power factor

(PF) in linear circuits with sinusoidal voltages and currents.

DPF = cos ~I

Therefore, the power factor with a non-sinusoidal current is,

PF = 151 . DPF
Is

Harmonic Distortion:

2.7

2.8

The amount of distortion in the voltage or current waveform is quantified by means

of an index called the total harmonic distortion (THD). The distortion component

of current from equation 2.4 is,

In terms of the nns values,

[12 2]Y,Idis = s -lsi

The THD in the current is defined as,

%THD
i
= 100 x Idis = 100 x "';152-1512

151 151

Relating equation 2.8 with equation 2.11 we get,

8
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PF = 1 . DPF
.J1 + THDi'

2.12

Where, the subscript i indicates the THD in current. This equation shows a relation

of total harmonic distortion to power factor.

A sinusoidal input current could also have a poor power factor if it is not in phase

with the input voltage. From equation 2.12 it is apparent that a 10% THDj

corresponds to a power factor of approximately 0.995. Thus specifYing limits for

each of the harmonics would help in the control of input current pollution. While

the process of shaping this input current is commonly called Power Factor

Correction (PFC), the measure of its effectiveness towards complying with

international regulations is the amount of reduction in the harmonic content of the

input current.

Efficiency:

The efficiency of a rectifier is defined as,

%Efficiency, 1"]= Pdc x 100
Pm 2.13

2.2 Power Factor in Single Phase Full-bridge Rectifier

The input stage of any ac~dc converter comprises of a full-bridge rectifier followed

by a large filter capacitor. The input current of such a rectifier circuit comprises of

large discontinuous peak current pulses that result in input current harmonic

distortion. This distortion of the input current occurs due to the fact that the diode

rectifiers conduct only for a short period. This period corresponds to the time when

the main instantaneous voltage is greater than the capacitor voltage. Since the

instantaneous main voltage is greater than the capacitor voltage only for very short

period of time, when the capacitor is fully charged, large current pulses are drawn

from the line during this short period of time. Typical input current harmonic

distortion for this kind of rectification is usually around 60% and power factor is

9



about 0.6. Figure-2.l shows the schematic of a typical single phase diode rectifier

filter circuit and Fig.-2.1 a,b,c shows the simulated line voltage, output voltage and

input current waveforms. Actual input current wave-shape and resulting harmonics

depend on line impedance.

D1 04

Vin
AC input
FREQ = 50 Hz

Line impedance
Rin Lin

("V"">

D2 D3

Cbulk
Load

Figure-2.l: Schematic of a Single-phase Full-bridge Rectifier with a bulk capacitor

400V

-400V
o VIV1:+,Vl:-)

400V

200V

SEL»

~, !
Os 5~ l~s 15m 20m 25m 30m 3~ 4~s 45ms 5~s
o VIR2:2,C1:1) ,VID3:2,04:1)

Time

Voltage across Bulk Capacitor

,Oms 75m, HOrns

Figure-2.l (a) Wave-shape of input line voltage Vin (Vrrns = 220v, freq=50Hz);
(b) Capacitor voltage and Rectified line voltage waveforms
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-lOOA
" -I (Vl)

IOOA

50A

(d)

(e)
50'

OA I"
OS 5ms

n 1ID3)
lOms 15ms 20ms 25ms 30ms 35ms ~Oms

Time

~5IT,S

,
50ms 55ms 60ms 65ms 70ms 75ms 80ms

Figure-2.1(c) Wave-shape of input line Current lin;
(d) Diode current waveform passing (+ve) half-cycle of Vin;

(e) Diode current waveform passing (-ve) half-cycle ofVin.

400.

(f) Input Current waveform

20'

-200

.".--.--J
Os Srns 10rns ISms 20m, 25m, lOrn, 35rns 40rns 4Sms 50ms 5Sm, 60", 65rns 70ms i5m. BOrns

o VIV!:t,Vl:-1 • -I{V11

Time

Figure-2.1 (f) Wave-shape of input line Current lin;
(g) Input voltage waveform Vin.
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Oil, a.5KHz
o -I (VI)

I,OKHz

(h)

2.5KHz

frequency

3.0KHz 3.5KHz 4.0KHz 4,5KH" 5, OKHz

Figure-2.! (h) Input line Current harmonic contents at different frequencies.

-5KW ,__ ,

0. Sm. 10m. 15m. 20m. 25m. JOrn, 35m. 40m. 45rn.
, W(R2) • -WIVl)

Time

Figure-2.!(i) Wave-shape of input Power Pac;
(j) Wave-shape of output Power Pdc

(i) Input Powerwaveform

I

U) Output powerwav~

50m, SSm. 60",. 65rn. "]0",' 75m. BOm,

The above figures reveal some important input, output and performance parameters

graphically. Fig.-2.!(c) shows that how severely input current is getting distorted

and consequently Fig.-2.! (h) shows the harmonic content of input line current.
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2.3 Power Factor Correction (PFC):

From the above observation it is obvious to apply some methods to improve input

power factor and reduce harmonics. Power factor depends both on harmonic

content and displacement power factor as was shown in equation 2.8. The harmonic

limit standards given by regulatory organizations set limit on the harmonic content

of the load current and does not specifically regulate the power factor of the line

current. A high power factor can be achieved even with a substantial harmonic

content, since the power factor is not significantly degraded by harmonics unless

their amplitude is quite large. Similarly low harmonic content also does not

guarantee high power factor.

PFC circuits for non-linear loads have their primary goal to reduce the harmonic

content of the line current. PFC circuit solutions can be broadly categorized as

passive and active circuits.

2.3.1 Passive Power Factor Correction (PFC) Method:

L, C or LC filters can be used to smooth out the de output voltage of the rectifier

and these are known as de filters. Ae filter is used to filter out the harmonics from

the supply system. The ac filter is normally ofLC type as shown in Fig.-2.2.

01 : 02

Ce: Load

Output DC Filter

Input ac Filter
03 : 04

Figure-2.2: Single Phase Full-bridge Rectifier with input and output Passive Filters.
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Since only passive elements like R, Land C is used in such type of filtering, they

are named as passive filters. Usually the filter design requires determining the

magnitudes and frequencies of the harmonics. The simplest approach is to add an

inductor on the ac side of the rectifier bridge. This added inductor results in a

higher effective value of ac-side inductance Li which improves the power factor and

reduces harmonics. The impact of ac side passive filtering are,

• Improved current waveform and the power factor improves from very poor

to acceptable range.

• The output voltage Vdc is dependent on the output load and is substantially

(around 10%) lower compared to the no-inductance case.

• Inductance Le together with dc-side filter capacitor form a low-pass filter,

and therefore, peak-to-peak ripple in the rectified output voltage Vdc is less.

• The overall energy remains essentially the same.

In general, passive solution offers reliable, rugged and quick reduction of harmonic

current. They are insensitive to line surges and spike. But, passive filters suffer

from some disadvantages as,

• Passive filter components (L, C) operate at low frequency (50 or 60 Hz)

and as a result their sizes are relatively large.

• Passive filters lack voltage regulation and their dynamic response is poor.

• Passive filters cannot improve both input power factor and input current

shape at the same time.

• For large loads harmonic series and/or parallel resonances between the

passive filter and the power system impedance may occur at a lower

frequency than each tuned frequency. Moreover, a passive filter may sink

specific harmonic currents form other nonlinear loads on the same feeder

and/or from the power system. This may make the passive filter

overloaded and ineffective.

