### NUMERICAL STUDY OF THE EFFECTS OF RADIATION ON NATURAL CONVECTION FLOW FROM A POROUS VERTICAL PLATE IN PRESENCE OF HEAT GENERATION

Submitted by AMENA FERDOUSI Student No. 100509004P Session: October-2005



MASTER OF PHILOSOPHY IN MATHEMATICS



Department of Mathematics BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA-1000 April - 2009





The thesis entitled

#### NUMERICAL STUDY OF THE EFFECTS OF RADIATION ON NATURAL CONVECTION FLOW FROM A POROUS VERTICAL PLATE IN PRESENCE OF HEAT GENERATION

Submitted by AMENA FERDOUSI Student No. 100509004P, Session: October-2005, a part time student of M. Phil. (Mathematics) has been accepted as satisfactory in partial fulfillment for the degree of Master of Philosophy in Mathematics on April, 04 - 2009

#### BOARD OF EXAMINERS

A. Alim 04/04/09

1

2

3

Dr. Md. Abdul Alim Associate Professor Dept. of Mathematics, BUET, Dhaka-1000

Head Dept. of Mathematics BUET. Dhaka-1000

4.4.09 Dr. Md. Mustafa Kamal Chowdhury

Professor Dept. of Mathematics, BUET, Dhaka-1000

Selina Parvin 4.04.2009 4.

Dr. Selina Parvin Professor Dept. of Mathematics, Dhaka University, Dhaka-1000 Chairman (Supervisor)

Member (Ex-Officio)

Member

Member (External)

 $\langle X, Y \rangle$ 

## Abstract

In this thesis, the effects of radiation on magnetohydrodynamic(MHD) natural convection flow from a porous vertical plate in presence of heat generation has been scrutinized. A set of different governing equations along with the corresponding boundary conditions of the physical problems are represented mathematically. Finite-difference methods accompanied by the Keller box scheme are used for the numerical solution of the governing equations that contain the equations of continuity, momentum and energy equations are altered into a set of non-dimensional boundary layer equations in conjunction with the corresponding boundary conditions by using the appropriate transformation. All through the concentration is paid on the assessment of the surface shear stress in terms of local skin friction, rate of heat transfer in terms of local Nusselt number, velocity profiles in addition to temperature profiles. FORTRAN 90 is used to simulate the formulation of the job and to get the graphical output of the numerical values TECPLOT has been used. A collection of parameters set is also taking into account for computation consisting of heat generation parameter Q, radiation parameter  $R_{d_{r}}$  surface temperature parameter  $\theta_{w}$ , Prandtl number Pr and magnetic parameter M. The results in terms of local skin friction, local Nusselt number will be shown in tabular forms. Velocity profiles, temperature profiles, skin friction coefficient and rate of heat transfer have been exhibited graphically for various values of heat generation parameter, radiation parameter and surface temperature parameter separately and the Prandtl number as well.

## **Author's Declaration**

l am hereby declaring that the work in this dissertation entitled "NUMERICAL STUDY OF THE EFFECTS OF RADIATION ON NATURAL CONVECTION FLOW FROM A POROUS VERTICAL PLATE IN PRESENCE OF HEAT GENERATION" is being carried out in accordance with the regulations of Bangladesh University of Engineering and l'echnology (BUET), Dhaka, Bangladesh .The work is also original except where indicated by and attached with special reference in the context and no part of it has been submitted for any attempt to get other degrees or diplomas.

All views expressed in the dissertation are those of the author and in no way or by no means represent those of Bangladesh University of Engineering and Technology, Dhaka. This dissertation has not been submitted to any other University for examination either in home or abroad.

Amona Ferdousi

(Amena Ferdousi) Date: 4<sup>th</sup> April, 2009

### Acknowledgements

At the outset I am pronouncing my thankfulness to the almighty who give me the ability to carry out such a research work.

My gratitude will always be there to Dr. Md. Abdul Alim, Associate Professor, Department of Mathematics, BUET, my supervisor who continuously guided me from all the directions. It is my great gratification having the opportunity to work under supervision. I would like to have the opportunity to express my heart-rending admiration to my supervisor who has encouraged and rightly initiated me to step into the wide arena of mathematics and its application in the engineering fields.

I am not less grateful and thankful to the efforts, perseverance, sincerity, enormous will-force, elarity, accuracy, completeness, monumental patience, generous co-operation and fellow-teeling he made for me to venture this research and bring this painstaking task to a successful end.

I am as well intensely beholden to all my teachers of the Department of Mathematics, BUET for their intelligent and open-minded support in providing me all necessary help from the department during my course of M. Phil, degree They all have helped me immensely over the last school period either in the course or mentally with advices

I would like to utter here the name of my colleagues of Eastern University fort their cooperation.

I am really grateful to my husband for his burly bona fide aid.

I must acknowledge my debt to my parents for whom I have been able to see the beautiful sights and sounds of the world.



# Contents

| Abstract iii                                                                                                                   |   |
|--------------------------------------------------------------------------------------------------------------------------------|---|
| Author's Declaration iv                                                                                                        |   |
| Acknowledgements v                                                                                                             |   |
| Contents vi                                                                                                                    |   |
| Nomenclature                                                                                                                   |   |
| Greek symbols                                                                                                                  |   |
| List of Tablesix                                                                                                               |   |
| List of Figuresix                                                                                                              |   |
| Chapter 1 1                                                                                                                    |   |
| 1.1 Introduction                                                                                                               |   |
| Chapter 2 6                                                                                                                    |   |
| Effect of Radiation on Natural Convection Flow from a Porous Vertical Plate in Presence<br>of Heat Generation                  |   |
| 2.1 Introduction                                                                                                               | , |
| 2 2 Formulation of the problem                                                                                                 | 1 |
| 2.3 Results and discussion                                                                                                     | ) |
| 2 4 Conclusion 22                                                                                                              |   |
| Chapter 3 22                                                                                                                   | 3 |
| Effect of Radiation on Magnetohydrodynamic Natural Convection Flow from a porous vertical plate in Presence of Heat Generation | 5 |
| 3.1 Introduction                                                                                                               | 5 |
| 3.2 Formulation of the problem:                                                                                                | ŝ |
| - 3.3 Results and discussion                                                                                                   | 1 |
| 3.4 Conclusion                                                                                                                 | 2 |
| 3.5 Comparison of the results                                                                                                  | 2 |
| 3.6 Extension of this work                                                                                                     | Ś |
| References . 4                                                                                                                 | 9 |
| Appendix 5                                                                                                                     | 2 |
| Implicit Finite Difference Method                                                                                              | 2 |

# Nomenclature

- a<sub>c</sub> Rosseland mean absorption co-efficient
- C<sub>f</sub> Local skin friction coefficient
- $C_p$  Specific heat at constant pressure
- / Dimensionless stream function
- f' Derivative of f with respect to  $\eta$
- Gr Grashof number
- g Acceleration due to gravity
- k Thermal conductivity
- M Magnetic parameter
- Nu Local Nusselt number
- Pr Prandtl number
- Q Heat generation parameter
- $q_r$  Radiation heat flux
- $q_u$  Heat flux at the surface
- $q_i$  Conduction heat flux.
- R<sub>d</sub> Radiation parameter
- T Temperature of the fluid in the boundary layer
- $T_x$  Temperature of the ambient fluid
- $T_{\rm e}$  Temperature at the surface
- (u, v) Dimensionless velocity components along the (x, y) axes
- (x, y) Axis in the direction along and normal to the surface respectively

# **Greek symbols**

- $\beta$  Coefficient of thermal expansion
- $\beta_0$  Strength of magnetic field
- O Dimensionless temperature function
- $\theta_0$  Surface temperature parameter
- $\mu$  Viscosity of the fluid
- v Kinematic viscosity
- $\rho$  Density of the fluid
- $\sigma$  Stephman-Boltzman constant.
- $\sigma_{\rm s}$  Scattering co-efficient
- $\sigma_{\theta}$  Electrical conduction
- Twee Shearing stress
- W Non-dimensional stream function
- $(\xi, \eta)$  Dimensionless velocity components along the (x, y) axes

## List of Tables

- 2.1 Skin fraction coefficient and rate of heat transfer against x for different values of heat generation parameter Q with other controlling parameters 13  $Pr = 0.72, R_d = 1.0, \Theta_w = 1.1$
- 3.1 Skin friction coefficient and rate of heat transfer against x for different values of magnetic parameter M with other controlling parameters Pr 31 = 0.72,  $R_d = 1.0$ ,  $\theta_w = 1.1$  and Q = 0.2

# List of Figures

| 2.1 | Velocity profiles for different values of $Q$ in case of $Pr = 1.0$ , $R_d = 0.1$ and $\theta_w = 1.1$                        | 14 |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----|
| 2.2 | Temperature profiles for different values of $Q$ in case of $Pr = 1.0$ , $R_d = 0.1$ and $\theta_w = 1.1$                     | ]4 |
| 2.3 | Velocity profiles for different values of $Rd$ in case of $Pr = 1.0$ , $\theta w = 1.1$ and $Q=2.0$                           | ι5 |
| 2.4 | Femperature profiles for different values of $Rd$ in case of $Pr = 1.0$ , $\partial w = 1.1$ and $Q=2.0$                      | 15 |
| 2.5 | Velocity profiles for different values of $\theta_*$ in case of $\theta_W$ with $Pr = 1.0$ , $R_{\theta} = 0.1$ and $Q = 2.0$ | 16 |
| 26  | Temperature profiles for different values of $\theta_w$ in case of $\partial w$ with $Pr = 1.0$ , $R_d = 0.1$ and $Q = 2.0$   | 16 |
| 27  | Velocity profiles for different values of $Pr$ in case of $R_d$ =0.1, $\theta_{\alpha}$ =1.4 and $Q$ =2.0                     | 17 |
| 2.8 | Temperature profiles for different values of $Pr$ in case of $R_d$ =0.1, $\theta_w$ =1.1 and $Q$ =1.1                         | 17 |
| 2.9 | Skin-friction coefficient for different values of $Q$ in case of $Pr = 1.0$ , $R_d$                                           | 18 |

=0.1, and  $\theta_{\rm w}$  =1.1

-

-

2.10Rate of heat transfer for different values of 
$$Q$$
 in case of  $P_T = 1.0$ ,  $R_d$   
=0.1, and  $\theta_h = 1.1$ 182.11Skm-friction coefficient for different values of  $Rd$  in case of  $P_T = 1.0$ ,  $\theta_h$   
= 1.1 and  $Q=2.0$ 192.12Rate of heat transfer for different values of  $R_d$  in case of  $P_T = 1.0$ ,  $\theta_h$   
= 1.1 and  $Q=2.0$ 192.13Skin-friction coefficient for different values of  $\theta_h$  in case of  $P_T = 1.0$ ,  $R_d$   
= 0.1 and  $Q=2.0$ 202.14Rate of heat transfer for different values of  $\theta_h$  in case of  $P_T = 1.0$ ,  $R_d$   
= 0.1 and  $Q=2.0$ 202.15Skin-friction coefficient for different values of  $\theta_h$  in case of  $R_d = 0.1$ ,  $\theta_d$   
= 0.1 and  $Q=2.0$ 212.15Skin-friction coefficient for different values of  $P_T$  in case of  $R_d = 0.1$ ,  $\theta_n$   
= 1.1 and  $Q=2.0$ 212.16Rate of heat transfer for different values of  $P_T$  in case of  $R_d = 0.1$ ,  $\theta_n$   
= 1.1 and  $Q=2.0$ 212.16Rate of heat transfer for different values of  $P_T$  in case of  $P_T = 1.0$ ,  $R_d = 0.1$ ,  
 $\theta_n = 1.1$  and  $Q=2.0$ 213.1Velocity profiles for different values of  $Q$  in case of  $P_T = 1.0$ ,  $R_d = 0.1$ ,  
 $\theta_n = 1.1$  and  $M=0.1$ 323.2Temperature profiles for different values of  $Q$  in case of  $P_T = 1.0$ ,  $\theta_w = 1.1$ ,  
 $Q=2.0$  and  $M=0.1$ 333.4Temperature profiles for different values of  $R_d$  in case of  $P_T = 1.0$ ,  $\theta_w = 1.1$ ,  
 $Q=2.0$  and  $M=0.1$ 343.5Velocuty profiles for different values of  $\theta_w$  in case of  $P_T = 1.0$ ,  $R_d = 0.1$ ,  
 $Q_w = 1.1$ ,  $Q=2.0$  and  $M=0.1$ 34

3.6 Temperature profiles for different values of  $\theta_{w}$  in case of  $Pr = 1.0, R_d = -34$ 

.

۰.

=1.0 , Q=2.0 and M= 0.1

- 3.7 Velocity profiles for different values of Pr in case of  $R_d$  =0.1,  $\theta_w$  =1.1. Q=2.0 and M=0.135
- 3.8 Temperature profiles for different values of Pr in case of  $R_d$  =0.1,  $\theta_n$ =1.1, Q=2.0 and M= 0.1 35
- 3.9 Velocity profiles for different values of M in case of  $R_d$  =0.1,  $\theta_x$  =1.1. Q=0.2 and Pr=1.0.36
- 3 10 Temperature profiles for different values of M in case of  $R_d$  =0.1.  $\theta_w$ =1.1, Q=2.0 and Pr=1.0 36
- 3.11 Skin-friction coefficient for different values of Q in case of Pr = 1.0,  $R_d$ =0.1,  $\theta_w = 1.1$  and M = 0.1 37
- 3.12 Rate of heat transfer for different values of Q in case of Pr = 1.0,  $R_d = 0.1$ ,  $\theta_n = 1.1$  and M = 0.1
- 3.13 Skin-friction coefficient for different values of  $R_d$  in case of Pr = 1.0,  $\theta_w$ =1 1, Q=2.0 and M=0.1
- 3.14 Rate of heat transfer for different values of  $R_d$  in case of Pr = 1.0.  $\theta_{\alpha}$ =1 1. Q=2.0 and M=0.1 38
- 3.15 Skin-friction coefficient for different values of  $\theta_w$  in case of Pr = 1.0,  $R_d$ =0.1, Q=2.0 and M=0.1 39
- 3.16 Rate of heat transfer for different values of  $\theta_w$  in case of Pr = 1.0.  $R_d$ =0.1, Q=2.0 and M=0.1
- 3.17 Skin-friction coefficient for different values of Pr while  $R_d = 0.1$ ,  $\theta_* = 0.1$ , Q=2.0 and M=0.1
- 3.18 Rate of heat transfer for different values of Pr in case of  $R_{d}$  =0.1,  $\theta_{w}$ =1.1, Q=02 0 and M= 0.1
- 3.19 Skin-friction coefficient for different values of M in case of Pr = 1.0,  $R_d = -41$

=0.1,  $\theta_{\rm w}$  =1.1 and Q=2.0

- 3.20 Skin-friction coefficient for different values of M in case of  $P_T = 1.0$ ,  $R_d$ =0 1,  $\theta_w = 1.1$  and Q=2.0 41
- 3 21 Comparisons of the present numerical results of Nusselt number Nu for the Prandtl numbers  $Pr = 1., \theta_w = 1.1, 1.5$  and 2.5 with those obtained by 43 Hossain et al (1998).
- 3.22 Comparisons of the present numerical results of Skin friction coefficient  $C_{fv}$  for the heat generation parameter Q = .0,  $Pr = 1., \theta_w = 1.1, 1.5$  and 45 2.5 with those obtained by Hossain et al (1998).
- A1 Net rectangle for difference approximations for the Box scheme. 53



# Chapter 1

### 1.1 Introduction

The effect of radiation on free convection has been drawn forth not only for its fundamental aspects but also for its significance in the contexts of space technology and processes involving high temperature. Like conduction or convection thermal radiation is not an available heat transfer process. So information on thermal radiation like thermal radiation on free convection from a vertical porous plate with heat generation will signify significance.

As said by Maxwell's classical electromagnetic theory, radiant energy travels in the form of electromagnetic waves and according to Planck's it travels in the form of discrete photon. The implications of electromagnetic are of interest in engineering applications. Without interacting with a medium thermal radiation is transferred. Moving over a long distance makes it of great magnitude in vacuum and space application. Thermal radiation is important during atmospheric re entry of space vehicles, in combustion applications (fires, furnace, rocket nozzles, engines etc.), in nuclear reactions (such as in the sun, in a fusion reactor or in nuclear bombs). [30]

Generally, the density difference gives rise to buoyancy forces, which drive the flow. Buoyancy induced convective flow is of great importance in many heat removal processes in engineering technology and has attracted the attention of many researchers in the last few decades due to the fact that both science and technology are being interested in passive energy storage systems, such as the cooling of spent fuel rods in nuclear power applications and the design of solar collectors. In particular, it has been ascertained that free convection induced the thermal stress, which leads to critical structural damage in the piping systems of nuclear reactors. The buoyant flow arising from heat rejection to the atmosphere, heating of rooms, fires, and many other heat transfers processes, both natural and artificial, are other examples of natural convection flows.

Porous plates is termed by the plate possess with very fine holes distributed uniformly over the entire surface of the plate through which fluid can flow freely.

The plate from which the fluid enters into the flow region is known as plate with injection and the plate from which the fluid leaves from the flow region is known as plate with suction. Sometimes it is being necessary to controls the boundary layer flows by injecting or withdrawing a fluid through a heated boundary layer wall to enhance heating or cooling of the system. This technique is used in air craft wings. For the present problem we will consider the suction.

