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Abstract

It is the purpose of this thesis to provide a basis and a realistic starting point for
systematic relativislic nuclear structure calculations in future. A family of realistic and
quantitative nucleon-nu¢leon (NN) interaction potentials are comstructed which are
appropriate for apphication to relativistic NN scattering in the nuclear matter. The
Brueckner G-Matrix theory in non-rclativistic case is desecnibed and the theory is
extended to relativistic Dirac-Brueckner formalisin for the scaltenng of two nucleens in
nuclear medium. The method of matrix inversion is also described for solving the Dirac-
Brucckner G-matrix equation and hence finding the NN cross-sections in nuclear

medium.

Finally, the dependence of NN cross-sections on the density of the nuclear medium is
discussed by geometrical consideration of the Pauli blocking effect of the medium on frec
NN cross-sections. Some simple approximations show that for high enermies the
in-medium cffect is less imporiant and the free and in-medium NN cross-sections become

approximately equal.
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Introduction

One of the fundamental goals of theorelical nuclear physics is to explain consistently the
properiies of nuclear matter, [inite nuclei, and nuclear reactions (nucleon-nucleus as weil
as nucleus-muelens collisions) with one realistic nucleon-nucleon (NN) interaction that
has a solid theorctical basis and describes the two-body system accurately. First attempts
towards this mim were based on the simplest model for the atonuc nucleus: nacleons
obeying the nonrelativistic Schrodinger equation interact through a two-body potential

that fits ibe low-encrpy NN scattening data and the properies of the deuleron,

Hislorically, the first attempt was macde by Heiscnberg’s student Euler who calenlated the
properties of nuclear matter in second-order perturbation theory assunung nuclcons
interacting via a two-body potential of Gausslan shape. When the singular nature of the
nuclear potential at short distances (“hard core”) was realized, it became apparent that
conventional perturbation theory is inadequate. Special many-body methods had to be
worked out. Brueckner, Levinson, and Mahmouwd [1] initiated 2 iethod, which was

further developed by Bethe [2].

In 1960s substantial advances in the physical undersianding of Brueckner theory were
made due to the work by Bethe and co-workers, Systematic calculations of ihe properties
of nuclear matter applying Brucckner theory staried in the late 1960s and continucd
through the 1970s. The work was donc in the framework of Brueckner theory [1] by
sulving the Bethe-Goldstone equation, which yields an effective NN interaction o the
medium [2-6]. The predictions by the nonrelativislic model for nuclear saluration with a
variety of NN intcractions show a systematic behavior: in an energy versus density plot
the saluration points are located along a band, the so-called “Coester band™ [7], which

does not mect the empincal area.

Approaches discussed so far were based on the simplest model for the atomic nucleus:
Nucleons obeying the non-relativistic Schrodinger equation interact through a two-body
potential that fits low-cnergy NN scatlering data and the properties of the deuteron. The

failure of this model to explain nuclear saturation indicates that we may have to extend



the model. One possible way is to include degrees of freedom other than the nucleon. The
meson theory of the nuclear force suggests to consider, particularly, meson and isobar
degrces of freedom. Characteristically, these degrees of freedom lead 1o medium effects
on the nuclear force when inserted into the many-body problem as well as many-nucleon
force contnbutions. In general, the medium effects are repulsive, whereas the many-
nucleon force contributions are atiractive. Thus there are large cancellations and the net
result is very small, The density dependence of these clfects/contributions is such that the
saturation properties of nuclear matter are not improved [8]. One of the most imporiant
devclopments in the extension of nuclear many-body theory is the replacement of the
non-relativistic Schrodinger equation with the relativistic Dirac equation to describe the

singlc-particle motion in the medium [9].

In the 1970s a relativislic approach to nuclear siructure was developed by Miller and
Green [10]. They studied a Dirac-Hartree model for the ground state of nuclei, which was
able to reproduce Lhe binding encrgies, the root-mean-square radii, and the single-particle
levels, pamicularly the spin-orbit splitings. Their potential comsisted ol a strong
(aitractive) scalar and {repulsive) vector component. At about the same time, Amold,
Clark, and Mcreer applied a Dirac equation centaning a scalar and a vector field to
proton-nucleus scattering [11]. The most significant result of this Dirae phenomenclogy
is the quantitative fit of spin observables, which are only pooriy desenbed by the

Schrodinger cquation.

Inspired by this success, a relativistic extension of Brueckner theory has been suggested
by Shakin and co-workers [12], frequently called the Dirac-Brueckner approach. The
advantage ol a2 Brucckner theory i3 that the free NN interaction is used; thus there arc ho
parameters in the force which are adjusted in the many-body problem The cssential point
of the Dirac-Brueckner approach 15 1o usc the Dirac equation for the single-particle
motion in the nueclcar maiter. One of the main aspects to this problem is that ove needs a
realisiic NN interaction potential which could be constructed in terms of meson-baryon
interactions. Infact, the only quantitative NN interactions available up until now are based
upon the idea of meson exchange; two well known cxample are the Paris potential and
the Bonn potentials [8]. In most calculations a onc-boson-exchange potentials are used

for froe NN interaction. The common feature of all Dirac-Brucckner results 1s that a




(repulsive) relativistic many-body cffcet is obtained which is sirongly density dependent

such that the empirical nuclear matter saturation can be explained.

It is thus reasonable to apply and extend this approach to other domains of nuclear
physics. An imporlant application is the study of the propertics of dense nuclear matter.
These properties are imporlant for particle physies, as well as nuclear physics.
Experimentally, intermediate—euérgy hcavy-ion reactions offer the unique oppertunity 1o
obtain a piece of dense nuclear matier in the laboratory. However, for the analysis of
these reactions the properties of nuclear matter at high density are needed which can only
be cblained from iheoretical investigations [13]. In this sense, the theoretical
investigation of the properties of dense nuclear matier, as well as the properties of

hadrons in the dense medium [ 14], is of great importance.

In this work, we base our investigation on the Bonn meson-exchange model for the frec
NN interaction, the Dirac-Brueckner approach for the nucleon-nucleon (NN} scallenng
and the NN scattening cross-sections in the nuelear matter. In our work, we are concerned
with elastic in-medium NN scattening which is the most imporant two body process in
nucleus-nucleus collisions al incident energy helow 300 MceV per nucleon. The work is

designed in the following fasiion:

In chapter one, we have a detar]l discussion on meson theory, nuclear force and nuclear
structure properties (saluration density and cnergy). The Feynman rules for finding the
amplitude for the scalienng ol two nucleens is also discussed. In chapter iwa, the
Feynman rules are used to derive the one-boson exchange Bonn potentials for vanous

boson {ields.

Tn chapler three, we first discuss the Brueckner non-relalivistic theory for the scattering
of two nucleons in the nuclear matter. Secondly, we extend the theory to the relativistic
casc in the Dirac-Brueckner approach, Lastly, in chapier four, bwo methods for findimy
the in-mmedium cross-sections for the scatlenng of two nucleons in the nuclear matler

along with the density dependence of the NI cross-scetions are discussed i detall.



Chapter-1

Nuclear force and nuclear matter

Nowadays it has become customary in nuclear physics to denote by “iradition" the
approach that considers nucleons and mesens as the relevant deprees of freedom Ttis the
purpose of this chapter to review this traditional approach in the area of nuclcar forces
and nuclear structure. We look more closely inte meson theory, to understand, in

qualitative terms, what the meson exchange picture can predict for the NN system,

In seciion one, wo review the history of meson theory and nuclear force. Yukawa's
massive particle exchange, which gives the birth of padicle physics, {5 discussed in
section lwo. In section three, we give a brief review on some imporant empincal fzalures
of the nucleon force, which helps us to better asses the relevance of vamous meson
exchange contributions. Finally, a discussion on the nuclear matter theory, which

explains the empirical properies of nuclear struciure 1s given in section four,

1.1 Meson theory and nuclear force:

The atomic nucleus was first discovered by Rutherford in the year of 1911, Thompson
investigated the mass of nucleus and it was first assumed that nuclear models constitute
of protons and cleetrons. In 1932 the neutron was discovered by Chadwick and this

suggested that the neutron and proton were the fundamental constituents of nuclei,

But a question then arises, what holds the nucleus together? Afler all, the positively
charged protons should repel one another violently, packed togeiher as they arc in such
close proximity. Cvidently there must be some other force, more powerful than the force
of electncal repulsion that binds the protons and neutrons together. So it appeared
compelling to assume the cxistence of a new force acting between neutrons and protons
which binds the nuclens called the strong force or nuclear force, which s of very short

range about the size of the nucleus itsclf. Heiscnberg (1932) and Majorana (1933)



introduced the concept of so called exchange forces, which could explain nuclear

saturation.

The lirst significant theery of the strong force was proposed by Yukawa in 1934, Yukawa
assumed that the proton and neutron are attracted to onc another by some sort of ficld,
just as the electron is attracted to the nucleus by an elecinie ficld. Yukawa's onginal
theory was in classical feld theory. Shorily after he rcconsidered his proposal in
quantized ficld theory. Since the shorl range of the force indicated that the mediator
would be rather heavy; Yukawa suggested that the mass of its quantum should be 300
times that of the electron. Yukawa's particle came to be known as the meson (meaning
middle weight) [Iin the same spinit the electron is called a lepton (light-weighi), whereas
the prolon and neutron are baryons (heavy-weight)]. The massive character of the particle
to be exchanged between the nuclear constituents would furnish the resulting force with a

finite range desirablc to account for nuclear saturation.

The well-known fundamental interactions in those days were the Coulomb nleraction
and the gravilalional force, both having mathemalically very simple form. Naturally, onc
expected something comparably simple for the nuclear potential, for example, just one

Yukawa function: a exp{—ur)}/r (with r the distance between the two nucleons and

p=me/h, where m denotes the mass of the exchanped particle). However, even just
phenemenologically, the nuclear force tums out to be much meore complicated, mainly
because of its dependence on the spins of the two inleracting nucleons. In addition, ficld

theory soon ran into fundamental mathematical difficulties.

In 1937 a meson was found in cosmie ray, the muon. It was interpreted as the particle
predicied by Yukawa, particularly s mass (= 106 McV) appeared about right with regard
to the range of the nuclear force and thereforc, this discovery aroused considerable
interest in Yukawa's idea. Kemmer felt inspired to suggest a nch vanely of possible
meson fields including pseudoscalar, axial-vector, and tensor, afler Proca, in 1930 had
already considered vector fields. Also a symnietric theory was proposed by Kemimer and

Bhaba to account for the known hypothesis of charge independence. This suggestion was

made in spite of the fact that experimentally only charged “inesons”(namely, u4”and #7)



were known. In lowest order, these cannot be exchanged between like nucleons and
therefore scriously vielate charge independence. It was also suggested that the lwo-meson
exchange contribution could counterbalance this substantial inequality. The discovery of
the quadrupole moment and the measurement of the magnetic moment of the deuteron by
Rabi and co-workers in 1939 motivated immediately the development of more
sophisticaled models. Thus, it was realized that {isovector) vecior ficlds create a tensor
force giving risc to a quadrupole moment in the dewteron but with the wrong sign as
compared to experiment. The problem was soon overcome by also including
pseudoscalar fields. Pauli concluded from the fact thal the pseudoscalar “symmetric”
theory predicted the fighl sign for the quadrupole moment. This was the most correct
theory, long before the pion was found and its spin and parity were detenmined. Also
quite early it was recognized, that veetor and scalar [ields create a spin-orbil foree. In
1947, Conversi, Pancini, and Piecioni showed that the muon docs not interact slrongly
with nuclei and therefore, according to the notation introduced around 1960, it 15 not a
meson: 1t is a fepron. That same year, a real meson with a mass of about 140 MeV, the

pion, was found in a cosmic ray by Occhialini and collaborators.

Quite understandably, the new realily ol a strongly interacting meson motivated vigorous
theoretieal cfforts to describe ihe nuclear force, now, by the pioa onfy. In 1951, Taketan,
Nakamura, and Sasaki presented their snggestion to subdivide the nuclear force into three
regions. They distinguish a cfassicaf (long-range, ¥ 22 fm; » denotes the distance between
the centers of bwo nucleons), a dynamical {intcrmediate range, Hm<¢ < 2fm), and a
phenomenological or core (shor-range, r<1fm) region. In the classical region the
longest-range part of the pelential, namely, the one-pion exchange (OPE) 1s dominant. In
the intermediate range the twe-pion exchange (TPE) is most imporiant and hinally, in the
core region many diffcrent processes play a role. This classification has been utmost
theoretical and of practical importance. It allows a step-by-step exploration of the two-

mucleon interaction and permits a difTercnt derivation for different parts of the force,

In the decade under consideration, the one-pion cxchange became experimentally well
established as the long-range part of the nuclear force but the two-pion cxchange evolves

in an opposite way. It was difficult to evaluatc and for a long time it did not even do well




in correlating data. The many efforts of pion-theoretical potentials of the 1950s are
usually divided into two groups; The Taketani-Machida-Onuma and the Brueckner-
Watson types. In the former case an 8 matrix was cvaluated directly from meson field
theory, from which in tum a potential was derived. In contrast the laller method was
based on an expansion in the particle number and derived a polential dircctly.
Fortunately, there was also another line of research on the nuclear force dunng the 1950s;
and it was the attempt to give a simple phenomenotogical description of ihe nucicar
potential. The basis for the success of the phenomenological line for research on the
nuclear force was (he substantial progress in the NN scatlering experiments of this period.
From the properies of nuclear many-body system precisc and detailed mformation
regarding the force cannot be gained. Effective range theory had made clear that from
{ow-energy data one cannet learn much more than what can be parametenzed in terms of
two nunibers, the seattering length and the elfective range. Therefore, 1t was obvious that
high-energy data were required to oblain [urther insight into the nature of the nuclear
force. Moreover, differential cross sections, even at high cnergy, are good onty for a few
rather basic and gualitative conclusions. Because of the important spin dependence of the
NN interaction, data for many other observables are needed to specify the scattering

amplitude,

The basic aim of a potential description of the two-nucleon interaction is twofold. One is
to provide an economical summery of the data for comparison with polential-like results
from theory. The other aim of 2 phenomenological potential is to serve as an input for

fiucicar calculations.

The most general form, a non-relativistic potential may assume, when taking also the spin
degree of freedom of the nucleons into account, can be derived from invanance
considerations. Restricting to al most linear dependence on the relative momentum of the
two nucleons, p, W consists of cemtral, spin-spin, tensor and spin-orbit terms. This
phenomenological fypes of the potentials have been improved over the ycars. Other
examples of the hard-core type are those constructed hy Hamada and Johnston and by the
Yale group. Both use the five-term form. These modcls cmploy a one-pton tail and

therefore reproduce the deuteron properlies accurately. In the mid 1960s R. V. Reid



developed hard and soft-core potentials. One of lus sofl-core versions became the most
applied potential in nuclear structure physics in the 1970s. Phenomenological potentials

typically use 30-50 parameters.

Let us now relum to the meson-thcoretic work. The year 1960, was charactenzed by
cssentially two facis; the failure of the pion field-theoretic program, on the one hand, and
a rich phenomenclogical expecricnce with the nucleon-nucleon interaction fe.y. short-
range repulsion and spin-orhil force), on the other. Not surprisingly, this led Breit and
others to revive the old 1dea of vector-meson exchange, which predicts both features just
mentioned. TFurther support came from the electromagnetic properties of nucleon.
Nambu, Sakuri and Frazer and Fuleo conjecturcd that veetor basons may plalj.f the

dominani role in explaiming the nuclear form factor. Their supposition was soon
confimmed: In 1951, the p meson was discovered at Brookhaven in the #7p— 2 N
reaction, and the @ meson was found at Berkeley in pp anmhilation. Both are spin-1
bosons, the o being & 27 and the @ a 35 resonance, with masses around 770-750

MeV. The discovery of heavy mesons broke the deadlock situation in the meson theory
of the nucleon-nucleon intetachion, The first products of the new developments were the
one-boson exchange {OBE) modcls. These models are based on the old Yukuwa 1dea that

the nuclear force is meson mediated.

