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Abstract

It is the purpose of this thesis to provide a basis and a realistic starting point for

systematic relativistic nuclear structure calculations in future. A family of realistic and

quantitative nucleon-nucleon (NN) interaction potentials are constructed which are

appropriate for application to relativistic NN scattering in the nuclear maller. The

Brucekner G-Matrix theory in non-relativistic case is described and the theory is

extended to relativistic Dirac-Brueckner formalism for the scattenng of two nucleons in

nllC1car medium. The method of matrix inversion is also described for solving the Dirac-

Brueckner G-matrix eq"tation and hence finding the :NN cross-sections in nuclear

medium.

Finally, the dcpendence of NN cross-sections on thc dcnsity of the nuclear medium is

discus<;ed by gcomctrical considerallon oflhe Pauli blocking effect of the mectll.lmon frcc

NN cross-sections, Some simple approximations show that for hIgh energies the

in-medium effect is less important and the frec and in-medium 1\'N cross-sections hccomc

approximately equal.
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Introduction

One of the fundamental goals of theoretical nuclear physics is to explain consistently the

properties of nuclear matter, finite nuclei, and nuclear reactions (nue leon-nucleus as well

as nucleus-nucleus collisions) with one realistic nucleon.nucleon (NN) interaction that

has a solid theoretical basis and describes the two-body system accl.lrately_ First attempts

towards thIs aim were based on the simplest model for the atomic nucleus: nucleons

obeying the nonrelativistic Schrodinger equation interact through a two-body potential

that fits (he low-energy NN scattering data and the properties of the dellteron.

HIstorically, the first attempt was made by Heisenberg's student Euler who calculated the

properties of nuclear matter in second-oruer perturbation theory assuming nucleons

interacting via a lwo-body potential of Gaussian shape. When the singular nature of the

nuclear potential at shorl distances ("hard core") was realized, it became apparent that

conventional perturbalion theory is inadequate. Special many-body methods had to be

worked out. Brueckner, Levinson, and Mahmoud [1] initiated a method, which was

further developed by Bcthc [2J,

Tn 1960s substanlial advances in the physical underslanding of Bruedrner theory were

made due to the "ork by Bethe and co-"orkers, Systematic calculalions of (he properties

of nuc1ear mailer applying Brucekner theory slarted in the late 19GOs and continucd

through the 1970s, The work wa.> done in the framework of Brueckner theory [1] hy

solving the Bcthe-Goldslone e'-[lIation, which yields an effective NN interaction in the

medium [2-6]. The predictions by the nonrelativislie model for nuclear salurallon with a

variely of l\'l\' interactions show a systematic behavior: in an energy versus densily plol

the salurallOn points are located along a band, the so-called "Co ester band" [7J, Wh'eh

does not meet the empincal area.

Approaches discussed so far were bascd on the simplest model for the atomic l1Uc1ells:

NlIc1cons obeying (he non-relativistic Schro(!mger equation interact through a two-body

potential that fit, low-cnergy NN scattering data and the properlies of thc dcuteron. The

failure of this model to explain nuclear saturation indicates that we may have to extend

•



the model. One possible way is to include degrees offreedom other than the nucleon, The

meson theory of the nuelear force suggests to consider, particularly, meson and isobar

degrees of freedom. Characteristically, these degrees of freedom lead 10 medium effects

on the nuclear force when inserted inlO the many-body problem as well as many-nlleleon

force conlnbulions. In general, the medium effects are repulsive, whereas lhe many-

nucleon force contributions are aUractive. Thus there are large cancellations and lhe net

result is very small, The density dependence of these effects/contributions is such that the

saturation properties of nuclear matter are not improved [8]. One of the most important

developments in lhe extension of nuclear many-body theory is the replacemenl of the

non"rclativislie Schrodinger equation with lhe relativistic Dirac equation to describe the

single-particle motion in the medium [9].

ln the 1970s a relati~islie approach to nuclear slructure was developed by Miller and

Green [I OJ.They studied a Dirac-Hartree model for the ground stale of nuclei, which was

able to reproduce the binding cnergies, the root-mean-square radii, and (he single-particle

levels, particularly the spin-orbit splittmgs. Their potential cons1sted of a strong

(altractive) scalar and (repliisive) vector component. At about the same time, Arnold,

Clark, and Mercer applied a Dirac equation contaming a scalar and a vector field to

proton"nucleus scattering [11]. The mosl significant result of this Dirac phenomenology

is the quantitative fit of spin observables, which are only poorly described by the

Sehrodinger equation.

Inspired by this success, a relativistic exlension of Brueckner theory has been suggestcd

by Shokin and co-workers [12J, frequently called the D1rac-Brueckner approach. The

advanlage or a BnlCekner lhe(lry is that the free NN inleraetion is used; thus there arc no

parameters in the force which are adjusted in the many-body problem The esscntial poinl

of the Dirac-Bweekner approach 1$ 10 use the Dirac equation for the single-parliele

motion in the nuclear mmter, One of the main aspecls to this problem is that one needs a

realistic 1\TN interaction potential which could be constructed in terms or meson-baryon

interactions. Infact, the only quantitative NN interactions available up unlil now are based

upon lhe idea of meson exchange; two well known example are the Paris poteutial and

the Bonn pOlentials [8). In mosl calculations a one-boson-exchange potentials are used

for frce NN inleraction. The common featurc of all Dirac-Brueckner results is that a
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(repulsive) relativistic many-body effect is obtained which is strongly density dependent

such that the empirical nuclear matter saturation can be explained.

It is thus reasonable to apply and extend this approach to other domains of nuclear

physics. An important application is the study of the properties of dense nuclear matter.

These properties are important for partie1e physics, as wcll as nuclear physics_

Experimentally, intermediate-energy heavy-ion reactions offer the unique opportunity to

obtain a piece of dense nuclear matter in the laboratory. However, for the analysis of

these reactions the properties of nue1ear matter at high density are needed WhlChcan only

be oblamed from theoretical investigations [13]. In this sense, the theoretical

in~estigation of the properties of dense nuclear matter, as well as the properties of

hadron5 in the dense medium [14J, is of great importance.

In this work, we base our investigation on the Botlll meson-exchange model for the free

NN interaction, the Dirac-Bweckner approach for the nue1eon-nue1eon (NN) scattering

and the NN scattering cross-sections in the nuelear matter, 1n our work, we are concerned

with elastic in-medium h'N scattering which is the most important two body process in

nucleus-nue1eus collisions at incident energy below 300 MeV per nue1eon. The "ork is

designed in the following fastion:

In chapter one, we have a detail discussion on meson theory, nue1ear force and nuclear

structure properties (saturation density and energy). The Feynman rules for finding the

amplitude for the scaUering of two nucleons is also discussed. In chapter two, the

Fcynman rules are used to derive the one-boson exchange Bonn potentials for vanous

boson fields.

Tn chapter three, we first discuss the Brueckner non-relativistic theory for the scattering

uf two nucleons in the nuclear matter. Secondly, we extend the theory to the relativistic

ease in the Dirac-Brueckner approach, Lastly, in chapter four, 1\"0 methods for findmg

the in-medium cross-sections for the scattering of two nucleons in the nuclear matte,

along with the density dependence of the N1\' cross-sections are discussed in detail.

•



Chapter-l

Nuclear force and nuclear matter

Nowadays it has become customary in nuclear physics to denote by "tradition" the

approach that considers nucleons and mesons as the relevant degrees of freedom It is the

purpose of this chapter to review this traditional approach in the area of nuclear forces

and nuclear struchlre, We look more closely into meson theory, to llnderstand, lJl

qualitative terms, whal the meson exchange picture can predict for the NN system,

In section one, we review the history of meson theory and nuclear fD[Ce, Yukawa's

massive particle exchange, which gives the birth of particle physics, is discussed in

section ("'0. In section three, we give a briefreview on some important empilical fealLires

of the ll11cleon force, which helps us to better asses the rclevance of various meSOn

exchange contrihutions. Finally, a discussion on the nuclcar matter theory, which

explains the empirical propcrties of nuclear stwctwre is given in section four.

1.1 Meson theory and nuclear force:

The atomic nucleus was first discovered by Rutherford in the year of 1911. Thompson

investigated the mas; of nueleus and it was first assumed that nuelear modcls constitute

of protons and electrons. In 1932 the neutron was discovered by Chad",ick and this

suggested that thc neutron and proton were thc fundamental constituents ofnuclci,

But a qucstion then ~rises, what holds the nuclcus together? After all, the positively

charged protons should repel one anothcr violently, packed together as they arc in such

close proximity. Evidently there must be some other force, 1l10repO\Hrflll than the force

of electrical rcpulsion that hinds the protons and neutrons together, So it appeared

compelling to assume the existence of a new force acting bctween neutrons and protons

which binds the nucleus called the strong force OFnuclear fOFer, which is of very short

range about the size of the nuc1cus itself. Heiscnberg (1932) and Majorana (1933)



introduced the concept of so called exchange forces, which could explain nuclear

saturation.

The !lrst significant theory of the strong force was proposed by Yukawa in 1934. Yukawa

assumed that the proton and neutron are attracted to one another by some sort of ficld,

just as the electron is attracted to the nucleus hy an electric field. Yukawa's original

theory was in classical field theory. Shortly after he reconsidered his proposal in

quanti;-;ed Jicld theory. Since the short range of the force indicated that the mediator

"ould be rather heavy; Yukawa sllggested that the mass of its quantum should be 300

times that of the electron. Yukawa's particle came to be kno\vn as the meson (meaning

middle weight) [In the same spirit the electron is called a lepton (light-weigh!), whereas

the proton and neutron are baryons (heavy-weight)]. The massive character of the particle

to be exchanged between the lluclear constituents would furnish the resultmg force with a

finite range desirable to account for nuclear saturation.

The well-known fundamental interactions in those days were the Coulomb mteraction

and the gnlVltational loree, both having mathemalically very simple form. Naturally, one

expected something comparably simple for the nuclear potential, for example, just one

Yl1kawa fl1netion: a exp(-flr)!r (with r the distance between the t"o nucleons and

J.1-=mclh, where //I denotes the mass of the exchanged particle). However, even just

phenomenologically, the nuclear force turns out to be much more complicated, mainly

because of its dependence on the spins of the two in!eraetmg nucleons. In additio~, ficld

theory soon ran into fundamental mathematical diflieulties.

In 1937 a meso" was found in cosmic ray, the //IUO". It was interpreted as the particle

predicled hy Yukawa, patticl1larly it, mass ('" 106 MeV) appeared about right with regard

to the range of the nuclear force and therefore, this discovery aroused considerable

interest in Yukawa's idea. Kemmer felt inspired to suggest a rich variety of possible

meson fields including psel1dosealar, axial-vector, and tensor, aller Proea, in 1936 had

already considered veelor fields. Also a sjmmetric theory was proposed by Kemmer and

Bhaba to account for the known hypothesls of charge independence. This suggestlon was

made in spite of the fact that experimentally only eharged "mesons"(namely, fl+ and Ji-)
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were known. [n lowest order, these ClIllliot be exchanged between like nucleons and

therefore seriously violate charge independence. It was also suggested that the (wo-meson

exchange contribution could counterbalance this substantial inequality. The discovery of

the quadrupole moment and the measurement of the magnetic moment of the deuteron by

Rabi and co-workers in 1939 motivated immediately the development of more

sophisticated models. Thus, it was realized that (isovector) vector fields create a tensor

force giving rise to a quadrupole moment in the deuteron but with the wrong Slgn as

compared to experiment. The problem was soall overcome by also including

pseuuoscalar fields. Pauli concllldcd [Will the fact that the pscudoscalar "symmetric"

theory predicted the right sign for the quadrupole moment. This was the most correct

theory, long before the pion was found and its spin and parity were detenmned. Also

quite early it was recognized, that vector and scalar fields create a spin-orbit force. In

1947, Conversi, Pancini, and Pieeioni showed that the muon docs not interact strongly

with nuclei and therefore, according to the notation introduced around 1900, it is not a

meson: It is a lepron. That same year, a real meson with a mass of about 140 MeV, the

pion, was found in a cosmic ray by Occhialini and collaborators.

Quite understandably, the new reality of a strongly interacting meson motivated vigorous

theoretical efforts to describe the nuclear force, now, by thepioIJ only. In 1951, Taketani,

Nakanlura, and Sasaki presente<.!their suggestion to subdn'ide the nuclear force into three

regions. They distinguish a classIcal (long-range, r<:2 fm; r denotes the distance between

the centers of hlio nucleons), a dynamical (intermediate range, I fm:'> r:'> 2fm), and a

phenomenological or core (short-range, r:'> Ifm) region. In the classical region the

longest-range part of the potential, namely, the one-pion exchange (OPE) is dominant. In

the intermediate range the two-pion e:>.change(TPE) is most important and finally, in the

core region many different processes playa role. This classification has becn utmost

theoretical and of practical importance. ]t allows a step-by-step exploration of the two-

nucleon interaction and pernlits a di [ferent derivation for different parts of the force.

In the decade undcr consideration, the one-pion exchange became experimentally well

established as the long-range part of the nnclcar force but the two-pion exchange evolves

in an opposite way. It was difficult to evalnate and for a long time it did not even do well

•
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m correlatmg data. The many efforts of pion-theoretical potentials of the 1950s are

usually divided into two groups; The Taketani-Machida-Onuma and the Brueckner-

Watson types. Tn the former ease an S matrix was evaluatcd directly from meson field

theory, from which in tum a potential was derived. In contrast the latter method was

based on an expansion in the particle number and derived a polential directly.

l'ortunately, there was also another line of research on the nuclear force during the 1950s;

and it was the attempt to give a simple phenomenological description of the mlClear

potential. The basis for the success of the phenomenological line for research on the

nuclear force was the substantial progress in the NN scattering experiments of this period.

From the properties of nuclear many-body system precisc and detailed mformation

regarding the force cannot be gained. Effective runge theory had made clear that from

low-energy data one cannot learn much more than what can be parameterized in terms of

two numbers, the scattering length and the effective range. Therefore, it was obvious that

high-energy data werc required to obtain furthcr insight into the nature of the nuclear

foree. Moreover, differential cross sections, even at high energy, are good only for a few

rather basic and qualitative conclusions. Because of the important spin dependencc of the

NN interaction, data for many other observables are nccded to specify the scattering

amplitude.

The basic aim of a potential description of the two-nucleon interaction is twofold. One is

to provide an economical summery of the data for comparison with potential-like results

from theory. The other aim of a phcnomenological potential is to serve as an inplll for

nuclear calculations.

