A STUDY OF IN-MEDIUM NUCLEON-NUCLEON CROSS-SECTION

A Dissertation Submitted in Partial fullilment of the requirements for the award of the degree

Of
Master of Philosophy
in Mathematics

By

SALMA PARVIN

Student No. 100009002F, Registration No. 0010242, Session October-2000
Department of Mathematics
Bangladesh University of Engineering and Technology
Dhaka-1000

Supervised
By
DR. NILUFAR FARHAT HOSSAIN
Professor
Departntent of Mathentatics
BUET, Dhaka-1000
\mathbf{w}^{\prime}

Bangladesh University of Engineering and Technology, Dhaka-1000

The Thesis Entitled

A STUDY OF IN-MEDIUM NUCLEON-NUCLEON CROSS-SECTION

\author{

- Submitted by
}

SELMA PARVIS

Student No. 100009002F, Registration No. 0010242, Session October-2000, a fulltime student of M. Phil. (Mathematics) has been accepted as satisfactory in partial fulfillment

> for the degree of
> Master of Philosophy in Mathematics

On May 17, 2005.

Board of Examiners

1. Dr. Nilufar Farhat Hossain
Professor
Department of Mathematics,
BUET, Dhaka-1000.
2. | Head |
| :--- | :--- |
| Department of Mathematics, |
| BUET, Dhaka-1000. |

Niterheit
17-05-05

Chairman (Supervisor)

Member
4. Dr. Anal K Balder

Professor
Department of Mathematics
University of Dhaka, Dhaka-1000.
Niteanhelot
$17-05.05$

Member
(Ex-Officio) BUET, Dhaka-1000.
3. Dr. Md. Mustafa Kama Chowdhary
Professor
Department of Mathematics
BUET, Dhaka-1000.

Acknowledgemēnt

All praises are due to Almighty Allah for enabling me to complete this dissertation successfully. This is a greal pleasure to express my wholehearled gratitude and indebtedness to my reverend supervisor Dr. Nilufar Farbat Hossain, Professor, Deparment of Mathematics, Bangladesh University of Engineering and Technology. She has extended her full cooperation by offering constant advice, encouragement and proper guidance throughout the entice period of work and preparation of this thesis. Undoubtedly, it would be impossible to complete this work without her invaluable slupervision.

I express my deep regards to my honorable teacher, Dr. Amal K Halder, Professor, Department of Mathematics, University of Dhaka for providing me help, adsice and necessary guidance at every stage of ny research work.

I also express my gratitude to my honorable teachers Professor Dr. Md. Zakerullah and Professor Dr. Mi. Mustafa Kamal Chowdhury of the Department of Mathematics, Bangladesh University of Engineering and Technology for their invaluable guidance and helpful suggestions to complete this research work successfully. I also offer my best regards to all respected teachers of this Department for their affections, encouragentent and kind cooperation.

1 acknowledge the help, co-operation of all officc staff of this Deparment.

Finally, I convey my regards to my beloved father and my husband who have initiated and encouraged me to accomplish this work properly.

Salma Parrin
SALMA PARVIN
Datc: May 17, 2005

Candidate's Declaration

I hereby declare that the work which is being presented in the thesis entitled "A study of in-medium nucleon-nucleon cross-section" submitted in partial fulfillment of the requirement for the award of the degree of Master of Philosophy in Mathematics, in the Depanment of Mathematics, Bangladesh University of Engineering and Technology, Dhaka is an authentic record of my own work. I have not submitted the matter presented in this thesis for the award of any other degree in this or any other university.

Satma Parvin
(SALMA PARVIN)
Date: May 17, 2005

Abstract

lt is the purpose of this thesis to provide a basis and a realistic starting point for systematic relativistic nuclear structure calculations in future. A family of realistic and quantitative nucleon-nucleon (NN) interaction potentials are constructed which are appropriate for application to relativistic $N N$ scattering in the nuclear matter. The Brucekner G-Matrix theory in non-rclativistic case is described and the theory is extended to relativistic Dirac-Brueckner formalism for the scaltenng of two nucleons in nuclear medium. The method of matrix inversion is also described for solving the DiracBrucckner G-matrix equation and hence finding the NN cross-sections in nuclear medium.

Finally, the dependence of $\mathrm{N}_{\mathrm{N}} \mathrm{cross}$-sections on the density of the nuclear medium is discussed by geometrical consideration of the Pauli blocking effect of the medum on Frec NN cross-sections. Some simple approximations show that for high energies the in-medium cffect is less imporlant and the free and in-medium NN cross-sections become approximately equal.

Contents

Introduction 1
Chapter 1: Nuclear force and nuclear matter 4
1.1 Meson theory and nucicar force
1.2 The idea of Massive-Paricle Exchange
1.3 Empirical features of the nuclear force
1.4 Nuclear matter propertics
Chapter 2: Boson fields and one-boson exchange potentials 18
2.1 Perturbation theory and Feynman rulcs
2.2 Various Boson fields and their couplings
2.3 One-boson exchange potentials and their contribution in NN interaction
Chapter 3: In-medium NN interaction and Dirac-Brueckner theory 36
3.1 Brucckner Theory and the G-matrix
3.2 The effective mass and the angle averaged Pauli operator
3.3 Thompson equation
3.4 The relativistic Dirac-Brueckner approach
Chapter 4: In-medium NN scattering cross-section and its density dependence 52
4.1 Malrix inversion method for solving Brueckner equation
4.2 Effective cross-sections for NN elastic scaltering
4.3 The Golden rule for free NN cross-section
4.4 Geometrical consideration of the Pauli-blocking effect of the medium on NN cross-section
4.5 Density dependence of in-medium NN cross sections
Conclusion 74
References 76

Introduction

One of the fundamental goals of theoretical nuclear physics is to explain consistently the properties of nuclear matter, finite nuclei, and nuclear reactions (nucleon-nucleus as well as nucleus-nucleus collisions) with one realistic nucleon-nucleon (NN) interaction that has a solid theoretical basis and describes the two-body system accurately. First attempts towards this aim were based on the simplest model for the atomic nucleus: nuclcons obeying the nonrelativistic Schrodinger equation interact through a two-body potential that fits the low-energy NN scattering data and the properies of the deuleron.

Historically, the first attempt was made by Heiscnberg's student Euler who calculated the properties of nuclear mattcr in second-order perturbation theory assuming nuclcons interacting via a two-body potential of Gaussian shape. When the singular nature of the muclear potential at short distances ("hard core") was realized, it became apparent that conventional perturbation theory is inadequate. Special many-body methods had to be worked out. Brueckner, Levinson, and Mahnoud [1] initiated a method, which was further developed by Bcthe [2].

In 1960 s substantial advances in the physical understanding of Brueckner theory were made due to the work by Bethe and co-workers. Systematic calculations of the properties of nuclear matter applying Brucekner theory started in the late 1960s and continucd through the 1970 s. The work was done in the framework of Brueckncr theory [1] by solving the Bcthe-Goldstone equation, which yields an effective NN interaction in the medium [2-6]. The predictions by the nonrelativistic model for nuclear saluration with a variety of NN intcractions show a systematic behavior: in an energy versus density plot the saluration points are located along a band, the so-called "Coester band" [7], which does not mect the empincal area.

Approaches discussed so far were based on the simplest model for the atomic nucleus: Nucleons obeying the non-relativistic Schrodinger equation interact through a two-body potential that fits low-energy NN scattering data and the properties or the dcuteron. The failure of this model to explain nuclear saturation indicates that we may have to extend
the model. One possible way is to include degrees of freedom other than the nucleon. The meson theory of the nuclear force suggests to consider, particularly, meson and isobar degrecs of freedom. Characteristically, these degrees of freedom lead to medium effects on the nuclear force when inserted into the many-body problem as well as many-nucleon force contnbutions. In general, the medium effects are repulsive, whereas the manynucleon force contributions are attractive. Thus there are large cancellations and the net result is very small. The density dependence of these cffects/contributions is such that the saturation properlies of nuclear matter are not improved [8]. One of the most important devclopments in the extension of nuclear many-body theory is the replacement of the non-relativistic Schrodinger equation with the relativistic Dirac equation to describe the single-particle motion in the medium [9].

In the 1970s a relativistic approach to nuclear structure was developed by Miller and Green [10]. They studied a Dirac-Hartree model for the ground state of nuclei, which was able to reproduce the binding encrgies, the root-mean-squarc radii, and the single-particle levels, panicularly the spin-orbit splittngs. Their potential consisted of a strong (altractive) scalar and (repulsive) vector component. At about the same time, Arnold, Clark, and Mcreer applied a Dirac equation contaning a scalar and a vector field to proton-nucleus scattering [11]. The most significant result of this Dirac phenomenology is the quantitative fit of spin observables, which are only poorly described by the Schrodinger cquation.

Inspired by this success, a relativistic extension of Brueckner theory has been suggested by Shakin and co-workers [12], frequently called the Dirac-Bnueckner approach. The advantage of a Brockner theory is that the free NN interaction is used; thus there are no parameters in the force which are adjusted in the many-body problem The cssential point of the Dirac-Brueckner approach is to use the Dirac equation for the single-particle motion in the ruclear mater. One of the main aspects to this problem is that one needs a realistic NN interaction potential which could be constructed in terms of meson-baryon interactions. Infact, the only quantitative NN interactions available up until now are based upon the idea of meson cxchange; two well known cxample are the Paris potential and the Bonn potentials [8]. In most calculations a onc-boson-exchange potentials are used for free NN interaction. The common fcature of all Dirac-Brucekner results is that a
(repulsive) relativistic many-body cffect is obtained which is strongly density dependent such that the empinical nuclear matter saturation can be explained.

It is thus reasonable to apply and extend this approach to other domains of nuclear physics. An important application is the study of the propertics of dense nuclear natter. These properties are impontant for particle physics, as well as muclear physics. Experimentally, intermediate-energy heavy-ion reactions offer the unique opportunity to obtain a piece of dense nuclear matter in the laboratory. However, for the analysis or these reactions the properties of nuclear matter at high density are needed which can only be obtaned from theoretical investigations [13]. In this sense, the theoretical investigation of the properties of dense nuclear matter, as well as the properties of hadrons in the dense medium [14], is of great importance.

In this work, we base our investigation on the Bonn meson-exchange model for the frec NN interaction, the Dirac-Brueckner approach for the nucleon-nucleon (iNN) scatlering and the NN scattering cross-sections in the nuclear matter. In our work, we are concerned with elastic in-mediun NN scattering which is the most imporant two body process in nucleus-nucleus collisions at incident encrgy helow 300 McV per nucleon. The work is designed in the following fastion:

In chapter one, we have a detail discussion on moson theory, nuclear force and nuclear structure properties (saluration density and energy). The Feynman rules for finding the amplitude for the scattering of two nucleons is also discussed. In clapter two, the Fcymman moles are used to derive the one-boson exchange Bonn potentials for various boson fields.

In chapter threc, we first discuss the Bueckner non-relativistic theory for the scattering of two nuclcons in the nuclear matter. Secondly, we extend the theory to the relativistic case in the Dirac-Brueckner approach. Lastly, in chapter four, two methods for finding the in-medium cross-sections for the scattering of two nucleons in the nuclear matter along with the density dependence of the NNT cross-scetions are discussed in detail.

Chapter-1

Nuclear force and nuclear matter

Nowadays it has become customary in nuclear physics to denote by "Iradition" the approach that considers nucleons and mesons as the rclevant degrees of freedom It is the purpose of this chapter to review this traditional approach in the area of nuclear forces and nuclear structure. We look more closely into meson theory, to understand, in qualitative terms, what the meson exchange picture can predict for the NN system.

In section one, we review the history of meson theory and nuclear force. Yukawa's massive particle exchange, which gives the birth of paricle physics, is discussed in section (wo. In section threc, we give a brief review on some important empitical fealures of the nucleon force, which helps us to better asses the relevance of various meson exchange contributions. Finally, a discussion on the nuclcar matter theory, which explains the empirical propenties of nuclear structure is given in section four.

1.1 Meson theory and nuclear force:

The atomic nucleus was first discovered by Rutherford in the year of 1911. Thompson investigated the mass of nucleus and it was first assumed that nuclear models constitute of protons and clectrons. In 1932 the neutron was discovered by Chadwick and this suggested that the neutron and proton were the fundamental constituents of nuclei.

But a question then arises, what holds the nucleus together? Afler all, the positively charged protons should repel one anothor violctitly, packed together as they arc in such close proximity. Evidently there must be some other force, more powerful than the force of electrical repulsion that binds the protons and neutrons together. So it appeared compeling to assume the cxistence of a new force acting between neutrons and protons which binds the nuclens called the strong force or nuctear force, which is of very short range about the size of the nucleus itsclf. Heiscnberg (1932) and Majorana (1933)
introduced the concept of so called exchange forces, which could explain nucleas saturation.

The lirst significant theory of the strong force was proposed by Yukawa in 1934. Yukawa assumed that the proton and neutron are attracted to onc another by some sort of ficld, just as the electron is attracted to the nucleus by an electric ricld. Yukawa's original theory was in classical field theory. Shomly after he reconsidered his proposal in quantized ficld theory. Since the shorl range of the force indicated that the mediator would be rather heavy; Yukawa suggested that the mass of its quanturn should be 300 times that of the electron. Yukawa's particle came to be known as the meson (meaning middle weight) [In the same spirit the electron is called a lepton (light-weight), whicreas the proton and neutron are baryons (heavy-weight)]. The massive character of the particle to be exchanged between the nuclear constituents would furnish the resulting force with a finite range desirable to account for nuclear saturation.

The weil-known fundamental interactions in those days were the Coulomb interaction and the gravitational force, both having mathematically very simple form. Naturally, one expected something comparably simple for the nuclear potential, for example, just one Yukawa function: $\alpha \exp (-\mu r) / r$ (with r the distance between the two nucleons and $\mu=m c h$, where m denotes the mass of the exchanged particle). However, even just phenomenologically, the nuclear force turns out to be much more complicated, mainly because of its dependence on the spins of the two interacting nucleons. In addition, ficld theory soon ran into fundanental mathenatical difficulties.

In 1937 a meson was found in cosmic ray, the muon. It was interpreted as the particle predicted by Yukawa, particularly its mass ($\approx 106 \mathrm{McV}$) appeared about right with regard to the range of the nuclear force and thereforc, this discovery aroused considerable interest in Yukawa's idea. Kemmer felt inspired to suggest a rich variety of possible meson fields including pseudoscalar, axial-vector, and tensor, ather Proca, in 1936 had already considered vector lields. Also a symmetric theory was proposed by Kemmer and Bhaba to account for the known hypothesis of charge independence. This suggestion was made in spite of the fact that experimentally only charged "mesons"(namely, μ^{+}and μ^{-})
were known. In lowest order, these cannot be exchanged between like nucleons and therefore scriously violate charge independence. It was also suggested that the two-meson exchange contribution could counterbalance this substantial inequality. The discovery of the quadrupole moment and the measurement of the magnetic moment of the deuteron by Rabi and co-workers in 1939 motivated immediately the development of more sophisticated models. Thus, it was realized that (isovector) vector ficlds create a tensor force giving rise to a quadrupole moment in the deuteron but with the wrong sign as compared to experiment. The problem was soon overcome by also including pseudoscalar lields. Pauli concluded from the fact that the pscudoscalar "symmetric" theory predicted the right sign for the quadrupole moment. This was the most correct theory, long before the pion was found and its spin and parity were detennned. Also quite early it was recognized, that vector and scalar fields create a spin-orbil force. In 1947, Conversi, Pancini, and Piecioni showed that the moon docs not interact strongly with nuclei and therefore, according to the notation introduced around 1960, it is not a meson: $1 t$ is a tepton. That same year, a real meson with a mass of about 140 MeV , the pion, was found in a cosmic ray by Occhialini and collaborators.

Quite understandably, the new reality of a strongly interacting meson motivated vigorous theoretical cfforts to describe the nuclear force, now, by the pion only. In 1951, Taketani, Nakamura, and Sasaki presented their suggestion to subduride the nuclear force into threc regions. They distinguish a classtcal (long-range, $r \geq 2 \mathrm{frr} ; r$ denotes the distance between the centers of two nucleons), a dynamical (internediate range, $\mathrm{lfm} \leq r \leq 2 \mathrm{fm}$), and a phenomenological or core (shor-range, $r \leq 1 \mathrm{fm}$) region. In the classical region the longest-range par of the polentiat, namely, the one-pion exchange (OPE) is dominant. In the intermediate range the two-pion exchange (TPE) is most important and finally, in the core region many different processes play a role. This classification has becn utmost theoretical and of practical importance. It allows a step-by-step exploration of the twonucleon interaction and permits a different derivation for different parts of the force.

In the decade undcr consideration, the one-pion cxchange became experimentally well established as the long-range pat of the nuclear force but the two-pion cxchange evolves in an opposite way. It was difficult to evaluate and for a long time it did not even do well
in correlating data. The many efforts of pion-theoretical potentials of the 1950 s are usually divided into two groups; The Taketani-Machida-Onuma and the BruecknerWatson types. In the former case an S matrix was cvaluated directly from meson field theory, from which in turn a potential was derived. In contrast the latler method was based on an expansion in the particle number and derived a polential dircetly. Fortunately, there was also another line of research on the nuclear force during the 1950s; and it was the attempt to give a simple phenomenological description of the nuclear potential. The basis for the success of the phemomenological line for research on the nuclear force was the substantial progress in the NN scattering experiments of this period. From the propertes of nuclear many-body system precise and detailed information regarding the force cannot be gained. Effective range theory had made clear that from low-energy data one camnot learn much more than what can be paramelerized in terms of two numbers, the seattering length and the eflective range. Therefore, it was obvious that high-energy data were required to obtain furher insight into the nature of the nuclear force. Moreover, differential cross sections, even at high energy, are good only for a few rather basic and qualitative conclusions. Because of the important spin dependence of the NN interaction, data for many other observables are necded to specify the scattering amplitude.

The basic ain of a potential description of the two-nucleon interaction is twofold. One is to provide an economical summery of the data for comparison with potential-like results from theory. The other aim or a phenomenological potential is to serve as an input for nuclear calculations.

The most general form, a non-relativistic potential may assume, when taking also the spin degree of freedom of the nucleons into account, can be derived from invariance considerations. Restricting to at most linear dependence on the relative momentum of the two nucleons, p, 11 consists of central, spin-spin, tensor and spin-orbit terms. This phenomenological types of the potentials have been improved over the ycars. Other examples of the hard-core type are those consiructed hy Hamada and Johnston and by the Yale group. Both use the fove-tem form. These modcls cmploy a ore-pion tail and therefore reproduce the deuteron properlies accurately. In the mid 1960s R. V. Reid
developed hard and solt-core potentials. One of his sofl-core versions became the most applied potential in muclear structure physics in the 1970s. Phenomenological potentials typically use 30-50 parameters.

Let us now relum to the meson-thcorctic work. The year 1960, was characterized by cssentially two facts; the failure of the pion field-theoretic program, on the one hand, and a rich phenomenological experience with the nucleon-nucleon interaction (e.g. shortrange repulsion and spin-orbil force), on the other. Not suprisingly, this led Breit and others to revive the old idea of vector-meson exchange, which predicts both features just mentioned. Further support came from the electromagnctic properties of mucleon. Nambu, Sakuri and Frazer and Fulco conjectured that vector bosons may play the dominant role in explaining the nuclear form factor. Their supposition was soon confirmed: In 1961, the ρ meson was discovered at Brookhaven in the $\pi^{-} \rho \rightarrow \pi \pi \mathrm{N}$ reaction, and the ω meson was found at Berkeley in $\bar{\rho} \rho$ annihitation. Both are spin-l bosons, the ρ being a 2π and the ω a 3π resonance, with masses around $770-780$ MeV . The discovery of heavy mesons broke the deadlock situation in the meson theory of the nucleon-nucleon interaction. The first products of the now developments were the one-boson exchange (OBE) modcls. These models are based on the old Yukawa idea that the nuclear force is meson mediated.

There are also some very pragmatic rcasons for the OBE model. First the evaluation of one-panicle exchange processes is essentially straightforward, quite contrary to multiparticle exchanges, as we saw from the history of the 1950s. Second, within the OBE model the NN data can be described with very few parameters (of the order of 10 , in conitast to phenomenological potentials, which typically need about $30-50$). Since the OBE model parameters are meson-nucleon coupling constants and cutoffs, a physical meaning can be attributed to them, at least in principle.

Finally, the OBE concept was substantially improved by considering three-dimensional relativistic equations based upon the Bethe-Salpeter equation [15] and by working in momentum space to avoid the approximations necessary to obtain analytic r-space
expressions. Work along this line was done by Schierholx, Thompson and others and the Bonn group.

Quitc apart from the quantitative success of the OBEP in fitting the NN data, conceptually such models cannot be accepted as a comprehensive theory, as it is hard to believe that the uncorrelated multi-parlicle exchange should be totally negligible. The longcst-range component of such exchanges, and therefore the most important of that kind, is the two-pion exchange (TPE). How to take the TPE more accuratcly or even completely into account was the other main topic of the 1960s. Naturally the new goal was to include all correlated and uncorrelated multi-partucle exchanges, particularly for the case of two pions. In principle, there are two conceptually rather different ways to actually calculate these contnbutions: by field theory and by dispersion relations.

The princupal fiamework of dispersion relation is based on three findamental assumptions: causality, unitarity and crossing symmetry. From the first the analyticity of the reaction amplitude is concluded. The third allows one to relate processes that differ from each other only by the interchange of some incoming and outgoing particles of the reaction. Owing to analyticity, onc particle cxchange appears as a pole in the scattering amplitude. This fact can be cxploited to extract empirical infomation about meson masses and particularly, meson-nucleon coupling constants. In the 1960's Amati, Leader and Vitale starled work along this line, with which many groups soon got involved. The results showed that, for the intermediate range, a relativistic muclear potenlial can be derived using dispersion rclations and empirical information from πN and $\pi \pi$ scattering as input Yel, these eflicts were still far from constncting a rull quantitative nuclear potential.

In the course of the 1960 s, the experimental program of the measurement of NN clastic scattering observables was pursucd extensively by many accelerators throughout the world. As a result, by the end of the decade, the Livermore group could come up with a phase-shift analysis of NN scattering upto 425 MeV lab energy of high quality. This provided an important presupposition of the theoretical work of 1970s, which provides an absolutely quantitative nuclear force that is based on meson theory as much as possible. The work proceeded along the two lines discussed earlier: dispersion theory and field
theory. Both approaches finally produced a very quantitative model. Most of this work was done in two Central European capitals; Paris and Bonn.

Let us first summanize the dispersion theorctic efforts. In continuation of the work of Chemtob et al., the Stony Brook Group constructed a potential in which the dispersion theoretic result for the 2π exchange was complemented by one- π and onc- ω cxchange. For short distances the potential was regularized by the eikonal form factor derived by Woloshyn and Jackson. The fit to the NN scattering phase shifts was serni-quantitative. At about the same time, the Paris group produced a potential based on rather similar theoretical input. In the Paris case, the short-range part of the NN interaction was treated by an cnergy-dependent repulsive square-shaped cutofl. For the 2π exchange contribution to the nuclear potential both groups achicved even quantitative agreement. Further refinements and a convenient representation of the potential was left to the Paris group. Their final version, published in 1980, is parameterized in terms of static Yukawa functions of multiples of the pion mass [16].

Finally, let us turn to the field-iheoretical attempts. Afer a decade of prevailing abstinence, the field-theoretical approach was revived by the work of Lomon and Partosi [17]. They evaluated the 2π exchange Fymmann diagrams with nucleons in the framework of the relativistic three-dimensional reduction of the Bethe-Salpetcr cquation proposed by Blankenbecler and Sugar [18]. It is a nonstatic approach to the 2π exchange. The old ambiguity of how to construct and subtract the iterated one-pions exchange when defining a potential was absent in this work. Howcyer, the models discussed so far left out contributions that are of substantial importance, like mesonmucleon resonances in intcrmediate states as well as three-pion and four-pion exchanges. In the mid 1970s the Bonn group started a program directed toward the evaluation of multipion exchange diagrams including nucleon resonances. This comprehensive ficldtheoretic progran took about a dccade. Step by step, the Bonn group computed all 2π exchange diagrams including those with virtual Δ-isober excitations and finally, also the relevant diagrains of 3π and 4π cxchange. One of the important finding is that, apart from the usual iterative diagrans, the crossed meson exchanges and the diagrams of π and ρ exchange arc parlicularly important for a quantitative description of the NN
scattering data and the deuteron properties. The final Bonn model [19] tums out to be highly quantitative nature, in spite of the fact that it employs only about a dozen parameters, such as meson-baryon coupling constants and form factors that have a physical meaning.

There are several reasons for and alvantages to a field-theoretic model. First, it determines the ofl-shell behavior of the interaction in a well-defined way. As dispersion theory deals with reaction amplitudes, which are always on-shell, the off-shell behavior remains undetermined in such an approach and is left to guesswork or arguments of simplicity. Furthermore, the set of diagrams provided by a field-theoretic model forms a sound basis for a consistent generalization to many-body forces, which may be of interest in the nucicar many-body problem. Field-theoretic models also allow for a consistent extension to intermediate energies including meson production.

1.2 The idea of Massive-Particle Exchange:

In the 1930 s the best established and most striking feature of the nuclear force was its short-range nature. For that reason, the first theoretical attempts concentrated on deriving a force of finite range from some more fundamental idea. Yukawa achieved this in 1935 by constructing a strict analogy to quantum electrodynamics (QED). His first consideration was carried out in the framework of classical field theory, which we shall now restate.

In QED a field of particles wilh zero mass, the photons, is assumed to fulfill a field equation. In static approximation, the fourth component of this field satisfies the Poisson equation of elassical electrodynamics.

$$
\begin{equation*}
-\Delta V(\mathbf{r})=e \delta^{(3)}(\mathbf{r}) \tag{1.2.1}
\end{equation*}
$$

with Δ the Laplace operator. The solution

$$
\begin{equation*}
\mathrm{V}(r)=\frac{e}{4 \pi} \frac{1}{r} \tag{1.2.2}
\end{equation*}
$$

with $r=|r|$, is the familiar Coulomb potential.

