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Abstract
Two-parameter transformation group-theory method is applied to presenlthc analysis and

analytic solution of the problem of unsteady free-convection flow from a mavlng vertical

porous surface considering suction and injection. The application of two-parallleter grOLips

reduces (he llL1mher of independent variables by one, and cOl\sequently the system of

governing partial differential equations with boundary conditions reduces to a system 01'

ordinary differential equations with appropriate boundary conditions. The possible fonns of

difference between wall temperature and (he ambient fhud temperature variations arc

dem'ed, The reduced ordinary differential equations obtained from tbe mathematical model

of the present problem are tben solved numerically using the shooting melhod Knll"n HS

Runge-KutlH-BlIleher initial vallIe problem solver together with the Nachtsheim-S".igerl

iteralion scheme described by Nachtsheim and S,~igerl. Programming codes have been

written in FORTRAN 90 to implement shooting method for the presenl problem. The post

processing soft,vare TECPLOT has been used to display the numel'tcal result8 graphl<;ally.

The effects of different values of Prandtl number Pr, suction and injectlon parameter F",

viscosity variation parameters IT and T on velocity and temperature profiles ha~e been

dlSCUS8edwith the help of graphs and tables. Comparisons of suction, injection and llelltrJI

position (no suction or injcetion) have been anolyzed graphlcally and in tabular forill.
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Chapter 1

1. Introduction

Applications of group-theory in fluid mechanics and boundary layer flow have received

much attention by many researchers as (he concepts of group theory are extensively used in

similarity and nOll-similarity related problems. Group-theory method provides a powerful

tool to nonlinear differential models. The transformation group theory approach is applied to

present an analysis of the similarity problem of unsteady free-convedion flow from a

moving vertical surface with suction and illJection. The application Ofl\\'o-pararl1eler groups

reduces the number of independent valiables and canseqLlently the system of go'erning

partial differential cqlJations with the boundary ccmdltions reduces (0 the system of ordinary

differential equations with appropriate boundary condition" The advantages of the group

theory method are obvious. The first is that the method is rather simple to apply. There is no

concern about boundary conditions, choices for various functions, etc. Secondly, in reducing

the numher of indepe~dent variables by two it i, possible to obtain a new system of partwl

dIfferential equations without continuing to obtain ordinary (hff~rential equations, The

p(}sslble advantage of group-theory method is that it transforms the partial differential

equations into ordinary differential equations that makes p(}ssible to solve wider variety of

problems in this maImer. It would be very interesting t() expl(}re this possibility in solvmg

the boundary layer equations, Forlllllately, the types of group employed in the example8

seem to be adequate for yielding the classes of similarity transfomlation~ ohtained hl' other

methods, However, the group- theory methods should yield complete results with less effort.

The thennal boundary layer induced within a vertical semi-infinite layer of 80u,sinseq fluid

by a constantly heated plate. Heat tran,fer problem in the boundary layer on a mO\'lI1g

surface has instances of implementation in fluid mechanics. Recently, unsteady conditions of

motion and heating of bodies in fluids have become important in certain applications for

some cnginecring ficlds of acrodynamics and hydrodynamlcs.

-~



Chapter 1: Introduction

The problem of group theory melhod on similarity solutions for unsteady free-convection

flow from a moving vertical surface has also gained different dimcnsiolls in the

manuJacturing processes in industries.

Similarity system is preferred for the measurements over the British Engineering system.

Similarity analyses determine the conditions under which the model experiments arc to be

performed and the essential parameters involving in the processes are predicated. Similarity

analyses leads to have the idea of dimensionless numbers. Dimcnsionless analyses yield a

functional relationship between the dimensional products. Dimensionless analyses also

reduce thc experimental cost highly in most of the solution of the problem in comparison

with cost requircd for the variables of the phenomenon separately.

Hydraulic characteristics of a fluid change with time ifthe flow is unsteady. Ifwaler 110wsat

a changing rate, as is the case when tap is just opened, the flow is unsteady. The introdnction

of time as the third independent variable in the nnsteady prob!cm inercascs the complexity of

the problem.

The Phenomenon of free convection arises in the fluid when temperature changes cause

deuslty variation !cading to buoyancy forecs acting on the fluid e!cments. This can be seen in

everyday hfe in the atmospberic flow, "bieh is driven by temperature dilTerenccs. When thc

vertical plate is being heat, the air layer adjaccnt to the wall expands and arises due to

bllOyancy. A free convection bonndary layer is formed adjacent to the wall surface.

SUCllon or injection is necessary to control the boundary layer flows by injecting or

withdrawing fluid through a heat boundary layer walL The plate from which the nuid enters

mto the flow region is known as plate with injection and the plate from whlch the flual

leaves out the flow region is known as plate with suelion. Since this can enhance heating or

cooling of the boundary layer system, it can help delay the Iransltion from the laminar to

turbulent 00'1'.'. Boundary layer suction IS used 10 control laminar and tllrbulent scparation

removing now oftbc low momentum. The tcchnique isuscd in air wings and in some wind

tunnels to control the laminar flow. Blowing (injection) on boundary layer of high

temperature components can maintain a thin layer of colder !low that allows the system to

function with very high fluid velocity.

2



Chapter I: Introduction

Many attempts weIe made to find analytical and numerical solutions applying certain spceial

conditions and using different mathematIcal approaches but for stationary vertical plate.

IIlinb'worth (1950) studied the problem of unsteady laminar flow of gas near to an infinite

flat platc. He obtaincd solutions, which are available only with Prandtl number umty and

under transient conditions of step change in the surface tcmperature,

Siegel (1958) investigated the transient free convection from a "erlical platc. Frec

convection !low past vertical plate has been studied extensively by Ostraeh (1953, 1954) and

many others in various solution technique. Possible similarity solutions for laminar frcc

convection on vertical platcs and cylinders ha"e been studicd by Yang (1960). He

estahlished some necessary and sufficient conditions fllr "hieh similarity solutions are

possible.

Soundalgekar (1977) studIed the ul1;teady free convection flow Pilst an infinite vertIcal plate

\vith constant suction and mass transfer. H wa; assumed that the plate temperature oscillates

in such a way that its amplitude is small,

Williams et aJ. (1987) obtained semi-similar solutions for the unsteady free-convcetivc

boundary-layer flow on a vertical plate using an implicit finite diffcrence method. In 1990

and 1991 four works concerning (he same problem \'.rere introduced applying the group-

theory mcthod,

Abd-el-Malek and Badran (1991, 1990) analysed the steady and the unsteady free-

convective laminar boundary-layer flow on a non isothemlal vertical circular cylinder,

Recently, many stuthes have been madc on the steady free convective bOllildary-layer now

on moving vertical plates considering the effect of buoyancy forces on the bOllndary layer.

Some of these studies are presented III the work of Chen and Strobel (1980), Moutsolglou

and Chen (1980), Ramachandran et aL (1987), and Lee and Tsai (1990), Kumari et ai, (1996)

lllvestigated the unsteady free convcction flow over a continuous moving vertical platc. the

Kcller box method and Nakamura's method werc nsed to solve the differential equatlOns

governing the flow.

Zakerullah (200 I) derived similarity solnl1Ons of some of possible cases of unsteady mixed

convection by group theory without suction. He also investigated steady natural convection

by group theory method without suction,

3



Chapter I: Introduction

Finally, Abd-el-Malek et al. (2004) investigated the unsteady free convectioll flow over a

continuously moving vertical surface.

The mathematical technique used III the present analysis IS two-parameter group

transfonnation that leads to a similarity representation of the problem. Morgan (1952)

presented a theory thm led to improvements over earlier similarity methods.

MIchal (1952) extended Morgan's theory. Group methods, as a elass of methods which lead

to a reduction of the number of independent variables, were first imroduced by Birkoff

(1948,1960) He made use of one parameter group transformations to reduce a system of

partial differcntial equations in two independent variables to a system 0 f ordinary differential

equations in one independent variable, the similarity variable.

Morgan and Gaggioli (1966, 1968) presented general systematic group fommlism for

similarity analysis, where a given systcm of partial dIfferentIal equations was reduced to a

system of ordinary differential equations. They utilized elemcntary group theory for the

purpose of reducing a given system of partial differential equations to a system of ordinary

differential equation in a single variable. SImilarity analysis has been applied intensively by

Gabbert (1967).

In this \vork, the effect of suction aJld injection on unsteady free-convectIOn flow over a

moving vertical plate has been lJlvestigated. Problems are solved analytically using group

methods and then munerically by Runge-KUlta shooting method. Under the application of

two-parameter group, the governing partial differential equations are reduced 10 system of

ordinary differential equations with the appropriate boundary conditions and the resulting

nonlinear system of di fferential equations arc solved lIJlalytically and then numeneally using

the sixth order Runge-Kulla shooting method known as Runge-Kulla-Butcher initial vJlue

problem solver 0 f Butcher (1974) together with Ihe Nachtsheim-Swigert Iteration scheme

described by Naehtsheim and Swigert (1965). Programming codes have been written in

FORTRAN 90 to implement shooting method for the present problem.

Allemion has been taken on the evaluation of the velocity profiles as well as temperature

pro files for seleetcd values of parameters consisting of suction and injection parameter F",

Prandtlnumber Pr and the parameters a and rdue to viscos,ty variation.

4
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Chapter 1: Introduction

The nllmerieal resliits of the veloclly profiles as well as temperature profiles are displayed

graphically for different values of Prandtl number, suction and injection parameter and,

viscosily variation parameters, The post processing sortware TECPLOT has been used to

display the numerical results graphically.

In ehapter-2, a thin non-isothermal porous continuously moving nat sheet has been

considered which is heal. The physical model with co-ordinate system for unstcady free-

convection flow from a moving vertical surface with suction Of injection has been sho"n in

figure. The governing equations of the above physical problem with appropriate boundary

conditions are obtained by mathematical modeling.