There are also some very pragmatic rcasons for the OBE model. First the evaluation of
one-particle exchange processes 15 essenfially straightforward, quite contrary to
multiparticle exchanges, #s we saw from the history of the 1950s. Second, within the
ODE mode! the NN data can be described with very few parameters {of ibe order of 10,
in conirast to phenomenological potentials, which typically need about 30-50}. Since the
OBE mode! parameters are meson-nucleon coupling conslants and cutoffs, a physical

mcaning can be atiributed io them, at least in principle.

Finally, the OBE concept was substantially improved by considering three-dimensional
relativistic equations based upon the Bethe-Salpeter equation [15] and by working in

momeatun space to avold the approximations necessary to obtain analyts »-spacc



expressions. Work along (his line was done by Schietholz, Thompson and olhers and the

Bomn group.

Quitc apart from the quantitative success of the OBEP in fitting the NN data,
concoptually such models cannot be accepted as a comprehensive theory, as it 1s hard to
believe that the uncorrelated mulbi-particle exchange should be totally negligible. The
longest-range component of such exchanges, and Iherefore the most important of that
kind, is the two-pion exchange (TPE). How to take the TPE more accuratcly or even
campletely into account was the other main topic of the 1960s. Naturatly the new goal
was to include all correlated and uncorrelated mult-particle exchanges, particularly for
the case of two pions. In prninciple, there are two conceptually rather different ways to

actually calculate these contnbutions: by field theory and by dispersion relations.

The principel Famework of dispersion relation is based on three [fundamcntal
assumptlions: causality, unitarity and crossing symmetry. From the first the analyticity of
the reaction amplitude 15 concluded. The third allows one to relate processes thai differ
from each other only by the interchange of some incoming and outgeing particles of the
reaction. Owing to analyticity, onc particle cxchange appears as a pole in the scaltenng
ampluiude, This faet can be exploited to extract empirical information about mcson
masses and! particularly, meson-nuclecon coupling constants. In the 1960°s Amati, Leader
and Vilale starled work along this line, with which many groups soon got invelved. The
results showed that, for ihe intermediate range, a relativistic nuclear poteniial can be
derived using dispersion rclations and empirical information from o N and s# scattering
as input Yel, these eflects were still far from constructing a full quantitative nuclear

potential.

In the course of the 1960s, the experimental program of the measurement of NN clastic
scattering observables was pursucd extensively by many accelerators throughout the
world. As a tesult, by ihe end of the decade, the Livermore group could come up with a
phase-shift analysis of NN scattering upto 425 MeV lab energy of lugh quality. This
provided an important presupposition of the theoretical work of 1970s, which provides an
absolutely quantitative nuclear force that is based on meson theory as much as possible.

The work proceeded along the two lines discussed earlier; dispersion theory and field



theory. Both approaches finally produced a very quantitative model, Most of this work

was done in two Central European capitals; Paris and Bonn.

Let us first summadze the dispersion theorctic cfforts. Tn continuation of the work of
Chemlob et af., the Stony Brook Group constructed a potenual in which the dispersien
theoretic result for the 2 7 exchange was complemented by one- & and one-& cxchange.
For shorl distances the potential was regularized by the eikenal form factor derived by
Woloshyn and Jackson. The [it to the NN scattenng phase shifts was semi-quaniitative.
At about the samc time, the Paris group produced a potential based on rather similar
theoretical input. In the Paris case, the short-range parl of the NN interaction was treated
by an cncrgy-dependent repulsive square-shaped cutofl. For the 27 exchange
contribution to the nuclear potenhal both groups achicved even quantitative agreement.
Further refinements and a convenient representation of the potential was lefi to the Paris
group. Their final version, published in 1980, is parameterized in terms of static Yukawa

functions of muliiples ol the pion mass [16].

Finally, let us tum to the [eld-theoretical attempis. Afler a decade of prevailing
abstinence, the feld-iheoretical approach was revived by the work of Lomon and Partosi
[t7]. They evaluated the 27 exchange Fynmann diagrams with nucleons in the
framework of the relativistic three-dimensional reduction of the Bethe-Salpeter equation
proposed by Blankenbecler and Supar [18]. It is a nonstatic approach to the 2x
exchange. The old atnbiguity of how to construct and subtract the iterated one-pion
exchange when delining a potential was absent in this work. However, the models
discussed so far lefl oul contributions that are of substantial importance, like meson-
nucleon resonances in intcrmediate states as well as three-pion and four-pion exchanges.
Tn the mid 1970s the Bonn group started a program directed toward the evaluation of
multipion exchange diagrams wcluding nucleon resonances. This comprehensive licld-
theoretic program took about a decade. Step by step, the Bonn group computed all 2
exchange diagrams including those with virtual A -Isober excitations and [inally, also the
relevant diagrams of 3o and 47 cxchange. One of the important linding is that, apart
{from the usual iterative diagrams, the crossed meson exchanges and the diagrams of «

and p exchange arc parlicularly important for a quantitative description of the NN

10




scattering data and the deuteron properties. The [inal Bonn medel [19] tums out to be
highly quantitative nature, in spite of the fact that it employs conly about a2 dozen
parameters, such as meson-baryon coupling constasts and form [actors that have a

physical meaning,

There are several reasons for and advantages to a [ield-theorstic model. First, it
delermines the ofl-shell behavior of the interaclion in a well-defined way. As dispersion
theory deals with reaction amplitudes, which are always on-shell, the off-shell behavior
remains undetermined in such an approach and 15 left to guesswork or arguments of
simplicity. Furthermore, the sct of diagrams provided by a feld-theoretic model {orms a
sound basis for a consistent generalization to many-body forces, which may be of interest
in the nuclcar many-body problem. Ficld-theoretic models also allow [or a consistent

extension to intermediate energies including meson production.

1.2 The idea of Massive-Particle Exchange:

In the 19305 the best established and most striking feature of the nuclear force was its
short-range nature. For that reason, the first theoretical attempts concentrated on deriving
a force of finite range from some more fundamental idea. Yukawa achieved this in 1935
by constructing a strict analogy to quantum electrodynamics (QED). His first
consideration was camed out in the framewark of classical field theory, which we shall

now restale.

In QED a lield of particles wilh zero mass, the photons, is assumed to fulfill a field
equation. In static approximation, the fourth component of this field satisifies the Poisson

equation of classical elecirodynamics.

—AF (Y =5 (12.1)
with A the Laplace operator. The solution
v(r):il {1.2.2}
4 F

with ¢ = |r . is the familiar Coulomb potential.

i1



In analogy, in meson theory of feld of particles with #onzero mass m, the mesons, is
assumed, fulfilling a [eld equation, which is ithe Klein-Gordon equation (using the units

such that A=e=1)
O+ m)p(x} = g7 () (%) (1.2.3)
In the approximation that the nucleon {the source of the meson field), represented by

w(x), 15 mfimtely heavy and fixed at the origin, we obtain
{—&+ mD)p(r) = g& D) (1.2.4)

satisfied by the "Yukawa potential”

—HI¥

_ g€
wlry=7=— (1.2.5)

Because of the exponential form, which is a dircct consequence of the massive characler
of the particles, this potential bas the desired {inite range. For zero mass one recovers the

Coulomb potential. This simple consideration, dene in 1935, was the birth of paricle

physics.

Traditionally the range of a particle cxchange is estimated from the Compion wavelengih
equivalent to the parlicle’s mass

R=1im (1.2.6)
In this way, onc cstimates for the pion {(with a mass of 138 MeV) a range of 1.4 Im. This
estimate is somecwhat small; in fact, the pion just starts to become dorminant at that range.
That the conventional range estimate is too small is also true for the heavier mesons, It is
due to the facl ihat we arc dealing with large coupling constani: the final nuclear potential

is a result of strong interferences of large conlnbutions.

1.3 Empirical features of the nuclear force:

We will starl 1o look more closely nto meson theory, in quabtative tcrms, what the
meson exchange picture can predict for the NN system. However, first we shall briefly
review the empirically known features of ihe nuclear force. This will later help to better

assess the relevance of various nieson exchange coninbutions.
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1. Nuclear forces are of short range (finite range): Thal their range is shoricr than
inter atomic distances we can conclude from the fact that of the molecular level
no forces other than electromagnetic ones are needed to cxplain the known
phenomena. However, we can put a much more precise and, in fact, much lower
limit on the range by shudying closely the saturation propertics of nucler, When
going from the 4 = 4 nucleus, helium, upwards to tugher-4 nuclei, one realizes

that the binding energy per nucleon remains about constant. The density also

remains roughly the same, the radius of heavy nuclei being proporiional to 4 T3
the nuclear force was of long range, like, for example, the coulemb force, the

potential energy per particle would increase with 4 and so would the density. On

the other hand, for light nucle (A = 4) the binding energy per nucleon does grow

with 4. The deuteren is bounded by 2.2 McV, “H by 8.5 McV. This fact is best

analyzed in terms of energy per “bond”. Thus, the binding cnergy per bond 18

about 2 MeV in the two-nucleon syslem and 3 Mev for the tnton. In *7fe we have
= 4.5 Me¥ per bond (28 MeV total). One can then conclude that, when nucleons
arc pulled closer to ecach other by more bonds, also the emergy per bond inereases
{up to saturation). From this Wigner in 1933 comectured that the nuclear force
should be of shorl range, namcly, shorter than the deuteron diameter of about 4 m

and roughly cgual to the radius of the alpha particle of about 1.7 {m.

2. The nuclear force is attractive in its intermediate range: "Intennediate” is
meant here relative to the total range of the nuclear force, which we consider now
as being subdivided 1ate short, intermediate and long range. The proof for ihe
attractive character of the muclear force (at leasi, in a cerlain range) 1s provided by
the fact of nueclear binding. The range of this attraction can be obtained more
precisely by considering the central density of hcavy nuclel as known from
clectron scattering. This density is about 0.17 fm™ (nuclecar matter density),
which is cquivalent to a cube of length 1.8 fin for cach nucleon [B]. Thus the
average distance between the centers of two nucleons in the interior of a nucleus
is about 1.8 fm, in close agreement with our estimate given above. This average

distance should be aboui the range of the attraction. Furlher evidence for the
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{partially) attractive character of the nuclear force comes from the analysis of NN
scattering data. The S-wave phase shifis [8] are positive (corresponding to
attraction) for low energies and we note that the average momentumn of a nucleon

in nuclear matter is equivalent to a laboratory energy of about 50 MeV.

The nuclesr force has a repulsive core: Such an assumption could help te
explain the saturation propetuies of nuclear force and the constant nuclear density.
But this aspect is not a compelling proof for repulsive core, as saturation can also
bc pencrated in other ways, namely, by “exchange™ forces, by Pauli and
relativistic effects. In fact, at nuclear matller density the Panli effect is much more

imporiant than (he short-range repulsion. However, a precise argument is
provided by the behavior of the 'S, and '£), phase shifts [8] as a function of
energy. The latter stays positive (corresponding to attraction) up to aboul 800
MeV, whereas the 'S, phase shifl tums negalive (ie., repulsive) around 250

MeV. Since an S state {erbital angular momentum L = 0, no centrifugal bamer)
feels the inmennest region of the force, whereas in a D state (L = 2) the nucleons
are kept apart by the contrifugal barrier, one may conclude that a repulsion at
shorl tange 1s indicated. The maxinum ciassical orbital angular momentum
L_. involved in a range & 1s L, = Rp where the momentum p of a nucleon 1n

the centre of mass frame of the NN systen is related to the laboratory chnerey,
E., by £ =2p2,|/m” with my the mass of the nuelecen. For £, =250 MeV,
where the 'S, phase shift turns repulsive, we have p=1.7fin”" . With L, £1we
oblain R £0.6fm. This should represent a far esiimatc of the radius of the

repulsive core,

‘I here is a tensor force: The most striking evidence for this fact 15 seen in the
deuteron: the quadrupole moment, the magnetic moment and the asymplotic D/S
statc ratic. Further evidence is provided by the nonvanishing mixing

paramcters, £,, as oblained in a phase-shift analysis of NN scattering data [8].

This parameter is proportional to the transition amplitude from a state with
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L=J-1 to one with L=/+1 (with J he total angular momentum}). Of all
operators, by which the most general non-relativistic potential can be represented,

only the tensor operator has non-vanishing matrix elements for this transition.

5. Therc is a spin orhit force: A hirst incdication for thns fact was observed in the
specira of nuclel. However, this refers to the efTective nuclear interaction in the
many-body systeni, which 15 not the same as the free NN intcraction, though these
two forces are related, Clear cvidence came from the [irst refiable phase-shifi
analysis at high energy [20-22]. The triplet P waves resulting from the analyvsis
can only be explained by assuming a strong spin-orbit force [21-22]. Speaking 1n
terms of observables, a strong spin-ortit force is required to explain the

polanzation.

1.4 Nuclear matter properties:

By definition, nuclear matter tefers to an infinite uniform system consisting of an equal
number of protons and neutrons interacting through the strong force. The Coulomb
interaction is absent and the number of parlicles, A, approaches infintty. This hypothetical
system is supposed to approximale condilions 10 the intenor of a heavy nucleus. We shall
assume equal neutron and proton density, thal 1s, we will consider symmetric nuclear
matter. This many-body system 1s characterized by iis energy per nucleon as & function of

the particle density.

The particle density o is constant and the single particle wave functions, or arbitals, are
taken to be plane waves. In configuration space the single-particle orbitals, ¢, (r ), are
given by

expik
— )

dule )=l s =——15 (1.4.1)

where s, labels the spin state of the nucleon, and ¢ is the isospin label. The nucleons

are in the volume £, which is used in Egn. (1.4.1) to nommalize the single-pariicle
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orbitals. For an infinite sysiem, both 4 and £ approach infinity, while the particle

density o= 4/0 remains finite.

The ground state ol nuclear matler is simply a properly anti-symmetrized product of

orbitals with all levels filled, according to the Pauli principle, up to a maximum level

specilted by k., the Fermi momentum. For this state, the total kinetic emergy 1s

(j") = 3 £, A. The Fermi energy and the particle density are respectively given by [3]
]

£, =1 12my a2

p=2kl i3n (1.4.2)
The raain goal of nuclear matter calculations iz to determine the saturation curve, 1.e. the
binding energy per nucleon ag a function of density. The equilibrivin binding energy and
density are delermiined by finding a minimum in the saturation curve. The basic

saturation condition placed on a potential by nuclear matter is that the correct hinding

cnerey and density be obtained.

