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Abstract

Two-paraineter transformation group-theory method is applied to present the analysis and
analylic solution of the problem of unstcady free-convection flow from a moving vertical
porous surface considerning suchion and injection. The application of two-parameter groups
reduces the number of independent vamables by one, and conscquently the system of
governing partial diffcrential cquations with boundary conditions reduces to a system of
ordinary dilfcrential equations with appropriate boundary conditions. The possible forms of
difference between wall temperature and the ambient flud temperaturc variations arc
derived. The reduced ordinary differential equations obtained from the malthematical model
of the present problem are then solved numerically using the shooting method known as
Runge-Kutta-Buicher initial value problem solver togcther with the Nachtshenn-Swigert
ieration scheme described by Nachtsheun and Swigert. Programming codes have been
written in FORTRAN 90 to implement shooting method for the present problem. The post
processing software TECPLOT has been used to display the numertcal results graphcally.
The effects of diffcrent values of Prandtl number Pr, suction and injection parameter F,,
viscosity variation parameters 7 and r on velocity and temperature profiles have heen
discussed with the help of praphs and tables. Comparisons of suction, injection and ncutral

position {no suction or injcction) have been analyzed grapheally and in tabular form.
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Chapter 1

1, Introduction

Applications of group-thcory in Muid mechanics and boundary layer {low have received
much attention by many researchers as the concepts of group theory are extensively used in
similarity and non-similarity related problems. Group-theory mcthod provides a powerful
tool to nonlincar differential models. The transformation group theory approach is applied to
present an analysis of the similarity problem of unsteady free-convection [low from a
moving verlical surface with suction and imjection. The application of two-parameter groups
reduces the number of indcpendent vanables and consequently the system of goveming
pariiaf dilferential cquations with the boundary conditions reduces (o the system of ordinary
differential cquations with appropriate boundary conditions. The advantages of the group
theory method are obvious. The first is that the method is rather simple o apply. There is no
concern about boundary conditions, choices for various finetions, cte. Secondly, in reducing
the number of independent variables by two it is possible (0 obtain a new system of partial
differential equations without cenlinuing to obtain ordinary differential cquations. The
possible advantage of eroup-theory method is that it transforms the partial differential
equations into ordinary differential equalions that makes possible to solve wider variety of
problems in this manner. It would be very interesting to explore this possibility in solving
the boundary layer equalions. Foriunatcly, the types of group employed in the examples
seem to be adequate for yielding (he ¢lasscs of similarity transformations obtained by other

methods, However, the group- theory methods should yield complete results with less effort.

The thermal boundary layer induced within a vertical semi-infinite layer of Boussinseq (luid
by a conslantly heated plate. Heat transfer problem in the boundary layer on a moving
surface has instances of implementation in fluid mechanics. Recently, unsteady conditions of
motion and heating of bodies in fluids have become important in certain applications for

some enginecring ficlds of acrodynamics and hydrodynamics.



Chapter 1: Intreduction

The problem of group theory method on similarity solutions for unsteady frec-convection
flow from a moving vertical surface has also pained dilferent dimensions in the

manufacturing processes in industries.

Similarity system is preferred for the measurements over the Botish Engineering system.
Similarity analyses determine the conditions under which the inodel experiments are to be
performed and the essential parameters involving in the processes are predicated. Similarity
analyses leads to have the idea of dimensionless numbers. Dimensionless analyses vield a
functional relationship between ihe dimensional products. Dimcnsionless analyses also
reduce the experimental cost highly in mosl of the solution of the problem in comparison

with cost required for the variables of the phenomenon separatety.

Hydraulic characteristics of a [luid change with tme if the flow 1s unsteady, If water flows at
a changing rate, as is the casc when tap is just opened, the flow is unsteady. The introduction
of time as the third independent variable in the unsteady problem increases the complexity of

the problem.