Magnetohydrodynamic (MHD) is the science, which deals with the motion of a highly conducting fluid in presence of a magnetic field Error! Reference source not found. The motion of the conducting fluid across the magnetic field generates electric currents which change the magnetic field and the action of the magnetic field on these currents give rise to mechanical forces, which modify the fluid. It is possible to attain equilibrium in a conducting fluid if the current is parallel to the magnetic field. For then, the magnetic forces vanish and the equilibrium of the gas is the same as in the absence of magnetic fields are considered force free. But most liquids and gases are poor conductors of electricity. In the case when the conductor is either a liquid or a gas, electromagnetic forces will be generated which may be of the same order of magnitude as the hydrodynamical and mertial forces. Thus the equations of motion as well as the other forces will have to take these electromagnetic forces into account. The MHD was originally applied to astrophysical and geophysical problems, where it is still very important but more recently to the problem of fusion power where the application is the creation and containment of hot plasmas by electromagnetic forces, since material walls would be destroyed. Astrophysical problems include solar structure, especially in the outer layers, the solar wind bathing the earth and other planets, and interstellar magnetic fields. The primary geophysical problem is planetary magnetism, produced by currents deep in the planet, a problem that has not been solved to any degree of satisfaction.

In the absence of work done, a change in internal energy per unit volume in the material, is proportional to the change in temperature which is known as heat generation [33] The study of heat generation in moving fluids is important in view of several physical problems such as those dealing with chemical reactions and those concerned with dissociating fluids. Possible heat generation effects may alter the temperature distribution and, therefore, the particle deposition rate. This may occur in such applications related to nuclear reactor cores, fire and combustion modeling, electronic chips and semiconductor wafers. In fact, the literature is replete with examples dealing with the heat transfer in laminar flow of viscous fluids. Vajravelu and Hadjinicolaou [31] studied the heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat

2

generation In this study, they considered that the volumetric rate of heat generation,  $q^{m}[W/m^{3}]$  should be

$$q^{(0)} = \begin{cases} Q_0(T - T_{\varphi}) & \text{for } T \ge T_{\varphi} \\ 0 & \text{for } T < T_{\varphi} \end{cases}$$

where  $Q_0$  is the heat generation constant.

The above relation explained is valid as an approximation of the state of some exothermic process and having  $T_{\infty}$  as the onset temperature. When the inlet temperature is not less than  $T_{\infty}$  they used  $Q_0(T-T_{\infty})$ . To our best knowledge, the heat generation effect on MHD free convection flow on a porous plate with constant heat flux has not been studied yet, and the present work demonstrates the issue

The cases of incompressible viscous fluid such as continuity equation, momentum equation and energy equation are deal with the governing partial differential equations and the radiation energy emitted by a body is transmitted in the space in the form of electromagnetic waves.

Merkin [5] studied free convection with blowing and suction. Lin and Yu [16] studied free convection on a horizontal plate with blowing and suction. Hossain, et al. [1] studied the effect of radiation on free convection flow from a porous vertical plate. Soundalgekar et al [2] studied the combined free and forced convection flow past a semi-infinite vertical plate with variable surface temperature. Hossain and Takhar [3] studied radiation effect on mixed convection along a vertical plate with uniform surface temperature. Sparrow and Cess [4] studied free convection with blowing or suction. Molla et al. [6] studied natural convection flow along a vertical wavy surface with uniform surface temperature in presence of heat generation/absorption. Ali [7] studied the effect of radiation on free convection flows on sphere with heat generation. Akhter [8] studied the effect of radiations on free convection flow on sphere with isothermal surface and uniform heat flux. None of the aforementioned studies, considered the heat generation effects on laminar boundary layer flow of the fluids along porous plate with radiation heat loss. Cogley et al.[9] studied differential approximation for radiative in a non-gray gas near equilibrium. Eichhorn [10] studied the effect of mass transfer on free convection. Clarke [11] studied Transpiration and natural convection on the vertical flat plate problem. . Merkin [12] studied the effects of blowing and suction on free convection boundary layers. Vedhanayagam et al. [13] a transformation of the boundary layer equations for free

#### Chapter 1: Introduction

convection past a vertical flat plate with arbitrary blowing and wall temperature variations Clarke and Riley [14] studied natural convection induced in a gas by the presence of a hot porous horizontal surface. Clarke and Riley [15] studied free convection and the burning of a horizontal fuel surface. Keller [17] applied numerical methods in boundary layer theory. All et al. [18] studied natural convection- radiation interaction in boundary layer flow over horizontal surfaces. Siegel and Howell [19] studied thermal Radiation Heat Transfer. Sparrow and Yu [20] studied local non similarity thermal boundary layer solutions. Chen [21] studied parabolic systems on local non-similarity method. Hossam et al. [22] studied non-darcy forced convection boundary layer flow over a wedge embedded in a saturated porous medium. Cebeci and Bradshaw [23] studied physical and computational aspects of convective heat transfer. Hossam [24] studied effect of transpiration on combined heat and mass transfer in mixed convection along a vertical plate. Butcher [25] studied implicit Runge-Kutta processes. Nachtsheim and Swigert [26] studied satisfaction of asymptotic boundary conditions in numerical solution of systems of non-linear equation of boundary layer type. Na [27] studied computational method in engineering boundary value problems. Ozisik [28] studied radiative transfer and convection. Molla et al. [29] studied conduction and interactions with Magnetohydrodynamic natural convection flow on a sphere with uniform heat flux in presence of heat generation.

Many researchers have studied the Problems of free convection boundary layer flow over or on a various types of shapes.

In the present work, the effects of radiation on free convection flow from a porous plate in presence of heat generation have been investigated. The results will be obtained for different values of relevant physical parameters. We have considered the natural convection boundary layer flow from a porous plate of an electrically conducting and steady viscous incompressible fluid in presence of strong magnetic field and heat generation with constant beat flux.

The governing partial differential equations are reduced to locally non-similar partial differential forms by adopting some appropriate transformations. The transformed boundary layer equations are solved numerically using implicit finite difference scheme with the Keller box technique [17]. The results in terms of local skin friction, local nusselt number will be shown in tabular forms. Surface shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number, velocity profiles as well as

4

temperature profiles have been displayed graphically for selected values of parameters consisting of heat generation parameter Q, the magnetic parameter M Prandtl number Pr and the radiation parameter  $R_d$ .

In chapter 2, we have investigated the effect of radiation on natural convection flow from a porous plate in presence of heat generation. The non-dimensional boundary layer equations are solved by using implicit finite difference methods [23]. The results in terms of local skin friction, local Nusselt number will be shown in tabular forms. Velocity profiles, temperature profiles, skin friction coefficient and heat transfer coefficient will be displayed graphically for the wide range of heat generation parameter, radiation parameter and surface temperature parameter separately while the Prandtl number is to be taken 0.8 to 1.15 hkely

In chapter-3, we have investigated the effect of radiation on magnetohydrodynamic natural convection flow from a porous plate in presence of heat generation. Numerical results have been shown in terms of local skin friction, the rate of heat transfer, velocity profiles as well as temperature profiles for a selection of relevant physical parameters set.

### Effect of Radiation on Natural Convection Flow from a Porous Vertical Plate in Presence of Heat Generation

#### 2.1 Introduction

The effect of radiation on natural convection flow from a porous vertical plate in presence of heat generation is portrayed in this chapter. In the presence of radiation, the effects of the natural convection laminar flow from a porous vertical plate immersed in a viscous incompressible optically thin fluid have been scrutinized. The governing boundary layer equations are first transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are then solved numerically using a very efficient finite-difference method known as the Keller-box scheme. Over the work the attention is confered on the evolution of the shear stress in terms of local skin friction and the rate of heat transfor in terms of local Nusselt number, velocity profiles as well as temperature profiles for some selected values of parameters set consisting of heat generation parameter  $Q_c$  radiation parameter  $R_d$ , surface temperature parameter  $\theta_w$  and the Prandlt number Pr.

#### 2.2 Formulation of the problem:

In the presence of heat generation, natural convection boundary layer flow from a porous vertical plate of a steady two dimensional viscous incompressible fluid and the radiated heat transfer has been investigated. Over the work it is assumed that the surface temperature of the porous vertical plate,  $T_w$ , is constant, where  $T_w > T_x$ . Here  $T_x$  is the ambient temperature of the fluid, T is the temperature of the fluid in the boundary layer. g is the acceleration due to gravity, the fluid is assumed to be a grey emitting and absorbing," but non scattering medium. In the present work following assumptions are made:

i) Variations in fluid properties are limited only to those density variations which affect the buoyancy terms

ii) Viscous dissipation effects are negligible and

iii) The radiative heat flux in the x-direction is considered negligible in comparison with that in the y direction, where the physical coordinates (u, v) are velocity components along the (x, y) axes. The physical configuration considered is as shown in Fig.2.1:

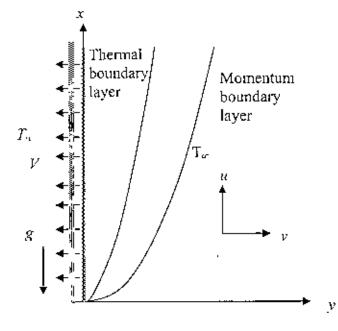


Figure: 2.1 The coordinate system and the physical model

The conservation equations for the flow characterized with steady, laminar and two dimensional boundary layer; under the usual Boussinesq approximation, the continuity, momentum and energy equation can be written as:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{2.1}$$

$$\rho(u\frac{\partial u}{\partial x} \div v\frac{\partial u}{\partial y}) = \mu \frac{\partial^2 u}{\partial x^2} + \rho g \beta (T - T_{\infty})$$
(2.2)

$$\rho c_{\rho} \left( u \frac{\partial T}{\partial y} + v \frac{\partial T}{\partial y} \right) = k \frac{\partial^2 T}{\partial y^2} - \frac{\partial q_{\rho}}{\partial y} + Q_0 \left( T - T_{\omega} \right)$$
(2.3)

With the boundary conditions

$$x = 0, y > 0, u = 0, T = T_{\infty},$$
  

$$y = 0, x > 0, u = 0, v = V, T = T_{w}$$
  

$$y \to \infty, x > 0, u = 0, T = T_{\infty}$$
(2.4)

where  $\rho$  is the density, k is the thermal conductivity, $\beta$  is the coefficient of thermal expansion, v is the reference kinematic viscosity v =  $\mu/\rho$ ,  $\mu$  is the viscosity of the fluid,

 $C_p$  is the specific heat due to constant pressure and  $q_r$  is the radiative heat flux in the y direction. In order to reduce the complexity of the problem and to provide a means of comparison with future studies that will employ a more detail representation for the radiative heat flux; we will consider the optically thick radiation limit. Thus radiation heat flux term is simplified by the Rosseland diffusion approximation [ $\ddot{O}zisik$  (1973)] and is given by

$$q_{\gamma} = -\frac{4\sigma}{3(a_{\gamma} + \sigma_{\gamma})} \frac{\partial T^{4}}{\partial y}$$
(2.5)

In Equation (2.5)  $a_i$  is the Rosseland mean absorption co-efficient,  $\sigma_s$  is the scattering coefficient and  $\sigma$  is the Stephan-Boltzman constant.

Now introduce the following non-dimensional variables:

$$\eta = \frac{v_k}{v\xi} \tag{2.6}$$

$$\xi = \nu \left\{ \frac{4x}{\nu^2 g \beta \Delta T} \right\}^{\frac{1}{4}}$$
(2.7)

$$\psi = v^{-3} v^2 g \beta \Delta T \xi^3 \left\{ f + \frac{\xi}{4} \right\}$$

$$\theta = \frac{T - T_{\omega}}{T_{\nu} - T_{\omega}}$$

$$\theta_{\nu} = \frac{T_{\nu}}{T_{\omega}}, \quad \Delta = \theta_{\nu} - 1 = \frac{T_{\nu} - T_{\omega}}{T_{\nu}}, \quad Rd = \frac{4\sigma T_{\omega}^3}{k(a + \sigma_{\nu})}$$
(2.8)

Where,  $\theta$  is the non-dimensional temperature function,  $\theta_w$  is the surface temperature parameter and  $R_d$  is the radiation parameter.

Substituting (2.8) into Equations (2.1), (2.2) and (2.3) leads to the following nondimensional equations

$$f''' + \partial - 2f'^{2} \div 3ff'' + \xi f'' = \xi \left( f' \frac{\partial f'}{\partial \xi} f'' \frac{\partial f'}{\partial \xi} \right)$$
(2.9)

$$\frac{1}{pr}\frac{\partial}{\partial\eta}\left[\left\{1+\frac{4}{3}Rd\left(1+\left(\theta_{\mu}-1\right)\theta\right)^{3}\right\}\frac{\partial\theta}{\partial\eta}\right]+Q\theta\xi^{2}+3f\theta'+\xi\theta'=\xi\left(f'\frac{\partial\theta}{\partial\xi}-\frac{\partial f}{\partial\xi}\theta'\right)\quad(2.10)$$

Where  $-Pr = {}_{1}C_{p}/k$  is the Prandtl number and  $Q = vQ_{0}\xi^{2}/v^{2}\rho C_{p}$  is the heat generation parameter.

The boundary conditions (2.4) become

$$f = 0, f' = 0, \ \theta = 1 \text{ at } \eta = 0$$

$$f' = 0, \ \theta = 0 \text{ as } \eta \to \infty$$
(2.11)

The solution of equations (2.7), (2.10) enable us to calculate the nondimensional velocity components  $\bar{u}$ ,  $\bar{v}$  from the following expressions

$$\frac{1}{n} = \frac{v^2}{Vg\beta(T_w - T_w)} u = \xi^2 f'(\xi, \eta)$$

$$\frac{1}{n} = \frac{v}{V} = \xi^{-1}(3f + \xi - \eta f' + \xi \frac{\partial f}{\partial \xi})$$
(2.12)

In practical applications, the physical quantities of principle interest are the shearing stress  $\tau_w$  and the rate of heat transfer in terms of the skin-friction coefficients  $C_{fx}$  and Nusselt number  $Nu_x$  respectively, which can be written as

$$Nu_{s} = \frac{V}{V\Delta T} (q_{e} \div q_{r})_{\eta=0} and C_{f_{h}} = \frac{V}{g\beta\Delta T} (\tau)_{\eta=0}$$
(2.13)

where  $\tau_{\mu} = \mu \left(\frac{\partial u}{\partial y}\right)_{\eta=0}$  and  $q_{\tau} = -k \left(\frac{\partial T}{\partial y}\right)_{\eta=0}$  (2.14)

 $q_c$  is the conduction heat flux.

Using the Equations (2.8) and the boundary condition (2.11) into (2.13) and (2.14), we get

$$C_{f'} = \xi f''(x,0)$$

$$Nu_x = -\xi^{-1} \left( 1 + \frac{4}{3} R d\theta_w^3 \right) \theta'(x,0)$$
(2.15)

The values of the velocity and temperature distribution are calculated respectively from the following relations:

$$\vec{u} = \xi^2 f'(\xi, \eta), \qquad \theta = \theta(x, y) \tag{2.16}$$

#### 2.3 Results and discussion

In this exertion the effect of radiation on natural convection flow on a porous vertical plate in presence of heat generation is investigated. Solutions are obtained for fluids having Prandtl number Pr = 1.0 and for some test values of Pr = 0.8, 0.9, 1.0, 1.1 and 1.15 against  $\eta$  for a wide range of values of radiation parameter  $R_d$ , surface temperature parameter  $\theta_w$ and heat generation parameter Q. We have considered the values of heat generation parameter Q = 00.0, 5.0, 10.0, 15.0 and 17.9 with radiation parameter  $R_d = 0.1$ , Prandtl number Pr = 1.0 and surface temperature parameter  $\theta_w = 1.1$ . The values of radiation parameter  $R_d = 0.00, 0.05, 0.1, 0.2$ , and 0.3 have been taken while Q = 2.0, Pr = 1.0 and  $\theta_w$ = 1.1. Different values of surface temperature parameter  $\theta_w = 0.0, 0.5, 1.5, 2.5, and 3.2$  are considered while Q = 2.0, Pr = 1.0 and  $R_d = 0.1$ . Numerical values of local rate of heat transfer are calculated in terms of Nusselt number Nu for the surface of the porous vertical plate from lower stagnation point to upper stagnation point. The effect for different values of heat generation parameter Q on local skin friction coefficient  $C_f$  and the local Nusselt number Nu, as well as velocity and temperature profiles with the Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$  and surface temperature parameter  $\theta_w = 1.1$ .