Empitical information of the nunimum of thal curve, the saturation point, is deducted by
extrapolation from the properties of fimte nuclei. Based on the hiquid drop medel for the
nucleus, the semi-empirical Bethe-Wewzacker mass fomuia provides a value for the
encrey via its volune term. A collection of contemporary mass formulas by many
different authors can be found in the Aromic Data and Nuclear Data Tables [23]. From
the charge distribution of heavy nuclel as determined in electron scattering, the saturation
denszity can be deduced by taking o account correclions due to the Coulomib repulsion
and the surface tension. Alternatively, both the saturation energy and densily can be
deduced [rom Harree-Fock or  Thomas-Fenni  caleulations  [24-28]  with
phenomenological effective forces hlied to the ground-state propertics of closed-shell

nuclel. Thus, nuclear matter 15 determined to saturate at a density
2, =017 £0.02fim~ {1.4.3)

and binding energy per nuclcon

£ldA=-161]1 McV {1.4.4)
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Other parameters related to the particle density are the inter-particle spacing r and the
Fermi momentum &, which arc defined by
dmifi=1{p (1.4.5)
and
kp =Pt p(ryi2]” (1.4.6)
At the saturation poini the equilibrium values for these quantities corresponding to the
above given g, are

¥, =1.310.04 fm (14.7)

ke =13520.05fm" al p=py (1.4.8)

Also of inlercst is the incompressibility or conipression modulus of saturated nuclear
matter
K=kt M (1.4.9)
k2
evaluated al ks given in Eqn. (1.4.8) From cmpirical information deduced from the
systenatic vibrations in nuclei [8], one obtains for the saturation point.
K =210230 MeV (1.4.10}
In many-hody calculations using density-dependent phenomenological forees fit to the
groundstate properties of closed-shell nuclei, valucs for the compressions modulus are

obtained which agree with Eqn. (1.4.10%.
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Chapter-2

Boson fields and One-boson exchange pﬂtentials

In this chapter, we [irst consider the meson-exchange contribution in the framework of
perturbation theory and describe the Feynman rules for calculating the scaltemng
amplitude for free nuclens-nucleus interaction. Then we discuss some siniple relevant
hoson ficlds and their couplings in one-bosou-exchangs contribution, in section two.
Finally, in section three, we use the standard interaction Lagrangian for each field and
with the help of Feynman rules we construct the one-boson-exchange potentials of the

Bonn type and discuss their role in NN interaction.

2.1 Perturbation theory and Feynman rules

The first meson-theoretic consideration was done in the framework of classical field
theory. For more advanced considerations, quantized (ield theory should be applied. This
ficld theory was developed first for QED. The interactions involved are treatcd
perturbatively and are most conveniently tepresented in terms of Feynman diagrams.
Originally, meson theory was believed to represent the theory of strong interaction in
analogy to QED. Nowadays, with QCD being the theory for strong interactions, meson
theorv is viewed as an effective descriplion, which may represent the appropriate
approximation to the full and fundamental theory in the low-energy regime. It is
cuslomary to consider meson-baryon rcactions in teims of perturbation theory and
consequently, to consider the various possible contributions in the graphical language of
Feynman diagrams Contributions of increasing order, which may Onally become
divereent, ate of shorier and shorter range. For the long and intermediate range, thore is
only a finite number of periurbative contributions. Thus for these ranges onc may have
confidence in the predictions generated by perturbation theory. At the very short-range
parl of the force, due to the quark-structure of hadrons, the meson-exchange picturc

ranmot be taken seriously. For that reason, in most mesen theorics, one allows for a partly
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phenomenological ireatment of the shorl distdnces by the iniroduction of vertex form
factors, which in a certain sense, takes the exlended structure of hadrons effectively into
account. Fortumately, since the nuclear force is repulsive at short intemucleonic distances,
the phenomenelogy of the very shorl range is “masked” behind a repulsive wall. Thus,
one expects that, at least for energies typical for nuclear physics, the uncertain part of the
nuelear force at very short distances and the special way, in which it may be treated in a

particular model, is insignificant.

For the above reasons, we follow here the conventional treatment and consider meson-
exchange in the framework of perturbation theory; that is, morc practically speaking, we

will be dealing with Feynman diagrams.

In a scattering theory the problem is to [ind the amplitude, which contains all the
dynamical information. Evaluating the relevant Feynman diagrams and using the
Feynmean rules appropriate to the interaction in question can selve this problem. The rules

are sumunarized as follows [29].

1. Notation: Label the incoming and outgoing four-momenta g,.45eieeees g, and
the comresponding spins §,5;, e s, label the internal four-momenta
SO0 S %, . Assiyn arrows to the lines as follows: the arrows on external lines

indicate whether it is incoming or outgoing; arrows on intemnal lines are assigned
50 that the “direction of the flow™ through the diagram is preserved (ie. cvery
vertex must have one armow enteninye and one arrow leaving). Put an arow on
cach line. to keep track of the positive direction (arbitrarily assigned, for the

intcrnal lines).

2. External lines: External lines contribute actors as follows:
Spm O : Nothing
Spin 1/2 : Incoming particle: u
QOuteoing parlicle: i
Incoming antiparticle: ¥
Cutgoing anhipariicle: v
Spin1 : Incoming: £

Cutgoing: e
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Propagators: Each internal line contributes a factor as follows:

{

Spin 0 : @ —/———
kzrmg
1 ik +my )
Spin — ;. —==
b 2 kz—mfr
i
Spin 1 :  Massless: %
g =k K, fm
Massive: [Rm»z ’uz/ma)
£ —m

where g, is the metnic tensor with gog =+1, gy =~1 and g, =0.

Verfex Factors: Fach vertex contributes a factor g,I, where g is called the

coupling constant which is dimensionless. Furthermore, there is a factor of { 1n

each verlex.

Conservation of energy and momentam; For cach vertex, write a della lunction

of the form {23?)454(ql+q2 +q,) where ¢’s arc the three four-momenta

coming into the vertex (if an arrow leads outward, then ¢ is minus the four-
momentum of that line). This factor enforces conservation of encrgy and

momentum al each vorex.

Integration over internal momenta: For cach internal line, write down a factor

1
(27"

d*k; and intcgrate over all internal momenta.

Cancel the delta function: The result will include a dclta function
(272) 5%(g, + gy +oveerrrenenn +¢,} enforcing overall conservation of cnergy and
momentum. Cancel this facior, and what remains 15— where M is the

scattering amplitude.

20
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{1}

Fig.2,1: Feynman diagram for the one-boson-exchange contribution to NN
scattering considered in the c.m. frame. Full lines denote nucleons, the
dashed line a boson with mass m,. The underlying time axis is vertical,
pointing npwards inte the future. '

The lowest-order contribution to (he NN scattering is the one-boson-exchange
contribution. The respective Feynman diagram is depicted in Fig.2.1. Since we are
working in the center of mass (c.m.) sysiem of the bwo interacting nucleons, ihe momenta

of the two incoming particles arc q and -q and those for the outeoing particles are
q' uand —q’. The process takes place “on the encrgy shell’ i.e. energy is conscrved;

consequently the energy of the nucleons before, £, and afier £7, the scattenng proccss

mus! be same so that E' = F.

According to the “Feynman rules” the depiction in Fig 2.1 corresponds to the scattering

amplitude in analylic form:

i {0 ()8, k273 - g T (- q) (2.1.1)
(¢'=q)" ~mg
where the lelt half of the numerator represents the left parl of the diagram and the right
half for the might parl of the diagram. u, and E(: u:;f”) arc Dirac spinors and their
adjoints representing incoming and outgeing nucleons, respectively, with : =1and 2. The
meson propagator represented by the dashed line in the figure is
r

S R (2.1.2)
(@'~ q) —m;
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where(y' —q)* =(£'- ) ~{q' ¢/’ =-{g'-q)*, is thc square of the four-momentum

transferred by the meson. Thus we have for the propagator

— (2.1.3)

— q]E — HED.
For scalar and psendoscalar exchanges P, =i=+-1. For vector boson exchange,

however, it is:

Kk
Faz_f[gpv_ 'uz ] (214}

g

Since the vector bosons couple to a conserved nucleon current the second term will
become zero in the actual caleulations. Thus we can use for vector-boson exchange:

P, =—ig,, (2.1.5)

I are the “vemices” representing meson-nucleon interactions and are

The last pieces g I,
obtained from the interaction Lagrangians. In fact, logically we should have begun with
the inferaction Lagrangians, as they arc the starting point for the development of the held
theoretic permurbation theory, the lowest erder result of which (for NN and excluding
renormalization) is our Feynman diagram Fig. 2.1. In any casc, the respective inleraction

Lagrangians for Fig.2.1 are
£ =g o™, =12 (2.1.6)

=} he meson field operator,

where (7 J¢ is the {(adjoint ) nucleon Dirac field and ¢
Comparison of BEgn.(2 1.6} with Eqn.{2.1.1) shows in an obvious way, how o obtain the
vertex from a Lagrangian in a simple case. We note that the veriex is ¢ times the
interaction Lagrangian stripped off the fields and that ¢ times the amplitude 1m Eqn.

{2.1.1) defines the potential ¥, .

2.2 Varicus Boson fields and their couplings:

In this section we go systemalicatly through some of the simplest boson fields and their
couplings. In each case we consider the one-boson-exchange diagram and denve [rom it
explicitly what it predicts for the NN interaction. For the NN interaction at low encrgy

there are cssentially only four boson fields that are of relevance:
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1} The psevdoscalar (ps) ficld
2) The pseudovector (pv) field
1) The scalar (s) field

4} The vecior (v} ficld.

Guided by symmetry principles, simplicity and physical interaction, the most comrnonly

used interaction Lagrangians that couple these fields to the nucleen are [8]

Lo ==8 0 iy W @ (22.1)
r:p-=3—j'rjiwr“waﬁ o'# (2.2.2)
L=,y ot (2.2.3)
L=-g, 7"y oy - f‘ wrr o, 0l - 6,00) (2.2.4)

where 1 denotes the nucleon Dirac spinor field, while /¢, ¢'@ and ¢™are Lhe
pseudoscalar, scalar and vector boson fields respectively; my is the nucleon mass. In

Eqn. {2.2.4) the first tenn on the right-hand side is called the vector (v) and the sccond
term the fensor {f) coupling. Also
1 0 0 ot 01 i
o k 0§23 v g o
= , = == = and o =—|»",
Y [ﬂ _]] Y [_g,{ D] yo=y =i'y'yy [] DJ 2[}‘ 7]

where o' arc the usual Pauli spin matriccs. The Greek indices extend from 0 to 3 and the

Latin indices fiom 1 to 3.

For ps field there is ihe so-called pseudovector (py) or gradient coupling, Eqn. {2.2.2), lo
the nucleon, which is an effective coupling by chiral symmmetry [30, 31]. The ps and pv
coupling arc cquivaleni for on-mass-shell nucleons if the coupling constants are related

by S {m s jsz ]Ig s - However, the ofl-shell predictions are rather different. The

Lagrangians mentioned lead to the following (off-shell) OBE amplitudes:
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ol A IA Y — f o . l
(w23 28 0a s ) = - g3, 8 (0" 2)ir ula A (- 0,43 iy *ul- 0, 2,) (o -a + 2,

(2.2.5)
<rrn1 ARE _fpz-i-— ] (AW
q ;'1‘4'2|va l‘lil;‘v2>"mz H(':[e«ﬂ'l)y ¥ I(‘! —?}p“[%i]}
-1
k
w5 sle - 9), - 0,5 [~ @)+ (2.2.6)

(213l ada )= - 270’ 2ol 2 o @' g o0, ) (@-ap+m]" @27

Gl ;Lz>= { g7l Al ol A )+ 2:: 79" 4o, ilg' - ¢) vl 4y )}
N

(q'ia’ A

x {Eﬁ(“ a2 yul-a. 4, }- zj; 7-q, A} )iy — q), ul- q,?»z)}
N

x [(*1' -q) +mfr (2.2.8)

where A,(i]) denoles the helicity of an incoming {outgoing) nucleon, which is defined as

the eigenvaluc of the operalor s-§ with s the spin operator and g=q/lg| the unit

) §i2 112
momehhim operator of the respective nucleon; £ =(m v +q1J and E'=(m " +q'3) .
The Thompson choice for the four-momentuin transfer 1 e, (3" —¢)=(0, ' = q) 15 wade.

Il is now in principle a straightforward (but quite lengthy) task lo evaluate the one-boson-
gxchanee contributions, Eqn. {2.1.1), correspending lo the intcraction Lagrangians given
above, which is donc in the next section. This will reveal what each field and coupling

predicts for the nuclear force.
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2.3 One-Boson exchange potentials and their contribution in
NN interaction:

The one-boson exchanpe potential (OBEP) is defined as a sum of onc-particle exchange
amplitudes of certain bosens with given mass and coupling. In the OBE Bonn model six

non-straitge bosons wiih mass below 1 GeV are used; they are wand i pseudoscalar, o

and & scalarand p and @ vector mesons. Thus

Vipen = 3 V.5 (2.3.1)

L0, 0O

The contributions from the isoveclor bosens, #,8 and p  arc to be muliiplied by a lactor
of 7,-1,. For isospin -1, the mesons ¢* is to be replaced by 70", with ¢* (& =

1,2,3) the usual Pauli matnces.

Now we evaluate the ORE contrtbutions, Egn. (2.1.1), corresponding {o the intcraction
Lagrangians given above with w the nucleon and @'*'the meson Relds, Strictly
speaking, we give here the potential that is defined as 7 times the Feynman amphtude.

Furihermore, there is a faclor of '#* in each vertex and meson propagator; as i* =1, we

can ignore these four faclors of 7.

The pseudoscalar (ps) licld:

Pseudoscalar means the field, ¢'#, switches sign in the case of cither space ar a tume
reflection. Particles with ncgative intrinsic panly, €. the 7 and 7 ., have this propertly

To “counterbalance” this we have to find an expression ¥ Iy, which has the same
property as ¢'*”, to oblain a scalar for the whole expression for the interaction
Lagrangian. The simplest case with this property is Fr w . Thus

L= — g, W ir°y o', (23.2}
{The ¢ is needed for the hermiticity, as y" and »° amli-commute). The one-boson-

exchange (OBE) coniribution 5™, for this interaction is according to Feynman rules,

Fig 2.1 and Eqn. (2.1.1}:
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gL (a)ir’u (q)in{-q)ir’n, (- q)
~{q' —q) -m’,

(23.3)

where the incoming nucleons are represented by the Dirac spinors #, and u, given by

) , I
;(q) = E+’"*"[ d1.q }and 1z (- q)= “m”( 024 } (2.3.4)

28 | g+ my 2E | Evm 5
Here and in the following we suppress spin-indices and spin: functions. The outgeing

nucleons are represented by the adjoint Dirac spinors ¥, and &, ; the normalization of the
Dirac spinor being v] (g)w,{q)=1. So

ACIEEH GV [mf"]%[l EJ

2K

Mow the left half of the numerator is

m{q“)arjul{q]=f\[(E+mN](Er+mH}[’ o, q —ulq']

4£'Er E"'I'mH El+ni‘l~r

“On the shell” model, we use K = E'. S0 we obtain

w kq)iy u&lﬂ—gﬂ {g-q’) (2.3.5)

Similarly, for the right half of the numerator

7 (- (- q) = ﬁal {g'—q)  {for the “on-shell™}

Putting everything together, we obtain for the whole diagram the following “momentum
space potential™
2
gps i
~la'-q)! —my, 2F

V. 0'a)= spola-a)peala~a),  giving

3
Vp: (k) =- g.ﬁ‘; (’”] ‘kIﬂ-Z ‘k] (2.3.6)

2 2
Any KT Ay,

where (he momentum transfer q' - q=k has been used and the approximation £ = my is

assumed. We may rewnte the above expression as

2
g
V. (k)=- = E:Tu Ko, o5 + 55 (k)] (2.3.7)
'\I
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where §,;{(k)=3(¢, k)0, -k)—o,0, has been used. The above expression shows thal it

becames obvious that we have created a spin-spin and a tensor force.