Then the momenlum and energy equations are transformed into non-dimensional form.

Three independent variables have been reduced to one similarity variable and governing

equations arc transformed into ordinary differential eqlmtions. Then group systematic

fonnulation and lllVanance analysis are u>ed to find OUllWO- parameter group The complete

sets of absolute invariant arc also discussed,

In chapter-3, the effect of suction and injection on unsteady free-con\'ection now from a

moving veltical surface for the case of "Unsteady free-eonvcction with surface tcmpcrature

varying inversely as a linear combination of x and t, the now velocity at wall varying

directly with In function of (x, t) and the suction and mjection velocity varying inversely as a

square roo! of the linear combination ofx and t" have been mvestigatcd, Veloe1ty profiles

and lemperature profiles have been displayed graphically for the \\ide range of suction,

injection parameter Fw, Prandtl number Pr and viscosity variatiOil parameter 0. Theil

variation of velocity and temperature profiles dl.le to suction, injection and neutral position

(neithcr suction nor injcction) have been presented in tabular form.

In chaptcr-4, the effect of suction and injection on unsteady frcc-convection flow from a

moving vertical surface for the case of "Unsteady free-convection with surface temperature

varying directly with a function x and inversely with the square of a function of t, the flow

velocity at wall varying directly with a function x and inversely with a function of t and

suction and injection velocity varying invcrsely with a sqllare root of a function of t""have

been investigated. Velocity profiles and temperature profiles have been displayed

graphically for the wide range of suction and injection parameter Fw, Prandtl number Pr and

5
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Chapter 1: Introduction

viscosity variation paramelers r. Then variations of velocily and temperature profiles due to

suclion, injection and neulral position (no suelion or injection) have been presented in

tabular form.

6



Chapter 2

Mathematical formulation, Invariance analysis and•
Group investigation

2.1 Introduction

Unsteady free-convection flow from a moving vertical surface with suctIOn and injection is

discussed in this chapter. A thin non-isothennal porous sheet has been considered as a

continuous moving flat sheet .The moving flat sheet has been taken vertically. "[he 1l011-

isolhemla! porous moving flat sheet is heated and hOllndary layer equations with boundary

conditions are governed. Theil the yelocity and temperature of the governing equations are

transfomled in nOIHhmensiona! fOlTI1.Three independent variables have been reduced to one

simijarity variable and governed equatIOns are transfOffi1cd into ordlllary dif1Crcntial

cqlJations. Then GrOllp systematic formulation and invanance analysis are used to find out

two- parameter group_ The complete set of absolute invariant is also discussed here.

2.2 Mathematical formulation of the problem and the
governing equations

Unsteady laminar flow of an incompressible fluid causcd by a continuous moving flat sheet

illustrated In Fig.2.1 issues from a thin slit at x = Y = 0 and is Sl1bsequcntly stretched

vertically. The positIve :r coordinate is measured along the dlrectlOn of the moving sheel

with the slot as the origin and the dircction 'y' is measurcd normal to the sheet. Thc non.

isothermal porous sheet is heated which gives rise to a buoyancy force and the tcmpcraturc

distribution ovcr the plate Twwill bc a function of the vertical distance:r and the time I. The

fluid is isothermal of constant temperatl1fe T", far from the sheet such that T", >T", _The

velocity of the moving sheet is time dependent. The physical configliratlOn considcred is as

showil in Fig. 2.1:



Chapter 2: Mathematkal formulation, Invariance analysis and Group investigation

x jg
T">T~ T"
"

"
I-Too L,

y

Figure 2.1: Physical model and co-ordinate system

Under the boundary layer approximation the free convection flow over the moving sheet is

governed by the fo1l0\\1ngboundary layer equations and bOUlldaryconditions,

Continuity equation:

au' iN'
-+-=0fu ay

Momentum equation:

au' . iJu' ,au' a'u'
-H -H -='-+gP(T-T)
al ax By By' ,~

Energy equation:

aT ,aT ,aT II a'T
-H-H-=---
at ax By Pr iJy'

8

(2. I)

(22)

(2.3)



Chapter 2: Mathematical formulation, Invl\riance analysis and Group investigation

Boundary conditions:

u'( x,O,t) = Uw (x,t), v'(x,O,t) = v. (x, t), T(x,O,t) = T~ (x,t) at y = °
u'(x,y,t)=O, T(x,y,t)=Tro as y--+ ClJ (2.4)

where u' and v' are the velocity components along the x and y directions respectively, T is

the temperature; g is the acceleration due to gravity, Pr 15the Prandll number which IS the

ratio of the kinematics viscosity' v' to the thermal di ffllSivily 'a '(i.e. Pr = <fa) f3 is the co-

efficient ofthemlal expansion; IIw is the flow velocity at the wall and T", i5 the tempcraturc of

(he moving sheet

2.3 The transformed equations and methods of solution

Now, non-dimensional velocIty and temperature are introduced as

U= U'llIw ,v=v', e = (T-T,,)I (T,.-T",)

LlT= (Tw - T",)implies 8 LlT= (T- T",)

The non-dimensional forms of tile equations (2.1) to (2.3) are

au au ,au ,ou a" 8'"
"_' h -h "_+" u _w +vu -=Vu -+gf38TO
al wal w ax w ax w8y "ay'

Be [' a] as a(} 1'0'0
-+() -(ln8T)+uuw-(1nt.T) +uuw-:;-+v-'-_.,
al al ax ox 8y Pr 8y

9

(2.5)

(2.6)

(2.7)



Chapter 2: Mathematical formulation, Invariance analy~is and Group investigation

The associated boundary conditions are transformed to

u(x,O.t)~ I , v(x,O,t) ~ v. (x, t). 8(x,O,t) = 1 at y = °
u(x,y,t)=O, O(x,y,t)=O asy-.oo (2.8)

The method of solution depends on the application of two-parameter group transfonnation to

the system of partial differential equations (2.5)-(2.7). Under this transformation, the three

independent variables x, y, ( will be reduced to one Similarity variable '11' and the

differential equations (2.5H2.8) will be transformed to a system of ordinary differential

equations in only one independent variable, "hich is the similarity variable '11'.

2.3.1 The group systematic formulation

The procedure is initiated with the group G, a class oftransforma(ion of (wo parameters

(ai, aLl of (he form

- > •C:S ~C(a"a,)S+K'(a"a,) (2.9)

Ss(ands for x. y. I, u, V.u" . .dT,8and the C and ~ are real.valued and at least differentiable

in each real argllment.

2.3.2 The invariancc analysis

To transform the differential equations, transfonna(ion of the derivatives are obtained from

G via cham-rule operations

\0



Chapter 2: Mathcmatical formulation, Invariancc analysis and Group investigation

i=x,y,1
j =X,)'.I

(2.10)

Where S stands foru, v, uw., ~T and B.

Now equation (2.5) is said to be invariantly transfoillled whenever

_?iii. _ aii (JV [auw au fiv],--H -+-~H(, ",)'--+11,-+-
ox Wox iY I <'. ax 'ax Cy

for some function Hlal.ay which may be a constan1-

(2.11)

Substitution from (2.9) and (2.10) into (2.11), the tunctions and their partial derivatives

yields

The invariance of (2.12) implies R, = O.This is satisllcd by putting

~d

where HI (al.ay = constant

Equation (2.6) is invarianlly transformed giving

II

(2.12)

(2,13)

(2 14)



Chapter 2: Mathematical formulation, I"variance analysis and Group investigation

K'_K".=K'=K~T=K 0 =0

[C"C"WIC'] = [(CO")l( C")1/C' 1= [C'Cw C"/C' 1= [Co"C /(C')'] = [C~TCo]

"'H,(a"a,)

In a similar manner, the invariant transform of (2.7) giyes

K"= KAT"'K"= K"' =K'= 0

[COIe']- [CoCC-IC] = [Cc" Ie' 1= [C./(C' )' 1= H, (a, ,a,)

where HJ (a" a2)= constant.

Moreover, the boundary conditions (2.8) are also invariant in form, whenever

KY=O

C"=C"",1

Now, combining equations (2, 14), (2,16), (2.18) and invoking the result (2,20) yields

C' '" (C")',C ",1/ C' ,C' = coT (C")' ,C = C,r (C")'

(2,15)

(216)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

So, two-parameter group G is found wbleb transfonns invariantly the dlfferential equations

(2.5), (2.6), (2.7) and the boundary conditions (2,8). Tbe group G is oftbe foml

12



Chapter 2: Mathematical formulatioll, Invariallce anal,\'sis and Group investigation

x= [Cor (C")'Jx+ K'

G, y~[C']y
T=[(C")'Jr+K'

u = u
(212)

v=[I/C'Jv

u~=[C~r(c:Y)'Ju.

tJ.T = C~TAT

8 =8

2.3.3 The complete set of absolute invariants

Use of group methods to represent the problem in the form of an ordmary differential

equation (Similarity representation) in a single independent variahle (Similarity variable) has

taken as an aim,

The complete set of absolute invariants is:

a) 11= 11(.1', y, t) is the absolute invariant of the independent variables x, y, r.

b) gJ(x, y, t ;u, v, uw• AT,8) = Fj(11(X,y, t)) j = 1,2,3,4,5 are the five ab,olute invariant~

Corresponding to the five dependent variables u, v, uw, 6T,8.