In analogy, in meson theory of field of particles with nonzero mass m, the mesons, is assumed, fulfilling a lield equation, which is the Klein-Gordon equation (using the units such that $f=c=1$)

$$
\begin{equation*}
\left(\square+m^{2}\right) \varphi(x)=g \bar{\varphi}(x) \varphi(x) \tag{1.2.3}
\end{equation*}
$$

In the approximation that the nucleon (the source of the meson field), represented by $\psi(x)$, is 10 finitely heavy and fixed at the origin, we obtain

$$
\begin{equation*}
\left(-\Delta+m^{2}\right) \varphi(\mathbf{r})=g \delta^{(3)}(\mathbf{r}) \tag{1.2.4}
\end{equation*}
$$

satisfied by the "Yukawa potential"

$$
\begin{equation*}
\varphi(r)=\frac{g}{4 \pi} \frac{e^{-m r}}{r} \tag{1.2.5}
\end{equation*}
$$

Because of the exponential form, which is a direct consequcnce of the massive character of the particles, this potential has the desired finite range. For zero mass one recovers the Coulomb potential. This simple considcration, done in 1935, was the birth of patticle physics.

Traditionally the range of a particle exchange is estimated from the Compton wavelenglh equivalent to the parlicle's mass

$$
\begin{equation*}
R=1 / m \tag{1,2,6}
\end{equation*}
$$

In this way, onc estimates for the pion (with a mass of 138 MeV) a range of 1.4 fm . This estimate is somewhat small; in fact, the pion just starts to become dominant at that range. That the conventional range estimate is too small is also true for the heavier mesons. It is due to the fact that we arc dealing with large coupling constant: the final nuclear potential is a result of strong interferences of large contributions.

1.3 Empirical features of the nuclear force:

We will star to look more closely into meson theory, in qualitative tcrms, what the meson exchange picture can predict for the NN system. However, first we shall briefly review the empirically known features of the nuclear force. This will later help to better assess the relevance of various meson exchange contributions.

1. Nuclear forces are of short range (finite range): That their range is shorer than inter atomic distances we can conclute from the fact that of the molecular level no forces other than electromagnctic ones are needed to cxplain the known phenomena. However, we can put a much more precise and, in fact, much lower limit on the range by studying closely the saturation properties of nuclei. When going from the $A=4$ nucleus, helium, upwards to higher- A nuclei, one realizes that the binding energy per nucicon remains about constant. The density also remains roughly the same, the radius of heasy nuclei bcing proporional to $A^{1 / 3}$. If the nuclear force was of long range, like, for example, the coulomb force, the potential energy per particle would increase with A and so would the density. On the other hand, for light nuclei $(A \leq 4)$ the binding energy per nucleon does grow with A. The deuteron is bounded by $2.2 \mathrm{McV},{ }^{3} \mathrm{H}$ by 8.5 McV . This fact is best analyzed in terms of energy per "bond". Thus, the binding energy per bond is about 2 MeV in the two-nucleon system and 3 Mev for the inton. In ${ }^{4} / H e$ we have $\approx 4.5 \mathrm{MeV}$ per bond (28 MeV total). One can then conclude that, when nucleons are pulled closer to each other by morc bonds, also the energy per bond increases (up to saturation). From this Wigner in 1933 conjectured that the nuclear force should be of shorl range, namely, shortcr than the deuteron diameter or about 4 fm and roughly equal to the radius of the alpha particle of about 1.7 fm .
2. The nuclear force is attractive in its intermediate range: "Lntermediate" is meant here relative to the total range of the nuclear force, which we consider now as being subdivided into shor, intermediate and long range. The proof for the attractive character of the nuclear force (at least, in a certain range) is provided by the fact of nuclear binding. The range of this attraction can be obtaincd more precisely by considening the central density of havy nuclei as known from electron scattering. This density is about $0.17 \mathrm{fm}^{-3}$ (nuclear matter density), which is cquivalent to a cube of length 1.8 fm for cach nucleon [8]. Thus the average distance between the centers of two uucleons in the interior of a nucleus is about 1.8 fm , in close agreement with our estimate given above. This average distance should be about the range of the atraction. Furher evidence for the
(partially) attractive character of the nuclear force comes from the analysis of NN scattering data. The S-wave phase shifis [8] are positive (corresponding to attraction) for low energies and we note that the average momentum of a nucleon in nuclear matter is equivalent to a laboratory energy of about 50 MeV .
3. The nuclear force has a repulsive corc: Such an assumption could help to explain the saturation properties of nuclear force and the constant nuclear density. But this aspect is not a compelling proof for repulsive core, as saturation can also be generated in other ways, namely, by "excharge" forces, by Pauli and relativistic effects. In fact, at nuclear matler density the Pauli effect is much more important than the short-range repulsion. However, a precise argument is provided by the behavior of the ${ }^{1} S_{0}$ and ${ }^{1} D_{2}$, phase shifts [8] as a function of energy. The latter stays positive (corresponding to attraction) up to aboul 800 MeV , whereas the ${ }^{1} S_{0}$ phase shifl tums negative (i.e., repulsive) around 250 McV . Since an S state (orbital angular momentum $\mathrm{L}=0$, no centrifugal bamer) feels the innennost region of the force, whercas in a D state $(\mathrm{L}=2$) the mucleons are kept apart by the centrifugal barrier, one may conclude that a repulsion at shor range is indicated. The maxinum ciassical orbital angular momentum $L_{\text {nux }}$ involved in a range R is $L_{\text {nax }}=R p$ where the momentum p of a nucleon in the centre of mass frame of the $N \mathrm{~N}$ system is related to the laboratory cnergy, $E_{l a b}$, by $E_{l a b}=2 p^{2} / m_{N}$ with m_{N} the mass of the nuclcon. For $E_{l \pi s}=250 \mathrm{MeV}$, where the ' S_{0} phase shifl turns repulsive, we have $p \approx 1.7 \mathrm{fm}^{-1}$. With $L_{\text {rax }} \leq 1$ we obtan $R \leq 0.6 \mathrm{fm}$. This should represent a fais estimate of the radius of the repulsive core.
4. There is a tensor force: The most striking evidence for this fact is seen in the deuteron: the quadrupole moment, the magnetic moment and the asymptotic D/S state ratio. Further evidence is provided by the nonvanishing mixing parameters, ε_{j}, as obtained in a phase-shift analysis of NN scattering data [8]. This parameter is proportional to the transition amplitude from a state with
$L=J-1$ to one with $L=J+1$ (with J the total angular momentum). Of all operators, by which the most general non-relativistic potential can be represented, only the tensor operator has non-vanishing matrix elements for this transition.
5. There is a spin orbit force: A first indication for this fact was observed in the spectra of nuclei. However, this relers to the eftective nuclear interaction in the many-body system, which is not the same as the free NN intcraction, though these two forces are related. Clear cvidcnce came from the first reliable phase-shift analysis at high energy [20-22]. The triplet P waves resulting from the analysis can only be explained by assuming a strong spin-orbit force [21-22]. Speaking in terms of observables, a strong spin-orbit rorec is required to explain the polarization.

1.4 Nuclear matter properties:

By defintion, nuclear matter refers to an infinite uniform system consisting of an equal number of protons and neutrons interacting through the strong force. The Coulomb interaction is absent and the number of particles, A, approaches infinity. This hypothetical system is supposed to approximate condtions in the interior of a heavy nucleus. We shall assume equal neutron and proton denstly, that is, we will consider symmetric nuclear matter. This many-body system is characterized by its energy per mucleon as a function of the particle densily.

The particle density ρ is constant and the single particle wave functions, or orbitals, are taken to be plane waves. In configuration space the single-particle orbitals, $\phi_{\mu}\left(\mathbf{r}_{1}\right)$, are given by

$$
\begin{equation*}
\phi_{\mu}\left(\mathbf{r}_{\mathrm{I}}\right)=\left\langle\mathbf{r}_{\mathrm{s}} \mid \mu\right\rangle=\frac{\exp i \mathbf{k}_{\mu} \cdot \mathbf{r}_{s}}{\Omega^{1 / 2}}\left|s_{\mu} t_{\mu}\right\rangle \tag{1.4.1}
\end{equation*}
$$

where s_{μ} labels the spin state of the nuclicon, and $t_{j s}$ is the isospin label. The nucleors are in the volume Ω, which is used in Eqn. (1.4.1) to nonnalize the single-particle
orbitals. For an infinite system, both A and Ω approach infinity, while the particle density $\rho=A / \Omega$ remains finite.

The ground state of nuclear mater is simply a properly anti-symmetrized product of orbitals with all levels filled, according to the Pauli principle, up to a maximum level specifed by k_{F}, the Fermi momentum. For this state, the total kinetic energy is $\langle T\rangle=\frac{3}{5} \varepsilon_{F} A$. The Fermi energy and the particle density are respectively given by [3]

$$
\begin{gather*}
\varepsilon_{F}=\left(力^{2} / 2 m_{H}\right) k_{F}^{2} \\
\rho=2 k_{F}^{3} / 3 \pi^{2} \tag{1.4.2}
\end{gather*}
$$

The main goal of nuclear matter calculations is to determine the saturation curve, i.e. the binding energy per nucleon as a function of density. The equilibrium binding energy and density are determined by finding a minimum in the saturation curve. The basic saturation condition placed on a potential by nuclear matter is that the correct binding cnergy and density be obtained.

Empirical information of the minimurn of that curve, the saturation point, is deducted by extrapolation from the properties of finite muclei. Based on the liquid drop model for the nuclcus, the semi-empirical Bethe-Wezacker mass fomula providcs a value for the encrgy via its volume term. A collection of contemporary mass formulas by many different authors can be found in the Aromic Data and Nuclear Data Tables [23]. From the charge distribution of heavy nuclei as deternined in electron scattering, the saturation density can be deduced by taking nto account corrections due to the Coulomb repulsion and the surface tension. Altcrnatively, both the saturation energy and density can be deduced from Hantre-Fock or Thomas-Fernni calculations [24-28] with phenomenological effective forces fitted to the ground-state propertics of closed-shell nuclei. Thus, nuclear matter 15 determined to saturate at a density

$$
\begin{equation*}
\rho_{0}=0.17 \pm 0.02 \mathrm{fm}^{-3} \tag{1.4.3}
\end{equation*}
$$

and binding energy per nuclcon

$$
\begin{equation*}
\varepsilon / A=-16 \pm 1 \mathrm{McV} \tag{1.4.4}
\end{equation*}
$$

Other parameters related to the particle density are the inter-particle spacing r and the Fermi momentum k_{F} which arc defincd by

$$
\begin{equation*}
4 \pi r^{3} / 3=1 / \rho \tag{1.4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{F}=\left[3 \pi^{2} \rho(r) / 2\right]^{1 / 3} \tag{1.4.6}
\end{equation*}
$$

At the saturation point the equilibtium values for these quantities comesponding to the above given ρ_{0} are

$$
\begin{align*}
& r_{0}=1.3 \pm 0.04 \mathrm{fm} \tag{14.7}\\
& k_{F}=1.35 \pm 0.05 \mathrm{fm}^{-1} \quad \text { at } \rho=\rho_{0} \tag{1.4.8}
\end{align*}
$$

Also of intercst is the incompressibility or compression modulus of saturated nuclear matter

$$
\begin{equation*}
K=k_{F}^{2} \frac{\partial^{2}\left[\varepsilon / A\left(k_{F}\right)\right]}{\partial k_{F}^{2}} \tag{1.4.9}
\end{equation*}
$$

evaluated at k_{F} given in Eqn. (1.4.8) From empirical information deduced from the systenatic vibrations in muclei [8], one obtains for the saturation point.

$$
\begin{equation*}
K=210 \pm 30 \mathrm{MeV} \tag{1.4.10}
\end{equation*}
$$

In many-body calculations using density-dependent phenomenological forces fit to the groundstate properties of closed-shell nuclei, valucs for the compressions modulus are obtained which agree with Eqn. (1.4.10).

Chapter-2

Boson fields and One-boson exchange potentials

In this chapter, we first consider the meson-exchange contribution in the framework of perturbation theory and describe the lieynnan rules for calculating the scaltering amplitude for free nucleus-nucleus interaction. Then we discuss some simple relevant boson fields and their couplings in one-boson-exchange contribution, in section two. Finally, in section three, we use the standard interaction Lagrangian for each field and with the help of Feymman rules we construct the one-boson-exchange potentials of the Bonn type and discuss their role in NN interaction.

2.1 Perturbation theory and Feynman rules

The first meson-theoretic consideration was done in the framework of classical field theory. For more advanced considerations, quantized field thcory should be applied. This field theory was developed first for QED. The interactions involved are treated perturbatively and are most conveniently xepresented in torms of Feymman diagrams. Originally, meson theory was believed to represent the theory of strong interaction in analogy to QED. Nowadays, with QCD being the thcory for strong interactions, meson theory is viewed as an effective description, which may represent the appropriate approximation to the full and fundamental theory in the low-energy regime. It is customary to consider meson-baryon reactions in tems of perturbation theory and consequcntly, to consider the various possible contributions in the graphical language of Fcynman diagrams Contributions of increasing order, which may finally become divergent, ate of shonter and shorter range. For the long and intermedate range, there is only a finite rumber of perturbative contributions. Thus for these ranges one may have confidence in the predictions generated by perturbation theory. At the very shorl-range part of the force, due to the quark-structure of hadrons, the meson-exchange picture cannot be taken seriously. For that reason, in most meson theorics, one allows for a partly
phenomenological treatment of the shor distances by the introduction of vertex form factors, which in a certain sense, takes the extended structure of hadrons effectively into account. Formately, since the nuclear force is repulsive at short intemucleonic distances, the phenomenology of the very short range is "masked" behind a repulsive wall. Thus, one expects that, at least for energies typical for nuclear physics, the uncertain part of the nuclear force at very short distances and the special way, in which it may be treated in a particular model, is insignificant.

For the above reasons, we follow here the conventional treatment and consider mosonexchange in the framework of perurbation theory; that is, more practically speaking, we will be dealing with Feynman diagrams.

In a scattering theory the problem is to find the amplitude, which contains all the dynamical information. Evaluating the relevant Fcymman diagrams and using the Feymman rules appropriate to the interaction in question can solve this problem. The rules are summarized as follows [29].

1. Notation: Label the incoming and outgoing four-momenta $q_{1}, q_{2}, \ldots \ldots \ldots q_{\mathrm{n}}$ and the corresponding spins $s_{1}, s_{2}, \ldots \ldots \ldots . . . s_{n}$, label the internal four-momenta $k_{1}, k_{2}, \ldots \ldots . . . k_{n}$. Assign arrows to the lines as follows: the arrows on external lines indicate whether it is incoming or outgoing; arrows on internal lines are assigned so that the "direction of the flow" through the diagram is preserved (i.e. cvery vertex must have one arrow entering and one arrow leasing). Put an arrow on - cach line to keep track of the positive direction (arbitrarily assigned, for the internal lines).
2. External lines: Extcrnal lines contribute factors as follows:

Spin 0: Nothing
Spin 1/2 : Incoming particle: u
Outgoing parlicle: \bar{d}
Incoming antiparticle: \bar{v}
Outgoing antiparticlc: v
Spin 1 : Incoming: ε^{μ}
Outgoing: $\varepsilon^{\mu^{*}}$
3. Propagators: Each internal line contributes a factor as follows:

Spin 0: $\frac{i}{k^{2}-m_{a}^{2}}$
Spin $\frac{1}{2}: \frac{i\left(k+m_{a}\right)}{k^{2}-m_{a}^{2}}$
Spin 1: Massless: $\frac{-i g_{k \nu}}{k^{2}}$

$$
\text { Massive: } \frac{-i\left(g_{\Delta r y}-k_{\mu} k_{v} / m_{\alpha}^{2}\right)}{k^{2}-m_{\alpha}^{2}}
$$

where $g_{\mu v}$ is the metric tensor with $g_{00}=+1, g_{k k}=-1$ and $g_{j \neq v}=0$.
4. Vertex Factors: Each vertex contributcs a factor $g_{1} \Gamma_{i}$ where g is called the coupling constant which is dimensionless. Funhermore, there is a factor of i in each verlex.
5. Conservation of energy and momentum; For each vertex, write a delta function of the form $(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}+q_{3}\right)$ where $q^{\text {'s }}$ are the three four-momenta coming into the vertex (if an arrow leads outward, then g is minus the fourmomentum of that line). This factor enforces conservation of energy and momentum al each vercx.
6. Integration over internal momenta: For cach intemal line, write down a factor $\frac{1}{(2 \pi)^{4}} d^{4} k_{j}$ and integrate over all intemal momenta.
7. Cancel the delta function: The result will include a delta function $(2 \pi)^{4} \delta^{4}\left(q_{i}+q_{2}+\ldots \ldots \ldots \ldots .+q_{n}\right)$ enforcing overall conservation of cnergy and momentuin. Cancel this factor, and what remains is $-I S H$ where M is the scattering amplitude.

Fig.2.1: Feynman diagram for the one-boson-exchange contribution to NN scattering considered in the c.m. frame. Full tines denote nucleons, the dashed line a boson with mass m_{α}. The underlying time axis is vertical, pointing upwards into the future.

The lowest-order contribution to the $\mathrm{N}: \mathrm{N}$ scattering is the one-boson-exchange contribution. The respective Feynnan diagram is depicted in Fig.2.1. Since we are working in the center of mass (c.m.) system of the two interacting nucleons, the momenta of the two incoming particles arc q and -q and those for the outgoing parlicles are \mathbf{q}^{\prime} and $-q^{\prime}$. The process takes place "on the encrgy shell" i.e. energy is conscrved; consequently the energy of the nucleons before, E, and aficr E^{\prime}, the scattering process must be same so that $E^{\prime}=E$.

According to the "Feyuman rules" the depiction in Fig 2.1 corresponds to the scattering amplitude in analytic form:

$$
\begin{equation*}
\frac{\left.g_{1} \bar{t}_{1}\left(q^{\prime}\right) \Gamma_{1} u_{1}(q)\right) \rho_{v^{\prime}} g_{2} \bar{H}_{2}\left(-q^{\prime}\right) \Gamma_{2} t_{2}(-q)}{\left(q^{\prime}-q\right)^{2}-m_{\alpha}^{2}} \tag{2.1.1}
\end{equation*}
$$

where the left half of the numerator represents the left par of the dragram and the right half for the right part of the diagram. u_{1} and $\bar{u}_{i}\left(\equiv u_{i}^{\dagger} y^{0}\right)$ are Dirac spinors and their adjoints representing incoming and outgoing nucleons, respectively, with $i=1$ and 2. The meson propagator represented by the dashed line in the figure is

$$
\begin{equation*}
\frac{P_{a}}{\left(q^{\prime}-q\right)^{2}-m_{a}^{2}} \tag{2.1.2}
\end{equation*}
$$

where $\left(q^{\prime}-q\right)^{2}=\left(E^{\prime}-E\right)^{2}-\left(\mathbf{q}^{\prime}-q\right)^{2}=-\left(q^{\prime}-q\right)^{2}$, is the square of the four-momentum transferred by the meson. Thus we have for the propagator

$$
\begin{equation*}
\frac{P_{\alpha}}{-\left(q^{\prime}-q\right)^{2}-m_{c z}^{2}} \tag{2.1.3}
\end{equation*}
$$

For scalar and p seudoscatar exchanges $P_{a}=i \equiv \sqrt{-1}$. For vector boson exchange, however, it is:

$$
\begin{equation*}
P_{\alpha}=-i\left(g_{\mu \nu}-\frac{k_{\mu} k_{v}}{m_{\alpha c}^{2}}\right) \tag{2.1.4}
\end{equation*}
$$

Since the vector bosons couple to a conserved nucleon current the second teme will become zero in the actual calculations. Thus we can use for sector-boson exchange:

$$
\begin{equation*}
P_{\alpha}=-i g_{\mu \nu} \tag{2.1.5}
\end{equation*}
$$

The last pieces $g_{i} \Gamma_{1}$ are the "verices" representing meson-nucleon interactions and are obtained from the interaction Lagrangians. In fact, logically we should have begun with the interaction Lagrangians, as they arc the starting point for the development of the field theoretic perturbation theory, the lowest onder result of which (for NN and excluding remornalization) is our Feynman diagram Fig. 2.1. In any casc, the respective interaction Lagratgians for Fig.2.1 are

$$
\begin{equation*}
L_{i}=g_{i} \bar{\psi} \Gamma_{i} \psi \varphi^{(\alpha)} ; \quad i=1,2 \tag{2.1.6}
\end{equation*}
$$

Where $(\bar{y}) \psi$ is the (adjoint) nucleon Dirac field and $\varphi^{(r)}$ the meson field operator. Comparison of Eqn. (21.6) with Eqn.(2.1.1) shows in an obvious way, how to obtain the vertex from a Lagrangian in a simple case. We note that the vertex is i times the interaction Lagrangian stripped off the fields and that i times the amplitude in Eqn. (2.1.1) delines the potential V_{α}.

2.2 Various Boson fields and their couplings:

In this section we go systematicatly through some of the simptest boson fields and their couplings. In each case we consider the one-boson-exchange diagran and derive from it explicitly what it predicts for the NN interaction. For the NN interaction at low energy there are cssentially only four boson fields that are of relevance:

1) The pseudoscalar ($p s$) field
2) The pseudovector ($p v$) field
3) The scalar (s) Field
4) The vector (v) ficld.

Guided by symmetry principles, simplicity and physical interaction, the most commonly used interaction Lagrangians that couple these fields to the nucleon are [8]

$$
\begin{gather*}
\mathcal{L}_{p t}=-g_{p s} \bar{\psi} i \gamma^{s} \psi \varphi^{(p s)} \tag{2.2.1}\\
L_{\mu v}=-\frac{f_{p s}}{m_{p s}} \bar{\psi} \gamma^{5} \gamma^{\mu} \psi \partial_{\mu} \varphi^{(p s)} \tag{2.2.2}\\
\epsilon_{s}=g_{s} \bar{\psi} \psi \varphi^{(s)} \tag{2.2.3}\\
L_{\nu}=-g_{\psi} \bar{\psi} \gamma^{\mu} \psi \varphi_{\mu}^{(\nu)}-\frac{f_{\gamma}}{4 m_{N}} \bar{\psi} \sigma^{\mu \nu} \psi\left(\partial_{\mu} \varphi_{\psi}^{(v)}-\hat{\partial}_{\mu} \varphi_{\mu}^{(v)}\right) \tag{2.2.4}
\end{gather*}
$$

where ψ denotes the nucleon Dirac spinor field, while $\varphi^{(p s)}, \varphi^{(t)}$ and $\varphi^{(v)}$ are the pseudoscalar, scalar and vector boson fields respectively; m_{N} is the nucleon mass. In Eqn. (2.2.4) the first tenn on the right-hand side is called the vector (1) and the second term the tensor (i) coupling. Also

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \gamma^{k}=\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right), \gamma_{5}=\gamma^{5}=i \gamma^{0} \gamma^{i} \gamma^{2} \gamma^{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { and } \sigma^{2 v}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

where σ^{k} are the usual Pauli spin matrices. The Greck indices extend from 0 to 3 and the Latin indices from 1 to 3 .

For $p s$ field there is the so-called psendovector ($p v$) or gradient coupling, Eqn. (2.2.2), to the nuclcon, which is an effective coupling by chiral symmetry [30, 31]. The $p s$ and $p u$ coupling are cquivalent for on-mass-shell nucleons if the coupling constants are related by $f_{p s}=\left(m_{p s} / 2 m_{N}\right) g_{p s}$. However, the ofl-shell predictions are rather different. The Lagrangians mentioned lead to the following (off-shell) OBF amplitudes:

$$
\begin{align*}
& \left\langle\mathbf{q}^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime}\right| V_{p s}^{O B E}\left|\mathfrak{q} \lambda_{1} \lambda_{2}\right\rangle=-g_{p s}^{2} \bar{u}\left(\mathbf{q}^{\prime}, \lambda_{1}^{\prime}\right) i \gamma^{5} u\left(\mathbf{q}, \lambda_{1}\right) \bar{u}\left(-\mathbf{q}^{\prime}, \lambda_{2}^{\prime}\right) i \gamma^{5} u\left(-\mathbf{q}, \lambda_{2}\right)\left[\left(\mathbf{q}^{\prime}-\mathbf{q}\right)^{2}+m_{p s}^{2}\right]^{-1} \tag{2.2.5}\\
& \left\langle\mathrm{q}^{\prime} \lambda_{[} \hat{\lambda}_{2}^{\prime}\right| \boldsymbol{V}_{p \nu}^{O S E}\left|\boldsymbol{q} \lambda_{1} \lambda_{2}\right\rangle=\frac{f_{p s}^{2}}{m_{\rho s}^{2}} \bar{i}\left(\mathrm{q}^{\prime}, \lambda_{1}^{\prime}\right) \gamma^{s} \gamma^{\mu_{i}} i\left(q^{\prime}-q\right)_{\mu} u\left(\mathrm{q}, \lambda_{1}\right) \\
& \times \bar{t}\left(-q^{\prime}, \hat{\lambda}_{2}^{\prime}\right) \gamma^{5} \gamma^{\mu} i\left(q^{\prime}-q\right)_{\mu} u\left(-\mathbf{q}, \hat{\lambda}_{2}\right)\left[\left(\mathbf{q}^{\prime}-\mathbf{q}\right)^{2}+m_{p s}^{2}\right]^{-1} \tag{2.2.6}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\mathrm{q}^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime}\right| V_{v}^{O B E}\left|\mathrm{q} \lambda_{1} \dot{\lambda}_{2}\right\rangle=\left\{g_{v} \bar{u}\left(\mathbf{q}^{\prime}, \lambda_{1}^{\prime}\right) y_{\mu} u\left(\mathrm{q} \cdot \lambda_{1}\right)+\frac{\rho_{v}}{2 m_{N}} \bar{u}\left(\mathbf{q}^{\prime}, \lambda_{1}^{\prime}\right) \sigma_{\mu \mu^{\prime}} i\left(q^{\prime}-q\right)^{v} u\left(\mathbf{q}, \lambda_{1}\right)\right\} \\
& \times\left\{g_{v} \bar{u}\left(-\mathbf{q}^{\prime}, \lambda_{2}^{\prime}\right) \gamma^{\mu}{ }_{u}\left(-\mathbf{q}, \lambda_{2}\right)-\frac{f_{v}}{2 m_{k_{u}}} \bar{u}\left(-\mathbf{q}^{\prime}, \lambda_{2}^{\prime}\right) \sigma^{\mu v} i\left(q^{\prime}-q\right)_{v} u\left(-\mathbf{q}, \lambda_{2}\right)\right\} \\
& \times\left[\left(q^{\prime}-q\right)^{2}+m_{v}^{2}\right]^{-1} \tag{2.2.8}
\end{align*}
$$

where $\lambda_{i}\left(\hat{\lambda}_{i}^{\prime}\right)$ denotes the helicity of an incoming (outgoing) nucleon, which is defined as the eigenvaluc of the operator $\mathbf{s} \cdot \hat{\mathbf{q}}$ with \mathbf{s} the spin operator and $\dot{\mathbf{q}}=\mathbf{q} /|\mathbf{q}|$ the unit momentum operator or the respective nucleon; $E=\left(m_{N}+\mathbf{q}^{2}\right)^{1 / 2}$ and $E^{\prime}=\left(m_{N_{N}}+\mathbf{q}^{\prime 2}\right)^{1 / 2}$. The Thompson choice for the four-momentum transfer i. e. $\left(q^{\prime}-q\right)=\left(0, q^{\prime}-q\right)$ is inade. It is now in principle a straightforward (but quite lengthy) task to evaluate the one-bosonexchange contributions, Eqn. (2.1.1), corresponding to the interaction Lagrangians given above, which is donc in the next section. This will reveal what each field and coupling predicts for the nuclear force.

