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Abstract

Harmonic pollution has become a serious problem in power systems due to
non linear loads connected to the utility line. The injected harmonics can
result in a low power factor and various other problems such as: voltage
distortion, heating of transformers and reduction of system efficiency etc. In
order to prevent harmonic currents from entering the utility system,
corrective measures (e.g. active filtering) can be adopted within the power
electronic converter that would result almost sinusoidal currents at nearly
unity power factor. In this work, a single phase full bridge rectifier will
supply the dc input for a high fréquency resonant inverter from the utility 50
Hz ac supply. The inverter will be switched so as to produce an output with
40 kHz frequency. In between the rectifier inverter stage a Boost
configuration active filtering scheme has been used to improve the power
factor and to make the input ac current wave-shape nearly sinusoidal. Input
current and power factor improvement using boost rectifier is common for
ordinary passive loads. In this thesis, the rectifier output do not directly feed
the load, rather it has another conversion stage in the form of a resonant
inverter. So, the rectifier load is an inverter and passive element
combination. Hence, the design and implementation of boost rectifier
filtering technique is different from the reported works. In the resonant
inverter, the load and rest of the series element in the circuit have to be
resonating. The complete circuit has been studied by simulation in this work
s0 as to obtain the design procedures of a boost rectifier filter for a resonant
inverter load to a rectifier. The study provides an alternative for passive
filters for input current shaping of rectifier — resonant inverter circuit

together with improved input power factor.
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Chapter 1
Introduction

1.1 Introduction

The function of an inverter is to change a dc input voltage to a symmetrical ac
output voltage of desired magnitude and frequency. Inverters are widely used in
industrial and household applications (e.g. variable-speed ac motor drives, -
induction heating [1], standby power supplies, uninterruptible power supplies, high

frequency fluorescent lighting [2] etc.).

In most cases inverters use dc power obtained from utility power system through
rectification. Generally a diode-bridge rectifier is used for this purpose followed by
a bulk capacitor which causes input current to be pulsating in shape. Thus rectifiers
inject non-sinusoidal (harmonic) current in the power line causing distortion of
waveforms, increased losses, deterioration of power factor and electromagnetic

interference (EMI) [3], [4], [5]-[7].

This fact have forced to the incorporation of regulations such as IEC 1000-3-2 and
IEEE 519-1992 to limit the harmonic content of the currents drawn from the AC

power line.

Resonant inverters in large sizes are used in heating applications and in small sizes
are used in electronic ballast [9]. Since they have rectifiers at the front and
inductive loads, the line current become non-sinusoidal and power factor degrades.
To meet the specifications of standard regulations we have to take steps to reduce
the amount of harmonics injected to utility power line and improve the input power
factor. Usually passive filters [10] are used for improving the input current shape to
reduce harmonic loss. But, the power factor remains low despite passive filtering
process. To obtain high power factor and sinuseidal input currents it is necessary o
employ active filtering [4, 6-10] by high frequency switching of static devices.
Static active filters have the advantage of smaller sizes due to high frequency

1



switching [3], {4], and [8]. Generally both passive and active filters are employed to

mitigate the problems of harmonic injections in lines by static power converters.

In recent years conversion of ac line voltages form utilities has been dominated by
the use of a single-phase diode rectifier followed by a single switch (i) a buck
converter or (ii) a boost converter or (iii) a buck-boost converter. Although
different research and experiments are going on to improve input power factor and
input current shape, most of them suffer from the disadvantages of increasing cost
and complexity in comparison to conventional rectifier-inverter. In our experiment
we employed a buck-boost converter for the said purpose which may be used in a

low or medium power high frequency resonant inverter system.

1.2 Previous Work

The expected imposition of the line-current harmonic limits for power supplies
intended for the European markets are described in the IEC 1000-3-2. These
regulations prompted many manufacturers to intensify their efforts toward finding
cost-effective solutions for complying with these specifications. Majority of these
efforts are related to improving the performance and reducing the cost of the
existing active power-factor-correction (PFC) circuits based on continuous or
discontinuous conduction mode boost converter, and on finding practical single-
stage PFC topologies which would integrate the PFC function and de/de conversion
step in one circuit. Besides these mainstream efforts, a number of manufacturers are

still exploring the merits and limitations of passive solutions [16].

Experiments have been done mostly on input current quality improvement for
single phase or three phase diode rectifiers [11]. Resonant inverter characteristics
have been studied with pure dc source [1, 22] and dc input obtained from diode
rectifier stage [6, 9]. A number of passive wave shaping circuits have been

introduced and analyzed in literature [8, 16]. The line current wave-shaping method



using a serics connection of a parallel LC circuit on the ac side and the rectifier is

introduced and analyzed in [11, 14].

It is a common practice to use a passive LC filter on input side to limit line current
harmonics. Passive approach for power factor correction can meet the regulation
with reliability and low EMI [5]. The filter capacitor voltage of the rectifier varies
with line voltage, which affects the performance and efficiency of the converter. To
get large hold-up time and dc output with less ripple, the bulk capacitance has to be
increased making it bulkier. Small valued inductance degrades the power factor.
Harmonic series and/or parallel resonances between the passive filter and the power
system impedance may occur at a lower frequency than each tuned frequency [4].
Moreover, a passive filter may sink specific harmonic currents from other non-
linear loads on the same feeder and/or from the power system upstream of the
passive filter. This may make the passive filter overloaded and ineffective. Thus,
passive power conditioning approaches seem to be attractive for narrow voltage

range and low power applications.

Active filters or power conditioners have overcome much of the limitations faced in
passive filtering scheme. Unlike traditional passive harmonic filters, modern active
filtering, damping, isolation and termination, reactive-power control for power
factor correction and voltage regulation, load balancing, voltage-flicker reduction
and/or their combinations. Modern active harmonic filters are superijor in filtering
performance, smaller in physical size and more flexible in application compared to
traditional passive harmonic filters. In active solutions, a converter with switching
frequencies higher than the power line frequency is placed before rectifier. Reactive
elements of this converter are small due to higher switching frequency. The
frequency of this converter is to make the load behave as an ideal resistive load and
thus eliminate the generation of the line current harmonics. However, addition of a
high frequency switching converter in series with the input circuit causes reduction
in overall efficiency of the whole converter due to losses contributed by the active
PFC circuit. Moreover the active PFC circuit contributes to an increase in overall
cost, increase in EMI and reduction in reliability due to an increase in the number

?
of components. So the target is to reduce the cost and enhance the performance of
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the active PFC. Many research have been done on 'enhancing the performance of
active approaches. Normally two stages active PFC is widely used which consists
of two converters to achieve both power factor correction and output voltage
regulation in addition to the rectification circuit and the input EMI filter. These
converters are proposed with separate switches and control circuits. To reduce the
cost and complexity of the two-stage structure, the single stage PFC is used. But as
the voltage across the storage capacitor is not regulated (because the control is to be

used to regulate the output voltage), output voltage can vary greatly.

Power factor correction can be done by harmonic injection method, which is an
involved and expensive approach. Nonlinear Carrier Control (NLC) method is also

used. But the technique is complicated due to the NLC controller.

Input current wave shaping by Buck, Boost, Cik, Buck-boost etc. converters offer
different aspects of active filtering. Normally boost topology 1s used [11] as the
converter due to its advantages of input inductor and switching simplicity. But
Boost PFC converter has a low bandwidth which implies a loosely regulated output
voltage across storage capacitor. Only the step-up (boost) voltage option is
available here. Boost configuration has another problem of achieving stable,
symmetrical ac input current with simple circuit configuration. Buck-boost and Ctk

converters offer good performance to some extent.

1.3 Objectives of the Work

The objective of this work is to make the input current of a Rectifier - Resonant
inverter combination circuit near sinusoidal and at the same time in phase with the

supply voltage.

In order to prevent harmonic currents from entering the utility system, corrective
measures (e.g. active filtering) will be taken within the power electronic converter

that would result almost sinusoidal currents at nearly unity power factor.



In this thesis, the rectifier output will not directly feed the load, rather it will have
another conversion stage in the form of a resonant inverter. So, the rectifier load
will be an inverter — passive element combination. In the resonant inverter, the load

and rest of the series element in the circuit have to be resonating.

In this study, the complete circuit will be studied by simulation to obtain the design
procedures of a boost rectifier filter for a resonant inverter load to a rectifier. The
study will provide an alternative for passive filters for input current shaping of
rectifier — resonant inverter circuit together with improved input power factor

which is not possible by normal passive filters.