The Phenomenon of frec convection arises in the flmd when temperature changes cause
densily varation leading to bueyancy forces acting on the fluid elements. This can be seen in
everyday Iife in the atmosphenc fow, which is driven by temperature ditlercnecs. When the
vertical plate is being heal, the wr layer adjacent to the wall expands and arises due to

buovancy. A free convection boundary layer is formed adjacent to the wall surface.

Suction or injection is ncccssary to control the boundary layer flows by injecting or
withdrawing fluid through a heat boundary layer wall. The plate from which the fluid enters
into the flow region is known as plate with injection and the plate from which the flud
leaves out the flow region is known as plate with suclion. Since this can enhance heating or
cooling of the boundary laver systern, it ¢an help delay the transition [rom the laminar o
turbulent flow. Boundary layer suction 1s used to contrel laminar and turbulent separation
removing flow of the low momentum, The techniquc is used in air wings and in some wind
tunnels to control the laminar [low. Blowing (injection) on boundary layer of high
temperature ¢omponents can maintain a thin layer of colder flow that allows the system to

function with very high Nuid velocity.
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Many attempls were made to find analytical and numerical solutions applying cerlain special
conditions and using different mathematical approaches but for stationary verlical pilate.
Ilingworth {1950) studied the problem of unsteady laminar (low of gas near to an infinitc
flat plate. He obtained solutions, which are available only with Prandtl number umty and

under transient conditions of step change in the surface temperature.

Siegel (1958) investigated the transient (ree convecction f[rom a vertical plate. Free
convection flow past vertical plate has been studied extensively by Ostrach (1953, 1954) and
many others in various soluticn technique. Possible similarity soluttons for laminar frec
convection on verical plates and cylinders have been studied by Yang (1960). He
established some necessary and suflicient conditions for which similarity solutions are

possible.

Soundalgekar (1977) studied the unsieady frec convection flow past an infinite vertical plate
with constant suction and mass transfer. Tl was assumed that the plate temperature oscillates

in such a way that its amplitude is small.

Williams ct al. (1987) obtained semi-similar solutions for the unsteady free-convective
boundary-layer [low on a veriical platc using an implicit Ginite difference method. In 1990
and 1991 four works concemning the same problem were introduced applying the group-

theory method.

Abd-el-Malek and Badran (1991, 1990) analysed the steady and the unsteady fiee-
convective laminar boundary-layer Mow on a non isothermal vertical circular cyhinder,
Recently, many studies have been madc on the steady free convective boundary-layer [low

om moving vertical plates considering the effect of buoyancy forces on the boundary layer.

Some of these studies are presented 1n the work of Chen and Strobel (1380), Moutsolglou
and Chen (1980), Ramachandran et al. (1987), and Lee and Tsai (1994}, Kuman et al. (1996}
investigated the unsteady free convection [low over a continuous moving vertical ptate, the
Keller box method and Nakamura's method were used to solve the differential equations

governing the flow.

Zakerullah {2001) derived similarity solutions of some of possible cases of unsteady mixed
convection by group theory without suction. He also investigated steady natural convection

by group lheory method without suction.
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Finally, Abd-el-Malek et al. {2004} investigated the unsteady frec convection [low over a

continuous!y moving vertical surface.

The mathematical technigque used in the present analysis is two-parameter group
transformation thal leads to a similanty representation of the problem. Morgan {1932)

presented a theory that led to improvements over earlier simtlanty methods.

Michal (1932) extended Morpan’s theory. Group methods, as a class of methods which lead
to a reduciion of the number of independent variables, were first introduced by Birkolf
{1948,1960} He made use of one paraméter group transformations to reduce a system of
partial dilferential equations in two independent variables to a system of ordinary differential

equations in onc independent variable, the similarily vanable.