Figures 2.2-2.3 display results for the velocity and temperature profiles, for different values of heat generation parameter Q with Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$  and surface temperature parameter  $Q_n = 1.1$ . It has been seen from Figures 2.2 and 2.3 that as the heat generation parameter Q increases, the velocity and the temperature profiles increase. The changes of velocity profiles in the  $\eta$  direction reveals the typical velocity profile for natural convection boundary layer flow. i.e., the velocity is zero at the boundary wall then the velocity increases to the peak value as  $\eta$  increases and finally the velocity approaches to zero (the asymptotic value). The maximum values of velocity are recorded to be 0.22590, 0.28724, 0.36866 and 0.46717 for Q=00.0, 5.0, 10.0, 15.0 respectively which occur at the same point  $\eta=0.83530$  and for Q=17.9, the maximum values of velocity are recorded to be 0.53057. Here, it is observed that at  $\eta = 0.97931$ , the velocity increases by 106.8% as the heat generation parameter Q changes from 0.0 to 15.0. The changes of temperature profiles in the  $\eta$  direction also shows the typical temperature profile for natural convection boundary layer flow that is the value of temperature profile is 1.0 (onc) at the boundary wall then the temperature profile decreases gradually along  $\eta$ 

41

ł

direction for the value Q-less then 1.0 to the asymptotic value. But for  $Q \ge 1.0$  the temperature profile increases (at  $\eta = 0.68459$  temperature is 2.20416 for Q = 17.9) and again it decreases gradually along  $\eta$  direction to the asymptotic value

The effect for different values of radiation parameter  $R_d$  the velocity and temperature profiles in case of Prandtl number Pr = 1.0, heat generation parameter Q = 2.0 and surface temperature parameter  $\theta_{\star} = 1.1$  are shown in Figures 2.4 and 2.5. Here, as the radiation parameter Rd increases, the velocity profile increases and the temperature profile increases slightly such that there exists a local maximum of the velocity within the boundary layer, but velocity increases near the surface of the vertical porous plate and then temperature decreases and finally approaches to zero.

The effect of different values of surface temperature parameter  $\theta_{\rm s}$ , the velocity and temperature profiles while Prandtl number Pr = 1.0, heat generation parameter Q = 2.0and radiation parameter  $R_d = 0.1$  are shown in Figures 2.6 and 2.7. Here, as surface temperature parameter  $\theta_{\rm s}$  increases, the velocity profile increases and the temperature profile increases such that there exists a local maximum of the velocity within the boundary layer, but velocity increases near the surface of the vertical porous plate and then temperature decreases and finally approaches to zero. However, in Figures 2.8 and 2.9, it is shown that when the Prandtl number Pr increases with  $\theta_{\rm w} = 1.1$ ,  $R_d = 0.1$  and Q = 2.0. both the velocity and temperature profiles decrease.

Figures 2.10-2.11 show that skin friction coefficient  $C_f$  increases and heat transfer coefficient Nu decrease respectively for increasing values of heat generation parameter Q in case of Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$  and surface temperature parameter  $\theta_w = 1.1$ . The values of skin friction coefficient  $C_{fr}$  and Nusselt number Nu are recorded to be 0.18218, 0.17690, 0.16844, 0.16072, 0.15370 and 0.06579, 0.66612, 1.61572, 2.46974, 3.24161 for Q=17.9, 15.0, 10.0, 05.0 and 00.0 respectively which occur at the same point  $\xi = 0.23$ . Here, it is observed that at  $\xi = 0.23$  the skin friction increases by 18.52% and Nusselt number  $Nu_x$  decreases by 97.336% as the heat generation parameter Q changes from 17.9 to 00.0. It is observed from the figure 2.10 that the skin friction increases gradually from zero value at lower stagnation point along the  $\xi$  direction and from Figure 2.11; it reveals that the rate of heat transfer decreases along the  $\xi$  direction from lower stagnation point to the upstream.

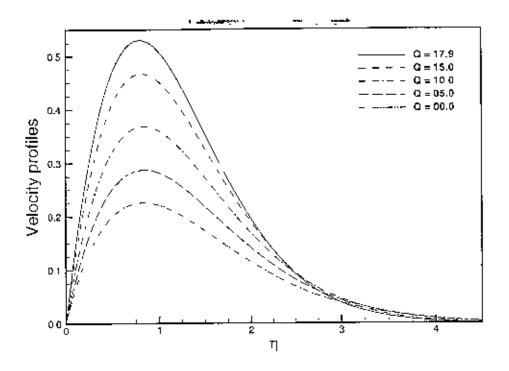
The effect of different values of radiation parameter  $R_d$  on the skin friction coefficient and the local rate of heat transfer while Prandtl number Pr = 1.0, heat generation parameter Q= 2.0 and surface temperature parameter  $\theta_w = 1.1$  are shown in the figures 2.12-2.13. Here, as the radiation parameter  $R_d$  increases, the skin friction coefficient and heat transfer coefficient increase. From Figures 2.14 - 2.15, it can also easily be seen that an increase in the surface temperature parameter  $\theta_w$  leads to increase in the local skin friction coefficient  $C_{fc}$  and the local rate of heat transfer  $Nu_x$  while Prandtl number Pr = 1.0, heat generation parameter Q = 2.0 and radiation parameter  $R_d = 0.1$ . It is also observed that at any position of  $\xi$ , the skin friction coefficient  $C_{fx}$  increases and the local Nusselt number  $Nu_x$  increase as  $\theta_w$  increases from 0.0 to 3.2. This phenomenon can easily be understood from the fact that when the surface temperature parameter  $\theta_w$  increases, the temperature of the fluid rises and the thickness of the velocity boundary layer grows, i.e., the thermal boundary layer become thinner than the velocity boundary layer.

The variation of the local skin friction coefficient  $C_{fk}$  and local rate of heat transfer  $Nu_s$  for different values of Prandtl number Pr for  $\theta_s = 1.1$ , Rd = 0.1 and Q = 2.0 are shown in Figures 2.16 and 2.17. We can observe from these figures that as the Prandtl number Pr increases, the skin friction coefficient decreases and rate of heat transfer increase.

Numerical values of skin friction coefficient  $C_f$  and rate of heat transfer Nu are calculated from equations (2.15) and (2.16) for the surface of the porous plate from lower stagnation point at  $\xi$ = 0.01 to  $\xi$ =0.23. Numerical values of  $C_{fx}$  and  $Nu_x$  are depicted in Table 2.1.

| Ļ.      | Q=00.00             |          | Q=05.00 |          | Q=15.00             |          | Q=17.90  |             |
|---------|---------------------|----------|---------|----------|---------------------|----------|----------|-------------|
|         | $\overline{C_{fx}}$ | Nux      | Cfr     | Nu       | $\overline{C}_{fx}$ | Nu       | $C_{ft}$ | $Nu_{\tau}$ |
| 0.01000 | 0.00658             | 63 48390 | 0.00659 | 63.41941 | 0.00659             | 63.29037 | 0.00659  | 63 25294    |
| 0.02000 | 0.01316             | 31 79806 | 0.01316 | 31.70462 | 0.01318             | 31.51749 | 0.01318  | 31.46315    |
| ).03000 | 0.01980             | 21.45338 | 0.01982 | 21,32936 | 0.01986             | 21.08118 | 0.01987  | 21.00816    |
| ).04000 | 0.02636             | 16.15827 | 0.02640 | 16.00381 | 0.02648             | 15.69322 | 0 02651  | 15.6029     |
| ).05000 | 0.03305             | 13.06291 | 0.03313 | 12.87776 | 0.03328             | 12 50441 | 0.03333  | 12 3956     |
| 06000   | 0.03960             | 10.94126 | 0.03973 | 10 72543 | 0.04000             | 10.28912 | 0.04008  | 10 1613     |
| 07000   | 0.04633             | 9,47057  | 0 04654 | 9 22375  | 0.04695             | 8.72285  | 0 04707  | 8 5757      |
| 08000   | 0.05289             | 8.33269  | 0.05319 | 8 05492  | 0.05381             | 7.48892  | 0 05399  | 7 3220      |
| 09000   | 0.05965             | 7.47655  | 0.06007 | 7 16749  | 0.06094             | 6.53465  | 0.06120  | 6.3473      |
| 0.10000 | 0.06622             | 6.76800  | 0.06679 | 6 42769  | 0.06798             | 5.72715  | 0.06834  | 5.5188      |
| .11000  | 0.07300             | 6.20876  | 0.07377 | 5.83677  | 0.07535             | 5.06650  | 0.07582  | 4,8362      |
| 12000   | 0.07958             | 5.72544  | 0.08056 | 5.32183  | 0.08262             | 4.48062  | 0.08324  | 4.2277      |
| ) 13000 | 0.08639             | 5.33190  | 0.08764 | 4.89618  | 0.09026             | 3 98158  | 0.09106  | 3.7048      |
| ) 14000 | 0.09297             | 4.98131  | 0.09453 | 4.51345  | 0.09783             | 3 52397  | 0.09883  | 3.2225      |
| ),15000 | 0.09980             | 4.68956  | 0,10172 | 4,18914  | 0.10580             | 3 12176  | 0.10705  | 2 7942      |
| 0.16000 | 0 10639             | 4,42372  | 0.10872 | 3.89075  | 0.11371             | 2.74352  | 0.11525  | 2.3886      |
| ).17000 | 011324              | 4,19896  | 0.11604 | 3.63276  | 0 12208             | 2.40231  | 0.12396  | 2.0184      |
| ).18000 | 011984              | 3.99051  | 0.12316 | 3 39110  | 0.13041             | 2.07501  | 0.13268  | 1.6606      |
| ),19000 | 0.12671             | 3,81216  | 0.13062 | 3 17888  | 0 13925             | 1.77308  | 0.14197  | 1.3260      |
| 20000   | 0.13331             | 3.64438  | 0.13788 | 2.97723  | 0   4807            | 1.47873  | 015131   | 0.9972      |
| ).21000 | 0.14020             | 3,49949  | 0.14550 | 2.79773  | 0.15746             | 1.20180  | 0 16129  | 0.6832      |
| 0.22000 | 0 14680             | 3,36159  | 0.15292 | 2.62517  | 0.16687             | 0.92816  | 0 17138  | 0.3702      |
| 0.23000 | 0 15370             | 3,24161  | 0.16072 | 2.46974  | 0.17690             | 0.66612  | 0.18218  | 0.0657      |

Here in the above table the values of skin friction coefficient  $C_{f_k}$  and Nusselt number  $Nu_k$ are recorded to be 0.18218, 0.17690, 0.16072, 0.15370 and 0.06579, 0.66612, 2.46974, 3.24161 for Q=17.9, 15.0, 10.0, 05.0 and 00.0 respectively which occur at the same point  $\xi = 0.23$ . Here, it is observed that at  $\xi = 0.23$ , the skin friction increases by 18.52% and Nusselt number  $Nu_x$  decreases by 97.336% as the heat generation parameter Q changes from 17.9 to 00.0.



**Figure 2.2:** Velocity profiles for different values of Q with Pr = 1.0,  $R_d = 0.1$  and  $Q_n = 1.1$ 

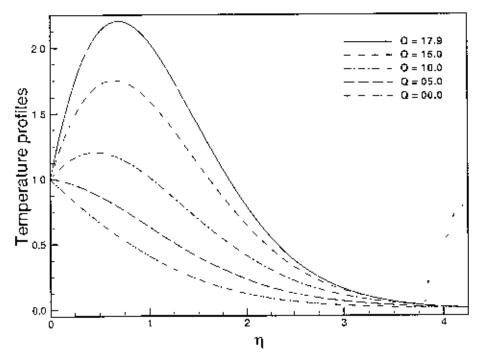
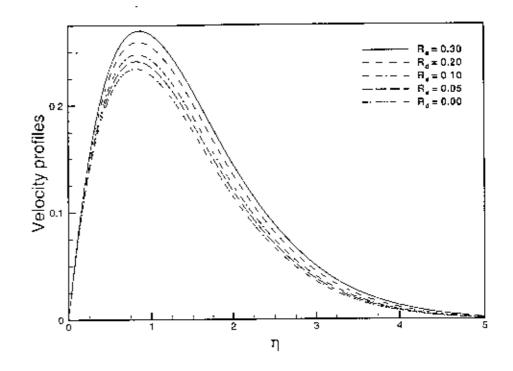


Figure 2.3: Temperature profiles for different values of Q with Pr = 1.0,  $R_d = 0.1$  and  $\theta_w = 1.1$ 





**Figure 2.4:** Velocity profiles for different values of  $R_d$  with Pr = 1.0,  $\partial w = 1.1$  and Q=2.0

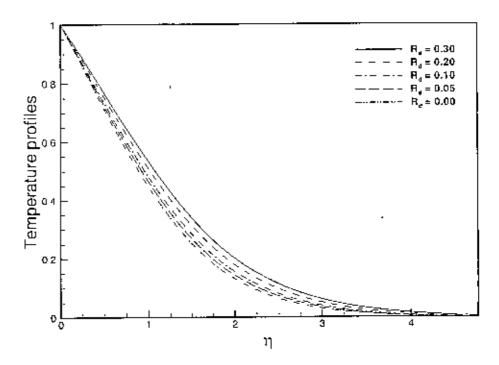


Figure 2.5: Temperature profiles for different values of  $R_d$  with Pr = 1.0,  $\theta_w = 1.1$  and Q = 2.0

۰¢

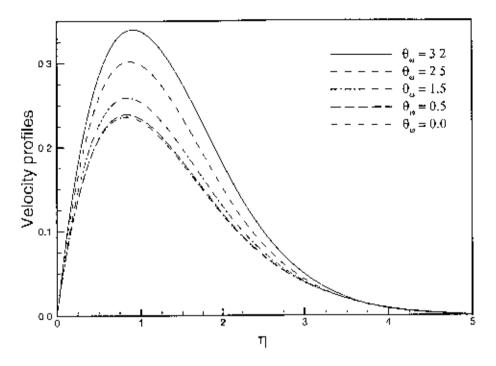


Figure 2.6: Velocity profiles for different values of  $\theta w$  with Pr = 1.0,  $R_d = 0.1$  and Q = 2.0

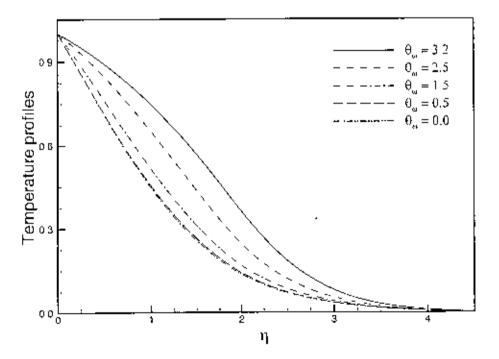
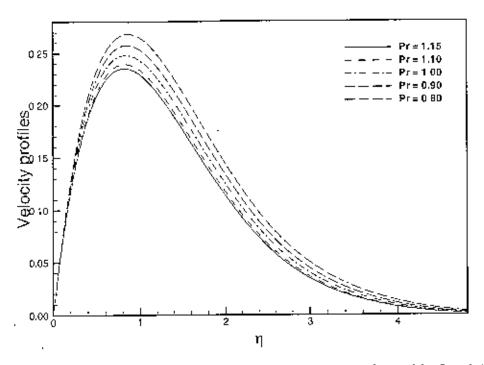


Figure 2.7: Temperature profiles for different values of  $\theta_w$  with Pr = 1.0,  $R_d = 0.1$  and Q = 2.0



**Figure 2.8:** Velocity profiles for different values of Pr with  $R_d = 0.1$ ,  $\theta_w = 1.1$  and Q = 2.0

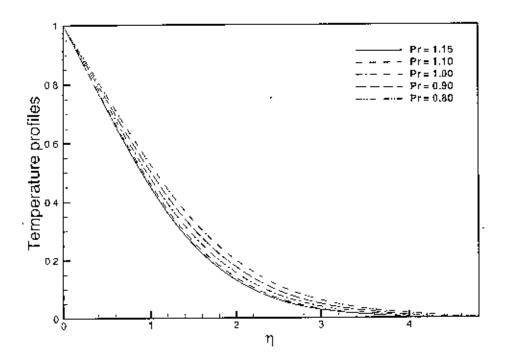


Figure 2.9: Temperature profiles for different values of Pr with  $R_d$  =0.1,  $\theta_w$  =1.1and Q=2.0

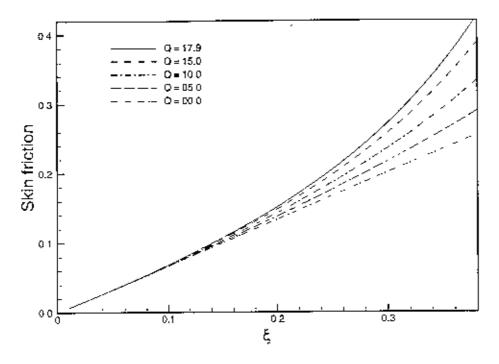


Figure 2.10: Skin-friction coefficient for different values of Q with Pr = 1.1,  $R_d = .1$  and  $\theta_w = 1.5$ 

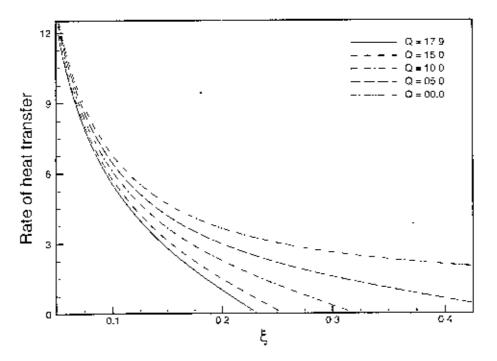
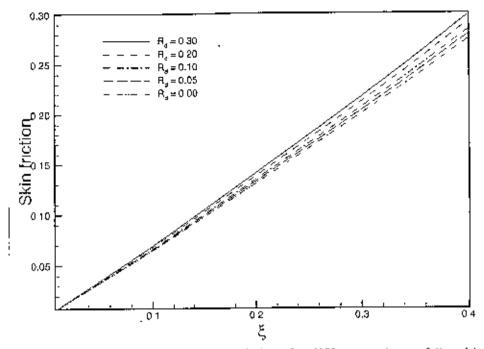


Figure 2.11: Rate of heat transfer for different values of Q with  $Pr = 1.0 R_d = 0.1$  and  $\theta_W = 1.1$ 