The best known pseudoscalar [eld is the pion. There exist three charge states of the pion:
+, —, neuiral or with other words, its isospin is one; it 1s an 1sovector parmicle. In such a

case the Lagrangian in Eqn. (2.2.1) is slightly extcnded:
— &

Lpe =iy Ty 0" (2.3.8)
where the three components of @ ere operators in isospin space, as there are now three
charged states. 7 15 the usual isospin operator for isospin 1/2 particles, here the nucleons.
7-¢% 15 an invariant in isospin spacc. By that, the charge-independence of the interaction

is pnarantced. As a consequence, for isovector particle exchange, ihe Feynman diagram

Eqn. (2.2.5) and the potential derived in Eqn.{(2.3.6} obtain a factor 7,.7,

_Em (0,05 K)
o

In summary, we started with a boson lield for which we assiuned that it was pseudoscalar

Vo, (k)=

T,.T; (2.3.9

2 2
dmy kK +m

equivalent to a paricle with negative intrinsic parity which is observed in nature e.g. for
m, 7). Consequently, we had to usc the ¥l -coupling (as the simplest possibility to comply

with certain indispensable symumnetnes). A small calculation then leads directly to a tensor
force. In this way it is easily understood that, starting from first ponciples, the pion

creates a tensor force.
We also nole that the »°-coupling projects small compenents of the Dirac spinors onto

large componcnts, Eqn. {2.3.5}. Therefore, it is, in its analytical structure, a “weak”
couphing. The reason, why the pion, nevertheless, is non-negligible, is the stnall mass of
the pton, which strenpthens the potential (note that the mesen mass squared appears
the denominator of the Feyrunan diagram, Eqn. (2.1.1)). In fact, the simple rule of ihumb,
to roughly compare the strength of two OBE contnbutions of the same kind, is to

consider;

8

1

.??J‘a

From this argument it is now obvious that a heavy ps-particle leads to very small
contributions. Exaniples are the 7 {’”u =345 Me‘v’) and the 7' {mrr' =938 MEVJ.
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We mentioned before that for a cerain fteld, in general, several {in principle mfinitely
many) couplings are possible. So, for a ps-field a derivative coupling is also cormmnonly
considercd, the pseudovector (pv) coupling:
Sos — . o
£, ==Ly iy 8,0 (2.3.10)
J'H'm
The resulting left vertex 1s
T _fP-‘-Slu{r_) (2.3.11)
p'p_m L L 1 .
s

( ¢, 15 the momentum operator; (q' - g) ., the four-momentum of the exchanged meson.)
Application in the Feymunan diagram, Eqn.(2.1.1), leads, in the numerator, to expressions

ke y“q,u (q) and &, {q’);*’“q; . The Dhrac equation allows us to write

v g g lah=myn @) (23.12)
glal g, =m,mlq) (2.3.13)
With these replacements the upper lell part of the Feynman diagram becomes

fps
"

i r e - g) o la)
hil

. .;'r — r r ! N !
=i @y e @)= @) g, a)]
ar

. -‘Ir — ] r -— )
=i~ L may r aaumla)-5 QY r g, {fﬂ]

mpj
[since " and »* anticommute]

_.'rps

HIP5

m 11 (g Y 1y (g ) + ey {q’)ysul{q)] {using Dirac equation)

- i

2 ro__ ] -
=~ =L (@i o) (2.3.14)

1M
When comparcd to Eqn. (2.3.3) it tumns out that this 1s exactly the same result as for ps
coupling, provided we relate the coupling constants ag

2y

Epi = - {2.3.15)
Fl
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In this consideralion, the nucleons are on their mass shefl, In such a case the Dirac
equations, Eqn. {2.3.12) and Eqgn. (2.3.13), apply, and we see that, then, the ps and pv

couplings are equivalent. For off-shell this is not in general true,

As ps and pv couplings are equivalent on-shell, we can derive cur non-relativistic form of

OBE contrihution ¥ fr” also by starling from the pv coupling Egn. {2.3.10) and proceed
ag follows, let us consider only the important part of the vertex Eqn. (2.3.11):
T =¥ 7"k, =7y +7°yk,
=[”'k 0 ] (2.3.16)
0 -o-k
where k=g'-g, ky=F£'-£=10

Some simple rules of non-relativistic reduction are

F:fa—c;—}:tk, PP a, g ex (2.3.17}
x

ig

and rcplacing Dirac spinors by Pauli spinors, Non-relativistic approximation also nieans

assuming qu'i < m,, and therefore neglecting the small components in the Dhrac spimor;,

th (-:1}=[{1J; A BT ) (2.3.18)

Sandwiching the verex Eqn. (2.3.10) with these Paul spinors and recollecting the

constant factors yelds:

7 (@) ula) 5122 (0 k) (23.19)

n o
Repeating the same considcration for the right veriex (the momentum carnes an opposite
sten on the right) we get

fﬁifa Kk}
L.

which leads to the momentum space OBE centribution Vf‘g as

B S (0, K)o, K)
mﬁ; k? +rr.|ﬁT

using Eqn. (2.3.13), we gct
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X
_ g_pj (ﬂl'k){gz'k)
dmy  k* +miﬂ_

(2.3.20)

which is same as Eqn, (2.3.6). In this way the non-relativistic character of the derivation

15 motre obvious.

The scalar(s) licld:

This field has the simplest interaction Lagrangian for meson nucleon coupling:
s = EW WO

The one-scalar-boson exchange contribution 1s :

g E{E'E‘E:?}jz]]{gf}“;{“ q) (2.3.21)

The lelt half of the numerator:

_ ooy fErm N Ermy) (0,9%0,0)
ala }Hl([ﬂ - AEL’ Ll - (F"+my lﬁ'+mﬁ.} (2.3.22)

Now we use the vector identity (s-a)e bY=a-b+w{axb) for the tenn (7, q')e,.q};

(o) a)o )y =(q"-q)+io, (' x q) =p* —(f)k” +ir, -la'xq) (2.3.23)
where the momentum variable p = %(q +1q) and the mementum transfer k=g’ -q have
been used.

Awgain, since kxp= (q’— q]x%{q’+q) =q' = q, we obtain

— E my NE+my) | p? = (4K +ir [k xp)
la }”*{q}_‘u( 4EE' T g XE + )

_ {1 P2 - (4K’ +iw, {kx p)

i } {assuming £'=E=my} (2.3.24)
.?‘J‘Ehr

Similarly for the nght half of the numeralor we get

7 -0k (- q) ={1 _pE GOk o, i xp)} (2.3.25)

2
4}”]\:

Now the final result for the whole diagram, we obtain the following imomenlum space

potential,
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2 2 2 -
. -F p k i1
7, kP = e [1—2 e zg(ﬂﬁﬂz)(kxp)}

s my 8wy 2my
2 2 2 .
— 8 P k i 1
= 1- + - S-lkxp)|; where B=={g, +¢ {2.3.20)
k? mf [ Emir Emi,- Emir ( )] 2{ ] 2]

The first term on the right hand side is a strong attractive central force, the last term a
spin-orbit force. So the scalar meson-exchange causes a strong afiractive central force
and a spin-orhit force. From the explicit derivation we realize that the strong central force
is due to the fact that the scalar coupling projects large components of the Dirac spinors
on large components. The negative over-all sign is a consequence of having a second
order in the coupling constant. The spin-orbit force can be traced back to the small

components of the Dirac spinors. Therefore, it is a genuine relativishic effect.

The vector (v) field:

A vector boson has spin one, like a photen, and is represented by a four-vector field. To
form a Lorcntz scalar one can couple it to another four vector, in analogy to the coupling

of a photon to an clectron:

e IEI-r’ﬂ'l-' vy ] W
£, =-g, 7y v, +K;mﬁ “wd el (2.3.27)

5

The evaluation of one-vector-hozon exchange contribution 1s:
(— g gy “nlg)+ 2{ -z {q)o " [0 ~q)um (q}]

x L) [— I e TN AT PRI N S P PR PPN ‘ﬂj

—lq' - q]l —n? 2nty

S SRS B auvea

(@' —af +m

-fgi—;i (@) a2 1o ) ('~ iy -a)
+#5(q e * g ~ Qe (fli— B v )72 —a e, '31)}

S “fﬂ (@) (@' —q)uw, ('J){- £ v )ﬁz{— a0’ ~qdwuy (- q)ﬂ (2.3.28)

2
dm;
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Now for the first term of the above equations:
a(@ ) el g Fo -y unf-q)
7 @) ) oo Jo (- 4 i {-a)+ 5 @y u@b g nlabinlq (2329

First we consider the left half of the ¥ © lerm:

El{qa}}r’ﬂﬂl(t[)=[1+q"q+mi'{qrxq}] [ P 2 _(/ak? + 10y, [kxp}]

drm :':. Al p
[#s 1n the scalar case]

Similarfy the right half of the »? term in Eqn. (2.3.29)

Ez(—Q')r”uz[-QF[ L L (kxp)]

dnet I

Sothe ¥? term in Egn. (2.3.29) beconies (gm =1)

2 2

k-

-+ pﬁ - S-(kxp) where S=l{ﬂ'l+ﬂz},
2iny, Bm..; Emp,, 2

The remaining three terms in Eqn. {2.3.29) for »¥({k=1,2,3) becomes equal to

(E""mr.fIE"'mﬁ)H 0y -q \ 7 q I"Iz‘{lr —“z"?I]

oL tT T, tO
AEE" Etmy = VEtmg NE +my T Edmy
;-
0,°q -0;-q
+ r] ":rl_ l_}l UZy .
'+, F+mﬁ, £ +mN E+my
ALY ‘“2 —0:9
= T T O +t O3
B4 myy E + iy "+ E+my
o
where for the left hand part @ (q’ Yyt w (), ¥ ( ] and for the right hand part
Sl

0
M, {—q'};xkuz(—q}, yF =[ ‘;] have been used, which afler simplifications
R

becomes (E= E' =my).

| '
- [4}}2 + 2o, + o, Ma' xq)—- (e, a.)k? + (o) k)Xo, L}]
mN

3z




Hence the [irst term of Equn. (2.3.28) 18

2 2 2
[ 3p k .3 2 1
1+ - + Sik=pl- 70, K"+ v, k)o; -k
Klam?|  2md Bmb  2m (k<) 4m§,,(1 2) 4nzir(l Xoz-k)

(2.3.30)

Considering the non-relativistic reduction {g"-g), =55#=f§ak and &% —ox

togcther with the non-relativistic Dirac spinors for the last term in Egn. (2.3.28) we may

write
) {':lj}'g')W (9" —-?)# Ml{q}:-—ai =K
and i [_ [Ir}“’ v {ﬁr" - q};e uz{-— q}= —r; =k

So that for the last term, we gt

_4sz [“1( o (g - ahem (@ - qdo* (@ - a)uir{- )]

T

2
=-4*’r*'2 [{r,rl 6,0k’ —{g, k), -k]] (2 3.31)

LY
In a similar way, considering the non-relativistic approximation for the sccond tenm 1n

Eqn. (2.3.28), we obtain

(0l (Q)=g,, ) T2 (- )0 (g - o us (— @)+ 7 (0 ) (g7 - gde vy @) =g 0 (- @l aen (= 0)
—fk—m—iS-(kxp)—z[U] ~az)£+i{u, k)Xo, k) (2.3.32)

My My M, Ml

So, the final resull for the whole diagram of one-vector-boson exchange, we obtain the

following momenturns space petentbial.

I 3112 k? 3 k?
VoK pl=—F——g. 1+ - + Sik=pl—ir 0.1 — -k Na
(kp) k* +m‘. [g { im,. By Zmir ( P} l 2}4,-”:3,- 4m;.., ( Y2 k)

+-:‘-'-.-fv {_ k- + Af S-(kxp)_{ﬂg'ﬂ-z}k_u‘FL{U]'kluz'k}}
2mg | my My My My

+ f"; {—{nl o)k + oy ko, k)]] (2.3.32)
drmy
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Going back (o the beginning of this section, we notice that with each of the five most
important empirical features of the nuclear force (slated in chapter one}, onc can associate
at least one boson [licld that could provide an explanation. In Table 2.1 we give an

overvicw what each field and coupling predicts for the nucicar force [§].

Table-2.1

Various Meson-Nucleon Couplings and their Contributions to the Nuclear Foree as
Obtained from One-Boson Exchange

F denotes the isospin of a boson. The characteristics quoted refer to 7 = 0 bosons (no
isospin dependence). The isovector (f = 1) boson coninbutions, carmving a factor 77
provide the isospin-dependent forces.

_ s trcngtgc:? (njsuupling) Characteristics of predicied lorces
Coupling I=0 i=1 Cenlrai  Spin-Spin  Tensor  Spin-Orbit
1] [7, 72] L] (¢, -7,] [S;] [L. 8]
ps n i Weak, Strong
{(weak) {strong — coherent —
with v
8 o 8 strong, Coherent
{strong) (strong) altractive — o with v
y @ o strong, Weak Opposile Strong,
(strong) {weak) repulsive  coherent to ps cuherent
with ps with &

The repulsion crcated by (neutral} vector-boson cxehange can be under stood 1n analogy
to the one-photon exchange between like charges creating a repulsive Coulomb potential.
Neutral vector bosons can be visualized as heavy photons. The baryon number plays the
role of the electric charge. Conseguently, in he nucleon-antinucleon system vector-boson
exchange generates attraction. The spin-orhit force produced hy vector bosons
corresponds to the Thomas tenm. which emerges when the Coulomb potential 1s
employed in (he relativistic Dirac Equation. Thus, it can only be understood in a

relativistic consideration, the lower component of the Dirac spinor.

We now look into physical manifestations of the fields discussed theoretically so far. In

the mass range below the nucleon mass, onc (inds two pseudoscalar particles, namely &
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{138) and 7 (550), and two veclor particles, o {769) and @ (783). The (isoscalar) e has a
strong vector coupling and the {isovector) p, a strong tensor coupling to the nucleon.
Furthermore, there exisis an isavector scalar meson, & (983), which, owing to its large
mass and its small coupling constani, provides only a small contribution. Its isospin-

depcndent central force can be used to adjust the two § waves.

Compared to the (isovector) m, the contribution form the (isosclar) s is very small. Thes
has two reasons: firsi, the coupling constant of the g is small. Second, the mass of the #
iz substantially Jarger than the pion mass. Note that the magnitudc of one-meson

exchange contributions is roughly properiional to gl /m?, Gqn. (2.1.1) For the reasons

given, the 713 not so imporlani for the NN system.

Summarizing the imperiant contributions of the mesons discussed so far, the pion as the
lightest parlicle provides the long-range force and, owing to its pscudoscalar nature, the
tensor force. This lensor force is reduced at short ranges by the p meson to a realislic

size. We note that for rand p the ps potentials given above have to be multiplied by the

operator 7, T, (with %T,- ihe isospin aperator for nucleon £), since & and g are (isospin

one) isovector pariicles; this faclor implics a strong isospin dependence for these two
potentials. The @ creates the shori-range repulsion and the (short-ranged) spin-ortat toree,

Thus, (hese (hree mesons explain already imporiant features of the nuclear force.

Since there is also strong interaction between pions in relative § wave, there is physical
maotivation to assume a scalar boson of a mass between 500 and 700 McV (commonly
called 7 ). Adding this particle to the mesons discussed above delincs the so-called one-

boson-cxchangs ({OBE) model

35



Chapter-3 .

In-medium NN interaction and Dirac-Brueckner
theory

To study the various aspects of the two-nuclcon interaction and their influence on nuclear
hinding energies, one must first have a valid technique for calculating binding emergies.
The linked-clusier Rayleigh-Schrédinger, or Goldstone expansion, for the ground state
chergy provides the required lechnmique [0]. To remedy the lack of convergence
associated with a hardcore repulsion, Brueckner [10] summed selecled terms of this
perturbation expansion to define the reaction matrix G. In section one, of this chapter, we
derive the Brueckner G-matrix theory in the non-relativistic case where the Pauli-
blocking operator for the medium effect has been taken into consideration. A discussion
on the effective mass approximation and the angle averaged Pauli operator is given in

section bwo.