2.3 One-Boson exchange potentials and their contribution in NN interaction:

The one-boson exchange potential (OBEP) is defincd as a sum of onc-particle exchangc amplitudes of certain bosons with given mass and coupling. In the OBE Bonn model six non-strange bosons with mass below 1 GeV are used; they are π and η pseudoscalar, σ and δ scalar and ρ and α vector mesons. Thus

$$
\begin{equation*}
V_{O A E P}=\sum_{\alpha=R, \eta, f, G, \dot{,}, \sigma} V_{\sigma}^{O B E} \tag{2.3.1}
\end{equation*}
$$

The contributions from the isovector bosons, π, δ and ρ are to be mulliplied by a factor of $\tau_{1} \cdot \tau_{2}$. For isospin -1 , the mesons $\varphi^{(\alpha)}$ is to be replaced by $\tau \cdot \varphi^{(\omega)}$, with τ^{k} ($k=$ $1,2,3$) the usual Pauli matrices.

Now we evaluate the OBE contributions, Eqn. (2.1.1), corresponding to the interaction Lagrangians given above with ψ the nucleon and $\varphi^{(a)}$ the meson fields. Strictly speaking, we give here the potential that is defined as i times the Feymman amplitude. Furthermore, there is a factor of ' i ' in each vertex and meson propagator; as $i^{4}=1$, we can ignore these four factors of ' 6 '.

The pseudoscalar ($p s$) field:

Pseudoscalar means the field, $\varphi^{(p s)}$, switches sign in the case of cither space or a time reflection. Particles with ncgative intrinsic parity, e.g. the π and η, have this property To "counterbalance" this we have to find an expression $\bar{\psi} \Gamma \psi$, which has the same property as $\varphi^{(p s)}$, to obtain a scalar for the whole expression for the interaction Lagrangian. The simplest case with this property is $\overline{\psi^{\prime}}{ }^{3} \psi$. Thus

$$
\begin{equation*}
L_{p s}=-g_{p s} \bar{\psi} i \gamma^{s} \psi \varphi^{(p s)} \tag{2.3.2}
\end{equation*}
$$

(The i is needed for the hermiticity, as γ^{0} and γ^{5} anti-commute). The one-bosonexchange (OBE) contribution $Y_{g r}^{O \beta F}$, for this interaction is according to Feymman rules, Fig 2.1 and Eqn. (2.1.1):

$$
\begin{equation*}
\frac{g_{p s}^{2} \bar{u}_{1}\left(q^{\prime}\right) i \gamma^{5} u_{1}(q) \bar{u}_{2}\left(-q^{\prime}\right) i \gamma^{5} \bar{u}_{2}(-q)}{-\left(\mathbf{q}^{\prime}-q\right)^{2}-m_{p s}^{2}} \tag{2.3.3}
\end{equation*}
$$

where the incorning nucleons are represented by the Dirac spinors μ_{1} and u_{2} given by

$$
\begin{equation*}
u_{1}(\mathrm{q})=\sqrt{\frac{E+m_{N}}{2 E}}\binom{1}{\frac{\sigma_{1} \cdot \mathrm{q}}{E+m_{N}}} \text { and } u_{2}(-\mathrm{q})=\sqrt{\frac{E+m_{N}}{2 E}}\binom{1}{\frac{\sigma_{2} \cdot \mathrm{q}}{E+m_{N}}} \tag{2.3.4}
\end{equation*}
$$

Here and in the following we suppress spin-indices and spin functions. The outgoing nucleons are represented by the adjoint Dirac spinors \bar{u}_{1} and \bar{u}_{2}; the nomalization of the Dirac spinor being $u_{i}^{\dagger}(\mathrm{q}) u_{i}(\mathrm{q})=1$. So

$$
\bar{u}_{\mathrm{t}}(\mathrm{q})=u_{1}^{\dagger}(\mathrm{q}) \gamma^{0}=\left(\frac{E+m_{N}}{2 E}\right)^{\frac{1}{2}}\left(1 \frac{-\sigma_{1} \cdot \mathrm{q}}{E+m_{N}}\right)
$$

Now the left half of the numerator is

$$
\bar{u}_{l}\left(\mathrm{q}^{\prime}\right) \gamma^{j} u_{1}(\mathrm{q})=i \sqrt{\frac{\left(E+m_{N}\right)\left(E^{\prime}+m_{N}\right)}{4 E E^{\prime}}}\left(\frac{\sigma_{1} \cdot \mathrm{q}}{E+m_{N}} \frac{-\sigma_{l} \mathrm{q}^{\prime}}{E^{\prime}+m_{N}}\right)
$$

"On the shell" model, we use $E=E$ '. So we obtain

$$
\begin{equation*}
\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) i \gamma^{s} u_{1}(\mathrm{q})=\frac{i}{2 E} \sigma_{1}\left(\mathrm{q}-\mathbf{q}^{\prime}\right) \tag{2.3.5}
\end{equation*}
$$

Similarly, for the right half of the numerator

$$
\bar{u}_{2}\left(-\mathrm{q}^{\prime}\right) i \gamma^{5} u_{2}(-q)=\frac{i}{2 E} \sigma_{2} \cdot\left(\mathrm{q}^{\prime}-q\right) \quad \text { (for the "on-shcll") }
$$

Putting everything together, we obtain for the whole diagram the following "momentum space potential":

$$
\begin{gather*}
V_{p s}\left(\mathrm{q}^{\prime}, \mathrm{q}\right)=\frac{g_{\rho s}^{2}}{-\left(\mathrm{q}^{\prime}-\mathrm{q}\right)^{2}-m_{p s}^{2}} \frac{i}{2 E} \sigma_{1}\left(\mathrm{q}-\mathrm{q}^{\prime}\right) \frac{i}{2 E} \sigma_{2} \cdot\left(\mathrm{q}^{\prime}-\mathrm{q}\right), \quad \text { giving } \\
V_{p s}(\mathbf{k})=-\frac{g_{\rho s}^{2}}{4 m_{N}^{2}} \frac{\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)}{\mathbf{k}^{2}+m_{p s}^{2}} \tag{2.3.6}
\end{gather*}
$$

where the momentum transfor $\mathbf{q}^{\prime}-\mathbf{q}=\mathbf{k}$ has been $\mathbf{u s e d}$ and the approximation $E \approx m_{N}$ is assumed. We may rewrite the above expression as

$$
\begin{equation*}
V_{p s}(\mathrm{k})=-\frac{1}{12 m_{N}^{2}} \frac{g_{p s}^{2}}{\mathbf{k}^{2}+m_{p s}^{2}} \mathbf{k}^{2}\left[\sigma_{1} \cdot \sigma_{2}+\mathrm{S}_{12}(\mathbf{k})\right] \tag{2.3.7}
\end{equation*}
$$

where $S_{12}(k)=3\left(\sigma_{1} \cdot k\right)\left(\sigma_{2} \cdot k\right)-\sigma_{1} \cdot \sigma_{2}$ has been used. The above expression shows that it becomes obvious that we have created a spin-spin and a tensor force.

The best known pseudoscalar field is the pion. There exist three charge states of the pion: + , - , neutral or with other words, its isospin is one; it is an 1 sovector paricle. In such a * case the Lagrangian in Eqn. (2.2.1) is slightly extended:

$$
\begin{equation*}
\Lambda_{p s}=-g_{\beta s} \bar{\psi} i \gamma^{5} \tau \psi \cdot \varphi^{(p s)} \tag{2.3.8}
\end{equation*}
$$

where the threc components of $\varphi^{(p s)}$ are operators in isospin space, as there are now three charged states. τ is the usual isospin operator for isospin $1 / 2$ particles, here the nucleons. $T \cdot \varphi^{(p s)} 15$ an invariant in isospin space. By that, the chargc-independence of the interaction is guaranteed. As a consequence, for isovector particle exchange, the Feymman diagram Eqn. (2.2.5) and the potential derived in Eqn.(2.3.6) obtain a factor $\tau_{1} \cdot \tau_{2}$

$$
\begin{equation*}
V_{p s}(\mathbf{k})=-\frac{\mathbf{g}_{p s}^{2}}{4 m_{N}^{2}} \frac{\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)}{\mathbf{k}^{2}+m_{p s}^{2}} \tau_{1} \cdot \tau_{2} \tag{2.3.9}
\end{equation*}
$$

In summary, we started with a boson field for which we assumed that it was pseudoscalar (equivalent to a particle with ncgative intrinsic parity which is observed in mature e.g. for π, η). Consequently, we had to use the γ^{5}-coupling (as the simplest possibility to comply with certain indispensable symmetries). A small calculation then leads directly to a tensor forec. In this way it is easily understood that, starting from first principles, the pion creates a tensor force.

We also note that the γ^{5}-coupling projects small components of the Dirac spinors onto large components, Eqn. (2.3.5). Therefore, it is, in its analytical structure, a "weak" coupling. The reason, why the pion, neverheless, is non-negligible, is the sinall mass of the pion, which strengthens the potential (note that the meson mass squared appears in the denominator of the Feymunan diagrami, Eqn. (2.1.1)). In fact, the simple rule of thumb, to ronghly compare the strength of two OBE contributions of the same kind, is to consider:

$$
\frac{\mathrm{g}_{a}^{2}}{m_{a}^{2}}
$$

From this argument it is now obvious that a heavy $p s$-particle leads to very small contributions. Examples are the $\eta\left(m_{\eta}=549 \mathrm{MeV}\right)$ and the $\eta^{\prime}\left(m_{\eta^{\prime}}=958 \mathrm{MeV}\right)$.

We mentioned before that for a cerlain field, in general, several (in principle infinitely many) couplings are possible. So, for a ps-field a derivative coupling is also commonly considercd, the pseudovector ($p v$) coupling:

$$
\begin{equation*}
\epsilon_{\rho v}=-\frac{f_{p s}}{m_{\mu s}} \overline{\psi \gamma} \gamma^{5} \gamma_{\psi \partial_{\mu}} \varphi^{(p s)} \tag{2.3.10}
\end{equation*}
$$

The resulting left vertex is

$$
\begin{equation*}
\Gamma_{p v}=\frac{f_{p s}}{m_{p s}} i \gamma^{5} \gamma^{\mu}\left(q^{\prime}-q\right)_{\mu} \tag{2.3.11}
\end{equation*}
$$

($i \partial_{j}{ }_{\mu}$ is the momentum operator; $\left(q^{\prime}-q\right)_{\mu}$ the four-momentum of the exchanged meson.) Application in the Feymman diagram, Eqn.(2.1.1), leads, in the numerator, to expressions like $\gamma^{\mu} q_{j \mu}{ }_{1}(\mathbf{q})$ and $\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \gamma^{\mu} \mathbf{q}_{\mu}^{\prime}$. The Dirace equation allows us to write

$$
\begin{align*}
& \gamma^{\mu} q_{\mu} u_{1}(\mathrm{q})=m_{N} u_{1}(q) \tag{2.3.12}\\
& \bar{u}_{1}\left(q^{\prime}\right) \gamma^{\mu} q_{\mu}^{\prime}=m_{H^{\prime}} \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \tag{2.3.13}
\end{align*}
$$

With these rcplacements the upper left part of the Feynman diagram becomes

$$
\begin{aligned}
& \frac{f_{p s}}{m_{p s}} i \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{5} \gamma^{\mu}\left(q^{\prime}-q\right)_{\mu^{\prime}}(\mathrm{q}) \\
& =i \frac{f_{p s}}{m_{p s}}\left[\bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{5} \gamma^{\mu} q_{L^{\prime}}^{\prime}\left(\mathrm{q}^{\prime}\right)-\bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{5} \gamma^{\mu} q_{\mu} u_{1}(\mathrm{q})\right] \\
& =i \frac{f_{p s}}{m_{p s}}\left[-\overline{u_{1}}\left(\mathrm{q}^{\prime}\right) \gamma^{\mu} \gamma^{5} q_{\mu^{\prime}}^{\prime} u_{1}(\mathrm{q})-\bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{5} \gamma^{\mu} q_{\mu} u_{1}(\mathrm{q})\right]
\end{aligned}
$$

[since γ^{5} and $\gamma^{\prime \prime}$ anticommute]

$$
\begin{align*}
& =-i \frac{\int_{p s}}{m_{p s}}\left[m_{N_{1}} \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{5} u_{1}(\mathrm{q})+m_{w_{v}} \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{5} u_{1}(\mathrm{q})\right] \quad \text { (using Dirac equation) } \\
& =-\int_{p s} \frac{2 m_{N}}{m_{p s}} \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) i \gamma^{5} u_{1}(\mathrm{q}) \tag{2.3.14}
\end{align*}
$$

When compared to Eqn. (2.3.3) it turns out that this is exactly the same result as for ps coupling, provided we relate the coupling constants as

$$
\begin{equation*}
g_{p r}=f_{\rho s} \frac{2 m_{N}}{m_{p y}} \tag{2.3.15}
\end{equation*}
$$

In this consideration, the nucleons are on thcir mass shell. In such a case the Dirac equations, Eqn. (2.3.12) and Eqn. (2.3.13), apply, and we see that, then, the ps and $p v$ couplings are equivalent. For off-shell this is not in general true.

As $p s$ and $p v$ couplings are equivalent on-shell, we can derive our non-relativistic form of OBE contrihution $V_{p v}^{O N E}$ also by stating from the $p v$ coupling Eqn. (2.3.10) and proceed as follows; let us consider only the important part of the vertex Eqn. (2.3.11):

$$
\begin{align*}
\Gamma_{p^{v}}=\gamma^{5} \gamma^{\mu} k_{\mu} & =\gamma^{5} \gamma^{0} k_{0}+\gamma^{5} \gamma^{i} k_{1} \\
& =\left(\begin{array}{cc}
\boldsymbol{0} \cdot \mathbf{k} & 0 \\
0 & -\sigma \cdot \mathbf{k}
\end{array}\right) \tag{2.3.16}
\end{align*}
$$

where

$$
k=q^{\prime}-q, \quad k_{0}=E^{\prime}-E=0
$$

Some simple rules of non-relativistic reduction are

$$
\begin{equation*}
i \partial_{\mu}=i \frac{\partial}{\partial x^{\mu}} \rightarrow \pm \mathbf{k}, \gamma^{5} \gamma^{\mu} \rightarrow-\sigma, \sigma^{\mu v} \rightarrow \sigma \times \tag{2,3.17}
\end{equation*}
$$

and replacing Dirac spinors by Pauli spinors. Non-relativistic approximation also means assuming $|q|,\left|q^{\prime}\right| \leq m_{N}$ and therefore neglecting the small components in the Dirac spinor;

$$
u_{1}(\mathrm{q})=\binom{1}{0} ; \quad \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \approx\left(\begin{array}{ll}
1 & 0 \tag{2.3.18}
\end{array}\right)
$$

Sandwiching the verex Eqn. (2.3.16) with these Pauli spinors and recollecting the constant factors yields:

$$
\begin{equation*}
\bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \mathrm{r}_{p \nu} u(\mathrm{q}) \approx-i \frac{f_{p s}}{m_{p s}}(\boldsymbol{\sigma} \cdot \mathbf{k}) \tag{2.3.19}
\end{equation*}
$$

Repeating the same consideration for the right verex (the momentum cames an opposite sign on the right) we get

$$
i \frac{f_{p s}}{\operatorname{sn}_{p q}}(\alpha \cdot \mathbf{k})
$$

which leads to the momentum space OBE contribution $V_{g v}^{O B E}$ as

$$
-\frac{f_{p s}^{2}}{m_{p s}^{2}} \frac{\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)}{\mathbf{k}^{2}+m_{p r}^{2}}
$$

using Eqn. (2.3.15), we gct

$$
\begin{equation*}
-\frac{g_{p s}^{2}}{4 m_{N}^{2}} \frac{\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)}{\mathbf{k}^{2}+m_{p s}^{2}} \tag{2.3.20}
\end{equation*}
$$

which is same as Eqn. (2.3.6). In this way the non-relativistic character of the derivation is more obvious.

The scalar(s) ricld:

This field has the simplest interaction Lagranglan for meson nuclcon coupling:

$$
L_{s}=\xi_{s} \bar{\psi} \psi \varphi_{s}
$$

The one-scalar-boson exchange contribution is:

$$
\begin{equation*}
g_{s}^{2} \frac{\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) m_{1}(\underline{q}) \bar{m}_{2}\left(-q^{\prime}\right) m_{2}(-q)}{-\left(q^{\prime}-q\right)^{2}-m_{s}^{2}} \tag{2.3.21}
\end{equation*}
$$

The felt half of the mumerator:

$$
\begin{equation*}
\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) t_{1}(\mathrm{q})=\sqrt{\frac{\left(E^{\prime}+m_{N}\right)\left(E+m_{N}\right)}{4 E E^{\prime}}}\left(1-\frac{\left(\sigma_{1} \cdot \mathbf{q}^{\prime}\right)\left(\sigma_{1} \cdot \mathbf{q}\right)}{\left(E^{\prime}+m_{N}\right)\left(E+m_{N}\right)}\right) \tag{2.3.22}
\end{equation*}
$$

Now we use the vector identity $(\sigma \cdot \mathbf{a})(\sigma \cdot \mathbf{b})=\mathbf{a} \cdot \mathbf{b}+\omega \sigma(\mathbf{a} \times \mathbf{b})$ for the tenn $\left(\sigma_{1} \mathbf{q}^{\prime}\right)\left(\sigma_{1} \cdot \mathbf{q}\right)$;

$$
\begin{equation*}
\left(\sigma_{1} \cdot q^{\prime}\right)\left(\sigma_{1} \cdot \mathrm{q}^{\prime}\right)=\left(\mathrm{q}^{\prime} \cdot \mathrm{q}\right)+i \sigma_{1} \cdot\left(\mathrm{q}^{\prime} \times \mathrm{q}\right)=\mathrm{p}^{2}-(1 / 4) \mathbf{k}^{2}+i \sigma_{1} \cdot\left(\mathrm{q}^{\prime} \times \mathrm{q}\right) \tag{2.3.23}
\end{equation*}
$$

where the momentum sariable $p=\frac{t}{2}\left(q^{\prime}+q\right)$ and the momentuin transler $k=q^{\prime}-q$ have been used.

Agaln, since $\mathbf{k} \times p=\left(q^{\prime}-q\right) \times \frac{1}{2}\left(q^{\prime} \div q\right)=q^{\prime} \times q$, we obtain

$$
\begin{align*}
\bar{t}_{1}\left(\mathbf{q}^{\prime}\right) m_{\mathrm{t}}(\mathrm{q}) & =\sqrt{\frac{\left(E^{\prime}+m_{N}\right)\left(E+m_{N}\right)}{4 E E^{\prime}}}\left\{\mathrm{t}-\frac{\mathbf{p}^{2}-(1 / 4) \mathrm{k}^{2}+i \sigma_{1} \cdot(\mathbf{k} \times \mathbf{p})}{\left(\Omega^{\prime}+m_{N}\right)\left(E+m_{N}\right)}\right\} \\
& =\left\{1-\frac{\mathbf{p}^{2}-(1 / 4) \mathrm{k}^{2}+i \sigma_{1}(\mathbf{k} \times \mathrm{p})}{4 m_{N}^{2}}\right\} \quad \text { (assuming } E^{\prime} \approx E \approx m_{N} \text {) } \tag{2.3.24}
\end{align*}
$$

Similarly for the right half of the numerator we get

$$
\begin{equation*}
\bar{u}_{1}\left(-q^{\prime}\right) \mathbf{m}_{1}(-q)=\left\{1-\frac{p^{2}-(1 / 4) k^{2}+i \sigma_{2}(\mathbf{k} \times p)}{4 m_{N}^{2}}\right\} \tag{2.3.25}
\end{equation*}
$$

Now the final result for the whole diagram, we obtain the following inomentum space potential,

$$
\begin{align*}
& V_{s}(\mathbf{k} \cdot \mathbf{P})=\frac{-g_{s}^{2}}{\mathbf{k}^{2}+m_{s}^{2}}\left[1-\frac{\mathbf{p}^{2}}{2 m_{N}^{2}}+\frac{\mathbf{k}^{2}}{8 m_{N}^{2}}-\frac{i}{2 m_{N}^{2}} \frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)(\mathbf{k} \times \mathbf{p})\right] \\
& =\frac{-g_{s}^{2}}{\mathbf{k}^{2}+m_{s}^{2}}\left[1-\frac{\mathbf{p}^{2}}{2 m_{N}^{2}}+\frac{\mathbf{k}^{2}}{8 m_{N}^{2}}-\frac{i}{2 m_{N}^{2}} \mathbf{S} \cdot(\mathbf{k} \times \mathbf{p})\right] ; \text { where } \mathrm{S}=\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right) \tag{2.3.26}
\end{align*}
$$

The first term on the right hand side is a strong attractive central force, the last term a spin-orbit force. So the scalar meson-exchange causes a strong atractive central force and a spin-orbit force. From the explicit derivation we realize that the strong central force is due to the fact that the scalar coupling projects large components of the Dirac spinors on large components. The negative over-all sign is a conscquence of having a second order in the coupling constant. The spin-orbit force can be traced back to the small components of the Dirac spinors. Therefore, it is a genuine relativistic effeci.