**Figure 2.12:** Skin-friction coefficient for different values of  $R_d$  with Pr = 1.1,  $\theta_w = 1.5$  and Q = 2.0

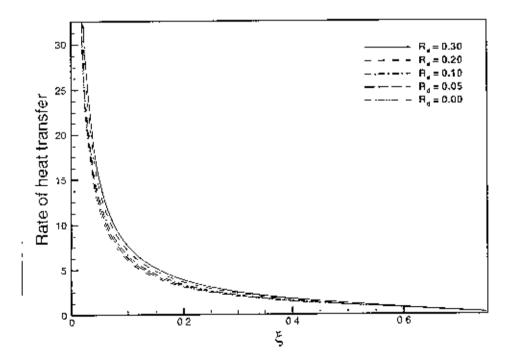
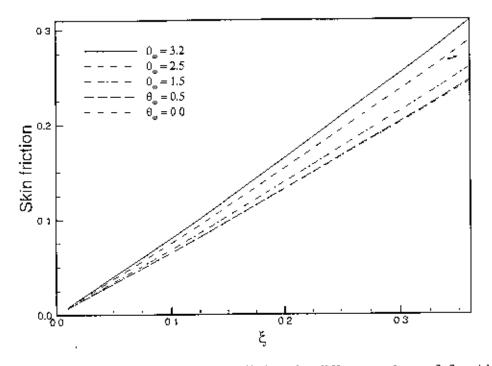


Figure 2.13: Rate of heat transfer for different values of  $R_d$  with  $Pr = 1.0 \ \theta w = 1.1 \text{ and } Q = 2.0$ 



**Figure 2.14:** Skin-friction coefficient for different values of  $\theta_w$  with  $P_F = 1.0 \ R_d = 0.1$  and  $Q = 2 \ \theta$ 

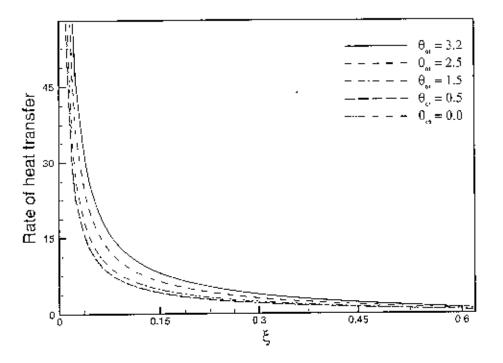


Figure 2.15: Rate of heat transfer for different values of  $\theta_u$  with Pr = 1.0,  $R_d = 0.1$  and Q = 2.0

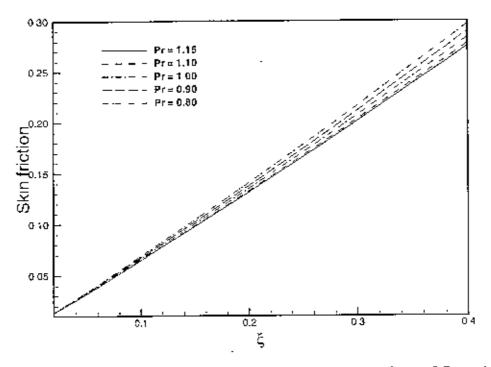


Figure 2.16: Skin-friction coefficient for different values of Pr with  $R_d = 0.1$ ,  $\theta_w = 1.1$  and Q = 2.0

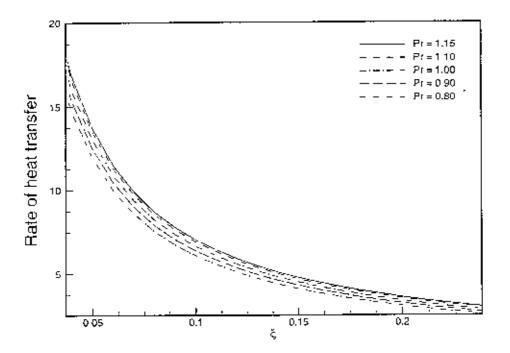


Figure 2.17: Rate of heat transfer for different values of Pr with  $R_d = 0.1$ ,  $\theta_w = 1.1$  and Q=2.0

### 2.4 Conclusion

The effect of radiation on natural convection flow on a porous vertical plate in presence of heat generation has been investigated for different values of relevant physical parameters including Prandtl number Pr, and surface temperature parameter  $\theta_w$ .

- Significant effects of heat generation parameter Q on velocity and temperature profiles as well as on skin friction and the rate of heat transfer have been found in this investigation but the effect of heat generation parameter Q on rate of heat transfer is more significant. An increase in the values of heat generation parameter Q leads to increase both the velocity and the temperature profiles, the local skin friction coefficient  $C_{fi}$  increases at different position of  $\eta$  and the local rate of heat transfer Nu, decreases at different position of  $\xi$  for  $\xi < 0.1$  and decrease asymptotically when Pr = 1.0.
- The increase in the values of radiation parameter  $R_d$  leads to increase in the velocity profile, the temperature profile, the local skin friction coefficient  $C_{fx}$  and the local rate of heat transfer  $Nu_x$ .
- All the velocity profile, temperature profile, the local skin friction coefficient  $C_{\beta}$  and the local rate of heat transfer  $Nu_x$  increases significantly when the values of surface temperature parameter  $\theta_x$  increase.
- The increase in Prandtl number Pr leads to decrease in all the velocity profile, the temperature profile, the local skin friction coefficient  $C_{fb}$  but the local rate of heat transfer  $Nu_x$  increase.

### Effect of Radiation on Magnetohydrodynamic Natural Convection Flow from a porous vertical plate in Presence of Heat Generation

### 3.1 Introduction

This chapter describes the effect of radiation on Magnetohydrodynamic (MHD) natural convection flow from a porous vertical plate in presence of heat generation. The governing boundary layer equations are first transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are then solved numerically using a very efficient finite-difference method known as the Keller-box scheme. Here the attention has given on the evolution of the surface shear stress in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number, velocity distribution as well as temperature distribution for a selection of parameters set consisting of heat generation parameter, magnetohydrodynamic (MHD) parameter and the Prandlt number.

### 3.2 Formulation of the problem:

Magnetohydrodynamic (MHD) natural convection boundary layer flow from a porous vertical plate of a steady two dimensional viscous incompressible fluid in presence of heat generation and radiation heat transfer has been investigated. It is assumed that the surface temperature of the porous vertical plate,  $T_{w}$ , is constant, where  $T_w > T_{\infty}$  Here  $T_{\infty}$  is the ambient temperature of the fluid, T is the temperature of the fluid in the boundary layer, gis the acceleration due to gravity, the fluid is assumed to be a grey emitting and absorbing, but non scattering medium. In the present work following assumptions are made:

i) Variations in fluid properties are limited only to those density variations which affect the buoyancy terms

ii) Viscous dissipation effects are negligible and

iii) The radiative heat flux in the x-direction is considered negligible in comparison with that in the y direction, where the physical coordinates (u, v) are velocity components along the (x, y)axes. The physical configuration considered is as shown in Fig.3.1:

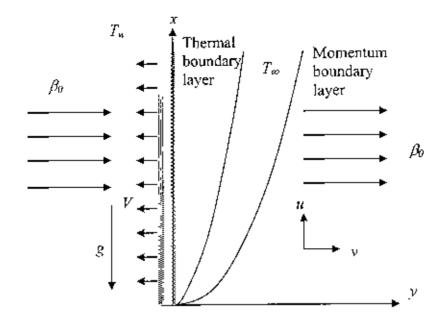


Figure: 3.1The coordinate system and the physical model

Under the usual Boussinesq approximation, the continuity, momentum and energy equations for two dimensional steady laminar boundary layer flow problem under consideration can be written:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3.1}$$

$$\rho(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}) = \mu \frac{\partial^2 u}{\partial x^2} + \rho g \beta (T - T_{\omega}) - \sigma_0 \beta_0^2 u$$
(3.2)

$$\rho c_{\mu} \left( u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k \frac{\partial^2 T}{\partial y^2} - \frac{\partial q_{\mu}}{\partial y} \div \mathcal{Q}_0 \left( T - T_{\infty} \right)$$
(3.3)

With the boundary conditions

$$x = 0, y > 0, u = 0, T = T_{x},$$
  

$$y = 0, x > 0, u = 0, v = V \ T = T_{w}$$
  

$$y \to \infty, x > 0, u = 0, T = T_{x}$$
  
(3.4)

where  $\rho$  is the density, k is the thermal conductivity,  $\beta$  is the coefficient of thermal expansion,  $\nu$  is the reference kinematic viscosity  $v=\mu/\rho$ ,  $\mu$  is the viscosity of the fluid,  $C_{\rho}$ is the specific heat due to constant pressure and  $q_r$  is the radiative heat flux in the  $\gamma$ direction,  $\beta_{\theta}$  is the strength of magnetic field,  $\sigma_{\theta}$  is the electrical conduction. In order to reduce the complexity of the problem and to provide a means of comparison with future studies that will employ a more detail representation for the radiative heat flux; we will consider the optically thick radiation limit. Thus radiation heat flux term is simplified by the Rosseland diffusion approximation [Özisik (1973)] and is given by

$$q_r = -\frac{4\sigma}{3(a_r + \sigma_r)} \frac{\partial T^4}{\partial y}$$
(3.5)

In Equation (3.5)  $a_r$  is the Rosseland mean absorption co-efficient,  $\sigma_s$  is the scattering coefficient and  $\sigma$  is the Stephan-Boltzman constant.

Now introduce the following non-dimensional variables:

$$\eta = \frac{v_{\rm F}}{v_{\rm F}^2} \tag{3.6}$$

$$\zeta = v \left\{ \frac{4x}{v^2 g \beta \Delta T} \right\}^{\frac{1}{4}}$$
(3.7)

$$\begin{split} \psi &= v^{-3} v^2 g \beta \Delta T \xi^3 \left\{ f + \frac{\xi}{4} \right\} \\ \theta &= \frac{T - T_\infty}{T_\omega - T_\infty}, \\ \theta_u &= \frac{T_u}{T_u}, \quad \Delta = \theta_u - 1 = \frac{T_u}{T_\pi} - 1 = \frac{T_w - T_\infty}{T_\infty}, \quad Rd = \frac{4\sigma T_\infty^3}{k(a + \sigma_s)} \end{split}$$
(3.8)

Where,  $\theta$  is the non-dimensional temperature function,  $\theta_{\mathbf{w}}$  is the surface temperature parameter and  $R_d$  is the radiation parameter.

Substituting (3.8) into Equations (3.1), (3.2) and (3.3) leads to the following nondimensional equations

$$f''' \div \theta - 2f'^2 + 3ff''' \div \xi f'' = \xi \left( f' \frac{\partial f'}{\partial \xi} f'' \frac{\partial f'}{\partial \xi} \right) - \frac{\sigma_0 \beta_0^2}{\rho} v^{-2} \xi^2 f'$$
(3.9)

$$\frac{1}{\rho r} \frac{\partial}{\partial \eta} \left[ \left\{ 1 + \frac{4}{3} Rd \left( 1 + \left( \theta_u - 1 \right) \theta \right)^3 \right\} \frac{\partial \theta}{\partial \eta} \right] + Q\theta + 3f\theta' + \xi\theta' = \xi \left( f' \frac{\partial \theta}{\partial \xi} - \frac{\partial f}{\partial \xi} \theta' \right)$$
(3.10)

where  $Pr = vC_{\rho'}k$  is the Prandtl number,  $Q = vQ_{\rho}\xi^2/v^2\rho C_{\rho}$  is the heat generation parameter and  $M = \beta_0^2 \sigma_0/v\rho$  is the magneto hydrodynamic parameter.

The boundary conditions (3.4) become

$$f = 0, f' = 0, \ \theta = 1 \text{ at } \eta = 0$$

$$f' = 0, \ \theta = 0 \text{ as } \eta \to \infty$$
(3.11)

The solutions of equations (3.9), (3.10) and (3.11) enable us to calculate the nondumensional velocity components  $\overline{u}, \overline{v}$  from the following expressions

$$\overline{u} = \frac{v^2}{Vg\beta(T_u - T_x)}u$$

$$= \xi^2 f'(\xi, \eta)$$

$$\overline{v} = \frac{v}{V}$$

$$= \xi^{-1}(3f \div \xi - \eta f' + \xi \frac{\delta f}{\delta \xi})$$
(3.12)

In practical applications, the physical quantities of principle interest are the shearing stress  $\tau_w$  and the rate of heat transfer in terms of the skin-friction coefficients  $C_{f_v}$  and Nusselt number  $Nu_v$  respectively, which can be written as

$$Nu_{\chi} = \frac{V}{V\Delta T} (q_{c} + q_{r})_{\eta=0} and C_{j\chi} = \frac{V}{g\beta\Delta T} (\tau)_{\eta=0}$$
(3.13)

where 
$$\tau_r = \mu \left(\frac{\partial \hat{u}}{\partial \hat{v}}\right)_{q=0}$$
 and  $q_r = -k \left(\frac{\partial T}{\partial \hat{y}}\right)_{q=0}$ , (3.14)

 $q_c$  is the conduction heat flux.

,

Using the Equations (3.8) and the boundary condition (3.11) into (3.13) and (3.14), we get

$$C_{f_{\gamma}} = \xi f''(x,0)$$

$$Nu_{\gamma} = \xi^{-1} \theta'(x,0)$$
(3.15)

The values of the velocity and temperature distribution are calculated respectively from the following relations:

$$\overline{u} = \xi^2 f'(\xi, \eta), \quad \theta = \theta(x, y)$$
(3.16)

We discuss velocity distribution as well as temperature profiles for a selection of parameter sets consisting of heat generation parameter. MHD parameter, and the Prandlt number at different position of  $\xi$ .

2

1

#### 3.3 Results and discussion

In this context we have investigated analytically the effect of radiation on magnetohydrodynamic natural convection flow on a porous vertical plate in presence of heat generation. Solutions are obtained for fluids having Prandtl number Pr = 1.0 and for some values of Pr = 0.8, 0.9, 1.0, 1.1 and 1.15 against  $\eta$  for a wide range of values of radiation parameter  $R_{d_i}$  surface temperature parameter  $\theta_{w_i}$  heat generation parameter Q and magnetic parameter M. We have considered the values of heat generation parameter Q =0.0, 5 0, 10.0, 15 0 and 17.9 with radiation parameter  $R_d=0.1$ , Prandtl number Pr=1.0 and surface temperature parameter  $\theta_w = 1.1$  and magnetic parameter M=2.0. The values of radiation parameter  $R_d$  =0.0, 0.05, 0.1, 0.2 and 0.3 have been taken in case of Q = 2.0, Pr = 1.0,  $\theta_{\rm w}$  = 1.1 and magnetic parameter M=2.0. The different values of surface temperature parameter  $\theta_w = 0.0, 0.5, 1.5, 2.5$  and 3.2 are considered with Q = 2.0, Pr = 1.0and  $R_d = 0.1$  and M=2.0. Different values of magnetic parameter M=0.0, 5.0, 10.0, 15.0and 25.0 have been taken in case of Q = 2.0,  $Pr \neq 1.0$ ,  $\theta_w = 1.1$  and  $R_d = 0.1$  Numerical values of local rate of heat transfer are calculated in terms of Nusselt number Nu for the surface of the porous plate from lower stagnation point to upper stagnation point. The effect for different values of heat generation parameter Q and magnetic parameter M on local skin friction coefficient  $C_{fx}$  and the local Nusselt number  $Nu_x$ , as well as velocity and temperature profiles with the Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$  and surface temperature parameter  $\theta_{s} = 1.1$ , are also observed.

Figures 3.2-3.3 display results for the velocity and temperature profiles, for different values of heat generation parameter Q while Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$  surface temperature parameter  $\theta_w = .1.1$  and magnetic parameter M=2.0. It has been seen from Figures 3.2 and 3.3 that as the heat generation parameter Q increases, the velocity profiles decreases and the temperature profiles increase. The changes of velocity profiles in the  $\eta$  direction reveals the typical velocity profile for natural convection boundary layer flow, i.e., the velocity is zero at the boundary wall then the velocity increases to the peak value as  $\eta$  increases and finally the velocity approaches to zero (the asymptotic value). The changes of temperature profiles in the  $\eta$  direction also shows the typical temperature profiles is 1.0 (one) at the boundary wall then the temperature profile increases for  $\eta < 1$  and decreases gradually along  $\eta \ge 1$  direction to the asymptotic value.

The variation of the velocity and temperature profiles for different values of radiation parameter  $R_d$  in case of surface temperature parameter  $\mathcal{O}_w = 1.1$ , Prandtl number Pr = 1.0, heat generation parameter Q = 2.0 and magnetic parameter M=2.0 are shown in Figures 3.4 and 3.5. Here, as the radiation parameter  $R_d$  increases, both the velocity and the temperature profiles increase slightly such that there exists a local maximum of the velocity within the boundary layer, but velocity increases near the surface of the vertical porous plate and then temperature decreases slowly and finally approaches to zero.

The effect for different values of surface temperature parameter  $\theta_0$ , the velocity and temperature profiles with Prandtl number Pr = 1.0, heat generation parameter Q = 2.0, radiation parameter  $R_d = 0.1$  and magnetic parameter M=2.0 are shown in Figures 3.6 and 3.7. Here, as the surface temperature parameter  $\theta_0$  increases, the velocity and the temperature profiles increase slightly such that there exists a local maximum of the velocity within the boundary layer, but velocity increases near the surface of the porous plate and then temperature decreases slowly and finally approaches to zero. However, in figures 3.8 and 3.9 it has been shown that when the Prandtl number Pr = 0.8, 0.9, 1.0, 1.1 and 1.15 increases with  $\theta_0 = 1.4$ ,  $R_d = 0.1$ , Q = 2.0 and M=2.0, both the velocity and temperature profiles decrease.