The application of a basie theorem in group theory by Moran and Gaggioli (1968) states that;

a function g (x; y, t; u, v, u~, AT, 8) is an absolute invariant of a two-parameter group ,f it

satisfies the two first- order linear differential equations

13



Chapter 2: Mathematieal formulation, Invarianee analysis and Group investigation

og og lag ()ag i.Jg(Ct,x+a,)~+(a,y+Ct.)~+(a,l+a, ~+ a,u+a. -+(Ct,v+Ct,o)-ax ay at. ou &v
'g ( Bg ( ) og (2.23)

+(Ctl,uw+a,,)au
w
+ CtutJT+a")a(tJT)+ CtllB+a16og"'O

and

(2.24)

(ec'/),"where a, = lea] (aL ,a,)

and (auI,aGl) indicates the value of (a l.a2) which yields the identity element 0 f the group.

By observation of(2.23) and (2.24), it is apparent that independent variable (x, y, t) has an

absolute invariant I](x, y, I) when it satisfies two first -order partial differential eq ltations.

Two possible cases are derived considering none of the co-efficient of these first-order

partial differential equations vanishes and only one of the co-efficient vanishes identically.

In chapter 3, the first case "Unsteady free-convection with surface temperature varyin.g

14



Chapter 2: Mathematical formulation, {nvariance analysis and Group invcstigation

inversely as a linear combination of x and t, the flow velocity at wall varying dircctly with

log function of (x, t) and the suction velocity varying inversely as a square rool of the linear

combination of x and I" has bcen investigated and In chapter-4, the second ease "Unsteady

free convection with surface temperature varying directly with x and Imerscly with the

square of a function oft, the flow velocity at wall varying directly with x and inversely with

a function of t and suction velocity varying inversely with square root of a fl.lnclionof t" has

bcen invcstigated.

15



Chapter 3

.6.Toc(a x+ bt+ c) -1,"1V oclog (ax+ b t+ c) and Vw oc(ax+ b t+ crl12
i.e. Unsteady free-convection with surface temperature varying inversely as a
linear combination ofx and t, the flow velocity at wall varying directly with log
function of (x, t) and the suction and injection velocity varying inversely as a
square root of the linear combination of x and t

3.1 Introduction

In this chapter, analysis of the two- dimensional unsteady free convection boundary layer

flow wilh suction and injectIOn on moving vertical plate in the case of "Unsteady free-

convection with surface temperature varying Inversely as a linear combination of x and I, the

flow velocity at wall varying directly with log functwn of (x, t) and the suction and injection

veloclly'varying inversely as a square root of the linear combination of x and I" has been

studied. For independent and dependent variables absolute invariants have been found and

then governing non-dimensional partial differential equation and boundary condltions haye

been reduced to ordmary differential equations with boundary conditions, Then it IS

numerically solved by shooting method known as Rlmge-Klltla-Butcher (Butcher (1974))

initlal value solver together with the Nachtsheim-Swigcrt iteration scheme descrihed by

Nachtsheim and Swigert (1965). Here attention has been given on the cvaluatlOn of the

velocity distnbution as well as temperature distribution for a selection of parameters set

consisting of suction and injection parameter, viscosity variation parameter and the Prandlt

number. Variations of velocity and temperature profiles due to suction, injection and neutral

position (no suction or injection) have been presented graphically and ill tablilar fonn,



Ch.apter 3: Sn rface tempcratn re van'jug inversely as a liuear cnmbination of x an d t

3.2 Transformation of variables

3.2.1 Independent variables as absolute invariants

Owing to equations (2.23) and (2.24), ll(X, y, t) is an absolute invariant ofthc itldependeut

variables (x, y, t) if it satisfies the two first -order partial differelltial equations:

( )a" ( )a" ( )'"u,x+«, -,-+ «,Y+«, -;;-+ «,I+a, -00
ox ccv at

md
alJ all 0'1(P,x+P,)-+(P,Y +P,)- + (fiji +fJ,,)- 0 0
ax Oy at

Now (3. I) and (3.2) call be written as

(3.1 )

(3.2)

(3.4)

(3.5)

i,j=1,2,3,4,5,6

Now the transformation group G givell by (2.22) and making lise of the definition of (l's and

/3's and invoking a; =2a),Po-=2jJ)implies

~,=a,p<-a5P,=O

For this case, considering none of the co-efficient in (3.4) and (3.5) vanishes and

So, equations (3.4) and (3.5) reduce to

17
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eh apter 3; Surface temperature varving inverselv as a linear comhination of x and t

(3.7)

(3.8)

Equation (3.7) has the genera! solution of the follo"ing form according to a standard

technique for lincar partial di fferenlia! equations

7/'" / (y,; (x, t))

\\There/is an arbitrary function and'; is any function such that ;(t, I) '" Constam .

.;(x, I) '" Constant is a solution of the equation

dx d/-~-
11.32 ~"3G

which yields

The solutIOn of (3.7) also satisfies equation (3.8). Now (3.8) and (3.9) gives,

(3.9)

(3.10)

(3.tl)

(3.12)

Since E, is independent of y, so

independent of y.

(
A, x/+A, x+A., I+A., ]a; _ .

5 , .s ." _ eo-effiCient of ape,; IS also
A" 81

18



Chapter 3: Surface temperature varving inversely as a linear combination of x and t

So, the equation (3.12) can be written as

where he; )~ (A"XI +A,6~+2,,1+2,') ~q
A." 01

(3 13)

(3.14)

The solution of equation (3.13) and consequently of equations (3,7) and (3.8) is ufthe form

where H(q) is gi\'en by the ordmary differential equation

h(s)~(lnH) = 1
d(

obtained substitution of(3.15) into (3, 13)

Now (3,16) takes the form

d'If (4') = eXp(J-'-)he;)

We know that

19
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Chapter J: Surface temperature varying invcrsclv as a linear combination of x and t

Since h is determined by I',alone,

(3.19)

Using (3. 11) and (3.18) , cquation (3.19) can be written as

(3.20)

The conditions necessary for (3.20) to be satisfied are .115= 0, and }.JM-2$ =-2I.0J2 Since a's

and fJ's and consequently the };s can be chosen arbitrarily, so the abovc conditions can

easily be satisfied. Now using (3.11), (3.18) implies

(3.21)

Then (3.17) gives

Integration of (3.22) yields

-'.
H (~) = (A"x + -i,,t +},.);';-

where 21, '" 0

Thc absolute invariant 11can be obtained from equations (3.9) and (3.15) as

I)=~(y(ax+ b t+ e)"tl)

20
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Chapter 3: Surface temperature varying inversely as a linear combination of x and t

where the constants a, b and e stand for A,16,A2j and 1.,26respectively and the exponent

Without loss of generality, the function q>can be taken (0 be the idcntity function, So,

'1 = Y"", (x, t)

where

",,(x,t) =(ax+bt+c)"'ll

3.2.2 Dependent variables as absolute invariants

(3.25)

(3.26)

in this step, absolute invariants have to obtain corrcsponding to the dependent variahles u, v,

u", LlTand It. From the group transformation (2.22) it can be written as

8,(X,y,t;u)=u(,,)

g, (x, y, t,e) =e('I)

According to (2.23) and (2.24) any function 8J (x, t; u,,) satisflcs

( lag, ag, ag,
a,x+a, -+(a,1 +a,j-,-+(aLLu"+aL2)-~ 0

Ox 01 au"

( lag) ag, rJ ,,)ag,_Ol3,x+l3,-+(I3,t+I3,J-+Cv"u"+",,,--
Ox 01 all"

The solution of eqnations (3.29) and (3.30) gives

g,(x,t;uw)= ~(u"Iw(x,t)) =E('1)

2\

(3.27)

(3,28)

(3.29)

(3.30)

(3.31 )



Chapter 3; S" rfnee temperat" re varying inversel" as a linear eomhill alion of x and I

In a similar manner, g.,(x, t; v) and gJ(x, t; I1T) arc obtained

g., (x, t ;v) = 't'2( v/r(x, t) ) = F (1])

g5 (x, t; I1T) = 't',(I1Tly(x, t)) = G (1"])

(3.32)

(3.33)

where W (x, t), r(x, t),'( (x, t), E(1]), F(1]) and G('1Jare functions to be detennined. Without

loss of generality, q>', in (3.31) to (3.33) can be selected to identity functions. Then we can

express the flmctions u~(x,t),vex,y, t) and I1T(x, t) III temlS of the absolute invarianl,

E (1]);F(1]) and G(T])respectIvely, III the form

u,,(x, t) = w (x, t) E(T])

vex, y, t) = I"(x, t) F(T])

I1T(x, t) = y(x, t) G (T])

(3.34)

(3.35)

(3.36)

Since w(x, t), uAx ,t) and I1T(x, t), Y(_,,t) are independent ofy, whereas T]depends OilY, it

follows that E(T]) and G(T])mnst be equal to constant Eo and Go respectively .Without loss of

generality it can be taken Eo=l and Go=1. Then (3.34) and (3.36) become

u,,(x, t } = w(x, t)

I1T(x,t)=y(x,t)

22
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Chapter 3: Surface temperature \'arving inversely as a linear combination ofx and t

3.3 The reduction to the ordinary differential equations

Substituting from (3.25) to (3.28), (3,35), (3.37) & (3.38) into equations (2.5) ,(2,6) and (2.7)

yields,

(3,39)

(3.40)

and

Thc co-cfficient of the functions" ('1), 9(r)) and F ('1) and their deri\util'cs, bc constants or

functions ofT] only to reduee (3.39) to (3.41) as a system of equations in a slllgle nriuble 7/.