The vector (v) field:

A vector boson has spin one, like a photon, and is represented by a four-vector field. To form a Lorentz scalar one can coupte it to another four vector, in analogy to the coupling of a photon to an electron:

$$
\begin{equation*}
L_{v}=-g_{v} \overline{\psi \gamma}{ }^{\mu} \psi_{\psi / \varphi_{\mu}^{\prime}}+\frac{i f_{v}}{2 m_{N}} \bar{\psi} \sigma^{\mu \nu} \psi \partial_{\mu} \varphi_{\nu}^{(\nu)} \tag{2.3.27}
\end{equation*}
$$

The evaluation of one-vector-boson exchange contribution is:

$$
\begin{aligned}
& \left(-\boldsymbol{g}_{v} \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{\mu}{ }_{u_{1}}(\mathrm{q})+i \frac{f_{v}}{2 m_{N}} \bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \sigma^{\mu v}\left(\mathrm{q}^{\prime}-\mathrm{q}\right){ }_{\mu} u_{1}(\mathrm{q})\right) \\
& \times \frac{\left(-g_{\mu i^{\prime}}\right)}{-\left(\mathrm{q}^{\prime}-\mathrm{q}^{2}-m_{v}^{2}\right.}\left(-g_{v} \bar{u}_{2}\left(-q^{\prime}\right) \gamma^{\mu}{ }_{u_{2}}(-q) \div i \frac{f_{v}}{2 m_{N}} \bar{u}_{2}\left(-\mathfrak{q}^{\prime}\right) \sigma^{\mu \nu}\left(\mathrm{q}^{\prime}-q\right)_{\mu} u_{2}(-\mathrm{q})\right) \\
& =\frac{-1}{\left(\mathrm{q}^{\prime}-\mathrm{q}\right)^{2} \div m_{\nu}^{2}}\left[g_{\nu}^{2} \bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{\mu}{ }_{u_{1}}(\mathrm{q})\left(-g_{\mu v}\right) \bar{\gamma}_{2}\left(-\mathbf{q}^{\prime}\right) \gamma^{v} u_{2}(-\mathrm{q})\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\overline{u_{1}}\left(\mathrm{q}^{\prime}\right) \sigma^{\mu \nu}\left(\mathrm{q}^{\prime}-\mathrm{q}\right) \mu_{\mu} u_{1}(\mathrm{q})\left(-g_{\mu \nu}\right) \bar{\mu}_{2}\left(-\mathrm{q}^{\prime}\right) \gamma^{\mu} u_{2}(-\mathrm{q})\right\} \\
& \left.\left.\left.-\frac{f_{\nu}^{2}}{4 m_{\pi}^{2}} \frac{\left(u_{1}\right.}{\left(q_{1}\right.}\left(\mathrm{q}^{\prime}\right) \sigma^{\mu v}\left(\mathrm{q}^{\prime}-\mathrm{q}\right)\right)_{\mu u_{1}}(\mathrm{q})\left(-g_{\mu \nu}\right) \bar{u}_{2}\left(-\mathrm{q}^{\prime}\right) \sigma^{\mu v}\left(\mathrm{q}^{\prime}-\mathrm{q}\right) \mu_{u_{2}}(-\mathrm{q})\right)\right] \tag{2.3.28}
\end{align*}
$$

Now for the first term of the above equations:

$$
\begin{align*}
& \bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \gamma^{\mu} u_{1}(\mathrm{q})\left(-g_{\mu \nu}\right) \bar{u}_{2}\left(-\mathrm{q}^{\prime}\right) y^{v} u_{2}(-\mathrm{q}) \\
& =\bar{u}_{1}\left(\mathrm{q}^{\prime}\right) \gamma^{0} u_{1}(\mathrm{q})\left(-g_{00} \bar{\mu}_{2}\left(-\mathbf{q}^{\prime}\right) \gamma^{0} u_{2}(-\mathrm{q})+\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \gamma^{k} u_{1}(\mathrm{q})\left(-g_{k k} \bar{H}_{2}\left(-\mathbf{q}^{\prime}\right) y^{k} u_{2}(-\mathrm{q})\right.\right. \tag{2.3.29}
\end{align*}
$$

First we consider the left half of the γ^{0} term:

$$
\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \gamma^{0} u_{1}(\mathbf{q})=\left(1+\frac{\mathbf{q}^{\prime} \cdot \mathbf{q}+i \sigma_{i} \cdot\left(\mathbf{q}^{\prime} \times \mathbf{q}\right)}{4 m_{N}^{2}}\right)=\left(1+\frac{\mathbf{p}^{2}-(1 / 4) \mathbf{k}^{2}+i \sigma_{1} \cdot(\mathbf{k} \times \mathbf{p})}{4 m_{N}^{2}}\right)
$$

[as in the scalar case]
Similarly the right half of the γ^{0} term in Eqn. (2.3.29)

$$
\bar{u}_{2}\left(-\mathbf{q}^{\prime}\right) \gamma^{0} u_{2}(-\mathbf{q})=\left(1+\frac{\mathrm{p}^{2}-(\mathrm{l} / 4) \mathrm{k}^{2}+i \sigma_{2}(\mathbf{k} \times \mathrm{p})}{4 m_{N}^{2}}\right)
$$

So the γ^{0} term in Eqn. (2.3.29) becomes $\left(g^{00}=1\right)$

$$
-\left[1+\frac{\mathbf{p}^{2}}{2 m_{N}^{2}}-\frac{\mathbf{k}^{2}}{8 m_{N}^{2}}+\frac{1}{2 m_{N}^{2}} \mathbf{S} \cdot(\mathbf{k} \times \mathbf{p})\right] \quad \text { where } \mathbf{S}=\frac{1}{2}\left(\sigma_{1}+\sigma_{2}\right)
$$

The remaining three terms in Eqn. (2.3.29) for $\gamma^{k}(k=1,2,3)$ becomes equal to

$$
\begin{aligned}
\left.\frac{\left(E^{\prime}+m_{N}\right)\left(E+m_{N}\right)}{4 E E^{\prime}}\right) & {\left[\left(\frac{\sigma_{1} \cdot \mathbf{q}^{\prime}}{E^{\prime}+m_{N}} \sigma_{1 x}+\sigma_{1 x} \frac{\sigma_{1} \cdot \mathbf{q}}{E+m_{N}}\right)\left(\frac{-\sigma_{2} \cdot \mathbf{q}^{\prime}}{E^{\prime}+m_{N}} \sigma_{2 x}+\sigma_{2 x} \frac{-\sigma_{2} \cdot \mathbf{q}}{E+m_{N}}\right)\right.} \\
& +\left(\frac{\sigma_{1} \cdot \mathbf{q}^{\prime}}{E^{\prime}+m_{N}} \sigma_{1 y}+\sigma_{1 y} \frac{\sigma_{1} \cdot \mathbf{q}}{E+m_{N}}\right)\left(\frac{-\sigma_{2} \cdot \mathbf{q}^{\prime}}{E^{\prime}+m_{N}} \sigma_{2 y}+\sigma_{2 y} \frac{-\sigma_{2} \cdot \mathbf{q}}{E+m_{N}}\right) \\
& \left.+\left(\frac{\sigma_{1} \cdot \mathbf{q}^{\prime}}{E^{\prime}+m_{N}} \sigma_{i z}+\sigma_{1 z} \frac{\sigma_{1} \cdot \mathbf{q}}{E+m_{N}}\right)\left(\frac{-\sigma_{2} \cdot \mathbf{q}^{\prime}}{E^{\prime}+m_{N}} \sigma_{2 z}+\sigma_{2 t} \frac{-\sigma_{2} \cdot \mathbf{q}}{E+m_{N}}\right)\right]
\end{aligned}
$$

where for the left land part $\bar{u}_{1}\left(\mathbf{q}^{k}\right) \gamma^{k} u_{1}(q), \quad \gamma^{k}=\left(\begin{array}{cc}0 & v_{1} \\ -\sigma_{1} & 0\end{array}\right)$ and for the right hand part $\bar{u}_{2}\left(-\mathrm{q}^{\prime}\right) Y^{k} u_{2}(-\mathrm{q}), \quad \gamma^{k}=\left(\begin{array}{rr}0 & \sigma_{2} \\ -\sigma_{2} & 0\end{array}\right)$ have been used, which after simplifications becomes $\left(E \approx E^{\prime} \approx m_{N}\right)$.

$$
-\frac{1}{4 m_{N}^{2}}\left[4 \mathrm{p}^{2}+2 i\left(\sigma_{1}+\sigma_{2}\right)\left(\mathrm{q}^{\prime} \times \mathrm{q}\right)-\left(\sigma_{1} \sigma_{2}\right) \mathrm{k}^{2}+\left(\sigma_{1} \cdot \mathrm{k}\right)\left(\sigma_{2} \cdot \mathrm{k}\right)\right]
$$

Hence the first term of Eqn. (2.3.28) is

$$
\begin{equation*}
\frac{\boldsymbol{g}_{v}^{2}}{\mathbf{k}^{2}+m_{v}^{2}}\left[1+\frac{3 \mathbf{p}^{2}}{2 m_{N}^{2}}-\frac{\mathbf{k}^{2}}{8 m_{N}^{2}}+i \frac{3}{2 m_{N}^{2}} \mathbf{S}(\mathbf{k} \times \mathbf{p})-\frac{1}{4 m_{N}^{2}}\left(\sigma_{1} \cdot \sigma_{2}\right) \mathbf{k}^{2}+\frac{1}{4 m_{N}^{2}}\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)\right] \tag{2.3.30}
\end{equation*}
$$

Considering the non-relativistic reduction $\left(q^{\prime}-q\right)_{\mu}=i \partial_{\mu}=i \frac{\partial}{\partial x^{\mu}} \rightarrow \mathbf{k}$ and $\delta^{\mu \nu} \rightarrow \sigma \times$ together with the non-relativistic Dirac spinors for the last term in Eqn. (2.3.28) we may write

$$
\begin{aligned}
& \\
& \\
& \bar{u}_{1}\left(q^{\prime}\right) \sigma^{\mu v}\left(q^{\prime}-q\right)_{\mu} u_{1}(\mathbf{q})=-\sigma_{\mathbf{1}} \times \mathbf{k} \\
& \text { and } \quad \bar{u}_{2}\left(-\mathbf{q}^{\prime}\right) \sigma^{\mu v}\left(q^{\prime}-q\right) \mu u_{2}(-q)=-\sigma_{2} \times \mathbf{k}
\end{aligned}
$$

So that for the last tern, we get

$$
\begin{align*}
& -\frac{f_{v}^{2}}{4 m_{N}^{2}}\left[\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \sigma^{\mu v}\left(\mathbf{q}^{\prime}-\mathbf{q}\right) \mu^{\prime} u_{1}(\mathbf{q}) \bar{u}_{2}\left(-\mathbf{q}^{\prime}\right) \sigma^{\mu v}\left(\mathbf{q}^{\prime}-\mathbf{q}\right) \mu u_{2}(-\mathbf{q})\right] \\
= & -\frac{f_{v}^{2}}{4 m_{N \psi}^{2}}\left[\left(\sigma_{1} \quad \sigma_{2}\right) \mathbf{k}^{2}-\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)\right] \tag{23.31}
\end{align*}
$$

In a similar way, considering the nor-relativistic approximation for the scond tenn in Eqn. (2.3.28), we obtain

$$
\begin{gather*}
\left.\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) y^{\mu} u_{1}(\mathrm{q})\left(-g_{\mu v}\right) \vec{u}_{2}\left(-\mathrm{q}^{\prime}\right) \sigma^{\mu v}\left(q^{\prime}-q\right)\right)_{u_{2}}(-\mathbf{q})+\vec{u}_{1}\left(\mathrm{q}^{\prime}\right) \sigma^{\mu v}\left(q^{\prime}-q\right)_{\mu u_{1}(\mathrm{q})\left(-g_{\mu v}\right) \bar{u}_{2}\left(-\mathbf{q}^{\prime}\right) y^{u_{i t}}(-\mathbf{q})} \\
=-i \frac{\mathbf{k}^{2}}{m_{N}}-\frac{4}{m_{N}} \mathbf{S} \cdot(\mathbf{k} \times \mathbf{p})-l\left(\sigma_{1} \cdot \sigma_{2}\right) \frac{\mathbf{k}^{2}}{m_{N}}+\frac{i}{m_{N}}\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right) \tag{2.3.32}
\end{gather*}
$$

So, the final result for the whole diagram of one-vector-boson exchange, we obtain the followng momenturn space potential.

$$
\begin{align*}
V_{v}(\mathbf{k}, \mathrm{p})=\frac{\mathrm{I}}{\mathbf{k}^{2}+m_{v}^{2}}\left[g_{v}^{2}\{1\right. & \left.+\frac{3 \mathbf{p}^{2}}{2 m_{N}^{2}}-\frac{\mathbf{k}^{2}}{8 m_{i N}^{2}}+\frac{3 i}{2 m_{N}^{2}} \mathrm{~S} \cdot(\mathbf{k} \times \mathbf{p})-\left(\sigma_{1} \cdot \sigma_{2}\right) \frac{\mathbf{k}^{2}}{4 m_{N}^{2}}+\frac{1}{4 m_{N}^{2}}\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)\right\} \\
& +\frac{\boldsymbol{g}_{v} f_{v}}{2 m_{N}}\left\{-\frac{\mathbf{k}^{2}}{m_{N N}}+\frac{4 i}{m_{N}} \mathrm{~S} \cdot(\mathbf{k} \times \mathbf{p})-\left(\sigma_{1} \cdot \sigma_{2}\right) \frac{\mathbf{k}^{2}}{m_{N}}+\frac{1}{m_{N}}\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)\right\} \\
& \left.+\frac{f_{v}^{2}}{4 m_{N}^{2}}\left(-\left(\sigma_{1} \cdot \sigma_{2}\right) \mathbf{k}^{2}+\left(\sigma_{1} \cdot \mathbf{k}\right)\left(\sigma_{2} \cdot \mathbf{k}\right)\right\}\right] \tag{2.3.32}
\end{align*}
$$

Going back to the beginning of this section, we notice that with each of the five most important empirical features of the nuclear force (stated in chapter one), onc can associate at least one boson field that could provide an explanation. In Table 2.1 we give an overvicw what each field and coupling predicts for the nuclear force [8].

Table-2.1

Various Meson-Nucleon Couplings and their Contributions to the Nuclear Force as Obtained from One-Boson Exchange

I denotes the isospin of a boson. The characteristics quoted refer to $I=0$ bosons (no isospin dependence). The isovector ($I=1$) boson contributions, canying a factor $\tau_{1} \cdot \tau_{2}$ provide the isospin-dependent forecs.

Coupling	Bosons (Strength of Coupling)		Characteristics of predicled forces			
	$\begin{gathered} I=0 \\ \{\mathrm{l}] \end{gathered}$	$\begin{gathered} I=1 \\ {\left[\tau_{1} \cdot \tau_{2}\right]} \end{gathered}$	Central [1]	$\begin{gathered} \text { Spin-Spin } \\ {\left[\sigma_{1} \cdot \sigma_{2}\right]} \end{gathered}$	$\begin{gathered} \text { Tensor } \\ {\left[\mathrm{S}_{12}\right]} \\ \hline \end{gathered}$	Spir-Orbit [L. S]
$p s$	$\begin{gathered} \eta \\ \text { (weak) } \end{gathered}$	$\begin{gathered} \pi \\ \text { (strong) } \end{gathered}$	-	Weak, coherent with v	Strong	-
s	(strong)	$\begin{gathered} \delta \\ \text { (strong) } \end{gathered}$	strong, altractive	-		Coherent with v
v	(strong)	(weak)	strong, repulsive	Weak coherent with ps	Opposite to $p s$	Strong, coberent witt s

The repulsion created by (neutral) vector-boson exchange can bc under stood in analogy to the one-photon exchange betwecn like charges creating a repulsive Coulomb potential. Neutral vector bosons can be visualized as heavy photons. The baryon number plays the role of the electric charge. Consequently, in the nucleon-antinucleon system vector-boson excharge generates attraction. The spin-orbit force produced hy vector bosors corresponds to the Thomas tenn. which emerges when the Coulomb potential is enployed in the relativistic Dirac Equation. Thus, it can only be understood in a relativistic consideration, the lower component of the Dirac spinor.

We now look into physical manifestations of the fields discussed theoretically so far. In the mass range below the nucleon mass, one finds two pseudoscalar particles, namely π
(138) and $7(550)$, and two vector particles, $\rho(769)$ and ω (783). The (isoscalar) ω has a strong vector coupling and the (isovector) ρ, a strong tensor coupling to the nucleon. Furthermore, there exists an isovector scalar meson, δ (983), which, owing to its large mass and its small coupling constant, provides only a small contribution. Its isospindependent central force can be used to adjust the two S waves.

Compared to the (isovector) π, the contribution form the (isosclar) η is very small. This has two reasons: first, the coupling constant of the 7 is small. Second, the mass of the 7 is substantially larger than the pion mass. Note that the magnitude of one-meson exchange contributions is roughly proportional to $g_{\alpha}^{2} / m_{\alpha}^{2}$, Eqn. (2,1.1) For the reasons given, the η is not so important for the NN system.

Sulnmarizing the important contributions of the mesons diseussed so far, the pion as the lightest particle provides the long-range force and, owing to its pscudoscalar nature, the tensor force. This tensor force is reduced at short ranges by the ρ meson to a realistic size. We note that for π and ρ the ps potentials given above have to be multiplied by the operator $\tau_{1} \cdot \tau_{2}$ (with $\frac{1}{2} \tau_{i}$ the isospin operator for nucleon i), since π and ρ are (isospin one) isovector particles; this factor mplics a strong isospin dependence for these two potentials. The ω creates the shor-range repulsion and the (shor-ratged) spin-orbit force. Thus, these three mesons explain already important features of the nuclear force.

Since there is also strong interaction between pions in relative S wave, there is physical motivation to assume a scalar boson of a mass betwcen 500 and 700 McV (commonly called σ). Adding this particle to the mesons discussed above delincs the so-called one-boson-cxchange (OBE) model.

Chapter-3

In-medium NN interaction and Dirac-Brueckner theory

To study the various aspects of the two-nuclcon interaction and their influence on nuclear binding encrgies, one must first have a valid technique for calculating binding energies. The linked-cluster Rayleigh-Schrödinger, or Goldstone expansion, for the ground state energy provides the required technique [6]. To remedy the lack of consergence associated with a hardcore repulsion, Brueckner [10] surnmed selected terms of this perturbation expansion to define the reaction matrix G. In section one, of this chaptcr, we derive the Brueckncr G-matrix theory in the non-relativistic case where the Pauliblocking operator for the medium effect has been taken into consideration. A discussion on the effective mass approxination and the angle averaged Pauli operator is given in section two.

Then considering the relativistic approach of G-matrix theory we choose the Thompson equation, which is a relativistic three-dimensional reduction of Bethe-Salpeter equation. There exist many relativistic three-dimensional versions of the Bethe-Salpeter equation, which are all mathematically equally justified. However, some of these equations have unphysical features due to the approximations involved in therr derivation. Crucial for our choice of the Thompson equation is the fact that, in the framework of the Thompson equation, meson retardation is ignored i.c. a static mesor propagator is used. A reason for ignoring meson retardation is to exclude any false modium effect on meson propagation from the outset. We give the derivation of the Thompson equation in section three. Following the basic philosophy of traditional Brueckner theory, this equation is then applied to nuclear matter in strict analogy to free scattering. This is described in section four, where the solution of Dirac's relativistic equation is used for which the name of this approach is Dirac-Brueckner approach.

3.1 Brueckner Theory and the G-matrix:

To study the influence of various aspects of the two-nucleon interaction on nuclear binding encrgies, and for calculating the saturation properties, Brueckner [3] suggested the following equation to define the reaction matrix G in the nuclear modium.

$$
\begin{equation*}
G(\omega)=V+V \frac{Q}{\omega-h_{0}} G(\omega) \tag{3.1.1}
\end{equation*}
$$

The G-matrix plays the role of an effective interaction for two parlicles in the nuclear medium. It is finite even for singular potentals, in much the same way that the R-matrix for the scatering is finite for singular potentials. In fact, the Egn.(3.1.1) that defines G, the Breeckner equation, resembles the Lippmann-Schwinger equation for R. The G matrix differs from the R-matrix for free scattering, by taking into account the Pauli Blocking in the intermediate states as well as the influence of the mean field to mucleons, which appear as single-particle energics in the energy denominator $\omega-h_{0}$ in Eqn.

The Hamiltonian h_{0} includes a kinetic energy plus a single-particle potential. Acting on product states it gives

$$
\begin{equation*}
h_{0}|\alpha \beta\rangle=\left(\varepsilon_{\alpha}+\varepsilon_{p}\right)|\alpha \beta\rangle \tag{3.1.2}
\end{equation*}
$$

where the single-particle energics ε_{α} ate simply $\varepsilon_{\sigma \alpha}=\left(\alpha\left|\left(\rho^{2} / 2 m_{N}\right)+U\right| \alpha\right)$. The singleparticle potential is itself detennined by the interaction of each mucleon with all others in the Fermi sea; for nucleons below the Fermu level it is defined by

$$
\begin{equation*}
\langle\mu| U|\mu\rangle=U\left(k_{\mu}\right)=\sum_{v<\alpha_{F}}\left(\mu v\left|G\left(\varepsilon_{\mu}+c_{v}\right)\right| \mu v-v \mu\right\rangle, \quad \text { for } \mu \leq k_{F} \tag{3,1.3}
\end{equation*}
$$

which includes both direct and exchange temms. The starting energy ω is chosen to be $\omega=\varepsilon_{p}+\varepsilon_{v}$. This definition of U is based on the requirement that U cancels the bubble, or self-energy insertions, that occur on the hole lines in higher-order terms of the Brueckner-Goldstone expansion [32-33]

Once, Eqn. (3.1.1) - (3.1.3) are used to find the G-matrix, the binding energy can be evaluated from

$$
\begin{align*}
E & =\sum_{\mu<k_{F}}\left(\mu\left|\frac{p^{2}}{2 m_{\mu}}\right| \mu\right\rangle+\frac{1}{2} \sum_{\mu, v \leq k_{F}}\left(\mu v \mid G\left(\varepsilon_{\mu}+\varepsilon_{\nu}\right) \mu \nu v-v \mu\right) \\
& =\sum_{\mu \leq k_{F}}\left(\varepsilon_{\mu}-\frac{1}{2} U_{\mu}\right) . \tag{3.1.4}
\end{align*}
$$

Herc it is seen that G plays the rolc of an effective two-body interaction in the nuclear medium. We can now write Eqn. (3.1.1) explicitly by introducing the relative and c.m. momenta $2 \mathbf{q}_{\mu \nu}=\mathbf{q}_{\mu}-\mathbf{q}_{\nu \nu}$ and $2 \mathbf{P}_{\mu \nu}=\mathbf{q}_{\mu}+\mathbf{q}_{\nu}$ (We will often omit the state subscripts). The discrete sums now become continlous integrations, i.e. $\sum_{\mu} \rightarrow \Omega(2 \pi)^{-3} \int_{k_{\mu} \leq k_{\mu}} d k_{\mu}$. In our discussion the starting encrgy, ω, will always be evaluated on the energy shell $\omega \equiv E(\mathbf{q}, \mathbf{r})$ where $E(\mathbf{q}, \mathbf{P})$ is defined in $E q n .(3,1.6)$. The G-matrix equation is then

$$
\begin{equation*}
G\left(\mathbf{q}^{\prime}, \mathbf{q} \mid \mathbf{P}\right)=V\left(\mathbf{q}^{\prime}, \mathbf{q}\right)-\int \frac{d \mathbf{k} V\left(\mathbf{q}^{\prime}, \mathbf{k}\right) Q(\mathbf{k}, \mathbf{r}) G(\mathbf{k}, \mathbf{q} \mid \mathbf{P})}{E(\mathbf{k}, \mathbf{P})-E(\mathbf{q}, \mathbf{P})} \tag{3.1.5}
\end{equation*}
$$

where $Q(\mathbf{k}, \mathbf{P})$ satisfies the Pauti principle condition given below:

$$
\begin{aligned}
Q(\mathbf{k}, \mathbf{P}) & =1 \text { for }|\mathbf{k}+\mathbf{P}|>k_{F} \\
& =0 \text { for }|\mathbf{k} \pm \mathrm{P}| \leq k_{F} .
\end{aligned}
$$

In nuclear matter, the single-particle energies are functions of

$$
\left|k_{\alpha}\right|, \varepsilon\left(k_{\alpha}\right)=\left(n^{2} / 2 m_{N}\right) k_{\alpha}^{2}+U\left(\left|k_{\alpha}\right|\right)
$$

Therefore, the above energy denominator is given by

$$
\begin{equation*}
E(\mathbf{k}, \mathbf{P})-E(\mathbf{q}, \mathbf{P})=\frac{\hbar^{2}}{m_{N}}\left(\mathbf{k}^{2}-\mathbf{q}^{2}\right)+U(|\mathbf{r}+\mathbf{k}|)+U(\mathbf{p}-\mathbf{k} \mid)-U(|\mathbf{P}+\mathbf{q}|)-U(\mathbf{p}-\mathbf{q} \mid) \tag{3.1.6}
\end{equation*}
$$

Note that Equ. (3.1.6) depends on the angles between \mathbf{P} and \mathbf{k}, and between \mathbf{P} and \mathbf{q}. The Pauli operator $Q(\mathbf{k}, \mathbf{r})$ also depends on the angles between \mathbf{P} and \mathbf{k}. The above dependence on angles causes Q to couple states with different rclative angular nomentum J.

3.2 The effective mass and the angle averaged Pauli operator:

The introduction of the nucleon effective mass is a convenient way to describe the motion of nucicons in the nuclear medium. It reflects the mfluence of the mean field on the nucleon motion. In the non-relativistic theory, the microscopic mean field ν_{s} is in general non-local and energy dependent. The cffective mass is delined in such a way that it characterizes the cnergy dependence of a local potential V_{s} which is cquivalent to the non-local microscopic potential r / γ_{5} [34]:

$$
\begin{equation*}
\frac{m_{i}^{*}}{m_{N}}=1-\frac{d}{d \varepsilon} V_{s}(s) \tag{3.2.1}
\end{equation*}
$$

The empirical value for the effective mass in nuclear matter derived from the analysis of experimental data in the framework of non-relativistic shell models 15

$$
\begin{equation*}
\frac{m_{\mu^{*}}^{*}}{m_{N^{\prime}}} \approx 0.7-0.8 \tag{3.2.2}
\end{equation*}
$$

In the rclativistic trealment of nuclear problems, the concept of "eflective mass" is also frequently adoptec. However, in this case the tern usually denotes different quantities under different circumstance. A quantity that is often referred to as "effective mass" in the relativistic approach is the tilded inass \tilde{m}_{N}, which we introduce in section four of this chapter. This mass is often called the "Dirac mass" [34]. Since its definition has no apparent relation to the non-relativistic definition of the effective mass, Eqn. (3.2.1), the Dirac mass should not be compared to the empirical value of Eqn. (3.2.2) and this wrong comparison should not be considered as a judgment for the relativistic thcory itself, or for the underlyng bare NN interaction used in the theory.