Morgan and Gaggioli (1966, 1968) presented general systematic group formalism for
similarity analysis, where a given system of partial differential equations was reduced to &
system of ordinary differential equations. They utilized clementary group theory for the
purpose of reducing a given system of partial differential cquations to a system of ordinary
differential cquation in a single variable. Similanity analysis has been applied intensively by

Gabbor (1967}

In this work, the effect of suction and injcction on uusteady free-convection [low over a
moving vertical plale has been mvestigated. Problems are solved analytically using group
methods and then numerically by Runge-Kutta shooting method. Under the application of
two-paramater group, the governing partial differential equations are reduced to system of
ordinary differential equations with the appropriate boundary conditions and the resulting
nonlinear sysiem of difTerential equations arc solved analytically and then numencally using
the sixth order Runge-Kutta shooting method known as Runge-Kutta-Butcher imitial value
problem solver of Butcher (1974} together with the Nachtsheim-Swigert iteration sche:;'ne
described by Nachtsheim and Swigert (1965). Programming codes have been written in

FORTRAN 60 to implcment shooting method for the present problem.

Altention has been taken on the evaluation of the velacity profiles as well as temperature
profites for selected values of parameters consisting of suction and ijection parameter £,

Prandtl number Pr and the parameters oand rdue to viscosily variation.
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The numerical results of the velocily profiles as well as temperature profiles are displayed
graphically for different values of Prandtl number, suction and injection parameter and
viscosily variation parameters. The post processing soltware TECPLOT has been used fo

display the numerical results graphically.

In chapter-2, a thin non-isothcrmal porous continuously moving [lat sheet has been
considered which is heat. The physical model with co-ordinate systemn for unsteady free-
convection flow from a moving vertical surface with suclion or injection has been shown in
fipure. The governing equations of the above physical problem with appropriate boundary

conditions are obtained by mathematical modeling.

Then the momenium and energy equations are transformed into non-dimensional form.
Three independent variables have been reduced to one similarity variable and governing
cquations arc transformed inte ordinary differential equations. Then group systematic
fonnulalion and invanance analysis are used to find out two- parameter group The complcte

sets of absolute tovariant are also discussed.

In chapter-3, the effect of suction and injection on unstcady free-convection [low from a
moving vertical surface for the case of “Unsteady free-convection with surface temperature
varying inversely as a lincar combination of x and 1, the flow velocity at wall varying
dircctly with In function of (x, 1) and the suction and njection velocity varying inversely as a
square toot of the lincar combination of X and " have been investigated. Velocity profiles
and temperature prefiles have been displayed graphically for the wide range of suction,
injection parameter Fw, Prandt]! number Pr and viscosity variation parametcr o. Then
variation of velocity and temperaturc profiles due to suction, injection and neutral position

(hcither suction nor injection) have been presented in labular form.

In chapter-4, the cffeet of suction and injection on unsteady free-convection llow from a
moving verlical surface for the casc of “Unsteady free-convection with surface lempcrature
varying directly with a function x and inversely with the square of a function of t, the flow
velocity at wall varying directly with a function x and inversely with a function of t and
suction and injection velocity varying inversely with a square root of a function of t7 have
been investigated. Velocity profiles and tempcrature proliles have been displayed

graphically for the wide range of suction and injection parameter F,,, Prandt] number Pr and
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viscosity variation paramelers . Then variations of velocity and temperature profiles due to
suction, injection and neulral position (no suction or injection) have been presented in

tabular form.



Chapter 2

Mathematical formulation, Invariance analysis and
Group investigation

2.1 Introduction

Unsteady free-convection flow from a4 moving veriical surface with suction and injection is
discussed in this chapter. A thin non-isothennal porous sheet has been considered as a
continuous moving flat sheel . The moving (lat sheet has been taken vertically. The nou-
isothermal porous moving flat sheet 15 heated and boundary layer equations with houndary
conditions are governed. Then the velocity and temperature of the eoverning equations are
transformed in non-dimensional form. Three independent variables have been reduced to one
similarity variable and poverned equatioms are transformed into ordinary differential
equations. Then Group systematic {ormulation and invanance analysis are used to find out

lwo- patameter group. The complete set of absolute invariant 1s also discussed here.