Figures 3.10 display results for the velocity profiles for different values of magnetic parameter M with Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$ , heat generation parameter Q = 2.0 and surface temperature parameter  $\theta_w = 1.1$ . It has been seen from figure 3 10 that as the magnetic parameter M increases, the velocity profiles increase up to the position of  $\eta$ =0.73363 after that position velocity profiles decrease with the increase of magnetic parameter. It is also observed from figure 3.10 that the changes of velocity profiles in the  $\eta$  direction reveals the typical velocity profile for natural convection boundary layer flow, i.e., the velocity is zero at the boundary wall then the velocity increases to the peak value as  $\eta$  increases and finally the velocity approaches to zero (the asymptotic value) but we see from this figure and its magnified portion for M=25.0 the velocity profiles having lower peak values for higher values of magnetic parameter tend to increase comparatively slower along  $\eta$  direction than velocity profiles with higher peak values for lower values of magnetic parameter. Figure 3.11 display results for the temperature profiles, for different values of magnetic parameter M while Prandtl number Pr = 1.0,  $\zeta$  radiation parameter  $R_d$  =0.1, heat generation parameter Q = 2.0 and surface temperature parameter  $\theta_w = 1.1$ . The maximum values of velocity are recorded to be 0.69695, 0.46467, 0.36407, 0.28047 and 0.21740 for M=.25.0, 20.0, 10.0, 5.0, and 0.0, at  $\eta$ =0.73363,  $\eta$ =0.83530 and  $\eta$ =0.99806. The velocity is 0.45019 at  $\eta$ =0.99806 for M =25.0. Here, it is observed that at  $\eta$ =0.99806, the velocity increases by 108.32% as the magnetic parameter M changes from 0 to 25.0.

From figure 3.11, as the magnetic parameter M increases, the imperature profiles increase, we observed that the temperature profile is 1.0 (one) at the boundary wall then the temperature profile decreases gradually along  $\eta$  direction to the asymptotic value. But for M=25.0 the temperature profile increases, at  $\eta$ =0.63635 it is 1.79070 then it decrease.

Figure 3.12 show that skin friction coefficient  $C_{fs}$  decreases for increasing values of-heat generation parameter Q with Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$ , surface temperature parameter  $\theta_w = 1.1$  and magnetic parameter M=2.0. It is observed from Figure 3.12 that the skin friction increases gradually from zero value at lower stagnation point along the  $\xi$  direction and from Figure 3.13; it reveals that the rate of heat transfer increases along the  $\xi$  direction. But for Q=0.0, 5.0 and 10.0  $Nu_x$  are along  $\xi$  axis.

The effect for different values of radiation parameter  $R_d$ , the skin friction coefficient and heat transfer coefficient while Prandtl number Pr = 1.0, heat generation parameter Q = 2.0, surface temperature parameter  $\theta_w = 1.1$  and magnetic parameter M=2.0 are shown in Figures 3.14-3.15. Here, as the radiation parameter Rd increases, both the skin friction coefficient and heat transfer coefficient increase.

From Figures 3.16 - 3.17, it can also easily be seen that an increase in the surface temperature parameter  $\theta_w$  leads to increase in the local skin friction coefficient  $C_f$  and heat transfer coefficient increase while Prandtl number Pr = 1.0, heat generation parameter Q = 2.0, radiation parameter  $R_d = 0.1$  and magnetic parameter M=2.0. This phenomenon can easily be understood from the fact that when the surface temperature parameter  $\theta_w$  decreases, the temperatures of the fluid decline and the thickness of the velocity boundary layer downhill, i.e., the thermal boundary layer becomes thicker than the velocity boundary layer. Therefore the skin friction coefficient  $C_{ft}$  and the local Nusselt number Nu, drops off.

The variation of the local skin friction coefficient  $C_f$  and local rate of heat transfer  $N\mu$  for different values of Prandtl number Pr while  $\theta_{\mu} = 1.1$ ,  $R_d = 0.1$ , Q = 2.0 and M=2.0 are shown in Figures 3.18 and 3.19. We can observe from these figures that as the Prandtl number Pr increases, the skin friction coefficient decreases and rate of heat transfer increases.

Figures 3.20-3.21 show that skin friction coefficient  $C_{fr}$  and heat transfer coefficient  $Nu_x$  decreases for increasing values of magnetic parameter M while heat generation parameter Q=2.0. Prandtl number Pr = 1.0, radiation parameter  $R_d = 0.1$  and surface temperature parameter  $\theta_w = 1.1$ . The values of skin friction coefficient  $C_{fx}$  and Nusselt number  $Nu_x$  are recorded to be 0.14845, 0.13862, 0.13416, 0.12997 and 0.12605 and 0.12212, 1.75442, 2.48459, 3.16466 and 3.79971 for M=25.0, 15.0.10.0, 5.0 and 0.0 respectively which occur at the same point  $\xi = 0.19$ . Here, it observed that at  $\xi = 0.19$ , the skin friction increases by 17.7% and Nusselt number  $Nu_x$  decreases by 96.17% as the magnetic parameter M changes from 0.0 to 25.0. It is observed from figure 3.20 that the skin friction increases gradually from zero value at lower stagnation point along the  $\xi$  direction.

Numerical values of rate of heat transfer  $Nu_x$  and skin friction coefficient  $C_f$  are calculated from Equations (3.15) and (3.16) from the surface of the vertical porous plate. Numerical values of  $C_D$  and  $Nu_x$  are shown in table 3.1.

Table 3.1: Skin friction coefficient and rate of heat transfer against x for different values

| 0.82.<br>25.0          | <sup>9</sup> .)<br>=W | <u>'nN</u><br>0'\$1: | √)<br>-W            | <sup>x</sup> n <sub>N</sub><br>0.50 | <sup>хг</sup> Э<br>=W | <sup>x</sup> n <sub>N</sub><br>0'00: | *' <u>)</u><br>=N   | ,fri           |  |
|------------------------|-----------------------|----------------------|---------------------|-------------------------------------|-----------------------|--------------------------------------|---------------------|----------------|--|
| 50091 59               | 6\$900'0              | 93 58614             | 65900'0             | 81817 59                            | 6\$900.0              | <u>97 </u> 48568                     | 8590010             | 000101         |  |
| 2582515                | 0201010               | 99515118             | 41510.0             | 1820216                             | 912100                | 12962 15                             | \$1210'0            | 00020          |  |
| 20/22/231              | 686100                | \$0860 JZ            | 58610.0             | 0697517                             | Z8610'0               | 51 42036                             | 08610'0             | 000£0.         |  |
| \$9821-21<br>797751-21 | 95920.0               | SZ889 S1             | 2000                | 62000 91                            | 65920.0               | 52551'91                             | 58920.0             | 00010          |  |
| 9917876<br>COSZI ZI    | 0.0402543<br>0.03343  | 10.28542             | 200200<br>LZEE0'0   | 20722-03<br>20728-71                | 11220-0               | 87650 81                             | 50550.0             | 00050          |  |
| 7706728<br>0014026     | 0.04734               | 61717.8<br>74285.01  | 8662010             | 21127.01                            | 12620.0               | 20226 01                             | 85650.0             | 00090          |  |
| Z1706'9                | 0.02436               | 655877               | 0'07329<br>0'079229 | 87812.9                             | 05940.0               | 125976                               | 67970'0             | 00040          |  |
| 1262819                | LL190'0               | 992ZS19              | 28090'0<br>200000   | 2719172<br>8704030                  | 0.05314               | 61228                                | 182200              | 00080          |  |
| 56046                  | 71690'0               | Z8612 S              | 68490'0             | 020279                              | 02990'0<br>00090'0    | 747074                               | 85650.0             | 00060          |  |
| 4 54626                | 88920'0               | 98450 S              | 77520'0             | 20678 5                             | t9£20'0               | 6510 <b>7</b> .9<br>27192.9          | Z19900              | 00001          |  |
| 80085 E                | 69463                 | 4,4137               | 0'085¢9             | 075155                              | 0708040               | \$7717.8                             | 1¢6200<br>287200    | 15000<br>11000 |  |
| 5,99239                | \$8260.0              | 0012618              | 50060-0             | 68739                               | 64780.0               | 235351                               | 21980 <sup>-0</sup> | 000001         |  |
| 29144167               | 111010                | 3,51256              | <i>LST</i> 00 0     | 87602.4                             | 0.00457               | 907261                               | 0/260'0             | 14000          |  |
| 200‡61                 | 26601.0               | 16801.5              | 82201.0             | 02871.4                             | 0710170               | 8962914                              | 87660'0             | 00051          |  |
| 8\$9\$#1               | Z\$8110               | 65674 Z              | 6.11333             | S1678 E                             | 66801.0               | 4,41,320                             | 0090110             | 00091          |  |
| 1100539                | \$£821.0              | 08986 2              | 0.12163             | 62029 E                             | 72211.0               | 08781.4                              | 44ZTT:0             | 00021          |  |
| 1772741                | <b>≑</b> 08£1.0       | \$1850'Z             | 28671.0             | 0844£°£                             | 0115561               | [7876.5                              | 8261110             | 18000          |  |
| 21221'0                | \$\$\$\$110           | 2442                 | 013862              | 3110400                             | 667110                | 12662 E                              | 0115002             | 00061          |  |

In the above table the values of skin triction coefficient  $C_{fe}$  and Nusselt number  $Nu_v$  are recorded to be 0.14845, 0.13862, 0.12997 and 0.12605 and 0.12212, 1.75442. 3.16466 and 3.79971 for M=25.0, 15.0.10.0, 5.0 and 0.0. respectively which occur at the same point  $\xi =$ 0.19. Here, it observed that at  $\xi = 0.19$ , the skin friction increases by 17.7% and Nusselt number  $Nu_v$  decreases by 96.17% as the magnetic parameter M changes from 0.0 to 25.0.

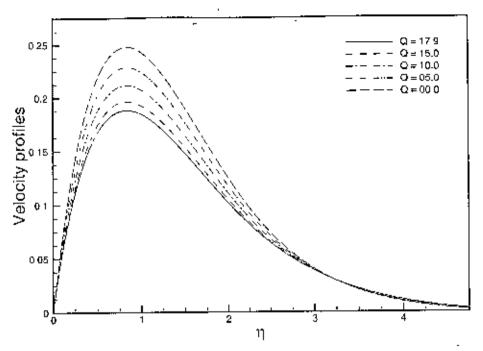


Figure 3.2: Velocity profiles for different values of Q in case of Pr = 1.0,  $R_d = 0.1$ ,  $\theta_s = 1.1$  and M = 2.0

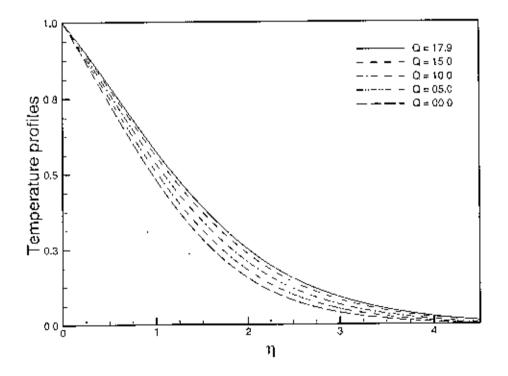
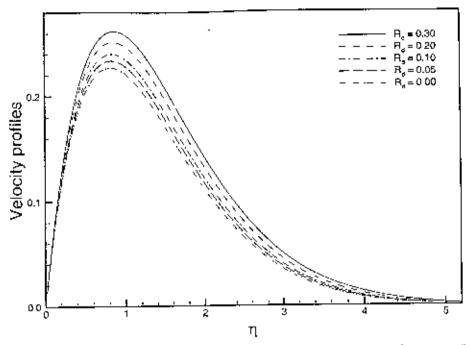


Figure 3.3: Temperature profiles for different values of Q in case of  $P_T = 1.0$ ,  $R_d = 0.1$ ,  $\theta_w = 1.1$  and M = 2.0



**Figure 3.4:** Velocity profiles for different values of  $R_d$  in case of Pr = 1.0, Q=2.0,  $\theta_{p} = 1.1$  and  $M_{e} = 2.0$ 

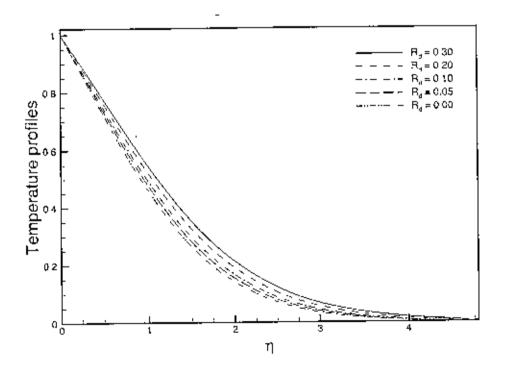
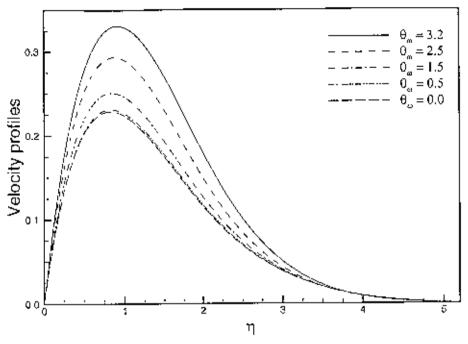


Figure 3.5: Temperature profiles for different values of Rd in case of Pr = 1.0, Q=2.0,  $\theta_w = 1.1$  and M.= 2.0

Ô



**Figure 3.6:** Velocity profiles for different values of  $\theta_w$  in case of  $P_F = 1.0, R_d = 0.1, Q = 2.0$  and M = 2.0

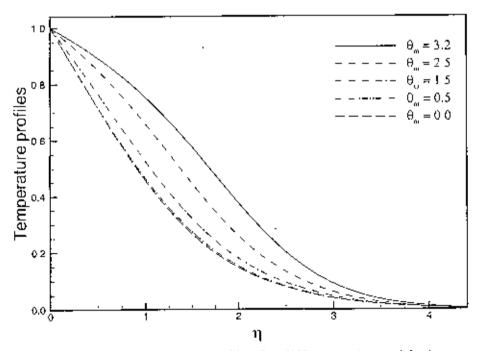


Figure 3.3: Temperature profiles for different values of  $\theta_w$  in case of Pr = 1.0,  $R_d = .1$ , Q = 2.0 and M= 2.0

34



Figure 3.8: Velocity profiles for different values of Pr in case of  $R_d$  =.1,  $\partial_1 v$  =1.1, Q=2.0 and M= 2.0

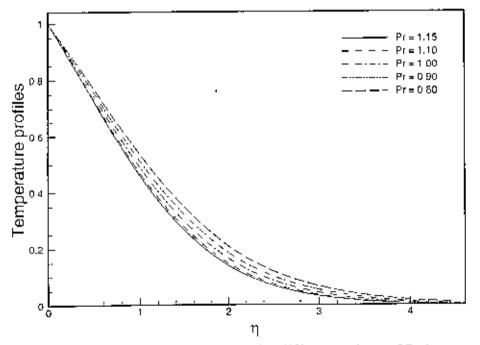


Figure 3.9: Temperature profiles for different values of Pr in case of  $R_d = 0.1$ ,  $\theta_W = 1.1$ , Q=2.0 and M=2.0.