14



2.3.2 Rectifier with Output L or C filter and Resistive load:

A full-bridge diode rectifier with output LC filter and with resistive load is shown

in Fig-2.3 (no input filter is used). The input voltage Vin has peak amplitude of 310

V with a frequency of 50 Hz. The output of the full wave recti fier contains both ac

and dc components as shown in Fig-2.3. A majority of applications, which cannot

tolerate a high voltage ripple, necessitates further processing of the rectified output.

The undesirable ac components, i.e. the ripple, can be minimized using filters.

L1

VOFF '" 0
VAMPl '" 310

FREQ '" 50

10rnH

,. D1 ~ D3

V1 , C1

"-'
500u

, D2 D4

R1
100

Figure-2.3: Schematic of a Single Phase Full-bridge Rectifier with output Filter.

SEL»
-40DV

o V(Rl:2,Rl:l)
4.0A

OA

-4.0A
Os lOms
c -I(Vl)

20ms 30ms 40ms 50ms

Time

(a)

60ms 70ms 80ms 90ms lOOms

Figure-2.3(a) Output voltage and
(b) Input Current of a Rectifier without any output Filter.
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200V

100V

OV

(c)

~ I \
o V(R1:2,R1:1)

(d)

,

4. OA

2.0A

SEL;:.;:.
OA
OHz 50Hz

o ~I(Vl)
100Hz 150HZ 200Hz 250Hz

Frequency

300Hz 350Hz 400Hz 450Hz 500Hz

Figure-2.3 Harmonics of Waveforms ofFig-2.3(a) and (b)
(c) Output Voltage harmonics and
(d) Input Current harmonics of the rectifier.

2 o rnA

(e)
15mA

lOrnA

5mA

OA
OHz 100Hz

" -I (VI)
200Hz 300Hz 400Hz 500Hz 600Hz 700Hz

Frequency

Figure-2.3(e) close-up view ofInput Current harmonics.

GOOW

400W

200W

ow

Aj (1)
~ ~ -

r /1-.. /" ••... /"

I '-J ~

/

-200W
Os 20ms 40ms GOms BOrns

AVG(I(Vl)*V(V1:+)) "AVG(1(Rl)*V{R1:1))
Time

lOOms l20ms 140ms 160ms

Figure-2.3(f) Average Pin and Pout; Efficiency = 47% (approx.); (without filter)
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From the Figures-2.3(a) and 2.3(c) we find that the output is a pulsating de with

maximum ripple containing even harmonics. The current waveform is nearly

sinusoidal.

In order to reduce the ripple of output voltage a filter capacitor may be used. The

output is shown in Fig-2.4(a). The output voltage ripple decreases with increase in

capacitor value. The ripple also depends on output load.

4QOV

200V

SEL»
ov

(a)

c V(Rl:2,Rl:l)

-SOA
Os 10ms
c -I (VI)

20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms lOOms

Time

Figure-2.4(a) Output voltage and
(b) Input Current with C = 500IlF, R10ad = 100 Q.

8.DA

700Hz600Hz500Hz400Hz300Hz200Hz

(c)

.....--' ./ fI
L '-Jl. .fiv-; " ,/ ~CA

DB", lOOHz
o -I(Vl)

6.DA

4.DA

2.DA

Frequency

Figure-2.4( c) Input Current harmonics (with output Capacitor = 500IlF).
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5.7KW

4.0KW

2.0KW

A
(d)

.1.

\~
.......:;::::

.

ow
Os 20ms 40ms 60ms eOms

<> - AVG(I(Vl)*V(Vl:+)) ~ AVG(I(Rl)*V(Rl:1))

Ti.me

lOOms 120ms 140m3 160ms

Figure-2.4(d) Average Pin and Pout; Efficiency = 36% (approx.); (Cooi= SOOIlFand
R10ad = 100 Q).

Figure-2.5(a) and 2.5(b) reveals that addition of output filter capacitor improves

output voltage ripple but it deteriorates the input current wave-shape. Figures-2.5

also show the effect of increasing output capacitance value on input current and

output voltage.

400V

300V

200V

7 (a)

100V

ov
Os lOms 20ms

c V(Rl:2,Rl,l)
30ms 40mS 50ms

Time

60m.s 70ms SOms 90lns lOOms

Figure-2.5(a) Output voltage of a Rectifier with C=2000IlF, R10ad = 100 Q

~
(b)

\I I
\

~

,
V

50A

OA

-50A
10ms 20ms

o -I(Vl)
30ms 'l0ms 50ms

Ti.me

60ms 70ms 80ms 90ms lOOms

Figure-2.5(b) Input Current wave-shape (with output Capacitor = 2000IlF).
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20A

1.5A

(c)
'OA

5A

OA
OHz lOOHz

<> -I (Vl)
200Hz 300Hz 400Hz 500Hz 600Hz 700Hz

Frequency

Figure-2.5( c) Input Current harmonics (with Cou'= 20001J.F,R10ad = 100 Q).

ZOKW

lOKW

(d)

\
.~

~

ow
Os 20ms 40ms 60ms 80rns

AVG(I(VI)*V(Vl:+)) v AVG(I(Rl}*V(Rl,l))

Time

lOOms 12 Oms 140ms 160ms

Figure-2.5(d) Average Pin and Pou'; Efficiency = 26% (approx.); (Cout = 2000IJ.F
and R10ad = 100 Q).

Effect of adding only an inductor, L filter, at the output of the full-bridge rectifier

has been studied and depicted in figures-2.6 and .27.

90ms lOOms8 Oms70ms60ms

(a)

50ms40mB30msZOms

<> VIR! 2,Rl:1)
4. OA

400V

OA

SEL»
-4.0A

Os lOms
., -I (VI)

Time

Figure-2.6(a) Output voltage and
(b) Input Current with L = lOmH only.
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3.0A

2.0A

1.0A

(c)

OA
OH,
o-l(Vl)

100Hz 200Hz 300Hz

Frequency

400Hz 500Hz 600Hz

Figure-2.6(c) Input Current harmonics (with Lou' = IOmH and R10ad = 100 Q).
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400W

200W

ow

(d)

-200W
Os 20ms 40ms 60ms 80ms

AVG(I(V1)*V{V1:+)) "AVG(I{Rl)*V(R1:1)1
Time

lOOms 120ms 140ms 160ms

Figure-2.6(d) Average Pin and Pout; Efficiency = 49% (approx.); (Lout= IOmH and
R10ad = 100 Q).
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(a)
200V

OV
o V(R1:2,R1:1)
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BEL;;.;;.
-4.0A

Os 10ms
o -I (Vl)

20ms 30ms 4 Oms 50ms

Time

60ms 70ms 80ms 90ms lOOms

Figure-2.7(a) Output voltage and
(b) Input Current with L = 200mH only
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(c)

/ L

3.0A

2.0A

1. OA

OA
OHz 50Hz

o -I (VI)
100Hz 150Hz 200Hz

Frequency

250Hz 300Hz 350HZ 400Hz

Figure-2.7(c) Input Current harmonics (with Lout= 200mH and R10ad = 100 D).

600W

400W

200W

ow

(d)
~rv '-/ -

/ "-/ "'---/ ~

-200W

Os 20ms 40ms 60ms BOrns
AVG(I(VI)*V(V1:+)) "AVG(I(Rl)*V(RI:l))

Time

lOOms 120ms 140ms 160ms

Figure-2.7(d) Average Pin and POUl; Efficiency = 52% (approx.); (Lout = 200mH
and R10ad = 100 D).

Comparison between input current and output voltage waveforms at two different

inductances (1OmH and 200mH) shows that ripple at output voltage decreases with

increase in inductor value with deteriorating input power factor and increasing

input harmonics. A proportional effect of load resistance with output ripple also

exists here. But the dc output is not as smooth as found using capacitor filter.
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2.3.3 Rectifier with Output LC filter and Resistive load:

In order to get less ripple in output voltage, to make input current close to

sinusoidal and to make the filter load independent, LC filter is introduced at the

output stage of the full-bridge rectifier. Analysis on LC output filter with resistive

load is discussed in following paragraphs.