Since 1t,(x, I), w(x, t) and y (x, t) arc independent ofy, so

c,=_'_'w
. ;T,f ax

23
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C e~,~aff,
, V7l",' 01

c _~,~aw
, - Vlf,' ax

C e_'_ow
, , 0

VW,T, vi

, ayc e_~_, '0
V1t, r vi

(3.44)

(3.45)

(3.46)

(3.47)

(3.4S)

(3.49)

(3.50)

(3.51)

Where C's are constants and to be detemlined corresponding to each set of absolute

invariants. The equations (3.39) to (3.4i) take the fomls

24
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The boundary eondition.q are

(3.52)

(3 53)

(3,54)

nCO)= 1,0(0) = I, F(O) = Fw(O) ¥- 0

u(oo) = 0, e (00) = 0

at '/-0>'0
(3.55)

The parameter Fw ~ F (0) related \0 the SLlc\ionparameter v~ when II= 0

vw = r( x,l) F(O) = v( au bt + ctil F (0)

Taking C6 = I in (3.47) implies,

w=(v/a) In(ax+bt+c)

In a sImilar manner, considering

equalions (3.43),(3.45) and (3.47) implies

C1 = I

Using (3,26), (3.44) becomes

25
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c) '" -b!2v

Now considering as Cill '" 1 then (3.51) using (3.26) implies

Y (x, t) '" -(via) (ax+bt+erl

Using (3.26), (3.57) and (3,61), it can be shown from (3.48) that

Again C4 '" I in (3.58) implies

r(x, t) = vnj = v(ax +bt+c) _112

Applying (3.16), (3.56),(3.60), (3.62) in(3.42),(3.46) and (3.50) implies

C9 = -b/v

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3,65)

Substitnting the above obtained values into equations (3.52) to (3.54) and laking a = -b/v,

we get

J', [" "Jd',--- -'1+F+-u --u -ou+B= 0
dry' 2 2 dry

26

(3.66)

(3.67)



Chapter 3: Surface temperature varying inverselv as IIlinear combination of x and t

1 d'g (" ) dB---, - -+-u+F --(O"+u)8=O
Prd,/ 2 2 dry

with the boundary conditions are

(3.68)

u(O)=\ ,0 (O)=I,F(O) =Fw"'O

U("') '" 0,0("<') = 0 at 11-+'"

atrr=O
(3 69)

Vw = r(x,t) F(O)= v (ax +bt +c) .1!2F(0)

v'" < 0 Signifies suction.

v"' > 0 Signifies injection.

(3.70)

The variations of LlT, II", and suction v", are proportional to (a x + b I + e) -, ,In(a x -;-b I + C)

and (a x + b I + c) _L.'2 respectively.

For the aboye case, lhe boundary-layer characteristic (Surface heat flux) is

Surface heat flux,

q=- ( ; )',,[-8'(0)Ja ax+ t+c
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3.4. Results and discussion

Similarity solution for unsteady free convection flow from a moving vertical surface with

suction and injection has been investigated analytically using group theory mcthod and then

numerically by sixth order Runge-Kutta shooting method, The case "Unsteady free"

convection with surface temperature varying inversely as a linear combination 01';<and I, the

flow velocity at wall varying directly with log fllnction 01'(;<,I) and Ihc suction and injection

velocity varying inversely as a square root of the linear combination oLr and [" is considercd

in this chapter, After making proper use of similarity transformations, three independent

variables reduced to one similarity variable '7. Analytical solutions have been derivcd for the

present case and then numerical sollllion have been obtained using Runge-Kulla shooting

method. numerical results of the problem in terms ofu-velocity, v-velocity amI temperature

profiles have been presented graphically against the ~imilarity variable 11,for different values

of suction and injection parameter, viscosity variation parameter and Prandtl number.

The influences of different values of suclion and inj ection parameter F~ on the u-vc1ocity, v-

velocity and temperature profiles are shown in figs. 3.1, 3.3 and 3,5 respectively while

Prandtl number Pr = 0.72, viscosity variation paramctcr cr=1.0. The rcsults are obtaincd for

Fw= -0.22, -0.20, -0.15, -0,10, -0.05 and 0.0. u-vc1ocity, v-velocity and temperature profiles

for three situations when F" takes the values of suction, injection and neutral positIOn (no

suction or injection) while Pr.mdll number Pr = 0.72, viscosity variation parameter cr =1.0

are presented by the figures 3.2, 3.4 and 3.6. In figs. 3.7-3,9, u-velocity, v_velocity and

temperature profiles are shown for different values of Prandtl number Pr while Fw = 0.1, CT

= 1.0, For viscosil y variation parameter cr, u-vclocity, v-velocity and temperalure profi les arc

displayed in figs.3.10-3.12 while Pr = 0.72, F~ = 0, 1.

It has been observed from the fig. 3.1 that u-velocity increases slightly with the mcreasing

values of suction parameter F" while Prandtl number Pr = 0.72, viscosity variation

parameter cr =1.0. The maximum values of the dimenslOnless u-velocities have been found

as 1,0 at the boundary wall I] = 0.0 for all F~,and then the u- velocity decrease along 'I and

finally approach to zero (the asymptotic value).
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[n fig. 3,3, v-velocity profiles become negative in the boundary layer for different vali.les of

suction parameter F" while Prandtl number Pr = 0.72, viscosity variation parameter cr =1,0.

Tt has been found that v-velocity decreases for the increasing of suction, v-velocity profiles

decrease slowly for increasing values of 17and converge to different asymptotic values.

For the temperature profiles, figure 3.5 shmvs that the temperature increases slightly with

increasing values of suction parameter Fw' The maximum values of dimensionless

temperature is 1.0 for Fw = -0.22, -0.20, -0.15, -0.10, -0.05 and 0.0. The change of

temperature profiles in the 11direction also shows the typical temperature prolile for free

con\ection boundary layer flow that is the value of temperature profile is 1.0 (one) at the

boundary wall then the temperature profile decreases gradually along 11 directIon to the

asymptotic value.

In fig 3.2 u-velocities for two suction values, two injection values and neutral value of F"

(no suction or injection) are represented. The maximum velocity has been found as 1,0 at the

same point 17= 0.0 and after then velocity decreases owing to increasing ,alues 01'17for L,

=0.40, 0.10, 0.0,-0, 1° and -0.15. From the figure it has bcen found that u-\clocity for neutral

position (no suction or injection) is larger than that of due to suction but smaller than ll-

velocity due to injection. It is observed (hat at 17= 5,0 the velocity increases by 24.599% as

the suction and injection parameter Fw changes from, -0.15 to 0,40

v-velocities for two suction values, two injection values and neutral value of F" (no sllction

or inJectlOn) ure presented in fig.3.4. It has been found that v-velocity for nelltral pn,;ition

(no suctlOn or injection) is larger than that of due to suction but smaller than ,-\,elOCLty due

to injection.

In figure 3.6 temperature profiles are represented for suction, injection and neutral value of

F •. (no suction or injection). It has been found that temperature profiles decrease due to

increasing values of suction and increase due to increasing vulues of injection. From

maximum and common value I 0 of temperature profiles decrease along I)-axis for all the

values of Fw•

Figures 3.7-3,9 display results for the u-velocity, v-velocity and temperature profiles, for

different values of Prandtl number Pr while suction and injection parameter Fw = 0.1

viscosity vari31ion parameter cr = 1.0. Fig, 3.7and 3,9 indicate u_velocity boundary-Iaycr
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Chapter 3: Surface temperature varying inverseh' as a linear combination of x and t

•

thickness and temperature boundary-layer thickness decrease with mcreasmg values of

Prandtl number Pro v" velocity in the fig.3.8 shows that the v-velocity increases

corresponding to increasing values of Pro For different values of Pr, dimensionless v-

velocity profiles have unit value near the edge of the boundary layer and diffcrcnce between

the velocity profiles increases gradually from" = 0.5 onwards,

The influence of viscosity variation on thc velocity and temperature profiles while Prandll

number Pr = 0.72 and suction and injcction parameter Fw = 0.1 are shown in figures 3,10-

3.12.

It appears from the figure 3.10 that the u- velocity decreases in the vicinity of the plate with

increasing values of viscosity variation parameter cr. The maximum value of the u-velocity

has been fonnd as 1.0 at the boundary wall then the u-velocity decreases as 'I increases, It

can easily be understood from the figure 3.11 that the v-velocity and the corresponding

boundary layer thickness increase owing to increasing values of viscosity variation

parameter cr. The v-velocity profiles III the fig. 3.11 show that v- velocity becomes positive

in a certain region of thc boundary layer and negative in the rest of the region for varying

values ofa.

From figure 3,12 shows that as the viscosity "ariation parameter cr increases, the temperature

profiles decrease. Thc changes of temperature profiles show the typical profiles of

temperature for natural convection boundary layer flow that IS the value of temperature

profile which is l.0 (one) at the boundary wall and then the temperature profile decrcases

gradually for increasing valucs ofl/'

Numerical values of u- veloci ly, v- velocity and temperature profiles, for di fferent values of

F", (Suction, injection or neutral position of suction and injcction) are dePlcted in Table

3.1.u-velocity, v-velocity and temperature increase with increasing F," are found to the table.