2.2 Mathematical formulation of the problem and the
governing equations

Unsteady laminar (low of an incempressible Muid cansed by a continuous moving flat sheet
illustrated 1n Fig.2.1 issues from a thin slit at x = ¥ = 0 and is subsequently stretched
vertically. The positive x coordinate is measured along the direction of the moving sheet
with the slot as the origin and the direction ‘" 15 measurcd normal to the sheet. The non-
isothermal porous sheet is heated which gives nse to a buoyancy force and the temperature
distribution over (he plate T, will be a function of the vertical distance x and the time 7. The
luid is isothermal of constant temperature 7, far from the sheet such that 7. >T. The
velocity of the moving sheet is time dependent. The physical configuration constdered is as

shown in Fig. 2.1:
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=Y

Figure 2.1: Physical model and co-ordinate system

Under the boundary layer approximation the free convection flow over the moving shect is

gnvemetj by the following boundary laver eguations and boundary conditions,

Continuiry cquation:

?u_lﬂ_ii—ﬂ {j I)
ce  dy -

Momentum equation:

o' Lou  ,ou &y
—+ v

—-— = + r-r. 212
o o &y Uayf 84 f'") (22}
Energy equation:
- |
O o,y _ver (23)
& gx & Prd?
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Boundary conditions:

u(x,0t) =u, {x1), V(&0 = v, (x,1), T(x,0,1) = T, {xt) aty=0
w'(xyt)=0, T, v, 00=T, a8 y — oo (2.4)

where u’'and v'are the velocity components atong the x and y directions respectively, T is
the temperature; g 13 the acceleration duc to gravity, Pr 15 the Prandt] number which 15 the
ratio of the kinematics viscosity ‘v to the thermal difTusivily ‘e "(i.c. Pr = va) §1s the co-
elficient of thermal expansion; u,, is the flow velocity at the wall and 75, is the temperature ol

the moving sheet.

2.3 The transformed equations and methods of solution

Now, non-dimensional velocity and temperature are introduced as
=10ty V=¥, 8= (T~ T (T~ T}

AT= (T, -T.) implies 8 AT =(7=7.)

The non-dimensgional {omms of the equations {2.1) te (2.3) are

u—"i+uw7+-qv~=ﬂ (2.5)
ax ox oy
uaf—“+uwﬁ+u,2uﬂ+uwuzéﬁ+vuw%=w;“f~_—f+gﬂﬁi"ﬂ {(2.6)
ot ot 523 &y ay

ae 36
ﬁ+4'l':" E-[ln.fi*.i")+u!uw—-r:i)‘—(lneﬂt.fr'"}}+m:wEw.f—:i—;
& ar & & & Prdy (2.7)
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The associated boundary conditions are transformed to

u(x0)=1,v{x 00 =v (x, ) 6x0)=1 aty=0
u(x.y.t)=0, Hx, v, 0=0 asy — oo (2.8)

The method of solution depends on the application of two-parameter group transformation to
the system of partial differential cquations {2.5)-(2.7). Under this transformation, the three
independent variables x, y, | will be reduced to one similarity vanable ‘n’ and the
differential equations (2.5)-(2.8) will be transformed to a system of ordinary differential

cquations in only onc independent variable, which is the similarity vartable *n’

2.3.1 The group systematic formulation

The procedure is imtiated with the group (G, a class of transformation of two parameters
{a;, a2) of the form
G:§=C"a,a,)8 + K (a,,a,) 2.9)

Sstands for x, y, ¢ @, v, 4, A7, &and the S and K5 are real-valued and at least differentiable

in cach real argument.
2.3.2 The invariance analysis

To transform the differential equations, transfonmation of the denvatives are obtained from

(¥ via chain-rule operations

10



Chapter 2: Mathematical formulation, Invariance analysis and Group investigation

f:x,y,.t‘ (2.1{]}

_ [ & J j=xpt
o= E— &y
:'J.- c,ac,r )

Where S stands foru, v, w,., AT and &

Now equation (2.5} 15 said 1o be invartantly transformed whenever

7 g T T )| w Ty, B (2.11)
T " ox e T a ey

for some function H;(a;,a;) which may be a conslant.