(a)
SEL»
200V

o VIR1:2,Rl:l)
20A

OA

-20A
40m3 50ms

o-IIV1)
60m3 70ms 80ms 90ms lOOms 110ms 120m3 130ms HOrns

Time

Figure-2.8(a) Output voltage and
(b) Input Current; L=lOmH, C=SOOI1F, R=100D

6. QA

(c)
4.QA

2.QA

OA
OHz 100Hz

o -I (VI)
200Hz 300Hz

Frequency

400Hz 500HZ 600HZ

Figure-2.8(c) Input Current harmonics (with Cout = SOOI1F, Lout= lOmH and R10ad =
100 D).
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AVG(I(Vl)*V(Vl:+)) 0 AVG(I(Rl)*V(Rl:l))

Time

2.5KW

7.5KW

5.0KW

Figure-2.8(d) Average Pin and Pout; Efficiency = 40% (approx.); (Cout = S00I-lF,
Lout= 10mH and R10ad = 100 Q).
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Figure-2.9(a) Output voltage and
(b) Input Current; L=SOmH, C=S00I-lF, R=IOOQ
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Figure-2.9( C) Input Current harmonics (with Coot= SOO,..F, Lout= SOmH and R10ad =
100 Q).

140ms 160ms120mslOOms

•

\ (d)

~~

Low
Os 20ms 40ms 60ms BOms

'" - AVG(I(V1)*V(V1:+)) "AVG{I(R1)*V(Rl:l)}

1.0KW

3.0KW

2.0KW

Time
Figure-2.9(d) Average Pin and Poot;Efficiency = 41% (approx.); (COLlt= 500flF, Lout
= 50mH and R10ad = 100 Q).

It is observed that without filtering the input current THD is small and within limit

but the ripple in output voltage is maximum.

Use of only C-filter at the output stage results smoother dc output voltage. But this

suffers from poor efficiency and very large THD (in the order of 70%) in the input

current.

Only L-filter at the output provides better THD in input current than C-filter, but

ripples in output voltage remains large and output voltage is less than that of C-

filter. L-filter provides rectification efficiency around 50%.

LCjilter shows larger output voltage and output power at the cost of increase in

harmonic contents in input current.
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All these observations are presented in tabular form in Table-2.1.

Table-2.1: Input current, Output voltage and THD at different Output filter values:

No Capacitor Capacitor Inductor Inductor LC filter LC filter
Output only only only only L=10mH, L=5OmH,
Filter C",=5OOu C",=2000u L",=10mH L",=200mH C=5OOu C=5OOu

11 3.01 A SA 17A 3A 2.75A 7.2 A 4.25 A

Iz I mA 2.1 A 8.9 A 4.2 mA 24 mA 2.1 A 1.05 A

13 14mA 3.9 A 2.3 A 5 mA 310 mA 3A 1.58 A

14 2.2 mA 1.7 A 4A 4mA 30 mA 0.2 A 0.41 A

Is 10.5 mA 3.2 A 6.2A 20 mA 155 mA lA 0.45 A

16 2.2 mA 0.7 A 2.1 A 2.8 mA 22 mA 0.Q7 A 0.21 A

17 6.8mA 1.8 A 3.8 A 17mA 65 mA 0.21 A 0.18 A

Is 1.8 mA 1.25 A 1.7 A 3 mA 20mA 0.1 A 0.07 A

19 18.8 mA 0.5 A 22 A 17.2 mA 41 mA 0.2 A 0.05 A

110 2.1 mA 0.9A 2A 1.5mA 9mA 0.1 A 0.01 A

III 14.5 mA 0.6A 2.2 A 6mA 8mA 0.17 A 0.02 A

%THD 1.015% 7S.52% 77.67% 1.10% 13.03% 53.04% 47.37%

Vdc (avg) 197.3 V 2S0 V 300 V ISS V 195 V 265 V 21S V(approx.)

pout(avg) 210w 450w 4S0w 215 w 200w 490w 255 w

Efficiency 47% 36% 26% 49% 52% 40% 41 %

The THD in the current is defined as (in equation 2.11),

%THD. = 100 x ,/[S2_/12 .
I 11'

Where 1/ = I I/,n = 1,2,3, ...n and II = Fundamental component of input current.

From the above table and respective output figures it is observed that circuit

arrangement with no output filter provides good THD but contains high ripple in

rectified output voltage. Use of L-filter at the output stage also provides tolerable

input current harmonics but suffers from high ripple in the output voltage. Use of C
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and LC filters provide better rectified output voltage with less ripple content but

contains huge harmonics in intput current and also has poor efficiency.

2.3.4 Rectifier with Input-Output LC filter and Resistive load:

In order to get less ripple in output voltage and to improve input current wave

shape, passive LC-fiiter is introduced at the input side of the rectifier. Following

paragraph will find related parameters to evaluate the effect of addition ofLC-filter

of different Land C value. Simulations have been carried out for filter components

at output stage of the full-bridge rectifier having values of - Lout= 10 mH, Cout=

500 J.!Fand R10ad = 100 Q. Typical representative simulation results are presented in

figures 2.10 - 2. I3.

200V

lOOV

BEL::>;>
OV

(a)

(l V(Rl:2,Rl:1)
20A
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-20A
Os 2 Oms
(l - I (VI)

40ms 60ms

Time

80ms lOOms 12 Oms 14 Oms

Figure-2.10(a) Output voltage and
(b) Input Current; (Lout= 10mH, Collt= 500J.!F, R=IOOQ, Cin= 500J.!F,
Lin1 = 100mH and Lin2= IOmH).

12A
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OH,
o-I(VI)
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400Hz 500Hz 600Hz

Figure-2.10(c) Input Current harmonics; (Lout= 10mH, Cout= 500J.!F,R=IOOQ, Cin
= 500J.!F,Linl= IOOmHand Lin2= IOmH).
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Figure-2.1 O(d) Vin and iin; Close-up view showing Power Factor = 0.7; (Lout =
IOmH, Cout= SOOf.lF,R = lOOn, Cin = SOOf.lF,Linl = IOOmH and Lin2= IOmH).
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Figure-2.l0(e) Average Pin and Pout; Efficiency = 28% (approx.); (Lout = IOmH,
Cout= SOOf.lF,R = lOOn, Cin = SOOf.lF,Linl = IOOmH and Lin2= IOmH).
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Figure-2.II(a) Output voltage and
(b) Input Current; (Lout= IOmH, Cou[= SOOf.lF,R=IOOn, Cin = 200llF,
Linl = 20mH and Lin2= ImH).
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Figure-2.II(c) Input Current harmonics; (Loll'= lOmH, Cou'= 500/lF, R=lOOn, Cin
= 200/lF, Linl= 20mH and Lin2= ImH).
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Figure-2.11 (d) Vinand lin; Close-up view showing Power Factor = 0.85 leading;
(Loll'= lOmH, Cout= 500/lF, R = lOOn, Cin= 200/lF, Lin!= 20mH and Lin2= ImH).
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Figure-2.II(e) Average Pin and Pout;Efficiency = 42% (approx.); (Lollt= 10mH,
Cout= 500/lF, R = lOOn, Cin= 200/lF, Lin!= 20mH and Lin2= ImH).
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Figure-2.12(a) Output voltage and
b) Input Current; (Lout = IOmH, Cout = 500f.lF, R=IOOQ , Cin = 50f.lF,
Linl = 200mH and Lin2= ImH).
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Figure-2.12(c) Input Current harmonics; (Lout= IOmH, Cout= 500f.lF, R=IOOQ, Cin
= 50f.lF, Linl = 200mH and Lin2 = huH).
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Figure-2.l2(d) Vin and iin; Close-up view showing Power Factor = 0.85; (Lout=
lOmH, Cout= 500~F, R = lOOn, Cin = 50~F, Lin!= 200mH and Lin2= ImH).
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Figure-2.12(e) Average Pin and Pout; Efficiency = 32% (approx.); (Lout= lOmH,
Cout= 500~F, R = lOOn, Cin = 50~F, Lin!= 200mH and Lin2= ImH).
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Figure-2.13(c) Input Current harmonics; (Lou'= lOmH, Cou'= 500ilF,R=100Q, Cin
= 300ilF, Linl= SOmH and LinZ= hnH).
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Figure-2.l3(d) Vinand iin; Close-up view showing Power Factor = 0.75; (Lou' =
10mH, Cou' = 500ilF, R = 100Q , Cin= 300ilF, Linl= SOmH and LinZ= ImH).
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Figure-2.13(e) Average Pin and Pout;Efficiency = 32% (approx.); (Loll!= IOmH,
COLI!= 500).lF, R = lOOn, Cin= 300).lF, Linl= SOmHand Lin2= ImH).