The angle averaged Pauli operator is used to simplify Eqn. (3.1.5) by elminating the awkward angle dependence. In the angle average approximation, one replaces the exact Q-operator, $Q(\mathbf{k}, \mathrm{P})$, by its average over all angles for fixed $|\mathbf{k}|$ and $|\mathrm{P}|$. The angle averaged Q-operator, $\bar{Q}(\mathbf{k}, \mathbf{P})$ is given by [3]

$$
\begin{align*}
\bar{Q}(\mathbf{k}, \mathbf{P}) & =0 & & \text { for } k \leq \sqrt{k_{F}^{2}-P^{2}} \\
& =1 & & \text { for } k \geq k_{F}+P \\
& =\frac{P^{2}+k^{2}-k_{F}^{2}}{2 P k} & & \text { for } \quad \sqrt{k_{F}^{2}-P^{2}}<k \leq k_{F}+P \tag{3.2.3}
\end{align*}
$$

We note that $\bar{Q}(\mathbf{k}, \mathbf{P})$ has discontinuous derivatives at $k=\left(k_{F}^{2}-P^{2}\right)^{1 / 2}$ and $k=k_{F}+P$. Using the angle averaged Q-operator, one can climinate one source of angle dependence. The other remaining dependence on angle is handled by the effective mass approximation. The single-particle energies are assumed to have the quadratic form

$$
\begin{array}{rlr}
\varepsilon\left(k_{\alpha}\right) & =\frac{\hbar^{2} k_{\alpha}^{2}}{2 m_{N}^{*}}-U_{0} & \text { for } k_{\alpha} \leq k_{F} \\
& =\frac{\hbar^{2} k_{\alpha}^{2}}{2 m_{N}} & \text { for } k_{\alpha 2} \geq k_{F} \tag{3.2.4}
\end{array}
$$

where m_{N}^{*} is called the effective mass. With this choice of single-particle spectrum, the argular dependence disappears from $E(\mathbf{k}, \mathbf{P})$ and $E(\mathbf{q}, \mathbf{P})$. The resulting expressions are

$$
\begin{align*}
& E(\mathbf{k}, \mathbf{P})=\frac{\hbar^{2}}{m_{N}}\left(\mathbf{P}^{2}+\mathbf{k}^{2}\right)=\frac{h^{2}}{m_{N}} E_{>}, \\
& E(\mathbf{q}, \mathbf{P})=\frac{\hbar^{2}}{m_{N}^{*}}\left(\mathbf{p}^{2}+\mathbf{q}^{2}\right)-2 U_{0}=\frac{\hbar^{2}}{m_{N}} E_{<} . \tag{3.2.5}
\end{align*}
$$

The symbols $E_{<}$and $E_{\text {s }}$ stand for the energies of two particles below and above the Fermi sea, respectively. We note that the single-paricle potential for $q>k_{F}$ is taken to be zero as previously discussed.

The choice of the hole spectrum, as given by Eqn. (3.2.4) presents a sclf-consistency problent since Eq . (3.1.3) relates U and G, the detemination of G, however, depends on the choice of U. Therefore, the calculation of U by Eqn. (3.1.3) should reproduce the U used to calculate G. To make U self-consistent in the effective mass approximation, the initial values of m_{N}^{*} and U_{0} are chosen to calculate G; then from G new valucs of m_{N}^{*} and U_{0} arc obtained using Eqn. (3.1.3) and Eqr. (3.2.4). This procedure continues until
m_{N}^{*} and U_{0} change very little; with reasonable starting values for m_{N}^{*} and U_{0} two or three cycles suffice to achieve self-consistency.

With the angle-averased \bar{Q} and effective mass approximations, the Brucckner equation Eqn. (3.1.5) becomes

$$
\begin{equation*}
G\left(\mathbf{q}^{\prime}, \mathbf{q} \mid \mathbf{P}\right)=V\left(\mathbf{q}^{\prime}, \mathbf{q}\right)-\int \frac{d \mathbf{k} V\left(\mathbf{q}^{\prime}, \mathbf{k}\right) \bar{Q}(\mathbf{k}, \mathbf{p}) G(\mathbf{k}, \mathbf{q} \mid \mathbf{P})}{E(\mathbf{k}, \mathbf{P})-E(\mathbf{q} \cdot \mathbf{P})} \tag{3.2.6}
\end{equation*}
$$

Neither \bar{Q} nor the energy denominators in Eqn. (3.2.6) now depend on the direction of \mathbf{P}. Therefore, G is a function of $\mathfrak{q}^{\prime}, \mathbf{q}$ and $|\mathbf{P}|$ only.

The calculation of binding cnergies and self-consistent single-particle energies requires that we solve the Brucckner equation. Even after removal of the above angular dependence, Eqn. (3.2.6) is a three-dimensional integral equation. A partial wavc decomposition will be used to reduce Eqn. (3.2.6) to a set of one-dimensional integral equations, just as in the case of the Lippnann-Schwinger cquation.

3.3 Thompson equation:

To construct a relativistic theory for the two-nucleon system the Bethe-Salpeter (BS) equation [15] is utilized. The BS equation presents a ralher complex mathematical problent when the particles involved are not spin-less and a realistic interaction is employed. In operator notation it may be written as

$$
\begin{equation*}
\mathcal{M}=v+v G M \tag{3.3.1}
\end{equation*}
$$

with M the invariant amplitude for the two-nucleon scattering process, V is the sum of all connected two-parlicle irreducible diagrams, and G the relativistic two-nucleon propagator. As this four-dimensional integral equation is very difficult to solve, so-called three-dimensional reductions have been proposed, which looks very much like the Lippmann-Schwinger (L.S) equation and which are more annemable to standard methods of numerical solution. The three-dimensional reduction is not unique, and in principle infinitely many choices exist. Typically, they are derived by replacing Eqn. (3.3.1) by. two coupled equations:

$$
\begin{align*}
& M=w+W g M \tag{3.3.2}\\
& W=v+v G g M \tag{3.3.3}
\end{align*}
$$

Where g is a covariant three-dimensional propagator with the same elastic unitarity cut as \mathcal{G} in the physical region. In general, the second term on the right hand side of Eqn. (3.3.3) is dropped to arrive at a substantial simplification of the problem. Among the different forms of the three dimensional reductions, the one, suggested by Thompson [35] is parlicularly suitable for the relativistic many-body problem. Explicitly, we can write BS equation for an arbitrary frame [8]:

$$
\begin{equation*}
M\left(q^{\prime}, q \mid P\right)=\mathcal{V}\left(q^{\prime}, q \mid P\right)+\int d^{4} k V\left(q^{\prime}, k \mid P\right) G(k \mid P) a_{t}(k, q \mid P) \tag{3.3.4}
\end{equation*}
$$

with

$$
\begin{align*}
G(k \mid P) & =\frac{i}{(2 \pi)^{4}} \frac{1}{\left(\frac{1}{2} P+k-m_{N}+i \varepsilon\right)^{(1)}} \times \frac{1}{\left(\frac{1}{2} P-k-m_{N}+i \varepsilon\right)^{(2)}} \\
& =\frac{i}{(2 \pi)^{4}}\left[\frac{\frac{1}{2} P+k+m_{N}}{\left(\frac{1}{2} P+k\right)^{2}-m_{N}^{2}+i \varepsilon}\right]^{(i)} \times\left[\frac{\frac{1}{2} P-k+m_{N}}{\left(\frac{1}{2} P-k\right)^{2}-m_{N}^{2}+i \varepsilon}\right]^{(2)} \tag{3.3.5}
\end{align*}
$$

where q, k and q^{\prime} are the initial, intermediate and final relative four-momenta, respectively $\left\{\right.$ e.g., $\left.k=\left(k_{0}, \mathbf{k}\right)\right]$ and $P=\left(P_{0}, \mathrm{P}\right)$ is the total four-momentum; with $P=\gamma^{\mu} p_{\mu t}$ etc. The superscripls refer to particle (1) and (2) and in general, we suppress the spin (or helicity) and isospin indices. Now \mathcal{G} and g have the same discontinuity across the right hand cut, if

$$
\begin{align*}
\ln \mathcal{G}(k \mid p)= & -\frac{2 \pi^{2}}{(2 \pi)^{2}}\left(\frac{1}{2} P+\mathbb{k}+m_{N}\right)^{(1)}\left(\frac{1}{2} P-k+m_{N}\right)^{(2)} \\
& \left.\times \delta^{(\tau)}\left[\left(\frac{1}{2} P+k\right)^{2}-m_{N}^{2}\right] \delta^{(\nu)}\right]\left[\left(\frac{1}{2} P-k\right)^{2}-m_{N}^{2}\right]=\operatorname{Im} g(k \mid P) \tag{3.3.6}
\end{align*}
$$

with $\delta^{(+)}$indicating that only the positive-energy root of the argument of the δ function is to be included. From this follows:

wilh

$$
E_{\frac{1}{2} \mathrm{P}=\mathrm{k}}=\left[m_{N}^{2}+\left(\frac{1}{2} \mathbf{P} \pm \mathbf{k}\right)^{2}\right]^{\frac{1}{2}}
$$

Using the equality

$$
\begin{align*}
& \delta\left(\frac{1}{2} P_{0}+k_{0}-E_{\frac{1}{2} \mathrm{P}+\mathrm{k}}\right) \delta\left(\frac{1}{2} P_{0}-k_{0}-E_{\frac{1}{2} \mathrm{P}-\mathrm{k}}\right) \\
& =\delta\left(P_{0}-E_{\frac{1}{2} \mathrm{P}+\mathrm{k}}-E_{\frac{1}{2} \mathrm{P}-\mathrm{k}}\right) \delta\left(k_{0}-\frac{1}{2} E_{\frac{1}{2} \mathrm{P}+\mathrm{k}}+\frac{1}{2} E_{\frac{1}{2} \mathrm{P}-\mathrm{h}}\right) \tag{3.3.8}
\end{align*}
$$

the inaginary part of the propagator $g(k[P)$ can now be wniten:

$$
\left.\left.\begin{array}{rl}
\operatorname{Im} g(k \mid P)= & -\frac{1}{8 \pi^{2}} \frac{m_{N}^{2}}{E_{\frac{1}{2}} \mathbf{P}+\mathbf{k}} E_{\frac{1}{2}}^{2} \mathbf{P}-\mathbf{k}
\end{array} \Lambda_{+}^{(1)\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right) \Lambda_{+}^{(2)}\left(\frac{1}{2} \mathbf{P}-\mathbf{k}\right)} \begin{array}{rl}
& \times \delta\left(P_{0}-E_{\frac{1}{2}} \mathbf{P}+\mathbf{k}\right.
\end{array}-E_{\frac{1}{2}} \mathbf{P}-\mathrm{k}\right) \times \delta\left(k_{0}-\frac{1}{2} E_{\frac{1}{2} \mathbf{P}+\mathbf{h}}+\frac{1}{2} E_{\frac{1}{2} \mathbf{P}-\mathrm{k}}\right)\right)
$$

where

$$
\begin{equation*}
\Lambda_{+}^{(i)}(\mathrm{p})=\left[\frac{\gamma^{0} E_{\mathrm{p}}-\gamma \cdot \mathrm{p}+m_{N}}{2 m_{N}}\right]^{(i)}=\sum_{\dot{\lambda}_{4}} u\left(\mathbf{p}, \lambda_{i}\right) \bar{\mu}\left(\mathbf{p}, \lambda_{i}\right) \tag{3.3.10}
\end{equation*}
$$

represents the positive-cnergy projection operator for nucleon ($i=1,2$) with $u(\mathrm{p})$ a positive-energy Dirac spinor of momentum p ; λ_{i} denotes the helicity or the spin projection of the respective nucleon, and $E_{p}=\left(m_{N}^{2}+p^{2}\right)^{\frac{1}{2}}$.

The projection operators imply that contributions involving virtual anti-nucleon intermediate states are suppressed. These contributions are small when pseudovector coupling is used for the pion. We note that $\operatorname{Ing} g(k \mid P)$ is covariant, since

$$
\operatorname{Img}(k \mid P)=\operatorname{Img}(k \mid P)
$$

Uising

$$
\begin{gathered}
\delta\left(P_{0}-E\right)=2 E \delta\left(s-E^{2}+\mathrm{P}^{2}\right), \text { where } E=E_{\left(\frac{1}{2}\right) p^{p+k}}+E_{\left(\frac{1}{2}\right) \mathrm{p}-\mathrm{k}} \\
\text { and } \quad s=P^{2}=P_{0}^{2}-\mathbf{P}^{2},
\end{gathered}
$$

Eqn. (3.3.9) can be written as

$$
\begin{align*}
\operatorname{Im} g(k \mid s)= & -\frac{m_{N}^{2}}{8 \pi^{2}} \frac{2\left(E_{\frac{1}{2} \mathbf{P}+\mathbf{k}}+E_{\frac{1}{2} \mathbf{P}-\mathrm{k}}\right)}{E_{\frac{1}{2} \mathbf{P}+\mathrm{k}} E_{\frac{1}{2} \mathrm{P}-\mathrm{k}}} \times \Lambda_{+}^{(1)}\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right) \Lambda_{+}^{(2)}\left(\frac{1}{2} \mathbf{P}-\mathbf{k}\right) \\
& \times \delta\left(s-\left(E_{\frac{1}{2} \mathrm{P}+\mathrm{k}}+E_{\frac{1}{2} \mathbf{P}-\mathbf{k}}\right)^{2}+\mathbf{P}^{2}\right) \times \delta\left(k_{0}-\frac{1}{2} E_{\frac{1}{2} \mathbf{P}+\mathbf{k}}+\frac{1}{2} E_{\frac{1}{2} \mathrm{P}-\mathrm{k}}\right) \tag{3.3.12}
\end{align*}
$$

Now we try to construct $g(k \mid s)$ by using a dispersion integral
$g(k \mid s)=\frac{1}{\pi} \int_{4 m_{N}^{2}}^{\pi} \frac{d s^{\prime}}{s^{\prime}-s-i \varepsilon} \operatorname{tm} g\left(k \mid s^{\prime}\right) \quad\left[\right.$ since $\left.F(w)=\frac{1}{\pi} \int_{-\infty}^{\infty} d w^{\prime} \frac{\operatorname{Im} F\left(w^{\prime}\right)}{w^{\prime}-w-i \varepsilon}\right]$
Inserting Eqn. (3.312) in Eqn. (3.3.13) and for the integral in Eqn. (3.313) using the following property of δ function

$$
\int d x f(x) \delta[y(x)]=\sum_{i} \frac{f\left(x_{i}\right)}{\left|\partial y\left(x_{i}\right) / \partial x\right|}
$$

where x_{1} are the real roots of $y(x)=0$ in the interyal of intcgration, we obtain

$$
\begin{align*}
& g(k \mid P)=-\frac{m_{N}^{2}}{(2 \pi)^{3}} \frac{2\left[\frac{E_{\frac{1}{2}} \mathbf{P}+\mathbf{k}}{}+E_{\frac{1}{2} \mathbf{r}-k}\right]}{E_{\frac{1}{2} \mathbf{P}+\mathrm{h}} E_{\frac{1}{2}} \mathbf{P}-\mathrm{k}} \times \frac{\Lambda_{+}^{(1)}\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right) \Lambda_{+}^{(2)}\left(\frac{1}{2} \mathbf{P}-\mathbf{k}\right)}{\left(E_{\frac{1}{2} \mathbf{r}+\mathrm{h}}+E_{\frac{1}{2} \mathbf{P}-\mathrm{k}}\right)^{2}-P^{2}-s-i \varepsilon} \\
& \times \delta\left(k_{0}-\frac{1}{2} E_{\frac{1}{2} \mathrm{P}+\mathbf{k}}^{u}+\frac{t}{2} E_{\frac{1}{2} \mathrm{r}-\mathrm{k}}\right) \tag{3.3.14}
\end{align*}
$$

This three dinensional propagator is known as the Blankenbecler-Sugar (BbS) choice [18]. By construction, the propagator g has the same discontinutly across the right-hand cut as \mathcal{G}; therefore, it preserves the unitary relation satisfied by \mathcal{M}.
Using the angle averages $\left(\frac{1}{2} \mathbf{P} \pm \mathbf{k}\right)^{2} \approx \frac{1}{4} \mathbf{P}^{2}+\mathbf{k}^{2}$ and $\left(\frac{1}{2} \mathbf{P} \pm \mathrm{q}\right)^{2} \approx \frac{1}{4} \mathbf{P}^{2}+\mathbf{q}^{2}$, which should be a very good approximation, Eqn. (3.3.14) assumes the much simpler fonm

$$
\begin{equation*}
\left.g(k \mid P)=\frac{m_{N}^{2}}{(2 \pi)^{3}} \frac{1}{E_{\frac{1}{2}} \mathbf{P}+\mathbf{k}} \times \frac{\Lambda_{+}^{(0)}\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right) \Lambda_{+}^{(2)}\left(\frac{1}{2} \mathbf{P}-\mathbf{k}\right)}{E_{\frac{1}{2}}^{2} \mathrm{P}+\mathrm{q}}-E_{\frac{1}{2} \mathrm{P}+\mathrm{k}}^{2}+i \varepsilon\right) ~\left(\delta\left(k_{0}\right)\right. \tag{3.315}
\end{equation*}
$$

where we have used

$$
s=4 E_{\frac{1}{2} \mathbf{P}+\mathbf{h}}^{2}-\mathbf{P}^{2}
$$

Assuming $\psi=\mathcal{V}$, the reduced Bethe-Salpeter cquation is obtained in explicit form by replacing in Eqn. (3.3.4) G by g of Eqn. (3.3.15), yiclding
in which both nucleons in the intermediate states are equally far off their mass shell.
Taking malrix elements between positive-cncrgy spinors yields an equation for the scattering amplitude in an arbitraty frame:

$$
\begin{equation*}
\mathrm{T}\left(\mathrm{q}^{\prime} \cdot \mathrm{q}^{\prime} \mathrm{P}\right)=V\left(\mathrm{q}^{\prime} \cdot \mathrm{q}\right)+\int \frac{d^{3} k}{(2 \pi)^{3}} V\left(\mathrm{q}^{\prime}, \mathbf{k}\right) \frac{m_{N}^{2}}{E_{\frac{1}{2} \mathrm{p}-\mathbf{k}}} \frac{1}{E_{\frac{1}{2} \mathrm{p}-\mathrm{q}}^{2}-E_{\frac{1}{2} \mathrm{p}+\mathbf{k}}^{2}+i s} \tau(\mathrm{k}, \mathrm{q} \mid \mathrm{P}) \tag{3.3.17}
\end{equation*}
$$

where we have used

$$
\begin{align*}
\bar{u}_{1}\left(\frac{1}{2} \mathbf{P}+\mathbf{q}^{\prime}\right) \bar{u}_{2} & \left(\frac{1}{2} \mathbf{P}-\mathbf{q}^{\prime}\right) \cdot\left(\mathbf{q}^{\prime} \cdot \mathbf{q} \mid \mathbf{P}\right) u_{1}\left(\frac{1}{2} \mathbf{P}+\boldsymbol{q}\right) u_{2}\left(\frac{1}{2} \mathbf{P}-q\right) \\
& =\bar{u}_{1}\left(\mathbf{q}^{\prime}\right) \bar{u}_{2}\left(-\mathbf{q}^{\prime}\right) \cdot v\left(\mathbf{q}^{\prime} \cdot q\right) u_{1}(\mathbf{q}) u_{2}(-q) \\
& =V\left(\mathbf{q}^{\prime} \cdot \mathbf{q}\right) \tag{3.3.18}
\end{align*}
$$

since this is a Lorentz scalar. An andologous statement applies to τ. Calculations of nuclear matter and of finite nuclei are performed in the rest frame of these systems. Thus Eqn. (3.3.17) with the necessary mediun modifications would be approprate for the cvaluation of the nuclear matter reaction G-matrix.

In the two-nucleon $c . m$. frame $\mathrm{P}=0$, so that the BbS propagator $g(\mathbf{h}, s)$ reduces to

$$
\begin{equation*}
g(\mathrm{k}, \mathrm{~s})=\frac{1}{(2 \pi)^{3}} \frac{m_{\mathrm{N}}^{2}}{E_{\mathrm{h}}} \frac{\Lambda_{+}^{(1)}(\mathbf{k}) A_{-}^{(2)}(-\mathbf{k})}{\frac{1}{4} s-E_{\mathrm{h}}^{2}+i \varepsilon} \delta\left(k_{0}\right) \tag{3.3.19}
\end{equation*}
$$

which implies the scattering equation

$$
\begin{equation*}
T\left(\mathbf{q}^{\prime}, \mathbf{q}\right)=V\left(\mathbf{q}^{\prime}, \mathrm{q}\right)+\int \frac{d^{3} k}{(2 \pi)^{3}} V\left(\mathbf{q}^{\prime}, \mathrm{k}\right) \frac{m_{N}^{2}}{E_{\mathrm{k}}} \frac{1}{\mathrm{q}^{2}-\mathrm{k}^{2}+i \varepsilon} T(\mathrm{k}, \mathrm{q}) \tag{3.3.20}
\end{equation*}
$$

Two-nucleon scattering is considercd most conveniently in the two-nucleon c.m. frame; thus, for calculations of free-space two-nucleon scattering in the B6S approximation, one would use Eqn. (3.3.20).

The BbS propagator is the most widcly used approximation. Another choice, which has been frequently applied, is in the version suggested by Thompson. The marifestly covariant form of Thompson's propagator $g(k, s)$ is the same as Eqn. (3.3.13), but with

$$
\int_{4 m_{N}^{2}}^{\infty} d s^{\prime} /\left(s^{\prime}-s-i \varepsilon\right) \text { replaced by } \int_{2 m_{N}}^{\infty} d \sqrt{s^{\prime}}\left(\sqrt{s^{\prime}}-\sqrt{s}-i \varepsilon\right) \text {. }
$$

So the Thompson's propagator $g(k, s)$ now reads

$$
g(k \mid s)=\frac{1}{\pi} \int_{2 n t_{N}}^{\infty} \frac{d \sqrt{s^{\prime}}}{\sqrt{s^{\prime}}-\sqrt{s}-i s} \operatorname{In} g\left(k \mid s^{\prime}\right)
$$

with $\operatorname{Im} g(k \mid s)$ given in Eqn. (3.3.12).
For the integral in the above equation we again use the same properties of δ-function as in the previous case and obtain [using $\left.f(x)=\frac{1}{2 \sqrt{s^{\prime}}\left(\sqrt{s^{\prime}}-\sqrt{s}-i c\right)}\right]$
$g(k \mid P)=-\frac{m_{j}^{2}}{(2 \pi)^{3}} \frac{2\left(E_{\frac{1}{2} \mathbf{P}-\mathbf{k}}+E_{\frac{1}{2} \mathbf{r}-\mathrm{k}}\right)}{E_{\frac{1}{2} \mathrm{P}+\mathrm{k}} E_{\frac{1}{2} \mathbf{P}-\mathrm{k}}} \times \frac{\left.\Lambda_{+}^{(1)}\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right) \boldsymbol{\Lambda}_{+}^{(2)}\right)\left(\frac{1}{2} \mathrm{P}-\mathbf{k}\right)}{2 \sqrt{\left(E_{\frac{1}{2} \mathbf{P}+\mathrm{k}}+E_{\frac{1}{2} \mathbf{P}-\mathrm{k}}\right)^{2}-P^{2}}}$

$$
\frac{1}{\left(E_{\frac{1}{2} \mathrm{P}+\mathbf{k}}+E_{\frac{1}{2} \mathrm{P} \cdot \mathrm{~h}}\right)^{2}-P^{2}-\sqrt{s^{2}}-i \varepsilon} \times \delta\left(k_{0}-\frac{1}{2} E_{\frac{1}{2} \mathrm{P}+\mathrm{k}}+\frac{1}{2} E_{\frac{1}{2} \mathrm{P}-\mathrm{h}}\right)
$$

where

$$
s=4 E_{\frac{1}{2} \mathrm{P}+\mathrm{h}}^{2}-\mathbf{P}^{2} .
$$

Using the angle averages $\left(\frac{1}{2} p \pm k\right)^{2} \approx \frac{1}{4} p^{2} \div k^{2}$ and $\left(\frac{1}{2} P \pm q\right)^{2} \approx \frac{1}{4} p^{2}+q^{2}$, we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{4 E_{\frac{1}{2} p+k}^{2}-P^{2}}-\sqrt{4 E_{\frac{1}{2} p+4}^{2}-P^{2}}-i \varepsilon} \times \delta\left(k_{0}\right)
\end{aligned}
$$

whech after simplification, becomes

$$
\begin{gather*}
g(k \mid P)=\frac{m_{i \dot{i}}^{2}}{(2 \pi)^{3}} \frac{1}{E_{\mathbf{k}} E_{\frac{1}{2}} \mathrm{P}+\mathrm{k}} \times \frac{\Lambda_{+}^{(1)}\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right) \Lambda_{+}^{(2)}\left(\frac{1}{2} \mathbf{P}-\mathbf{k}\right)}{2 E_{\mathbf{4}}-2 E_{\mathrm{k}}+i \varepsilon} \times \delta\left(k_{v}\right) \tag{3.3.21}\\
E_{\frac{1}{2} \mathrm{r}+\mathrm{k}}=\left[\left(\frac{1}{2} \mathbf{P}+\mathbf{k}\right)^{2}+m_{N}^{2}\right]^{\frac{1}{2}}
\end{gather*}
$$

where

The equation for the scaticring amplitude in an arbitrary frame is then

$$
\begin{equation*}
\tau\left(\mathbf{q}^{\prime}, \mathrm{q} \mid \mathrm{p}\right)=V\left(\mathbf{q}^{\prime}, \mathbf{q}\right)+\int \frac{d^{3} k}{(2 \pi)^{3}} V\left(\mathbf{q}^{\prime}, \mathbf{k}\right) \frac{m_{v}^{2}}{E_{\mathrm{k}} E_{\frac{1}{2}} \mathbf{p}-\mathrm{k}} \frac{\mathbf{1}}{2 E_{\mathrm{q}}-2 E_{\mathrm{k}}+i \varepsilon} \tau(\mathbf{k}, \mathbf{q} \mid \mathbf{P}) \tag{3.3.22}
\end{equation*}
$$

For calculations in the rest frame of nuclear inatter or finte nuclei, this equation, together with the necessary medium modifications ($m_{N} \rightarrow \tilde{m}_{N_{n}}$, Pauli projector Q), is appropriate. In our actual calculations in nuclear matter, we replace E_{k} by $E_{(/ / 2) \mathrm{p}+\mathrm{k}}$ and E_{q} by $E_{(1 / 2) \mathbf{P}_{\perp}}$ in the denominator of Eqn. (3.3.22). This replacement makes possible an intequetation of the energy denominator in terms of differences between single-particle energics, which are typically defined in the rest frame of the many-body system. This allows for a consistent application of this equation in nuclear matter and finite nuclei.

3.4 The relativistic Dirac-Brueckner approach:

The Dirac-Brueckner approach is the outcome of work that was started by Walecka and coworkers for schematic NN interaction. The most advanced relativistic description of nuclear matter has been given by Shakin and coworkers within the frame work of the relativistic Brucckner-Hartree-Fock method [12, 36]. Then after, Horowitz and Serot [37] solved the relativistic Bethe-Goldstone equation and it has been extended to the case of realistic interaction by Machleidt and Brockmann [38].