Substituticn from (2.9 and (2.10) into (2.11), the functions and their partial derivatives

yiclds
[alals ]u-ai e ], Zic ff:f]ﬁ +R
& x &¥
: . _ (2.12)
£, e oV
= fﬂ(‘ﬁzﬂz}{u':”“”w T+_i|
% oy

o LA LA A 7%

The invariance of (2.12) implies Ry = 0. Tlis is satisfied by putting

KK ' = {2.13)
and
[CYC™/C* ] = [CY/C*]1=H,{a,.a,) (2 14)

where H; (a;,az) = constant

Equation (2.6) is invanantly transformed giving

11



Chapter 2: Mathematical formulation, Invarfance analysis and Group investigation

K'=K*=K"=K*"=K ? =0 (2.15)
and

{Cucuwjrcl:] - [(Cuw ]1‘( Cu)!j.lc.:] = [Cvcuw Cullfc:,] = [Cu“ C"'.'"(CY]E] = [C&Tcnﬁ']

(2 16)

=H,(a,.3;)
Where Ha(a;,az)=constant.
In a similar manncr, the invariant transform of {2.7) gives

K=K =K'=K"=K'=0 (2.17)
and

[C? /CH) = [CPC C™/CT ] = [C*CHC 1= [CPHC ] = H,(a,,a,) (2.18)
where Hj (a;, 81) = constant.
Morcover, the boundary condilions {2.8) arc also invartant in form, whenever

K¥=0 {2.19)
and

C=C"= (2.200)

Now, combining equations (2.14), (2.16), (2.18) and invoking the result (2.20) yields
C = (CY¥,CY =10, C = OV (Y, O =T ey (2.21)

Sa, two-parameter group G is found which transfonus invariantly the differential equations

{2.5), (2.6}, (2.7) and the boundary conditions {2.8). The group G is of the form

12



Chapter 2: Mathematical formulation, Invariance analysis and Group investigation

% =) ]+ k7

7]y

7= [y e &

b5y

)

&
AE]
I

(2 22)
v:[mjv]v

7, =[CTCY ]u,

AT = CYAT

8 =0

2.3.3 The complete set of absolute invanants

Use of group methods to represent the problem in the form of an ordinary differential
gquation {Similarity rcpfcscntat[nn} in a single independent variable {Similarity vanable) has

taken as an aim.

The complete set of absolute invariants 1s:

a) 1 = n(x, v, t) is the absolute invariant of the independent vartables x, y, %

b)Y glx, y, t;u, v, U AT, B) = F;(n{x, v, 11} J = 1,2,3,4.5 are the {ive absolute vanants

Corrcsponding to the five dependent variables u, v, u,. ATS,

The application of a basie theorem in group theory by Moran and Gaggioli (1968) states that;
a function g (x, y, t: u, v, uy, AT, 8} is an absolute invardant of a two-parameter group 1f 1t

satisfies the two [irst- order linear differennial equations

13



Chapter 2: Mathematical lormulation, Invariance analysis and Group investigation

{alx+a2)%f—+(a3y+a,)%+[asr +aﬂ)%§a+(afu +a,)%+(agv +a,u]%

'3 dg % _ (2.23)
+(au, +au}auw +(aur}.T+a,4]—-a(ﬁT} +(a159+a,5)a§ 0
anil
B+ ) E+(By+ 1) g+(ﬂ5r+ﬁa) B (B BYE (B + i)
(2.24)

_"'(ﬁn“w +ﬂ|1] % +(ﬂ|1‘51 +ﬂ:¢) (Jﬁi} ﬂm}ﬁzﬂ

{ r)

where a, = (Eﬂ%g )(af,a?)
|

-8, Jatad

- (ac%az ](a,ﬂ,a;’)
=(ak%aﬁ){a,°,af), ete.

and (a",,a";) indicates the value of (a;.a;) which yields the identity element of the group.