From these simulation results we find that the shape of input current and output

voltage ripple improves after using LC- filter at the input stage of the rectifier with

the cost of deteriorating input power factor. It is also found that only odd harmonic

contents are dominating in input current spectrum, since the waveform is

symmetrical about the X-axis.

The input current magnitude depends on the input Land C combination. At lower

values of input inductor the input current becomes leading providing a higher

output voltage than input voltage. Efficiency found in these observations are not

satisfactory though THD in input current is in tolerable limit. To achieve a good

combination of input-output passive filter we have to use large inductors and

capacitors as filter component which will make the physical device bulky in size.

Regulation of output voltage is also not possible with the help of passive filters.

The observations made from simulated studies III Section-2.3.4 are listed in the
Table-2.2.
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Table - 2.2: Input current, Output voltage and THD at different Input filter values
when Lout = 10mH, Cout = 50011F,R = 100Q:

L;o1= 100rnH, L;o1= 200rnH, L;o1= BOrnH, L;o1= 20rnH,
L;o' = 10rnH, L;o'= 1rnH, L;o'= 1rnH, L;o'= 1rnH,
C;o = 500IJF C;o = 50IJF C;o = 300IJF C;o = 200IJF

11 11.4 A 6.25 A 19.5 A 27.8 A

12 0.3 A 180 rnA 0.47 A 1.4 A

13 180 mA 260 mA 0.31 A 1.1A

14 142 mA 68 mA 0.21 A 0.37 A

Is 120 mA 76 mA 0.23 A 0.21 A

16 100 mA 46 mA 0.15 A 0.20 A

17 98 mA 25 mA 0.11 A 0.10 A

18 52 mA 37 mA 0.12A 0.096 A

19 60 mA 20 mA 0.1 A 0.14A

110 56 mA 28 mA 0.098 A 0.J6A

III 60mA 30mA 0.095 A 0.13 A

%THD 3.82% 5.46% 3.59% 6.70%

Power Factor 0.7 lagging 0.85 lagging 0.75 lagging 0.85 leading

Vde (avg) 65V 210 V 200 V 430 V(approx.)

%Efficiency 28% 40% 32% 42%(approx.)

From the Table-2.2 and corresponding figures (from Fig.-2.10 to Fig.-2.13) it is

observed that different combination of LC filters, used in the input side of the

rectifier, provide different THD and power factors. Almost all these configurations

have THD within or near to specified limit but they have input power factor in the

order of 0.7 or 0.8 and also have poor rectification efficiency.
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2.4 Active Power Factor Correction (PFC)

In active power factor correction method, static switches are used in conjunction

with inductors to force the line current to follow the envelope of the line voltage

and go in phase with it. The choice of the active power electronic converter is based

on the following consideration:

• In general, electrical isolation between the utility input and the output of the

power electronic system (e.g. rectifier) either is not needed (e.g. in ac and dc

motor drives) or it can be provided in the second converter stage, as in the

switch-mode dc power supplies.

• In most applications it is acceptable, and in many cases desirable, to stabilize

the dc voltage Vde slightly in excess of the peak of the maximum of the ac

input voltage.

• The input current drawn should ideally be at a unity power factor so that the

power electronic interface emulates a resistor supplied by the utility source.

This also implies that the power flow is always unidirectional, from the

utility source to the power electronic equipment.

• The cost, power losses, and size of the current shaping circuit should be as

small as possible.

Based on these considerations, a line-frequency transformer isolation is ruled out.

The output voltage is usually regulated for variations. According to switching

frequency used, active PFC solutions may be classified into low-frequency and

high- frequency active PFC circuits. In most cases it is acceptable to have V
d
>

Vs(max), where Vs(max) is the peak of ac input voltage; so current shaping circuit in that

case is a step-up (boost) dc-dc converter. We can also use a buck converter, then

the output voltage will be lower and while using a buck-boost converter output

voltage can be either higher or lower than Vs(max)
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2.4.1 Active Input Current Shaping: Principle of Operation

The principle of operation of active input current shaping is straightforward. At the

utility input, the current is is desired to be sinusoidal and in phase with Vs as shown

in figure-i'-14c"b). Therefore, at the full-bridge rectifier output in 'Pigure-2.14(a)

have the same waveform as shown in Fig-2.14(c). In practice the power losses in

the rectifier bridge and the step-up dc-dc converter are fairly small. These are

neglected in the following study.

Step-up Converter

+

Ld

+

Iv,1 Cd
+
Vd (Vd> V,(max))

Figure-2.14(a) Schematic of Active PFC using Step-up Converter.

~ V(V?9:<) .11R32),.,

o~ 5rn~ 10m.
• I\I\S(VIV79:+11 ,ABSII(R321)

15m. 20m.

THee

JOm • 35m.

Figure-2.14(b) line voltage and Current, (c) v, and iL waveforms.
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From the figures 2.14( a)-(c), the iput power Pin(t) from ac source is,

= VsIs - VJs cos2wt "where, V" Is are rms input values. 2.14

Because of a fairly large capacitance Cd, the voltage Vdcan be initially assumed to

be de. That is, Vd(t)= Vd.Therefore, the output power is,

From Fig-2.14a

2.15

2.16

If the step-up converter in Fig-2.14a is idealized and can be assumed to be

operating at a switching frequency approaching infinity, then required inductance

Ld would be negligibly small. This allows the assumption that,

or, VJs- Vsls cos2wt = Vdid(t)

or,
. Vsls VsIsld(t) = -- - -- cos2wt

Vd Vd 2.17

now from Eq-2.16 and Eq-2.17 we get the average value of id as,

Vs IsId=ll d=--oa Vd'

and the current through the capacitor as,

. Vs Is
lJt) = - -- cos2wt = -ldcos2wt.

Vd

2.18

2.19

Even though this analysis is carried out by assuming the voltage across the

capacitor to be ripple-free dc, the ripple in Vd can be estimated from the above

relation of iJt) as,

Vdripple(t);:::;_1 f ic dt == ---.!.5..- sin2wt
, Cd 2wCd Eq-2.20

which can be kept low by selecting a suitably large value of Cd . A series-tuned LC

filter tuned for twice the ac frequency according to Eq-2.20 may be put in parallel

with Cd to minimize the ripple in the dc voltage. In this case, the switching
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frequency components of currents in id and the high frequency components in the

load current will also flow through Cd'

Since the input current to the step-up converter is to be shaped, the step-up

converter usually is operated in a current-regulated mode. There are various ways

to implement the current-mode control of the step-up converter such as,

a) Constant frequency control,

b) Constant tolerance-band control,

c) Variable tolerance-band control and

d) Discontinuous current control.