Then considering the relativistic approach of G-matrix theory we choose the Thompson
equation, which is a relativistic three-dimensional reduction of Bethe-Salpeter equation.
There exist many relativistic three-dimensional versions of the Bethe-Salpeter equation,
which are all mathematically equally justifed. However, some of these equations have
unphysical features due to the approximations involved in thewr derivation. Crucial for
our choice of the Thompson equation is the fact that, in the framework of the Thompsen
equation, meson retardation is ignored i.c. & static meson propagator is used. A reason for
ignodng mesen retardation is to exclude any false medium effect on meson propagation
from the outset. We give the derivation of ihe Thompson equation in section three.
Following the basic philosophy of tradilional Brueckner theory, this equation 15 then
applied to nuclear matter in sirict analogy to free scattering. This is described in section
four, where the solution of Dirac's relativistic equation 18 uscd for which the name of this

approach is Dirac-Brueckner approach.
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3.1 Brueckner Theory and the G-matrix:

To study the influence of various aspects of the two-nucleon interaction on nuclear
binding encrpics, and for calculating the saturation properties, Brueckner [3] suggested

the following cquation to define the reaction matrix ¢ in the nuclear medium.

ar— i

Glw)=V +V Q; Glw) (3.1.1)

b
The G-matrix plays the role of an effective intcraction for two parlicles in the nuclear
medium. It is finite even for singular potentials, in much the same way that the R-matrix
for the scattering s finite for singular potentials. Tn fact, the Eqn.(3.1.1) that defines G,
the Brueckner equation, resembles the Lippmann-Schwinger equation for R. The G-
matrix differs from the R-matrix for free scattering, by taking into account the Pauh
Blocking in the inlermediate states as well as the influence of the mean field to nucleons,

which appear as single-particle energics in the energy denominator @ —A, 1n Eqn.

(3.L.1).

The Hamiltonian /4, includes a kinetic encrgy plus a single-particle potential. Acting on
product states 1l gives

ho| ) =, + 8, )| aff) (3.1.2)
wherc the single-particle energics &, are simply &, =[a|[p1f‘2mﬁ,-)+ U|cx). The single-

particle poential is itsclf detenmined by the interaction of each nucleon with all others in

the Fermi sea; for nucleons below the Fermi level 1t is defined by
<p|U|,u)=U(kp}= Z(,;W|G(EF +.':‘L,)|,cw—v,u}, for wek, (3.1.3)
vq.{'F\
which includes both direct and exchange terms. The starting energy @ 1s chosen to be

@ =g, +&,. This definition of {J is based on the requirement that ¢/ cancels the bubble,

or sclf-energy insertions, that occur on the hole lines in higher-order terms of the

Brueckner-Goldsione expansion [32-33]

Once, Eqn. {(3.1.1) - (3.1.3} arc used to find ihe G-matrix, the binding energy can be

evaluated from
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2
E‘fﬂ—ﬁ[p>+% z<,uv|(}(f:# +E, luu —V;_e)

wyske

E=Z<y

#eke
_ Lo (3.1.4
= Z E;r -—2' a1 1. )
HEEE
Here it is seen that G plays the role of an effective two-body interaction in the nuclear
medium. We can now write Eqn. {3.1.1} explicitly by introducing the relative and c.m.

mementa 2q,, =q, —9, and 2F,, =q,+q, (We will oftcn omit the slale subscripts).

, . . . . -3
The discrete sums now becomne continious integrations, 1.e. Z - Q(E;.r} J ek u
i by ke
B

In our discussion the starting cnergy, @, will always be evaluated on the cnergy shell

w= Efq, ') where E(q, P} is defined in Eqn. (3.1.6). The G-matrix equation is then

Vig0)- j.rﬂ:?’q k)@ k ricik, g| r) (3.1.5)

-E(q,P)

where Ok, P) satisfies the Pauli principle condition given below:

Gly', q|P)=

Ok, P) =1 for [k+P| >k
=0 for [k+P|<kp.
Tn nuclear matter, the single-particle energies are functions of
ool ek, )= 02 7 2my Ji2 + Ul )

Therefore, the sbove energy denominator is given by

£{k, P)-Elg, IJ'):;TZ—E(L:2 _g?hrulrei)sofe-k)-vlp+o)-vlr-a)  GLe)

r‘r
Note that Eqn. (3.1.6) depends on the angles hetween P and k, and between P and q.
The Pauli operator Ok, P} also depends on the angles between P and k. The above

dependence on angles causes (F to couple states wilth different rclative angular

rmomenium J.
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3.2 The effective mass and the angle averaged Pauli operator:

The introduction of the nucleon effective mass is a convenienl way to describe the motion
of nucicons in the nuclear medium. It reflects the wmMuence of the mean held on the
nucleson motion. In the non-relativistic theory, the microscopic mean lield <V 15 in general
non-local and energy dependent. The cffcctive mass is defined in such a way that it
characterizes the cnergy dependence of a /oeal potential ¥, which is cquivalent to the

non-local microscopic potenhial v [34]:

«

i d
—=1-—=V (& 3.2.1
y 2o o) (3.2.1}

The empirical value for the effective mass in nuclear matter derived {rom the analysis of

expenimental data in the framework of non-relativistic shell models 15
P 50.7-0.8 (32.2)
LY
Tn the rclativistic treatment of nuclear problems, the concept of "eflcctive mass” 15 also
frequently adopted. However, in this case the tenn usualty denotes different quaniities
under different circumstance. A quantity that is aflten referred to as "cffective mass™ in

the relativistic approach is the tilded mass #,, , which we introduce in section four of this
chapter. This mass is often called the "Dirac mass" [34]. Sincc its definition bhas no
apparent relation to the non-relativistic definition of the effective mass, Eqn. (3.2.1), the
Dirac mass should not be compared to the empirical value of Eqn. (3.2.2) and this wrong
comparison should not be considered as a judgment for the relativistic theory itself, or for

the underlyng bare NN interaction used n the theory.

The angle averaged Pauli operator is used to simplify Eqn. (3.1.5) by ehminating the
awkward angle dependence. In the angle average approximation, one replaces the exact

O-operator, Q(k,P), by its average over all angles for fixed [k| and [P|. The angle

averaged (-operator, Ok, P} is given by [3]
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o{k, P)=0 for ks ki-p?

=1 for k2kp+P
2 2 2
B2k
ZEL%FFjL for Jk2-P? <k<kp+P (3.2.3)

We note lhat Ok, P) has discontinuous derivatives at k= (Fcfr e ]”2 and K=k +P.
Using the angle averaged (J-operator, one can eliminate one source of angle dependence.
The other remaining dependence on angle is handled by the effective mass
approximation. The single-particle energies are assumed to have the quadratic form

slkq )

R2kE
=—2X-Uy for k, <k,
2en

252
Ak for k, >k, (3.2.4)
EmH

where m}, is called the effective mass. With this choice of single-particle specirum, the

angular dependence disappears from E(k, I’) and #(g, P}. The resulting expressions are

i 2

E(k,P)= "'—(I?'2 + k2)=h—ﬁ‘; :
m‘;\rr .'r'?.l’-_,\r
Z Z
00 ) (P? + g2 )-20, S (3.2.5)
e M

The symbols £, and £, stand for the enetgies of two particles below and above the
Fermi sea, respectively. We notc that the single-pamicle potential for ¢ > k¢ is taken to

be zcm as previously discussed.

The choice of the hole spectrum, ss given hy Eqn. (3.2.4) presents a sclf-consistency
problem since Eqn. (3.1.3) relates I/ and G, the determination of G, however, depends on
the choice of /. Therefore, the calculation of U by Eqn. (3.1.3) should reproduce the U

used to calculate G. To make £/ self-cousistent in the effective mass approximation, the
initial values of my and 7, arc chosen to calculate &; then from G new valucs of e

and 1/, arc cbtained using Eqn. {3.1.3) and Egn. (3.2.4). This procedure continues until
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my and U, change very little; with reasonable starting values for my and Uy two or

three cycles suffice to achieve self-consistency.

With the angle-averuged @ and effective mass approximations, the Brueckner equation
Equn. {3.1.5) becomes

axv{y', X)2lk, P)G(k, q|P)
qE{k,P]—E{q.P] - (3:26)

Gla". a1 P}=¥lg' )~ _[

Neither ¢ nor the energy denominators in Eqn. (3.2.6) now depend on the dircction of P

Therefore, G is a lunction of q', q and | P| only.

The calculation of binding cnergies and self-consistent single-particle energies requires
that we solve the Brueckner equation. Even after removal ol the above angular
dependence, Egn. (3.2.6) is a three-dimensional integral equation. A partial wave
decomposition will be used to reduce Equ. (3.2.6) to a set of one-dimensional inlegral

gquations, just as in the case of the Lippmann-Schwinger cquation.

3.3 Thompson equation:

To construct a relativistic theory for the two-nucleon system the Dethe-Salpeter (I3S)
equation [15] is wiilized. The BS equation presenis a rather complex mathematical
problem when the particles involved are not spin-less and a realistic interaction is
employed. In operator notation it may be written as

M=+ VM {3.3.1)
with ¢ the invariant amplitude for ihe two-nucleon scattering process, is the sum of all
gonnected two-particle irrcducible dizgrams, and ¢ the relativistic two-nucleon
propagator. As this four-dimensional integral equation is very difficult to solve, so-called
three-dimensional reductions have been proposed, which looks very much like the
Lippmann-Schwinger (L.S} equation and which are more amenable to standard methods
of numcrical solution. The three-dimensional reduction is nol unique, and in principle
infinitely many cheices exist. Typically, they are derived by replacing Eqn. (3.3.1) by,

two coupled equations:
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M =W+ UoH, (3.3.2)

W="1+MGgM (3.3.3)
Where g is a covariant lhree-dimensional propagator with the same elastic unitarity cut as
G in Ihe physical region. In general, the second term on the right hand side of Egn. (3.3.3)
is dropped to arrive at a substantial simplification of the problem. Among the different
forms of the three dimensional reductions, the one, suggested by Thompson [35] is
parlicularly suitable for the relativistic many-body problem. Explicitly, we can write BS

equalion for an arbitrary frame [8]:

atly, dP)=2g" gfP)+ [d*kvg" k| Pl P el 4| P) (3.3.4)
with
g(k|F)= J 4 : 1] = : 3
@a) (Lpek-mysis) (LP-k-m,+icf
P S 1 {2)
_ i EP+#+MJN ) EP—.ﬁ+r.u!j..r (33.5)
[2*’5)4 (]EP+.&')2 — % +ig (%P—k)z —mi-ﬂ'z—:

where ¢, & and g¢' are the initial, intermediate and final relative four-momenta,
respectively {e.g.k=(k,,k)] and P=(P,P)is the total Mur-momentum; with
P=y*p, etc. The superscripls refer to particle (1) and (2) and in general, we suppress

the spin (or helicity) and isospin indices. Now ¢ and g have the same discontinuity across

the nght hand cut, if

2
tms (g|P)=- éi)‘ (%fuu k+ J(l}(%P—E + mﬂ}m
x 5[*}[(%F+k}g —m ]af*][(gp—k)l - m_i,} = Tm g{t|7) (3.3.6)

with % indicating that only the positive-eneray root of the argument of the & fanction

iz to be included. From this follows.

1 1
A —F +ky - L O —Py —kg -~ E
sz} [2 v 0 %P‘+k] {2 t 0 %PH&'}

4£, £,

ImE{HP):—EN%(%P+E+H!H)‘I}(% P—KE+my
—~I+k —P-k
1 2

(3.3.7)
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wilh E, =[m§,+(gpikﬂ5.

—P=k
Using the cquality
a‘[gpﬂ + kg —ElM}a[‘ipﬂ —&, —Elp_k]
2 2
1 1
= - - -_F = 3.8
E[P” E%nn E%P-k]ﬁ[ku 2 -;—Pﬂr. * EE%F—I-»] (3-3.8)

the imaginary parl ¢f the propagator g(k[PJ can now be wnilen:

1
1 i
Img(k|F‘)-_——8 T ; xﬁ[‘.,l_‘ll(%P-l'le\lE:l(%P—L)
L
z
_F, -E 8l kg —LE 1r 3.3.9
x.;'j[Fﬂ %P+k %I’—k] * [ 92 %P+k+1rll’—k] ( )

where

A

N . L‘)
f\{i}&}z{}‘ £y -7 p+.-n,.~.l =Zu[p,,?ﬁ)7{p,ii) (3.3.10)

2y,

represents the positive-chergy projection operator for nucleon (f =1, 2} with u{p} a
positive-energy Dirac spinor of momentum p; 4; denotes the heleity or the spin

1
projection of the respeclive nucleon, and £, = [mi, + pz)i .

The projection operators imply that contributions involving wirtual anti-nucleon

intermediate states are suppressed. These contributions are smail when pseudovector

coupling is used for the pien. We notc that Im g(ﬁ:|P) {5 covaniani, since
Im g{4{P)=Tmg{k|P}

Using 5{p, — E)=2E5(s - E* « P?), where £ = E[

l]]uk IrI—JP—k
2 L2

and g=P' =P -P?,
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Eqn. (3.3.9} can be written as

a2 E[Ell‘+k+ElF—k] o &)
Im glt]s) = - =L 2 2 AL+ lip-k
mgltf) - - el ek
—FP+k —=F-k
2 )
¥
wsls-| £, +E, | +P {x8|kyE,  +lE (3.3.12)
ST+k Ep_k 2 E[’+k 2 E -k

Now we try to construct g(fcfs) by using a dispersion integral

g w — W—{E

glkfs) —% f ng(k|s) [since ﬁ(w}={]dw’-m] (3.3.13)
2 -

LY

Inserting Eqn. {3.3 12) in Eqn. {3.3.13) and for the integral in Egn. (3.313) using the
following property of & function

/)
j{i@f x)ﬁb(x} Z 13}'( )f:’:l |

where x_are the rcal roots of y(x)=0 inthe interval of integration, we obtain

2| E +£
(A.IP) m { ]EP +k -;-r k] ) ﬁ[l]%P+k}-t{ij(%P—k)

i -
(2;") Elmkﬁlp-k r P
2 2 ¥ + & - —r—i
%P+k l

—-P-k
=

xéf[ko—%ﬁflm + El”] (3.3.14)
2

This three dimensional propagator is known as the Blankenbecler-Sugar (BbS) choice
[18]. By construction, the propagator g has the same discontinuily across the right-hand

cut as § ; (herelore, it preserves the unitary relation satisfied by M.
T
Using the angle averages (;: I+ k) m%PE +k? and (% Piq)l :L—Pz +q?, which should

be a very good approximation, Eqn. (3.3.14) assumes the much simpler form
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mi, 1 ﬁfi}(;—l’+k}'\{f}(%1’ —l-:)

glk|P)= x x5k, ) (3.315)
| ) 2=y E, E}  -E} +is ’
—P+k =Py =Tk
7 2 2
where we have used s=4£7 ~P?
wP+h
3

Assuming ¥ =7, the reduced Bethe-Salpeter cquation 1s oblained n cxplicit form by
replacing in Eqn. (3.3.4) ¢ by g of Equ. {3.3.15}, yiclding

0y .\
‘1”.%; ""L[.:‘I[E '+ kl:'s_{;}[%P—k)

£ E} ~EY s
E}'{‘k —P-H.' EP_'_k

w{k,q'P) (3.3.16)

' h) ! djk "Ll
sy’ alp)=via' ofp)+ IW'V[“ HP)

in wlich both nucleons in the intermediate states are equally far off their mass shell.
Taking malrix elements between positive-cnergy spinors yields an equation for the

scattering amplitude in an arbitrary frame:

, , dk e 1 .
T {q .q'P): Fla'.q)+ j{z;,]ﬁ V{q k) E!:H 2 i 'T(k,q|P) (3317
EP_" ~]—I‘—q —F+k

where we have used
I, (lP +([’Jﬁl p -q')fif(q’.qh’)ul(%P+q]u3(é]1—q)

= (q) m(-q) Vlaa) g} w:(-q)

=¥(q"q) 3.3.18)
since this iz a Lorentz scalar. An analogous statement applies to 7. Caleulations of
nuclear matter and of [inite nuclei are performed in the rest frame of these systerns. Thus

Eqn. {3.3.17) with the necessary medium modifications wonld be appropriate {or the

cvaluation of the nuclear matter reaction G-matnx.