Similar to conventional Brucekner theory, the basic quantity in the Dirac-Brueckner approach is a \tilde{G}-matrix, which satisfies an integral equation. In this relativistic approach, a relativistic three-dimensional equation is chosen.

We choose the Thompson equation, which is a relativistic thrce-dimensional reduction of the Bethe-Salpetcr equation. Crucial for our choice is the fact that, in the framework of the Thompson equation, meson retardation is ignored (i.e., a static meson propagator is used). This is also true for the Blankenbeckler-Sugar (BbS) equation [18]. We note that in theorics, which incorporate meson retardation, cffccts due to medium modifications on meson propagation in nuclear matter can be calculated. These effects have been investigated by the Bonn group and were found to be small and repulsive. Thus these eflects are known and are not very imporlant, for that reason we will ignore them.

When two nucleons scatter from each other in nuclear matter, the medium effects, such as the Pauli blocking for the intermediate states and the density dependence of the nucleon effective mass due to nueleon self-encrgy, should be taken into account in the Thompson equation describing this process. As in the non-relativistic case, one stars from a bare interaction and carries out a Brueckner calculation to get the effective intcraction, oflen denoted as \tilde{G} inatrix, in the medium.

Following the basic philosophy of traditional Brueckner theory, this equation is applied to nuclear matter in strict analogy to free scattering. Thus including the neccssary medium effect, the in-medium Thompson equation, which reads in the nuclear matter rest frame,
with $\quad \tilde{\underline{z}}=2 \widetilde{E}_{(1 / 2) \mathbf{P}+4}$ and \tilde{m}_{n} the Dirac mass.
\mathbf{P} is the cm . momentum of the two colliding nucleons in the nuclear medium and q, k, and q^{\prime} are the initial, intermediate, and final relative momenta, respectively, of the two nucleons interacting in nuclear mater. In Eqn. (3.4.1) we suppressed the k_{F} dependence
as well as spin (helicity) and isospin indices. For $\left|\frac{1}{2} \mathbf{P} \pm \mathbf{q}\right|$ and $\left|\frac{1}{2} \mathbf{P} \pm \mathbf{k}\right|$, the angle average is used.

The relativistic OBE potential to be used in the Dirac-Brueckner calculation is defined as the sum of one-particle-exchange amplitudes of certain bosons with given mass and coupling. Usually six non-strange bosons with mass below $t \mathrm{GeV}$ arc used. The pseudovector (derivative/gradient) couphng, instead of pseudoscalar coupling is used for the pscudoscalar bosons (π and η) in order to avoid un-physically large antiparticle contributions. The details about the derivation of the OBE potential, the parameters (mass, coupling constant, and cutoff of the bosons) and the description of the two-body system have been extensively discussed in chapter 2 .

The essential difference between the free-space Thompson equation and the Thompson equation in the medium is the inctusion of the Pauli operator $\bar{Q}(\mathbf{k}, \mathrm{P})$ and use of a density dependent effective mass \tilde{m}_{N}, the Dirac mass, in the latter case. The Pauli operator $\bar{Q}(\mathbf{k}, \mathbf{P})$ prevents scattering into occupied intermedrate states ("Pauli effect"). We note that this is different from Pauli blocking factor for the rinal states which is always included in the transport models describing nuclcus-nucleus collsions. Second, the nucleon mean field due to the medium reduces the mass of the nucleon and affects the energy denominator in Eqn. (3.4.1) which is now density dependent, while in the free Thompson equation the encrgy denominator uses free relativislic encrgies ("dispersion effect"). Finally and most imporlantly, the potential used in the in-medium Thompson equation, as indicated by tilde, is evaluated by using the in-medium Dirac spinors instead of the frec ones (hence the name Dirac-Brueckner approach). This leads to the suppression of the attractive σ exchange, which increases with density. The fact that the Dirac-Brucckner approach is able to reproduce quantitativcly the saturation propertics of nuclear matter is mainly due to this relativistic effect. This obscrvation also imples that the in-medium NN cross sections based on the non-relativistic Brueckner approach lack one important aspect, namely, the effect, which is due to the medium modification of the potenlial.

The Dirac equation, which is used in this relativistic approach for the description of the single-particle motion in the medium is given by:

$$
\begin{equation*}
\left[\alpha \cdot \mathbf{k}+\beta\left(\tilde{m}_{N}+U_{s}\right)+U_{Y}\right] \tilde{u}(\mathbf{k}, s)=\varepsilon_{k} \tilde{u}(\mathbf{k}, s) \tag{3.4.2}
\end{equation*}
$$

where U_{S} is the attractive scalar field and U_{V} is the tine like component of a repulsive vector field; m_{N} is the mass of frec nucleon. The solution of Eqn. (3.4.2) is

$$
\begin{equation*}
\tilde{u}(\mathbf{k}, s)=\left(\frac{\tilde{E}_{k}+\tilde{m}_{N^{\prime}}}{2 \tilde{m}_{N}}\right)^{1 / 2}\left(\frac{1}{\tilde{\tilde{E}_{k}}+\tilde{m}_{N}}\right) \chi_{s} \tag{3.4.3}
\end{equation*}
$$

with $\tilde{m}_{N}=m_{N}+U_{S}, \quad \vec{E}_{k}=\left(\tilde{m}_{N}^{2}+\mathbf{k}^{2}\right)^{1 / 2}, \sigma$ are the Pauli spin matrices and z_{s} is a Pauli spinor. The in-medium Dirac spinor Eqn. (3.4.3) is obtaincd from free Dirac spinor by replacing m_{N} by \tilde{m}_{N}. The single particle energy resulting from Eqn. (3.4.2) is given by

$$
\begin{equation*}
\varepsilon_{\dot{k}}=\tilde{E}_{k}+U_{v} \tag{3.4.4}
\end{equation*}
$$

The scalar and vector fields of the Dirac Eqn. (3.4.2) are determined from [8]

$$
\begin{equation*}
\frac{\tilde{m}_{N}}{\tilde{E}_{i}} U_{S}+U_{V}=\sum_{n \leq k_{F}} \frac{\tilde{m}_{N}^{2}}{\tilde{E}_{m} \tilde{E}_{n}}\left\langle m n \mid \widetilde{G}(\tilde{z})_{m n-n m}^{\prime}\right\rangle \tag{3.4.5}
\end{equation*}
$$

which is the relativistic analog to the non-relativistic Brueckncr-Harree-Fock delinition of a single-paricle potential

$$
\begin{equation*}
U(m)=\frac{\tilde{m}_{N}}{\widetilde{E}_{m}}\langle m| U|m\rangle=\frac{\tilde{m}_{N}}{\widetilde{E}_{m}}\langle m| U_{s}+\gamma^{n} U_{V}|m\rangle=\frac{\widetilde{m}_{N}}{\widetilde{E}_{m}} U_{S}+U_{V} \tag{3.4.6}
\end{equation*}
$$

where $|m\rangle$ denotes a state bclow or above the Fermi surface and corresponds to a continuous choicc. The states $|m\rangle$ and $|n\rangle$ are represented by Dirac spinors of the kind in Eqn. (3.4.3) and an appropriate isospin wave function; $\langle m|$ and $\langle n|$ are the adjoint Dirac spinors $\overline{\tilde{u}}=\tilde{u}^{\dagger} \tilde{\gamma}^{0}$ with $\overline{\tilde{u}} \tilde{u}=1 ; \bar{E}_{m}=\left(\tilde{m}_{N}+\tilde{\rho}_{\text {t }}^{2}\right)^{r / 2}$. The scalar and vector Fields of the Dirac Eqn. (3.4.2) are deternined from Eqn. (3.4.5).

The energy per nucleon as a function of the density of the syslen is often referred to as the nuclear equation of state. We note that this differs from the more common definition of an equation of state, which is the variation of the system pressure with its density.

In the Dirac-Brueckner approach, the nuclear equation of state, that is, the energy per rucleon, ε / A, as a function of density, ρ, is obtained from the \tilde{G} matrix :

$$
\begin{equation*}
c / A=\frac{1}{A} \sum_{m \leq k_{F}} \frac{m_{N} \tilde{m}_{N}+p_{m}^{2}}{\tilde{E}_{m}}+\frac{1}{2 A} \sum_{m, n \leq x k_{F}} \frac{\tilde{m}_{N}^{2}}{\tilde{E}_{m} \tilde{E}_{n}}\left(m \mid \bar{G}(\tilde{z})_{1}^{\prime} n n-n m\right)-m_{N} \tag{3.4.7}
\end{equation*}
$$

Since the kemel of the in-medium Thompson equation, Eqn. (3.4.1) depends on the solution of the Dirac equation, Eqn. (3.4.2), while for the Dirac equation one necds the scalar and vector potentials which are related to the \vec{G} matrix via Eqn. (3.4.4), one has to carry out an iterative procedure with the goal to achieve self-consistency of the two equations: starting from reasonable initial values for $U_{s}^{(0)}$ and $U_{v}^{(0)}$, one may solve the inmedium Thompson equation in momentum space by means of the matrix neversion mothod to get the \widetilde{G} matrix which leads by means of Eqn. (3.4.4) to a new set of values for $U_{\mathrm{s}}^{(1)}$ and $U_{y}^{(i)}$ to be used in the next iteration; this procedure is continued until convergence is achieved.

Chapter-4

In medium NN scattering cross-section and its density dependence

This chapter is devoted for finding the NN cross-sections in nuclear matter. Since the G-matrix plays the role of an cffcctive interaction for two nucleons in the nuclear medium, we need to find a method suitable for solving the Brueckner (G-Matrix equation, In fact, the Brueckner cquation that defines G, resembles the Lippmann-Schwinger equation for R matrix. The G-inatix is linite even for singular potentials, in much the same way that the R-matrix for free scattering is finite for singular potentials. As it is true for the R-matrix, one can use the matrix inversion in momentum space to calculate the G matrix for infinite nuclear matter. In this chapter, we describe the method of matrix inversion for solving the Bnueckner G-matrix equation, in section one.

In section 2, we discuss a formula, which can be used to find the NN scattering crosssections in nucloar medium directly from the G-matrix obtained by solving the DiracBrueckner G-matrix cquation. The Golden rule for finding the cross-section for the scattering of two free nucleons is derived in section three. This free NN cross-section may be used to find the in-medium NN cross-section by taking into account the Pauliblocking for the medium cffect, which is discussed in the preceding scetion. In section four, we make an analysis of the effect of the Pauli principle in the binary collisions betwecn the nucleons of a two-nuclear matter system in relative motion. We show that it reduces to a geometrical problem in the momentum space of the system and an analytical derivation for it is presented. Lastly in section five, the lowest-order correction of the density dependence of in-medum nucleon-nucleon cross-sections is obtained from geometrical considerations of the Pauli-blocking effects.

4.1 Matrix inversion method for solving Brueckner equation:

In this section, we first discuss the method of matrix inversion [3] for solving the Schrödinger equation in mornentum space. This method can be applied to any nonsingular potential, either local or non-local, central or non-cenlral. Several altemate approaches to solve the Schrödinger equation for general non-local potentials are also available in the literature. For the purely nuclear part of the two-nucleon interaction, we Find that the direct inatrix inversion is simplest.

The Schrödinger equation describing the two-body relative motion is given by

$$
\begin{equation*}
\frac{\hbar^{2}}{m_{N}} \nabla^{2} \psi_{n}(\mathbf{r})+\int d \mathrm{r} V\left(\mathbf{r}_{1}^{\prime} \mathrm{r}^{\prime}\right) \psi_{n}(\mathrm{r})=E_{n} \psi_{n}(\mathrm{r}) \tag{4.1.1}
\end{equation*}
$$

where m_{N} is the nuclcon mass, $\mathbf{r}=\mathbf{r}_{1}-\boldsymbol{r}_{\mathbf{2}}$ denotes the relative displacement of the two nucleons, and E_{n} is the total rclative energy. In general $V\left(\mathbf{r} \mid \mathbf{r}^{\prime}\right)$ is a non-local operator. For local potentials, $V\left(\mathbf{r} \mid \mathbf{r}^{\prime}\right) \rightarrow \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) V(\mathbf{r})$; many rapid methods exit for solving the resulting second order differential equation. However, for non-local potentials one faces the difficult task of solving an integro-differential equation in configuration space. Numerical methods for that problem are also available and are particularly useful when Coulomb forces are to be included.

An altemative approach, to be used here for non-local nuclear potentials, is to introduce momentums spacc. The relative motion 15 then descnbed by

$$
\begin{equation*}
\left(\mathrm{q}^{\prime 2}-\mathrm{q}^{2}\right) \psi_{n}\left(\mathrm{q}^{\prime}\right)=\frac{m_{N V}}{\hbar^{2}} \int d \mathbf{k} V\left(\mathrm{q}^{\prime} \mid \mathbf{k}\right) \psi_{n}(\mathbf{k}) \tag{4.1.2}
\end{equation*}
$$

where $2 \boldsymbol{q}=\mathrm{q}_{1}-\mathrm{q}_{2}$ is the relative momentum. The energy eigen-value has been written as $E_{n}=\frac{\hbar^{2} \mathrm{q}^{2}}{m_{n}}$, where n is used to label the incident momenturn vector for scattering and the spin and isospin quantum numbers. The wave function $\psi_{n}\left(q^{\prime}\right)$ is simply the Fourier transform of $\psi_{n}(\mathbf{r})$

$$
\begin{equation*}
\psi_{n}\left(q^{\prime}\right)=(2 \pi)^{-3 / 2} \int d \mathbf{r} e^{2 q^{\prime} r^{2}} \psi_{n}(\mathbf{r}) \tag{4.1.3}
\end{equation*}
$$

and the potential matrix elements in momentum space are related to the non-local opcrator $V\left(\mathbf{r}^{\prime} \mathbf{r}^{\prime}\right)$ by

$$
\begin{equation*}
V\left(q^{\prime} \mid \mathbf{k}\right)=(2 \pi)^{-3} \int d \mathbf{r} d r^{\prime} e^{-i q^{\prime}} \boldsymbol{r}\left(\mathbf{r} \mid \mathbf{r}^{\prime}\right)^{i k \mathbf{r}^{\prime}} . \tag{4.1.4}
\end{equation*}
$$

The next step is to introduce a partial wave decomposition of the wave function

$$
\begin{equation*}
\left.\left.\psi_{n}\left(\mathrm{q}^{\prime}\right)=\sum_{a L L^{\prime} M} i^{L-L^{\prime}} \psi_{L L^{\prime}}^{a}\left(\mathrm{q}^{\prime}\right) Y_{L M L}(\mathbf{q})\left\langle L S M_{t} M_{S}\right| J M\right) y_{L S}^{S M}\left(\mathbf{q}^{\prime}\right) T T_{3}\right\rangle \tag{4.1.5}
\end{equation*}
$$

The wave function is decomposed into nomalized cigenstates of the total angular momentum J, the total spin S, and the total orbital angular momentum L of the two nucleons. Hete a denotes the quantum numbers JST. These eigen-states arc formed using the Clebsch-Gordon coefficient $\left\langle L S M_{L} M_{s} \mid J M\right\rangle$:

$$
\begin{equation*}
y_{L S}^{H M}\left(\mathrm{q}^{\prime}\right)=\sum_{M_{L} M_{S}}\left\langle L S M_{L} M_{S} \mid J M\right\rangle Y_{L M_{L}}\left(\mathrm{q}^{\prime}\right)\left|S M_{S}\right\rangle \tag{4.1.6}
\end{equation*}
$$

The corresponding decomposition of the potential is

$$
\begin{equation*}
V\left(\mathbf{q}^{\prime} \mid \mathbf{k}\right)=\frac{2}{\pi} \frac{\hbar^{2}}{m_{N}} \sum i^{t-i^{\prime}} V_{L L^{\prime}}^{\prime \alpha}\left(\mathbf{q}^{\prime} \mid \mathbf{k}\right) y_{L S}^{j h t}\left(\hat{\mathbf{q}}^{\prime}\right) y_{L S}^{\mu A+}\left(\hat{\mathbf{q}}^{\prime}\right) P_{T}, \tag{4.1.7}
\end{equation*}
$$

Where $V(q \mid \mathbf{k})$ is an operator in spin and isospin space and P_{T} is an isospin projection operator. Eqn (4.1.7) represents the most general potential that conserves total angular momentum, parity and isospin. The potential satisfies time reversal invaiance if $V_{L i} \cdot\left(\mathrm{q}^{\prime} \mid \mathbf{k}\right)=V_{L^{\prime}}\left(\mathbf{k} \mid \mathbf{q}^{\prime}\right)$. The sum is restricted to those quantum numbers $\alpha L L^{\prime}$ of twonucteon states that are allowed by the Pauli principle, i.c. states having $S+L+T$ equal to an odd integer For triplet states the orbital angular momenta $L=J \pm 1$ can be coupled by a tensor or non-central potential; thus both L and L^{\prime} labels appear on $V_{L L^{\prime}}$ and $\psi_{H I^{\prime}}$.

Let us now consider the scattering problems formulated in momentum space. In momentum space the Schrödinger equation for standing waves is

$$
\begin{equation*}
\psi_{n}\left(\mathrm{q}^{\prime}\right)=\delta\left(\mathrm{q}^{\prime}-\mathrm{q}\right)\left|S M_{S}\right\rangle\left|T_{3}\right\rangle-\frac{m_{N}}{\hbar^{2}} \frac{\mathrm{P}}{\mathrm{q}^{\prime 2}-\mathrm{q}^{2}} \int \alpha\left(\mathbf{k} V\left(\mathrm{q}^{\prime} \mid \mathbf{k}\right) \psi_{n}(\mathbf{k})\right. \tag{4.1.8}
\end{equation*}
$$

the symbol P means principal value. The incoming momentum vector $\hbar q$ and incident spin-isospin state are labeled by n.

Instead of solving directly for the wave function, it is convenient to introduce a reaction matrix defined by $R \phi_{n}=V \psi_{n}$, where ϕ_{n} is a plane wave. The result is the LippmannSchwinger equation

$$
\begin{equation*}
R\left(\mathbf{q}^{\prime} \mid \boldsymbol{q}\right)=V\left(\mathbf{q}^{\prime} \mid \mathbf{q}\right)-\frac{m_{i 4}}{\hbar^{2}} p \int \frac{q \mathbf{k} V\left(\mathbf{q}^{\prime} \mid \mathbf{k}\right) R(\mathbf{k} \mid \mathbf{q})}{\mathbf{k}^{2}-\mathbf{q}^{2}} \tag{4.1.9}
\end{equation*}
$$

It is easy to construct the wave function and phase shifts from the R-matrix, once a parial wave decomposition is used. The result is the one-dimensional, coupled-channels, Lippmann-Schwinger equation

$$
\begin{equation*}
R_{L L^{\prime}}^{c}\left(q^{\prime} \mid q\right)=V_{L L^{\prime}}^{\alpha}\left(q^{\prime} \mid q\right)-\frac{2}{\pi} \mathrm{P} \sum_{i} \int_{0}^{\infty} \frac{d k k^{2} V_{L A}\left(q^{\prime} \mid k\right) R_{L I}(k \mid q)}{k^{2}-q^{2}} \tag{4.1.10}
\end{equation*}
$$

The channels are $a L$ and $a L^{\prime}$, which can be coupled by a tensor force. In triplet states the orbital angular momenta $L \pm J+1$ are coupled. For numerical work it is convenient that only real quantitics arise in Eqn. (4.1.10). The corresponding wave function in momentum space is

$$
\begin{equation*}
\psi_{L L^{\prime}}^{a}\left(q^{\prime}\right)=\frac{1}{q^{\prime 2}} \delta\left(q^{\prime}-q\right) b_{L L^{\prime}}-\frac{2}{\pi} \mathrm{P} \frac{R_{L L \prime}\left(q^{\prime} \mid q\right)}{q^{\prime 2}-q^{2}} \tag{4.1.11}
\end{equation*}
$$

Now we will discuss the way of solving the Lippmann-Schwinger equation for R-matrix. Let us consider Eqn. (4.1.10) for uncoupled channels ($L=L^{\prime}$) and add a zero term to replace the principal value condition by a smooth integrand

$$
\begin{equation*}
R_{L}^{\alpha}\left(q^{\prime} \mid q\right)=V_{L}^{\alpha}\left(q^{\prime} \mid q\right)-\frac{2}{\pi} \int_{0}^{\infty 0} \frac{d k\left[k^{2} V_{L}^{\alpha}\left(q^{\prime} \mid k\right) R_{L}^{\alpha}(k \mid q)-q^{2} V_{L}^{\alpha}\left(q^{\prime} \mid q\right) R_{L}^{\alpha}\left(q^{\prime} \mid q\right)\right]}{k^{2}-q^{2}} \tag{4.1.12}
\end{equation*}
$$

The integrand has a finite limit even for $k=q$; however, we wish to avoid such points. We need to solve Eqn. (4.1.12) numerically without having any points at which $k=q$. At the same time we need to 「ind the R-matrix both on and off the energy shell. These quantities can be casily found by introducing an N-point integration formula

$$
\begin{equation*}
\int_{0}^{\infty} d k F(k)=\sum_{j=1}^{N} F\left(k_{j}\right) \omega_{j}, \tag{4.1.13}
\end{equation*}
$$

where we prefer to take k, and $\omega_{\text {, }}$ to be either Laguere or Gaussian integration points and weights. The integrand in Eqn. (4.1.12) may be considered as $F(k)$ in Eqn. (4.1.13).

Gaussian integration is used for potentials having a relatively slow fall-off in momentum space. All of the N intcgration points, $k_{1}, k_{2}, \ldots \ldots \ldots \ldots, k_{N}$, are required to be unequal to k_{0}. If we call k_{0} the $N+1$ point $\left(k_{0} \equiv k_{N+1}\right)$, then Eqr.(4.1.12) can be rewritten as

$$
\begin{equation*}
V_{L}^{a}\left(k_{1} \mid k_{N+1}\right)=\sum_{j=1}^{N=1} F_{L}^{\alpha}\left(k_{i} \mid k_{j}\right) R_{L}^{a}\left(k_{j} \mid k_{N+1}\right) \tag{4.1.14}
\end{equation*}
$$

The matrix F_{L} is simply

$$
\begin{equation*}
F_{L}^{a}\left(k_{1} \mid k_{J}\right)=\delta_{y}+\omega_{j}^{r} \nu_{L}^{\alpha}\left(k_{1} \mid k_{J}\right) \tag{4.1.I5}
\end{equation*}
$$

where ω_{J}^{J} is defined by

$$
\begin{align*}
\omega_{j}^{\prime} & =\frac{2}{\pi} \frac{k_{i}^{2} \omega_{j}}{k_{j}^{2}-k_{0}^{2}} & & \text { for } j \leq N \\
& =-\frac{2}{\pi} \sum_{m \rightarrow 1}^{N} \frac{\omega_{m}}{k_{m}^{2}-k_{0}^{2}} k_{0}^{2} & & \text { for } j=N+1 \tag{4.1.16}
\end{align*}
$$

The matrix F is nonsingular since k_{N-1} is distinct from the grid points; it can therefore be invered to yicld the R-matrix both on and off the energy shell

$$
\begin{equation*}
R^{\alpha}\left(k_{i} \mid k_{N^{\prime}+1}\right)=\sum_{j=1}^{N+1} F_{L}^{-1}\left(k_{j} \mid k_{j}\right) V_{L}^{G}\left(k_{j} \mid k_{N+1}\right) \tag{4.1.17}
\end{equation*}
$$

A similar partial wave decomposition may now be used to reduce Brueckner nonrelativistic G matnx equation given in Eqn. (3.2.6) to a sct of one-dimensional integral cquations, just as in the case of the Lippmann-Schwinger equation. To reduce Eqn. (3.2.6) to a set of one-dimensional integral equations, the following standard partial-wave decomposition may be used.
the resulting one-dimensional coupled-channel non-relativistic Brucckucr equation is

$$
\begin{equation*}
G_{L L^{\prime}}^{\alpha}\left(q^{\prime}, q \mid P\right)=V_{H F}^{\alpha} \cdot\left(q^{\prime}, q\right)-\frac{2}{\pi} \cdot \frac{1}{m_{k^{k}}} \sum_{i}^{\infty} \int_{0}^{\infty} \frac{d k k^{2} \bar{Q}(k, P) V_{L L^{\prime}}^{\alpha}\left(q^{\prime}, k\right)}{E(k, P)-E(q, P)} \cdot G_{L L^{\prime}}^{\alpha}(k, q \mid P) \tag{4.1.19}
\end{equation*}
$$

In a similar fashion the one-dimensional coupled-channel Dirac-Brueckner relativistic G^{-} matrix equation becomes

$$
\begin{equation*}
\widetilde{G}_{L L}^{\alpha}\left(q^{\prime}, q \mid P\right)=V_{L L}^{\alpha}\left(q^{\prime}, q\right)-\frac{2}{\pi} \cdot \sum_{i} \int_{0}^{\infty} \frac{d k k^{2}}{(2 \pi)^{3}} \frac{V_{L L \prime}^{\alpha}\left(q^{\prime}, k\right) \tilde{m}_{N}}{\widetilde{E}_{(l / 2) \mathrm{P}+\mathrm{k}}^{2}} \cdot \frac{\bar{Q}(k, P)}{\widetilde{z}-2 \widetilde{E}_{(l / 2) P+\mathbf{k}}} \cdot \widetilde{G}_{L L}^{\alpha}(k, q \mid P) \tag{4.1.20}
\end{equation*}
$$

Λ s before, a denotes $J S$ and T. Eqn. (4.1.20) differs from the Lippmann-Schwinger equation in two important ways. First the cnergy denominators include single-particle potentials that arise from the presence of the other nucleons - this is simply a recognition of the many-nucleon medium in which the pair is moving. Secondly, the nuclear medium produces the Pauli exclusion effect as recorded in \bar{Q}. Because of \bar{Q}, the integrand in Eqn. (4.1.20) does not have a singularity, which causes the healing of the two-nucleon wave function in the nuclcar medium.
The nonsingular character of the integrand of Eqn. (4.1.20) makes it completely suitable to solve by matrix inversion method.