I (a) -J
I LI

------- - -- Ts ~ 2:------. ....fs - ------ -- - - ----

i- - -- - - -- -- - - . - - - -- - - - <.;..---- ---------- - - - ----- ---,-

I~
- - - - - - - - - - -u-cr-Al_ _ _ _ - - - - ~- - - - -U1

~OoA

100.1\

-10M

lOu

c IILll

Figure-2.l5(a) waveform of h (showing a full line voltage period = 20 mille-sec)

(b)

lo~. 12m •

• llvll

Figure-2.15(b) waveform of is in Constant Frequency Control (fs = 2kHz).
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Out of these the first one - Constant frequency control is easier and effective one.
, ,

Here, the switching frequency Is is kept constant. When IL reaches the value IL (iL

is the reference or desired value of h), the switch in the step-up converter is turned-

off. The switch is turned on by a clock at a fixed frequency Is, which results in IL as

shown in Fig-2.I 5(a).

During a switching-frequency time period T" the output voltage is assumed to be

constant as Vd and the input voltage to the step-up converter is assumed to be

constant at that instant of time; fripple is the peak-to-peak ripple current around the

envelop during one time period of the switching frequency. From Fig-2.I4(a) and

"volt-second balance" of an inductor the following equations can be written as,

and,

Ld Iripplet =-~'--
on Ivsl

Ld Iripplet =-~-'--
off Vd-Ivsl

2.21

2.22

where, ton is the on-interval and toff is the off-interval of the switch. Thus the

switching frequency Is can be expressed as,

1 1
Is = Ts == ton+toff

or, Is = (Vd-lvsl).lvsl
S Ld.lripple.vd 2.23

in a constant-frequency control scheme, Is is constant and hence,

f. = (Vd-lvsl).lvsl
npple Ld.fs.vd . 2.24

or,
(1-~).~f. = Vd Vd

npple Ld.fs 2.25

fr E . 2 25" b' h' Ivsl bam quatlOn-. It ISa VIOUSt at IIIa step-up converter - must e less than or
Vd

equal to I which requires,

Ivsl ~ 1
Vd 2.26



From Equation-2.24 the maximum ripple current is given as,

Vd
lripple(max)= 4.Ld.fs; when IVsl = 0.5 Vd 2.27

2.4.2 Active Input Current Shaping by Boost Regulator and no

input LC filter:

In active input current shaping technique using boost regulator, a boost converter is

placed between input and output stage of a full-bridge rectifier. Usually high

switching frequency (in this experiment we usedfs = 40 kHz) is used to operate the

boost switch Sb in order to reduce the size of L, C components. In this section no

input passive filter is used.

VOFF = 0 •
VAMPl = 310 :--

FREQ = 50

Lin1 Lin2

Cin

Lb
01 03

Sb

05

Cout RJoad
100

Input Passive Filter 02 04

Switching Pulse
Generator

Figure-2.16 Schematic of a full-bridge rectifier with Boost regulator with resistive
load.

The input current here starts to conduct in discontinuous conduction mode and the

wave ,shape follows the input voltage but have high frequency harmonics. Figures

2.16-2\.r 8 show the effect of changing the duty cycl~ of the boost switch at different
stages.
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Figure-2.l6(a) Output voltage and
(b) Input Current; (Lb= lOmH, COU(= 500/lF, R=lOOQ, Ton = 7/lsec,
Period = 25/lsec and fs= 40kHz).
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Figure-2.l6(c) Input Current harmonics; (Lb= lOmH, COLl(= 500/lF, R=lOOQ, Ton
= 7/lsec, Period = 25/lsec and fs= 40kHz).
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Figure-2.l6( d) Gate pulse of Boost switch; (Ton = 7/lsec, Period = 25/lsec).
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Figure-2.16(e) Average Pin and Pout;Efficiency = 60% (approx.); (Lb= lOmH, Cout
= 500IlF, R=lOOQ, Ton= 7lJSec, Period = 251lsec and fs= 40kHz).
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Figure-2.17(a) Output voltage and
(b) Input Current; (Lb= lOmH, Cout= 500IlF, R=lOOQ, Ton= llllsec,
Period = 25 Ilsec and fs= 40kHz).
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Figure-2.17(c) Input Current harmonics; (Lb= lOmH, Cout= 500IlF, R=lOOQ, Ton
= ll/-lsec, Period = 25 Ilsec and fs= 40kHz).
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Figure-2.17(d) Gate pulse of Boost switch; (Ton= l1/-lsec, Period = 25Jlsec).
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Figure-2.17(e) Average Pin and POUI; Efficiency = 56% (approx.); (Lb= lOmH, C
OUI

= 500JlF, R=lOOQ , Ton= l1/-lsec, Period = 25Jlsec and fs= 40kHz).
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Figure-2.18(a) Output voltage and
(b) Input Current; (Lb= IOmH, Cou'= 500J.lF, R=lOOQ, Ton = 17/lsec,
Period = 25 J.lsecand fs= 40kHz).
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Figure-2.18(c) Input Current harmonics; (Lb= IOmH, COli'= 500J.lF, R=lOOQ, Ton
= 17/lSec, Period = 25 J.lsecand fs= 40kHz).
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Figure-2.18(d) Gate pulse of Boost switch; (T nn = 17/lsec, Period = 25 J.lsec).
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Figure-2.18(e) Average P;n and POUl; Efficiency = 57% (approx.); (Lb= IOmH, C
OUl

= 500IlF, R=IOOQ, Ton = 17/Lsec, Period = 251lsec and fs= 40kHz).

2.4.3 Boost Regulator with input-output filter:

In order to improve the input current wave-shape of the boost regulated rectifier,

input passive filter is added as shown in Figure-2.19. Simulated waveforms and

their spectrum are shown in Figs-2.19-2.2l for various duty cycles. In Fig-2.l9 the

Boost Converter is placed at the input side of the line.

L3 D6

1mH MUR86

01 03

L1 L2

1.4mH O.1mH

V1

s

C3

SOOu

'"
C2

J..
02 04 -:-a
TR .001m
TF = .001m -=-0
PER = O.025m
PW a.DDam

VOFF = 1V
VON = 5V

C12

a.8u

~o

VOFF = a .
VAMPL = 310 :--

FREQ = 50

Fig.-2.l9 Schematic of a Boost rectifier with input-output filter and resistive load.
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Figure-2.!9(c) Input Current harmonics for the circuit shown above, THD = 5.35%;
(COllt=500/lF, R=!OOn, Ton= 8/lsec, Period = 25/lsec and fs= 40kHz).

25

(d)

20

10

o
Os 50ms lOOms 150ms
"AVG(I(R1)*V(Rl 2))*100/ AVG(V(V1 +)*1(Vl))

Time

2 OOms 250m3 300m3

Figure-2.l9(d) Average Pill and Pout;Efficiency = 22% (approx.); (Cout= 500/lF,
R=!OOn, Tall= 8/lsec, Period = 25/lsec and fs= 40kHz).
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Figure-2.20(c) Input Current harmonics for the circuit shown above, THD = 7.08%;
(Cout= 500~F, R=lOOn , Tun= 1ll-tsec, Period = 25~sec and fs= 40kHz).
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Figure-2.20(d) Average Pin and Pout;Efficiency = 25% (approx.); (Cout= 500~F,
R=100n, Ton= 1ll-tsec, Period = 25~sec and fs= 40kHz).
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Figure-2.2 I (c) Input Current harmonics for the circuit shown above; (Cout= 500)lF,
R=100Q , Ton= 17llsec, Period = 25)lsec and fs= 40kHz).
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Figure-2.21(d) Average Pin and Pout;Efficiency = 27% (approx.); (Cout= 500)lF,
R=IOOQ, Ton= 17llsec, Period = 25)lsec and fs= 40kHz).
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All these observations made from simulations (from fig-2.l6 to fig-2.21) are
provided in Table-2.3.