1.4 Thesis Outline

This thesis includes four chapters.

Chapter-1 provides a general introduction followed brief overview of earlier works

done and objective of the thesis.

Chapter-2: In this work, a single phase full bridge rectifier will supply the dc input
for the inverter from the utility 50 Hz ac supply. So, a single phase full-bridge
diode rectifier will be studied at various conditions. It starts from simple full-bridge
rectifier, which follows with input and output filters. Then, the single phase
rectifier with active filtering approach is studied. First, a boost regulated rectifier is
studied and then the study has been done with Buck-boost regulator. A boost
scheme is used to raise the output voltage level of the rectifier stage. A modified
buck-boost regulator is studied to find out a better solution of the problem than the

reported works.

Chapter-3: In this chapter a resonant inverter is formed using pure dc source and
then with the rectified dc output obtained from ac main (as discussed in chapter-2),

will feed the inverter. It includes the study of the converters, individual and overall



efficiency of these power conversion stages. The overall work will be carried out

by simulation.

Chapter-4 is the conclusive discussions and remarks. Some suggestions leading to

future scope of work is also presented in this chapter.



Chapter 2
Single Phase Diode Rectifier

2.1 Performance Parameters

A rectifier is a power converter that gives a dc output voltage preferably with
minimum amount of harmonic contents. At the same time, it should maintain the
input current as sinusoidal as possible and in phase with the input voltage so that
the power factor is near unity. The power processing quality of a rectifier requires
the determination of harmonic contents of the input current, output voltage, output

current and input power factor,

Power and Power Factor:

The output power of a rectifier can be defined as,
Pdc = Vdc Idc 2.1

Where, V, is the average output (load) voltage of the rectifier and I 1s the average

output (load) current of the rectifier.

From the definition of average (ac) power for input side of the rectifier, we get —
1] 1
Piy= = 6[ ptydr = - !‘ v(2)ii(2)dt 2.2

Where, v; is the utility input voltage at fundamental frequency,
Ve =2 ¥, sin et 2.3

and i is the utility input current in steady state as the sum of its Fourier (harmonic}

components,

ls(t) = l.sl(t) + Zh#l ish(t) 24



is(t) = N2 Iy sin (@it~ ¢) + Y V2Lgpsin (@t — o) 2.5

here, /;; is the fundamental (line-frequency f;) component and /., is the component

at the 2 harmonic frequency f,/=Af)). I, denotes the rms value of Iy

Power factor is a measure of how effectively the load draws the real power. For

sinusoidal quantities,

Power factor (PF) = = ; here § = V7 which denotes Apparent Power

“nilw

Vslslcosdl  Isi
or, ~PF=72Eleos®l_Is1 of 2.6

Vsls Is

Here cos ¢, is the displacement factor (DPF), which is same as the power factor

(PF) in linear circuits with sinusoidal voltages and currents.
DPF = cos ¢, 2.7

Therefore, the power factor with a non-sinusoidal current is,

Is1

PF = = DPF 2.8

Harmonic Distortion:

The amount of distortion in the voltage or current waveform is quantified by means
of an index called the total harmonic distortion (THD). The distortion component

of current from equation 2.4 is,

bais(t) = 15(1) - iy (1) 29
In terms of the rms values,

L =4 - 177 2.10

‘The THD in the current is defined as,

%THD; = 100 %1—% 100 x ”51"1’“2 2.11

Relating equation 2.8 with equation 2.11 we get,
8 i3



_ 1
‘PF———W.DPF 2.12

Where, the subscript ¢ indicates the THD in current. This equation shows a relation

of total harmonic distortion to power factor.

A sinusoidal input current could also have a poor power factor if it is not in phase
with the input voltage. From equation 2.12 it is apparent that a 10% THD;
corresponds to a power factor of approximately 0.995. Thus specifying limits for
cach of the harmonics would help in the control of input current pollution. While
the process of shaping this input current is commonly called Power Factor
Correction (PFC), the measure of its effectiveness towards complying with
international regulations is the amount of reduction in the harmonic content of the

input current.

Efficiency:

The efficiency of a rectifier is defined as,

%Efficiency, n == x 100 2.13

2.2 Power Factor in Single Phase Full-bridge Rectifier

The input stage of any ac-dc converter comprises of a full-bridge rectifier followed
by a large filter capacitor. The input current of such a rectifier circuit comprises of
large discontinuous peak current pulses that result in mput current harmonic
distortion. This distortion of the input current occurs due to the fact that the diode
rectifiers conduct only for a short period. This period corresponds to the time when
the main instantaneous voltage is greater than the capacitor voltage. Since the
instantaneous main voltage is greater than the capacitor voltage only for very short
period of time, when the capacitor is fully charged, large current pulses are drawn
from the line during this short period of time. Typical input current harmonic

distortion for this kind of rectification is usually around 60% and power factor is

9



about 0.6. Figure-2.1 shows the schematic of a typical single phase diode rectifier

filter circuit and Fig.-2.1a,b,c shows the simulated line voltage, output voltage and

input current waveforms. Actual input current wave-shape and resulting harmonics

depend on line impedance.

ff D1 Zn D4

Line impedance

Rin Lin
Vin

AAA f‘v‘\f‘v’\_______;_____m
AC input E\g :

FREQ = 50 Hz
T D2

Da

Figure-2.1: Schematic of a Single-phase Full-bridge Rectifier with a bulk capacitor

400V

pacitor

LN NN wilN
NVARTARARENARVIRTIR

SEL>>
v

o

1
Rectified Voltage waveform

T v O
0s Sms 10ma 15ns 20ms 25ms J0ms 35ms 40ms 45ms 50ms
o VIRZ:2,C1: 1) o W(D3:2,D4:1)
Time

] 1
55ms A0ms 8ims

T
Hms

i
Tsms  #0ms

Figure-2.1(a) Wave-shape of input line voltage Vi, (Vims = 220v, freq=50Hz);
(b) Capacitor voltage and Rectified line voltage waveforms

10

£



1002

=
=
:
L

[ V R

-1008

e -1{V1)

100

(d)

508+

=
.
-
=

SEL>>
-258

a 1101}

1004

(e)

Y T T T T

T T T T T T T F T [l ¥ 1 T T T

0s Sms 10ms 1hms 20m3 25ms 30ms 35ms 0ms 4515 50ms 55ms 60ms 65ms 70ms Toms  BOms
o L1{D3)

Tine

Figure-2.1(c) Wave-shape of input line Current I,
(d) Diode current waveform passing (+ve) half-cycle of Vi,;
(¢) Diode current waveform passing (-ve) half-cycle of V..
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Figure-2.1(f) Wave-shape of input line Current I, ;
(g) Input voltage waveform Vi,
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Figure-2.1(h) Input line Current harmonic contents at different frequencies.
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Figure-2.1(i) Wave-shape of input Power P,
(1) Wave-shape of output Power P,

The above figures reveal some important input, output and performance parameters
graphically. Fig.-2.1(c) shows that how severely input current is getting distorted

and consequently Fig.-2.1(h) shows the harmonic content of input line current.
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2.3 Power Factor Correction (PFC):

From the above observation it is obvious to apply some methods to improve input
power factor and reduce harmonics. Power factor depends both on harmonic
content and displacement power factor as was shown in equation 2.8. The harmonic
limit standards given by regulatory organizations set limit on the harmonic content
of the load current and does not specifically regulate the power factor of the line
current. A high power factor can be achieved even with a substantial harmonic
content, since the power factor is not significantly degraded by harmonics unless
their amplitude is quite large. Similarly low harmonic content also does not

guarantee high power factor.

PFC circuits for non-linear loads have their primary goal to reduce the harmonic
content of the line current. PFC circuit solutions can be broadly categorized as

passive and active circuits.

2.3.1 Passive Power Factor Correction (PFC) Method :

L, C or LC filters can be used to smooth out the dc output voltage of the rectifier
and these are known as dc filters. Ac filter is used to filter out the harmonics from

the supply system. The ac filter is normally of LC type as shown in F 1g.-2.2.

AN oY D2
Li :

| E;

Vin

: Ce:
Ci= [~

N D3 23 D4
Input ac Filter :

Qutput DC Filter

Figure-2.2: Single Phase Full-bridge Rectifier with input and output Passive Filters.
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Since only passive elements like R, L and C is used in such type of filtering, they

are named as passive filters. Usually the filter design requires determining the

magnitudes and frequencies of the harmonics. The simplest approach is to add an

inductor on the ac side of the rectifier bridge. This added inductor results in a

higher effective value of ac-side inductance Z; which improves the power factor and

reduces harmonics. The impact of ac side passive filtering are,

Improved current waveform and the power factor improves from very poor
to acceptable range.