Thc most general form, a non-relativistic polential may assume, when taking also the spin

degree of freedom of the nucleons into account, can be derivcd from in\"anancc

conslderations. Restricting to at most linear dependence on thc rc1ative momentum of thc

two nucleons, p, lt consists of celltral, spin-spin, tellsor and spill-orbit terms. This

phenomenological lypes of the potentials have been improved over the years. Other

examples of the hard-core type are those constructed by Hamada and Johnston and by the

Yale group. Both use the fivc-tcrnl form. These modcls cmploy a one-pion tail and

therefore reproduce the deuteron properties accurately. In the mid 1960s R. V. Reid

,
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developed hard and soft-core potentials. One of his soft-core versions became the most

applied potential in nuelear structure physics in the 1970s. Phenomenological potentials

typically use 30-50 parameters,

Let us now return to the mesoll-theoretie work. The year 1960, was characterized by

essentially two facts; the failure of the pioll field-theoretic program, on the one hand, and

a rich phenomenological experience with the nucleon-nucleon interaction (e.g. short-

range repulsion and spin-orbit force), on the other. "t\'ot surprisingly, this led Breit and

others to revive the old idea of vector-meson exchange, which predicts both features just

mentioned. Further support came from the electromagnetic properties of nueleon.

Nambu, Sakuri and Frazer and FllleO conjectured that vector bOSOliSmay play the

dominant role in explaining the nuclear fonn factor. Their supposition was soon

confirmed: In 1961, the p meson was discovered at Brookhaven in the ;'[-p--'>MN

reaction, and the (J) meson was found at Berkeley in PP annihilation. 80th arc spin-l

bosons, the p being a 2;'[ and the (J) a 3r. resonance, with masses around 770-780

MeY. The discovery of heavy mesons broke the deadlock situation in the meson theory

of the nucleon-nucleon ime"lction. The first products of the new developments were the

one-boson exchange (OBE) models. These models are based on the old Yukuwa idea that

the nuclear force is meson mediated,

There are also some very pragmatic reasons for the OBE model. First the evaluation of

one-particle exchange processes is essentially straightforward, quite contrary to

multiparticle exchanges, as we saw from the history of the 1950s. Second, within the

OBE model the NN data can be described with very few parameters (of the order of 10,

in contrast to phenomenological potentials, which typically need about 30-50), Since the

OBE model parameters are meson-nucleon coupling constants and cutoffs, a physical

meaning can be attributed to them, at least in principle,

Fmally, the aBE concept was substantially improved by considering three-dimensional

relativistic equations based upon the Bethe-Salpeter equation [15] and by warking in

momentum space ta avoid the approximations necesslll)' to obtain analytic r-spaee



expres51Ons. Work along this line was done by Sehierholz, Thompson and others and the

Bonn gronp.

Quite apart from the quantitative success of the OBEP in fitting the NN data,

conceptually such models cannot be accepted as a comprehensive theory, as it is hard to

believe that the ullcorrelated mulli-particle exchange should be totally negligiblc. The

longest-range component of such exchanges, and therefore the most important of that

kind, is the two-pion exchange (TPE). How to take the TPE more accurately or even

completely into account was the other main topic of the 1960s. Naturally the new goal

was to inelude all correlated and uncorrelated mu1ti-partlcle exchangcs, particularly for

the case of two pions. In principle, there are two conceptually rathcr different ways to

actually calculate these contnb\ltions: by field theory and by dispersion relations.

The prinClpul framework of dispersion relation is based on three fundamental

assumptions: causality, unitarity and crossing symmetry. From the first the analy1icity of

the reaction amplitude IS conelilded. The third allmvs one to relate processes that differ

from each other only by the interchange of some incoming and outgoing particles of the

reaction. Owing to analyticity, one particle cxehange appears as a pole in the scattering

lUllplll\lde. This fact can be exploited to extract empirical infomlalion about meson

masses and particularly, meson"nucleon coupling constants. In the 1960's Amati, uadcr

and VItale started work along this line, w!th which many groups soon got involved. The

results showed Ihal, for the intermediate range, a relativistic nuclear potential can be

derived using dispersion relations and empirical information from Jr]\' and JrT. scattering

as inpul Yet, these cIT"cctswere still far from conMmcting a full quantitative nuclear

potential.

In the course of the 19605, the experimental program of the measurement of 1\1\' clastic

scattering observables was pursued extensively by many accelerators throughout the

world. As a result, by the end of the decade, the Livermore group could come up with a

phase-shift analysis of NN scattering upto 425 MeV lab energy of hlgh quality. This

provided an important presupposition of the theoretical work of 1970s, which provides an

absolutely quantitative nuclear force that is based on meson theory a~ much as possible.

The work proceeded along the two lines discussed earlier: dispersion theory and field

,
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theory. Both approachcs finally produced a very quantitativc model. Most of this work

was done in two Central European capitals; Paris and Bonn.

Let us first summarize the dispersion theorctic efforts. Tn continuation of the work of

Chemtob et al., the Stony Brook Group constructed a potential in which the dispersion

thcoretic result for the 2 rr exchange was complemented by Olle-lr: and onc-(jJ exchangc.

For short distances the potcntial was regularized by the eikonal fom] factor derived by

Woloshyn and Jackson. The fit to the NN scattering phase shifts was semi-quantitative.

At about thc same time, the Paris group produced a potential based on rather similar

theoretical input. In the Paris case, the short-range part of the NN interaction was trcatcd

by an energy-depcndcnt repulsive square-shaped cutoff. For the 21r exchange

contribution to the nuclear potential hath groups achieved even quantitative agl'eemelll,

Further relinements and a convcnient repl'cscntation of the potential was left to the Paris

group. Their final version, published in 1980, is parameterized in terms of static Yukawil

functio[ls of multiples of the pio[l mass [16].

Finally, let us tum to the field-theoretical attempts. Afiel' a decade of prevailing

abstinence, [he field-theoretical approach was revived by the work of Lomon and Parto' i

[17]. They evaluated the 21r e,ehange Fynmann diagrams with nucleons in the

framework of the relativistic three-dlmensional reduction of the Bethe-Salpeter equation

proposed by Blankenheelcl' and Sugar [18]. It is a nOllstatic approach to the 21r

exchange. The old ambiguity of how to construct and subtract the iterated one-pion

exchange when defining a pOlential wa, ahsent in this work. However, the modcls

discussed so far left out contributions that al'e or substantial importance, like meson-

nucleon resonances in intermediate states as well as three-pion and four-plOn exchanges.

Tn the mid t970s the 801m group started a program directed toward the evaluati(>n or

multipion exchange diagrams including nucleon res()nances. Thi~ comprehensive field-

theoretic program t(}ok abOIll a decade. Step by step, the Bonn group computed all 2 f[

exchange diagrams including those with virtual t'J. -isober excitations and finally, alB(}the

relevant diagrams of 31r and 4Jr exchange, One of the important finding is that, apart

from the usual iterative diagrams, the crossed meson exchanges and the diagrams of rr

and p exchange arc particularly important for a quantitative description of the NN



scattering data and the deuteron properties. Thc final Bonn model [19] tUTI'Sout to be

highly quantitative nature, in spite of the fact that it employs only about a dozen

parameters, such as meson-baryon coupling constants and fonn factors that have a

physical meaning.

There are several reasons for and advantages to a field-theoretic modeL First, it

determines the off-shell behavior of the interaction in a well-defined ,~ay. As dispersion

theory deals with reaction amplitlldes, which are always on-shell, the off-shell behavior

remains undetermined in such an approach and is left to guesswork or arguments of

simplicity. Furthermore, the set of diagrams provided by a field-theoretic model forms a

sound basis for a consistent generalization to many"body forces, which may be of interest

in the nuclear many-body problem. Ficld-thcoretic models also allow for a consistent

extension to intemlediate energies including mcson production.

1.2 The idea of Massive-Particle Exchange:

In the 19305 the best established aml most striking feature of the nuclear force was its

short-range nature. For that reason, the first theoretical attcmpts concentrated on deriving

a force of finite range from some more fundamental idea. Yukawa achieved this in 1935

by constructing a strict analogy to quantum electrodynamics (QED). His first

consideration was carried OLitin the framework of classical field theory, which we shall

now restale.

In QED a field of particles with zero mass, thc photons, is assumed to fulfill a field

equation. In static approximation, the fourth component of this field satisfies the Poisson

equatIon of classical electrodynamics.

_AV(r)=eS(Jl(r)

with A the Laplace operator. The solution
, I

V(r)=--,,,
with r = Irl, is the familiar Coulomb potentiaL

(1.2.1 )

(1.2.2)



In analogy, in meson theory of field of particles with nonzero mass m, the mesons, is

assumed, fulfilling a field cquation, which is the Klein-Gordon equation (using the units

such that Ii=c=l)

In the approximation that the nucleon (the source of the meson field), represented by

'f(x), is wfinitely heavy and fixed at the origin, we obtain

(-n. + ",2 ).,,(r) = go(J) (r) (1 .2.4)

satisfied by the "Yukawa potential"

(1.2.5)

Because of the exponential fonn, which is a direct consequcnce of the maSSl'fe character

of the particles, this potential has the desired finite range. For zero mass one recovers the

Coulomb potential. This simple consideration, done in 1935, was the birth ofparlicle

physics,

Traditionally the range of a partie1c exchange is estimated from the Compton wavelength

equivalent to the particle's mass

R=l!m (1.2.6)

In this way, one estimates for the pion (with a mass of 138 MeV) a range of 1.4 fin. This

estimate is somc\vhat small; in fact, the pion just starts to become dominant at that range,

That the COllventional range estimate is too small is also true for the heavier meSOnS, It is

due to the fact that we arc dcaling with large coupling constant: the finalllllc1car potential

is a result of strong interferences oflarge contributions.

1.3 Empirical features of the nuclear force:

We will start 10 look more closely mto meson theory, in qu.alitativc terms, what the

meson exchange picture can predict for the :r--'N system. However, first we shall briefly

re\-ie\' the empirically known features of the nuclear force. This will later help to better

assess the re1cvanee of various meson exchange contributions.

•



L Nuclear forces are of sbort range (finite range): That their range is shorter than

inter atomic distances we can conclude from the fact that of thc molecular level

no forces other than electromagnctic ones are needed to explain the known

phcnomena. Howcvcr, wc can put a much more precise and, in fact, much lower

limit on the range by studying closely the saturation properties of nuclei. ,"Vhen

going from the A = 4 nucleus, helium, upwards to higher-A nuclei, one realizes

that the binding energy per nucleon remains about constant. The density also

remains roughly the same, the radius ofhea\)' nuclei being proportional to kV, .If

the nuclear force was of long range, like, for example, the coulomb force, the

potential energy per particle would increase with A and so would the density. On

the other hand, for light nuclei (A:::; 4) the binding energy per nucleon does grO\V

with A. The deuteron is bounded by 2.2 MeY, 'H by 8,5 MeV. This fact is best

analyzed in terms of energy per "bond". Thus, the binding energy per bond is

about 2 MeY in the two-nucleon system and 3 Mev for the Inton. In 'JIe we have

'" 4.5 MeY per bond (28 MeY IOtal), One Can then conclude that, when nucleons

arc pulled closer to each other by more bonds, also the energy per bond increases

(up to saturation). From this Wigner in 1933 COnjectured thatlhe nuclear force

should be of short range, namcly, shorter than the deuteron diameter of ahout 4 fm

and roughly equal to the radius of the alpha particle ofaboul 1.7 fm.

2, The nuclear force is atlractive in its intermediate range: "lntennediate" IS

meanl here relo.tive to the lolal range of the nuclear force, "hich we consider now

as being sllbd,vided into short, intermediate and long r'.1nge. Tbe proof for tbe

attractive character oflhe nuclear force (at Jeast, in a certain range) is provided by

the fact of nuclear binding. The range of this attraction can be obtained more

precisely by considering the central density of heavy nuclei as known from

electron scattering. This density is about 0.17 fm-' (Ollelear matter density),

which is equivalent to a cube of length J.8 fm for each nucleon [8J. Thus the

average distance belween the centers of two nucleons in the interior of a nucleus

is about 1.8 fm, in close agreement with our estimate given above. This average

distance should be about the range of the attraction. Further evidence for the

,.



(partially) attractive character of the nuclear force comes from the analysis ofNN

scattering data. The S"wave phase shifts [8] are positive (corresponding to

attraction) for low energies and we note that the average momentum of a nucleon

in nuclear matter is equivalent to a laboratory energy of about 50 MeV.

3. The nuclear force bas a repulsive core; Such an assumption could help to

explain the saturation properties ofrruclear force and the constant nuclear density.

But this aspect is not a compelling proof for repulsive core, as saturation can also

bc gencrated in other ,yays, namely, by "exchange" forces, by Pauli and

relativistic effects. In fact, at nuclear matter density the Pauli effect is much more

important than the short-range repulsion. Howevcr, a pre<:ise argument is

provided by the behavior ofthc 's, and 'D, phase shifts [8] as a fLlnction of

energy, The Jatter stays positive (corresponding to attraction) up to about 800

MeV, whereas the 'So phase shift turns negali"e (i,e., repulsive) around 250

MeV, Since an S state (orbital angular momentum L = 0, no centrifugal bamer)

feels the imlennost region of the force, whereas in a D state (L = 2) the nucleons

are kept apart by the centrifugal barrier, one may conclude that a repulsion at

short range is indicated. The maximum classical orbital angular momentum

Low, involved in a range R is Ln~, =Rp where the momentum p of a nucleon in

the centre of mass frame of the NN system is related to the lahoratory energy,

£,"" by E1a! =2p2/m", with mN the mass 01.the nucleon. for £",.=250 MeV,

where the'S, phase shirt tllms replllsivc, we have p '" 1.7jill-'. With Lo", ::;1we

ohtam 11:>O.6jill. This should represent a fait estimate of the radius of the

repulsive core,

4. .• here is a tensor force: The most striking evidence for thIS fact IS seen in the

deuteron: the qlladmpole moment, the magnetic moment and the asymptotic DIS

st3te ratio. Further evidence is provided by the nonYanishing mixing

pararneters,£!, as obtained in a phase-shirt analysis ofNN scattering data [8].

This parameter is proportional to the transition amplitude from a state with



L = J -I to one with L = J +1 (with J the total angular momentum). Of all

operators, by which the most general non-relativistic potential can be represented,

only the tensor operator has non.vanishing matrix elements for this transition.

S. There is a spio orbit force: A first indication for this fact was observed in the

spectra of nuclei. However, this refers to the effective nuclear interaction in the

many-body system, which is not the same as the free NN interaction, though these

two forces are related. Clear evidence came from the first reliable phase-shift

analysis at high energy [20-22]. The triplet P waves resulting from the analysis

can only be explained by assuming a strong spin.orbit force [21-22]. Speaking in

terms of observables, a strong spin-orbit force is required to explain the

polarization.

1.4 Nuclear matter properties:

By definition, nuclear mailer refers to an infinite uniform system consisting of an equal

nl1mher of protous and neutrons interacting through the strong force. The Coulomb

interaction is absent and the number of partIcles, A, approaches in finity. This hypothetical

system is supposed to approximate com.htion, in the interior of a heavy nucleus. We shall

assume equal neutron and proton dens]ty, that is, we will consider symmetric nuclear

matter. This many-body system is charJ.eterized by its energy pcr nuc1con as a function of

the particle density.