)0



Chapter 3: Surface temperature varying inversely as a lincar combination of x and t

Table 3.1 Dimensionless u-velocity, v-velocity profiles and temperature profiles against I]

for different values of Suction and injeclion parameter Fw with other controlling parameters

Pr=O.72,O"=\.O

n-vcloeity for different v-velocity for different Temperature profile for
valuesofPw values of PM' dilTerent values or Pw

" F,,-_0.10 P,,= 0.0 .,=0,10 F,,~ -0.101Fw= 0.0 ~=o.lO F,,~-O,10 F.=o,ok=o 10

00000 10000 1.0000 1.0000 -0.1000 00000 0,1000 1.0000 1.0000 1.0000
0,1000 0,9156 0.9191 0.9224 .0.1936 -0,0939 00059 08947 0,8975 0.900!
0.2000 0.8405 0.8468 0.8528 .0.2757 _0.1767 -0.0776 0.8024 0.8074 0.8122
03000 0,7736 0.7320 0.7902 -0.3480 .02500 -0,t519 0,7214 0.7280 0.7344
04000 07136 0.7239 0.7337 -O.4119 .03151 .02182 0,6500 0.6578 0.6655
0.5000 0.6599 0.6714 0.6825 .0.46S4 _0.3730 -0.2775 0.5870 0.5957 0.6043
0,6000 0,6]]4 0.6240 0.6362 _05186 .0.4247 -0,3306 05.113 0.5406 0.5498
07000 0,5677 0.5811 0.5940 -0,5634 .04710 .03784 0,4819 0.4916 0.5012
0,80W 05282 0.5421 0.5556 .0,6033 _0,5125 .042t5 0,4379 0.4479 0.4578
0,9000 0.4923 0.5066 0.5205 .0639] -0,5498 -04603 03988 0.4089 0.4189
1.0000 OA596 0.4742 0.4883 -0.6711 _0.5835 _OA955 0..3639 0.3740 0.3840
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---.Fw _-0",
- - - - Fw=-(I,.O
_._._._ Fw=.Q,1,

Fw_.010o Fw __ 005

o Fw_ 000

"
, ,

"Figure 3.1: Dimensionless u-vdocity profiles against similarity
variable IJ for different values of r w (suction) while Pr = 0,72,
,,=1.0

,.,
_._.- - Fw~_O.lS
____ Fw=_O.'O
- __ Fw~ 0.00

• FWD 0.10
o Fw~0.'0

"
,

"Figure 3.2: Dimensionless ll-velocity profiles against similarity
variable IJ for different vailles ofF" (suction and injection) while
Pr = 0.72. ,,=1.0
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-0.2

_0.4

io.

•

••

•

F" •• 022
F". -0 20
F,,~-Ot~
Fw:_O.1O
Fw= _,H5
Fw~ 0.00

"Figure 3.3: Dimensionless v-velocity profiles against 511m!<lntv
variable '1 for different values of F",(suction) while Pr = 0.72.
0" =1.0

o

•o
••

F" •• 0,15
F" = -0 10
Fw= 000
Fw. 0.10
Fw= 0<0

•
'B"0•>,~.~.

.O,B

.,

••, ., .
.\, .
\, ..
\, -.
""".''<~.~_.•••• -- ....~""::- .- -- .

-::"":.::.::. --'":.::.:::_::.:::":::".- ,-:::"'"-'"_:--_'"-,
"Figure 3.4: Dimensionless v-velocity profiles against similarity

variable '1 for different values of F~ (suction and injection) while
Pr= 0.72. 0"=1.0
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Chapter 3: Surface temperature varying inversclv as a linear comhination of x and t

•

___ Fw=_022
_._._._ Fw'.D15
- - __ Fw'.()10
---- Fw_ -0,00
-,,-,,-,,- Fw _ o,aQ

,
"Figure 3.5: Dimensionless temperature profile, against similarity

variable 17for different values ofF" (suction) while Pr ~ 0.72,
(l"=1.0

, ,

_._._._ Fw=.(),15
____ Fw=.()10
___ Fw=OOO

• Fw= 0.10
c cw,0,40

,
"Figure 3.6: Dimensionless temperature profiles against similarity

variable '1 for different values of Fw (suction and injection) while
Pr~O,72.a~l.O
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••

.,

• •• ,
-, •

----Pr-OSO
Pr_O.72
Pr_1.00
P,.1.50
Pr=1.S0

Figure 3.7: Dimensionless u-velocity profiles against simibril}
variable 'I for different values of Pr with F" = 0.1, a =1.0

.-
•

.0.2

~

->~•• "
_0.5

_0.7

-0,8

Pc=O.SO
Pr-O.72
Pr-1.00
Pc=1,50
Pf~1,60

"",,~'. ...,...,,••••, --, ':.:.....-.- _.=.=.=.=<=-==== == ===.== -==_.
-,- -,- -'-'_.- _._,- _._.-

.0.9

• , , •
---- ---------

,
-,

Figure 3.8: Dimensionless v-velocity profiles against similarity
variable 1) for different vulues of Pr with Fw = 0,1, a -1.0

35



Chapter 3: Surface temperature varying inversely as a linear combination of x lind t

•

,

,.

,.

----Pr-oeo
Pr-O 72
Pr_1.00
Pr-1.S0
Pr_1.60

•
Figure 3.9: Dimensionless temperature profiles against similarity
variable lJ for dilTerent values of Pr with lOw = 0.\, 0-=1.0

e,
----" = 0,90
----- ,,=1.00-,-.-.-.- ,,= 1.10-,,-,,-,,-..- ,,= 1.10
----- a= 1.25

• ,
"Figure 3.10: Dimensionless u-velocity profiles against similarity

variable 17 for different values of uwith Pr =0.72, Fw = 0.1
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---- a=0.90
----- a=1.00
-,-.-.-,- a=1.10
- ._.- ..- ..- a = 1.20

a=[.25

"

,00
~
'0 -0.'

~,: _0.'

-0,7

-0,9

,
o •

--- - - - - _._._.- _.-
-----

,
"Figure 3.11: Dimcnsionless v-yelocily profiles against similarity

variable 71for different valucs of 0' \vith Pr =0.72, Fw = 0.1

,•
•,

"""

,,= 0,90
----- a=IOO
-.-.-,-.- ,,= 1,10
- ..- ..- .._..- a = 1.20
----- ,,=1.25

00

Figure 3.12: Dimensionless temperature profiles against similarity
variable 71for different values of O'with Pr =0.72, Fw = 0.1
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Chapter 3: Surface temperature varying inversely as a linear combination of x and t

3.5 Conclusion

The effect of suction and injection parameter on unsteady free-convection flow from a

moving vertical surface has been investigated for different values of relevant physical

parameters. The ease "Unsteady free-convection with surface temperature varying in~ersely

as a linear combination of x and t, the flow velocity at wall varying directly with log

function of (x, t) and the suction velocity varying inversely as a square root of the linear

combination ofx and t" has been studied numerically, The u-velocity profile, v-velocity and

temperature profile are presented for finite values of suction and injection paramcter,

viscosity variation parameter and Prandtl number,

• The increases values of suction and injection parameter Fw lead to increase of lhe u-
velocity profile, v-velocily profile and lhe temperalure profile while Pr =0.72 and a
=1.0. Variations of veloeily and temperature profiles due 10 suction, injection and
neutral position (neither suction nor llljection) have been presented here graphically and
in tabular form, It has been observed that velocity and tempcrallire due to injection arc
larger than ~elocity and temperature due to suction.

• For increasing values of Prandtl number Pr leads to increase of lhe v-velocity profiles
bul decrease of the u-velocity and the temperature profiles for F" =0.1 and () =1,0.

• The effecls of viscosity variation parameter () on the u- velocity profile, v-velocity
profile and temperature profile are also found here. For increasing values of viscosity
variation parameter u leads to decrease of the u -veloeily profile and the temperature
profile but increase of v-velocity profile while Pr =0.72, Fw = 0.1.

i,
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Chapter 4

i. e. Unsteady free-convection with surface temperature varying directly with a
function x and inversely with the square of a function of t, the flow velocity at
wall varying directly with a function x and inversely with a function of I and
suction and injection velocity varying inversely with a square root of a function
oft

4.1. Introduction

This chapter describes the two- dimensional unsteady free convection boundary layer flow

with suction and mjection on Ill()ving vertical plate for the case of "Unsteady free-convec\lQll

with Sllrface temperatllre varying directly \vilh a functic)llx and inversely with the square of a

functIon oft, the flow velocity at wall varying directly with a function x and inversely with a

function of t and suction and injection velocity varying invcrsely with a square root of a

function of t." Using the group derived in chapter 2 absoilite invariants have been found for

independent and dependent variables and then goveming non-dimensional panial differential

equation and boundary conditions are rcdueed to ordinary differential equations with

boundary conditions. For numerical solution we have taken the help of shooting melhod

known as Runge-Kulla-Butcher initial value problem solver togelher wllh the Nachtsheim-

S\vigert itcration scheme describ~d by Nachtsheim and Swigert (1965). Here attention has

been given on the evaluation of lhe u- velOCIty profiles, v-velocity profiles as well as

temperature profiles for some sele<:ted values of parameters set consisting of suction and

injection parameter Fw, viscosity variation parameter T and the Prandlt number Pr,

Variations of velocity and temperature profiles duc to suction, injection and neutral position

(no suclion or injcction) have been presented graphically and in tabular form.

•



Chapter 4: Surface temperature varying with function of x and jn~'ersely with function of t

4.2 Transformation of variables

4.2.1 Independent variables as absolute invariants

Owing to equations (2.23) and (224), Tj(x, y, t) is an absolute invariant of the independent

Variables (x, y, t) if it satisfies the two first -ordcr partial differential equations:

(a,x+a,)017+ (a,y +a,)'711+(a,l+a,)~17 =0
ax Oy ot

md

017 017 a17
(fJ,x+ fJ,)-+ (j3,y+fJ,)-+ (fJ,t+ fJ,)- 0 0

ax Gy at

Since KY = 0 so (1.4=)34 = O.

Now (4. I) and (4.2) can be writtcn as

(A,lX+A,,)~; +(A,,t+).,,)~; =0

'0'

(4.1 )

(42)

(4.3)

(4.4)

i,j= I ,2,3,4,5 ,6

Now (he transformation group G given by (2.22) and making use of the definition of the (I.'S

and )3's and invoking that (1.,=2(1.),j3,=2)3J ,implies

40
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Chapter 4; Surface temperature varying with function of x and (nvcrsl'ly wilh function of t

By considering only one of thc eo-cfficient in (4.3) and (4.4) vanishes and taking

Or]=0
a,

which shows that 11is only a fnnetion of y and t.