The output voltage ¥, is dependent on the output load and is substantially
(around 10%) lower compared to the no-inductance case.

Inductance L, together with dc-side filter capacitor form a low-pass filter,
and therefore, peak-to-peak ripple in the rectified output voltage vy, is less.

The overall energy remains essentially the same.

In general, passive solution offers reliable, rugged and quick reduction of harmonic

current. They are insensitive to line surges and spike. But, passive filters suffer

from some disadvantages as,

Passive filter components (L, C) operate at low frequency (50 or 60 Hz)
and as a result their sizes are relatively large.

Passive filters lack voltage regulation and their dynamic response is poor.
Passive filters cannot improve both input power factor and input current
shape at the same time.

For large loads harmonic series and/or parallel resonances between the
passive filter and the power system impedance may occur at a lower
frequency than each tuned frequency. Moreover, a passive filter may sink
specific harmonic currents form other nonlinear loads on the same feeder
and/or from the power system. This may make the passive filter

overloaded and ineffective.

14
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2.3.2 Rectifier with Output L or C filter and Resistive load :

A full-bridge diode rectifier with output LC filter and with resistive load is shown
in Fig-2.3 (no input filter is used). The input voltage ¥;, has peak amplitude of 310
V with a frequency of 50 Hz. The output of the full wave rectifier contains both ac
and dc components as shown in Fig-2.3. A majority of applications, which cannot
tolerate a high voltage ripple, necessitates further processing of the rectified output.

The undesirable ac components, i.e. the ripple, can be minimized using filters.

L1
YYD

10mH
D1 b3

V1 A1 R
VOFF = 0 ,.9 T ¢ 1
VAMPL = 310 500u 100
FREQ = 50

o

Figure-2.3: Schematic of a Single Phase Full-bridge Rectifier with output Filter.
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Figure-2.3(a) Output voltage and
(b) Input Current of a Rectifier without any output Filter.
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Figure-2.3 Harmonics of Waveforms of Fig-2.3(a) and (b)
(¢) Output Voltage harmonics and
(d) Input Current harmonics of the rectifier.

20mA

15mA

' /A
10ma 1 n

, VI

A VST R

aa T
OHz 100HZ 200Hz 300Hz 400Hz 500Hz 500Hz
v —I(V1l)
Frequency

Figure-2.3(e) close-up view of Input Current harmonics.
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Figure-2.3(f) Average P, and P Efficiency = 47% (approx.); (without filter)
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From the Figures-2.3(a) and 2.3(c) we find that the output is a pulsating dc with

maximum ripple containing even harmonics. The current waveform is nearly

sinusoidal.

In order to reduce the ripple of output voltage a filter capacitor may be used. The
output is shown in Fig-2.4(a). The output voltage ripple decreases with increase in

capacitor value. The ripple also depends on output load.

- /‘\ﬂfm\_/\\w\/’\m\/\(t‘/\\/%

200V

()

SEL>>
ov

e V{(R1:2,R1:1)

(b)
0a =/\ N\ AN
y "V v VT

-50A

0s 10ms 20ms 30ms 4 0ms 50ms 60ms 70ms 80ms 90ms 100ms
o -I({V1l)
Time"

Figure-2.4(a) Output voltage and
(b) Input Current with C = 500uF, R, = 100 Q.
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Figure-2.4(c) Input Current harmonics (with output Capacitor = 500uF).
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Figure-2.4(d) Average P;, and P,; Efficiency = 36% (approx ); (Coui= SOO;LF and
Rigad = 100 Q).

Figure-2.5(a) and 2.5(b) reveals that addition of output filter capacitor improves
output voltage ripple but it deteriorates the input current wave-shape. Figures-2.5
also show the effect of increasing output capacitance value on input current and

output voltage.
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Figure-2.5(a) Output voltage of a Rectifier with C= =2000pF, Riy.g = 100 Q
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Figure-2.5(b) Input Current wave-shape (with output Capacitor = 2000uF).
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Figure-2.5(c) Input Current harmonies (with C,,, = 2000pF, Rig.q = 100 Q).
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Figure-2.5(d) Average P, and P, Efficiency = 26% (approx.); (Cou = 2000nF

and R, = 100 ).

Effect of adding only an inductor, L filter, at the output of the full-bridge rectifier

has been studied and depicted in figures-2.6 and .27.
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Figure-2.6(a) Output voltage and
(b) Input Current with L = 10mH only.
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Figure-2.6(c) Input Current harmonices (with L,y = 10mH and R, = 100 Q).

600W
\b//ﬁ\\,/"\!_—’"“\_4”‘\.—"‘\54"‘~_o-"~_———~~_—0--_-—-__-—’-_—-——_——-—._———n
400W /\/\
200W s e e T e T T T ey
}// \\\\-// s
oW
-200W
03 20ms 40ms 60ms 80ms l00ms 120ms l40ms l60ms
o - AVG(I(V1)*V{V1:+)) w AVG({I{R1)*V(R1:1})
Time

Figure-2.6(d) Average Py, and Py Efficiency = 49% (approx.); (L= 10mH and
Rigaa = 100 Q).

@
VAV v Ve va ve \/\/ﬁ\/ﬂ

a VIR1:2,R1:1}

el an ez
N AN A N i Ny

0s 10ms 20ms 30ms 4 0ms 50ms 60ms 70ms 80ms g0ms 100ms
o -I{Vl}

ov

SEL>>
-4.0A

Time
Figure-2.7(a) Output voltage and
(b) Input Current with L = 200mH only
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Figure-2.7(c) Input Current harmonies (with L,,,= 200mH and Ripag = 100 Q).
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Figure-2.7(d) Average P;, and P, Efficiency = 52% (approx.); (Lgy = 200mH

and Ryo,3 = 100 ).

Comparison between input current and output voltage waveforms at two different
inductances (10mH and 200mH) shows that ripple at output voltage decreases with
increase in inductor value with deteriorating input power factor and increasing

input harmonics. A proportional effect of load resistance with output ripple also

exists here. But the de output is not as smooth as found using capacitor filter.
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2.3.3 Rectifier with Qutput LC filter and Resistive load :

In order to get less ripple in output voltage, to make input current close to

sinusoidal and to make the filter load independent, LC filter is introduced at the

output stage of the full-bridge rectifier. Analysis on LC output filter with resistive

load is discussed in following paragraphs.
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Figure-2.8(a) Output voltage and
(b) Input Current; L=10mH, C=500uF, R=100Q
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Figure-2.8(c) Input Current harmonics (with Cyy, = S00pF, Ly, = 10mH and R;,,4 =

100 £). '
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Figure-2.8(d) Average P;, and P,,; Efficiency = 40% (approx.); (Coye = S500uF,
Loue=10mH and R4 = 100 ).
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Figure-2.9(a) Output voltage and
(b) Input Current; L=50mH, C=500uF, R=100
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Figure-2.9(c) Input Current harmonics (with C,,, = S00pF, L,,,= 50mH and Ry,,g =

100 Q). '
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Figure-2.9(d) Average Py, and P; Efficiency = 41% (approx.); (Cou = 5001F, Loy
= 50mH and Rigaqg = 100 Q)

It is observed that without filtering the input current THD is small and within limit

but the ripple in output voltage is maximum.,

Use of only C-filter at the output stage results smoother dc output voltage. But this

suffers from poor efficiency and very large THD (in the order of 70%) in the input

current,

Only L-filter at the output provides better THD in input current than C-filter, but

ripples in output voltage remains large and output voltage is less than that of C-

filter. L-filter provides rectification efficiency around 50%.

LC+ilter shows larger output voltage and output power at the cost of increase in

harmonic contents in input current.
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All these observations are presented in tabular form in Table-2.1.