The pmticle density p is constant and the single particle wave fUllctions, or orbitals, are

taken to be plane waves. In configllration space the sing1c-particle orbitals, i/!~(r,), are

given by

(1.4.1)

where s~ labels the spin state of thc nuc1con, and t I' is the isospin label. The nucleons

are in the volume n, which is used in Eqn. (1.4.1) to normalize the single-particle



orbi13ls. For an infinite system, both A and n approach infinity, while the particle

density p = A 1n remains finite.

The ground state of nuclear matter is simply a properly anti-synulletrized product of

orbitals with al1 levels filled, according to the Pauli principle, up to a maximum level

specified by kF, the Fermi momentum. For this state, the total kinetic energy IS

(T) = ~ IiFA. The Fermi energy and the particle density are respectively given by [3],
0, =(hlI2m".)k;.

p = 2k;, 13:r' (1.4.2)

The main goal Qfnuc1eaT matter calculations is to deternline the saturation curve, i,e. the

binding energy per nucleon as a function of density. The equilibrium bmding energy and

density are determined by finding a minimum in the saturation curve. The basic

saturation com1Jlion placed on a potential by nuclear matter is that the correct binding

cnergyand density be obtained.

Empirical infoffimtion of the mininlum of that curve, the saturation point, is deducted by

extrapolation from the properties of finite nuclei. Based on the liquid drop modcl for the

nucleus, the semi-empirical Belhe-\VelY.acker mass formula providcs a value for the

cncrgy via its volume term. A collection of contemporary mass formulas by m~llY

different authors can be found in thc AWmic Dala and Nuclear Dala Tables [23J. From

the charge distribution of heavy nuclei as determined in electron scattering, the saturation

density can be deduced by takmg mto account corrections due to the Coulomb repulsion

and the surface tension. Alternativcly, both the satUl'ation energy and denslly can he

deduced from Harlree-Foek or Thomas-Fenni ca!clliations [24-28J with

phenomenological effective forces filled to the ground-state properties of closed-shell

nuclei. Thus, nuclear matter 15delermined to saturate at a density

p, ",O.17:l:0,02jm-'

and binding energy per nucleon

0IA=-16:!:IMeV

(1.4.3)

(1.4.4)

~.,
,
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Other parameters related to the particle density are the inter-particle spacing r and the

Fermi momentum k F which arc defined by

and

[, ]'"kF = 3,,- p{r)/2

(l.4.5)

(1.4.6)

At the saturation point the cquiliblium values for these quantities corresponding to the

above given Po are

Yo = l.3:l:O.04fm (1 4.7)

(1.4.8)

Also of interest is thc incompressibility or compression modulus of saturated nuclear

matter

(1.4.9)

evaluated at kF given in Eqn. (1.4.8) From empirical information deduced from the

systematic vibrations in nuclei [8], one obtains for the saturation point.

K=210:t30MeV (1.4.10)

1[\ many-body calculations using density-dependent phenomenoJoglcal forces fit to the

groundstate properties of closed-shell nuclei, values for the compressions modulus are

obtained" bieh agree with Eqn. (1.4.10).

f



Chapter-2

Boson fields and One-boson exchange potentials

In this chapter, \ve first consider the meson-exchange conllih,dion in the framev,;ork of

perturbation theory and describe the FeYllllllUlrules for calculating the scattering

amplitude [Dr free nucleu.s-nuclcus interaction. Then we discuss some simple relevant

boson fields and their couplings in one-bosoll-exchange contribution, in section two.

Finan)', in section three, we lise the standard interactIOn Lagrangian fo1' each field and

with the help of Feynrnan TUleswe construct the one-hQson-exchange potentials of the

Bonn type and dIscuss their role in NN interaction,

2.1 Perturbation theory and Feynman rules

The first meson-theoretic consideration wa, done in the framework of classical field

theory. For more advanced considerations, quantIzed field theory should be applied. This

field theory was developed first for QED. The interactions invoh'ed are treated

perturbatively and are most conveniently represented in teffilS of Fe}1illlan diagrams.

Originally, meson theory was believed 10 represent the theory of strong interaction in

analogy to QED. Nowadays, with QeD being the theory for strong interactions, meson

theory is VIewed as an effective description, which may represent the appropriate

approximation to the full and fl-mdamental theory in the low-energy regime. It is

customary 10 consider meson-haryon reactions in temlS of pertllrbation theory and

conseqllCntly, to consider the various possible contributions in the graphical language of

Fcynman diagrams Contributions of increasing order, \'ihich may finally become

divergent, aTeor shorter and shorter range. For the long and inlemled,a!e range, there is

only a finite number of perturballve contributions. Thus for these ranges one may have

confidence in the predIctIOns generated by perturbation theory. At the very short-range

parI of the force, due to the quark-structure of hadrons, the meson-exchange picture

cannot be taken seriously. For that reason, in most meson theories, one allows for a partly

•
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phenomenological treatment of the short distances by the introduction of vertex form

facrors, which in a certain sense, takes the extended structure of hadrons effectively into

account. Fortunately, since the nuclear force is repulsive at short intemucleonic distances,

the phenomenology of the very short range is ''masked'' behind a repulsive walL Thus,

one expects that, at least for energies typical for nuclear physics, the uncertain part orthe

nuclear force at very shorl distances and the special way, in which it may be treated in a

particular model, is insignificant.

For the above reasons, we follow here the conventional treatment and con,ider mcson-

exchange in the framework of perturbation theory; that is, morc practically speaking, we

will be dealing with Feynman diagrams,

In a scattering theory the problem IS to find the amplitude, which contains all the

dynamical infomlation. Evaluating the relevant Fcymnan dIagrams and using the

Fe)TIman rules appropriate to the interaction in question can solve (his problem, The rules

are summmled as follows [29].

1. Notation: Label tile incoming and outgoing four-momcnta ql.ql"" q, and

the corresponding spins s"s" s"' label tile internal four-momenta

kl,k2,,, ,,k,,. Assign arrows to the lines as follows: thc arrows on ex(emallines

indicate whether it is incoming or outgoing; arrows on intemallines are assigned

so that the "direction of the flow" throl.lgh the diagram is preserved (i.c. cvery

verlex must have one arrow elllcnng and Olle arro\~ tem ing). Put an arrow on

each line. to keep tneck of the positive direction (arbitrarily assigned, for the

intcrnallines),

2, External lines: Extcrnallines contrihute factors as follows:

Spin 0 J\'othing

Spin 112 : Incoming particle: II

Outgoing particle: II

Spin 1

Incoming antiparticle: v

Outgoing antiparticle: v

Incoming: [;"

Outgoing: (/



3. Propagators; Each internal line contribl.ltes a factor as follows:

Spin 0 :

S
. ,
pm-

2

Spin 1 Massless:

Massive:

-igl"---
k'

-.( ••",. -k)ikv/m.;)
k1 -m"

"

of the form

where g)i" is the melric tensor with goo ,,+1, gkk =-1 and gl'~v ,,0,

4. Vcrtc~ Factors; Each verte~ contributcs a factor g,f, where g is called the

coupling constant which is dilTIensionless. Furthermore, there is a factor of i m

each vertex.

5, Conservation of energy and momentum; For each vcrtex, write a della function

(lJr)45'(q[+Q,+Q)) ,~here q's are the three fOllr-momenta

coming into the vertex (if an arrow leads O\ltward, then q is minLls the four-

momentum of that line). This factor enforces conservation of encrgy and

momentum at each vertex.

6. Integration over internal momenta: For cach intemalline, write down a factor

-'-4 d4k i and intcgrate over all internal momcnta.
(211') ,

7. Cancel the delta function: Thc r~sult viilI include a delta function

...,+'1") enforcing overall conservation of energy and

momenlLlm. Cancel this factor, and what remains is -l5t1 where :M is the

seatlering amplitude.

I



E', q'

(E'-E,q'-q)

E',-q'

£,-q
('l

(2.1.1)

(2.1.2)

Fig,2.1: Fernman diagram for the one-hoson-exchange contribution to NN
scattering considered in the c.m. frame. Full lines denote nucleons, the
dashed line a boson with mass m". The underlying time axis is vertical,
pointing npwards into the future.

The lowest-order contribution to the NN scattering IS the one_boson_exehange

contribution. The respective Feyrunan diagram is depietcd in Fig.2.L Since we are

working in the center of mass (c.m.) system of the two intcracting nucleons, the momcllta

of thc two incoming particles arc q and - 'I and those for the outgoing particles are

q' amI -q'. The process takes place "on the energy shell' i.e. energy is conserved;

consequently the energy of the nucleons before, E, and aftcr E', the scattering process

must be same so that E' = H.

According to the "Feynman niles" the depiction in Fig 2,1 corrcsponds to the scattering

amplitude in analytic fom,;

g, ", {q')'1ul ('1)1'" g l"l (- q' )""2 (- q)
(q'-q)' -m;

where the left half of the numerator reprcscnts the left part of the d,agram and the right

half for the right part of thc diagram, II, and u,(",uiyo) arc Dirae spinor, and their

adJoinls representing incoming and outgoing nucleons, respectively, with, = 1 and 2. The

meson propagator represented by the dashed line in the figure i,

Po
(q'-q)' -m~

, t •



where(q' _ q)2 = (E' _ E)l _(q' _ q)l = _(q' _q)", is the square of the four-momentum

transferred by the meson. Thus we have for the propagator

Po
_ (q' _ q)2 _ "'~

(2.1.3)

For scalar and pseudosealar exchanges Po = i '"~. For vector boson exchange,

however, it is:

(2.1.4)

Since the vector bosons COliple to a conserved 111Ideon current the second term will

become zero in the actual ca1clIlatiollS.Thus we can 1I,e for vector-boson exchange:

P~= -igJ'V (2.1.5)

The last pieces g,f, are the '.vertices" representing meson-nucleon interactIons and are

obtained from the interaction Lagrangians. In fact, logically we should have begun ,~ith

the interaction Lagrangians, as they are the starting point for the development of the field

theoretic perturbation theory, the lowest order result of which (for NN and excll.lding

renormalization) is ol.lrFeynman diagram Fig. 2.1. Tn any case, the respective interaction

Lagrangi311Sfor Fig.2.1 are

I = 1, 2 (2.1.6)

Where (.y)'/I is the (adjoint) nucleon Dirac field and <p{a)the meSOn field operator.

Comparison of Fqn.(2 1.6} with Eqn.(2.1.1) shows in an obvious way, how to obtain the

vertex from a Lagrangi311 in a simple case. We note that the vertex is i times the

interaction Lagr311gian slripped off the fields and that i times the amplitude in Eqn.

(2,1 1) defines the potential Va .

2.2 Various Boson l1elds and their couplings:

In this section we go systematically through some of the simplest boson fields and their

couplings, In each case we consider the one-boson-exehange diagr31ll and derive from it

explicitly what it predKts for the NN interaction. For the NN interaction at low energy

there are essentially only four boson fields that are of relevance:

n
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1) The pseudoscalar (ps) field

2) The pseudovector (pv) field

3) The scalar (s) field

4) The vector (v) ficld.

Guided by symmetTY principles, simplicity and physical interaction, the most commonly

used interaction Lagrangians that couple these fields to the nuclcon are [8]

£.,~g,fi'1\'{s)

£. ,~ _g \,'1r I'~frp1"J - /" iPo- ~v\"(a,,<p~')- a I'<p~'))
~"'N

(2.2,1)

(2.2,2)

(2.2.3)

(2.2.4)

where If' denotes the nucleon Dirae spinor field, while rp(P$J, <pl') and <p(v)are Lhe

pseudoscalar, scalar and vector boson fields respectively; "'N is the nucleon mass, In

Eqn. (2.2.4) the first tcnn 011 the right-hand side is called the veetoT (1') and the second

lem] the tensor (I) coupling. Also

cr'J 5 - 0 I 2 ) ["o ,r\~7~'Y7ri'~1 'J .and aJ
'" = -'-~~ ,r']o 2

where ,,' arc the usual Pauli spin matrices. The Greek indices extend from 0 to 3 and the

Latin indices from I to 3.

For P' field there is the so-called pscudovector (pv) or gradient coupling, Eqn, (2.2.2), to

the nucleon, which is an eITectivc coupling by chiral symmetry [30, 31J. The ps and pI'

coupling arc equivalent for on-mass-shellnuc1eolls if the cOLiplingconstants are related

by fP' ~("'p,!2rnN jgp$' However, the oIT-shell predictions are rather {\)fferent. Tile

Lagrangians mentioned lead to the following (off-shell) OBE amplitudes:

"
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( q' .<.;.<.;IV~B£ Iq'<'I'<'2) '" - g ~,ii(q',.<.:)iy'u(q, Al ),,(- q', A2 )1y'u (- q, Al ) [(fl' - qY + m~stl
(2.2.5)

,
( ""'I"oB£1 ,,) fp, -(. ", ..5 JI'I' ) ( ,)q '1Ji.2'p' q"-l~'l "'-,-" q, 'Iff r' 'f -q ~uq,AI

m"

(2.2.6)

(2.2.7)

(q'AI)'; 11',°8£ Ill)" A2) = { g ,.u( q', ).(lr I' ,,(q.AL) + 2~'N iJ(q',AI)o-~\_i (q' - q)" ,,(q,)1 )}

x Jg ,ii(- q',),; };I',,(- q,Al )-~ii(- q', A; )n-!W i(q' - ql, ,,(-q')'2))1 2111 ••••

(2.2.8)

whcre Ajc;.,:} denotes the hclieity of an incoming (outgoing) nucleon, which is dcfined as

the eigenvaluc of the operator •. ij \vith s the spin operator and ij= q/lq1 the unit

. I ')'"momentum operator of the rcspccllve nucleon; {;= iII,V + q ( ')'"audE'=mN+q' •.

The Thompson choice for the four-momcntum transfer i, e. (q' - q) = (0, q' - 'I) is made.

II is nOWin principle a straightforward (but quite lengthy) task 10evaluate the one-boson-

cxchangc ccmtribulions, Eqn, (2.1.1), corresponding 10 the intcraction Lagrangians given

above, which is donc in the next sectlOn, This \vi1l reveal what each field and coupling

predlcts for thc nuclear force.



2.3 One-Boson exchange potentials. and their contribution in
NN interaction:

The one-boson exchange potential (OBEP) is defined as a sum of one-particle exchange

amplitudes of certain bosons with gIven mass and coupling. In the OBE Bonn model six

non-strange bosons wIth mass below I GeY are used; they aTe Ir and" pseudosealar, (J"

and" scalar and p and OJ vector mesons, Thus

V(]BEP = L:Va08£
acq,p,<J,6.a

(2.3.1)

The contributions from the isovectorbosons, Ir,i:! andp arc to be multiplied by a factor

of f,'fl" For isospin -I, the mesons '1'(<<1 is to be replaced by T'lp(~l, with ,-k (k ~

1,2,3) the usual Pauli matrices.