In the tavo-nugleon e.m. frame P = O, so that the BbS propagator g(k, 5) reduces to

1 miy ﬁ[l:'{k).-t{fj{- k) 5

kL gl= k 3.3.19
5{ JT} {2;?}3 £y, :]1-5—EE+:'.=: ﬂ} ( )

which implies the scattenng cquation

v (g k)2 (k) (3.3.20)

, , dk
T(q,q}=V(q,t1]+_[ e
i'k - -

(27)
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Two-nucleon scattering is considercd most conveniently 1n the bwo-nucleon cun. frame;
thus, for calculations of free-space two-nucleon scatiering in the BbS approximation, one

would use Equ. (3.3.20).

The BhS propagator is the most widcly used approximation. Another choice, which has
been [rcquently applied, is in the version suggested by Thompson. The manifestly
covariant form of Thompson's propagator gk, s) is the same as Eqn. (3.3.13), but with

J-ffs’f(s'—s—z's) replaced by _[a’». F—IE)
dnrk, lmy

5o the Thompson's pmpaualnr gfk, 5) now rcads

d
ﬂi:|:. =— I N ‘_NS ~ .Img(kh)

lm

with Img{k| 5) givenin Eqn. (3.3.12).

¥ar the integral in the above equation we again usc the same properties of & -function as

in the previous casc and obtamn [usmg f{x) =

1
2o Ws s i)

"y 2[ E%PTk ' E%M‘ ] ‘ﬁ"[*lr} (]E P+ k}'ﬂIEJ [% P- k)
2 ®

rlklPl=— <
(| } (,ZE): E] E1 =
~T+k —P-h -
ERE 2 [Ei +E, }—P‘
\ —Ir+k —F k
2
|
K{?[kc,—iﬁ-] +lE-| ]
2 2 iFtk 2 =F-h
3 _ e 250
[ Ll 'FEH _sz'_VS _EE
\| Pk S
z A
where s=4E} -P°.
:P+L

Using ihe angle averages (l Pt k} = %pz +k? and (% Pt q)_ = pl +q*%, we obtain
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m? 4E%I‘+k OIS FENACILE Y

g{k F) = o
| {23‘7«')3 EEPHE 21||4El2p+k B F2
2

1

x 8k, )
\/45,3 _p? —J4E% —p? s
—F+k =rty
7 2
which aflter simplification, becomes
2 AU P ek W2l p i
elifp)= T AL (2_ ng(ku) (33.21)
(27} EkEiP+k 2E, - 28, +ic
3
!
where Ell‘m =1:(]?P+k]z +mi,}z
1

The equation for the scaticring amplitude 10 an arbitrary frame is then

d’k ma 1
T\q',qP)=VFiq', q)+ Flg' k " Tik,q|P 3.3.22
(a'.qp)=7{a"q) -[[2::)3 (9 )EkE!P_k 35, 2E, 75 (k.qlP) (3322
For calculations in the rest frame of nuclear matter or fimte noclei, this equation, together

wilh the necessary medium modifications (#r,, —» i1, Pauli projector '), is appropriate.
In our actual calculations in nuclear matter, we replace &, by £y p. and £, by

Eii7psq in the denominator of Eqn. (3.3.22). This replacement makes possible an

interpretation of the encrgy denominator in terms of differences between single-particle
encrgics, which are typically defined in the rest frame of the wany-body system. This

allows for a consistenl application of this equation in nuclear maiter and {inite nuclel.

3.4 The relativistic Dirac-Brueckner approach:

The Dirac-Brueckner approach is the outcome of work that was slaried by Walecka and
coworkers for schematic NN interaction. The most advanced relativistic description of
nuclear matter has been given by Shakin and coworkers within the frame work of the
relativistic Brueckner-Hartree-Fock method [12, 36]. Then after, Horowitz and Serot {37
solved the relativistic Bethe-Goldstene equation and it has been extended to the case of

tealislic interaction by Machleidt and Brockmann [38].
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Similar to conventional Brueckner theory, the basic quantity in the Dirac-Brueckner

approach is a G -matrix, which satisfies an integral equation. In this relativistic approach,

a relativistic three-dimensional equation is chosen.

We choose the Thompson equation, which i3 a relativistic three-dimensional reduction of
the Bethe-Salpeter equation. Crucial for our choice is the fact that, in the framework of
the Thompson cquation, meson retardation is ignored (i.c., a static nieson propagator is
used). This is also true for the Blankenbeckler-Sugar {(BhS) equation [18]. We note that in
theorics, which incorporate meson retardation, cffeets due to medium modifications on
meson propagation in nuclear matter can be calculated. These effects havc been
investigated by the Bonn group and were found to be small and repulsive. Thus these

eflects are known and are not very important, for that reason we wilt ignore them,

When two nucleons scalter from each ather in nuclear matter, the medium effects, such as
the Pauli blocking for the inlermediatc states and the density dependence of the nucleon
cffective mass due to nucleon seli-encrgy, should be taken into account in the Thompson
equation describing this proccss. As in the non-relativistic case, one starls from a bare

interaction and carries out a Brueckner calculation to get the effective intcraction, oflen

denoted as G matnx, in the medium.

Following the basic philosophy of traditional Brueckner theory, this equation is applhed
io nuclear matter in strict analogy to free scaltering. Thus including the neccssary
medium effect, the in-medium Thompsen equation, which reads in tbe nuclear matter rest

frame,

L] s
(1B k£ _EE{H'E}PLI:

. ' — e . dj‘k s ' _le -j k,P i ~—
G(q,qIP,z}=V(q,g)+PJWV{q,k‘ all L{ﬁ, ) Gk, q| P2}  (3.4.1)
T
"l.’\"]lh }_:zfﬂ;z}p*q ﬂIld ;ﬁlﬁﬂr lhf: Dil’H.C TTiss,

P is the ¢ m. momentum of the two colliding nucleons in the nuclear medium and g, £,

and g'are the initial, intermediate, and final relative momenta, respectively, of the two

nucleons interacting in nuclear matier. In Eqn. (3.4.1) we suppressed the &, dependence
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as well as spin (helhicity) and isospin indices. For H Pt qt and EP x k| , the anglc average

is used.

The relativistic OBE polential to be used in the Dirac-Brueckner calculation is defined as
the sum of cne-particle-exchange amplitudes of certain bosons with given mass and
coupling. Usually six non-strange bosons with mass below [ GeV arc used. The
pseudovector (derivative/pradient) couphing, instead of pseudoscalar coupling is used for

the pscudoscalar bosons (x and /) in order to avoid un-physically large antiparticle

contributions. The details about the derivation of the OBE potential, the paramctors
(mass, coupling constant, and cutoff of the besons) and the description of the two-body

systemn have been extensively discussed in chapter 2.

The essential difference between the free-space Thompson equation and the Thompson
equation in the medivm 1s the inctusion of the Pauli operator O{k,P) and use of a

density dependent effective mass #i,, the Dirac mass, in the latter case. The Pauls

operator (?{k, P} prevents scattcring into occupied intermediate states (“Pauli effect").

We note that thig is different from Pauli blocking. factor for the {inal states which 13
always included in the transport models describing nucleus-nucleus collisions, Second,
the nucleon mean field due to the medium reduces the mass of the nucleon and affcets the
energy denominator in Eqn. {3.4.1} which is now density dependent, while in the free
Thompson equation the ¢encrgy denominator uses free relativislic cncrgics (“dispersion
effect™). Finally and most imporiantly, the potential used in the in-medium Thompson
equalien, as indicated by tilde, is evaluated by using the in-medium Dirac spinors instead
of the free ones {(hence the name Dirac-Brueckner approach). This leads to the
suppression of the attractive o exchange, which increases with density. The fact that the
Dirac-Brueckner approach is able to reproduce quantitatively the saturation properties of
nuclear matter is mainly due o this relativistic effect. This observation also imphes that
ihe in-medium NN cross sections based on the non-relativistic Brueckner approach lack
one important aspect, namely, the effect, which is due 1o the medium modification of the

potenlial.
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The Dirac equation, which is used in this relativistic approach for the description of the
single-particle motion in the medium is given by:

[a -k + glm, +U )+ U, Jilk,5) = ik, 5) (3.4.2)
where 7. is (he attractive scalar field and U/ is the time like component of a repulsive
vector field; my 15 the mass of free nucleon. The solution of Eqn. (3.4.2) is

B 172 1
+
#ilk,s)= [ L ] H"I‘k 7. (3.4.3)
Emhr Ek +£F‘}'N
with 7, =my +Ug, E, = (’”r. LZ)J g arc the Pauli spin matrices and z, 1s a Pauli

spinor, The in-medium Dirac spinotr Eqn. (3.4.3} is obtained from free Dirac spmor by

replacing #t,, by #, . The single panicle energy resulting from Egn. (3.4.2) is given by

g, =E, +U, (3.4.4)
The scalar and vector ficlds of the Dirac Eqn. {3.4.2) are deterrmined from [8]
-2
T M el
—U, +U, = ——{ mn|(5|Z mn—mn) 3.4.5
E.I' [ Szkjlr EmEn < ‘ ( )‘ ( J

which is the relativistic analog to the non-relativistic Brueckner-Harree-Fock delimtion

of a single-panicle potential

g _ﬂ< o %ﬂ
U(m]— Em (mLU|m) = Em m|U5 +¥ L V|m = Em Ue+U, (3.4.0)
wlere Im> denoles a state below or above the Fermi surface and corresponds to a
continuous choice. The states |} and |} are represented by Dirac spinors of the kind in
Eqn. (3.4.3) and an appropeiate isospin wave function; {m|zmd {n| are the adjoint Dirac
N = B SO B 2 2 . .
pmots ¥ =& with @ =1; £ =, +p, | . The scalar and vector Fields of the

Dirac Eqn. (3.4.2) are detennined from Eqn. (3.4.5).

The energy per nucleon as a function of the density of the system 1s often referred to as
the nuclear equation of state. We note that this differs from the more commeon definition

of an equation of statc, which is the variation of the syslem pressure with its density.
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In the Dirac-Brueckmer approach, the nuclear equation of state, that is, the cnergy per

nucleon, £/ A, as a function of density, 7,15 obtained from the G matrix :

1 77 T oy +p,2” 1 ﬁi,. )
% = E,,;}L. T + ﬂ m;kF Em E,t (mnIG{z ]'mﬂ - nm> —-ni, {3.4.7)

Since the kemel of the in-medium Thompson equation, Cqn. {3.4.1) depends on the

solution of the Dirac equation, Eqn. (3.4.2), while for the Dirac equation one nceds the

scalar and vecter potentials which are retated to the (; matrix via Eqn. (3.4.4), one has to

carry out an iterative procedurc with the goal to achieve self-consistency of the two
eqgualions: slarling {rom rcasonable initial values for I/ E”] and 7!, one may solve the in-
medivm Thompson eguation in momentum space by means of the matnx mversion
mcthod to get the G matrix which leads by means of Eqn. (3.4.4) to a new set of values
for L/ E‘:' and UI.’} to be used in the nexi iterabon; this procedure is continued unbl

convergence is achieved.
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Chapter-4

In medium NN scattering cross-section and its
density dependence

This chapter is devoted for finding the NN cross-sections in nuclear matter. Since the
(G-matrix plays the role of an cffective interaction for two nucleons in the nuclear
medium, we need (o find a method suitable for solving the Brueckner &-Mairix equation.
In fact, the Brueckner cquation that defines G, resembles-the Lippmann-Schwinger
gquation for R matrix. The G-malnix is linile even for singular potentials, in much the
same way that the R-matrix for free scatiering is finite for singular potentials. As 1t is true
for ihe R-matrix, one can use the matrix inversion in momenturn space to calculate the G-
matrix for infinite nuclear matter. In this chapter, we describe the method of matnx

inversion for solving the Brueckner G-niainx equalion, in section one.

In seclion 2, we discuss a formula, which can be used fo find the NN scattering cross-
sections in nuclear medium directly from the G-matrix obtained by solving the Dirac-
Brueckner GG-matrix cquation. The Golden rule for finding the cross-section for the
scattering of two free nucleons is derived in section three. This free NN cross-section
may be used to find the in-medium NN cross-section by taking into account the TPauli-
blocking for the medium cftect, which is discussed in the preceding scetion. In section
four, we make an analysis of the effect of the Paub principle in the binary collisions
between the nucleons of a two-nuclear matter system in relative motion. We show that it
reduces to a geometrical problem in the momentum space of the system and an analytical
derivation for it is presented. Lastly in section five, the lowest-order correction of the
dengity dependence of in-medium nucleon-nucleon cross-sections is obtained fom

veometrical considerations of the Pauli-blocking effects.
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4.1 Matrix inversion method for solving Brueckner equation:

In this section, we first discuss the method of matox inversion [3] for solving the
Schrddinger equation in momentum space. This methed can be applied to any non-
singular potential, either local or non-local, central or non-cenlral. Several altemate
approaches to solve the Schrodinger equation for peneral non-local polentials arc also
available in the literature. For the purely nuclear pan of the two-nucleon interaction, we

find that the direct matrix inversion is simplest.

The Schridinger equation describing the two-body relative motion is given by
ﬁz 2 r
— Vi [r)+ I.:Ir V(r!r )pfn (r)=E,w, (r) {4.1.1)
mh’

where my i3 the nucleon mass, r =1, — 1, denotes the relative displacement of the two
nucleons, and F, is the total rciative energy. In general V(r|r'] 1s a non-local operator.
For local potentials, V(r|r’)—> 8{r = r'W{r}; many rapid methods exit for solving the

resulting second order differemtial equation. Howcver, for non-local polentials one faces
the difficult task of solving an integro-dillerential equation in cenfiguration space.
Numerical meihods for that problem are also available and are particalarly useful when

Coulomb forces are to be included.

An altermative approach, to be used here for non-local nuclear potentialg, 1s to introduce

momenturn space. The relative motion 1s then descnbed by
o —a”a)= 2 [anr a0 (4.12)

where 2q=gq, —1q, 15 the relative momentum. The energy eigen-value has been written

alq?

as E, = , where # is used to label the incident momentumn vector for scattenng and

m J\u‘

the spin and isospin quantum numbers. The wave (unction (q‘) 15 stmply the Fourier

transform of y, (1)

v, (@)= 2y [aredy, ) (4.1.3)
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and the potential matnx elements in momentumn space are related to the nen-local

opcrator V(r[r') by

Plalk)=(27)" [drare ™ v (el b (4.1.4)
The next step is to introduce a partial wave decomposition of the wave funchion
()= D i QW QX LSM M| Yy ) T (4.1.5)
ali'M

The wave function is decomposced inte normalized cigenstates of the total angular
momentum J, the total spin 5, and the total orbatal angular momentum £ of the two

nucleons. Here @  denotes the quanium numbers JST. These eigen-states arc formed

using the Clebsch-Gordon coefficient (LSM M |LH ) :

yis (@)= D (LSM MM, (0} SM ) (4.1.6)

A

The corresponding decompaosition of the potential is

2
V{a ’Ili)=%:—vzf ik @ @R, (4.1.7)

Where ¥ (q'|k) is an operator in spin and 1sospin space and . is an isospin projection

operator. Eqn (4.1.7) represents the most general potential that conserves total angular

momenturn, parity and 1sospin. The potential satisfies time reversal invanance 1f

V“'-(q'ik)= Vi (k|q’). The sum is restricted to those guantum numbers of L' of two-

nucleon states that are allowed by the Pauli ponciple, 1.c. states having S+L+7 equal to

an odd integer For tnplet states the orbital angular momenta £ = .7 £ 1 can be coupled by

a tensor or non-central potential; thus both L and L7 labels appear on ¥, and g, ..