Table-2.1: Input current, Qutput voltage énd THD at different Output filter values:

No Capacitor | Capacitor Inductor Inductor LC filter | LC filter
Output only only only only L=10mH, | L=50mH,
Filter Coum500u | Cou=2000u | Low=10mH | Low=200mH | C=500u | C=500u
I, 3.01 A S A 17 A JA 275 A 7.2 A 425 A
1, I mA 2Z1A 89 A 4.2 mA 24 mA 21T A 1.65 A
J 3 14 mA 39A 23 A 5 mA 310 mA JA 1.58 A
| 2.2 mA 1.7A 4 A 4 mA 30 mA 0.2A 041 A
Is 10.5 mA 32A 6.2 A 20 mA 155 mA 1A 045 A
I 2.2 mA 0.7A 2.1 A 2.8 mA 22 mA 0.07 A 021 A
I, 6.8 mA 1.8 A 38A 17 mA 65 mA 021 A 0.18A
Ig 1.8 mA 1.25A 1.7A 3 mA 20mA 0.1 A 0.07 A
Iy 18.8 mA 0.5A 22A 17.2 mA 41 mA 0.2A 0.05A
Iy 2.1 mA 09A 2A 1.5 mA 9mA 0.1A 0.01 A
I 14.5 mA 06 A 22A 6 mA g mA 0.17 A 002 A
%THD | 1.015% 78.52% 77.67% 1.10% 13.03% 53.04% | 47.37%
(:’;; l{f;‘;g)) 197.3v | 280V 300 v 185V 195V 265V | 218V
Pm,t(avg) 210w 450 w 480 w 215w 200 w 490 w 255w
Efficiency 47% 36% 26% 49% 52% H% 41 %

The THD in the current is defined as (in equation 2.1 1),

Vis?-112
H

i1

%THD; = 100 x

Where I,* = SI7.n=123. .nand 1; = Fundamental component of input current.

From the above table and respective output figures it is observed that circuit
arrangement with no output filter provides good THD but contains high ripple in
rectified output voltage. Use of L-filter at the output stage also provides tolerable

input current harmonics but suffers from high ripple in the output voltage. Use of C
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and LC filters provide better rectified output voltage with less ripple content but

contains huge harmonics in intput current and also has poor efficiency.
2.3.4 Rectifier with Input-Output LC filter and Resistive load :

In order to get less ripple in output voltage and to improve input current wave
shape, passive LC-filter is introduced at the input side of the rectifier. Following
paragraph will find related parameters to evaluate the effect of addition of LC-filter
of different L and C value. Simulations have been carried out for filter components
at output stage of the full-bridge rectifier having values of — Loy = 10 mH, C,, =

500 pF and Ryg,q = 100 Q. Typical representative simulation results are presented in

figures 2.10 — 2.13.
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VvV VU VeV V WV L
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a -I(V1)

-20A

Time
Figure-2.10(a) Output voltage and
(b) Input Current; (L,,= 10mH, C,,= 500pF, R=100Q2 , C;, = 500uF,
Lin1 = 100mH and L;,; = 10mH).
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(c)
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L :

OHz 100HzZ 200H=z 300H=z 400H=z 500Hz 600Kz
o —I({V1l)

Freguency

Figure-2.10(c) Input Current harmonics; (Lo, = 10mH, C,, = 500pF, R=100Q, C,,
= 500pF, Li;; = 100mH and L,; = 10mH).
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Figure-2.10(d) v, and i,; Close-up view showing Power Factor = 0.7; (L, =
10mH, Cy = 500pF, R = 100Q, Ci, = SO0WF, L;,; = 100mH and Lipz = 10mH).
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Figure-2.10(e) Average P;, and P, Efficiency = 28% (approx.); (L, = 10mH,
Cou=500uF, R = 100Q, C;, = 500pF, L;,; = 100mH and Liyz = 10mH).
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Figure-2.11(a) Output voltage and
(b) Input Current; (L., = 10mH, C,,= 500pF, R=100Q , C;, = 200pF,
Lml 20mH and ng = lmH)
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Figure-2.11(c) Input Current harmonics; (Lowe= 10mH, C,, = 500uF, R=100Q , C;,
= ZOOHF, Linl =20mH and LinZ: llTlI‘I)
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Figure-2.11(d) v, and i,,; Close-up view showing Power Factor = 0.85 leading;
(Low= 10mH, C,, = 500uF, R = 100Q » Cin =200pF, Liy;=20mH and L, , = ImH).
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Figure-2.11(e) Average P;, and P, Efficiency = 42% (approx.); (Lo = 10mH,
Cout=500uF, R = 1002, C;, = 200uF, L;,; = 20mH and Lin»= ImH).
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Figure-2.12(a) Output voltage and
b) Input Current; (L, = 10mH, C,, = 500pF, R=10082 , C;, = 50uF,
Lin1= 200mH and L, = 1mH).
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Figure-2.12(c) Input Current harmonics; (Lowe= 10mH, C, = 500uF, R=100Q , Cin
= SOHF, Lin[ =200mH and LinZ = ll]lH).
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Figure-2.12(d) vy, and i;,; Close-up view showing Power Factor = 0.85; (L , =
10mH, Cy, = 500pF, R = 100Q , C;, = 50pF, L,,; = 200mH and Liz= 1ImH).
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Figure-2.12(¢) Average P;, and P, Efficiency = 32% (approx.); (Lo, = 10mH,
Cou=500uF, R = 100Q, C;, = 50uF, Liy1=200mH and L;,, = ImH).
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Figure-2.13(a) Output voltage and
(b) Input Current; (C;, = 300uF, L;,; = 80mH and Lisz= ImH).
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Figure-2.13(c) Input Current harmonics; (Lo = 10mH, C,y = 500uF, R=100Q . Cin
=300pF, Liy; = 80mH and L;;,= 1mH).
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Figure-2.13(d) v, and i,;; Close- -up view showing Power Factor = 0. 75; (Lo =
10mH, C,, = 5S00puF, R = 1009, C;, = 300uF, Li,;= 80mH and L;,, = ImH).
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Figure-2.13(e) Average P, and P, Efficiency = 32% (approx.); (L., = 10mH,
Cou=500uF, R = 10092, C;,, = 300uF, L;,; = 80mH and Linz = ImH).

From these simulation results we find that the shape of input current and output
voltage ripple improves after using LC-filter at the input stage of the rectifier with
the cost of deteriorating input power factor. It is also found that only odd harmonic
contents are dominating in input current spectrum, since the waveform is

symmetrical about the X-axis.

The input current magnitude depends on the input L and C combination. At lower
values of input inductor the input current becomes leading providing a higher
output voltage than input voltage. Efficiency found in these observations are not
satisfactory though THD in input current is in tolerable limit. To achicve a good
combination of input-output passive filter we have to use large inductors and
capacitors as filter component which will make the physical device bulky in size.

Regulation of output voltage is also not possible with the help of passive filters,

The observations made from simulated studies mm Section-2.3.4 are listed in the
Table-2.2,
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Table — 2.2: Input current, Output voltage and THD at different Input filter values
when L, = 10mH, C,,= 500uF, R = 100Q:

Lin1=100mH, Lin1=200mH, Lint= 80mH, Lint = 20mH,
Linz = 10mH, Linz= 1mH, Lin2= 1mH, Linz= 1mH,
Cin= 500pF Cin= 50pF Cin=300pF Cin= 200pF
I, 114 A 6.25A 19.5 A 27.8 A
I, 03A 180 mA 047 A 1.4A
I; 180 mA 260 mA 031 A I.1A
Is 142 mA 68 mA 021 A 037A
Is 120 mA 76 mA 023 A 021 A
I 100 mA 46 mA 0.15A 0.20 A
I» 98 mA 25 mA 0.1TA 0.10A
I 52 mA 37 mA 0.12 A 0.096 A
Ip 60 mA 20 mA 0.1A 0.14 A
I 56 mA 28 mA 0.098 A 0.16 A
I 60 mA 30 mA 0.095 A 0.13 A
%THD 3.82% 5.46% 3.59% 6.70%
Power Factor 0.7 lagging 0.85 lagging 0.75 lagging 0.85 leading
(Z';‘; :z‘f_)) 65V 210V 200V 430V
“eEfficiency 28% 40% 32% 2%
(approx.)

From the Table-2.2 and corresponding figures (from Fig.-2.10 to Fig.-2.13) it is
observed that different combination of LC filters, used in the input side of the
rectifier, provide different THD and power factors. Almost all these configurations
have THD within or near to specified limit but they have input power factor in the

order of 0.7 or 0.8 and also have poor rectification efficiency.
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2.4 Active Power Factor Correction (PFC)

In active power factor correction method, static switches are used in conjunction

with inductors to force the line current to follow the envelope of the line voltage

and go in phase with it. The choice of the active power electronic converter is based ‘

on the following consideration:

 In general, electrical isolation between the utility input and the output of the
power electronic system (e.g. rectifier) either is not needed (e.g. in ac and dc
motor drives) or it can be provided in the second converter stage, as in the
switch-mode dc power supplies.