Now we evaluate the OBE contriblltions, Eqn. (2.1.1), eorrespondmg \0 the interaction

Lagrangians given above with'll the nucleon and .pial the meson fields. Strictly

speaking, we give here the potential th~\ is defined as i times the Feyrunan amplitllde.

Furthermore, there is a factor of 'j' in each veltex and meson propagator; as ;4 = 1, we

can ignore these four fadors of 't.

The pseudoscalar (ps) field:

Pseudoscalar means the field, 'PiP'), switches sign m the case of either space or a tIme

reflection. Particles with negative intrinsic parity, e.g. the Jr and 1] , have this properly

To "counterbalance" this we have to find an expression 'f r'f, which has the same

property as if'lp,), to obtain a scalar for the whole expression for the interaction

Lagrangian. The simplest case with this property is Ij/'fi' Thus

(2.3.2)

(The i is needed for the hcrmiticity, as yO and yl anti-commute). The one-boson-

exchange (OBE) contribution V~''',for this interaction is according to FCYIilllallrules,

FIg 2.1 and Eqn. (2.1.1):

J



(2.3.3)

(2.3.4)

where the incoming nucleons arc represented by the Dirac spillors u, and u, given by

",(q)~r;;N["lq ]md",(-q)~r;;"[ ,;q]
E+m," E+mN

Here and in the following we suppress spin-indices and spin. functions. The Olltgoing

nucleons are represented by the adjoint Dirac spinors iT, and iT,; the normalization of the

Dirac spinor being u,t (q)ui (q) = I , So

,
iTl (q) = ut(q)l =(_E_;_;~',,~,Y(l

Nmv the left half of the numeTator is

-'"q J
E+mN

"On the shell" model, we use E = E'. So we obtain

Similarly, for the right half of the numerator

(2.3.5)

(for the "on-shell")

Putting everything together, we oblain for the whole dIagram the following "momenlum

sp"ee potential":
,

Vp,(q',q)= (, g~) , -' ",(q-q')-' "2.(q'-q),
_q_q_m

p
,2E 2£

glYlllg

(2.3.6)

where the momentum transfer q' - q = k has been used and the approximatiotl E '" mN IS

assumed. We may rewrite the above expression as
,

V
p
,(k)= __ 1_2 /°2 k'[O"I '0"2 +SI2(k)]

l2m,~'k + /lip,

(2.3.7)
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where SI1(k)" 3(u I . k)(u ~ . k) - U,.U 2 has been used. The above expression shows thal it

becomcs obvious that we have created a spin-spin and a tensor force.

Thc best knO"11pseudoscalar field is the pion. There exist three ehargc states of the pion:

+, -, neutral or with other \~ords, its isospin is one; it is an ISOvector particle, In such a
case the Lagrangian in Eqn. (2.2.1) is slightly extended:

(2.3.8)

(2.3.9)

where the three components of o;p("') are operators in isospin space, as there are now three

charged states. r is the usual isospin operator for isospin 1/2 p3rl:icles, here the nucleons.

r.'P(P,) IS an invariant in isospin spaec. By that, the eharge"indcpcndcnce of the interaction

is guaranteed, As a consequence, for isovector particle exchange, the Fe}'l1man diagram

Eqn. (2.2.5) and the potential derived in Eqn,(2.3,6) obtain a factor T I.T,
,

, i'i-- gp' (ul .k)(u~ 'k)
'" - , 2 1 T,.T,

4mN k +mpJ

In Sllmmary, we started with a boson field for which we assumed that it was pseudosealar

(equivalent to a particle with ncgative intrinsic parity which is observed in 11aturee.g. for

Jr, 'I).Consequently, we had to usc the r1-coupling (as the simplest possibility to comply

with certain indispensable symmetries). A small calculation then leads directly to a tensor

forcc. In this way it is easily understood that, starting from first principles, the pion

creates a tensor force.

We abo note that the r5-eollpling projccts small components of the Dirac spinors onto

large components, Eqn. (2.3.5). Therefore, it is, in its analytical stmcture, a "weak"

eOllpling. The reason, why the pion, neverthelcss, is non-negligible, is the small mass of

the pion, which strengthens the potential (note thm the meson mass squared appears III

the denominator of the Fe}wnan diagr"m, Eqn. (2.1, i»). In fact, the slmple mle of thumb,

to roughly compare the strength of two OBE contriblltions of the same kind, is to

consider:
,go
m~

From this argument it is now obvious that a heavy ps-particle leads to very small
contributions, Examples are the 'I (111'1 = 549MeV) and the '7' (m~.= 958 MeV).

"



(2.3.10)

We mentioned before that for a certain field, in general, several (in principle infinitely

many) couplings afe possible. So, for aps-field a derivative coupling is also commonly

considered, the pseudoveclor (pv) coupling:

Ln, =_ Ip, 'I','y"t;Ja ,,/p,)
em I

~

The resulting left vertex is

r_fp"I!'I'lP" ---lY r q -q!,
mps

(2.3.11)

( ie I' is the momentum operator; (q' - q)~ the four-momentum orlhe exchanged meson.)

Application in the Feynman diagram, Eqn.(2.1.1), leads, in the numerator, to expressions

hke y"ql'u1 (q) and ", (q')7!'q~ ' The DlIac equallon allows us to write

y" qflU, (q)" m ~ "1 (q)

\Vith these replacements the upper left part orthe FC;r11illan diagram becomes

!P'iUl(q')y'yl'(q'_q)!,Uj(q)
"'p.

[since r' and y" anticommute]

(2.3.12)

(2.3.13)

(using Dime equation)

(2.3.14)

When compared to Eqn. (2.3.3) it turns OUllhallhis is exactly the same resull as for ps

coupling, provided we relate the coupling constants as

(2.3.15)

•

•



Tn this consideration, the nucleons are on their mass shelL In sueh a case the Dirac

equations, Eqn, (2.3.12) and Eqn. (2.3.13), apply, and we see that, then, the ps and pv

cOLlplingsare equivalent. For off-shell this is not in general true.

As ps and pv couplings are equivalent on-she]], we can derive Olir non-relativistic form of

OBE contribution V;.'" also by starting from the pv coupling Eqn. (2.3.10) and proceed

as follO\vs; let us consider only the important part of the vertex Egn. (2.3.11):

r 0r'y"k'" ,
['k 0 J
- 0 -(l.k

where k=q'-q, ko =E'-E=O

Some simple rules of non-relativistic reduction are,
ii)! =i---->-:tk, 75yl' -->---{J, <T~v -->-dx, oxP

(2.3.16)

(2.3.17)

and replacing Dirac spinors by Pauli spinors. Non-relativistic approximation also means

assuming Iq!,h'i S;mN and therefore neglecting the small components in the Dirac spinor;

(2.3.18)

Sandwiching the vertex Eqn. (2.3,16) with these Pauh spinors and rccollceting the

constant factors j'le1ds;

(2.3.t9)

Repeating the same consideration for the right vertex (the momentum carnes an opposite

sign on the right) we get

,Ip"k),-- ,
inP'

which leads (0 (be momentum space OBE contribution Vp~"£as

f~(u1.k)(u1 'k)
2 k2 + 2

mp' mp'

using Eqn. (2.3.15), we get

•

••



(2.3,20)

which is same as Eqn, (2.3.6), In this way the non-relativistic character of the derivation

is more obvious.

The scalar(s) field:

This field has the simplest interaction LagrangIan for meson nucleon couphng:

£, =g,VV~,

The one-scalar-boson exchange contribution is :

2Ul(q')uI(q}ll(-q'~ll{-q)
g, ( )' ,-q'-q -iii,

The left half of the l111merator:

(2..3.21)

Now we use the vector identity (u'a)(0"b)=a.b+l!7,(axb) forlhctcnn ("I q')(uL.q);

where the momentum variable p = +(q' +q) and the momentum transfer k ='1' -'I have

been used,

Agalll, since k x p = (q' - q)x +(q' +q) =q' x q, we obtain

"I ".,()..I(E'+m,vXE+"'Nl11_pl_(l/4)k2+i{fI.(kXpl}
1'111 q 1 41:.E' l (l'"'+m,,1E+rn,v)

:f1_1)2 -(1/4)k' ; iO'I,(kx pl}
l 4"'N

Similarly for the right half of the numerator we get

(2.3.24)

(2.3.25)

Nmv the final result for the whole diagoalll, we obtain the follo\ving mClmentlllll space

potential,

'0

••



- g'
V,(k.P)= l '1

k +m, [
p' k' i 1 ]1--,-+-,----) -(u1+tJlHkxp)

2m", 8mN 2mN 2

'[ , k' .= -g, 1--'-+----'-8
221 l 2k + m, 2"",' 8"'N 21l1N

(2.3.26)

The first term on the right hand side is a strong attractive central force, the last term a

spin-orbit force, So the sC31ar meson-exchange causes a strong attractive central fon;e

and a spin-orbit force. From the explicit derivatIOn we realize that the strong central force

is due (0 the fact that the scalar coupling projects large components of the Dirac spinors

on large components. The negatIve over-all sign is a consequence of having a second

order in the coupling constant, The spin-orbit force can be traced back to the small

components of the Dirac spinors. Therefore, it is a genuine relatiYislic effect.

The vector (v) field:
A vector boson has spin one, like a photon, and is represented by a fOLir-vedor field. To

form a Lorentz scalar one ean eOLipleit to another four vector, in analogy to the coupling

of a photon to an electron:

(2.3.27)

The evaluation of one-vector -boson exchange contlibution is:

h",.)
"(, , ,
- q -'I) -nJ,.

- i;;;; f,1(q')y ~UI(qX- g W PI (- q'p"'v ('I' - '1)" ul (- 'I)

+ u] (q')o-"'v ('I' - 'I)" III(qX- g~., Fo (- q')y ~ II~(-'1)1

- f,2, f" (q'p"" ('I' - 'I)" III(qX- g "") "2(- '1')0-1'" ('I' -'I)" "2(- q)h
4/11" 'J

(2.3.28)



Now for the first tcrm of the above eqllations:

ul (q')y!' UI(qX- g !,V r,2 (- q')y v Ul (- q)

="] (q')/u[ (qX- gQOh (-q')Y~U2(-q)'cUI (q')y'ul (qX-g k/.:"2 (- q')ykU1 (- q) (2.3.29)

First we consider the left half of the y 0 term:

[as in the scalar case]

Similarly thc right half of the yO term in Eqn. (2.3.29)

So the yO tem] in Eqn. (2.3.29) becomes (gOG "1)

[ ',' ]-l+~--,-"-',-S'(kxp)
2m,~ S"'N 2mN

Thc remaining three terms in Eqn. (2.3.29) for /(k"I,2,3) b~omes cqual to

"'J .o and for the nght hand part

u,(-q')/u2(-q), yk =(-~, u~) have been used, which after simplifications

becomcs (E"E';omN)'

,



Hence the first term of Eqn, (2.3.28) is

g' [ 3pl k1 3 1 1 ]
1 v 2 1+--, ---l +;--2 S.{kXP)---l (Uj'U2)k'+--, (UI.kXu,.k)

k + In., 2mN 8mN 2mN 4mN 4mN

(2.3.30)

and {j'"v--..uxConsidering the non-relativistic reduction
&

(g' - g)," =ia," = ;--7 km"
together with the non-relativistic Dirac spinors for the last term in £qn. (2.3.28) we may

write

"I (q')o-!'" (q' - g)~ "j ('1)= -u I x k

and ul (- 'I'p"" (g' - q)I' U2(- '1)= -U1x k

So that for the last teml, we get

- f}l ['" ('I ')r:r!'" (q' - 'I) I' "I (q)ul (- q')(1 JB' ('I' - 'I)" u2(- q)]
4mN

(23.31)=- f}l [(Ul ul)k"-(Uj .kXU2 .k)]
4mN

In a similar way, considering the non-relativistic approximation for the second tenn III

Eqn. (2.3.28), we obtain

Ul(q')y ~ "I ('IX-g 1"') U2 (- q ')(1 jO" (g' - g )~ "1 (- 'I) + iii (q ,)0' jO" (g' - g )~ "I ('IX- g pv )"1 (- 'I')y " "1 (- 'I)
k' 4 k' ;

=-I---S,(kxp)-I(U1'U,)-,-{ul'kXuJ .k) (2.3.32)
nI", mN inN !liN

So, the final result for the whole diagram of one-Yector.boson exchange, we obtain the

followmg momentum space potentiaL

,() , ['1 3,,' k' " () k', ( X I)'vk,p -, 1 g,: 1+--, ---, '--1 S. kxp-("""1) -,-'-,-ul.k "l.k
k + m" 2m ..\, 8m,,' 2mN 4m,,' 4"'N

,_g_J_, ( __k_' , ,_;S.(kxp)-(U1 ,,,,)_k_''-'-("I.kX", 'k))
2m,,' "'N mN "'N m,\'

(2,3.32)

,~



Going back to the beginning of this seelion, we notice that with each of the five most

inlportant empirical features of the nuclear force (stated in chapter one), one can associate

at least one boson ficld that could provide an explanation. In Table 2.1 we give an

overview what each field and coupling predicts for the nuclcar force [8].

Table-2.1

Various Meson-Nucleon Couplings and their Contributions tu the ]\'uclear Force as
Obtained from One-Bosun Exchange

J denotes the isospin of a boson. The characteristics quoted refer to J = 0 bosons (no
isospin dependence). The iso~eetor (I = 1) boson contributions, can-ying a factor TI 01,
provide the isospin-dependent forces.

Bosons Characteristics ofpredicteu forces
(Strength of Coupling)

Coupling J= 0 [= 1 Central Spin-Spin Tensor Spin-Orbit
Ii] [1IoT2] [I] [UI.112] [Sill [L.S]

P' , " Weak, Strong
(weak) (strong) coherent

with v
a 8 strong, Coherent

(strong) (strong) attractive with v

'" p strong, Weak OPPOSlte Strong,
(strong) (weak) repulsive coherent to ps coherent

withps with s

The repulsion created by (neutral) ,ector-boson cxchange can be under stood in "nalogy

to the one-photon exchange betwcenlike charges creating a repu!si"e Coulomb potelllia1.

Neutral vector hosons can be visu"lized as hcavy photons. The baryon number plays the

role of the electric charge. Consequcntly, in the nucleon-antinncleoll system vector-boson

exchange gcnerates attraction. The spill-orhit forcc produce(! hy vcctor bosom

corresponds to the Thomas tenn. which emerges when the Coulomb potential is

employed in the relativistic Dnac Eqnation. Thus, it can only be understood in a

relativistic conslderation, the lower component ofthc Dirac spinor.

We now look into physical m"nifestations of the fields discussed thcoretically so far. In

the mass range below the nucleon mass, one finds l\vo pseudoscalar particles, namcly Jr •

J



(138) and TJ (550), and two vector particles, p (769) and /J) (783). The (isoscalar) /J) has a

strong vector coupling and the (isovector) p, a strong tensor coupling to the nucleon.