Table - 2.3: Input current, Output voltage, THD and Efficiency at different values

Ton of Boost switch:

Boost circuit with no Input Filter Boost Rectifier circuit with
input-output filter

Too = 7IJsec Ton = Ton = Ton = 8IJsec Ton = Ton = 17IJsec11IJsec 17IJsec 11IJsec

11 38.95 A 22A 12A 111 A 80A 43.5 A

h 2.5 A 2.25 A 2.1 A l.1A 1.6 A 1.45 A

13 10.5 A 7.58 A 4.8 A 5.8 A 5.3 A 3.55 A

14 0.4 A 0.52 A 0.18 A 0.05 A 0.05 A 0.4 A

Is 4.85 A 1.51 A 1.1 A 0.56 A 1.2 A lA

16 0.25 A 0.5 A 0.22 A 0.06 A 0.04 A 0.05 A

17 3A 0.72 A 0.26 A 0.27 A 0.2 A 0.14 A

Is 0.3 A 0.48 A 0.15 A 0.07 A 0.03 A 0.005 A

19 2.45 A 0.5 A 0.21 A 0.28 A 0.15 A 0.013A

%THD 32.41% 37.06% 44.8% 5.35% 7.08% 8.8%

V de (avg) 580 V 472 V 355V 645V 600V 490 V(approx.)

Efficiency 60% 56% 57% 22% 25% 27%

From the above table it is found that total harmonic distortion in input current is

reduced significantly with the addition of passive filter at input side and change in

duty cycle affects very little on efficiency. In terms of efficiency boost circuits with

input filter do not provide satisfactory result. Since a resistive load is considered for

all configurations, almost all circuits provide power factor as good as unity.
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In the active current shaping circuit using a step-up dc-dc converter, the following

observations are made,

• The output voltage Vd across the capacitor Cd contains ripple at twice the line

frequency.

• A higher switching frequency allows a lower value of Ld and an increased

ease of filtering high- frequency ripple. However, the switching frequency is

chosen as a compromise between the foregoing advantages and the increase

switching losses.

• If rectifier output voltage Vd is much larger than 10% beyond peak input ac

voltage Vin(max) , this will cause efficiency to decline.

• A small filter capacitor may be used across the output of the diode rectifier

bridge to prevent the ripple in iL from entering the utility system. An EMI

filter at the input is still required as in a conventional circuit without the

active current shaping.

In addition to an almost sinusoidal input waveform at nearly unity power factor, the

other advantages of an active current shaping can be summarized as follows,

• The dc output voltage Vd can be stabilized to a nearly constant value for

large variations in the line voltage. Thus, the volt-ampere ratings of the

semiconductor devices in the converter fed from Vd are significantly

reduced.

• Because of the absence of large peaks in the input current, the size to the

EMI filter components is smaller.

49



2.4.4 Buck-Boost Regulator - Principle of Operation:

Buck-boost converter is a combination of Buck and Boost regulator which can

provide an output voltage that may be less than or greater that the input voltage.

The output voltage polarity is opposite to that of the input voltage. So, this

regulator is also known as an inverting regulator. The circuit arrangement of a

buck-boost regulator is shown in the following figure.

Vin~

Q

L

D

c
R

vou!

Figure-2.22 Schematic of a Buck-boost Regulator.

In dc-de conversion, the switch Q of Buck-boost converter is turned on and off by

the pulse-width modulated control voltage. For analysis of the above circuit it may

be assumed that the transistor and the diode have no voltage drop during the

respective on-phases.

During the on-time of the transistor Ton,there is an input voltage Vin applied across

the inductor L. Inductor current IL increases linearly and energy is transferred to the

inductor. During the blocking phase Tofr of the transistor, current IL continues to

flow through the inductor and transfer the energy to the capacitor C.

T

Figure-2.23 Waveform of a Buck-boost converter.
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In ideal relationship inductor, diode, capacitor and switch may be assumed to be

loss-less.

'=! From Fig-2.23, at T = Ton; VL = Vin 2.28

And at T = Toff; 2.29

For volt-seconds balance, VinTon+ VoutToff= 0

which gives the output to input voltage ratio as follows -

Vout D--=---
Vin (1-0)

And corresponding current ratio is -

lout = _ (1-0)

lin 0

2.30

2.31

2.32

where, D is the duty-cycle defined as D = Ton . Since the value ofD is in-between
T

o and I, the output voltage can be varied from lower to higher than input voltage in

magnitude. The negative sign in Eqn. 2.31 indicates a reversal of the output

voltage.

The above ideal relationship will change in real circuit due to non-ideal

components (L, C), switch non-idealities (conduction drop in switches) etc. and

thus efficiency will also deviate from 100% of ideal efficiency. I
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2.4.5 A Practical Buck-Boost Regulator:

Now we'll examine a practical buck-boost regulator and observe their different

characteristics at different switching stages.

C1

047u

2mH

VOFF = 0
VAMPL = 310

FREQ = 50

• V1

~

~,

o

.1"

V1 = 1
V2 = 0
TD=O. V78

TR = .001m _
TF = .OOlm

PW = a.007m
PER = O.025m

1mH

.001

.001

Figure-2.24 A buck-boost circuit arrangement where switching frequency of the

transistor, fs = 40kHz and Ton = 7)lsec.

Input current, rectifier output voltage, THD, input power factor, Efficiency etc. are

observed graphically and presented in Figures 2.24-2.26. From these figures and

observed data we'll be able to choose a better combination comparing to other

circuit configurations. Observations of simulated results are provided in Table-2.4.
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Figure-2.24(a) Output voltage and
(b) Input Current of Buck-boost converter; (Lbb = hnH, CauL= 500flF,
R=lOOn, Ton = 711sec,Period = 25flsec and fs= 40kHz).
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Figure-2.24(c) Input Current harmonics; (Lbb= ImH, COUl= 500flF, R=lOOn, Ton =
711sec,Period = 25 flsec and fs= 40kHz).
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; V" "'-../' _ •......•.•~.--. ...•..
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,,- AVG(I(Vl)*V(Vl:+)) "AVG(I(Rl)*V(Rl:l))

Time

4.0KW

2.0KW

Figure-2.24(d) Output and Input average Power of Buck-boost converter; (Lbb =

ImH, CauL= 500flF, R= lOOn, Ton = 711sec,Period = 25flsec and fs= 40kHz).
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o -I(V1)

20ms 40ms 60ms

Time

80ms lOOms 120ms

Figure-2.25(a) Output voltage and
(b) Input Current of Buck-boost converter; (Lbb = ImH, Cout = 500IlF,
R=IOOQ, Ton = llllsec, Period = 251lsec and fs= 40kHz).
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OH.
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Frequency
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Figure-2.25(c) Input Current harmonics; (Lbb= ImH, Cout= 500IlF, R=100Q, Ton =
ll/-lsec, Period = 251lsec and fs= 40kHz).
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Figure-2.25(d) Output and Input average Power of Buck-boost converter; (L
bb

=
ImH, Cout = 500IlF, R=100Q, Ton = ll/-lsec, Period = 251lsec and fs= 40kHz).
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Figure-2.26(a) Output voltage and
(b) Input Current of Buck-boost converter; (Lbb = ImH, Cout = 500JlF,
R=lOOQ , Ton = 1711scc,Period = 25 Jlsec and fs= 40kHz).
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Figure-2.26(c) Input Current harmonics; (Lbb= ImH, Cout= 500JlF, R=lOOQ, Ton =
1711scc,Period = 25 Jlsec and fs= 40kI-Iz).
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Figure-2.26(d) Output and Input average Power of Buck-boost converter; (L
bb

=
ImH, Cout= 500JlF, R=IOOQ, Ton = 1711SCC,Period = 25Jlsec and fs= 40kHz).