* In most applications it is acceptable, and in many cases desirable, to stabilize
the dc voltage Vg, slightly in excess of the peak of the maximum of the ac
input voltage.

 The input current drawn should ideally be at a unity power factor so that the
power electronic interface emulates a resistor supplied by the utility source.
This also implies that the power flow is always unidirectional, from the
utility source to the power electronic equipment,

¢ The cost, power losses, and size of the current shaping circuit should be as

small as possible.

Based on these considerations, a line-frequency transformer isolation is ruled out.
The output voltage is usually regulated for variations. According to switching
frequency used, active PFC solutions may be classified into low-frequency and
high-frequency active PFC circuits. In most cases it is acceptable to have V, >
Viimax), Where Vi, is the peak of ac input voltage; so current shaping circuit in that
case is a step-up (boost) dc-dc converter. We can also use a buck converter, then
the output voltage will be lower and while using a buck-boost converter output

voltage can be either higher or lower than Vstmax)
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2.4.1 Active Input Current Shaping: Principle of Operation

The principle of operation of active input current shaping is straightforward. At the
utility input, the current i, is desired to be sinusoidal and in phase with v, as shown
in %igufé-i.-l_dl(:bj'. Therefore, at the full-bridge rectifier output in Figure-2.14(a)
have the same waveform as shown in Fig-2.14(c). In practice the power losses in
the rectifier bridge and the step-up de-dc converter are fairly small. These are

neglected in the following study.

Step-up Converter

D@ @)

Ld

'V.\‘l r cd Vy (Vd> Vs(max))

% (b)

SEL»> I
-400-

o VIvT9:4} « 11R32}
400

2 T

v ! t Y T ¥
0= Sms 16ms 15ms Z0ms 25ms 30ms 35mg 40ma
o ABS{V(V79:4]) o RBS(I{R32)}

Tine

Figure-2.14(b) line voltage and Current, (¢) v, and i waveforms.
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From the figures 2.14(a)-(c), the iput power p;,(t) from ac source is,
Pinll) = Vigman)!sin @t|. Lipney|sin ot|

= Vsl - Vil cos2wt ; where, V, I are rms input values. 2.14

Because of a fairly large capacitance C, the voltage v, can be initially assumed to

be dc. That is, vy(t) = V. Therefore, the output power is,

Pdl) = Viaft) 2.15
From Fig-2.14a () = Lipga + ic() 2,16

If the step-up converter in Fig-2.14a is idealized and can be assumed to be
operating at a switching frequency approaching infinity, then required inductance

L4 would be negligibly small. This allows the assumption that,
Jphﬂz}:{pd(v

or, Vili- Vil cos2ot = Vyigt)

Vsis Vs is
Vd vd

or, ig(t) = cos2wt 2.17

now from Eq-2.16 and Eg-2.17 we get the average value of i as,

Vsls
ja'_jkad" vd 2.18
and the current through the capacitor as,
. Vslis
() = — i cosZwt = -], cos2wmt. 2.19

Even though this analysis is carried out by assuming the voltage across the
capacitor to be ripple-free dc, the ripple in v; can be estimated from the above

relation of i.(¢) as,

Va ripple(t) = &%f icdt = sinZ2wt Eqg-2.20

2wld

which can be kept low by selecting a suitably large value of C,; . A series-tuned LC
filter tuned for twice the ac frequency according to Eg-2.20 may be put in parallel

with Cy to minimize the ripple in the dc voltage. In this case, the switching
36



frequency components of currents in i, and the high frequency components in the

load current will also flow through C,.

Since the input current to the step-up converter is to be shaped, the step-up
converter usually is operated in a current-regulated mode. There are various ways

to implement the current-mode control of the step-up converter such as,

a) Constant frequency control,
b) Constant tolerance-band control,
c) Variable tolerance-band control and

d) Discontinuous current control.

(b)

i
| R

s iR

&
1omn 12ma lime 16me 13mu 20ms 22om Zima 26mm z8mm

Time

Figure-2.15(b) waveform of i, in Constant Frequency Control (f; = 2kHz).
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Out of these the first one — Constant frequency control is easier and effective one.
Here, the switching frequency f; is kept constant. When i, reaches the value i G,
is the reference or desired value of 7;), the switch in the step-up converter is turned-
off. The switch is turned on by a clock at a fixed frequency f£;, which results in 7, as

shown in Fig-2.15(a).

During a switching-frequency time period T, the output voltage is assumed to be
constant as ¥V and the input voltage to the step-up converter is assumed to be
constant at that instant of time; Lippie 1s the peak-to-peak ripple current around the
envelop during one time period of the switching frequency. From Fig-2.14(a) and

“volt-second balance” of an inductor the following equations can be written as,

__ Ld Irippte

on , 2.21
lvs|
Ld Iripple
and, fof =m 222

where, t,, is the on-interval and l 15 the off-interval of the switch. Thus the

switching frequency f; can be expressed as,

fEm= =
S Ts  ton+toff
(Vd—|vsl).|vs]|
or, = WaTlvsi)lvs| ‘
Js Ld Iripple.vd 2.23
in a constant-frequency control scheme, /; is constant and hence,
(Vd—|vs|).|vs|
Lo, =———t0"0 1
ripple Ldfsvd 2.24
(1t st
— vd J'vd
oF, [,.,pp,e = T 295

from Equation-2.25 it is obvious that in a step-up converter %- must be less than or

equal to 1 which requires,

— <1 or, |y <V, 2.26



From Equation-2.24 the maximum ripple current is given as,

_ vd
]ripp/e/.'rmx) - aLd.fs’

when |v|=0.5V, 2.27

2.4.2 Active Input Current Shaping by Boost Regulator and no
input LC filter :

In active input current shaping technique using boost regulator, a boost converter is
placed between input and output stage of a full-bridge rectifier. Usually high
switching frequency (in this experiment we used £, = 40 kIz) is used to operate the
bbost switch Sy in order to reduce the size of L, C components. In this section no

input passive filter is used.

Oy

Lb
FANSNW T D3

Lin1 Lin2

Sb
Vin ‘:
- W | § N
VAMPL = 310 Cin

FREQ = 50 ]V 100

D2 04
Input Passive Filter

Switching Pulse
Generator

Figure-2.16 Schematic of a full-bridge rectifier with Boost regulator with resistive

load.

The input current here starts to conduct in discontinuous conduction mode and the
wave shape follows the input voltage but have high frequency harmonics. Figures
2.16-2."18 show the effect of changing the duty cyclé of the boost switch at different

stages.
39



800V

/ \’WWwWWW

400V
/ (a)
SEL>>
ov

o V(R2:2,R2:1}

200A

/) .
oA N PaainY AN " N
[~

-200A
Os 20ms 40ms 60ms 80ms 100ms 120ms 1l40ms l50ms
o -1{vl}

Time

Figure-2.16(a) Output voltage and
(b) Input Current; (L, = 10mH, C,, = 500uF, R=100Q , T,, = Tusec,
Period = 25usec and fi= 40kHz).

40A

30A

(c)

2038

o [U\M—A\—LM 7, VEr A W [ VS S I

CHz 0.2KHz 0.4KHz2 0.6KHz C.8KHz 1.0KHz 1.2KHz 1.4KHz
o -I(V1)

Freguency

Figure-2.16(c) Input Current harmonics; (L, = 10mH, Cou= 500uF, R=100Q , T,,
= Tusec, Period = 25usec and f,= 40kHz).
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Figure-2.16(d) Gate pulse of Boost switch; (T, = 7usec, Period = 25usec).
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Figure-2.16(¢) Average Py, and P,,; Efficiency = 60% (approx.); (Ly= 10mH, C,,
= 500uF, R=100€2, T,, = 7usec, Period = 25psec and f= 40kHz).
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Figure-2.17(a) Output voltage and
(b) Input Current; (L= 10mH, C,,, = 500pF, R=100Q2 , T,, = 11psec,
Period = 25usec and f= 40kHz).
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Figure-2.17(c) Input Current harmonics; (Ly= 10mH, C,,,= 500uF, R=100Q , Ton
= llpsec, Period = 25psec and {;= 40kHz).
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Figure-2.17(d) Gate pulse of Boost switch; (T,, = 11psec, Period = 25pusec).
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Figure-2.17(¢) Average P;, and P,,; Efficiency = 56% (approx.); (L= 10mH, C_

= 500puF, R=100Q2, T,, = I1psec, Period= 25usec and f,= 40kHz).
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- Figure-2.18(a) Output voltage and
(b) Input Current; (L,= 10mH, Cout 500pF, R=100Q , T,, = 17usec,
Pertod = 25psec and ;= 40kHz).