Furthennore, there exists an isoveetor scalar meson, i5 (983), which, owing to its large

mass and its small coupling constant, provides only a small contribution. Its isospin-

dependent central foree can be used to adjust the two S waves.

Compared to the (isoveetor) lr, the contribution fonn the (isosclar) 17is very small. This

has !\IiO reasons: first, the coupling constant of the 17is small. Second, thc mass of the ry
is substantially largcr than the pion mass. Notc that the magnitndc of one-meson

exchangc contributions is roughly proportional to g~/m~ ' Eqn, (2.1, t) For the reasons

given, the '/ is nol so important for the NN system.

Summarizing the important contributions of the mesons disclIsscd so far, the pion as the

lightest particle provides the long-range force and, owing to its pscudoscalor nat lIre, the

tensor force, This tensor force is reduced at short ranges by the p mcson to a realistic

size. We note that for ;r and p the ps potentials given above ha'.e to bc multiplied by the

operator 71 '7, (with 11i the isospin operator for nucleon i), since lr and pare (isospin

one) isovector particles; this factor Implies 3 strong isospin dependence for these two

potentials. The /J) cre3tcs the shorHange repulsion and the (short -ranged) spin-orbit foree,

Thus, these threc mesons explain already important features of the nuclear force.

Since there is also strong interaction between pions in relative S wave, there is physical

motivation to assume a scalar boson of a mass between 500 and 700 McV (commonly

called IT). Adding this particle to the mesons discussed above delincs the so.called onc-

boson-exchange (OBE) modcl.

J



Chapter-3

In-medium NN interaction and Dirac-Brueckner
theory

To study the various aspects of the two-nucleon interaction and their influence on nuclear

binding energies, one must first have a valid tcclmique for calculating binding energies.

The linked-cluster Rayleigh.Schrodinger, or Goldstone expansion, for the ground state

energy provides the required technique [6]. To remedy the lack of cOnlugence

ass()ciated wjlh a hardcore repllision, Brueckner [10] summed selected terms of tbis

perturbation expansion to define the reaction matrix G, In section one, oflb,s chapter, we

derive the Brueckner G-matrix theory in the non-relativistic case ",here the Pauli-

blocking operator for the medium effect has been taken into consideration. A discussion

on the effeetlve mass approximation and the angle averaged Pauli operator is given in

section I\vo,

Then considering the relativistic approach of G-matrix theory "e choose the Thompson

equation, which is a relativistic three-dimensional reduction of Bethe-Salpeter equation.

There exist many relativistic three-dimenSlonal versions of the Bethe-Salpeter eq\lation,

"hieh arc all mathematically equally justified. HO\\icver, some of these equations have

unphysical features dl.le to the approximations involved in theIr derivation. Crucial for

Ol.lrchoice of the Thompson equation is the fact that, in the framework of the Thompson

equation, meson retardation is ignored i.e. a static meson propagator is I.Ised.A reason for

ignoring meson retardation is to exclude any false medium effect on meson propagation

from the outset. \Ve give the derivation of the Thompson equatlon in scction three.

Following the basic philosophy of traditional Brueckner theory, this equation is thcn

applied to nuclear matter in strict analogy to free scattering. This is described in seetion

four, where the solution of Dirac's relativistic equation is used for which the name of this

approach is Dirae.Brueckner approach.



3.1 Brueckner Theory and the G-matrix:

To study the influence of various aspects of the two-nucleon interaction on nuclear

binding energies, and for ca1culating the saturation properties, Brueckner [3J suggested

the following equation to define the reaction matrix G in the nuclear medium.

G(w)=V+V Q G{w)
w-h,

(3.Lt)

The G -malrix plays the role of an effective interaction for two partie1cs in the nllclear

medium. It is finite even for singular polentlals, in much the same way that the R-matrix

for the scattering is finite for singular potenllals. Tn fact, the Eqn.(3 .1.1) that defines G,

the Brueckner equation, resembles the Lippmann-Schwinger equation for R. The G-

matrix dIffers from the R -matrix for free scattering, by taking into account the Pauli

Blocking in the mtermediate states as well as the influence of the mean field to llncleons,

which appear as sing1c-particle energies in the energy denominator ill - h, in Eqn.

(3.1.1).

The Hamiltonian h
D
includes a kinetic energy plus a single-particle potential. Acting on

product stales it gives

(3.l.2)

where the single-particle energies Eo are simply E" = (al(1'2/2111N)+ ula). The single-

particle potential is itsclf detennineu by the interaction of each nucleon with all others in

the Fermi sea; for nucleons below the Ferrol le\'el it is defined by

("Iull')~u(k")~2:(l'"lc('" ,",111'"-"1'),
V"F

for IISk}- (3.1.3)

which includes both threet and exchange lenllS. The starting energy (0 IS chosen to be

w = c: I' + ,:•. This definition of U is based on the requirement that U cancels the bLlbble,

or sclf-energy insertions, that occur on the hole lines in higher-order tenns of the

Brueckner-Goldstone expansion [32-33J

Once, Eqn. (3.1.1) - (3.1.3) arc used to find the G-matrix, the binding energy can be

evaluated from

•

,



(3.1.4)

Here it is seen that G plays the role of an effective two-body interaction in the nuclear

medium. We can now write Eqn. (3.1.1) explicitly by introducing the relative and c.m.

momenta 2q!,v = q!, - qv and 2Ppv = q!, + qv (We will oftcn omit the stale subscripts).

The discrete sums now be<:ome continuous intcgrations, i.e. L ~O(2;rr' j dk" .
!' ',,<kF

In our discussion the starting cnergy, w, will always be evall.laled on the cnergy shell

w" E(q, p) where E(q,P) is defined in Eqn. (3.1.6). The G-matrix equation is then

GI' ,'Iovl' l_jdkV(q',k)Q(k,P)G(k,qll»
q,q q,q E(k,P)-E(q,P)

where Q(k, p) satisfies the Pauli principle condition given below;

Q(k,P)=1 forlk+PI>kr

=0 forlk:!:PI';;kF.

In nuclear malter, the single-particle energies are fllnetions of

Therefore, the above energy denominator is given by

(3.1.5)

(3.1.6]

Note that Eqn. (3.1.6) depends on the angles beN,een P and k, and betwccn P and q.

The Pauli operator Q(k, p) also depends on the angles bel"een P and k. The above

dependence on angles causes Q to couple states with different relative angular

momentum J.

1



3.2 The effective mass and the angle ,averaged Pauli operator:

The introduction of the nucleon effective mass is a convenient way to describe the motion

of Mclcons in the nuclear medium. 11reflects the wfluenee of the mean field on the

nucleon motion, In the non-relativistic theory, the microscopic mean field 'V, is in general

non-local and energy dependent. The effective mass is defined in such a way that it

characterizes the energy dependence of a local potential V, which is equivalent to the

non-local microscopic potential 'V5 [34]:

•
m,\'=l-~Vs(<:) (3.2.1)
mN d<:

The empirical value for the effective mass in nuclear matter derived from the analysis of

experimental data in the framework ofnon.rclativistic shell models IS

mN = 0.7 -0.8m, (3.2.2)

Tn the relativistic treatment of nuclear problems, the concept of "efl"cctive mass" is also

frequently adopted. Ho\~e~er, in this case the tenn usually denotes different quantities

\Lnder different circumstance, A quantity that is often referred to as "effective mass" in

the relall vlstic approach is the tilded mass iii N ' which we introduce in section four of this

chapter. This mass is often called the "Dirac mass" [34]. Sinec its definition has no

apparent relation to the non-relativistic definition of the effective mass, Eqn. (3.2.1), the

Dirac mass should not be compared to the empirical value ofEqn. (3,2.2) and this \~rong

comparison should not be considered as a judgment for the relativistic theory itself, or for

the underlYlllg bare 1\'N interaction used in the theory.

The angle averaged Pauli operator is used 10 simplify Eqn. (3.1.5) by ehminating the

awkward angle dependence. In the angle average approximation, one replaces the exact

Q-operator, Q(k,P). by its average over all angles for fixed Ikl and Ipl, The angle

averaged Q-operator, Q(k. p) is given by [3]

,
.,



Q(k, p)= 0 r" k$Jk~.-p2

• I r" k?kF+P

P' +k'_k;.
r" ~k;_p2<k-;'kF+P (3.2.3)

2Ph

We note that Q(k, p) has discontinuous derivatives at k = (k: - p! f2 and k = kF + P.

Using the angle averaged Q-operator, one can c1iminate one sourcc of angle depcndence.

The othcr remaining dependence on angle is handled by the effective mass

approximation. The single-particle energies are assumed to have the quadratic form

h2k2E(ka ) = ------;'"-- u~
2"'N

(3.2.4)

,~here m~,is called the effective mass. With this choice of single-particlc spectrum, the

angular dependence disappcars from E(k, r) and E(q, p). The resulting expressions are

h'( h'E(k,P)=- P' +k2)=-E"
m.'I' "'."

(3.2.5)

The symbols E, and E, stand for the energies of two particles below and aboye the

Fermi sea, rcspectively. We note that the single-particle potential for q > kF is taken to

be zero as preyiously discussed.

The choice of the hole spectrum, as gi\'en by Eqn. (3.2.4) presents a self-consistency

problem since Eqn. (3.1.3) relates U and G, thc detelmination of G, however, depends on

the choice of U. Therefore, the calculation of U by Eqn. (3.1.3) should reproduce the U

I.Isedto calculate G. To make U self-consistent in the effective mas, approximation, thc

initial vall.les of m~, and Uo arc chosen to calculate G; then from G new values of m~

and U0 are obtained using Eqn. (3.1.3) and Eqn. (3.2.4). This procedure continues until

I



m~ and UD change very little; with reasonable starting values for

three cycles suffice to achieve self-consistency.

and Uo two or

(3.2.6)

With the angle-averaged Q and effective mass approximations, the Brueckner equation

Eqn. (3.1.5) becomes

G(' Ip). ,(. )_jdkV(q', k)Q(k, pla(k, q 1p)
q, q q ,q E(k,P)-E(q.P)

Neither Q nor the energy denominators in Eqn. (3.2.6) now depend on the direction ofP.

Therefore, G is a functiollof q', q and 11'1 only.

The caleulation of binding cnergies and self-consistent single-particle cnergies requircs

that we solve the Brucckner equation. Even after removal of the above anglilar

dependcnce, Eqn. (3.2.6) is a three-dimensional integral equation. A partial wave

decomposition will be used to reduce Eqn. (3.2.6) to a set of one-dimensional integral

equations, just as in the case of the Lippmann-Schwinger equation.

3.3 Thompson equation:

To construct a relativistic theory for the two-nucleon systcm the Bethe-Salpcter (BS)

equation [15} is utilized. The BS equation presents a rather complex mathcmatical

problem whcn the particles involved are not spin-less and a realistic interaction is

employed. In operator nolatlOn it may be written as

(33.1)

with :Mthe invariant amplitude for the two-nucleon scattering process, 0/ is the sum of all

connectcd two-particle irreducible diagrams, and q the relativistic two-nucleon

propagator. As lhis four-dimensional integral equation is very (hfficu1t to solve, so-called

three-dimensional reductions have been proposed, which looks very much like the

Lippmann-Schwinger (L.S) equation and which arc more amenable to standard methods

of numerical soll.ltion. The three-dimensional reduction is not unique, and in principle

infinitely many choices exist. Typically, they are derived by replacing Eqn. (3.3.1) by.

two coupled equations:



9>f- 'IV + i1k~M,

'11'- 'I! + 'V'(q-g)W,

(3.3.2)

(3.3.3)

Where g is a covariant three-dimensional propagator with the same clastic unitarity cut as

(lin the physical region. In general, the second term on the right hand side ofEqn. (3.3.3)

is dropped to arrive at a substantial simplification of the problem. Among the different

forms of the three dimensional reductions, lhe one, suggested by Thompson [35] is

particularly suitable for the rc1ativistic many-body problem. Explicitly, we can write BS

equation for an arbitrary frame [8]:

(3,3.4)

with

(3.3.5)

where q, k and q' are the initial, intermediate and final relative four-momenta,

respectively (e.g.,k = (ko' k)] and P = (1'" P )is the lotal four-momentum; with

p = y" P" etc, The superscripts refer to particle (1) and (2) and in general, we suppress

the spin (or hclicity) and isospin indices. Now (I and g have the same discontinuity across

the right hand cut, if

with "I+) indlcaling that only the positive-energy root of the argument of the 8 rnnclion

is to be included. From tillS follows:

(3.3.7)

•



with

Using the equality

,
E2-

P
=k ",[ m~+(~p:!:kf]l.,

o {Po -E, -E, lO[k, -'E, o'E, ]
_P+k _p_k 2 _P+k 2 -f-,
2 1 I l

the imaginary part of the propagator g(klp) can now be wnlten:

(3.3.8)

"[Po -E, -E, ]-p+k _P_k, , (3.3.9)

where

(3.3.10)

represents the positive-energy projection operator for nllcleon (i "'1, 2) with u(p) a

positive-energy Dirac spinor of momentum p; ..1.,denotes the helieity or the spin

,
projection of the respective nucleon, and Ep = (m,~+ p')2

The projection operators imply that contributions involving virtual anti-nucleon

intemlediate states are suppressed. These contributions are small whcn pseudovector

coupling is used for the pion. We note that Img(kIP) i, covariant, since

Using

1mg(,qp)= lmg(klp)
,,(po - £)=1£3(.< - £' + p'), where E=E(,) oE1"

- P,k -i'", "

'od
, , ,

.<=P =PD -P ,
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Now we try to construct g(kls) by llsing a dispersion integral

(3.3.12)

g(kl,)ol "( . N , Tmg(W)
iT ,s -S-lli

4"/01

[' F() 1 "Jd' ImF(w') ]SlUce ' 11.'=- W, .
fr_

ro
w-W-Ib'

(3.3.13)

Inserting Egn. (3.312) in Egn. (3.3.13) and for the integral in Egn. (3.313) using the

following property of 0 fllndion

('''(1,)5[;(')]0 II jill! I
i Oyx1ia,

where x, are the real roots of y(x) =' 0 in the interval of integration, ,~e obtain

(3.3.14)

This three dimensional propagator is known as the BlankenbecJer-Sugar (BbS) choice

[18]. By construction, the propagator g has the same discontinuity aeross the right-hand

cut as q; therefore, it preserves the unitary relation satisfied by 511:.