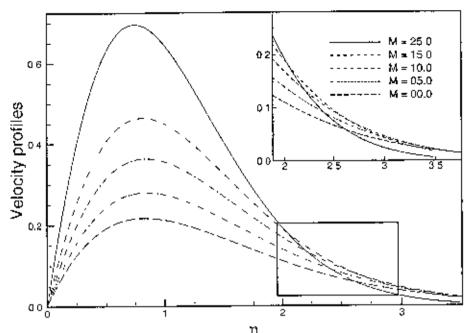


Figure 3.10: Velocity profiles for different values of M in case of  $R_d$ =0.1.  $\theta$ w =1.1, Q=2.0 and Pr=1.0

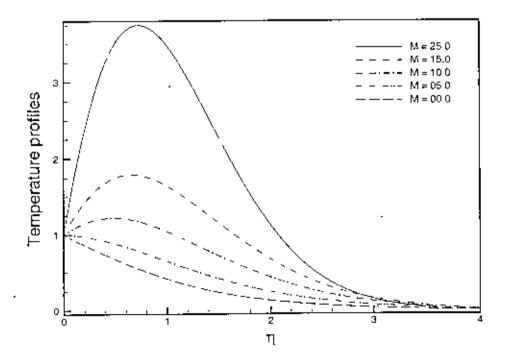
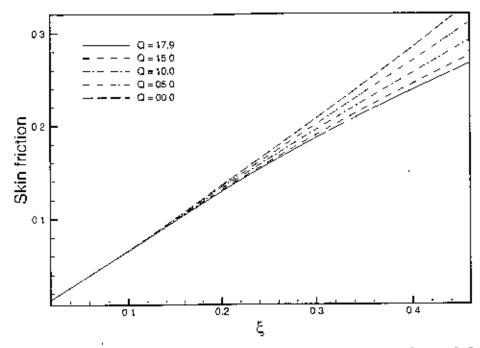
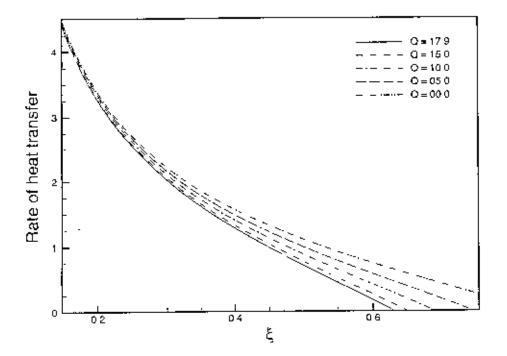


Figure 3.11: Temperature profiles for different values of M in case of  $R_d$  =0.1,  $\theta w$  =1.1, Q=2.0 and Pr=1.0



**Figure 3.12:** Skin-friction coefficient for different values of Q in case of Pr = 1.0,  $R_d = 0.1$ ,  $\theta w = 1.1$  and M = 2.0



**Figure 3.13:** Rate of heat transfer for different values of Q in case of Pr = 1.0,  $R_d = 0.1$ ,  $\theta_{NP} = 1.1$  and M.=2.0

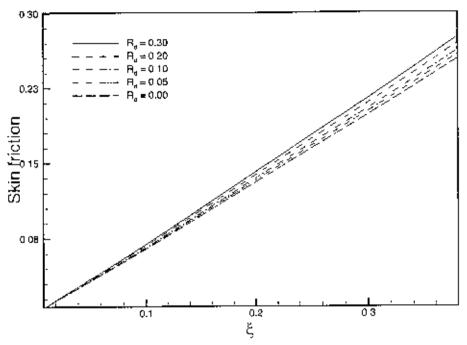


Figure 3.14: Skin-friction coefficient for different values of  $R_d$  in case of Pr = 1.0,  $\theta_W = 1.1$ , Q=2.0 and M=2.0

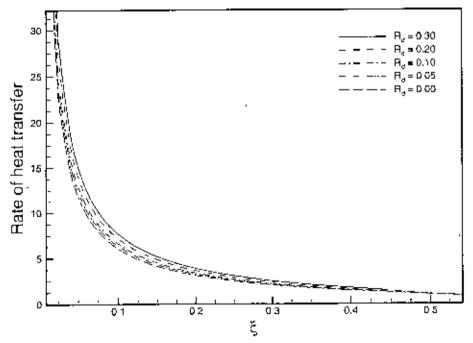


Figure 3.15: Rate of heat transfer for different values of  $R_d$  in case of Pr = 1.0,  $\theta w = 1.1$ , Q=2.0 and M= 2.0

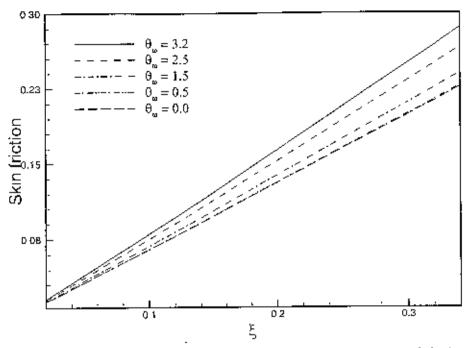


Figure 3.16: Skin-friction coefficient for different values of  $\partial w$  in case of Pr = 1.0,  $R_d$  =0.1, Q=2.0 and M= 2.0

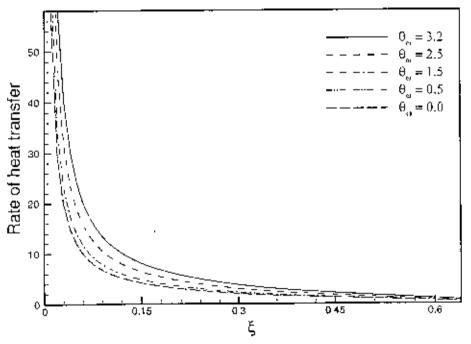
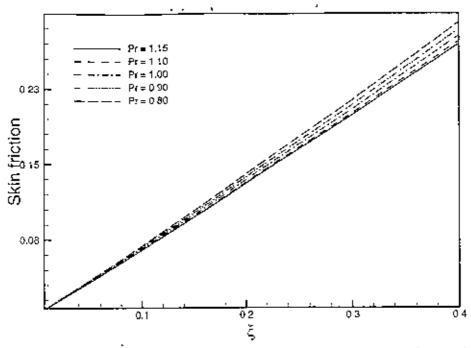


Figure 3.17: Rate of heat transfer for different values of  $\partial w$  in case of Pr = 1.0,  $R_d$  =0.1, Q=2.0 and M=2.0



**Figure 3.18:** Skin-friction coefficient for different values of *Pr* while  $R_d = 0.1$ ,  $\Theta v = 1.1$ , Q=2.0 and M=2.0

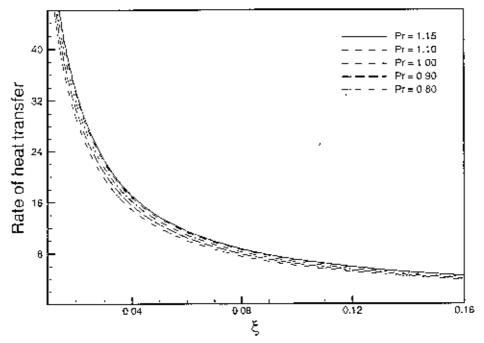
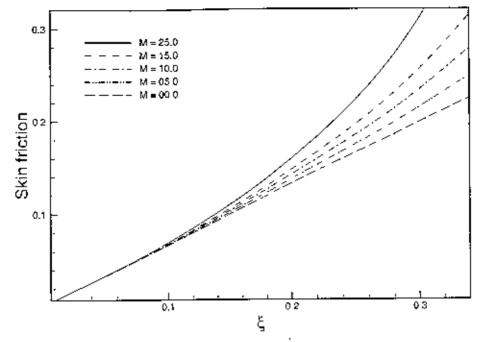


Figure 3.19: Rate of heat transfer for different values of Pr while  $R_d = 0.1$ ,  $\partial v = 1.1$ , Q=2.0 and M=2.0



**Figure 3.20:** Skin-friction coefficient for different values of M in case of Pr = 1.0,  $R_d = 0.1$ ,  $\theta_{A'} = 1.1$  and Q=2.0

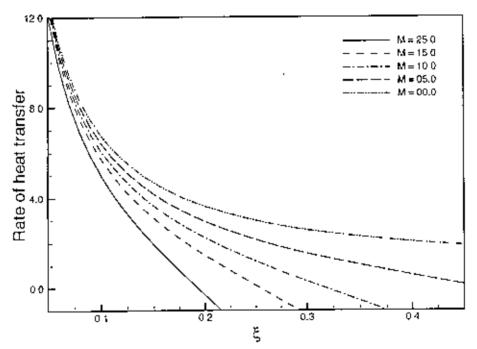


Figure 3.21: Rate of heat transfer for different values of M in case of Pr = 1.0,  $R_d = 0.1$ ,  $\theta_w = 1.1$  and Q=2.0



### 3.4 Conclusion

For different values of relevant physical parameters including the magnetic parameter  $M_i$  the effect of radiation on natural convection flow from a porous vertical plate in presence of heat generation has been investigated. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting non-linear systems of partial differential equations are reduced to local non-similarity boundary layer equations, which are solved numerically by using implicit finite difference method together with the Keller-box scheme. From the present investigation the following conclusions may be drawn:

- Significant effects of heat generation parameter Q and magnetic parameter M on velocity and temperature profiles as well as on skin friction coefficient  $C_{\beta}$  and the rate of heat transfer  $Nu_x$  have been found in this investigation but the effect of heat generation parameter Q and magnetic parameter M on rate of heat transfer is more significant. An increase in the values of heat generation parameter Q leads to the velocity decrease and the temperature profiles increase, the local skin friction coefficient  $C_{\beta x}$  and the local rate of heat transfer  $Nu_x$  decreases at different position of  $\xi$  for Pr = 1.0
- All the velocity profile, temperature profile and the local skin friction coefficient  $C_{fc}$ and the local rate of heat transfer  $Nu_{\tau}$  significantly increase when the values of radiation parameter  $R_d$  increase
- As surface temperature parameter  $\theta_w$  increases, both the velocity and the temperature profile increase and also the local rate of heat transfer  $Nu_x$  and the local skin friction coefficient  $C_{fx}$  significantly increases
- For increasing values of Prandtl number Pr leads to decrease the velocity profile, the temperature profile and the local skin friction coefficient  $C_{fx}$  but the local rate of heat transfer  $Nu_x$  increases.
- An increase in the values of M leads to increase the velocity profiles and the temperature profiles and also the local skin friction coefficient  $C_{fx}$  increase but and the local rate of heat transfer  $Nu_x$  decreases.

#### 3.5 Comparison of the results

Figure 3.22 depicts the comparisons of the present numerical results of the Nusselt number  $N_{H}$  with Hossain et al. (1998). Here, the radiation, heat generation and magnetic effects are ignored (i.e.,  $R_d$  =0.05, Q =0.0 and M =0.0) and Prandtl numbers Pr =1.0 and  $\theta_{\rm s}$  =1.1,  $\theta_{\rm c}$  =1.5,  $\theta_{\rm r}$  =2.5 are chosen. In this work the results helped me to take firm decision that the

s\*

present results agreed well with the solutions of Hossain et al. (1998) in the presence of suction.

.

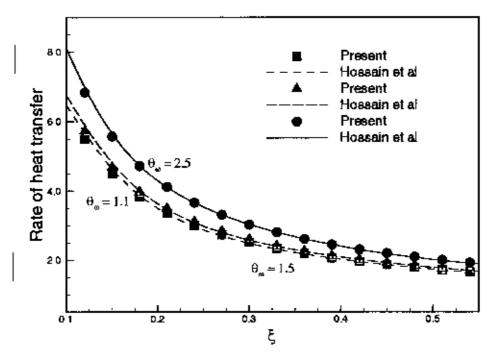


Figure 3.22: Comparisons of the present numerical results of Nusselt number Nu for the Prandtl numbers Pr = 1.0 with those obtained by Hossain et al (1998).

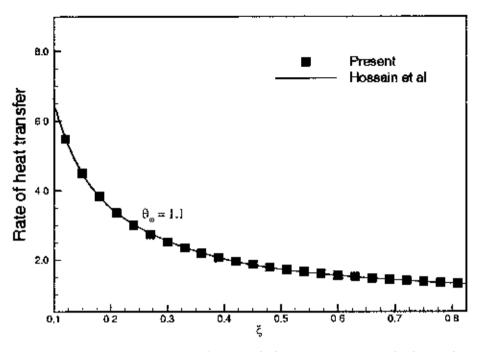


Figure 3.22(a): Comparisons of the present numerical results of Nusselt number Nu for the Prandtl numbers Pr = 1.0 and  $\theta_w = 1.1$  with those obtained by Hossain et al. (1998).

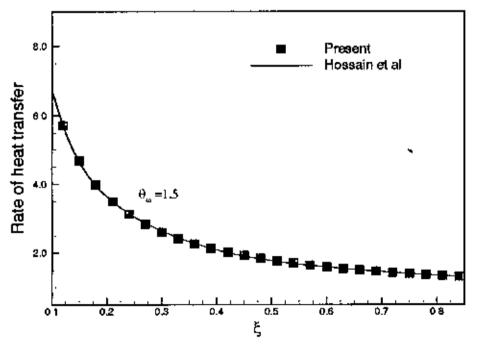


Figure 3.22(b): Comparisons of the present numerical results of Nusselt number Nu for the Prandtl numbers Pr = 1.0 and  $\theta_r = 1.5$  with those obtained by Hossain et al. (1998).

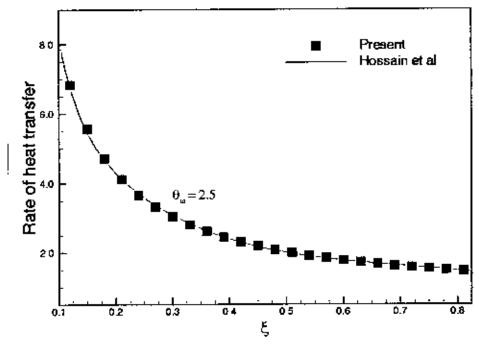


Figure 3.22(c): Comparisons of the present numerical results of Nusselt number Nu for the Prandtl numbers Pr = 1.0 and  $\theta_w = 2.5$  with those obtained by Hossain et al (1998).

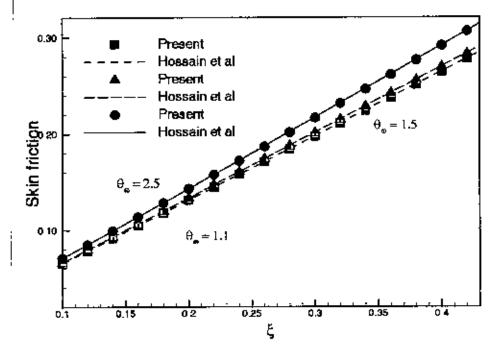


Figure 3.23: Comparisons of the present numerical results of Skin friction coefficient  $C_{fr}$  for the heat generation parameter  $\theta_w = 1.1, 1.5$  and 2.5 with those obtained by Hossain et al (1998).

Figure 3.23 shows the comparisons of the present numerical results of the skin friction coefficients  $C_{\beta}$  with Hossain et al (1998) for different values of surface temperature which are  $\theta = 1.1$ , 1.5 and 2.5. Here, the radiation and the magnetic effects are ignored (i.e.,  $R_d$ 

=0.0 and M =0.0) and Prandtl numbers Pr = 1.0 have been chosen. The comparison shows fairly good agreement between the present results and the results of Hossain et al (1998).

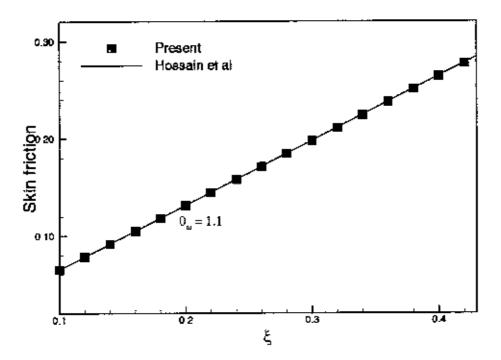


Figure 3.23(a): Comparisons of the present numerical results of Skin friction coefficient  $C_{fr}$  for the heat generation parameter  $\theta_{v} = 1.1$  with those obtained by Hossain et al (1998).

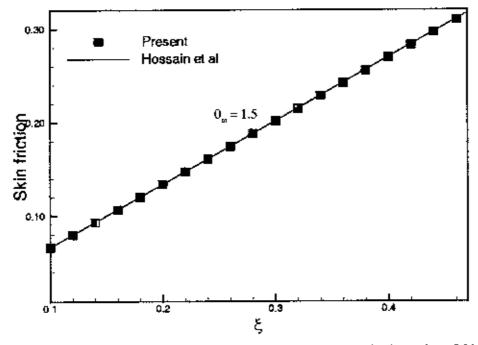


Figure 3.23(b): Comparisons of the present numerical results of Skin friction coefficient  $C_{fr}$  for the heat generation parameter  $\theta_* = 1.5$  with those obtained by Hossain et al (1998)

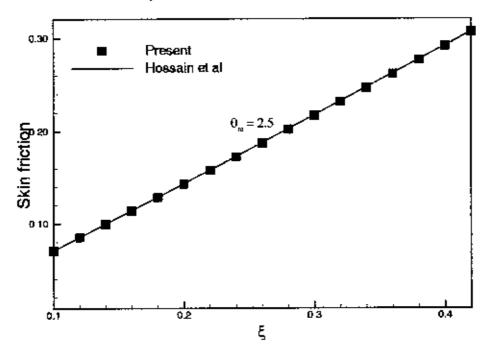


Figure 3.23(c): Comparisons of the present numerical results of Skin friction coefficient  $C_{\beta}$  for the heat generation parameter  $\theta_{w} = 2.5$  with those obtained by Hossain et al. (1998)

# 3.6 Extension of this work

In this work, we considered constant viscosity and thermal conductivity but they are functions of temperature.

- If we consider the viscosity and thermal conductivity as the function of temperature then we can extend our problem.
- Also taking the non-uniform surface temperature, the problem can be extended.

- M. A. Hossain, M. A. Alim, D. A. S. Rees, The effect of radiation on free convection flow from a porous vertical plate, International Journal of Heat and Mass Transfer, Vol. 42, pp. 81-91, (1999).
- [2] V. M. Soundalgekar, H.S. Takhar N.V. Vighnesam, The combined free and forced convection flow past a semi infinite vertical plate with variable surface temperature, Nuclear Engineering and Design, Vol. 110, pp. 95-98, (1960).
- [3] M. A. Hosain, H.S. Takhar, Radiation effect on mixed convection along a vertical plate with uniform surface, Temperature, Heat and Mass Transfer, Vol. 31, pp. 243-248, (1996).
- [4] E. M. Sparrow, R.D. Cess, Free convection with blowing or suction, Journal of heat transfer, Vol. 83, pp. 387-396, (1961).
- [5] J. H. Merkin, Free convection with blowing and suction, International journal of heat and mass transfer, Vol. 15, pp. 989-999, (1972).
- [6] M.M. Molla, M.A. Hossain, L.S. Yao, Natural convection flow along a vertical wavy surface with uniform surface temperature in presence of heat generation/absorption, International Journal of Thermal Science Vol 43, pp. 157– 163, (2004).
- [7] Md. Miraj Ali, "Numerical Study of Radiation on Natural Convection Flow on a Sphere with Heat Generation", M.Phil Thesis, Department of Mathematics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, (2007).
- [8] Tahmina Akhter, "Effect of Radiation on Natural Convection Flow on a Sphere with Isothermal surface and uniform Heat Flux", M.Phil Thesis, Department of Mathematics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, (2007).
- [9] A.C. Cogley, W.G. Vincenti, S.E. Giles, Differential approximation for radiative in a non-gray gas near equilibrium, AIAA Journal, Vol. 6.pp. 551-553(1968).
- [10] R. Eichhorn, The effect of mass transfer on free convection, Journal of Heat Transfer, Vol. 82, pp. 260-263, (1960).
- [11] J.F. Clarke, Transpiration and natural convection: the vertical flat plate problem, Journal of Fluid Mechanics, Vol. 57, pp. 45-61, (1973).