By observation of (2.23) and {2.24), it is apparent that independeni vanable {x, y, t) has an

absolute invariant njix, v, t) when it satisfies two first —order partial differenbal equations.

Two possible cases are derived considering none of the co-efficient of these first-order
partial differential equations vanishes and only one of the co-efficient vanishes identically.

In chapter 3, the first case “Unsteady free-convection with surface temperature varying

14



Chapter 2: Mathematical formulation, Lnvariance analysis and Group investigation

inversely as a linear combination of x and t, the flow velocity at wall varying dircctly with
log function of {x, t} and the suction velocity varying inversely as a square root of the lincar
combination of x and ¢ ™ has been investigated and in chapter-4, the second case “Unsteady
free convection with surface temperature varying directly with x and inversely with the
square of a function of t, the Now velocily at wall yarying directly with x and inversely wilh
a function of t and suction veloeity varying inversely with square root of a function of t” has

bcen investigated.

15



Chapter 3

ATx (a x+ bt+ ¢} T, e« log (ax+ b t+ ¢} and v,, oc (ax+ b t+ ¢y

i.e. Unsteady free-convection with surface temperature varying inversely as a
linear combination of x and t, the flow velocity at wall varying directly with log
function of (x, t} and the suction and injection velocity varying inversely as a
square root of the linear combination of x and ¢

3.1 Introduction

Tn this chapter, analysis of the two- dimensional unsteady free convection boundary layer
Mlow with suction and injection on meving verical plate in the casc of “Unsteady [ree-
convection with surface temperature varying inversely as a linear combimation of x and t, the
flow velocity at wall varying dircctly with log function of {x, 1) and the suction and injection
velocily ‘varying inversely as a square root of the linear combination of x and /7 has been
studied. For independent and dependent variables absolute invariants have been found and
then governing non-dimensional partial differential equation and boundary condilions have
been reduced to ordimary differential equations with boundary conditions. Then it 18
numerically solved by shooting method known as Runge-Kuila-Butcher (Butcher {1974))
initial value solver together with the Nachisheim-Swigem itcration scheme descmbed by
Nachtsheim and Swigert (1965). Here attention has been given on the cvaluation of the
velocity distnbution as well as temperature distribution for a sclection of parameters sgt
consisting of suction and injection parameter, viscosity variation parameter and the Prandlt
number. Vanations of veloeity and temperature profiles due to suction, injection and neutral

position {no suction or injection) have been presented graphically and in tabular form.



Chapter 3: Surface temperature varving inversely as a lincar combination of x and ¢

3.2 Transformation of variables
3.2.1 Independent variables as absolute invariants

Qwing to cquations {2.23) and (2.24), n{x, v, t} is an absolute invaniant of the independent

variables {x, y, 1) if it satisfies the two {irst —order partial differential equations:

iy é ij
{a|x+a2}a+(a3}a+a4)§+(a5£+aﬁ}a—f=ﬂ (3.1)
and
& &t &
(B + BG4y + BYST (i + ) 5T =0 (3.2)
Sy o

Since K =0 so ay={,=0.

Now (3.1) and (3.2) can be writtcn as

12 on _
(jalx"‘*‘ﬁz) ax +(’1]SI+"1"3E-) E."f _{] {34}
& il
(A3 x+ 1—31)}'3—[3-15”*%5-‘5"’?-25” A6l =0 (3.5)

where AMij =, By B, £ 7=1,2,3,4,56

Now the transformation group & given by (2.22) and making use of the definition of & 's and

A's and invoking & =2a;, 0-= 20 implics

Az, =af—a,fB, =0 (3.6)
For this case, considering none of the co-efficient in (3.4) and (3.5) vanishes and
Aa1=0, Ags= 0, 23y %0, Aze# 0

So, equations (3.4) and (3.5) reduce to

17



Chapter 3: Surface temperature varying inversely as a linear combination of x and t

o) om)
hgp—F Ay —=0 37
315, A, (3.7)
an di
;“}zfa”(’ll:ﬂ*'}%x"' Ayst + lzﬁjTﬁI_ =0 {3.8)

Equation {3.7) has the general solution of the following form according to a standard

technique for lincar parlial differential equations

n=f (v.¢ (% 1) (3.9)
Where fis an arbitrary function and £ is any function such that &, ¢} = Constant.