, (, I"" (,""Usmg the angle averages zl':tk ",.P-+k and i"t':tqj ",..-p' +q ,WhlCh should

he a very good approximation, Egn. (3.3.14) assumes the much simpler fonn

I



(3.3 15)

where we have used

Assuming W~ 0/, the reduced Belhe-Salpeter equation is ohtained in explicit fom1 hy

replacing in Eqn. (3.3.4) q by K ofEqn, (3,3.15), yielding

A~j(~I>+k}\~)(~P-k)( ,)
. l ~\-tk,qP (3.3.10)

E' ,.1, .
" ~LI +'C
_e'q ~p.k, ,

in winch both nucleons in the intermediate states are equally far off their mass shel L

Taking malri x clements betv,'een positive-energy spino[s yields an equation for the

scattering amphlllde in an arbitrary frame:
, ,

'I (q'.q'p)",V(q'.q)+ I~V(q',k)_m~N_------ cr(k,qlr)
(2i:Y £, E~ -Ei +h;

_P_k _r_q _PH, , ,
where we have used

ii, (,~p+q') 112~ r _q')1J(q'.qlr) II, (+r + q)"!(+ r-q)
= U] (q') U1(-q') '1)(q'.q) II](q) U2(-q)

",V(q'.q)

(3.3.17)

(3.3.18)

since this ;3 a Lorentz scalar. An analogous statement applies to (t. Calculations of

nuclear maHer and of finite nuclei are performed in the rest frame of these syslems. Thus

Eqn. (3,3.17) with the necessary medium modificalions would be appropnate lor tile

evaluation of the nuclear mattcr l'eJctioo G-matrix.

In the tv,'o-nucleon c.m. frame P = 0, so lhat lhe BhS propagator g(J.., s) redllce, to

'i' ,),_'_""~'AI~)(k)A~)(-k);;(k)
"()JE"O 2,,- .~ "4,-£<:+io

which implies the scattering equation

(3,3.19)

; ,
'T(q',q)=V(q',q)+ I(d ')"J V(q',k(E""

2Jr "

1
, 1 cr(k,q)

q- -I; +if:
(3.3,20)
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T""o-nuelcon scattering is considered most conveniently m the two-nucleon c.m. framc;

thus, for calculations of free-spacc two-nucleon scattering in the BbS approximation, one

would usc Eqn, (3,3.20),

The BbS propagator is the most widely used approximation. Another choice, which has

been frequcntly applied, is in thc version suggested by Thompson. The manifestly

covariant fonn of Thompson's propagator g(k, ,,) is the same as Eqn. (3.3.13), but with

fdS' I(s' -s-ic:) replaced by

4",~,

"fd I;' /(/i -F- iC:).

'""
So the Thompson's propagator g(I<, s) now rcads

( I) 1 ~jdH ( I ,)gks =- 'F' Imgks
JI ~!s- s-u:lon,,'

with Im;;-(kl s) given in Eqn. (3.3,12).

For the integral in the aboye equation we again usc the same properties of E -filllction as

in the previous case and obtam [u,>mg f(x) = '(R1 F .)]
2 .../s s - s -u:

\\ihcre 4£' -p',S = L
_P+h,

Using the angle aYCragc5(~P:tk[ '"~pl + I<land (IP:!: qf = ~pl + ql, we obtain



4£; -p'
_P+k,

"hlCh af1:ersimplification, becomes

\vhere

,

E] =[{!...P+k} +m,~]'_P+k \:2,
The equatlOn for the scattcring amplitude In an arbitrary frame is thcn

(3.3.21)

(3.3.22)() j d', m', I ()
'T q',qlp =V(q',q)+ -( )J V(q',k) E / 2£ -2£ . 'T k,qip

2" kl ~ k+U:
_P~k,

For calculations in the rcst frame of nuclear matter or fimle nllclei, this equation, together

wIth the necessary medium modifications (m", -J. JnN, Pauli projector Q), is appropriatc.

In our actual calculations in nuclear matter, we replace £k by E(lll!P+" and E~by

E{lI')Piq ill the denominator of Eqn. (3.3.22). This replacement makes possiblc an

interpretation of the energy denominator in terms of clifferenees between single-parliek

encrgics, which are typically defined in the rest frame of the lnany-body system. This

allows for a consistent application of this equation in nuclear matter and finite nuclei.

3.4 The relativistic Dirac-Brueckner approach:
The Dirac-Brueckner approach is the outcome of work that was started by Walecku and

coworkers for schematic )\;"N interaction. The most advanced relativistic description of

nnclear matter has been given by Shakin and coworkers within the frame WOl'kof the

relalivistic Brucekner-Hartree-Fock method [12, 36]. Then after, Horowitz and Serot [37 J

solved the relativislic Bethe-Goldstone equation and it has been extended to the case of

reahstic interaction by Machleidt and Brockmann [38].

oft



Similar to conventional Bruc<:kner theory, the basic quantity in thc Dirac-Brueckner

approach is a G -matrix, which satisfies an integral equation. In this relativistic approach,

a relativistic three-dimensional equation is chosen.

We choose the Thompson equation, which is a relativistic three-dimensional reduction of

the Bethe-Salpetcr equation. Crucial for our choice is the fact that, in the framework of

the Thompson equation, meson relardation is ignored (i,e" a static meson propagator is

used). This is also true for the Blankenbeckler-Sligar (BbS) equation [18]. We note that in

theories, which incorporate meson retardation, effects due to medium modifications on

meson propagation in nuclear matter can be calculated. These effects have been

investigated by the Bonn group and were found to be small amI repulsive, Thus these

effects are known and are not very important, for that reason we will ignore them,

When two nucleons scatter from each other in nuclear matter, the medium effects, such as

the Pauli blocking for the intermediate states and the density dependence of the nucleon

effective mass due to nucleon self-energy, shonld be taken inlo account in the Thompson

equation describing this process. As in the non-relativistic case, one starts from a bare

interaction and cames out a Brueckner calculation to get the effective intcraction, often

denoted as G matrix, in the medium,

Following the ba.,qicphilosophy of traditional Brueckner theory, this equation is applied

to nuclear mattcr in strict analogy to free sca!lning. Thus including the necessary

medium effect, the in-medium Thompson equation, which reads in the nuclcar matter resl

frame,

J _2 -()

G-(, IP -) v-I' ) PJ d k "( 'k) m" Q k,P 7( I -)q,q ,z = q,g,+ ~ q, 2 _)_ "k,q P,Z
(2;r) L(111)P'k z --E(lil)"~k

Wllh Z =2E(Jll)P,q and inN the Dirac ma..~s,

(3.4.1 )

P is the c m. momentum of the lwo colliding nllcleons in the nuclear medium and if, k,

and q' are the initial, intermediate, and final relative momenta, respectively, of the two

nucleons interacting in nuclear matter. In Eqn. (3.4,1) we suppressed the kp dependence
•



as well as spin (he1icity) and isospin indices. For I~P:t ql and ~ P:l: kl, the anglc avcf3ge

is used.

The relativistic OBE potential to be used in thc Dirac-Brueckner calculation is defined as

the sum of one-particle-exchange antplitudes of certain bosons with given mass and

coupling, Usually six non-strangc bosons with mass below I GeV arc used. The

pseudoveetor (derivative/gradient) eouplmg, instead of pseudo scalar coupling is used for

the pscudosealar bosons (rr and 'I) in order to avoid un-physically large antiparticle

contributions. The details about the derivation of the OBE potential, the parameters

(mass, coupling constant, and clltoff of the bosons) and the description of the two-body

system have been extensively discussed in chapter 2,

The essential difference between the free-space Thompson equation and the Thompson

equation in the medium is the inclusion of the Pauli operator Q(k, P) and use of a

density dependent eITretive mass iliN' the Dirac mass, in the lattcr case, The Pauli

operator Q(k, P) prevents scattering into occupied intermedlate states ("'Panli effect").

We note that this is different from Pauli blocking factor for the final states which is

always included in the transport models describing nucleus-nucleus colhsions. Second,

the nucleon mean field dlle to the medium reduces the mass of the nucleon and affects the

energy denominator in Eqn. (3.4.1) which is now density dependent, while in the free

Thompson eqllatlOn the energy denominator uses free relativislie energies ("dispel'sion

effect"). Finally and most importantly, the potential used in the in-medium Thompson

equation, as indicated by tilde, is evallluted hy llsmg the in-medium Dirac spinors instead

of the free ones (hence the name Dirac-Brueckner approach). Thi8 leads to the

suppression of the attractive u exchange, which increases with density. The fact that the

Dirac-Brueckner approach is able to reproducc qllantitativcly the saturation properties of

nuclear matter is mainly due to thIS relati\'istie effect. This observation also imphes that

the in-medium NN cross sections based on the non-relativistic Brueckner approach lack

one important aspect, namely, the effect, which is dlle to the medium modification of the

potential.

•



The Dirac equation, which is used in this relativistic approach for the description ofthc

single-particle motion in the medium is givcn by:

(3.4.2)

where Us is the attractivc scalar field and U v is the time like component of a repl.llsive

vector field; mN IS the mass of frcc nucleon. The solution of Eqn. (3.4.2) is

(3.4.3)

with mN = m,~'+Us' E* = (m~,+k2 tl , u arc thc Pauli spin matrices and X, is a Pauli

spinor, Thc in-mcdium Dirac spinor Eqn. (3.4.3) is obtaincd from free Dirac spinor by

replacing mN by mN• The single particle energy resulting from Eqn. (3.4.2) is given by

The scalar and vector lic1ds of the Dirac Eqn. (3.4.2) are determined from [S)
- -,
,,~,. Us +Uv = L mN (mnIG(z)'mn-nm)
£, .<kF ErnE. '

(3.4.4)

(3.4.5)

which is thc rclativistic analog to the non-relativistic Brueckncr-Hartree-Fock definition

of a single-particle potential

U(1II)= ~N ("'Iulm) = ~1'i (miU s +yflUvim) = ~N Us + Ur (3.4.6)
Em Em Em

where 1m) denotes a state helow or above the Fermi surface and corresponds to a

contimlOlls choice. The states Im) and I"I are represented by Dirac spinors of the kind in

Eqn. (3.4.3) and an appropriate isospin wave function; (miamI ("I are the adjoint Dirac

spmors Tf = iTt/with iTil = 1; Em '" (';iN + l'~ J"2. The ,calar and vector Fields of the

Dirae Eqn. (3.4.2) are detennined from Eqn. (3.4.5).

The energy per nucleon as a function of the density of the system is orten referred to as

the nuclear equation of state. We note that this differs from the more common definitioll

of an eql.lation of state, whieh is the variation of the system pressurc with its density.

•



In the Dirac-Brueckner approach, the n •.•cIear equation of state, that is, the energy per

nucleon, E:I A, as a fimction of density,. p, is obtained from the G matrix:

(3.4.7)

Since the kernel of the in-medium Thompson eqnation, Eqn. (3.4.1) depends on the

solution of the Dirac equation, Eqn. (3.4.2), while for the Dirac equation one needs the

scalar and vectorpotenlials which are related to the G matrix via Eqn. (3.4.4), one has to

carry out an iterative procedure with the goal to achieve self-consistency of the two

equations: starting from reasonable initial values for U}ol and U~ol,one may solve the in-

medium Thompson eq•.•ation in momentllm space by means of the matrix lllversion

method to get the Gmatrix which leads by means ofEqn. (3.4.4) to a new set of values

for U\') and U;.'! to be used in the next iteration; this procedure is continued until

convergence is achieved.



Chapter-4

In medium NN scattering cross-section and its
density dependence

This chapter is devoted for finding the NN cross-sections in nuclear matter, Since the

G-matrix plays the role of an effective interaction for two nucleons in the nuclear

medium, we need to find a method suitable for solving the Brueckner (i-Matrix equation.

In fact, the Brueckner equation that defines G, resembles' the Lippmann-Scl1"inger

equation for R matrix, The G-matrix is finite even for singular potentials, ill m\lch the

same way that the R-matrix for free scattering is finite for singular potentials. As it is true

for the R-matrix, one can use the matrix inversion in momentum space to ealcL11atethe G-

matrix for infinite nuclear matter. In this chapter, we describe the method of matrix

inversion for solving the Bmeckner G-matrix equalion, in section one,

In seclion 2, we discuss a formula, which can be used 10 find the NN scattering cross-

sections in nuclear medium diredly from the G-matrix obtained by solving the Dirac-

Brueckner G-matrix equation. The Golden rule for finding the cross-section for the

scattering of two free nucleons is derived in section threc. This free NN cross-section

may be uscd to find the in-medium f'.,'Ncross-section by taking into account the PaLlli-

blocking for the medium effect, "ihich is discussed in lhe preceding section, In section

four, we make an analysis of lhe effect of the P~uli principle in the binary colliSIOns

bctwccn the nucleons of a two-nllc1ear mattcr syslcm in relative molion, We show that it

reduces to a geometric~l problcm in the momentum space of the system and an analy1ical

derivation for it is presentcd. Lastly in section five, the lov.-est-order corrcclion of the

density dependence of in-medIUm nucleon-nucleon cross-scctions is obtained from

geometricul considerations of the Pauli-blocking effects.
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4.1 Matrix inversion method for solving Brueckner equation:

In this section, we first discuss the method of matrix inversion [3] for solving the

Sehr6dinger equation in momentLlm space. This method can be applied to any non-

singular potential, either local or non-local, central or non-central. Several alternate

approaches to solve the Sehr6dinger equation for general non-local potentials are also

available in the literature. For the purely nuclear part of the hvo-nucleon mteraetion, \ve

find that the direct matrix inversion is simplest.

The Schrodinger equation describing the two-body relative motion is given by

(4.1.1)

where m,v is the nucleon mass, r = r, - r, denotes (he relative displacement of the two

nucleons, lind E, is the total relative energy. In general V(rlr') is a non-local operator.

For local potentials, V(rlr')--+ J(r - r')V(r); many rapid methods exit for solving the

resulting second order differential equation. However, for non-local potentials one faces

the difficult task of solving an integro-differential equation in configuration space.

Numerical methods for that problem are also available and are particularly useful when

Coulomb forces are to be included.