(c)
r_\ v"’\
on \J L__...-.A¥ A N A a Y

OHz 100Hz 200CHz 300HzZ 400Hz 500Hz 600HzZ T00Hz
a -I{Vl}
Frequency

Figure-2.18(c) Input Current harmonics; (L, = 10mH, C,, = 500pF, R=100Q , T,,
= 17psec, Period = 25psec and f,= 40kHz).
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Figure-2.18(d) Gate pulse of Boost switch; (Ton = 17nsec, Period = 25usec).
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Figure-2.18(e) Average P;, and P,,; Efficiency = 57% (approx.); (Ly= 10mH, C,,
= 500uF, R=100Q2, T,, = 17pusec, Period = 25usec and f;= 40kHz).

2.4.3 Boost Regulator with input-output filter :

In order to improve the input current wave-shape of the boost regulated rectifier,
input passive filter is added as shown in Figure-2.19. Simulated waveforms and
their spectrum are shown in Figs-2.19-2.21 for various duty cycles. In Fig-2.19 the

Boost Converter is placed at the input side of the line.
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Fig.-2.19 Schematic of a Boost rectifier with input-output filter and resistive load.
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Figure-2.19(a) Output voltage and
(b} Input Current found from the circuit shown above; (C,, = 500uF,
R=10002 , T, = 8pscc, Period = 25usec and f;= 40kHz).
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Figure-2.19(c) Input Current harmonics for the circuit shown above, THD = 5.35%;
(Cou= 500puF, R=100Q2, T,, = 8usec, Period = 25psec and f,= 40kHz).
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Figure-2.19(d) Average P;, and P,; Efficiency = 22% (approx.); (Cou= 500uF,
R=100Q2, T,, = 8usec, Period = 25psec and f;= 40kHz).
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Figure-2.20(a) Output voltage and

(b)Input Current found from the circuit shown above; (C,, = 500uF,
R=100Q2, T,, = 11psec, Period = 25usec and = 40kHz).
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Figure-2.20(c) Input Current harmonics for the circuit shown above, THD = 7.08%;
(Cou=500uF, R=100Q2, T,, = 11 psec, Period = 25usec and f;= 40kHz).
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Figure-2.20(d) Average P,, and Pou; Efficiency = 25% (approx.); (Couwt = S00uF,
R=100Q2, T,, = 11psec, Period = 25 usec and [= 40kHz).
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Figure-2.21(a) Output voltage and
(b)Input Current found from the circuit shown above: (Cour = SO0uF,
R=100Q , T,n = 17psec, Period= 25psec and f,= 40kHz).
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Figure-2.21(c) Input Current harmonics for the circuit shown above; (Coy = 500puF,
R=100Q , T,, = 17psec, Period = 25psec and f= 40kHz).
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Figure-2.21(d) Average P;, and P, Efficiency = 27% (approx.); (Cou = S00uF,
R=100€2 , T,, = 17psec, Period = 25psec and f= 40kHz).
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All these observations made from simulations (from fig-2.16 to fig-2.21) are
provided in Table-2.3.

Table — 2.3: Input current, Output voltage, THD and Efficiency at different values

T, of Boost switch:

Boost circuit with no Input Filter Boosi;pR:E gﬂg&';ﬁ;ﬁ with
Ton = TuUsec 1}-;"5:0 1;:1"520 Ton = 8pseC 11:;‘5:(: Ton = 17usec

I 3895 A 22 A 12 A 111 A 80 A 435 A

1, 25A 225A 2.1 A 1.1 A 16 A 145 A

I3 0.5 A 7.58 A 48 A 58A 53A 355A

1, 04 A 052A 0.18A 0.05A 0.05A 0.4 A |
| 4._85A 1.51T A 1.1 A 0.56 A 1.2 A 1A

| 025 A 0.5 A 0.22 A 0.06 A 0.04 A 0.05A

I, 3A 0.72 A 0.26 A 027 A 02 A 0.14 A

Ig 03 A 048 A 0.15A 0.07A 0.03 A 0.005 A

1o 245 A 05A 021 A 028 A 0.15 A 0.013A
%THD 32.41% 37.06% 44.8% 5.35% 7.08% 8.8%
(:;;g‘f) 580 Vv 472V 355V 645 V 600 V 490 V
Efficiency 60% 56% 57% 22% 25% 27%

From the above table it is found that total harmonic distortion in input current is
reduced significantly with the addition of passive filter at input side and change in
duty cycle affects very little on efficiency. In terms of efficiency boost circuits with
input filter do not provide satisfactory result. Since a resistive load is considered for

all configurations, almost all circuits provide power factor as good as unity.
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In the active current shaping circuit using a step-up de-de converter, the following

observations are made,

» The output voltage vg across the capacitor C4 contains ripple at twice the line
Vﬁ“equency.

¢ A higher switching frequency allows a lower value of Ly and an increased
case of filtering high-frequency ripple. However, the switching frequéncy 18
chosen as a compromise between the foregoing advantages and the increase
switching losses.

e If rectifier output voltage V, is much larger than 10% beyond peak input ac
voltage Vipmay) » this will cause efficiency to decline.

e A small filter capacitor may be used across the output of the diode rectifier
bridge to prevent the ripple in i, from entering the utility system. An EMI
filter at the input is still required as in a conventional circuit without the

active current shaping.

In addition to an almost sinusoidal input waveform at nearly unity power factor, the

other advantages of an active current shaping can be summarized as follows,

e The dc output voltage V4 can be stabilized to a nearly constant value for
large variations in the line voltage. Thus, the volt-ampere ratings of the
semiconductor devices in the converter fed from V, are significantly
reduced.

* Because of the absence of large peaks in the input current, the size to the

EMI filter components is smaller.
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2.4.4 Buck-Boost Regulator — Principle of Operation:

Buck-boost converter is a combination of Buck and Boost regulator which can
provide an output voltage that may be less than or greater that the input voltage.
The output voltage polarity is opposite to that of the input voltage. So, this
regulator is also known as an inverting regulator. The circuit arrangement of a

buck-boost regulator is shown in the following figure.

Q D

C § Vout
L

Figure-2.22 Schematic of a Buck-boost Regulator.

Vin=

In dc-dc conversion, the switch Q of Buck-boost converter is turned on and off by
the pulse-width modulated control voltage. For analysis of the above circuit it may
be assumed that the transistor and the diode have no voltage drop during the

respective on-phases.

During the on-time of the transistor T, there is an input voltage V,, applied across
the inductor L. Inductor current I; increases linearly and energy is transferred to the
inductor. During the blocking phase T, of the transistor, current I; continues to

flow through the inductor and transfer the energy to the capacitor C.

3 Vi

/NN

A 4

Toff
P Ton
+ —p
T
+—

Figure-2.23 Waveform of a Buck-boost converter.
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In ideal relationship inductor, diode, capacitor and switch may be assumed to be

loss-less.

FromFig-2.23,at T=T,,; VL=V, 2.28
Andat T="Tyy; Vi ==~V 229
For volt-seconds balance, VT, + Vau of.f= 0 . 2.30

which gives the output to input voltage ratio as follows —

Vout - D 231
Vin (1~D) '
And corresponding current ratio is —
fout _  (1-D)
lin D 2.32
Ton

where, D is the duty-cycle defined as D = —— - Since the value of D is in-between

0 and 1, the output voltage can be varied from lower to higher than input voltage in
magnitude. The negative sign in Eqn. 2.31 indicates a reversal of the output

voltage.

The above ideal relationship will change in real circuit due to non-ideal
components (L, C), switch non-idealities (conduction drop in switches) etc. and

thus efficiency will also deviate from 100% of ideal efficiency.
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2.4.5 A Practical Buck-Boost Regulator :

Now we’ll examine a practical buck-boost regulator and observe their different

characteristics at different switching stages.

o} ]

.047u

\_4 D—
J& i
2mH

.001 \&
V1 § 1.
VOFF =0 1mH v

VAMPL =310
FREQ =50

|
1

T |

V1 =10 L

v2=0
. =gDV?B
TR =.001m

TF =.001m

PW = 0.007m
PER =0.025m

Figure-2.24 A buck-boost circuit arrangement where switching frequency of the

transistor, f; = 40kHz and T,, = 7usec.