Let us now consider the scattenng problems fomulated in momentum space. In

maomentum space the Schrédinger equation for standing waves 1s
f - N P [
va ()= 80" - ) SM )| T3} —%mﬁ [axr{alky, () (4.1.8)

the symbo! P means prneipal value. The incoming momentum veetor kq and incident

spin-isospin state arc labeled by n.
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Instead of solving directly for the wave function, it is convenient to introduce a reaction

matnx defined by R¢, =¥y, where ¢, is a plane wave, The result is the Lippmann-

Schwinger equatien

&lala)=Ylgla)- 2 p jdky(qr[khmq) | (4.1.9)

ﬁ] k!_ql

It is easy to construct the wave function and phase shifts from the R-inatrix, once a pariial
wave decomposition is used. The result is the one-dimcnsicnal, coupled-channels,

Lippmann-Schwinger equation

. R
REqla)=Vidal)- 2 j‘m fulg ‘k}f”- () (4.1.10)
T o —.rJr

¢

The channels are . and «l’, which can be coupled by a tensor force. In toplet states
the orbital angular momenta L *.f 41 are coupled. For nunecrical work it is convenient
that only rcal quantitics arisc in Egn. (4.1.10). The corresponding wave function in
momentum space is
v a) =5 8(g - gy, -EPR!,—Q(‘]L%] @.1.11)
"? g —q
Now we will discuss Lhe way of solving the Lippmann-Schwinger equation for X-matnx.

Lct us consider Eqn. (4.1.10) for uncoupled channels {£ = L'} and add a zero term to
replace the prineipal value condition by a smooth integrand

|2 [d.q;[;c%f“(g[klh (a)-a?72 (gla)Rs ()]

ol k- gg

(4.1.12)

R (qla)=v7qlq

The integrand has a finite limit even for £ = ¢ ; however, we wish to avaid such points.
We need to solve Eqgn. (4.1.12) numerically without having any points at which & = g . At

the same {ime we need (o find the R-matnx both on and off the energy shell.

These quantities can be casily found by introducing an N-poind inlegration fomula

?dkF[k): iF(kj)mj , (4.1.13)
f 2=l

where we prefer to take &, and @, lo be either Laguerre or Gaussian inlegration points

and weighis. The integrand in Eqn. (4.1.12) may be considered as F(&)in Eqn. (4.1.13).
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Gaussian integration is used for potentials having a relatively slow fall-off in momenmum

space. All of the & integration points, £, &5, ., , are required to be unequal to

k,.Ifwe call £, the & +1 point (ﬁcn =k, ], then Eqn.{4.1.12) can be rewntien as

Vel |k )= 21?5 (&, k, e (k) (4.1.14)
The matrix F, is simply
Filfk, )= 5, +avelil,) (4.1.15)
where o, is defined by
o' =%% for j< N
S L VU for j=N+1 (4.1.16)

2 2
Tam kL =k,
The matrix £ is nonsingular since &, is distinet from the grid points; it can therefore be

inverted to yicld the R-matrix both on and off the energy shell

N+l

(i o) Z e, e (e e (4.0.17)

A similar parial wave decomposition may now be used to reduce Brueckner non-
relalivistic G matnx egquation given in Eqn. {3.2.0) to a sct of one-dimensional integral
cquations, just as in the case of the Lippmann-Schwinger equation. To reduce Egn.
(3.2.0) to a set of one-dimensional intcgral equations, the following standard partial-wave
decomposition may be used.

6{y, op)= =2 i Y itren e, ap)s @R @e (4.1.18)

£ My i

the resulting one-dimensional coupled-channe! nen-relativistic Brucckucr eguation is

dk kz@(k!P)Vfi'(qr!k} o
Z.[ Ek P -Eg.P) Ot (e

) (4.1.19)

GEAgglP)=vi(g, q}——

In a similar fashion the one-dimensional coupled-channcl Dirac-Brueckner relativistic (7-

matrix equation becomes

56

" L



dk k2 Vg KRy O(kP)

= - .= 'EEL'(kr?|P)
(2m ]3 E&-’Z}Pﬂc z _zgl;uz}nk

Gela'qlP )=Vile, q}—%.z I
)

(4.1.20)
As before, @ denotes JS and 7. Eqn. (4.1.20) differs from the Lippmann-Schwinger
equation in two important ways. First the cnergy denominators include single-particle
potentials that arise from the presence of the other nucleons — this is simply a recognition
of the many-nucleon medium in which the pair is moving. Secondly, the nuclear medium
produces the Pauli exclusion effect as recorded in 0. Because of E, the integrand
Egn. (4.1.20) does not have a singularity, which causes the healing of the two-nucleon
wave funchion in the nuclear medivm.
The nonsingular character of the integrand of Eqn. (4.1.20) makes it completely suitable

to soive by matrix inversion method.

4.2 Elfective cross-sections for NIV elastic scattering:

In this section we consider nucleon energies below the pion threshold (-300 McV), so
that the NN scattering is purely efastic. When discussing two-body properties in nuclear
matler, we shall use the concept of effective cross sections [39]. Tn the following
discussion, four different cross section valucs arc distinguished. The frec NN cross
section, which in our approach is related to the vacuum ¢ matrix 77, will be called o, . In
some kinctic cquations, this ¢ross section 1s comrected for Pauli blocking m the outgoing

channel. We shall call this value o,. Caleulating the effective cross-section from the

—

effective Dhrac-Brueckner interaction, G, we oblan o, and o, . Hers, o, 15 not
correcled for Pauli blocking in the outgoing channel (but Pauli-blocking in the
intermadhate NN channels is included); o is the effeclive cross-section that containg ali

medinm corrections. The incoming NN chanucl is the same for all four cross sections.
Particle | has a cerlain fixed momentum compared to the surrounding nuclear medium,

For particle 2, all the available Fermi sca momenta are taken into account and averaged

afterward. In summary {39], (writing o for o)
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3 M5 (o)’
a(q1)=m stng[p,s g {;’ o x [d0,, Z‘G P @2

where g, and q, stands for mementum of particle ! and 2 respectively, P =q, +q,,

.s’—( +£2]J P’ and P= 1.'5 —4m%  and Z“ represents  the  summation

{average) of outgoing (incoming) spin and isospin channcls. The function O gives the

angle-averaged Pauli-blocking operator and k4, denotes the Fermi momentum.

The slarting encrgy in Eqn. {3.4.1) is 7 = qu = Zq,..'ﬁi.- +q° , where g is related to the
kinetic emergy of the incident nucleon in the “laboralory system” (E o) by

E,, =2q"/m, in which thc othcr nucleon is at rest. Here two colliding nuclcons are

considered in nuclear matter. The Pauli projector is represented by one Fermi sphere as in
conventional nuclear matter caleulations This Pauli projecter, which is originally dehned

in the nuclcar mater rest frame, must be boosted to the c.m. frame of the two interacting

nucleons. The explicit formulas for @ [40] is as follows:

'Q“(q,P,s‘)=ﬂ for qﬁ%{yzkﬁ—(qﬁr)l}“z
E{q,f-’s )= forqEr;EF+y kg
- o3 112 a1
O N e R L I e
¥ Y ¥ ¥ ¥
for other values of ¢, {4.2.2)

with E, =2 + 7% ]"" and furthermore 77 and y are defined by:

n= P/w. and y = ;‘:;w' =5+ P’ /1.
Inc.m. frame =0 and ¥ =1, so that J takes the form
E(q,P,S. )= 0 for g <k,
Olg.P.s")=1 for gz &y (4.2.3)
For in-medium NN scattering, the Dirac-Brueckner G -matrix of Eqn. (3.4.1) may be

used in Equ. (4.2.1) in center of mass frame with P=0and 7 = Efq. We may obtain this
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G -matrix by solving the Dirac-Brueckner G -matrix equation using the matrix inversion
methed, discussed in the previous section. Thus the in-medinvm NN cross-sections may be
calculated directly from the Dirac-Brueckner G -matrix by using the cross-section

formula given In Eqn. (4.2.1).

4.3 The Golden rule for free NN cross-section:

In this section we begin a quantitative formulation of clementary particle dynamics,

which amounls, in practice, to calculation of scattering cross sections {r). The procedure

involves two dislingt parts (1) cvaluation of the relevant Feynman diagrams to determmne

the “amplitude” (M) for the process in question, and (2) insertion of H nlo Fermi’s

*Golden Rule™ lo compute o

Now the question is whal we mean by a “cross section”. Suppose a particle (may be an
electron) comes along, encounters some kind of potenlial, and scatters off at an angle &
This scatrermg angle is a function of the impact parameter b, the distance by which the
incident particle would have missed the scattering center, had it continued on its onginal
trajectory. Ordinanly, the smatler impact parameter, the larger the deflection, bul the

actual functional form of & (b) depends on the parlicnlar potential involved.

If the particle comes in with an impact parameter between b and b+db, it will emerge
with z scattering angle between £ and J¢. More penerally, if it passes through an
infinitesimal area dor |, it will scatter into a corresponding solid angle 403 . Naturally, the
larger we make do, the larger d{} will be. The properiionality factor is called the
differential scatiering cross section, I,
dor = DIOWG

In principle, D might depend on ithe azimuthal angle #; however, most potentials of
interest are splencally symmetrical, in which case the differential cross section depends

only on &, By the way, the notation, D, is simply de/dQ.
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Suppose now, that we have a beam of incoming particles, with uniform fuminosicy £L{L15
the number of particles per unit time, per unit area). Then d¥ = £do is the number of
parlicles per unit time passing through area der, and hence also the nurnber per unit time
scaftered into solid angle dt):
dN = rdo = £ D{eM0
It lollows that
ey

This is frequently 2 more convenient way to think of the differential cross section. It 1s

the number of particles per unit time scattered into solid angle 40}, divided by 482 and

by the luminosity.

To calculate the basic physical quantity scattering cross scction there are hwo ingredients:
{1} the amplitude (ﬂi) for the process and (2) the phase space available. The amplitude
contains all the dynamical information; we calculale it by evaluating the relevant
Feynman diagrams, using the “Feynman rules™ appropnate o Lhe interaction in question,
The phase space factor contains enly Ainematical information; 1t Jepends on the masses,

cnergies, and momenta of the participants.

Suppose that the pamicles | and 2 have a collision, producing parheles 34, ........ T 50
that
142 =2 3+4+ ...+t n (4.3.1}

The ¢ross section is given by the formula known as the Golden rule [29]:

da=|ﬂf[z H#5 [[ ctf:;‘h I cdit]a ][%H
4J{q|.qz}2—(m]m2czf (2r)2£, ) (22) 2E, (27)2E,

x(E:r)"cT;‘(g.', N, S I R 3 (4.3.2}

where ¢, = (£, /¢,q,) is the four-morentum of the z-th particle which carries mass 1,

F*—qlc? =m?c®, and §is a statistical factor (1//1) for each group of / identical particles

in the final state). (s} is (he scattering amplitude. The delta function enforces

conservation of energy and mementum.
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The above equation determines the cross section for a process in which the three-
momentum of particle 3 lies in the range ”q, about the value g, that of particle 4 falls
in the range d”q, about qq, and so on. In a typical situation we study only the angle at

which particle 3 emerges. In that case we integrate over all the other momenta

(VT Py ,q, ), and over the magnitude of q,; what's left gives us do/dQ), the

differential cross section for the scattering of particle 3 into solid angle €2,

Let us now consider two-body scattering where 1+2 — 3+4. Heore

3 3 3
dﬂ'={5‘r’i|2 A8 li of - od i/

4'\’[?1-5’2 ) - {m] mzﬁ‘zf (2ry 2B, (2r)2E, }x (27)' 6% (g, + a2 95 a4}

2 2 3 3
=[;_;J f|9{| ? 2‘3;' s 5% g +4: -0y~ q4) (4.3.3)
1.’(5’1-?3] —(h‘mw;cz)2 3a
2
Now since(g, ¢, =[E'—}5"—q| -qzj , we write
2
\’(ql.qz }1—[mlmzcz)) =M (4.3.4)

c

Rewriting the delta function as

[

54[‘11""&’2—5?3.—‘?4):5[ ]’f"atflﬁ‘-lz“h_‘h)
and expressing the outgoing energies in lerms of q, and q4 i.e.

E; =c-.~|m§cz +{|§ . Ey ={:?a.,ln'.'n§;:?2 +q§ L we get

n’cr=[ﬁcjz S|§H|2c dq,d’q, 5[EE+E2—E3—E4
8z {‘1152“‘1251) EE, ¢

performing the q,integral, we obtatn

]53([“ +1; _‘h—fh)-

PONER ol + B e+ o a0 s,
T

('31115‘2'“'31251] q,l.'r;n;cz+q§Jmﬁcz+(ql+qz—q3}
{4.3.5)
Writing d°q, = p’dp d0) (where p is shorthand for 1q3| and dQ =sinf 48 d¢ } we get

61

Q



pidp

dc.r (ﬁ " [{E +J':2 f’c \/mjc +p° \/m4c + *‘]n“lz P)ﬂ

2
a0 Eﬂ') {fllEz ‘hEl {,[ \/FH%EQ‘FPZ\’WECZ*‘('-IL"'QE_F]E
(4.3.6)
Let

E EC[-,HIII!H;CE +J.|:J2 +q‘||'[r.nic2 +(qI +q, up)z]

So, equation (4.3.6) becomes

o A 2 o 2
== [ ](q] ﬂ £ 25[(El+£2]f’c—£fc]ﬂ'E

él r;. PE":(PL""[]‘z)"."rm%CE"'P

fic Jz hy W|M|2 ” |"I:l3|2
N D — P (4.3.7)
[35 {{Ilﬁz—{lzﬁl)ﬁ[ |q3|(E,+Eg)—€{f[|+fl1)'\,"”3202+|“:h|2

In the centee of mass frame g, =—q;, |q]| = |q2|. So that cquation (4.3.7} becomnes

o [ﬁc]z——gwl%l (4.3.8)
At \8r) (E +E,) ]

where |q _,rl 15 the magnitude of either outzoing momentum and Iq:-| is the magnitude of

either incoming momentum.

4,4 Geometrical consideration of the Pauli-blocking effect of
the medium on NN cross-section

The m-medium NN cross-scctions may also be determined from the free NN cross-
section, The main cifect of the medium corrections is due to Pauli-blocking of nucleon-
nucleon scattering. Paub-blocking prevents the nucleons from scatlering into linal

occupied states in binary collisions between the projectils and target nuclcons.

The effect of Pauli-blocking for the in-medium in nueleon-nucleus collisions was st
investigated by Goldberger in 1948 and by Clementel and Villi in 1835 on the basis of
the geometry for a single nucleon-nucleon collision in momentun space. Their approach
i still used in the microscopic descriptions of nucleon-nucleus cross-section with good
agreement with the experimental data [41]. We will sec how one can extend their ideas to

the study of the collision between two nucleens in the nuclear matter.
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2008 56

Fig. 4.1: Diagram exhibiting the kinematics of the rwo nucleon collision. The 1mtial
momenia of the pair, q, and q,, together with k,,, p and q are represented by
arrows as indicated. The third sphere is the locus of the end pownts of the vector
q. The non-shaded region corresponds to the allowed scattering angle. The
cross-hatched region indicales the admissible angles for initial pairs with the
same modulus 2p for the total momentum and the same modulus 2¢ for the
relative momenturm.
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By nuclear matter collisions we mcan two Fermi fluids, one of which is initially ai rest
and the other is moving against the first with a momentum k,, = k,per nucleon. Each of

these fluids possesses a Fermi motion in 1ts rest frame and the tnitial state of the system is
described by bwo [filled spheres of radii kg and &, comesponding respectively to the
larger and smaller spheres, with the position of their centers separated by k&, , as shown in
Fig. 4.1. In the initial stage of the system a binary collision berween a pair of nucleons
will only be possible if they pemain to different Fermi fluids. If initially they have
momenta q; and q,, afler the collision they will possess momenta q; and g5, which by
the Pauli pnnciple must lie outside both Fermi spheres. These momenta arc also related
by {he energy-momentum conservation laws
4y +4; =4; +dj

q'l—q'2=§{q[—q2| (4.4.1)
where £ 15 a umit vector in the direction of a solid angle #0) . We observe that the
conservation of energy of relative motion in the binary colliston is only valid for energies
below the pion-threshold £, =300 MeV above which nost of the collision cross
section will be inelastic due to pion production. Weverlheless, we shall see that for
relative motion energy of the Femnui fluids greater than this value, the Pauli pninciple hus 2
rapidly decreasing importgnce and (he above assumplion can be used without major

COTISEYUENEEs.