Using (4.3) and (4.4) in (4.1) and (4.2), we get

aT) aT)
a,Y-+(",1 +a.)- 0 0. 0' " 81

and

(4.6)

(4.7)

(4.8)

Applying (he standard technique for linear partial differential equations the solution of (4.6)

of the fonn

Where

andal=Ctj=~5

(49)

(4.10)

Without loss of genemlity, the value of I can be taken as unity. Then the absolute invariant

for this case will be

where

(4.11)
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(4.12)

4.2.2 Dependent variables as absolute invariants

In this stcp, absolute invariants have to be obtained corresponding to Ihe dependent

variables n, v,UW, ~T and e, From Ihe group lransfomlation (2.22) it can be writlen as

g,(X, y, I; u) = u(l])

md

&l (x, y, t;9) = 9(1])

According to (2.23) and (2,24) any function K, (x, t; uw) satisfies

( )8g, (og, og,
a,x+a,-+ a,t+a,)-+(allu •..+a,,)-~Oax at au.,

,od

The solution of equations (4.15) and (4, 16) gives

~(x, I ;uw) = 'PI(Uw Iw (x,t)) =E(T])

In a similar manner, ~ (x, t ;v) and g, (x, t;~ T) are obtamed

g.,(x, t;v) = q>,(vlr(x, l) ) = F (I])

g, (x, t; ~T) = q»(~Tly(x, t» = G (1])

(4,13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where w (x, I) , r(x, I) , Y (x, I), E(T]), F(T]) and G(T]) are f~mclions to be determined.

Without loss of generalily, the q>'sin (4.17) to (4.19) are selected 10be Ihe idenlity functions.
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Chapter 4, Surface temperature varying with function of X and iuverseh' with function of t

Then the functions can be expressed as u", (x , t) ,vex, y, 0 and I'IT(x, t) in terms of the

absolu.tc invariants E(ll), F(ll) and G(l1) respectively, in the form

u~(x, t) = (0 (x, t) E(I])
(4.20)

v (x, y, t) = r(x, t) F(I])
(4,21)

I'IT( x ,0 = y(x, t) G (1])
(4.22)

Since lJJ(x, t) ,11~(x ,t) and I'IT (x, t) ,y (x ,t) afe independent ofy, wherea> 11depends on y, it

follows that E (11) and G(l1) must be equal to constant Eo and Go respectively. Viithout loss

of generality it can also be taken Eo= 1 and GG = 1. Then (4.20) and (4.22) become

n,,(x, t) =w(x, t)

M(x,t)=y(x,t)

(4.23)

(4.24)

4.3 The reduction to the ordinary differential equations

Substitution from (4.11) to (4.14), (4.21), (4.23) & (4.24) into equations (2,5), (2,6) and

(2 7) yields,

(4.25)
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Chapter 4: Surface tcmpcrature varvinl: with function of x and inver~elv with function of I

d', [ Y 8R, FrJd' ["Y 8R'J d, [ , awJ'
dry' - 1111",'ii/+ Vir, dry - 1111",'& u dry - VIT,' OX U

_[ , 8WJu+gPBr_o
VllIlT,' 01 V<tlIT,'

(4.26)

(4.27)

The co-efficient of the functions u (11),8(,,) and F (,,) and their derivatIves, be constants or

functions of"only, to reduce (4.25) to (4.27) a~ a system of equal ions in a single variable 11.

Sinee 1l,(x, t), w(x, t) and y (x ,1) are independent ofy, so

C ='_'_8w
, r '- Ir, ox

C
__ ,_aR,,-
vll"g al

rc, =--
Vir,

C 0_'_8w
• Vir; ax
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(430)

(4.31)

(4.32)

(4.33)
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c __ I_a,
, - V1l"ir at

(4.34)

(4.35)

(4.36)

(4.37)

Where C's arc constants and to be determined correspollding to each sct of absolute

invariants. The equations (4.25) to (4.27) take thc forms as follows:

dF du
-+C(ll-+C2,,=O
d11 d11

md

The boundary conditions are

(4.38)

(4.39)

(4.40)

u (0) = 1, 8(0) = 1, F(O) = Fw(O) •• 0

u (00) = 0, e (oc) = 0

at 11--+ °
as 11--+ co

(4.41)

The parameter Fw = F(O) related to the suction parametervw when 11= 0

Taking C 6= 1 in (4.33) yields
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Chapter 4; Surface temperature varying with function of x and inversely with fundion of I

w=v(a1t+b1r'.x

In a similar manner, we can take

C,=landCs=1

Now (4.29), (4.31) ,(4.33) and (4.43) implics

Cl = I

With the help of(4.11) the equation (4.30) implies

(4.12), (4.34) and (4.42) gives

In (4.43) Cg = 1 shows that

(4.36), (4 42) and (4.47) implies

C9=-2a1/v

SLlbslituting (4.12), (4.42), (4,47) in (4.37) implies

46

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Using (4.12) in (4.28) and (4.32) implies

c. = 0

Cs = 0

(4.49)

(4.50)

(451)

Substituting the above obtained values into equations (4.38) to (4.40) and taking.-l =-all"

yields

dF-+u=o
d,

d'lI [, Jd" ,dlJ' - "21J+F dlJ -u -TU+O=O

1 d'O [, )dB---, - -IJ+F --(2r+u)O=O
Pr d'l 2 d'i

with the boundary conditions:

u{O) = 1, El{O)= I , F(O) = Fw(O) #- 0

v", = r(x ,1) F(O) .••v (al t +b]j-1I2 F(O)

v", <: 0 signifies suction

v••> 0 signifies injection

atl]=O

as 1] -. ""
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Chapter 4: Surface temperature varying with function of x antlln~cncly wlth fuuction of t

For the above case, the boundary-layer characteristics (Surface heat flux) is

q= VX( Q,t + b,r''' [-0'(0)]

4.4. Results and discussion

Similarity so!lllion for unsteady free convection flow from a moving vcrtical surfacc with

suction and injection has been in~estigated analytically using group thcory method and thcn

numcrically by sixth order Runge-KuUa shooting method. The case ''Unsteady free

convection with surface temperature varying direclly with a function x and inversely with the

square of a function of t, the flow velocity at wall varying directly with a function x and

inversely with a function of t and suction velocity varying inversely with a square root of a

function of t" is considered in this chapter, After making proper use of similarity

transformations, three independent variables reduced to one similanly variable rl. Anal}tical

solutions have been derived for the present case and thcn nLlmerical solLltion have been

obtained using Runge-Kulla shooting method. numerical results of the problem in telms of

u-velocity, v-velocity and temperaturc profiles have been presented graphlCally against the

similarity variable 1], for different ValLleSof suction and injection parameter, viscosity

variation parameter and Prandtl number.

The effects of suction paramctcr Fw on u-velocity, v-velocity and temperature profiles while

Prandtl number Pr = 0.72, viscosity variation parameter T =1.0 are displayed in fignres 4.1,

4.3 and 4.5 respectively. Different valnes of suction parameter Fw = _U5, -I ,0.-0,8.-0.5 ..0.2

and 0.0 have been considered.

u-velocity, v-velocity and temperatLlre profiles for three situations when Fw takes the values

of suction, injection and ncutral position (no suction or injection) while Prandtl number P, =

0.72, viscosity variation parameter T = 1.0 are represented by the figures 4.2, 4.4 and 4.6,

In figs, 4.7-4,9, u-velocity, v-velocity and temperature profiles are shown for different values

of Prandtl number Pr while Fw = 0.5, T =1.5. For different values of viscosity variation

parameter T, u-velocity, v-velocity and temperature profiles are displayed in figs. 4.10-4.12

while Pr = 0.72, Fw = 0,5.
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Chapter 4: Surface tempcraturc varying with function of x and JIJ\'crscly with functiun of r

In fig. 4.1, it is observed thm u-velocity profiles increase with the increasing values of

suction parameter Fw• The maximum values of the u-velocities have been found as l.0 at the

boundary wall for Fw= -1.15, -1.0, -0.8, -0,5, "0.2 and 0.0 which occur at the same point I)=

0.0 and then the velocities decrease with the incrcasing values of T/ and finally velocity

profiles approach to zero (the asymptotic value).

In fig. 4.3 v-velocity becomes negative in a certain region of thc boundary layer for different

values of suction parameter Fw while Prandtl number Pr = 0.72, viscosity variation

paramcter 7 = 1.0. Slightly ups and downs of v-velocity profiles for different valucs of

suclion parameter Fw are found in the boundary layer.

For the temperature profiles, figure 4,5 shows that boundary laycr thickness increases with

increasing values of snetion paramctcr F~. The maximum values of tempcrature profiles are

found as 1.000 forFw= -1.15 -1.0, -0.8, -0 5, -0,2 and 0,0 that occur at the same point The

change of temperature profiles in the TJ direction also shows the typical temperature profile

for free convection boundary layer flow lhat is the value of temperature profile is 1.0 (one) at

the houndary wall then the temperature profile decreases gradually along TJ direction to the

asymptotic value.

u-velocities for three suction values, two injection values and neutral value of F" (neither

suction nor injection) are represented in fig, 4,2. It has been found that u-velocity takes the

values -0,0204, -0.0094, -0.0089, -0.0075,-0.0081,-0,0015 and O.oJ08 at I)= 5.000 for F", = -

1.0, -0.50, -0.20, -0,10, 0.0, 0,5, 1.0 respectively i.e. velocity increases WIth the mcreasing

value of F••.From the figure it has been found that u-velocity boundary layer thickncss for

neutral (no suction or injection) position is larger than boundary layer thickness due to

suction but smaller than boundary layer thickness due to injection. It is obscrvcd that at 1)=

5.000 the velocity increases as the suction and injcction parameter Fw changes from, -1,0 10

1.0,

v-velocity for two suction values, two injection values and neutral values of F•• arc

represented by fig.4.4. It has been found from the figure that v-velocity for injection is larger

than that of due 10 suction, v-vclocily lakes the values-l.O, -0.50, -0.20, 0.00, 0.50, 1.00 for

F••=-1.0, -0.50, -0.20, , 0.0" 0,5, 1.0 respectively at starting point T/ = 0.0 then velocity

decreases gradually.
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In figure 4.6 tcmpcrature profiles are presented for suction, injeetion and neutral position.