An alternative approach, to he used here for nOll-local nuclear potentials, is to introduce

momentum space. The relative motion IS then descnbed by

(4.1.2)

where 2q = q] -ql is the rclative momentum. The energy eigen-value has heen written

" ,as En =...:..5L, where n is used to 13bcl the incident momentum vector for scattering and
mN

the spin and isospiu quantum nLlmhers. The wave function V"(q') is simply the Fourier

transfoml of If!" (r)

(4.1.3)

•

•
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and the potential matrix elements in momentum space are related to the non-local

operator V(rlr'l by

The next step is to intwduce a partial wave decomposition of the wave func!ion

'fI" (q') = LiL-L''fItL'(q')YulL (qXLSM I,M s IJM)yf:~ (q'ITTJ),

al.L'M

(4,1.4)

(4.1.5)

The wave function is decomposed into normalized eigenstates of the total angular

momentum J, the total spin S, and the total orbital angular momentum L of the two

nucleons, Here a denotes the quantum numbers JST. These eigen-states arc formed

using the Clebsch.Gordon coefficient (LSM LM s IJM):

yf~ ('1')= L(LSM LM s IJllf)YLAfL (q'~SM s)
ULMS

The eorresponding decomposition of the potential is

v( 'II')-~~"<,,-",, ( 'Ik)"'(__U"'(__)"q , - L...,i W II YLS q }YiS q 'T_
,T /liN

(4.1.6)

(4.1.7)

Where V(q'lk) is an operator in spin and isospin space and Pr is an isospin projection

operator. Eqn (4.1.7) represents the most general potential that conserves total angular

momentum, parity and isospin, The potential satisfies time reversal invaliance If

Vu;(q'ik)= Va (klq'). The sum is restricted to those quantum numbers alL' of t",o-

nlldeon slates Ihat arc allowed by the Pauli principle, i.e. states having S+L+T equal to

an odd integer For triplet states the orbital angular momenta L = J:t 1 can bc coupled by

a tensor or non-central potential; thus both Land L' labels appear on Vu' and 'fill"

Let us now consider the scattering problems fmIDulated in momentum space. In

momentum space the Schrodinger equation for standing ",aves i,

(4,1.8)

the symbol P means principal 'laIno, Thc incoming momentum vector fiq and incident

spin-isospin state arc labeled by n,

••



Instead of solving directly for the wave function, it is convenient to introduce a reaction

matrix defined by Rifi. '" Vlf., where ifi, is a plane wave. The result is the Lippmann-

Schwinger equation

R( 'I J~vi '11m, p jdkVlq'lk)Rlk1q)q q q q •., l l
" k -q

(4.1.9)

It is easy to construct the wave function and phase shifts from the R-matrix, once a partial

wave decomposition is used. The result is the one-dimensional, coupled-chalmels,

Lippmann-Schwinger equation

(4.1.10)

The channels are aeL and aL', which can be coupled by a tensor force. In triplet statcs

the orbital angular momenta L:!: J + I are coupled. For numcrical \vork it is convenient

that only real quantitics arisc in Eqn. (4.1.10). The corresponding wave function in

momentum spacc is

(4.1.l1)

(4.1.12)

Kow wc will discuss the way of solving the Lippmarm-Schwinger cquation for R-matnx.

Let us considcr Eqn. (4.1.10) for uncoupled chatUlels (L = L') and add a zcro tcrm to

replace thc principal value condition by a smooth integrand

"I 'I I "1'1J 2 "rdk[k'vrklk)Rflkl,I-,,<vrkl,JRfi',hJ]R/.qq=V/.qq-- l'
frii k-q-

The intcgrand has a finite limit even for k = q ; however, wc wish to avoid such points.

\Ve need to solve Eqn. (4.1.12) numerically \'.rithout having any points at which k = q .At

the same time \\e need to find the R-matrix both on ami off the energy shell.

These quantities can be easily found by introducing an N-point integration rmmula
, ,
jdkF(k)~LFlkJw" (4.1.13)
o ):L

where we prefer to take k
J

and (oJ to be either Laguerre or Gaussian integration pomts

and weights. The integrand in Eqn. (4.1.12) may he eonsidered as F(k) in Eqn. (4.1.13).
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Gaussian integration is used for potentials having a relatively slow fall-off in momenrnm

space. All of the N integration points, *],*,<, ,kN, are required to be unequal to

ko' Tfwe call k, the N + I point (*0=*,.+,), then Eqn.(4.I.l2) can be rewritten as

(4.1.14)

The matrix FL is simply

where w~is defined by

, 2 k~(J))w.= ~
J 11k'-k', 0

forj<{,N

forj=N+l

(4.1.!5)

(4.1.16)

The matrix F is nonsingular siuce kN.] is distinct from the grid points; it can therefore be

inverted to yield the R"matrix both on and off the energy shell

Ntl

R" (',1'",,)~IFi' (,.I', lvz (', I'",)
J=L

(4.1.17)

A similar partial wave decomposition may uow be used to reduce Brueckner non-

relativistic C matnx equation given in Eqn. (3.2.6) to a set of one-dimensional integral

equations, just as in the case of the Lippmallll-Schwinger equation. To reduce Eqn.

(3.2.6) to a set of one-dimensional integral equations, the following standard parti ai-wave

decomposition may be used.

G(' Ip) 2 tJl '\' .£-£'G" (, Ip)~JM("l,..,.JM+(')Pq,q =-.--L1 'l.L,q,q -.sIS q!"-,£" q T
Jr m,,' aLl'M

(4.1.18)

the resulting one-dimensional coupled-ehatlllcl non-relativistic Brucekner equation is

GO,(q' 'Ip)= Va .(q', q)_ 2 ._1_" "jdkk1Q(k,P)V/l,(q',k) .Co ,(k Ip)
U" 1/ L E(' P)-E( P) ££ ,q:r m," I 0 ., q,

(4.1.19)

In a similar fashion the one-dimensional coupled-channel Dirac-Brueckner relativistic G.

matrix equation becomes



G-"(' Ip).V"(' )_2""'Jdk{i'V{1'(Q',k)mN. Q(k,P) - ( I)LL'q ,q LLq, q "L.. 1 1 -_------GfL' k,qP
1r i 0 (2;r) E(Vl)P+k Z - 2E(1/2)P~k

(4.1.20)

As before, a denote, JS and T. Eqn. (4.1.20) differs from the Lippmann-Schwinger

equation in two important ways. First the energy denominators inch.lde single-particle

potentials that arise from the presence of/he other nucleons - this is simply a recognition

of the many-nucleon medium in which the pair is moving. Secondly, the nuclear medium

produces the Pauli exclu~ion effect as recorded in Q. Because of Q, the integrand in

Eqn. (4.1.10) docs not have a singularity, which cal1ses the healing of the t""C}-nucleon

wave fundion in the nuclear medium.

The mmsingular character of the integrand of Eqn. (4.1.20) makes it completely suitable

to solve by matrix inversion method.

4.2 Effective cross-sections for NN elastic scattering:

In this section we consider nucleon energies below thc pion threshold (-300 MeV), so

that the NN scattering is purely elastic. When discussing two-body properties in nuclear

matter, wc shall use the concept of effective cross sectiolls [39]. Tn the following

disCllssion, four different cross section values arc distinguished. The froc NN cross

section, which in Our approach is related to the vacuum t matrix T", will be called U4' In

some kinetic equations, this cross sectIOn is corrected for Pauli blocking m the outgoing

channel. We shall call this value U,. Calculating the effective cross-section from the

effective O,rac-Brueckncr interaction, G, we obtain u, and 0"1' Here, u1 lS not

corrected for Pauli blocking in the outgoing channel (but Pauli-blockmg m the

intenlled,ate 1\11\chalUlCls is included); u1 is the effective cross-section that contains all

medium corrections, The incoming 'N"Ncharmcl is the sanle for all four cross sections.

Particlc I has a certain fixed momentum compared to the surroundmg nuclear medium,

For particlc 2, all the available Fermi sea momenta are taken into account and averaged

aftcrward. In summary [39]' (writing U for u[)

I
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() 3 J; -( . )rn,,('cl J "'1-(' I l'o-ql - 4 'kJ d qzQP,s,q ( )2.X dnc,m,L.Gq,qP~
JrFO 22!TS <T,'

(4.2.1)

where q] and q, stands for momentum ofparti,le I and 2 respectively, P"'ql +q"

. (- -, ,s=E,+E1!-P and L"" represents the summation

(average) of outgoing (incoming) spin and isospin channels. The function Q gives the

angle-averaged Pallli-blocking operator and kF denotes the Fern'; momentum.

The starling energy in Eqn. (3.4.1) is z = 2£. = 2\lm,~;+ql , where q is related to the

kinetic energy of the incident nucleon in the "labor<llory system" (£'0')' by

£",o=2q'/",,, in which the other nucleon is at rest. Here two col1iding nucleons are

considered in nuclear mailer. The Pauli projector is represented by one Fermi sphere as in

conventional nuclear matter calculations This Pauli projcctor, which is originally defined

ill the nuclear mattcr rest frame, must be boosted to the c.m. frame of the two interacting

nucleons. The explicit formulae for Q [40] is as follows:

1),(-')'"for q:O;-V'k;-- 'lEF)r

for other values of q,

"jth £1' = ~;. +m,~,VI and furthermore '1 and r aredcfincd by:

'1= pl .../7 and r=EN; :\Is' +p'//7
In c.m. frame 'l = 0 and r = 1, so that Q takes the form

(4.2.2)

Q(q,p,,)~o
Q(q.P.>')~1 (4.2.3)

for in-medium NN scattcring, the Dirac-Brueckner G-matrix of Eqn. (3.4.1) may be

used in Eqn. (4.2.1) in centcr of mass frame with P = 0 and z = 2Eq• We may obtain this

I



G -matrix by solving the Dirac-Brueckncr G -matrix equation using the matrix invcrsion
method, discussed in the previous section. Thus the in-mcdium NN cross-sections may be

calculated directly from thc Dirac-Brueckner G -matrix by using thc cross-section

formula given in Eqn. (4.2.1).

4.3 The Golden rule for free NN cross-section:

In this section we begin a quantitalive fonnulalion of clcmcntary particle dynamics,

which anlounts, in practicc, to calculation of scaltering cross sections (a), The procedure

involves two dlstinct parts (I) cvaluation of the relevant Feynman diagrams to detemline

thc "amplitude" (01-1) for the process in qllestion, and (2) insertion of o;t mto Fcrmi's

'Golden Rule" 10computc a,

Kow the question is what we mean by a "cross scction". Suppose a particle (may be an

eleclron) comes along, encounters some kind of potential, and scatters off al an angle e,
This scatrermg angle is a function of the impact parameter h, the distance by which lhe

incident particle would have missed the scattering center, had it continucd on its original

lrajectory. Ordinarily, lhc smaller impact parameter, lhe larger thc deflection, but the

aclual functional form of e (b) depends on the particular potential mvolved.

If the partIcle comes in with an impact parameter between hand b+db, it ,~ill emerge

with a scattcrittg angle between e and de. More gcncrally, if it passes through an

infinilcsimal area da ,it will scaUer into a corresponding solid angle dO.. Naturally, the

larger we make cia, the larger dO. will be. The proportionality factor is called thc

differential seal/ering cross seerion, D;

da = D(o)dn
In principle, D might depend on the azimulhal angle rfi; however, most pOlentials of

interest are spherically symmetrical, in which case the differenlial cross section depends

only on e, By the way, the notation, D, is simply dcrjdn.
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Suppose now, that we have a beam of incoming particles, with unifonn luminosity L (L is

the number of particles per unit time, per unit area). Then dN = Lda is the number of

particles per unit time passing through area dO', and hence also the number pcr unit time

scattered into solid angle dO:

It follows that

da =D(O)=~ dN
dO. L dn

This is frequently a more con\"enient way to think of the differential cross section. It IS

the number of particles per unit time scattered into solid angle dn, divided by dn and

by the luminosity.

To calculate the basic physical quantity scattering cross section there are two ingredlents:

(1) the amplitude (:11) for the process and (2) the phase space available. The amplitude

contains all the dynamical information; we calculate it by evaluating the rele\"ant

Fe)'llman diagrams, using the "Feynman rules" appropriate to the interaction in question,

The phase space factor contains only kinematical infomlation; it depends on the masses,

energies, and momenta of the palticipants.

Snppose that the panicles 1 and 2 have a collision, producing particles 3,4, .... ,.,.,n so

that

1+2--+3+4+ ...... + n (4.3.1)

The cross section is gi\'Cn by the fonnula known as the Golden rule [29J:

d 1 I' ft'S [[ cd'q, X cd'", J ('d'q,]]
a=:11 4"f(ql"hr-(m]m,cl) (2iT)J2~) (2iT)'2£•. "..., (2iT)'2£,

x(2:r)' J'(q, + '11~ql- 'I.- "...,....,..- q,) (4.3.2)

where tf, = (Ei /e,qi) is the fOLIT-momentumorthe l-th panicle which carnes mass mi,

£,2 -q;o' =m;c', and S is a statistical factor (lij!) for each group ofj identical particles

in the final state). (W) is the scaltcring amplitude. The delta function enforces

conservation of energy and momentum.
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The above equation determines the cross section for a process in which the lhree-

momentl.lm of particle 3 lies in the range dJq)abol.lt the vall.le qJ, that of particle 4 falls

in the range dJq4 about q4' and so on. In a typical situation \ve study only the angle at

which particle 3 emerges. In that case we integrate over. all the other momenta

(q.,q" ,q,,), and over the magnitude of q); what's left gives us dufJO, the

differential cross section for the scattering ofpartic1e 3 into solid angle dO.

Let I.lSno\V consider two-body scattering where 1+2 --l-3 + 4. Here

(4.3.3)

Nowsince(Q"Q2)' =(E~~l_ql .q2)l, we write

(4.3.4)

Rewriting the delta fl.lnction as

and expressing the ol.ltgoing energies in terms of q) and q4 i.e.

performing the q4integral, we obtain

(4.3.5)

Writing dJq] '" p'dp dO (where p is shorthand for IqJI and dQ = sine de d<jJ)we get

o
.<=1



(4.3.6)

E "U( ,1m5c' +p' +,/m1c' +(ql +q, _p)')
So, equation (4.3.6) becomes

(4.3.7)

In the ccntre of mass frame q[ = -q" Iqll = Iq,l. So that equation (4.3.7) becomes

(4.3.8)

where IqJI is the magnitude of either outgoing momentum and Iq,1is thc magnitude of

either incoming momentum.

4.4 Geometrical consideration of the Pauli-blocking eUect of
the medium on NN cross-section

The In-medium l\TJ\' cross-sections may also be determined from the free NN cross-

section. The main effect of the medium corrections is due to Pauli-blocking of nucleon-

nucleon scattering. Pauh-blocking prevents the nucleons from scattering into final

occupied states in binary collisions between the projectlie and target nucleons.

The effecl of Pauli-blocking for the in-medium in nucleon-nLlcleus collisions was first

investIgated by Goldberger in 1948 and by Clementel and Villi;n 1955 on the basis of

the geometry for a single IlUcle<JIHlucleon collision in momentum space. Their approach

is still used in the microscopic descriptIons of nucleon-nucleus cross-section with good

agreement with the experimental data [41]' We will sec ho\v one can extend their ideas to

the study of the collision between two nllcleons in the nuclear matter.



Fig. 4.1: Diagram exhibiting the kinematics of thc l\VOnucleon collision. The initial
momentaofthc pair, q[ and q" togctherwith ko• P and q arc represented by
arrows as indlcated, The third sphere is the loens of the end pmnts of the vectDr
q. The non-shaded region corresponds to the allowed scattering angle. The
cross-hatched region indIcates the admissible angles for initial pairs with the
same modulus 2p for the total momentum and the same modulus 2'1 for the
relative momentum.
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By nuclear matter collisions we mean m'o Fermi fluids, one of which is initially at rest

and the other is moving against the first with a momentum k10h = koper nuclcon. Each of

these fluids possesses a Fermi motion in its rest frame and the initial state ofthe system is

described by two filled spheres of radii kFI and kn, corresponding respectively to the

larger and smaller spheres, with the position of their centers separated by ko' as shown in

Fig. 4.1. In the initial stage of the system a binary collision between a pair of nucleons

will only be possible if they pertain to different Fermi fluids. If initially they have

momenta q] and ql' after the collision they will possess momenta q; and q'" which by

the Pauli principle mllst lie outside both Fermi spheres. These momenta arc also relatcd

by the energy-mOmentllm conservation laws

where jj is a unit vector in the direction of a solid angle dQ.