In Fig. 4.1 wec obscrve that, due to Pauli principle and the conservation laws in Eqn.

A1) the availlabple sold angle Ty engle Lhe aull-plackm or
4.4.1), th ilable sohd angle 4z ¢ denoted by 0 he Pauli-blacking I

Faaly 2
scattenng of the pair 1s restncted {o the non-hatched region inside the auxiliary sphere of
radius ¢ =ir.1I —i1,|/2. To this solid angle not only a pair but all pairs of nucleons can
scalter which hie on the surface of (s auxihary sphere and inside the double-haiched
region of Fig. 4.1. This double-hatched region fonns a sclid angle 47w ;. The

calcudation of @ ¢ and &, is of great relevance in our following analysis and we show

that 1t can be translated into a problem of spherical geometry. We scc that cnergy and

momcatum conservation, together with the Pauli principle, restrict the collision phase
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space to a complex geometry involving the Fermi-spheres and the scattcring sphere. In
this sccnarie, the in-medium cross-section corrected by Pauli-blocking can be defined as

[42]

dik 4’ k3 2? fr.s.s( ]ﬂP‘nu!J
Tkl 314xkr2/3j o

where &, is the relative momentum per nucleon of the nucleus-nucleus collision and

O s (kg ko Koy ) = -{(4 (4.4.2)

f'“{q] is the free nuclecon-nucleon cross-section for the relative momentum

2q=q, —q, of a piven pair of colliding nucleons and the integrations are carried out

Patule

ingide different Fermi spheres The factor .
r

is the fraction of the solid angle

avalable for a specific collision between a nucleon with momentumn 4, and another with

2 :
miementum 4. The factor =4 cormects for the flux differcnces between the laboratory

o

system and a system in which one of the nucleons is at rest. Now we define

_0:+4;
2
g=24 (4.4.3)
2
and b=k;-p

After the collision p and b stay constant while g changes only its direction.

Fig 4.1 shows schematically the geometry of the collision. The allowed scattening angle
of the pair corresponds to the non-hatched region of the spherical surface with center in
pand radius equal to . This angle is cqual to 4w = £, , according to the definthion.
The possible angle of ongin of nucleon—patrs with the same meomentwn p and same
modulus ¢ of the Telative momentum is given by the double-hatched region in Figd.1.
We call Ihis angle 20 and we nole that it corresponds to 4z, according to the
definition. This solid angle is geometrically originaled by the intersection of two hour

glass-shaped angle each of which is single-hatched in Fig 4.1 and which we calt 22 and



202, . These angles are casily relaled to the momenta defined in Eqn. (4.4.3). This can be

verified in Fig 4.1 from which we infer that

Q. =2x{l -cost, )

0, =2zl -cos8,) (4.4.4)
where
1,23t
cos, =P T4 kR
2pq
and
2 2_ 2
cosd, =9 “Kiz (4.4.5)
2bg

we then immediately have that
Q. =dro, =47-200, +0, ~T1)  where dnw, =282 (4.4.6)
Using Egn. {4.4.4) n the above equation, we obtain
Q .= 4x{cosd, +cosd, —1)+202 {4.4.7)

Fig. 4.2: Spherical surface of unit radius over which we traced tweo circles originated by
its intersection with the sohd angels € and €,. The solid angle €2 (£2,)

possesses a symmetry angle £ (8,) with respect to the axis X (X,). These

axes have an angle & between them. The shaded area is simultaneously inside
(1, and L},

The angle Q2 depends on &, £, and on the angle @ between b and p. This situation is

shown morc clearly in Fig.4.2 where the axes X and X, arc respectively parallel to p
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and b. The solid angles £, ), and (1 are now given by the corresponding areas

inscribed over the surface of a sphere of umit radius. It is clear from this [tgure that

iy D=0, if 68, -8, 20
i) Q=0, if 658,-6,20
i) Q=0 if 020, +0, (4.4.8)

Fig.4.3: The projection into a plane of the aren €, and .. R and T are their

geometrical centers. § and P are the intersection points of their contours. All
lines joining these poinis are segments of preat circles over the sphencal
surface. A4y and 4; are the areas of two sphencal tnangles limited by some of
these lines.

The case |41'I"ﬂ —H¢| 6 =8, +8,, as it appears in Fig.4.3 nceds a mare detailed study. In

Fig.4.3, R and I are the centers of these circular areas, S and P are the intersection-points
of the circular contours of these areas and (2 is the point where the geodesic ling jouming R
and T crosses the geodesic line joining S and £, The points R, P and § define a sphencal

triangle of area 24,. The poinis §, P and T deline a spherical triangle of area 24, . These

triangies have internal angles @ and £ around R and 7, tespectively.

The part of the circular area Q2_, which is inside the lines &5 and R is equal to %Qﬂ.

The parl of the circular area (2,, which is inside the lines 75 and TP is equal to %Q 5 -

We then easily deduce from Fig. 4.3 that the intersection area between {2, and ), 1s
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0-20 + Lo, 24 24, (4.4.9)
2r 27

To obtain the angle @ we use two new axes X, and X, passing by the center of the

spherical surface and by the points P and S, respectively. Adopting a polar coordinate

system in which X _ is the z-axis, the angle will be the difference between the azimuthal
angles between X, and .Y, . In this coordinate system (8 ,4,) and (8,4, ) are the polar
and azimuthal angles corresponding fo the axes X, and X,, respectively. Siuce the
angle between X, and X, 1s &, , then

cosf, =cos#, cosd +sind, sin@ cos(p, — 9, ) {4.4.10)

from which we infer that

(4.4.11)

%zm 4, =C05_1|icﬂsr9b —cnsﬂmsﬂa:|

sin @ sind?,
Following the same lines we can find /2 as given by a similar equation: we 1must only

exchange ¢, and @, in the above result

%:cos“‘[msg" —cmsﬁ'msﬂb] (4.4.12)

sinésind,

The arcas A4, and A, can be obtained by means of a known theorem for spherical

triangles, which states that

{sum of intlcmal angles)— 7 = a;ﬁ {4.413)

where X is the radius of the spherical surface over which the tnangle lays and in our case

15 equal to unity. For the area 4, we deduce
x b
Zie_ o4 4.4.14
5 g ;=4 ( )

where £ is the angle between the lines 5 and RS, In Fig.4.4 we show how this area

arises from the intersection of the great circles inscnbed over the spherical surface.
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Fig.4.4: Three great circles over Ihe spherical surface and a spherical triangle of and A4
limited by the scgments of their intersections. With respeet to a conveniently
chosen coordinates-axis system, & lics on the XZ-plane and has polar coordinate
6, & lies on the X¥-planc and has azimuthat coordinates @ . The angle between

the lines joining R and § (o the onigin is &, . From this piciure one deduces the

internal angles £ and £ of the spherical triangle as functions of &, ¢, and

.
Now the z-axis is choscn so that the line 5 hes on a great circle in the AF-plane and the
line R lies on a greal circle in the plane AZ. The angle £ will be given by the scalar
product between a unitary veetor perpendicular to the great circle which contains the

lines RS and & unilary vector in the Z-direction. In terms of the auxihary angles ¢, and

¢, , we obtain

£ = cos™ sinbpsmey (4.4.15)

2 ; .
Jcos g, +sin’ &, sin® g,

Taking the scalar preduct of the same unit vector in the Y-direction, we find

Lo cos t; cosdy; _= (4.4.16)
2 \/-:Dszfi?ﬂ +sinjﬂﬂsin1¢n
The angle @, is also related with £, and ¢, by
cos8, =sind, cos¢, (4.4.17)
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4.5 Density dependence of in-medium NN ¢ross scctions:

The nucleon-nucieon cross section is a fundamental input m theoretical calculations of
nucleus-nucleus collisions at intermediate and high energies {€ /4 2100 MeV). Onc
expects to obtain information about the nuclear cquatir:-n_of state by studying global
collective variables in such collisions [43]. In previous theoretical studies of heavy-ion
collisions at intermediate energies (& / A =100 MeV) the nucleon-nucleon cross-section
was multiplied with a constant scaling factor to account for in-medium corrections
[44, 45]. As peinted out in [46], this approach fails in low-density nuclear maller where
the in-medium: cross-section should approach its free-space value. A more realistic

approach uses a Taylor expansion of the in-medium cross-section in the density vanable.

One obtains [47]
T = ol (L+ @ P) (4.5.1)
where p = p/p,. p, is the normal nuclear density and «x is the logarithmic derivalive

of the in-medium cross seclion with respect to the density, taken at p =0,

T = gy %(ln Jhﬂ%’hp:ﬂ {4.5.2)
This parametrization is motivated by Brucckner G-matrix theory and is basically due to
Pauli-blocking of the cross-section for collisions at intermediate encrgics [48]. Values of
a between -4 and -0.2 yield the best agreement with involved G-matnx calculations

using realistic nucleon-nucleon inleractions [48).

In this scetion, we give a simplc and transparent derivation of the lowest-order expansion
of the in-medium nucleon-nucleon cross section in termis of the nucleon density. Here
tao approximations can be dona: (a} on average, the symmetric situation n which
ke =kpy =ke, g=k,f2, p=k, /2 and b=}, /2, 15 favoured; (b} the free nucleon-
nucleon cross section can be taken oulside of the integral n Eqn. {4.4.2). Both

approximations are supported by the studies of [49]. The assurnption {(a) implies that

Q =Q, = 0. S0 we oblain from Eqn. (4.4.6)
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n!’ﬂuh = 4"IT - Eﬂq
=d4x — 4n{l —cosd }
2
=dx 1-2k—;’ {4.5.1)
K
Furthermore, assumption (b) implies that

. &kodk Qg
JHH(kDrkszo.;‘{Ff’e(kﬂ) ( s fo

drkl /3fanis, 13} dn

oo { tF) , U] s Qo
= ol (k, )7 &k, [d'k, fad
o D)(xf-l:rkﬁ-]ﬂ)(airrkﬁ-zf}h[ ! ﬂj e
6
Qo K
= ol )1 = ol (k) [l - -;;i;-] (4.52)
! 0

The above equation shows that the in-medium nucleon-nuclcon cross scotion is about 1/2
of its free value for &k, = 2k, i.e. for £ /4 ~ 150 MeV, in agreement with the numencal

results of [4%]. The connection with the nuclear densitics is accomplished through the

local density approximation, which relates the Fermi momenta to the local densities as

2 3 2 # 5- P -
ki =|S70pb)) +54le) Pl (4.5.3)

where p(r) 15 the sum of nucleon densities of each colliding nucleus at the position r,
The second term 1s small and amounts 1o a surface cormrection, with £ of the order of 0.1
[49]. Negleeting the second term of Equn. (4.5.3) and inseming it in Eqn. {4.5.2), together

with the relations £ =#*2/2m,, and p=p/p, givesus

— A B—HEP{I ]IB ﬁm

12 o

O oy (E: P) = J{T: {E) t+

= ol {E) (1+a'ﬁm) where a'=- (4.5.4)
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Taking p, =.18 fm™ and the nuclcon mass m, =1.67265x107 gm we obtain

o= (45.5)

" E(MeV)

where £ 15 the energy per nucleon £/ 4.

The above equation shows that the local density approximation leads to a density
dependence proportional to . The Tauli principle yields a 1/£ dependence on the
bombarding encrgy. This behaviour arises from a larger phasc space available for
nucleon-nucleon scattering with increasing encrgy. The nucieon-nucleon cross section al

E < 300 MeV decreases with F approximately as 1/F. Thus we expect that, in nucleus-

nucleus collisions, this energy dependence is (lattened by the Pauli correction, i.e. the n
medium nuclesn-nucleon cross scetion is fatter as a function of £, for £ < 300 MeV,
than the free cross section. For higher values of E the Pauli biocking is lcss important and
the free and in-medium nucleon-nucleon cross-sections” are approximalely equal. These
conclusions are in agreement with the experimental data for nucleus-nucleus reaction
cross-scction [50] Here we have considered (he encrgies up 1o 300 MeV. At encrgies
ahove 300 MeV, inelastic channels enter into the picture. We note that, for £ =130- 300

MeV, and p = p, Eqn. (4.5.5) viclds a coefficicnt o’ between —0.2 and —0.5. This is in

excellent agreement with the fndings based on the BUU (Boltzmann-Ushling-
Uhlenbeck) [46] caleulations, primanly intended to reproduce the experimental data on

intermediate energy nucleus-nucleus collisions.
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Conclusion

In chapter one, we have given a brtef review of the meson theory, nuclear force and the

properties of the nuclear matter structure,

In chapter two, we have derived the one-boson exchange Bonn potentials using the
Feyoman rules for the scatlenng of free nucleons for various boson frelds such as scalar,

psuedescalar and vector kelds.

In chapter three, we have first discussed the non-relativistic Brueckner (-matnx theory
for nuclcon-nucleon scattering in the nuclear matter, where the in-medium effecl has
been described by the Pauli project operator. For a relativistic extension of Brueckner
theory we have considered the Thompson equation which is a 3-dimensional reduction of
the 4-dimensional Bethe-Salpeter equation describing the free NN interaction. Then, in
the framcwork of Dirac-Brucckner approach for the in-medium effect, we have denved
the relativistic (r-matrix equation, where the NN interaction has been described by the
one-boson-cxchange Bonn potentials and the solution of the Dirac's relativistic wave

equation has been taken into account.

In Chapter lour, we have discussed a method: the matnx inversion methed to solve the
(r-mainx equation and hence to study the saturation properties of the nuclear matter as
well as to calculate the in-mediwm cross-sections directly from the -matnx. We have
also discgsscd the in-medium NN cmoss-scctions in an altemative way in terms of the free
MM cross-sections obtained from the Golden Rule, where the in-medium corrections are

obtained from the geometrical considerations of the Pauli blocking effect.

Finally, we have considered some approximations in this altemative approach. In the
simplest case the lowest-order correction of the density dependence of the in-medium NN
cross-sections imply an 1/F energy dependence of the density dependent term. This
shows that for high energy values the Pauli-blocking 1e the medium effect is lcss

important and the free and in-medivm NN cross-section becomes approximately equal.
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To conclude, we may say that this werk may be considered as a basis for studying the
nuclear shrucrure properties and for calculating the in-medium NN cross-sections in- two
alternative ways: One from the Dirac-Brueckner G-matdx directly which invelves the
different Bonn potentials for the NN interaction and the other from the free NN cross-
section including the Pauli blecking for the in-mecdium effect, where all the necessary

denvation and formulation have been done

So, in future, this work may be extended to a numerical work for computation and
comparison of the in-medium NN cross-seclions in two alternative ways. It may also be
extended for calculation of the single pamicle cnergy as a function of density in the

nuclear medivm and hence to study the saturation propenies of the nuclear matter,
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