55



Table-2.4: Input current, Output voltage and THD at different values Tonof Buck-
boost switch (Lbb = ImH, Cout = 500IlF, R = 100D):

T,,= 7fJsee T,,= 11fJsee Too= 17fJsee

11 19.2 A 8.9A 3.38 A

h 0.08 A 0.1 A 0.08 A

13 1.24 A 0.64 A 0.09 A

14 0.071 A 0.052 A 0.03 A

Is 0.7 A 0.05 A 0.07 A

16 0.055 A 0.03 A 0.008 A

17 0.36 A 0.07 A 0.02 A

Is 0.03 A 0.01 A 0.006 A

19 0.18 A 0.03 A 0.01 A

110 0.02 A 0.009 A 0.004 A

111 0.05 A 0.02 A 0.008 A

%THD 7.73% 7.38% 4.28%

Power Factor Nearly unity Nearly nnity Nearly unity

V"c (avg)(approx.) 320V 270 V 178 V

%Effieiency 17% 87% 95%

From the above table it is found that higher duty ratio provides better result both in

terms of THD and efficiency. Since at Ton= lhlsec we got THD within tolerable

limit and good overall efficiency, we can use this circuit for resonant inverter

operation.
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Chapter 3
Resonant Inverter

3.1 Introduction:

In all pulse-width modulated dc-ac and dc-dc converter topologies, the controllable

switches are operated in a switch mode where they are required to turn-on and turn-

off the entire load current during each switching. So the switches are subjected to

high switching stresses and high switching power loss that increases linearly with

the switching frequency of the PWM. Another significant drawback of the switch

mode operation is the EMI produced due to large di/dt and dv/dt caused by a switch
mode operation.

These shortcomings of switch-mode converters are exacerbated if the switching

frequency is increased in order to reduce the converter size and weight and hence to

increase the power density. Therefore, to realize high switching frequencies in

converters, the aforementioned shortcomings are minimized if each switch in a

converter changes its status (from 'on' to 'off and vice versa) when the voltage

across it and / or the current through it is zero at the switching instant. Since most

of these converter topologies and switching strategies require some form of LC

resonance, these are broadly classified as "resonant converters / inverters",

3.2 Classification of Resonant Inverters:

The resonant converters are defined as the combination of converter topologies and

switching strategies that result in zero-voltage and / or zero-current switching. One

way to categorize these converters is,

I) Load-resonant converters

(a) Voltage-source series-resonant converters

(i) Series-loaded resonant converters
57



(ii) Parallel-loaded resonant converters

(iii) Hybrid resonant converters

(b) Current-source parallel-resonant converters

(c) Class-E and subclass-E resonant converters.

(2) Resonant Switch Converters

(a) Resonant switch dc-dc converters

(i) Zero-current switching (ZCS) converters

(ii) Zero-voltage switching (ZVS) converters

(b) Zero-voltage switching, clamped-voltage (ZVS-CV) converters

(3) Resonant dc-link converters

(4) High frequency-link integral half-cycle converters.

3.3 A Full-bridge Series Resonant Inverter:

A typical full-bridge series resonant inverter and its current wave-shape through the

series resonant branch is shown in Figure-3.1:

Vin-=-

03

02

R

D3

D2

c

Load

L

01

04

D1

D4

Figure-3.l A full-bridge Series Resonant Inverter.
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14.DOA

1.585mO

• I(Rll
1,590 ••• 1,615,•• 1.620m.

Figure-3.2 Current waveform through Resonant LC branch at overlapping
condition.

I

The full-bridge configuration shown in Fig-3.1 can be operated in two different

modes: non-overlapping and overlapping. In a non-overlapping mode, the gate-

pulse of the transistor (or MOSFET, IGBT etc.) is delayed until the last current

oscillation through a diode has been completed as shown in the figure of current

wave form. And in overlapping mode, a transistor is made 'on' while the current in

the diode of the other part is still conducting as shown in Fig-3.2. Overlapping

operation increases the output frequency and also the output power.

The maximum frequency of resonant inverters are limited due to the turn-off or

commutation requirements of the switching device (BIT, MOSFET, IGBT etc.)

f =_1_
max 2tq

where, tq = turn-off time of the switching device.

The inverter can operate (fa) at resonant frequency frothat means _

wrf=f=-
a r Zrr

1here, CD, = angular resonant frequency = r-- ;
v (LC)
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3.4 Resonant Inverters at Various Switching Condition:

Resonant inverter is examined for different duty cycle of a switching period of

251lsec (i.e switching frequency Is = 40 kHz). Various input output parameters are

also shown in Figures 3.3-3.5.

Z2
Z1

D1 D2

100Vdc
V6 R1 C1 L1

Z4
0.1 0,1mH Z3

O.1u
D4 D3

R2

100

~o
V1 = 10
V2 = 0
TO = 0
TR = a,001m
TF = a.001m
PW = a.Ol0m
PER = 0.025

V1 = 10
V4 V5

V2 = 0
TD = 0.012
TR :: a,OOlm
TF =O.001m
PW::: a,G10m
PER = 0,025

Figure-3.3 Circuit Diagram of a full-bridge Resonant inverter.
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Figure-3.3(a) Input current of Resonant Inverter; when V=/OOv, Ton=lOllsec.
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Figure-3.3(b) Resistive load-current; when V=IOOv, Ton=lO/lsec.
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Figure-3.3(c) Current through resonating branch; when V=IOOv, Ton=lO/lsec.
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Figure-3.3(d) Waveform ofiel, iR1 and iR2 as in Fig-3.3; when V=IOOv,
Ton=lO/lsec.
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Figure-3.3(e) Voltage and Current wave through resonant branch; when
Ton=lOllsec.
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Figure-3.3(f) Alternate Gate-pulse to Switches; when Ton=lOllsec,
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Figure-3.3(g) Load Current (IR2) Harmonics; when Ton=lO/lSec.
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Figure-3.4(a) Resistive load-current; when V=]OOv, Ton=6/lsec.

2,'''.,-- -,

(b)

,. ,
0"0 '0""0 "Of'HO 120""0 1'.OK"o 200'.H' 2'OXH" 2an>:Ho '~Q"Ho :,"ox,"o 'OOXHzn -11R21

Figure-3.4(b) Resistive load-current harmonics; when V=]OOv, Ton=6/lScc.
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Figure-3A(c) Waveform ofiel, iRI and iR2 as in Fig-3.3; when V=100v, Too=61lsec.
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Figure-3A(f) Load Current and
(g) Voltage (nearly unity PF); when Ton=61lsec.
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Figure-3.4(h) Resonant Inverter Efficiency (approx. 26.2%); when Ton=6/-lsec.
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Figure-3.5(a) Load Current and
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(c)

"OH. 'O"H, <O"H, OO"H,
e -IIR,i

I I
140KH_ 100KH, LO.~H.