&fx, ) = Constant i a solution of the equation

e _dr

= {3.10)
Ay Aag
which yiclds
& {x, 1) =4,,x-4,t =Constant (3.11)
The solution of (3.7} also satisfies equation (3.8). Now (3.8} and (3.9) gives,
yi__[%sx‘r"')mf*;ﬂs“'jzﬁ E]QF_:D (3.12)
B i, o Jo&

co-e(ficient of 840Z 15 also

Asxt+ A X+ At + Ay ]5_{

Since £ is independent of y, so [ % =

independent of y.
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Chapter 3: Surface temperature varying inversely as a linear combination of ¥ and ¢

So, the equation {3.12) can be written as

ﬂf_ ?f__
y 21 L =0 (313)
where h(z )= (At Aet Al Ay, 08 (3.19)

Ay ot
The solution of equation (3.13) and consequently of equations (3.7) and (3.8} 1s of (he form

f=¢ (yH(&)) (3.15)

where Hf£)1s given by the ordinary differential cquation
0oL ngy =1 (3.16)
& dE ] -

obtained substitution of (3.15) into {3.13)
MNow {3.16) takes (he form

dg
Aals)

H{¢)=eop( =2 (3.17)

We kow that

hiz) = [ 2

At A x+ A0+ A, J 7l

Ta
P

_ ?'.15.1? + }»16.1' + ;"'25'[ + :"'Eﬁ

(—%13)
* 3z

R{EY = At + Ax+ dogt + Ay ) (3.18)

19



Chapter 3: Surface temperature varying inverscly as a linear combination of x and t

T S PR (R - .

Since h is determined by & alone,

anl onl an] & '
S| _on| Bnl o) _, (3.19)
ox s Sx] O] ]

Using (3.11}and {3.18) , cquation {3.19) can be wntten as

. %
(A-]sr+lmi+(?'~isx+lzs)l“’ =0 : (3.20)
32

The conditions necessary for (3.20} to be satisfied are A5 = &, and A35d25 =2 ,5132 Since &'s
and s and consequently the A’s can be chosen arbitrarily, so the above conditions can

easily be satisfied. Now using (3.11), (3.18) implies

h{Ey=— s A’"J 3.21
{ (% c+ 4 {3.21)

&

-

Then (3.17) gives

d
H{&)=exp| - ITE—— (3.22)
— &+ Ay

f

Integration of (3.22) yields

-y
H{EY=(Aex+ A0+ A ) 2 (3.23)
where 45 =0
The absolute invanant n ¢an be abtained from equations (3.9} and (3.15) as
n=g{y@ax+br+e)'®} (3.24)

20



Chapter 3: Surface temperature varying inversely as a linear combination of x and ¢t

where the constants a, b and ¢ sland for A;4,425 and A4 respectively and the exponent

{(-Aasf A15) =—1/2.