Temperature for neutral is larger than lemperature due to suclion and smaller than

temperature due to injection. From maximum and common value 1.0 temperature profile

decreases for increasing values ofl] while Fw = -1.0, -0.50, -0.20, 0.0, 0.5, 1,0.

The variation of the u-velocity, v-velocity and temperature profiles for different values of

Prandtl number Pr while suction parameter Fw = 0.5 and viscosity variation parametcr T

=1.5 are shown in the figures 4,7 to 4.9, For the velocity profile, figures 4.7 and 4.8 indicatc

the occurrence of the increase in u-velocity and decrcasc in v-velocity respectively with

increasing PrandtJ number Pro It can also be seen that u-velocity increases and v-velocity

decreases with increasing values of Prandtl nlImber Pr except Pr = 0.2, It is observed that

the value of u-veloclty and v-velocity ups and downs against some values of 1]while Pr =

O.2.This phenomenon is known as velocity defect. In the figure 4.9, it can be shown that

temperature profiles dccrcasc with increasing values of the Prandtl numbcr Pr.

The effect for different values of viscosity variation parameter T, the vclocity and

telllpera~urc profiles \vhile Prandtl number Pr = 0.72 and suction parameter Fw =0.5 are

shown in the figures 4.I0 to 4.I2.

The increasing values of the viscosity variation parameter T in figure 4, 10 reprcscnt that thc

u-velocity profiles decrease near the surface of the moving vertICalplate but the valucs of the

u-velocity profiles don't decrease smoothly for = 0.7, sometimes the velocity profiles

increase for decreasing "[ while 1] < 2,10 they meet and then cross and increase for

increasing t aftcr I)> 2.15.

It is observed from the figure 4.11 that thc v-velocity increases gradnally with increasing

value of viscosity variation parameter T. Starting with the fixed value the v-velocity profile

increases slowly near the surface of the moving vertical plate and increases rapidly fur from

the plate.

The changes of temperature profiles in figure 4.12 show the typical temperature profile for

natural convection boundary layer flow that is the value of dimenSlonless temperature is 1.0

at the boundary wall then the temperature profile decreases gradually along I) direction and

approaches to zero, the aSjm1ptoticvalue. Numerical values of u-veJocity, v_velocity and

temperature profiles, for different valnes of Fw (Suction, injection or neutral positioll of
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Chapter 4: Surface temperature varying w(th function of x and inversely with function of I

suction and injection) have been shown in Table 4. L All the u-vc!ocity, v-velocity and

temperature are observed to increase for increasing Fw from the table.

Table 4.1: Dimensionless u-velocity, v-velocity profiles and temperature profiles against IJ

for different values of suction and injection parameter Fw with other controlling parameters

Pr=O.72,T=1.0

u-veloeity for di frerent v-velocity for di fferent Temperatureprofile for
values ofFw values of Fw dIfferent values of F"

'I

IF.~-O.[OFw= 0.0 w=O.to F",~.OIOFw= 0.0 k=0.10 ",~.O.10F~=0.01-""=010

0,0000 LOOOO 1.0000 1,0000 _0.5000 0,0000 0.5000 10000 1.0000 [,0000
0,1000 0,8073 0.8599 0,9224 -0.5900 _0.0915 0.4072 0,8575 0.8723 0,8854
0.200n 0.6516 0.7406 0.8528 _0.6626 -0.1680 0.3274 0.7375 0.7627 0.7855
03000 05257 0.6389 07902 -0.7213 _0.2320 02585 0,6360 0.66~6 06983
04000 o 423~ 0.5520 07337 .0.7685 -0,2856 01991 05500 0.5874 06219
0.5000 0,3410 0.4777 0.6825 -0.8066 _0.3305 0.1477 0.4769 o.sln 0.5550
0,6000 0,2738 0.4139 0,6362 -0.8372 .0.3682 0,1032 0,4145 0.451>4 0,496[
07000 0,2191 0.3592 0.5940 -0.8618 _IU998 0,0647 0.3612 0.4036 04443° ~OIX) 01745 D.3121 05556 -0.3814 -11.4263 00312 0.3155 0.3577 IU986
0,9000 ° 1383 D.2715 0.5205 .0.8970 -0.4485 00020 0.2762 D,}17G 0.3582
1.000U 0.1087 0.2365 0.4883 -0.9093 _0.4672 _0.U233 0.2423 O.2N25 0.3224
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"Figure 4.1: Dimensionless u-velocity profiles against similarity
variable 'I for diflerent values of Fw (suction) while Pr = 0.72,
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"Figure 4.2: Dimensionless u-velocity profiles against similarity
variable T/ for different values of F" (snclion and injection) while
Pr = 0.72, r=l.O
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4.5 Conclusion

Group-theory method has been employed to find similarity solution of the unsteady free-
convection flow from a moving vertical surface with suction and injection. The effect of
suction and injection parameter on unsteady free- convection flow from a moving vertical
surface has been investigated for different values ofre1evant physical parameters, The case
"Unsteady free.convection with surface temperature varying directly with a fllllctiotl x atld
inversely with thc square of a function of I, the flow velocity at wall varying directly wjth a
function x and inversely with a function of I and suction and injection velocity varying
inversely with a square root of a function of /" has been studied analytically using two
parameter group and then numerically. The u-velocity, v-velocity and temperature are
presented for different values of suction and injection parameter Fw, viscosity variation
parameter T and Prandtl number Pro

• Two-parameter group-theory method has been applied to reduce the number of
independent variables and thcn partial diffcrcntial equations have been \ranSfOffilCd to
ordinary differcntial equations. The resulting nonlinear ordmary differential equalions
have been solved anal}tically and thcn numerically using the si>;th order Runge-Kulla
shooting method,

• The increasing values of suction and injection parameter Fw lead to increase of the u-
~eloeity, v-velocity and the temperature profiles while Pr = 0.72 and T = 1.0.

• Due to increasing values of Pramltl number Pr leads to increase of u-velocity and
decrease of v-velocity profiles near the moving vertical platc. But u-vclocity and v-
velocity ups and downs against SOmCvalucs of 11far from thc moving vertical surface
while Pr = 0.2. Thermal boundary layer thickness decrcases for increasing values of
Prandtl number Pr while Fw = 0.5, 7"= 1.5.

• The effect of viscosity variation parameter T on the u- velocity profile, v-velocity
profile and temperature profile has been investigated here. The u-velocity profile
dccreases near the surface of the moving vertical plate but the values of the u-vclocity
profiles don't decrease smoothly for 1: = 0,7. V.velocity increases gradually with
increasing viscosity variation parameter T. Temperature has been observed decreases
with increasing values of the viscosity variation parameter T,
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4.6 Extension of this work

1. Consideration of mixed convection flow instead of free-convection flow can extend
thc problem.

2. Taking sphere or cylinder as a moving surface instead of moving vertical plate can
extend the problem

3. Species concentration and mass transfer may be included 10extend the problem.
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Appendix

Runge-Kutta Shooting Method

In shooting method, the missing (unspecified) initial conditions at the initial point in the

interval is guessed and differential equation is then integrated numerically as an initial value

problem to the terminal points by Runge-Kulla method. Calculated values arc then compared

with the given values at the terminal points, if there is any difference (error) found guessed

values must be changed before next iteration. This process is rcpeated until the agreement

between the calculated and the given condition at the terminal point which is within the

specified degree of accuracy.

The boundary conditions associated with non-dimensional ordinary dlfferential equations of

the boundary type arc of the two-point asymptotic class. Two-point boundary condllions

have values of the dependent vanable specified at two different values of the independent

variable.,Specification of an asymptotic boundary condition implies that u and e tcnds to

unity as the outcr specified value of the independent variable is approached.