- [12] H.J. Merkin, The effects of blowing and suction on free convection boundary layers, International Journal of Heat and Mass Transfer. Vol. 18, pp. 237-244, (1975).
- [13] M. Vedhanayagam, R.A. Altenkirch, R. Eichhorn, A transformation of the boundary layer equations for free convection past a vertical flat plate with arbitrary blowing and wall temperature variations, International Journal of Heat and Mass Transfer, Vol. 23, pp. 1286-1288, (1980).
- [14] J.F. Clarke, N. Riley, Natural convection induced in a gas by the presence of a hot porous horizontal surface, Q.J. Mech. Appl. Math., Vol. 28, pp. 373-396. (1975).
- [15] J.F. Clarke, N. Riley, Free convection and the burning of a horizontal fuel surface, Journal of Fluid Mechanic, Vol. 74, pp. 415-431, (1976).
- [16] H T. Lin, W. S. Yu, Free convection on a horizontal plate with blowing and suction, Transactions of ASME Journal of Heat Transfer, Vol. 110, pp 793-796. (1988).
- [17] H.B. Keller, Numerical methods in boundary layer theory, Annual Review of Fluid Mechanics, Vol. 10, pp. 417-433, (1978).
- [18] M. M. Ali, T.S. Chen, B. F. Armaly, Natural convection- radiation interaction in boundary layer flow over horizontal surfaces, AIAA Journal, Vol. 22, pp. 1797-1803, (1984).
- [19] R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, McGraw Hill, New York, (1972).
- [20] E.M. Sparrow, H.S. Yu, Local non similarity thermal boundary layer solutions, Transactions of ASME Journal of Heat Transfer, Vol. 93, pp. 328-334, (1971).
- [21] T.S. Chen, Parabolic systems: local non-similarity method, in: W.J. Minkowycz,
   (Ed) Hand book of Numerical Heat Transfer, Wiley, New York, Chapter 5,
   (1988).
- [22] M.A. Hossain, N. Banu, A. Nakayama, Non-Darcy forced convection boundary layer flow over a wedge embedded in a saturated porous medium. Numerical Heat Transfer Part A, Vol. 26, pp. 399-414, (1994).
- [23] T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Springer, New York, (1984).
- [24] M.A. Hossain, Effect of transpiration on combined heat and mass transfer in mixed convection along a vertical plate, International Journal of Energy Research, Vol 17, pp. 761-769, (1992).



- [25] J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18(1964), 50-55.
- [26] P.R. Nachtsheim, P.Swigert, Satisfaction of asymptotic boundary conditions in numerical solution of systems of non-linear equation of boundary layer type, NASATND, 3004, (1965).
- [27] T.Y. Na, Computational Method in Engineering Boundary Value Problems, Academic Press, New York, (1979).
- [28] M.N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection, Wiley, New York, (1987).
- [29] Md. Mamun Molla, Md. Anwar Hossain, Md, Abu Taher, Magnetohydrodynamic namral convection flow on a spere with uniform heat flux in presence of heat generation. Acta Mechanica Vol. 186, pp. 75-86. (2006).
- [30] Radiative heat transfer, Michael E. Modest, McGraw-Hill, NewYork,
- [31] K. Vejravelu, A. Hadjinicolaou, Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation. Int. comm. Heat Transfer, Vol. 20, pp. 417-430, (1993).
- [32] Wikipedia online encyclopedia, http://en.wikipedia.org/Magnetohydrodynamic, (2009).
- [33] Wikipedia online encyclopedia, http://en.wikipedia.org/wiki/Heat\_equation, (2009).

,

## Implicit Finite Difference Method

Implicit finite difference method in conjunction with Keller- box elimination technique is engaged to dig up the solutions of the transformed governing equations with the corresponding boundary conditions. This practice is well documented and widely used by Keller and Cebeci (1971) and recently by Hossain et al. (1990, 1992, 1996, 1997, and 1998).

Accompanied by Keller -box elimination scheme, an epigrammatic discussion on the advancement of algorithm on implicit finite difference method is given below taking into account the following Equations (1-2).

$$f''' + 3ff'' - 2(f')^2 + \theta - \xi f'' - Mf'\xi^2 = \xi \left( f' \frac{\partial f'}{\partial \xi} - \frac{\partial f}{\partial \xi} f'' \right)$$
(1)

And

$$\frac{1}{\Pr}\frac{\partial}{\partial\eta}\left[\left\{1+\frac{4}{3}Rd(1+(\theta_{n}-1)\theta)^{3}\right\}\frac{\partial\theta}{\partial\eta}\right]+Q\theta+3f\theta'+\xi\theta'=\xi\left(f'\frac{\partial\theta}{\partial\xi}-\frac{\partial f}{\partial\xi}\theta'\right)$$
(2)

To apply the aforementioned method, we first convert Equations (1)-(2) into the following system of first order equations with dependent variables  $u(\xi,\eta), v(\xi,\eta), p(\xi,\eta)$  and  $g(\xi,\eta)$  as

$$f' = u, u' = v, \quad g = \theta, \text{ and } \theta' = p \tag{3}$$

$$v' + p_1 f v - p_2 u^2 + g - \xi v + p_5 u \xi^2 = \xi \left( u \frac{\partial u}{\partial \xi} - \frac{\partial f}{\partial \xi} v \right)$$
(4)

$$\Rightarrow \frac{1}{\Pr} \frac{\partial}{\partial \eta} \left[ \left\{ 1 + p_3 \left( 1 + \Delta g \right)^3 \right\} p \right] + p_4 g + \xi p + p_1 f p = \xi \left( u \frac{\partial g}{\partial \xi} - p \frac{\partial f}{\partial \xi} \right) \\ \Rightarrow \frac{1}{\Pr} \left[ p' + \left[ \left\{ p_3 p (1 + \Delta g) \right\}' \right]^3 \right] + p_4 g + \xi p + p_1 f p = \xi \left( u \frac{\partial g}{\partial \xi} - p \frac{\partial f}{\partial \xi} \right) \right]$$
(5)

where

۶

$$p_1 = 3, p_2 = 2, p_3 = \frac{4}{3}Rd$$
,  $p_4 = Q, p_5 = M$  (6)

The corresponding boundary conditions are

$$f(\xi,0) = 0, u(\xi,0) = 0 \text{ and } g(\xi,0) = 0$$
  

$$u(\xi,\infty) = 0, g(\xi,\infty) = 0$$
(7)

We now consider the net rectangle on the  $(\xi, \eta)$  plane and denote the net point by

$$\eta_0 = 0, \quad \eta_j = \eta_{j-1} + h_j, \quad j = 1, 2, \dots J$$
  
$$\xi^0 = 0, \quad \xi^n = \xi^{n-1} + k_n, \quad n = 1, 2, \dots N$$

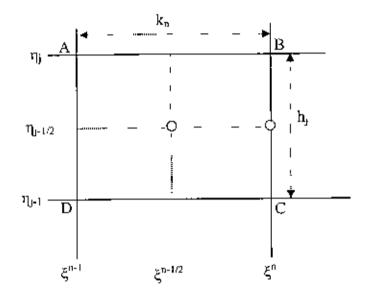


Figure A1: Net rectangle for difference approximations for the Box scheme

Here 'n' and 'j' are just sequence of numbers on the  $(\xi, \eta)$  plane,  $k_n$  and  $h_j$  are the variable mesh widths.

We approximate the quantities  $(f_i \ u_i \ v_i \ p)$  at the points  $(\xi^n, \eta_j)$  of the net by  $(f_j^n, u_j^n, v_j^n, p_j^n)$  which we call net function. We also employ the notation  $g_j^n$  for the quantities midway between net points shown in Figure (A1) and for any net function as

$$\xi^{n-1/2} = \frac{1}{2} \left( \xi^n + \xi^{n-1} \right)$$
(8)

$$\eta_{j-1/2} = \frac{1}{2}(\eta_j - \eta_{j-1})$$

$$g_j^{n-1/2} = \frac{1}{2}(g_j^n + g_j^{n-1})$$

$$g_{j-1/2}^n = \frac{1}{2}(g_j^n + g_{j-1}^n)$$

Now we write the difference equations that are to approximate Equations (3) - (5) by considering one mesh rectangle for the mid point  $(\xi^n, n_{j-V_2})$  to obtain

$$\frac{f_{j}^{n} - f_{j-1}^{n}}{h_{j}} = u_{j-1/2}^{n}$$
(9)

$$\frac{u_j^n - u_{j-1}^n}{h_j} = v_{j-1/2}^n \tag{10}$$

$$\frac{g_j^n - g_{j+1}^n}{h_j} = p_{j+1/2}^n \tag{11}$$

$$\begin{split} &\frac{1}{2}\left(\frac{v_{j}^{n}-v_{j-1}^{n}}{h_{j}}+\frac{v_{j}^{n-1}-v_{j-1}^{n-1}}{h_{j}}\right)+\left(p_{i}fv\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}-\left(p_{2}u^{2}\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}+\left(g\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}-\left(\xi v\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}-\left(p_{5}u\xi^{2}\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}\\ &=\left(\xi\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}\left(\left(u\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}\frac{u_{j}^{n}-u_{j-\frac{1}{2}}^{n}}{k_{a}}\pm\left(v\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}\frac{f_{j}^{n-1}-f_{j-1}^{n-1}}{k_{a}}\right)\\ &\frac{1}{\Pr}\left[\frac{h_{j}^{-1}}{2}\left[\left(p_{j}^{n}-p_{j-1}^{n}\right)+\left(p_{j}^{n-1}-p_{j-1}^{n-1}\right)\right]+\frac{h_{j}^{-1}}{2}\left[\left(\{p_{3}p(1+\Delta g)^{3}\}_{j}^{n}-\{p_{3}p(1+\Delta g)^{3}\}_{j-1}^{n}\right)+\left(p_{3}p(1+\Delta g)^{3}\}_{j-1}^{n-1}\right)\right]+\frac{h_{j}^{-1}}{2}\left[\left(\{p_{3}p(1+\Delta g)^{3}\}_{j}^{n}-\{p_{3}p(1+\Delta g)^{3}\}_{j-1}^{n}\right)+\left(p_{4}gv_{j}^{n-\frac{1}{2}}+\left(\xi p\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}\right)\right]\\ &+\left(p_{4}gv_{j-\frac{1}{2}}^{n-\frac{1}{2}}+\left(p_{1}fp\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}+\left(\xi p\right)_{j-\frac{1}{2}}^{n-\frac{1}{2}}\left(\frac{f_{j}^{n}-y_{j}^{n-\frac{1}{2}}-f_{j-\frac{1}{2}}^{n-\frac{1}{2}}}{k_{n}}\right)\right)\\ &=\xi_{j-\frac{1}{2}}^{n-\frac{1}{2}}\left\{u_{j-\frac{1}{2}}^{n-\frac{1}{2}}\left(\frac{g_{j}^{n}-y_{j}^{n}-g_{j-\frac{1}{2}}^{n-\frac{1}{2}}}{k_{n}}\right)+p_{j-\frac{1}{2}}^{n-\frac{1}{2}}\left(\frac{f_{j}^{n}-y_{j}^{n}-f_{j-\frac{1}{2}}}{k_{n}}\right)\right)\right\}$$

Similarly equations (4) – (5) are approximate by centering about the mid point  $(\xi^{n-\frac{1}{2}}, n_{1-\frac{1}{2}})$ . Centering the equations (8) about the point  $(\xi^{n-\frac{1}{2}}, n)$  without

٠

specifying  $\eta$  to obtain the algebraic equations. The difference approximation to Equations (4)-(5) become

$$h_{j}^{-1}(v_{j}^{n}-v_{j-1}^{n}) + \{(p_{i})_{j-\frac{1}{2}}^{n} \pm \alpha_{n}\}(fv)_{j-\frac{1}{2}}^{n} - \{(p_{2})_{j-\frac{1}{2}}^{n} \pm \alpha_{n}\}(u^{2})_{j-\frac{1}{2}}^{n} \pm g_{j-\frac{1}{2}}^{n} + g_{j-\frac{1}{2}}^{n} - (\xi v)_{j-\frac{1}{2}}^{n} + \alpha_{n}\{f_{j-\frac{1}{2}}^{n} v_{j-\frac{1}{2}}^{n-1} - v_{j-\frac{1}{2}}^{n} f_{j-\frac{1}{2}}^{n-1}\} - (p_{5})_{j-\frac{1}{2}}^{n} u_{j-\frac{1}{2}}^{n} (\xi^{2})_{j-\frac{1}{2}}^{n} = R_{j-\frac{1}{2}}^{n-1}$$

Where

.

$$L_{j-\frac{1}{2}}^{n-1} = (p_1)_{j-\frac{1}{2}}^{n-1} (fv)_{j-\frac{1}{2}}^{n-1} - (p_2)_{j-\frac{1}{2}}^{n-1} (u^2)_{j-\frac{1}{2}}^{n-1} + g_{j-\frac{1}{2}}^{n-1} - (\xi p)_{j-\frac{1}{2}}^{n-1} + h_j^{-1} (v_j^{n-1} - v_{j-1}^{n-1}) - (p_5)_{j-\frac{1}{2}}^{n-1} u_{j-\frac{1}{2}}^{n-1} (\xi^2)_{j-\frac{1}{2}}^{n-1}$$

and  $R_{j-\frac{1}{2}}^{n-1} = -L_{j-\frac{1}{2}}^{n-1} + \alpha_n \left\{ -(u^2)_{j-\frac{1}{2}}^{n-1} + (fv)_{j-\frac{1}{2}}^{n-1} \right\}$ 

.

$$\frac{1}{\Pr}[h_{j}^{-1}(p_{j}^{n}-p_{j-1}^{n})+h_{j}^{-1}\{\{p_{3}p(1+\Delta g)^{3}\}_{j}^{n}-\{p_{3}p(1+\Delta g)^{3}\}_{j-1}^{n}\}\}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}p_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{1}{2}}^{n}+\xi_{j-\frac{$$

$$\Rightarrow \frac{1}{\Pr} [h_{i}^{-1}(p_{j}^{n} - p_{j-1}^{n}) + h_{j}^{-1} \{ \{p_{2}p(1 + \Delta g)^{3}\}_{j}^{n} - \{p_{3}p(1 + \Delta g)^{3}\}_{j-1}^{n} \} ] + \xi_{j-\frac{1}{2}}^{n} p_{j-\frac{1}{2}}^{n} + (p_{4})_{j-\frac{1}{2}}^{n} g_{j-\frac{1}{2}}^{n} + \{(p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n}\} (f p)_{j-\frac{1}{2}}^{n} \\ -\alpha_{u} [\{(ug)_{j-\frac{1}{2}}^{n} - (ug)_{j-\frac{1}{2}}^{n-1} - u_{j+\frac{1}{2}}^{n} g_{j-\frac{1}{2}}^{n-1} + u_{j-\frac{1}{2}}^{n-1} g_{j-\frac{1}{2}}^{n} \} + p_{j-\frac{1}{2}}^{n} f_{j-\frac{1}{2}}^{n-1} - p_{j-\frac{1}{2}}^{n-1} f_{j-\frac{1}{2}}^{n} \} ] \\ = T_{j-\frac{1}{2}}^{n-1}$$

where

-

$$\begin{split} M_{j-\frac{1}{2}}^{n-1} &= \frac{1}{\Pr} [h_j^{-1} (p_j^{n-1} - p_{j-1}^{n-1}) + h_j^{-1} \{ \{ p_3 p (1 + \Delta g)^3 \}_j^{n-1} - \{ p_3 p (1 + \Delta g)^3 \}_j^{n-1} \} ] - \\ & \left[ \xi_{j-\frac{1}{2}}^{n-1} p_{j-\frac{1}{2}}^{n-1} + (p_4)_{j-\frac{1}{2}}^{n-1} g_{j-\frac{1}{2}}^{n-1} + (p_1)_{j-\frac{1}{2}}^{n-1} (f p)_{j-\frac{1}{2}}^{n-1} \right] \\ & T_{j-\frac{1}{2}}^{n-1} = -M_{j-\frac{1}{2}}^{n-1} + \alpha n \left[ (f p)_{j-\frac{1}{2}}^{n-1} - (u g)_{j-\frac{1}{2}}^{n-1} \right] \end{split}$$