Input current, rectifier output voltage, THD, input power factor, Efficiency etc. are
observed graphically and presented in Figures 2.24-2.26. From these figures and
observed data we’ll be able to choose a better combination comparing to other

circuit configurations. Observations of simulated results are provided in Table-2 4.
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Figure-2.24(a) Output voltage and
(b) Input Current of Buck-boost converter; (Lyp = 1mH, Cgy = 500uF,
R=100€2, T, = 7usec, Period = 25psec and f= 40kHz),
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158 f = (c)
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0A ‘ P
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o -TI(V1)
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Figure-2.24(c) Input Current harmonics; (Lpy = ImH, C,, = 500uF, R=100Q , Ton =
7nsec, Period = 25usec and f= 40kHz).
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Figure-2.24(d) Output and Input average Power of Buck-boost converter; (L, =
ImH, Co, = 500puF, R=100Q , T,, = 7usec, Period = 25usec and f;= 40kHz).
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Figure-2.25(a) Output voltage and
(b) Input Current of Buck-boost converter; (Ly, = IlmH, C,, = 500pF,
R=100€2, T,, = 11psec, Period= 25usec and f,= 40kHz).
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Figure-2.25(¢) Input Current harmonics; (Ly, = 1mH, C,, = 500uF, R=100Q2, T, =
11psec, Period = 25psec and f,= 40kHz).
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Figure-2.25(d) Output and Input average Power of Buck-boost converter; (Ly, =
ImH, C,, = 500uF, R=100Q, T,, = 11psec, Period = 25usec and f= 40kHz).

54



200V

hdfﬂr—‘\*a“'““ e sl Sy, I i T
Loor I,—_J”"
(a)
SEL>>
ov
o V(R1:1,R1:2}
10A
oA \._,//-\
-10Al‘*
s 20ms 4 0ms &0ms g80ms 100ms 120ms
o -T({Vvl) -
Time

Figure-2.26(a) Output voltage and
(b) Input Current of Buck-boost converter; (L, = 1mH, C,y, = 500uF,
R=100€2, T,, = 17psec, Period = 25 usec and f;= 40kHz).
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Figure-2.26(c) Input Current harmonics; (Lyp= ImH, Co, = 500uF, R=10002 , Ton =
17nsec, Period = 25usec and f,= 40kHz). _
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Figure-2.26(d) Output and Input average Power of Buck-boost converter; (Ly, =
ImH, C,;= 500pF, R=100Q2, T,, = 17psec, Period = 25psec and f,= 40kHz).
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Table-2.4: Input current, Qutput voltage and THD at different values Ton 0f Buck-
boost switch (Ly, = ImH, C,,= 500uF, R = 10002):

Ton= Tlsec Ton= 11psec Ton=17HseC
I 19.2 A 89A 3.38A
1; 0.08 A 0.1A 0.08 A
I; 1.24 A 0.64 A 0.09 A
| 0.071 A 0.052 A 0.03 A
15 0.7 A 0.05 A 0.07 A
Is 0.055 A .03 A 0.008 A
1; 036 A 0.07A 0.02 A
Ig 0.03 A 0.01 A 0.006 A
Iy 0.13 A 0.03 A 0.01 A
Iip 0.02 A 0.009 A 0.004 A
I 0.05 A 0.02 A 0.008 A
% THD 7.73% 7.38% 4.28%
Power Factor Nearly unity Nearly unity Nearly unity
Ve (avg) (Approx.) 320V 270 V 178 V
YoEfficiency 17% 87% 95%

From the above table it is found that higher duty ratio provides better result both in
terms of THD and efficiency. Since at T, = 17usec we got THD within tolerable
limit and good overall efficiency, we can use this circuit for resonant inverter

operation.
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Chapter 3

Resonant Inverter

3.1 Introduction:

In all pulse-width modulated dc-ac and dc-de converter topologies, the controllable
switches are operated in a switch mode where they are required to turn-on and turn-
off the entire load current during each switching. So the switches are subjected to
high switching stresses and high switching power loss that increases linearly with
the switching frequency of the PWM. Another significant drawback of the switch
mode operation is the EMI produced due to large di/dt and dv/dt caused by a switch

mode operation.

These shortcomings of switch-mode converters are exacerbated if the switching
frequency is increased in order to reduce the converter size and weight and hence to
increase the power density. Therefore, to realize high switching frequencies in
converters, the aforementioned shortcomings are minimized if each switch in a
converter changes its status (from ‘on’ to ‘off and vice versa) when the voltage
across it and / or the current through it is zero at the switching instant. Since most
of these converter topologies and switching strategies require some form of LC

resonance, these are broadly classified as “resonant converters / inverters”,

3.2 Classification of Resonant Inverters:

The resonant converters are defined as the combination of converter topologies and
switching strategies that result in zero-voltage and / or zero-current switching. One

way to categorize these converters is,

1) Load-resonant converters
(a) Voltage-source series-resonant converters

(1)  Series-loaded resonant converters
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(ii) Parallel-loaded resonant converters

(i11) Hybrid resonant converters

(b) Current-source parallel-resonant converters

(¢) Class-E and subclass-E resonant converters.

(2) Resonant Switch Converters

(a) Resonant switch de-de converters

(i) Zero-current switching (ZCS) converters

(ii) Zero-voltage switching (ZVS) converters

(b) Zero-voltage switching, clamped-voltage (ZVS-CV) converters

(3) Resonant de-link converters

(4) High frequency-link integral half-cycle converters.

3.3 A Full-bridge Series Resonant Inverter:

A typical full-bridge series resonant inverter and its current wave-shape through the

series resonant branch is shown in Figure-3.1:

Vh1%%;

o

i

4 Load

Dz

Qt L o1

04 D4

Figure-3.1 A full-bridge Series Resonant Inverter.
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Figure-3.2 Current waveform through Resonant LC branch at overlapping
condition.

S

The full-bridge configuration shown in Fig-3.1 can be operated in two different
modes: non-overlépping and overlapping. In a non-overlapping mode, the gate-
pulse of the transistor (or MOSFET, IGBT etc.) is delayed until the last current
oscillation through a diode has been completed as shown in the figure of current
wave form. And in overlapping mode, a transistor is made ‘on’ while the current in
the diode of the other part is still conducting as shown in Fig-3.2. Overlapping

operation increases the output frequency and also the output power.

The maximum frequency of resonant inverters are limited due to the turn-off or

commutation requirements of the switching device (BIT, MOSFET, IGBT etc.)

1

fmax = 2tq ; 3.1
where, t;= turn-off time of the switching device.
The inverter can operate (f,) at resonant frequency f,, that means —

Wwr
fo = fr = "é';- ) 3.2
— —_ 1 .
here, ®, = angular resonant frequency 700 33
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‘ 3.4 Resonant Inverters at Various Switching Condition:
Resonant inverter is examined for different duty cycle of a switching period of

25psec (i.e switching frequency f; = 40 kHz). Various input output parameters are

also shown in Figures 3.3-3.5.

A
. 2
Z1 JS )X
,: D1 ’ D2
100Vdc )
.| Ve R1 c1 L1
= . $—ANA—y I NN
B 4 ; 0.1 o4 0imR %
Ju
SN D4 & D3
| R2
100
_“H_:_O v{=10 V1 = 1 v1=10
Y1=10 V2 va V4 V5
V2 =0 vd=9 @ v2=0 v2=0
D=0 T = 0.012 =0 TD=0.D12aQD
TR + 0.001m TH = 0.001m TR = 0001m TR = 0.001m
TF = 0.001m TH = 0.001m TF = 0jo01m TF = 0.001m
PW=0010m| PW=0.010m| PW=0010m| PW=0010m
= PER = 0.025 PHR = 0.025n]  PER =0.025 PER = 0,025n]
Figure-3.3 Circuit Diagram of a full-bridge Resonant inverter.
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Figure-3.3(a) Input current of Resonant Inverter; when V=100v, T,,=10usec.
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Figure-3.3(c) Current through resonating branch; when V=100v, Ton=10pusec.
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Figure-3.3(d) Waveform of ic,, ig; and ip as in Fig-3.3; when V=100v,
T,n=10nsec.
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Figure-3.3(e) Voltage and Current wave through resonant branch; when
Ton=10psec.
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Figure-3.3(f) Alternate Gate-pulse to Switches: when T,n=10usec.
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Figure-3.4(a) Resistive load-current; when V=100v, T,n=6usec.
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Figure-3.4(b)_ Resistive load-current harmonics; when V=100v, T, =6busec.
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Figure-3.4(d) Load Current and
(e)Alternate Gate pulses; when V=100v, T,n=6uscc.
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Figure-3.4(f) Load Current and
(g) Voltage (nearly unity PF); when Ten=6usec.
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Figure-3.4(h) Resonant Inverter Efficiency (approx. 26.2%); when T,,=6psec.
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Figure-3.5(a) Load Current and
(b) Voitage (nearly unity PF); when T,,=15psec.
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Figure-3.5(c) Load Current harmonics:; when T,n=15usec.
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Figure-3.5(d) Waveform of Iy, I, and I, as in Fig-3.3; when V=100v,
Ton=15psec.