4.2 Effective cross-sections for NN elastic scattering:

In this section we consider nucleon energies below the pion threshold (-300 McV), so that the NN scattering is purely elastic. When discussing two-body properties in nuclear matter, we shall use the concept of effective cross sections [39]. In the following discussion, four different cross section valucs are distinguished. The frec NN cross section, which in our approach is related to the vacuum t matrix T_{11}, will be called σ_{4}. In some kinctic equations, this cross section is conected for Pauli blocking in the outgoing channel. We shall call this value σ_{3}. Calculating the effective cross-section from the effective Dırac-Brueckner interaction, \tilde{G}, we obtain σ_{1} and σ_{2}. Here, σ_{2} is not corrected for Pauli blocking in the outgoing channel (but Pauli-blocking in the intenneduate $N N^{-}$channcls is included); σ_{1} is the effective cross-section that contains all medium corrections. The incoming NiN chanucl is the same for all four cross sections. Particle I has a certain fixed momentum compared to the surrounding ruclear medium. For particle 2, all the available Fermi sca momenta are taken into account and averaged afterward. In summary [39], (writing σ for σ_{1})

$$
\begin{equation*}
\left.\sigma\left(q_{1}\right)=\frac{3}{4 \pi^{2} k_{F}^{3}} \int_{0}^{k} d^{3} q_{2} \bar{Q}\left(P, s^{*}, q\right) \frac{\bar{m}_{N}^{4}(\hbar c)^{2}}{2(2 \pi)^{2} s^{*}} \times \int d \Omega_{c, m \cdot} \sum_{\sigma, r} \right\rvert\, \tilde{G}\left(\mathbf{q}^{\prime}, \mathbf{q}|\mathbf{P}|^{2}\right. \tag{4.2.1}
\end{equation*}
$$

where q_{1} and \mathbf{q}_{2} stands for momentum of particle 1 and 2 respectively, $\mathbf{P}=\mathbf{q}_{1}+\mathbf{q}_{2}$, $s^{*}=\left(\tilde{E}_{1}+\tilde{E}_{2}\right)^{2}-\mathbf{P}^{2}$ and $P=\frac{1}{2} \sqrt{s^{*}-4 \widetilde{m}_{N}^{2}}$ and $\sum_{\sigma, r}$ represents the summation (average) of outgoing (incoming) spin and isospin channcts. The function \bar{Q} gives the angle-ayeraged Pauli-blocking operator and k_{F} denotes the Fermi momentum.

The starting energy in Eqn. (3.4.1) is $\widetilde{z}=2 \widetilde{E}_{4}=2 \sqrt{\widetilde{m}_{N}^{2}+q^{2}}$, wherc q is related to the kinetic energy of the incident nucleon in the "laboratory system" ($E_{l a b}$), by $E_{\text {lad }}=2 q^{2} / m_{R^{N}}$ in which the other nucleon is at rest. Here two colliding nuelcons are considered in nuclear matter. The Pauli projector is represented by one Fermi sphere as in conventional nuclear matter calculations This Pauli projector, which is originally defined in the nuclear maticr rest frame, must be boosted to the c.m. frame of the two interacting nucleons. The explicit formulae for \bar{Q} [40] is as follows:

$$
\begin{array}{cc}
\stackrel{\rightharpoonup}{Q}\left(q, P, s^{*}\right)=0 & \text { for } q \leq \frac{1}{\gamma}\left\{\gamma^{2} k_{F}^{2}-\left(\eta \widetilde{E}_{F}\right)^{y}\right)^{1 / 2} \\
\bar{Q}\left(q, P, s^{*}\right)=1 \quad \text { for } q \geq \eta \widetilde{E}_{F}+\gamma k_{F} \\
\bar{Q}\left(q, P, s^{*}\right)=\left\{\frac{-2 \eta \tilde{E}_{F}}{\gamma^{2}}+\left[\left(\frac{2 \eta \widetilde{E}_{F}}{\gamma^{2}}\right)^{2}+4\left(1-\frac{1}{\gamma^{2}}\right)\left(\frac{\eta^{2} \widetilde{E}_{F}^{2}}{\gamma^{2}}+q^{2}-k_{F}^{2}\right)\right]^{1 / 2}\right\}\left\{2 q\left(1-\frac{1}{\gamma^{2}}\right)\right\}^{-1}
\end{array}
$$

$$
\begin{equation*}
\text { for other values of } q \text {, } \tag{4.2.2}
\end{equation*}
$$

with $\tilde{E}_{F}=\left\{h_{F}^{2}+\tilde{m}_{N}^{2}\right\}^{W / 2}$ and furthermore η and γ are defined by:

$$
\eta=P / \sqrt{s^{*}} \text { and } \gamma=\widetilde{E} / \sqrt{s^{*}}=\sqrt{s^{*}+P^{2}} / \sqrt{s^{*}}
$$

In c.m. frame $\eta=0$ and $\gamma=1$, so that \bar{Q} takes the form

$$
\begin{array}{ll}
\bar{Q}\left(q, P, s^{*}\right)=0 & \text { for } q \leq k_{F} \\
\bar{Q}\left(q, P, s^{*}\right)=1 & \text { for } q \geq k_{F} \tag{4.2.3}
\end{array}
$$

For in-medium NN scattering, the Dirac-Brueckner \tilde{G}-matrix of Eqn. (3.4.1) may be used in Eqn. (4.2.1) in center of mass frame with $P=0$ and $\tilde{z}=2 \tilde{E}_{q}$. We may obtain this
\tilde{G}-matrix by solving the Dirac-Brueckner \tilde{G}-matrix equation using the matrix inversion method, discussed in the previous section. Thus the in-medium NN cross-sections may be calculated directly from the Dirac-Brueckner \tilde{G}-matrix by using the cross-section formula given in Eqn. (4.2.1).

4.3 The Golden rule for free NN cross-section:

In this section we begin a quantitative formulation of clementary particle dynamics, which anounts, in practice, to calculation of scattering cross sections (σ). The procedure involves two distinct parts (1) cvaluation of the relevant Feynman diagrams to detemme the "amplitude" (M) for the process in question, and (2) insertion of M nto Fcrmi's 'Golden Rule" to compute σ.

Now the question is what we mean by a "cross section". Suppose a particle (may be an electron) comes along, encounters some kind of potential, and scatters off at an angle θ. This scattering angle is a function of the impact parameter h, the distance by which the incident particle would have missed the scattering center, had it continucd on its original trajectory. Ordinarily, the smatler impact parameter, the larger the deflection, but the actual functional form of $\theta(b)$ depends on the particular potential involved.

If the partucle comes in with an impact parameter between b and $b+d b$, it will emerge with a scattering angle between θ and $d \theta$. Morc gencrally, if it passes through an infinitesimal area $d \sigma$, it will scatter into a corresponding solid angle $d \Omega$. Naturally, the larger we make $d \sigma$, the larger $d \Omega$ witl be. The proportionality factor is called the differential scattering cross section, D;

$$
d \sigma=D(O) d \Omega
$$

In principle, D might depend on the azimuthal angle ϕ; however, most potentials of interest are spherically symmetrical, in which case the differential cross section depends only on θ. By the way, the notation, D, is simply $d \sigma / d \Omega$.

Suppose now, that we have a beam of incoming parlicles, with uniform luminosicy L (L is the number of particles per unit time, per unit area). Then $d N=C d \sigma$ is the number of particles per unit time passing through area $d \sigma$, and hence also the number por unit time scattered into solid angle $d \Omega$:

$$
d N=\angle d \sigma=\angle D(\theta) d \Omega
$$

It follows that

$$
\frac{d \sigma}{d \Omega}=D(0)=\frac{1}{L} \frac{d N}{d \Omega}
$$

This is frequently a more convenient way to think of the difterential cross section. It is the number of particles per unit time seatered into solid angle $d \Omega$, divided by $d \Omega$ and by the luminosity.

To calculate the basic physical quantity seattering cross section there are two ingredients: (1) the amplitude (M) for the process and (2) the phase space available. The amplitude contains all the dynamical information; we calculate it by evaluating the relevant Fcynman diagrams, using the "Feynman rules" appropriate to the interaction in question. The phase space factor contains only kinematical information; it depends on the masses, cnergies, and momenta of the participants.

Suppose that the paricles 1 and 2 have a collision, producing particles $3,4, \ldots \ldots .$. , , so that

$$
\begin{equation*}
1+2 \rightarrow 3+4+\ldots \ldots \ldots+n \tag{4.3.1}
\end{equation*}
$$

The cross section is given by the formula known as the Golden rule [29]:

$$
\begin{align*}
d \sigma=|\mathcal{M}|^{2} & \frac{\hbar^{2} S}{4 \sqrt{\left(q_{1}-q_{2}\right)^{2}-\left(m_{1} m_{2} c^{2}\right)^{7}}}\left[\left(\frac{c d^{3} \mathrm{q}_{3}}{(2 \pi)^{3} 2 E_{3}}\right)\left(\frac{c d^{3} \mathrm{q}_{4}}{(2 \pi)^{3} 2 E_{4}}\right) \cdots \cdots \cdot\left(\frac{c d^{3} \mathrm{q}_{n}}{(2 \pi)^{3} 2 E_{n}}\right)\right] \\
& \times(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-q_{3}-q_{4}-\ldots \ldots \ldots \ldots-q_{n}\right) \tag{4.3.2}
\end{align*}
$$

where $q_{t}=\left(E_{i} / c, \mathbf{q}_{i}\right)$ is the four-momentum of the z-th panicle which carries mass m_{i}, $E_{1}^{2}-\mathbf{q}_{1}^{2} c^{2}=m_{i}^{2} c^{4}$, and S is a statistical factor ($1 / j$) for each group of j identical particles in the final state). (g) is the scattering amplitude. The delta function enforces conservation of energy and momentum.

The above equation determines the cross section for a process in which the threemomenturn of particle 3 lies in the range $d^{3} \mathbf{q}_{3}$ about the value \boldsymbol{q}_{3}, that of particle 4 falls in the range $d^{3} \mathrm{G}_{4}$ about q_{4}, and so on. In a typical situation we study only the angle at which particle 3 emergcs. In that case we integrate over. all the other momenta $\left(\mathbf{q}_{4}, \mathbf{q}_{5}\right.$ \qquad q_{π}), and over the magnitude of q_{3}; what's left gives us $d \sigma / d \Omega$, the differential cross section for the scattering of particle 3 into solid angle $d \Omega$.

Let us now consider wo-body scattering where $1+2 \rightarrow 3+4$. Here

$$
\begin{align*}
d \sigma & =|\vec{M}|^{2} \frac{\hbar^{2} S}{4 \sqrt{\left(q_{1} \cdot q_{2}\right)^{2}-\left(m_{1} m_{2} c^{2}\right)^{2}}}\left[\frac{c d^{3} \mathbf{q}_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{c d^{3} q_{4}}{(2 \pi)^{3} 2 E_{4}}\right] \times(2 \pi)^{4} \delta^{4}\left(q_{1}+q_{2}-q_{3}-q_{4}\right) \\
& =\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{S|\mathfrak{M}|^{2}}{\sqrt{\left(q_{1} \cdot q_{2}\right)^{2}-\left(m_{1} m_{2} c^{2}\right)^{2}}} \frac{d^{3} \mathbf{q}_{3} d^{3} \mathbf{q}_{4}}{E_{3} E_{4}} \delta^{4}\left(q_{1}+q_{2}-q_{3}-q_{4}\right) \tag{4.3.3}
\end{align*}
$$

Now sincc $\left(q_{1} \cdot q_{2}\right)^{2}=\left(\frac{E_{1} E_{2}}{c^{2}}-\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right)^{2}$, we write

$$
\begin{equation*}
\sqrt{\left(q_{1} \cdot q_{2}\right)^{2}-\left(m_{1} m_{2} c^{2}\right)^{2}}=\frac{\left(\mathrm{q}_{1} E_{2}-\mathrm{q}_{2} E_{\mathrm{i}}\right)}{c} \tag{4.3.4}
\end{equation*}
$$

Rewriting the delta function as

$$
\delta^{4}\left(q_{1}+q_{2}-q_{3}-q_{4}\right)=\delta\left(\frac{E_{1}+E_{2}-E_{3}-E_{4}}{c}\right) \delta^{3}\left(\mathbf{q}_{1}+\mathbf{q}_{2}-\mathbf{q}_{3}-\mathbf{q}_{4}\right)
$$

and expressing the outgoing energies in tems or \mathfrak{q}_{3} and \mathbf{q}_{4} i.e.

$$
\begin{gathered}
E_{3}=c \sqrt{m_{3}^{2} c^{2}+\mathbf{q}_{3}^{2}}, \quad E_{4}=c \sqrt{m_{4}^{2} c^{2}+\mathbf{q}_{4}^{2}} \text {, we get } \\
d \sigma=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{S|M|^{2} c}{\left(\mathbf{q}_{1} E_{2}-\mathbf{q}_{2} E_{1}\right)} \frac{d^{3} \mathbf{q}_{3} d^{3} \mathbf{q}_{4}}{E_{3} E_{4}} \delta\left(\frac{E_{1}+E_{2}-E_{3}-E_{4}}{c}\right) \delta^{3}\left(\mathbf{q}_{1}+\mathfrak{q}_{2}-\mathbf{q}_{3}-\mathbf{q}_{4}\right) .
\end{gathered}
$$

performing the \mathbf{q}_{4} integral, we obtain
$d \sigma=\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{S|M|^{2} c}{\left(\mathbf{q}_{1} E_{2}-\mathbf{q}_{2} E_{1}\right)} \frac{\left.\delta\left(E_{1}+E_{2}\right) / c-\sqrt{m_{3}^{2} c^{2}+\mathbf{q}_{3}^{2}}-\sqrt{m_{4}^{2} c^{2}+\left(\mathbf{q}_{1}+\mathbf{q}_{2}-\mathfrak{q}_{3}\right)}\right)}{\sqrt{m_{3}^{2} c^{2}+\mathrm{q}_{3}^{2}} \sqrt{m_{4}^{2} c^{2}+\left(\mathbf{q}_{1}+\mathbf{q}_{2}-\mathrm{q}_{3}\right)}} d^{3} \mathbf{q}_{3}$

Writing $d^{3} \mathrm{q}_{3}=\rho^{2} d \rho d \Omega$ (where ρ is shonthand for $\left|\mathrm{q}_{3}\right|$ and $d \Omega=\sin \theta d \theta d \phi$) we get

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{S c}{\left(\mathbf{q}_{1} E_{2}-\mathbf{q}_{2} E_{1}\right)} \int_{0}^{\infty}|M|^{2} \frac{\delta\left[\left(E_{1}+E_{2}\right) / c-\sqrt{m_{3}^{2} c^{2}+\rho^{2}}-\sqrt{m_{4}^{2} c^{2}+\left(\mathbf{q}_{1}+\mathbf{q}_{2}-\rho\right)^{2}}\right]}{\sqrt{m_{3}^{2} c^{2}+\rho^{2}} \sqrt{m_{4}^{2} c^{2}+\left(\mathbf{q}_{1}+\mathbf{q}_{2}-\rho\right)^{2}}} \rho^{2} d \rho \tag{4.3.6}
\end{equation*}
$$

Let

$$
E \equiv c\left(\sqrt{m_{j}^{2} c^{2}+\rho^{2}}+\sqrt{m_{4}^{2} c^{2}+\left(\mathrm{q}_{1}+\mathrm{q}_{2}-\rho\right)^{2}}\right)
$$

So, equation (4.3.6) becomes

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =\left.\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{S c}{\left(\mathbf{q}_{1} E_{2}-\mathbf{q}_{2} E_{1}\right)} \int_{0}^{\infty}|M| M\right|^{2} \frac{\rho^{2}}{\rho E-c\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right) \sqrt{m_{3}^{2} c^{2}+\rho^{2}}} \delta\left[\left(E_{1}+E_{2}\right) / c-E / c\right] d E \\
& =\left.\left(\frac{h c}{8 \pi}\right)^{2} \frac{S}{\left(\mathbf{q}_{1} E_{2}-\mathbf{q}_{2} E_{1}\right)} \int_{0}^{\infty}| | M\right|^{2} \times \frac{\left|\mathbf{q}_{3}\right|^{2}}{\left|\mathbf{q}_{3}\right|\left(E_{1}+E_{2}\right)-c\left(\mathbf{q}_{1}+\mathbf{q}_{2}\right) \sqrt{m_{3}^{2} c^{2}+\left|\mathbf{q}_{3}\right|^{2}}} \tag{4.3.7}
\end{align*}
$$

In the centre of mass frame $q_{1}=-q_{2},\left|q_{1}\right|=\left|q_{z}\right|$. So that cquation (4.3.7) becomes

$$
\begin{equation*}
\therefore \frac{d \sigma}{d \Omega}=\left(\frac{\hbar c}{8 \pi}\right)^{2} \frac{S|M|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\mathrm{q}_{J}\right|}{\left|\mathbf{q}_{i}\right|} \tag{4.3.8}
\end{equation*}
$$

where $\left|\boldsymbol{q}_{f}\right|$ is the magnitude of either outgoing momenturn and $\left|\boldsymbol{q}_{i}\right|$ is the magnitude of either incoming momentum.

4.4 Geometrical consideration of the Pauli-blocking effect of the medium on NN cross-section

The m-medium NN cross-sections may also be determined from the free NN crosssection. The main ctfect of the medium corrections is due to Pauli-blocking of nucleonnucleon scattering. Paull-blocking prevents the nucleons from scatlering into final occupied states in binary collisions between the projectile and target nuclcons.

The effect of Pauli-blocking for the in-medium in nucleon-nucleus coltisions was first investugated by Goldberger in 1948 and by Clementel and Villi in 1955 on the basis of the geometry for a single nucleon-mucleon collision in momentum space. Their approach is still used in the microscopic descriptions of nucleon-nucleus cross-section with good agreement with the experimental data [41]. We will sec how one can extend their ideas to the study of the collision between two nucleons in the nuclear matter.

Fig. 4.1: Diagram exhibiting the kinematics of the two nucleon collision. The initial momenta of the pair, \mathbf{q}_{1} and \mathbf{q}_{2}, together with $\mathbf{k}_{0}, \mathbf{p}$ and \mathbf{q} are represented by arrows as indicated. The third sphere is the locus of the end points of the vector q. The non-shaded region corresponds to the allowed scattering angle. The cross-hatched region indicates the admissible angles for initial pairs with the same modulus $2 p$ for the total momenturn and the same modulus $2 q$ for the relative momentum.

By nuclear matter collisions we mean two Fermi fluids, one of which is initially al rest and the other is moving against the first with a momentum $k_{b a s}=k_{0}$ per nucleon. Each of these fluids possesses a Fermi motion in its rest frame and the initial state of the system is described by two filled spheres of radii $k_{F 1}$ and $k_{F 2}$, corresponding respectively to the larger and smaller spheres, with the position of their centers separated by k_{0}, as shown in Fig. 4.1. In the initial stage of the system a binary collision between a pair of nucleons will only be possible if they perain to different Fermi fluids. If initially they have momenta \mathbf{q}_{1} and \mathbf{q}_{2}, afler the collision they will possess momenta \mathbf{q}_{1}^{\prime} and \mathbf{q}_{2}^{\prime}, which by the Pauli principle must lie outside both Fermi spheres. These momenta arc also related by the energy-rnomentum conservation laws

$$
\begin{gather*}
\mathbf{q}_{1}+\mathbf{q}_{2}=\mathbf{q}_{1}^{\prime}+\mathbf{q}_{2}^{\prime} \\
\mathbf{q}_{1}^{\prime}-\mathbf{q}_{2}^{\prime}=\hat{\varepsilon}\left|\mathbf{q}_{\mathrm{t}}-\mathbf{q}_{2}\right| \tag{4.4.1}
\end{gather*}
$$

where \bar{E} is a unit vector in the direction of a solid angle $d \Omega$. We observe that the conservation of energy of relative motion in the binary collision is only valid for energies below the pion-threshold $E_{\text {lid }} \approx 300 \mathrm{MeV}$ above which most of the collision cross section will be inelastic due to pion production. Nevertheless, we shall see that for relative motion energy of the Fermi fluids greater than this value, the Pauli pnnciple has a rapidly decreasing importance and the above assumption can be used without major consequences.

In Fig. 4.1 we obscrve that, due to Pauli principle and the conservation laws in Eqn. (4.4.1), the available solld angle $4 \pi \omega_{S}$ denoted by $\Omega_{\text {Pawil }}$, the Pauli-blocking for scatlering of the pair is restricted to the non-hatched region inside the auxiliary sphere of radius $\Psi=\left|q_{1}-q_{2}\right| / 2$. To this solid angle not only a pair but all pairs of nucleons can scatter which lie on the surface of this auxiliary sphere and inside the double-hatched region of Fig. 4.1. This double-hatched region forns a solid angle $4 \pi \omega_{f}$. The calculation of ω_{S} and ω_{I} is of great relevance in our following analysis and we show that it car be translated into a probtem of spherical geometry. We sec that energy and momentum conservation, together with the Pauli principle, restrict the collision phase
space to a complex geometry involving the Fermi-spheres and the scattering sphere. In this sccnario, the in-medium cross-section corrected by Pauli-blocking can be defined as [42]

$$
\begin{equation*}
\sigma_{W W}\left(k_{0}, k_{F 1}, k_{F 2}\right)=\int \frac{d^{\frac{1}{2}} k_{1} d^{3} k_{2}}{\left.\left(4 \pi k_{F 1}^{3} / 3\right)^{\prime} 4 \pi k_{F 2}^{3} / 3\right) \frac{2 q}{k_{0}}} \sigma_{V N}^{f r e c}(q) \frac{\Omega_{P_{\text {ruli }}}}{4 \pi} \tag{4.4.2}
\end{equation*}
$$

where k_{0} is the relative momenturn per nucleon of the nucleus-mucleus collision and $\sigma_{3 i v}^{f i c e}(q)$ is the free nucleon-nucleon cross-section for the relative momentum $2 \mathbf{q}=\mathbf{q}_{2}-\mathbf{q}_{1}$ of a given pair of colliding nucleons and the integratıons are carried out inside different Fermi spheres The factor $\frac{\Omega_{\text {path }}}{4 \pi}$ is the fraction of the solid angle avalable for a specific collision between a nucleon with momentuin q_{1} and another with momentum \mathfrak{q}_{2}. The factor $\frac{2 q}{k_{0}}$ corrects for the flux differences between the laboratory system and a system in which one of the nucleons is at rest. Now we define

$$
\begin{align*}
\mathbf{p} & =\frac{\mathfrak{q}_{1}+\mathbf{q}_{2}}{2} \\
\mathbf{q} & =\frac{\mathfrak{q}_{2}-\mathbf{q}_{1}}{2} \tag{4.4.3}\\
\text { and } \quad \mathbf{h} & =\mathbf{k}_{0}-\mathbf{p}
\end{align*}
$$

After the collision \mathbf{p} and \mathbf{b} stay constant while \mathbf{q} changes only its direction.

Fig. 4.1 shows schematically the geometry of the collision. The allowed scattering angle of the pair conesponds to the non-hatched region of the spherical surface with center in p and radius equal to q. This angle is cqual to $4 \pi \omega_{S}=\Omega_{\text {Pauk }}$, according to the definition. The possible angle of origit of nucleon-paiss with the same momenturn P and same modulus q of the relative momentunn is given by the double-hatched region in Fig.4.1. We call this angle $2 \bar{\Omega}$ and we note that it corresponds to $4 \pi \omega_{I}$ according to the definition. This solid angle is geonetrically originated by the intersection of two hour glass-shaped angle each of which is single-hatched in Fig.4.1 and which we call $2 \Omega_{n}$ and
$2 \Omega_{b}$. These angles are casily related to the momenta defined in Eqn. (4.4.3). This can be verified in Fig. 4.1 from which we infer that

$$
\begin{align*}
& \Omega_{a}=2 \pi\left(1-\cos \theta_{a}\right) \\
& \Omega_{b}=2 \pi\left(1-\cos \theta_{b}\right) \tag{4.4.4}
\end{align*}
$$

where

$$
\cos \theta_{a}=\frac{p^{2}+q^{2}-k_{F l}^{2}}{2 p q}
$$

and

$$
\begin{equation*}
\cos \theta_{b}=\frac{b^{2}+q^{2}-k_{p 2}^{2}}{2 b q} \tag{4.4.5}
\end{equation*}
$$

we then immediately have that

$$
\begin{equation*}
\Omega_{P_{\text {auh }}}=4 \pi \omega_{S}=4 \pi-2\left(\Omega_{a}+\Omega_{b}-\bar{\Omega}\right) \quad \text { where } 4 \pi \omega_{r}=2 \bar{\Omega} \tag{4.4.6}
\end{equation*}
$$

Using Eqn. (4.4.4) in the above equation, we obtain

$$
\begin{equation*}
\Omega_{\text {Paud }}=4 \pi\left(\cos \theta_{a}+\cos \theta_{b}-1\right)+2 \bar{\Omega} \tag{4.4.7}
\end{equation*}
$$

Fig. 4.2: Spherical surface of unit radus over which we traced two circles originated by its intersection with the sold angels Ω_{a} and Ω_{b}. The solid angle $\Omega_{a r}\left(\Omega_{b}\right)$ possesses a symmetry angle $\theta_{a}\left(\theta_{b}\right)$ with respect to the axis $X_{a}\left(X_{b}\right)$. These axes have an angle θ between them. The shaded area is simultaneously inside Ω_{a} and Ω_{b}.