,

Figure-3.5(c) Load Current harmonics; when Ton=15/-lsec.
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Figure-3.5(d) Waveform ofIe), IR1 and IR2 as in Fig-3.3; when V=IOOv,
Ton=15J..lsec.
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Figure-3.5(f) Resonant Inverter Efficiency (approx. 84%); when Ton=15J..lsec.
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3.5 Resonant Inverters with Full-bridge Rectifier:

In most cases the de input of the resonant inverters are fed from output of a full-

bridge rectifier along with utility ac input. In this section resonant inverter fed from

a full-bridge rectifier with active filtering scheme is studied. From previous chapter

we found better performance from Buck-boost rectifier in terms of THD,

efficiency, PF and input current wave-shape. Hence, a buck-boost rectifier is added

in front of a resonant inverter studied in the previous sections of this chapter.

f .047u ~

IJ IC",m
",~r- V2 ~ 0 0"' ~10mH TD=O. V7

rR = ,DOlm _

" co, e>, -
" 0,1u : .DOlm '"'. " "' o lmHW;OO15m

O.lu

J~
ER ~OO25

'"0.00'

t--
OFF=Q
AMPL = 310
REO = 50

1, , '0 Vl = 0
V2=1O

"" Vl ~ 0

\) , Vl = 0
TD = 0 01~~:V2~1O ( . '" "J; V2 = 10 (ill = 0 = 0 012 10 = 0 TR = O,OOlm

TIl = a,OOlm = 0 DOlm TIl = a,OOlm TF=OOOlm
TF =O,OOlm : e a,DOlm TF=OOOlm PW=OOlOm
PW=O,010m = 0 OlOm PW=OO10m PER=OO25
PER = 0 025 R=OO25 PER = 0 025

-

Figure-3.6 Circuit Diagram of a Buck-boost regulated Resonant Inverter.

In this section, various performance parameters like - input current wave shape,

%THD, power factor, efficiency etc. is observed graphically from simulations

performed. From various switching duty cycle and inductor value combination,

component values and duty cycle of the buck-boost regulator have been chosen to

provide a trade-off between overall efficiency and input current %THD. It has been

found that by changing duty cycle, overall efficiency of the resonant inverter can be

achieved above 80% but the input current wave-form gets more distorted. In the

simulations we got better overall performance using input inductor value as 10mH,

inductor after the buck-boost switch with value of 0.2mH, pulse-width of buck-

boost switch as ISflsec and all other component values as shown in Fig-3.6.

Typical results of waveforms and their harmonic spectra are shown in Figs-3.6(a)-

(n).
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Figure-3.6(a) Input Current Wave-form of the Buck-boost regulated Resonant

Inverter as shown in Fig-3.6.
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Figure-3.6(b) Input Current Harmonics (THD = 6.27%)

400V

ov
(c)

-400V

0;' V(Vl:+,D):l)

lOA

OA

SEL»
-lOA

60ms
o -I{Vl)

65ms 70ms 75ms 80rns 85rns 90ms 95ms lOOms

Time

Figure-3.6(c) Input AC Voltage waveform and
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Figure-3.6(e) Rectifier Output Voltage (approx. I02V dc).
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Figure-3.6(f) Resonant Inverter Output Voltage (approx. 226V rms).
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Figure-3.6(g) Resonant Inverter Load Current (approx. 2.26A rms).
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Figure-3.6(i) Output Current through Resistive load and Resonating branch.
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Figure-3.6m Alternate Gate-pulses for switches at Resonant Inverter Stage.
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Figure-3.6(k) Gate-pulse for Buck-boost Switch.

30.

20A

lOA

OA

-IDA
0,

-I(L13)
20ms 40ms 60ms

Time

80ms lOOms nOms

Figure-3.6(l) Current through the inductor associated with Buck-boost switch.
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Figure-3.7 Circuit Diagram of a Boost regulated Resonant Inverter.
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Figure-3.7(a) Input Current Wave-form of the Boost regulated Resonant Inverter
as shown in Fig-3.7 (70A nns).
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Figure-3.7(i) Output Current through Resistive load and Resonating branch.
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Figure-3.6m Average Input power, Output power of the rectifier-inverter circuit
(efficiency = 48% approx.).

Our observations and findings obtained from above figures (from fig-3.6 to fig-3.7)

are tabulated in Table-3.1 in following page.
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Table-3.1: Comparison of a Boost and a Buck-boost rectifier fed Resonant Inverter
configuration:

Buck-boost Boost

Buck-boost switch Duty-cycle 0.6 0.6

Input Current Total Harmonic Distortion 6.27% 15.92%

Input Power Factor Almost Unity 0.99

Utility Input ac frequency 50 Hz 50 Hz

Input Current 4.95 A (rms) 70 A (nns)

Input Voltage 220 V (rms) 220 V (nns)

Average AC Input Power 510 watt 6kW

Inverter Output Current (resistive load) 2.26 A (rms) 8 A (nns)

Inverter Output Voltage (resistive load) 226 V (nns) 800 V (rms)

Resonant Inverter output frequency 40 kHz 40 kHz

Average Inverter Output Power 390 watt 3kW

Overall Resonant Inverter Efficiency Approx.76% Approx.48%

From the above table it is found that the buck-boost circuit provides less total

harmonic distortion than that of boost circuit. The boost configuration draws higher

input current from the utility than the buck-boost one. In terms of efficiency the

buck-boost circuit provides better result.
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Chapter 4
Conclusion and Suggestion

4.1 Conclusion:

Objective of this thesis has been to design and study of an active filter based

sinusoidal input current resonant inverter. The investigation started from a single-

phase full-wave diode rectifier with no input-output filter. Then it has been

continued to rectifiers with active filtering schemes (i.e. Boost, Buck-boost) having

necessary input-output passive filters. From the rectifier circuit configurations

studied at the beginning it has been observed that the input current gets highly

distorted after addition of the bulk capacitor across bridge rectifier output needed

for pure de output. This distortion is measured in terms of %THD which causes the

input current wave-shape to be changed from its sinusoidal wave-form. High

frequency harmonic components associated to the fundamental current component

exist. Though the thesis title says more about the resonant inverter, the main

objective of shaping the input current to nearly sinusoidal, needs attention at the

rectifier stage.

From observations listed in Table-2.3 it has been found that boost rectifiers without

input filter provides high efficiency but very poor THD of 44.1%. And boost

rectifiers with input-output filter gives low THD of 4.9% but have very low

efficiency. Moreover in some circuit configurations it was found that the input

current waveform is not stable and symmetrical in boost rectifier scheme. In Table-

2.4 we observed that buck-boost rectifiers provide THD like 4.28% as well as very

good efficiency like 95%.

So we choose buck-boost rectifier to cascade with resonant inverter stage. In

Chapter-3 a resonant inverter with buck-boost rectifier has been studied. The

findings and observations are listed in Table-3.1. This configuration provides input

current THD as 6.27% and overall efficiency as 76%. In our simulation study we
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-••• found that increase in efficiency simultaneously increases THD of input current,

thus distorting the utility current wave form to a great extent. This is why, we just

chosen buck-boost configuration and passive filter components as to make a trade-

off between tolerable THD and better efficiency. In this configuration, power factor

has been obtained as good as unity.

\
4.2 Suggestion for Future Work:

In this thesis, study has been done by simulation only. A practical implementation

of Boost and Buck-boost regulator based resonant inverter can be a future work.

The practical circuit would require implementing the following items:

I. Capacitor and Inductor selection for input-output filter;

2. IGBT design for maximum current stress and gate delay;

3. Control logic for the total regulator system;

4. Base drive with proper isolation;

5. Switching logic with almost zero delay.

Favorable outcomes from the above points can lead towards a successful single

phase active filter base rectifier fed resonant inverter with nearly sinusoidal input

current having high efficiency and good power factor.
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