The corresponding boundary conditions (7) become

2

$$f_0^n = 0, \quad u_0^n = 0, \quad g_0^n = 1$$
$$u_j^n = 0, \quad g_j^n = 0$$

If we assume  $(f_j^{n-1}, u_j^{n-1}, v_j^{n-1}, g_j^{n-1}, p_j^{n-1})$ ,  $i = 0, 1, 2, 3, \dots$ , IMAX with initial values equal to those at the proviso x stations. For higher iterates we get

$$f_{j}^{(i+1)} = f_{j}^{(i)} + \delta f_{j}^{(i)}$$

$$u_{j}^{(i+1)} = u_{j}^{(i)} + \delta u_{j}^{(i)}$$

$$v_{j}^{(i+1)} = v_{j}^{(i)} + \delta v_{j}^{(i)}$$

$$g_{j}^{(i+1)} = g_{j}^{(i)} + \delta g_{j}^{(i)}$$

$$p_{j}^{(i+1)} = p_{j}^{(i)} + \delta p_{j}^{(i)}$$
(12)

We then usert the right side of the expression (12) in place of  $f_j^n$ ,  $u_j^n$ ,  $v_j^n$  and  $g_j^n$  in Equations (13)-(15) dropping the terms that are quadratic in  $\delta f_j^i$ ,  $\delta u_j^i$ ,  $\delta v_j^i$  and  $\delta p_j^i$ . This procedure yields the following linear system of algebraic equations:

$$\begin{split} f_{j}^{(i)} + \delta f_{j}^{(i)} + f_{j-1}^{(i)} - \delta f_{j-1}^{(i)} &= \frac{h_{j}}{2} \Big\{ u_{j}^{(i)} + \delta u_{j}^{(i)} + u_{j-1}^{(i)} + \delta u_{j-1}^{(i)} \Big\} \\ \delta f_{j}^{(i)} - \delta f_{j-1}^{(i)} - \frac{h_{j}}{2} (\delta u_{j}^{(i)} + \delta u_{j-1}^{(i)}) &= (r_{1})_{j} \\ \delta u_{j}^{(i)} - \delta u_{j-1}^{(i)} - \frac{h_{j}}{2} (\delta v_{j}^{(i)} + \delta v_{j-1}^{(i)}) &= (r_{4})_{j} \\ \delta g_{j}^{(i)} - \delta g_{j+1}^{(i)} - \frac{h_{j}}{2} (\delta g_{j}^{(i)} + \delta g_{j-1}^{(i)}) &= (r_{5})_{j} \end{split}$$

Momentum equation becomes:

$$\begin{split} & h_{j}^{-1} (v_{j}' \div \delta v_{j}' - v_{j-1}' - \delta v_{j-1}') + \{(p_{1})_{j-\frac{y_{2}}{2}}^{n} \div \alpha_{n}\} \{(f v)_{j-\frac{y_{2}}{2}}^{i} + \delta (f v)_{j-\frac{y_{2}}{2}}^{i}\} \\ & - \{(p_{2})_{j-\frac{y_{2}}{2}}^{n} + \alpha_{n}\} \{(u^{2})_{j-\frac{y_{2}}{2}}^{i} \div \delta (u^{2})_{j-\frac{y_{2}}{2}}^{i}\} + \{g_{j-\frac{y_{2}}{2}}^{i} + \delta g_{j-\frac{y_{2}}{2}}^{i}\} \\ & - \{\xi_{j}^{n} - \frac{y_{2}}{2} \{u_{j-\frac{y_{2}}{2}}^{i} + \delta u_{j-\frac{y_{2}}{2}}^{i}\} + \alpha_{n}[\{f_{j-\frac{y_{2}}{2}}^{i} + \delta f_{j-\frac{y_{2}}{2}}^{i}\} v_{j-\frac{y_{2}}{2}}^{n-1} - \{v_{j-\frac{y_{2}}{2}}^{i} + \delta v_{j-\frac{y_{2}}{2}}^{i}\}]f_{j-\frac{y_{2}}{2}}^{n-1} \\ & - \left\{(p_{5}\xi^{2})_{j-\frac{y_{2}}{2}}^{n} \pm \left(\frac{\delta u_{j}^{i} + \delta u_{j-1}^{i}}{2}\right)\right\} = R_{j-\frac{y_{2}}{2}}^{n-1} \end{split}$$

$$(s_1)_j \delta v'_j + (s_2)_j \delta v'_{j-1} + (s_3)_j \delta f'_j + (s_4)_j \delta f'_{j-1} + (s_5)_j \delta u'_j + (s_6)_j \delta u'_{j-1} + (s_7)_j \delta g'_j + (s_5)_j \delta g'_{j-1} + (s_9)_j \delta p'_j + (s_{10})_j \delta p'_{j-1} = (r_2)_j$$

. J

~

×

Energy equation becomes

$$\begin{aligned} &\frac{1}{\Pr} [h_{j}^{-1}(p_{j}^{i} + \delta p_{j}^{i} - p_{j-1}^{i} - \delta p_{j-1}^{i}) + h_{j}^{-1} \{\{p_{3}p(1 + \Delta g)^{3}\}_{j}^{i} - \delta \{p_{3}p(1 + \Delta g)^{3}\}_{j}^{i}\} - \\ &\{\{p_{3}p(1 + \Delta g)^{3}\}_{j-1}^{i} - \delta \{p_{3}p(1 + \Delta g)^{3}\}_{j-1}^{i}\} - +\xi_{j-1/2}^{n}(p_{j-1/2}^{i} + \delta p_{j-1/2}^{i}) + \\ &(p_{4})_{j-1/2}^{n}(g_{j-1/2}^{i} + \delta g_{j-1/2}^{i}) + \{(p_{1})_{j-1/2}^{n} + \alpha_{n}\} \{(f \ p)_{j-1/2}^{i} + \delta (f \ p)_{j-1/2}^{i}\} \\ &- \alpha_{n} [\{(ug)_{j-1/2}^{i} + \delta (ug)_{j-1/2}^{i}\} + (p_{j-1/2}^{i} + \delta p_{j-1/2}^{i})f_{j-1/2}^{n-1}] \\ &- p_{j-1/2}^{n-1}(f_{j-1/2}^{i} + \delta f_{j-1/2}^{i}] - \{(u)_{j-1/2}^{i} + \delta (u)_{j-1/2}^{i}\} - \{(u)_{j-1/2}^{i} + \delta (u)_{j-1/2}^{i}\} \} \\ &\{(g)_{j-1/2}^{i} + \delta (g)_{j-1/2}^{i}\} u_{j-1/2}^{n-1}\} ] = T_{j-1/2}^{n-1} \end{aligned}$$

.

-

•

-

$$\begin{aligned} &(t_1)_j \,\delta \, p_j^{(i)} + (t_2)_j \,\delta \, p_{j-1}^{(i)} + (t_3)_j \,\delta \, f_j^{(i)} + (t_4)_j \,\delta \, f_{j-1}^{(i)} + (t_5)_j \,\delta \, u_j^{(i)} \\ &+ (t_6)_j \,\delta \, u_{j-1}^{(i)} + (t_7)_j \,\delta \, g_j^{(i)} + (t_8)_j \,\delta \, g_{j-1}^{(i)} = (r_3)_j \end{aligned}$$

Where

$$\begin{split} &(r_{1})_{i} = f_{j^{-1}}^{(0)} - f_{i}^{(0)} + h_{j} u_{j^{-1}/2}^{(0)} \\ &(r_{4})_{i} = u_{j^{-1}}^{(0)} - u_{j}^{(0)} + h_{j} p_{j^{-1}/2}^{(0)} \\ &(r_{5})_{j} = g_{j^{-1}}^{(0)} - g_{i}^{(0)} + h_{j} p_{j^{-1}/2}^{(0)} \\ &(r_{2})_{j} = R_{i^{-}/2}^{n^{-1}} - \left\{ h_{j}^{-1} \left( v_{j}^{i} - v_{j^{-1}}^{i} \right) + \left\{ \left( p_{1} \right)_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \right\} \left( f v_{j}^{i} \right)_{j^{-1}/2}^{i} - f_{j^{-1}/2}^{n^{-1}} v_{j^{-1}/2}^{i} \right) \\ &= \left\{ \left( p_{2} \right)_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \right\} \left( u^{2} \right)_{j^{-1}/2}^{(0)} + g_{j^{-\frac{1}{2}}}^{i} - \xi_{j^{-\frac{1}{2}}}^{n} u_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \left( f_{j^{-1}/2}^{i} v_{j^{-1}/2}^{n^{-1}} - f_{j^{-1}/2}^{n^{-1}} v_{j^{-1}/2}^{i} \right) \\ &- \left( p_{5} \xi^{2} \right)_{j^{-\frac{1}{2}}}^{n} - \left\{ h_{j}^{-4} \left( v_{j}^{i} - v_{j^{-1}}^{i} \right) + \left\{ \left( p_{1} \right)_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \right\} \left( f v \right)_{j^{-1}/2}^{i^{-1}} \right\} + \\ &\left\{ \left( p_{2} \right)_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \right\} \left( u^{2} \right)_{j^{-1}/2}^{(j)} + g_{j^{-\frac{1}{2}}}^{i} - \xi_{j^{-\frac{1}{2}}}^{n} u_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \left\{ f f_{j^{-1}/2}^{i} v_{j^{-1}/2}^{n^{-1}} \right\} \right\} \\ &- \left( p_{5} \xi^{2} \right)_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \right\} \left( u^{2} \right)_{j^{-1}/2}^{(j)} + g_{j^{-\frac{1}{2}}}^{i} - \xi_{j^{-\frac{1}{2}}}^{n} u_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \left\{ f f_{j^{-1}/2}^{i} v_{j^{-1}/2}^{n^{-1}} \right\} \right\} \\ &- \left( p_{5} \xi^{2} \right)_{j^{-\frac{1}{2}}}^{n} u_{j^{-\frac{1}{2}}}^{i} + g_{j^{-\frac{1}{2}}}^{i} - \xi_{j^{-\frac{1}{2}}}^{n} u_{j^{-\frac{1}{2}}}^{n} + \alpha_{n} \left\{ f f_{j^{-1}/2}^{i} v_{j^{-1}/2}^{i} - f_{j^{-1}/2}^{i^{-1}/2} v_{j^{-1}/2}^{i} \right\} \right) \\ &- \left( p_{5} \xi^{2} \right)_{j^{-\frac{1}{2}}}^{n} u_{j^{-\frac{1}{2}}}^{i} \\ &- \left[ h_{j}^{-1} \left( p_{j}^{(i)} - p_{j^{-1}}^{(i)} \right) + h_{j}^{-1} \left( p_{3} p (1 + \Delta g)^{3} \right)_{j}^{i} - \left\{ \left( p_{3} p (1 + \Delta g)^{3} \right\}_{j}^{i} \right\} \right\} \right\} \\ &- \left( p_{5} \xi_{j^{-\frac{1}{2}}}^{i} + \left( p_{4} \right)_{j-\frac{1}{2}}^{i} g_{j-\frac{1}{2}}^{i} + \left( p_{1} \right)_{j-\frac{1}{2}}^{i} + \left( n_{j} \right)_{j-\frac{1}{2}}^{i} + n_{j}^{i} \right\} \right\} \\ &- \left( p_{5} \xi_{j}^{i} v_{j}^{i} + \left( p_{4} \right)_{j-\frac{1}{2}}^{i} g_{j-\frac{1}{2}}^{i} + \left\{ p_{1} \right\} \right\} \\ \\ &- \left( p_{5} \xi_{j}^{i} v_{j}^{i} + \left( p_{4} \right)_{j-\frac{1}{2}}^{i} g_{j-\frac{1}{2}}^{i$$

J

.

Thus the coefficients of momentum equation are

$$\begin{split} (s_{1})_{j} &= h_{j}^{-1} + \frac{1}{2} \left\{ (p_{1})_{j-\frac{1}{2}}^{a} + \alpha_{n} \right\} f_{j}^{(i)} - \frac{\alpha_{n}}{2} f_{j-1/2}^{n-1} + \frac{1}{2} \xi_{j-\frac{1}{2}}^{n} \\ (s_{2})_{j} &= -h_{j}^{-1} + \frac{1}{2} \left\{ (p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n} \right\} f_{j-1}^{(i)} - \frac{\alpha_{n}}{2} f_{j-1/2}^{n-1} + \frac{1}{2} \xi_{j-\frac{1}{2}}^{n} \\ (s_{1})_{j} &= \frac{1}{2} \left\{ (p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n} \right\} v_{j}^{(i)} - \frac{\alpha_{n}}{2} v_{j-1/2}^{n-1} \\ (s_{4})_{j} &= \frac{1}{2} \left\{ (p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n} \right\} v_{j}^{(i)} - \frac{\alpha_{n}}{2} v_{j-1/2}^{n-1} \\ (s_{5})_{j} &= -\frac{1}{2} \left\{ (p_{2})_{j-\frac{1}{2}}^{n} + \alpha_{n} \right\} u_{j-1}^{(i)} - \frac{1}{2} \left\{ (p_{5}\xi^{2})_{j-\frac{1}{2}}^{n} \\ (s_{5})_{j} &= -\frac{1}{2} \left\{ (p_{2})_{j-\frac{1}{2}}^{n} + \alpha_{n} \right\} u_{j-1}^{(i)} - \frac{1}{2} \left\{ (p_{5}\xi^{2})_{j-\frac{1}{2}}^{n} \\ (s_{5})_{j} &= -\frac{1}{2} \left\{ (p_{2})_{j-\frac{1}{2}}^{n} + \alpha_{n} \right\} u_{j-1}^{(i)} - \frac{1}{2} \left\{ (p_{5}\xi^{2})_{j-\frac{1}{2}}^{n} \\ (s_{7})_{j} &= \frac{1}{2} \\ (s_{9})_{j} &= 0 \\ (s_{10})_{j} &= 0 \end{split}$$

(13)

\_\_\_\_\_

Again the coefficients of energy equation are

Appendix

$$\begin{aligned} (t_{1})_{j} &= \frac{1}{P_{r}} [h_{j}^{-1} + \rho_{3}h_{j}^{-1} \{(1 + \Delta g)^{3}\}_{j}^{r} ] + \frac{1}{2} \xi_{j-\frac{1}{2}}^{n} + \frac{1}{2} \{(p_{1})_{j-\frac{1}{2}}^{r} + \alpha_{n}\} f_{j}^{r} - \frac{\alpha_{n}}{2} f_{j-\frac{1}{2}}^{n-1} \\ (t_{2})_{j} &= \frac{1}{P_{r}} [-h_{j}^{-1} - p_{3}h_{j}^{-1} \{(1 + \Delta g)^{3}\}_{j-1}^{r}] + \frac{1}{2} \xi_{j-\frac{1}{2}}^{n} + \frac{1}{2} \{(p_{1})_{j-\frac{1}{2}}^{r} + \alpha_{n}\} f_{j-1}^{r} - \frac{\alpha_{n}}{2} f_{j-\frac{1}{2}}^{n-1} \\ (t_{3})_{j} &= \frac{1}{2} \{(p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n}\} p_{j}^{r} + \frac{\alpha_{a}}{2} p_{j-\frac{1}{2}}^{n} \\ (t_{4})_{j} &= \frac{1}{2} \{(p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n}\} p_{j}^{r} + \frac{\alpha_{n}}{2} p_{j-\frac{1}{2}}^{n-1} \\ (t_{4})_{j} &= \frac{1}{2} \{(p_{1})_{j-\frac{1}{2}}^{n} + \alpha_{n}\} p_{j}^{r} + \frac{\alpha_{n}}{2} p_{j-\frac{1}{2}}^{n-1} \\ (t_{5})_{i} &= -\frac{\alpha_{n}}{2} g_{j}^{r} - \frac{1}{2} g_{j-1}^{n-1} \\ (t_{6})_{j} &= -\frac{\alpha_{n}}{2} g_{j-1}^{r} - \frac{1}{2} g_{j-1/2}^{n-1} \\ (t_{6})_{j} &= -\frac{\alpha_{n}}{2} g_{j-1}^{r} - \frac{1}{2} g_{j-1/2}^{n-1} \\ (t_{7})_{j} &= \frac{1}{P_{r}} [3 h_{j}^{-1} p_{3} p_{j}^{r} \Delta \{(1 + \Delta g)^{2}\}_{j-1}^{r}] + \frac{1}{2} \{(p_{4})_{j-\frac{1}{2}}^{r} - \alpha_{n}[\frac{1}{2} u_{j}^{r} + \frac{1}{2} u_{j-\frac{1}{2}}^{n-1}] \\ (t_{4})_{i} &= \frac{1}{P_{j}} \{-3 h_{j}^{-1} p_{2} p_{j-1}^{r} \Delta \{(1 + \Delta g)^{2}\}_{j-1}^{r}] + \frac{1}{2} \{(p_{4})_{j-\frac{1}{2}}^{r} - \alpha_{n}[\frac{1}{2} u_{j}^{r} + \frac{1}{2} u_{j-\frac{1}{2}}^{n-1}] \\ (t_{7})_{j} &= 0 \\ (t_{10})_{j} &= 0 \end{aligned}$$

The boundary condition  $(\frac{18}{3})$  becomes

$$\hat{c}f_0 = 0 , \ \hat{c}u_0 = 0, \\ \partial\theta_0 = 1$$

$$\hat{c}u_1 = 0, \\ \partial\theta_1 = 0$$
(15)

which just express the requirement for the boundary conditions to remain during the iteration process. Now the system of linear Equations (13) and (14) together with the boundary conditions (15) can be written in matrix or vector form, where the coefficient matrix has a block tri-diagonal structure. The whole procedure, namely reduction to first order followed by central difference approximations, Newton's quasi-linearization method and the block Thomas algorithm, is well known as the Keller- box method