The method ofnumerieally integrating a two-point asymptotic boundary-value problem of

the bOllndary layer type, the initial value method, requires that it be recast as an initial value

problem. Thus it is necessary to estimate as many boundary conditions at the >urfaee as were

given at infinity. The solution has been achieved assuming the rcquired outer boundary

conditions arc satisfied after the integration of governing differential equations by the

assumed surface conditions. If this is not satIsfied, another new slHface boundary condltion

IS estimated for the next trial integration. But this is not so easy, because selecting a value

may result in the divergence of the trial integration or in slow convergence of surfacc

boundary conditions required satisfying the asymptotic outer boundary condition. Moreover,

selecting too large a value of the independent variable is expensive in terms of computer

time. Nachtsheirm-Swigert developed an iteration method, which overcomes these

difficulties. If in bOllndary equations there are two asymptotic boundary conditions and

hence two unknown surface conditions are u' = g, andO' = g"



Appendix

Within the context of (he initial value method and the Naehtsheim-Swigert iteration

technique, the outer boundary conditions may be functionally represented as

u(l7m•.•) = u(g" g,) = 0,

B(I7",,)= e(g" g,)= 0,

F(I/",,) = F(g" g,) '" 0,

With the asymptotic convergence criteria given by

u'(I7""",) = u'{g" g,) = 0,

Expanding the equation (A 1)-(A5) in a !irst order Taylor's series gives

'( ) ,( ) au' au' 0u 17m" =u, '1rna, +--;--6g,+-,-6g, = 4
L.g, ag,

(AI)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(AIO)

Where subscript 'C' indicates the value of the function at 1J"~,determined from the trial

intcgration. Solution of these equations in a least-squares sense requires determining the

minimwn value of

£=0'+0'+0"+0"+0', , , , ,
Differentiating (AI I) with respect to g" we have
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2o, as, + 20, 00, + 2<5, 00, + 2<5, OJ, +20, oJ, = 0
og, og, og, og, og,

"os, ~ 00, ,,0o, ~ 0°4 ,,00, _0:::)UI~+U'-+UJ-+U,_h, __
og, og, og, og] og,

'r '" '")'" r 00 ae )ao0=:) ", +--"g, '-ilg, -+ Be +-ilg, +-,-ilg, _
og, og, og, og, og, og,

r of of )aF r, ou' au' )01/'+ F,+-ilg, +-ilg, -+ 11, +_"g, '-ag, __
og, (]g, (]g, Cg, og, og,

roe' oe') aB'+ 13:+-ilg] +-ilg, -00
og, og, Og,

,[ Oil 011 + 013 oe + of of + Bu' Bu' + 013'OB'],g
og]og, og,8g, og,og, Dg,og, Og,og, '

r a" 0 aB F aF ,011' B' 013')=- II -+ -" --h __ , _
"ag, <og, 'og, 'og, 'Og,

DiiTerentiating (All) with respect to g" we have

20 oi:J~ 2" oS, 2" oJ, 2" 8J, 2305, 0",-' ",-+ U,_+ u.--' ,__ 0

og, og, Og, og, og,

~ 00, ~ oS, ~ 00, 0 oJ, ~ DS,
0=:) u1-+Ul-+uJ-+u._,_+u,_=OOg, og, og, og, og,

r a" '")'" r ao ae )ao0=:) 11,+-"g, '-ilg, _+ e,+-ilg, +_"g, __
og, og, og, Og, og, Og,

, -

r aF OF) aF r, ,"' a"' ) ,"'+ F,+-"g, '-'g, _+ u,+_,'\g, +_"g, _,_
og, og, og, og, og, og,

roB' oe' ) aB'+ e;+-ilg, +-ilg, -00og, og, og,
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Appenuix

r au oe of, cu' ,oe')"'- u -+8 -+F -+u -+8_
' og, , cg, ' 8g, ' 8g, ' og,

We can write equations (A12) and (A 13) in a system oflinear equations as follows:

(AI3)

a"iI,g,+a,,!">g,"'b,

Where

au GU 08 DO 3F cF cu' au' 8IJ' 30'" "--+---+--+--+---
" Og,8g, Ag, cg, Og,og, 8g, Og, og, cg,

r au 8B of, au' , 80')b"'- II -+8 -+F -+u -+8--t"" ,8g, og, ag, 8g, og,

GU au ae oB 8F of au' GU' aB' 8e'a "' __ +__ +__ +__ +__
" 8g, ag, Ogj 8g, Og,og, cg, 8g, og, Gg,

r au 8e of ,ou' , EJe')b=- u -+B -+F -+u -+0_
' 'Gg, 'og, 'og, 'og, '8g,

From equations (AI2) and (A13), we have
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6g,
det A,
detA'

det A,
Lig, '" detA

Then we obtain the missing (unspecified) val lIes g, ,g, as

g, '" g, + "'g,
g, '" g, +1ig,

TllllS adopting the numerical technique described abo~e, the solutions of the non-linear

differential equations with the boundary conditions are obtained together with the slxth-onler

implicit Runge-Kutta intial vallIe solver.

64



References

Abd-el-Malek, M. B., Badran, N, A, Group method analysis of unsteady free-convective
laminar boundary-layer flow on a non 'isothermal vertical circular cylinder, Acta Mech. Vol.
85, pp.193-20G, (1990).

Abd-el-Malek, M, B., Badrau, N, A., Group method analysis of steady frcc-convective
laminar bOllndary-layer flow on a non isothermal vertical cin:ular cylinder,}. Campu!. Apr!.
Math.vol. 36, pp.227-238, (1991).

Abd-el-Malek, M. 8., Kassem, M. M, and Mekky, M. L, SImilarity solutions for unsteady
free-convection flow from a continuous moving vertical surface, Journal of Complllational
and Applied Mathematics, Vol. 164-165, pp.11-24, (2004).

Ames, W. F., Nucci, M. C. , Analysis of fluid equations by group methods, J, Eng. Math ..
Vol. 20, pp.181-187, (1985),

Ames, W. F., Nonlinear Partial Differential EqllutiollS ill Engineenng, Vol. 11, Academic
Press, New York, Chapter 2, (1972).

Birkoff, G" Mathematics for engineers, Elect. Eng, vol. 67, 1185, (1948).

Birkoff, G., Hydrodj'1lamics, Princeton Umv. Press, Princcton, New Jersey, (1960).

Bluman, G, W., Cole. 1. D" Smlilarity methods of differential equations, Springer, New
York, (1974).

Butcher, J. c., Implicit Runge-Kutta process, Math. Comp., vol. 18, pp. 50-55, (1974).

Chen,T. S., Strobel, F. A., Buoyancy effects in boundary layer adjacent to a contiuuous
moving honzontal flat plate, J. Heat Transfer, vol. 102, pp, 170-172, (1980),

Gabbert, C. H., Similanty for unsteady compressible boundary layer, AlAA J,5, No.6,
(1967).

Gaggioli, R. A., Moran, M. J., Group theoretic technique for the similarity solution of the
systems of partial differential equations with auxiliary conditions, Technical Summary
Report No. 693, Mathematics Research Center, U.S, AnllY, University of Wisconsin, (1966).

Illingworth, C. R., Unsteady laminar flow of gas near an infinite flat plate, Proc. Camb,
Philos.Soe, vol. 46, pp. 603-613, (1950).

Kumari,M., Slaouti, A., Takhar, H. S., Nakamura, S" Nath,G., Unsteady free convection
flow over a continuous moving vertical surface, Acta Mech., vol. 116, pp. 75-82., (1996)

Lee, S. L.,Tsai, J. S., Cooling of a continuous moving sheet of lnite thickness in the
presence of natural convection, Int. J. Heat Mass Transfer, vol. 33, pp. 457-464, (1990)

Michal, A. D., Differential invariants and invariant partial differential equations under
continuous transformation groups in normal linear spaces, Proc. Nat. Acad. Sci. U,S.A, vol.
37, pp. 623-627,(1952).

Morgan, A. G. A., The reduction by one of the number of independent variables in some
systems of partial differential equations, Quart. J. Math., vol. 3, pp. 250-259, (1952).

~t
I



References

Moran, M. J. and Gaggioli, R. A., Similarity analysis of compressible boundary layer flows
via group theory, U. S. Anny Math. Research Center, Tech, Summary Report No, 838,
Madison, \Visconsis, (1967),

Moran, M, J, Gaggioli, R, A., A new systematic fonnalism for similarity analysis, with
application to boundary layer fows, Technical Summary Report No. 918, U.S. Anny
Mathematics Research Center, (1968).

Moran, M. J., Gaggioli, R,A., Reduction of the number of variables in systems of partial
differential equations with auxiliary conditions, SIAM J. Appl. Math., voL 16,pp. 202-215,
(1968).

Moran, M. J. and Gaggioli, R. A., Similarity analysis via group theory, AlAA J.6, 2014-
2016, (\968)

Moutsolglou, A., Chen, T. 5., Bl.IOyancy effects in boundary layer on inclined continuous
moving sheets, J. Heat Transfer, vol. 102, pp. 371-373 (1980)

Naehtsheim, P. R. and Swigert, P., Satisfaction of Asymptotic Boundary Conditions in
Numerical Sohdions of Systems of Non-linear EqL1ations of Boundary-layer Type, NASA
TN-D3004, (1965).

Ostach, S., New aspects of natural convection heat transfer, Transactions of the ASl\1E, vol.
75, pp, 1287.1290, (\953).

Ostach, S., Combmed natural and forced convection lammar flow and heat transfer of fluids
with and without heat sources in channels with linearly varying wall temperature, NACA
TN,3141 ,(1954)

Ramachandran, N., Annaly, B. F., Chen, T. S ,Correlation for laminar mixed convection on
boundary layers adjacent to inclined continuous moving sheets, Inl. J, Heat Mass Transfer,
voL 30, pp, 2196-2199, (1987).

Siegel, R., Transient free convection from a vertical flat plate, Transactions of the ASME,
30,347-359,(1958),

Soundalgekar, V, M., \Vavre, P. D., Unsteady free conveetion flo" past an infinite vertical
platc with constant suction and mass t"msfer, lnt. J. Heat Mass Transfer, voL 20, pp. 1363-
1373 (1977).

Williams, 1. c., ML1lligan, J. c., Rhyne, T, B., Scmisimilar sollilion for unsteady free-
convective boundary layer-flow on a vertical nate plate, 1. Fluid Mech., vol. 175, pp, 309,-
332,(1987).

Yang, K. T., Possible similarity solutions of laminar incomprcssible boundary layer
equations, Trans AS.\-IE, Vol. 80, pp. 1553- I559, (1958).

Yang, K. T., Novotny, J. L, Cheng, Y. S., Laminar free convection fj'om a nOn- lsolhennal
plate immersed in a temperature stratified medillm, Inl, J. Heat Mass Transfer, vol. 15, pp.
1097-1109, (1972).

Zakerullah, Md., Similarity Analysis, First Edllion, Bangladesh University of Engineering
and Tedmology, Dhaka-1000, (2001).

66

•


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078