(4.4.1)

\Ve observe that the

conservation of energy of relative motion in the binary collision is only valid for energies

below the pion-thre~hold £1"" '" 300 MeV above which most of the collision cross

section will be inelastic due to pion production. Nevertheless, we shall see that for

relative motion energy of the Fern]i fluids greater than this value, the Pauli pnncip1e has "-

rapidly decreasing importance and tbe above assumption can be used without major

consequence8.

In Fig. 4.1 we obscrvc that, due to Pauli principle and the conservation laws in Eqn.

(4.4.1), the available sohd angle 4,,-/i)s denoted by Q.P,,"" the Pauli-blocking for

scattering of the pair i8 restricted to tbe non-hatched region insIde the auxiliary sphere or

radius q =Iq, -q,I!2. To this solid angle not only a pair but all pairs ofmlcleons can

scatter "heh lie on the s•.•rface of this auxl1iary sphere and Inside the double-hatched

region of Fig. 4.1. This double-hatched region fonn> a solid angle 471'WI' The

calculation of (j) sand (j) / is of great relevance in our following analysis and we show

lhat it can be translated into a problem of spherical geometry. We sec that energy and

momentum conservation, togcthcr \vith the Pauli principle, restrict the collision phase
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space to a complex geometry involving the Fermi-spheres and the scattering sphere. In

this scenario, the in-medium cross-section corrected by Pauli-blocking can be defined us

[42]

(4.4.2)

where ko is the relative momentum per nucleon of the nucleus-nucleus collision and

IS the free nucleon-nueleon cross-sectIOn for the relative momentum

2q = q2 - q[ of a given pair of colliding nucleons and the integratIOns are camed out

inside different Fermi
n

spheres The factor ~ is the fraction of the solid angle
4To

avaIlable for a specific collision between a nucleon with momentum ql and another with

momentum ql. The factor 2'1 corrects for the f111X differcnecs between the laboratory
ko

system and a system in which one of the nllcleons is at rest. Now we define

(4.4.3)

and b=ko-p

After the collision p and b stay constont while q ebanges only its dlIection.

Fig. 4.1 shows schematIcally the geometry of the collisIon. The allowed scattering angle

of the pair corresponds to the non-hatched region of the spherical surface \vith centcr in

p and radius equal to q. This angle is equal \0 4Jrws = flPo,,'i' according to the definition.

The possible angle of origin of nueleon-pairs wllh lhe same momentum p and same

modulus q of the relalive momentum is glyen by the double-hatched region in rigA.l.

We call Ihis angle 20 and we nole lhat it corresponds to 4Jr(v, according to the

definition. This solid angle is geometrically originaled by lhe intersection of two hour

glass-sbapcd angle each of which is single.hatched in Fig.4.1 and which we call 2fl, and

G5
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2Q,. These angles are easily related to the momenta defined in Eqn. (4.4.3). This can be

verified in Fig.4.1 from ,~hich we infer that

Qo =2ir(I-cosO.)

(4.4.4)
where

, 'k'
O p +q - Fl

00; .-,------
" 2pq

P +ql_ecosO _ f'
/> 2bq

we then immediately have th3t

Q/-'""I,= 4;r illS = 41l'- 2(Q" +Qb - Qj where 4JT(l), =2l:l

(4.4.5)

(4.4.6)

Using Eqn. (4.4.4) m the above equation, we obtain

Q Po,d,= 4;r(cosO, + cosOb -1) + 2Q (4.4.7)

Fig. 4.2: Spherical surface of unit ra.dlUSover whieh we tmeed two circles originated by
its intersection WIlh the sohd angels Qo and 00, The solid angle Q,,(nb)
possesses a symmelry angle Bo(tt,) wilh respect to the axis Xo(Xb).1hese
axes have an angle ° between them. The shaded 3Ica is simultaneously inside
n, and no'

The angle 0 depends on 0.> 0b and on the angle B between hand p. This silt13tion is

shown more clearly ill Fig.4.2 where the axes X. and X. 3rc respectively parallel to p
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and b. The solid angles 0" 0b and 0 are now given by the corresponding areas

inscribed over the surface of a sphere of unit radius. It is clear from this figure that

i) 0=0. if 8$8. -8, ~O

ii) 0=0 if 8$(1,-8. ~o,

iii) 0=0 if 0"20. +0,

R

(4.4.8)

Fig.4.3: The projection into a plone of the area 00 and °0, Rand T are their
geometrical centers, ,')'and P arc the intersection points of (heir contours. All
lines joining these points are segments of great circles oyer the spherical
surfacc. AI and A2 are the areas of two spherical triang1cs limited by some of
these lines.

The case 10,-8.I:;e :;8, + e., as it appears in FigA.3 needs a more detal1ed study. In

FigA,3, Rand T are the cenlers of these circular areas, Sand P arc the interse<:tion"pomts

of the circular contOllrs of these areas and Q is the point where the geodesic line joining R

and T crosses the geodesic line joining Sand P, The poinls R, P and S define a spherical

lriangle of area 2A,. The points S, P and T det,ne a spherical triangle of area 2A,. These

lrianglcs have internal angles a and P arollnd Rand T, respectively.

The part of lhe CirClllar area 0.,

The part of the circular area 0b'

which is inside the lines RS and RP is eqllal to ~Oo'
h

which is inside the lines TS and TP is equal to !!..-0.b'h

,

We then easily deduce from Fig. 4.3 that the intersection area between 0.. and n. is ,
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- a pn~-n.-0; -2A -2A
2rr"2n' l'

(4.4.9)

To obtain the angle a we use n>,'onew axes X p and X s passing by the center of the

spherical sLIfface and by the points P and S, respectively. Adopting a polar coordinate

system in which X" is the z-axis, the angle will be the difference between the azimuthal

angles between X p and X s' In this coordinate system (8, ,rjJp) and (9,11.) are the polar

and azimuthal angles correspondmg 10 the axes X p and X.' respectively. Since the

angle between X. and X F is e" then

cosO. =cos8. cosO + sinO. sinBcos("s, -t/!p)

from which we infer thai

a _,[cose, -cost/cost!.]-=fJ, -9" =C05 ..
2 smOsmO,

(4.4.10)

(4.4.11)

Following the same lines we can find fi/2 as given by a similar equation: we must only

exchange B" and Bo in the above result

j3 =coso,[Cos8. -COS8COS8.]
2 sin8sin8b

(4.4.12)

The areas A, and A, can be obtained by means of a known theorcm for spherical

triangles, which stales that

. area(slim ofmlemal angles) - 71: =Y (4.4 13)

(4.4.14)

where R is the radius of the spherical sLirface o\'er which the triangle lays and in our case

is equal 10 unily. For lhe area A, we deduce

a K-+,;--=A
2 2'

where'; is the angle between the lines QS and RS. In Fig.4.4 we show how this area

arises from the intersection of the great circles inscribed ovcr the spherical surface.
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/'
x

y

Q

R

s

Fig.4.4: Three great circles over the spherical surface and a spherical triangle of and A
limited by the segments of their intersedions. With respect to a conveniently
chosen coordinates-axis system, R lies all the XZ-plane and has polar coordinate°0, S lies on the XY-plane and has azimuthal coordmates 1>0'The angle between
the lines joining Rand S (0 the origin is Bo' From this picture one deduces the

internal angles % and S of the spherical triangle as functions of 80, tPo and

e"

Now the z-axis is chosen so that the line QS hes on a great circle in the XY-plane and the

line RQ lies on a great circle in the plane XZ. The angle q will be given by the scalar

product between a lmitary vector perpendicular to the great circle which contains lhe

lines RS and a unitary vector in the Z-direction. In terms of [he auxihary angles 00 a~d

(;0' we obtain

Taking the scalar product of [he same unit vector in the Y-dlrec(io~, we find

a _,[ 00"',''''" ]
2=eos ~cos'Oo+sinleosin2,pn

The angle D. is also related with eo and tPa by

cose. =' sinO. cos(;,
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4.5 Density dependence orin-medium NN cross sections:

The nucleon-nucleon cross se<;tion is a fundamental input in theoretical calculations of

nucleus-nucleus collisions at intermediate and high energies (<: I A ;;.;100 MeV). One

expects to obtain information about the nuclear equation of state by studying global

collective variables in such collisions [43]. In previous theoretical studies of heavy-ion

collisions at intermediate energies (<: I A '" 100 MeV) the nucleOn-lll.lcleon cross-section

was multiplied with a constant scaling faclor to account for in-medil.lrn corrections

[44, 45]. As pointed out in [46], this appwach fails in low-density nuclear maUer where

the in-medium cross-section should appwach its free-space value. A more realistic

approach uses a Taylor expansion of the in-medium cross-section in the density variahle.

One obtains [47J

(4.5.1)

where 15= pi P0, Po is the normal nuclear density and a is the logarithmic derivative

of the in-medium cross section with respect to the density, taken at p = 0,

a
a = Po op (!nuN,")lp.o (4,5.2)

This parametrization is motivated by Brueckner G-matrix theory and is basically due to

Pauli-blocking of the cross-section for collisions at intermediate energies [48]. Values of

a between -0.4 and -0.2 yield the best agreement with involved G-matrix calculations

using realistic nucleon-nucleon interactions [48].

in this section, we give a simple and transparent derivation of the lowest-order expansion

of the in-medium nucleon-nucleon cross section in temlS of the nucleon density. Here

t"o approximations can be do~e: (a) on average, the S)'TIlmetric situation in which

kFi =kn ""kF, q=ko/2, p=ko/2 and b=ko/2, IS fav(mred; (h) the free nucleon.

nucleon cross section cau be taken outside of the integral In Eqn. (4.4.2), Both

approximations are supported by the studies of [49]. The assl.lmplion (a) implies that

n, = n, = n. So we obtain from Eqn. (4.4.6)
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0'''"1' =4;rr-2Q.
= 4;r - 4n(l- cosO.)

=41r(1-2;~J
Furthermore, assumption (b) implies that

6

n (k' J=a~""'(k)~"'af~(k) 1_22..,"0, N.'U k'
ff 0

(4.5.1)

(4.5.2)

•

The abo\'e eqLlation shows that the in-medium nucleon-nuc1con cross section is about 1/2

of its free value for ko = 2kp, i.e. for e !A = 150 MeV, in agreement "jlh the nllmerical

results of [49]. The connection with the nuclear densities is accomplished through the

local density approximation, which relates the Fcnni momenta to the local densities as

(4.5.3)

where p(r) IS (he sum of nllcleon densities of each colliding 11llcleliSat the position r,
The ~econd term is small and amounts 10a "urface correction, with q of (he order of 0.1

[49). Neglecting the second term ofEqll. (4.5.3) and inserting it in Eqn. (4.5.2), together

with the relations E 0= h' k; /2mN and p 0= pip, gives \)s

'"'(E) (I '-")O=(J"NN +a P where
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Taking Po = .18/m-' and the nucleon mass mN = 1.672G5x 10-2<gm we obtain •

a'=

where E is the energy per nucleon t: I A.

79.76
E(MeV)

(4.5.5)

The above equation shows that the local dcnsity approximation leads to a density

dependence proportional to p'J', The Pauli principle yields a 1/E dependence on the

bombarding energy, ThIS behaviour arises from a larger phasc space available for

nucleon-nucleon scattering with increasing energy. The nudeon"nucleon cross section al

E :$ 300 MeV decreases with E approximately as 1/E. Thus we expect that, in nueleus-

nucleus colhsions, this energy dependence is flattened by the Pauli correction, i.e, the in

medium nucleon-nucleon cross section is flatter as a function of E, for E :$ 300 MeV,

than the free cross section. For higher values of E the Pauli hloeking is lcss important and

the free and in-medium nucleon-nucleon cross-sections' are approximately equal. These

conclusions are in agreement with the experimental data for nucleus-nucleus reaction

cross-section [50] Here "'e have considered the encrgies up to 300 MeV. At energies

ahovc 300 MeV, inelastic chalmels entcr into the pi~ture, We note (hat, for E = 150 - 300

MeV, and p ""Po Eqn. (4.5.5) yields a coefficient a' between -0,2 and -0.5. This is in

excellent agreement with the findings based on the BUU (Boltzmann-Uehling-

Uhlcnbcck) [46] calculations, primanly itltended to reproduce the experimental data on

intermediate energy nucleus-nucleus colli:;ion~.
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Conclusion

In chapter one, we have given a brief review of the meson theory, nuclear force and the

properties of the nuclear matter structure,

In chapter two, we have derived the one-basan exchange Bonn potentials using the

Fe]'llman rules for (he scattering of free nucleons for variol.ls boson fields stich as scalar,

psuedoscalar and vector fields.

In chapter three, we have first discussed the non-re!allvislic Brueckner G-matrix theory

for nucleon-nucleon scattering ill the nuclear matter, where the in-medium effect has

been described by the Pauli project operator. For a relativistic extension of Brueckner

theory we have considered the Thompson equation which is a 3.dimensional redllction of

the 4-dimensional Bethe-Salpeter equation describing the free :t\'N interaction. Then, in

the framework of Dirae-Bmeekner approaeh for the in-medium effeet, we have derived

the relativistic G-matrix equation, where the NN interaction has been described by the

one-boson-exehange Bonn potentials and the solution of the Dirac's relativistic wave

equation has been taken into aeCOlmt.

In Chapter tour, we have discussed a method: the matrix inversion method to solve the

G.matnx equation and hence to study the saturation properties of the nL1c1earmatter as

well as to calcL1late the in-medlLllll cross-sections diredly from !he G-matrix. We have

also discussed the in-medium NN eross-sections in an alternative way in temlS of the free

NN cross-sections obtained from the Golden Rule, where the in-medium eorrections are

obtained from the geometrical considerations of the Pauli blocking effect.

Finally, we have considered some approximations in this alternative approach. In the

simplest case the lowest-order correction of the density dependence of the lll-med,um NN

cross-sections imply an l/E energy dependence of the density dependent term, This

shows that for high energy values the Pmdi-bloeking i.e. the medium effect is less

important and the free and in-medium NN cross-section becomes approximately equal.

t



To conclude, we may say that this work may be considered as a basis for studying the

nuclear struellirc properties and for calculating the in-medium NN cross-sections in two

altemative ways: One from the Dirac-Bmeckner G-matrix directly which involves the

different Bonn potentials for the l\TN interaction and the other from the free NN cross-

section including the Pauli blocking for the in-medium effoxt, where all the necessary

derivation and formulation have been done

So, in fliturC, this work may be extended to a numerical work for computation and

comparison of the in-medium NN cross-sections in two alternative ways. It may also be

extended for calculation of the single particle cnergy as a function of density in the

nuclear medium and hence to 5tudy the saturation properties of the nuclear matter,
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