The angle $\bar{\Omega}$ depends on θ_{a}, θ_{b} and on the angle θ between \boldsymbol{b} and p. This situation is shown more clearly in Fig. 4.2 where the axes X_{π} and X_{b} arc respectively parallel to \mathbf{p}
and b. The solid angles Ω_{a}, Ω_{b} and $\bar{\Omega}$ are now given by the corresponding areas inscribed over the surface of a sphere of unit radius. It is clear from this ligure that

Fig.4.3: The projection into a plane of the area Ω_{0} and Ω_{b}, R and T are their geometrical centers. S and P are the intersection points of their contours. All lines joining these points are segments of grat circles over the spherical surface. A_{1} and A_{2} are the areas of two spherical triangles limited by some of these lines.

The case $\left|\theta_{a}-\theta_{b}\right| \leq \theta \leq \theta_{a}+\theta_{b}$, as it appears in Fig. 4.3 needs a nore detanled study. In Fig.4.3, R and T are the centers of these circular areas, S and P are the intersection-points of the circular contours of these areas and Q is the point where the geodesic line joining R and T crosses the geodesic line joining S and P. The points R, P and S define a spherical triangle of area $2 A_{1}$. The poinis S, P and T deline a spherical triangle of area $2 A_{2}$. These triangles have internal angles α and β around R and T, respectively.

The part of the circular area Ω_{a}, which is inside the lines $R S$ and $R P$ is equal to $\frac{a}{2 \pi} \Omega_{a}$. The part of the circular area Ω_{b}, which is inside the lines $T S$ and $T P$ is equal to $\frac{\beta}{2 \pi} \Omega_{b}$. We then easily deduce from Fig. 4.3 that the intersection area between Ω_{μ} and Ω_{b} is

$$
\begin{equation*}
\bar{\Omega}=\frac{\alpha}{2 \pi} \Omega_{\pi}+\frac{\beta}{2 \pi} \Omega_{b}-2 A_{1}-2 A_{2} \tag{4.4.9}
\end{equation*}
$$

To obtain the angle α we use two new axes X_{P} and X_{s} passing by the center of the spherical surface and by the points P and S, respectively. Adopting a polar coordinate system in which X_{a} is the z-axis, the angle will be the difference between the azinuthal angles between X_{P} and X_{s}. In this coordinate system $\left(\theta_{a}, \phi_{P}\right)$ and $\left(\theta, \phi_{b}\right)$ are the polar and azimuthal angles corresponding to the axes X_{p} and X_{s}, respectively. Since the angle between X_{b} ard X_{F} is θ_{b}, then

$$
\begin{equation*}
\cos \theta_{b}=\cos \theta_{a} \cos \theta+\sin \theta_{a} \sin \theta \cos \left(\phi_{b}-\phi_{p}\right) \tag{4.4.10}
\end{equation*}
$$

from which we infer that

$$
\begin{equation*}
\frac{\alpha}{2}=\phi_{b}-\phi_{p}=\cos ^{-1}\left[\frac{\cos \theta_{b}-\cos \theta \cos \theta_{a}}{\sin \theta \sin \theta_{a}}\right] \tag{4.4.11}
\end{equation*}
$$

Following the same lines we can find $\beta / 2$ as given by a similar equation: we must only exchange θ_{0} and θ_{b} in the above result

$$
\begin{equation*}
\frac{\beta}{2}=\cos ^{-t}\left[\frac{\cos \theta_{o}-\cos \theta \cos \theta_{b}}{\sin \theta \sin \theta_{b}}\right] \tag{4.4.12}
\end{equation*}
$$

The arcas A_{1} and A_{2} can be obtained by means of a known theorem for spherical triangles, which states that

$$
\begin{equation*}
\text { (sum of internal angles) }-\pi=\frac{\text { area }}{R^{2}} \tag{4.413}
\end{equation*}
$$

where R is the radius of the spherical surface over which the triangle lays and in our case is equal to unity. For the area A_{1} we deduce

$$
\begin{equation*}
\frac{a}{2}+\xi-\frac{\pi}{2}=A_{1} \tag{4.4.14}
\end{equation*}
$$

where ξ is the angle between the lines $Q S$ and $R S$. In Fig. 4.4 we show how this area arises from the intersection of the great circles inscribed over the spherical surface.

Fig.4.4: Three great circles over the spherical surface and a spherical triangle of and A linsited by the segments of their intersections. With respect to a conveniently chosen coordinates-axis system, R lics on the $X Z$-plane and has polar coordinate O_{0}, S lies on the $X Y$-planc and has azimuthal coordnates ϕ_{0}. The angle between the lines joining R and S to the origin is θ_{a}. From this picture one dcduces the internal angles $\frac{a}{2}$ and ξ of the spherical triangle as functions of θ_{0}, ϕ_{0} and θ_{6}.

Now the z-axis is chosen so that the line $Q S$ hes on a great circle in the λY-plane and the line $R Q$ lies on a greal circle in the plane $X Z$. The angle ξ will be given by the scalar product between a unitary vector perpendicular to the great circle which contains the lines $R S$ and a unitary vector in the Z-direction. In terms of the auxilary angles O_{0} and ϕ_{0}, we obtain

$$
\begin{equation*}
\xi=\cos ^{-1}\left[\frac{\sin \theta_{0}^{\prime} \sin \phi_{0}}{\sqrt{\cos ^{2} \theta_{0}+\sin ^{2} \theta_{0} \sin ^{2} \phi_{0}}}\right] \tag{4.4.15}
\end{equation*}
$$

Taking the scalar product of the same unit vector in the Y-direction, we find

$$
\begin{equation*}
\frac{\alpha}{2}=\cos ^{-1}\left[\frac{\cos \theta_{0} \cos \phi_{0}}{\sqrt{\cos ^{2} \theta_{0}+\sin ^{2} \theta_{0} \sin ^{2} \phi_{0}}}\right] \tag{4.4.16}
\end{equation*}
$$

The angle θ_{u} is also related with θ_{0} and ϕ_{0} by

$$
\begin{equation*}
\cos \theta_{a}=\sin \theta_{e} \cos \phi_{0} \tag{4.4.17}
\end{equation*}
$$

$$
{ }^{4} \theta+{ }^{\nu} \theta>\theta>\left.\right|^{4} \theta-{ }^{v} \theta \mid \quad 10 \mathrm{j}
$$

$$
\begin{aligned}
& {\left[\frac{{ }^{\circ} \theta \text { u!s } \theta \text { u!s }}{{ }^{0} 0 \operatorname{sos} \theta \operatorname{son}-{ }^{9} 0 \operatorname{sos}}\right]{ }^{1-} \operatorname{sen}^{5} \theta 500-}
\end{aligned}
$$

$$
\left[\frac{{ }^{9} \theta \mathrm{uls} \theta \mathrm{uls}}{{ }^{4} \theta \operatorname{sos} \theta \operatorname{son}-{ }^{5} \theta \operatorname{son}}\right]{ }_{1-} \operatorname{son}={ }^{\mathrm{t}} \mathrm{y}
$$

4.5 Density dependence of in-medium NN cross scctions:

The nucleon-nucleon cross section is a fundamental input in theoretical calculations of nucleus-nucleus collisions at intermediate and high energies ($\varepsilon / A \geq 100 \mathrm{MeV}$). Onc expects to obtain information about the nuclear equation of state by studying global collective variables in such collisions [43]. In previous theoretical studies of heavy-ion collisions at intermediate energies ($\varepsilon / A \simeq 100 \mathrm{MeV}$) the nucleon-nucleon cross-scetion was multiplied with a constant scaling factor to account for in-medium corrections [44, 45]. As pointed out in [46], this approach fails in low-density nuclear matter where the in-medium cross-section should approach its free-space value. A more realistic approach uses a Taylor expansion of the in-medium cross-section in the density variable.

One obtains [47]

$$
\begin{equation*}
\sigma_{N i}=\sigma_{N}^{\text {free }}(1+\alpha \bar{\rho}) \tag{4.5.1}
\end{equation*}
$$

where $\bar{\rho}=\rho / \rho_{0}, \rho_{0}$ is the normal nuclear density and α is the logarithmic derivalive of the in-medium cross section with respect to the density, taken at $\rho=0$,

$$
\begin{equation*}
\alpha=\left.\rho_{0} \frac{\partial}{\partial \rho}\left(\ln \sigma_{N i}\right)\right|_{\rho=0} \tag{4.5.2}
\end{equation*}
$$

This parametrization is motivated by Brucekner G-matrix theory and is basically due to Pauli-blocking of the cross-section for collisions at intermediate encrgics [48]. Values of a between -0.4 and -0.2 yield the best agreement with involved G-matrix calculations using realistic nucleon-nucleon interactions [48].

In this scetion, we give a simple and transparent derivation of the lowest-order expansion of the in-medium nucleon-nucleon cross section in terms of the nucleon density. Here two approximations can be done: (a) on average, the symmetric situation in which $k_{F 1}=k_{F 2} \equiv k_{F}, q=k_{0} / 2, p=k_{0} / 2$ and $b=k_{0} / 2$, is favoured; (b) the free nucleonnucleon cross section can be taken outside of the intestal in Eqn, (4.4.2). Both approximations are supported by the studies of [49]. The assumption (a) implics that $\Omega_{c}=\Omega_{b}=\bar{\Omega}$. So we oblain from Eqn. (4.4.6)

$$
\begin{align*}
\Omega_{\text {faut }}= & 4 \pi-2 \Omega_{a} \\
= & 4 \pi-4 \pi\left(1-\cos \theta_{a}\right) \\
& =4 \pi\left(1-2 \frac{k_{F}^{2}}{k_{0}^{2}}\right) \tag{4.5.1}
\end{align*}
$$

Furhermorc, assumption (b) implies that

$$
\begin{aligned}
\sigma_{N N}\left(k_{0}, k_{F}\right) & =\sigma_{j N}^{\text {free }}\left(k_{0}\right)\left[\frac{d^{3} k_{1} d^{3} k_{2}}{\left(4 \pi k_{F 1}^{3} / 3\right)\left(4 \pi k_{F 2}^{3} / 3\right)} \frac{\Omega_{\rho_{\text {guit }}}}{4 \pi}\right. \\
& =\sigma_{N N}^{\text {free }}\left(k_{0}\right) \frac{1}{\left(4 \pi k_{F 1}^{3} / 3\right)\left(4 \pi k_{F 2}^{3} / 3\right)} \int_{0}^{k F_{1}} d^{3} k_{1} \int_{0}^{k_{F} 2} d^{3} k_{2} \frac{\Omega_{\rho_{\text {ant }}}^{4 \pi}}{4 \pi}
\end{aligned}
$$

$$
6
$$

$$
\begin{equation*}
=\sigma_{N \psi}^{f r v e}\left(k_{0}\right) \frac{\Omega_{P a u l i}}{4 \pi}=\sigma_{N N}^{f v e}\left(k_{0}\right)\left(1-2 \frac{k_{p}^{2}}{k_{0}^{2}}\right) \tag{4.5.2}
\end{equation*}
$$

The above equation shows that the in-medium nucleon-nucleon cross scction is about $1 / 2$ of its free value for $k_{0}=2 k_{F}$, i.e. for $\varepsilon / A \simeq 150 \mathrm{MeV}$, in agreement with the numerical results of [49]. The connection with the nuclear densitics is accomplished trough the local density approximation, which relates the Fermi momenta to the local densities as

$$
\begin{equation*}
k_{f}^{2}=\left[\frac{3}{2} \pi^{2} \rho(r)\right]^{2 / 3}+\frac{5}{2} \dot{\xi}((\nabla \rho) / \rho]^{2} \tag{4.5.3}
\end{equation*}
$$

where $\rho(r)$ is the sum of nucleon densities of each colliding nucleus at the position r. The second term is small and amounts to a surface comection, with ξ of the order of 0.1 [49]. Neglecting the second term of Eqn. (4.5.3) and insering it in Eqn. (4.5.2), together with the relations $E=\hbar^{2} k_{0}^{2} / 2 m_{N}$ and $\bar{\rho}=\rho / \rho_{0}$ gives us

$$
\begin{align*}
\sigma_{N W}(E, \rho) & =\sigma_{N K}^{f w c e}(E)\left(1+\frac{-\hbar^{2}\left[\frac{3}{2} \pi^{2} \rho_{0}\right]^{2 / 3}}{E m_{N}} \bar{\rho}^{2: 3}\right) \\
& =\sigma_{N N}^{f r e s}(E)\left(1+\alpha^{\prime} \bar{\rho}^{2 / 3}\right) \quad \text { where } \quad \alpha^{\prime}=\frac{\hbar^{2}\left[\frac{3}{2} \pi^{2} \rho_{0}\right]^{2 / 3}}{E m_{N}} \tag{4.5.4}
\end{align*}
$$

Taking $\rho_{0}=.18 \mathrm{fm}^{-3}$ and the nuclcon mass $m_{N}=1.67265 \times 10^{-24} \mathrm{gm}$ we obtain

$$
\begin{equation*}
\alpha^{\prime}=-\frac{79.76}{E(\mathrm{MeV})} \tag{4.5.5}
\end{equation*}
$$

where E is the energy per nucleon ε / A.

The above equation shows that the local density approximation leads to a density dependence proportional to $\bar{\rho}^{2 / 3}$. The Pauli principle yields a $1 / E$ dependence on the bombarding encrgy. This behaviour arises from a larger phase space available for nucleon-nucleon scattering with increasing encrgy. The nucleon-nucleon cross section at $E \leq 300 \mathrm{MeV}$ decreascs with E approximately as $1 / E$. Thus we expect that, in nucleusnucleus collsions, this energy dependence is flattened by the Pauli correction, i.e. the in medium nucleon-mucleon cross section is flatter as a function of E, for $E \leq 300 \mathrm{MeV}$, than the free cross section. For higher valucs of E the Pauli blocking is loss important and the free and in-modium nucleon-nucleon cross-sections are approximately equal. These conclusions are in agreement with the experimental data for nucleus-nucleus reaction cross-section [50] Here we have considered the encrgies up to 300 MeV . At encrgies above 300 MeV , inelastic channels enter into the picture. We note that, for $E=150-300$ MeV , and $\rho \approx \rho_{0}$ Eqn. (4.5.5) yields a coefficicnt α^{\prime} between -0.2 and -0.5 . This is in excellent agreement with the findings based on the $B U U$ (Boltzmann-UehlingUhenbeck) [46] calculations, primanly intended to reproduce the experimental data on intermediate energy nucleus-nucleus collisions.

Conclusion

In chapter one, we have given a brief review of the meson theory, nuclear force and the properties of the nuclear matter structure.

In chapter two, we have derived the one-boson exchange Bonn potentials using the Feymman rules for the scatlering of free nucleons for various boson fields such as scalar, psuedoscalar and vector fields.

In chapter three, we have first discussed the non-relativistic Brueckner G-matrix theory for nuclcon-nucteon scattering in the nuclear matter, where the in-medium effect has been described by the Pauli project operator. For a relativistic extension of Brueckner theory we have considered the Thompson equation which is a 3-dimensional reduction of the 4 -dimensional Bethe-Salpeter equation describing the free NN interaction. Then, in the framework of Dirac-Bnucekner approach for the in-medium effect, we have derived the relativistic G-matrix equation, where the $N N$ interaction has been described by the one-boson-exchange Born potentials and the solution of the Dirac's relativistic wave equation has been taken into account.

In Chapter tour, we have discussed a method: the matrix inversion method to solve the G-matnx equation and hence to study the saturation properties of the nuclear matter as well as to calculate the in-medum cross-sections directly from the G-matrix. We have also discussed the in-medium NN eross-sections in an alternative way in terms of the free NN cross-sections obtained from the Golden Rule, where the in-medium corrections are obtained from the geometrical considerations of the Pauli blocking effect.

Finally, we have considered some approximations in this altemative approach. In the simplest case the lowest-order correction of the density dependence of the $1 n$-medurn NN cross-sections imply an $1 / E$ energy dependence of the density dependent term. This shows that for Ligh energy values the Pauli-blocking i.e. the medium effect is loss important and the free and in-medium NN cross-section becomes approximately equal.

To conclude, we may say that this work may be considered as a basis for studying the nuclear strucrure properties and for calculating the in-medium NN cross-sections in two altemative ways: One from the Dirac-Brueckner G-matrix directly which involves the different Bonn potentials for the NN interaction and the other from the free NN crosssection including the Pauli blocking for the in-medium eflect, where all the necessary derivation and formulation have been done

So, in future, this work may be extended to a numerical work for computation and comparison of the in-medium NN cross-sections in two altemative ways. It may also be extended for calculation of the single paricle energy as a function of density in the nuclear medium and hence to study the saturation properies of the nuclear matter.

References

[1] K. A. Brueckner, C. A. Levinson and II. M. Mahmoud, "Two-Body Forces and Nuclear Saturation. I. Central Forces", Phys. Rev. 95, No.1, 217 (1954).
[2] H. A. Bethe, "Nuclear Many-Body Problem", Phys. Rev. 103, 1353 (1956).
[3] M. I. Haftel and F. Tabakin, "Nuclear Saturation and the Smoothness of NuclconNucleon Potentials", Nucl. Phys. A158, 1 (1970).
[4] B. D. Day, "Elements of the Brueckner-Goldstone Theory of Nuclear Matter", Rev. Mod. Phys. 39, 719 (1967),
[5] B. D. Day, "Exact Treatment of the Coulomb Exchange Interaction in Heavy-Ion Collisions and its Effect on Elastic ${ }^{16} \mathrm{O}^{16} \mathrm{O}$ and $\mathrm{a}^{-18} \mathrm{O}$ Scattering", Phys. Rev. C24, 1023 (1981).
[6] I. Bombaci and Lombardo, "Asymmetric Nuclear Matter Equation of State", Phys. Rev. C44, 1892 (1991).
[7] K. Holinde, "Two-Nucleon Forces and Nucleon Matter", Phys. Rep. 68, 121 (1981).
[8] R. Machlcidt, "The Meson Theory of Nuclear Forces and Nuclear Structure", Adv. Nucl. Phys. 19, 189 (1989).
[9] B. ter Haar and R. Malfliet, "Equation of State of Dense Asymmetric Nuclear Matter", Phys. Rev. Lett. 59, No. 15, 1652 (1987).
[10] L. D. Miller and A. E. S. Green, "Relativistic Self-Consistent Meson Field Theory of Spherical Nuclei", Phys. Rev. C 5, No.1, 241 (1972).
[11] L. G. Amold, B. C. Clark and R. L. Mercer, "Relativistic Optical Model Analysis of Mcdium Energy P-4 He Elastic Scattering Experiments", Phys. Rev. C 19, No. 3, 917 (1979)
[12] M. R. Ansatasio, L. S. Celenza, W. S. Pong and C. M. Shakin, "Relativistic Nuclear Structure Physics", Phys. Rep. 100, No. 6, 327 (1983).
[13] G. F. Bersch and S. Das Gupta, "A Guide to Microscopic Models for Internediate Encrgy Heavy Ion Collisions", Phys. Rep. 160, No.4, 190 (1988).
[14] G. E. Brown, V. Koch and M. Rho, "The Pion at Finite Temperature and Density", Nucl. Phys. A535, 701 (1991).
[15] E. E. Salpeter and H. A. Bcthe, "A Relativistic Equation for Bound-State Problems", Phys. Rev. 84, No. 6, 1232 (1951).
[16] M. Lacombe, B. Loiseau, J. M. Richard R. Vinh Mau, J. Cote, P. Pircs and R. de Tourcil, "Parametcrization of the Paris N-N Potential", Phys Rev. C21, 861 (1980).
[17] M. H. Partovi and E. L. Lomon, "Field-Theoretical Nucleon-Nucleon Potential", Phys. Rev. D2, 1999 (1970).
[18] R. Blankenbecler and R. Sugar, "Linear Integral Equations for Relativistic Multichannel Scattering", Phys. Rev. 142, No. 4, 1051 (1966).
[19] R Machleidt, K. Holinde and C. Elster, "The Bonn Meson-Exchange Model for the Nucleon-Nucleon Interaction", Phys. Rep. 149, 1 (1987).
[20] H. P. Stapp, T. J. Ypsilantis and N. Metropolis, "Phase-Shift Analysis of 310 MeV Proton Proton Scattcring Experiments", Phys. Rev. 105, 302 (1957).
[21] J. L, Gammel and R. M. Thaler, "Spin-Orbit Coupling in the Proton-Proton Interaction", Phys. Rcv. 107, No.1, 291, (1957).
[22]. J. L, Gammel and R. M. Thaler, "Spin-Orbit Coupling in the Neutron-Proton Interaction"', Phys. Rev, 107, No.5, 1337 (1957).
[23] Atomic Data and Nuclear Data Tables 17, No. 5-6, p 67-9I, (1976).
[24] X. Campi and D. W. L. Sprung, "Spherical Nuclei in the Local Density Approximation", Nucl. Phys. 194, 401 (1972).
[25] G. Fai and J. Nemeth, "Density Dependent Effective Interactions in Finite Nuclei (II)", Nucl. Phys. A208, 463 (1973).
[26] C. J. Horowitz and B. D. Serot, "Self-Consistent Hartree Description of Finite Nuclei in a Relativistic Quantum Field Theory", Nucl. Phys. A368, 503 (1981);
[27] M. Waroquier, K. Heyde and G. Wencs, "An effective Skymne-Type Interaction for Nuclear Structure Calcılations", Nucl. Phys. A404, 269 (1983);
[28] A. K. Dutta, J. P. Arcoragi, J. M. Pearson, R. Behrnan and F. Tondeur, "ThomasFerni Approach to Nuclear Mass Fomula (1). Spherical Nuclei", Nucl. Phys. A458, 77 (1986).
[29] D. Griffiths, "Introduction to Elementary Particles", pl89, John Wiley \& Sons.INC.
[30] S. Weinberg, "Dynamical Approach to Current Algebra", Phys. Rev. Lett. 18, No.5, 188 (1967).
[31] G. E. Brown, "Mesons in Nuclei", Vol.-I, p.330, North Holland, Amsterdann (1979).
[32] H. A. Bethe, B. H. Brandow and A. G. Petshek, "Reference Spectrum Method for Nuclear Matter", Phys. Rev., 129, 225 (1963)
[33] R. Rajaraman and H. A. Bethe, "Three-Body Problem in Nuclear Matter", Rev. Mod. Phys. 39, 745 (1967).
[34] G. Q. Li, R. Machleidt and R. Brockmann, "Propertics of Dense Nuclear and Neutron Matter with Relativistic Nucleon-Nucleon Interactions", Phys. Rev. C 45, No. 6, 2782 (1992).
[35] R. H. Thompson, "Three-Dinensional Bethe-Salpeter Equation Applied to the Nucleon-Nuclcon Interaction", Phys. Rev. D1, No. 1, 110 (1970).
[36] M. R. Anastasio, L. S. Celenza and C. M. Shakin, "Relativistic Effects in the BetheBrueckner Thoery of Nuclear Matter", Phys. Rev. C23, No. 5, 2273 (1981).
[37] C. J. Horowitz and B. D. Serot, "Two-Nucleon Correlations in a Relalivistic Theory of Nutclear Matter", Phys. Lett. 137B, No. 5-6, 287 (1984).
[38] R. Brockınann and R. Machleidt, "Nuclear Saturation in a Relativistic Brucekner-Hartrec-Fock Approach", Phys. Lett. 149B, No. 4-5, 283 (1984).
[39] B. ter Haar and R. Malfict, "Pion Production, Pion Absorbption and Nucleon Properlies in a Dense Nuclear Matter: Relativistic Dirac-Brueckner Approach at Intermediate and Iligh Energies", Plys. Rev. C36, No. 4, 1611 (1987).
[40] B. ter Haat and R. Malfliet, "Nucleons, Mesons and Deltas in Nuclear Matter: A Relativistic Dirac-Brueckner Approach", Phys. Rep. 149, No. 4, 207 (1987).
[41] N. J. Digiacomo, R. M. Devries and J. C. Peng, "Microscopic Description of Nucleon-Nucleus Total Reaction Cross-Sections", Phys. Rev. Lett. 45, 527 (1980).
[42]. C. A. Bertulani, "Yleavy Ion Reaction Cross-Sections", Braz. J. Phys. 16, No.3, 380 (1986).
[43] H. H. Gutbrot, A. M. Poskanger and H. G. Ritter, "Plastic Ball Experiments", Rep. Prog. Phys. 52, 1267 (1989).
[44]. G. F. Bertsch, W. G. Lynch and M. B Tsang, "Transverse Momentum Distributions in Intermediate-Energy Heavy-Ion Collisions", Phys. Lett. B 189, No.4, 384 (1987).
[45] W. Baucr, "Nuclear Stopping at Intermediate Bearn Energies", Phys. Rev. Lett. 61, No.22, 2534 (1988).
[46]. G. D. Westfall et al., "Mass Dependence of the Disappearance of Flow in Nuclear Collisions", Phys. Rev. Lett. 71, No.13, 1986 (1993).
[47]. D. Klakow, G. Welke and W. Bauer, "Nuclear Flow Excitation Function", Phys. Rev. C 48, No.4, 1982 (1993).
[48]. T. Alın, G. Röpke, W. Bauer, F. Daflin and M. Schmidt, "The In-Medium NucleonNucleon Cross-Section and BUU Simulations of Heavy-Ion Reactions", Nucl. Phys. A587, 815 (1995).
[49]. M. S. Hussein, R. A. Rego and C. A. Bertulani, "Microscopic Theory of the Total Reaction Cross-Section and Application to Stable and Exotic Nuclei", Phys. Rep. 201, No. 5, 279 (1991).
[50]. S. Kox, A Gamp, C. Perrir, J. Arvicux, R. Bcrholet, J. F. Bruandet, M. Buenerd, Y. E1 Masni, N. Longequene and F. Merchcz, "Transparency Effects in Heavy-Ion Collisions Over the Energy Range 100-300 MeV/Nucleon", Phys. Lett. B159, No.1, 15 (1985).