Figure-3.5(e) Alternate Gate pulses; when V=100v, Ton=15usec.
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Figure-3.5(f) Resonant Inverter Efficiency (approx. 84%); when Ton=15pusec.
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3.5 Resonant Inverters with Full-bridge Rectifier:

In most cases the dc input of the resonant inverters are fed from output of a full-
bridge rectifier along with utility ac input. In this section resonant inverter fed from
a full-bridge rectifier with active filtering scheme is studied. From previous chapter
we found better performance from Buck-boost rectifier in terms of THD,
efficiency, PF and input current wave-shape. Hence, a buck-boost rectifier is added

in front of a resonant inverter studied in the previous sections of this chapter.
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Figure-3.6 Circuit Diagram of a Buck-boost regulated Resonant Inverter.

In this section, various performance parameters like - input current wave shape,
%THD, power factor, efficiency etc. is observed graphically from simulations
performed. From various switching duty cycle and inductor value combination,
component values and duty cycle of the buck-boost regulator have been chosen to
provide a trade-off betweén overall efficiency and input current % THD. It has been
found that by changing duty cycle, overall efficiency of the resonant inverter can be
achieved above 80% but the input current wave-form gets more distorted. In the
simulations we got better overall performance using input inductor value as 10mH,
inductor after the buck-boost switch with value of 0.2mH, pulse-width of buck-
boost switch as 15psec and all other component values as shown in Fig-3.6.

Typical results of waveforms and their harmonic spectra are shown in Figs-3.6(a) —
(n).
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Figure-3.6(a) Input Current Wave-form of the Buck-boost regulated Resonant
Inverter as shown in Fig-3.6.
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Figure-3.6(b) Input Current Harmonics (THD = 6.27%)
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Figure-3.6(c) Input AC Voltage waveform and
(d) Input AC Current waveform (Closc-up view shows almost unity
Power Factor).
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Figure-3.6(e) Rectifier Output Voltage (approx. 102V dc).
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Figure-3.6(f) Resonant Inverter Output Voltage (approx. 226V rms).
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Figure-3.6(g) Resonant Inverter Load Current (approx. 2.26 A rms).
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Figure-3.6(h) Output Current Harmonics.
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Figure-3.6(i) Output Current through Resistive load and Resonating branch.
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Figure-3.6(j) Alternate Gate-pulses for switches at Resonant Inverter Stage.

70



ov

(k)

-5V

T T
Q07ms 76.08ms 76.0%ms

4

T 3
02ms 76.03ms 76.04dms 76.05ms 76.06ms 76.

-10V T
76.00ms 76.01lms 76.

+ V{V78:-,Z5:G]

Figure-3.6(k} Gate-pulse for Buck-boost Switch

Time

30A
)
20A
10A + A
0A
-10A T T T
40ms &0ms 80ms 100ms 120ms

Os 20ms
+ -I(L13)
Time

Figure-3.6(1) Current through the inductor associated with Buck-boost switch.
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Figure-3.6(m) Average Input power, Output power at Rectifier and Inverter Stage.
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Figure-3.7(a) Input Current Wave-form of the Boost regulated Resonant Inverter
as shown in Fig-3.7 (70A rms).
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Figure-3.7(b) Input Current Harmonics (THD = 15.92%)
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Figure-3.7(c) Input AC Voltage waveform and
(d) Input AC Current waveform; Power Factor = 0.99 (Close-up view
shows almost unity Power Factor).
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Figure-3.7(e) Rectifier stage Output Voltage.
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Figure-3.7(f) Resonant Inverter Qutput Voltage.

20A

. AN L
N T\

-20A
66.3013ms 66.3200ms 66£.3400ms 66.3500ms 66.3800ms 6§6.4000ms
o -I(RE)
Time
Figure-3.7(g) Resonant Inverter Load Current.
8.0A
L 4
L 3
»
-»
L 3
oA L :
OHz 100KHz 200KHz 300KHz 400KHz S00KHz

o -I(R6)
Frequency

Figure-3.7(h) Output Current Harmonics.
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Figure-3.7(i) Output Current through Resistive load and Resonating branch.
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Figure-3.6(j) Average Input power, Qutput power of the rectifier-inverter circuit
(efficiency = 48% approx.).

Our observations and findings obtained from above ﬂgurés (from fig-3.6 to fig-3.7)
are tabulated in Table-3.1 in following page.
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Table-3.1: Comparison of a Boost and a Buck-boost rectifier fed Resonant Inverter

configuration:

Buck-boost Boost
Buck-boost switch Duty-cycle 0.6 0.6
Input Current Total Harmonic Distortion 6.27% 15.92%
Input Power Factor Almost Unity 0.99
Utility Input ac {frequency 50 Hz 50 Hz
Input Current 4.95 A (rms) 70 A (rms)
Input Voltage 220 V (rms) 220 V (rms)
Average AC Input Power 510 watt 6kW
Inverter Qutput Current (resistive load) 2.26 A (rms) & A (rms)
Inverter Output Voltage (resistive load) 226 V (rms) 800 V (rms)
Resonant Inverter output frequency 40 kHz 40 kHz
Average Inverter OQutput Power 390 watt 3 kW
Overall Resonant Inverter Efficiency Approx. 76% Approx. 48%

From the above table it is found that the buck-boost circuit provides less total
harmonic distortion than that of boost circuit. The boost configuration draws higher
input current from the utility than the buck-boost one. In terms of efficiency the

buck-boost circuit provides better result.
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Chapter 4

Conclusion and Suggestion

4.1 Conclusion:

Objective of this thesis has been to design and study of an active filter based
sinusoidal input current resonant inverter. The investigation started {rom a single-
phase full-wave diode rectifier with no input-output filter. Then 1t has been
continued to rectifiers with active filtering schemes (i.e. Boost, Buck-boost) having
necessary input-output passive filters. From the rectifier circuit configurations
studied at the beginning it has been observed that the input current gets highly
distorted after addition of the bulk capacitor across bridge rectifier output needed
for pure dc output. This distortion is measured in terms of %THD which causes the
input current wave-shape to be changed from its sinusoidal wave-form. High
frequency harmonic components associated to the fundamental current component
exist. Though the thesis title says more about the resonant inverter, the main
objective of shaping the input current to nearly sinusoidal, needs attention at the

rectifier stage.

From observations listed in Table-2. 3 it has been found that boost rectifiers without
input filter provides high efficiency but very poor THD of 44.1%. And boost
rectifiers with input-output filter gives low THD of 4.9% but have very low
efficiency. Moreover in some circuit configurations it was found that the input
current waveform is not stable and symmetrical in boost rectifier scheme. In Table-
2.4 we observed that buck-boost rectifiers provide THD like 4.28% as well as very

good efficiency like 95%.

So we choose buck-boost rectifier to cascade with resonant inverter stage. In
Chapter-3 a resonant inverter with buck-boost rectifier has been studied. The
findings and observations are listed in Table-3.1. This configuration provides input

current THD as 6.27% and overail efficiency as 76%. In our simulation study we
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found that increase in efficiency simultaneously increases THD of input current,
thus distorting the utility current wave form to a great extent. This 1s why, we just
chosen buck-boost configuration and passive filter components as to make a trade-
off between tolerable THD and better efficiency. In this configuration, power factor

has been obtained as good as unity.

4.2 Suggestion for Future Work:

In this thesis, study has been done by simulation only. A practical implementation
of Boost and Buck-boost regulator based resonant inverter can be a future work.

The practical circuit would require implementing the following items:

1. Cépacitor and Inductor selection for input-output filter;
IGBT design for maximum current stress and gate delay;
Control logic for the total regulator system;

Base drive with proper isolation;

v e

Switching logic with almost zero delay.
Favorable outcomes from the above points can lead towards a successful single

phase active filter base rectifier fed resonant inverter with nearly sinusoidal input

current having high efficiency and good power factor.
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