Wilhout loss of gencrality, the function ¢ can be taken to be the identity function. So,
7=y (x, 1 {3.25)

where

m{xt) =(artbt+e)™ (3.260)

3.2.2 Dependent variables as absolute invariants

In this step, absolute invariants have to oblain corresponding to the dependent variables w, v,

th,, ATand &. From the group transformation (2.22) it can be wnitten as

g (x v, r;u=u(y) (3.27)
and
g; (% . 1.8} =6{7) (3.28)

According to (2.23) and (2.24) any function gy (X, 1; u,) satisfics

5 - -
(a,x+ar!)-7“gl-+(a5f+aﬁ}£3—+{cz“uw+QLZJE§3—=D (3.29)
& ot gu,
and
g g Og <
(Bt £2) 2+ (Bt B2+ i, + ) - =0 (3.30)
The solution of equations {3.29) and {3.30) gives
g(xtu,)= &{u, /o) =E(7) (3.31)
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Chapter 3: Surface temperature varving inversely as a linear combination of x and ¢

In a similar manner, galx, t; v) and gs(x, t; AT) arc obtained

galxtv)=eaA vI{x,t})=F(n) (3.32)

g5 (%, 1, AT) = 3(ATH(x, 1)) =G (m} (3.33)

where @ (x, 1), Dfx, 0, ¥ (x, 1), E(m), F(n} and G(r }are functions to be detennined. Without
loss of generality, ©'s in {3.31) to (3.33) can be selecied to identity functions. Then we can

express the functions v, (x,t) ,v(x, y, t) and AT{x, t) 1n terms of the absolute invanants

E (1), F(n) and G{n) 1espectively, in the form

uulr, ) = o (x, 1) E(m) (3.34)
v(x, v, £) = I'x, 1) F(m) (3.35)
AT(x, 1) =¥, G (1) | (3.36)

Since @{x, 1), UL{¥ ,t) and AT(x, 1), ¥ (x ,t } arc independent of y, whercas 1) depends on )y, it

fallows that E{v) and G(n) must be equal to constant Eq and Gy respectively . Without loss of
generality it can be taken Eg=1 and Gy =1. Then (3.34) and {3.36) become

w13 = ofx, 1) (3.37)

AT(x, t)y=v(x, 1) {3.38)
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Chapter 3: Surface temperature varving inversely as a linear combination of x and t

TR - -

3.3 The reduction to the ordinary differential equations

Substituting from (3.25) to {3.28}, (3.35), (3.37) & (3.38) into cquations (2.5) ,(2.6) and (2.7)

yields,
ar | xe s |di Lﬁ_m w =10 (3.39)
dg =1 ox jdnp (&l éx
Pu [y om F\de (0yom) du (1 2w),
dt lval & v Jdp lvxl ox ) dnp lva] &
- {3.40)
- %E u+g‘ﬁﬁ:: =0
vior,” Of Vo,

atid

L40 [y om yoom  FUIME [ 1 07, @ 0 loo a1
Prdg™ \ve' &t wal ox v, Jdng vy Gt pem) v

The co-¢fficient of the funclions x {n), 8(n) and F (n) and th&ir denvatives, be constants or
functions of t only to reduce (3.39) to (3.41) as a system of equations in a single vanable 7.

Since m{x, t}, wlx, t) and v {x, t) are independent ef y, so

@ o
= el 342
S 1o )" (3-42)
1 dw
C, = 343
©oml & (3.43)
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Chapter 3: Surface tempcrature varying inversely as a linear combination of x and ¢

C, = = _ {3.44)
C, = uL;r,‘ (3.45)
C,— ﬁ% (3.46)
€= (3.47)
Cr = 1»’|:1:-1;r,2 %?" (4%
Cs =% (3.49)
C, = w:fr%? (3.50)

Where C’s are constants and to be determined correspending to cach set of absolute

invariants. The equations (3.39) to (3.41) take the forms
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£+C]T'|di+l':2u=ﬂ
dn

dn

3

d.—
L‘:‘(C3U+C4F)E£"C5ﬂuﬂ“(75“2‘C?“"'CSE]:E'
dn’ dn dn
and
1 d%0 b
Eaﬁ]—z—(caﬂJrCsﬂ”chﬁ'J'd—n—{ﬂq +Cpue)d =0

The boundary conditions are
u(0) = 1,000) = 1, F(0) = F(0) # O

u{co} =0, 6 (o) = 0

The parameter F, = F (0} related 1o the suction parameter v, when =10

v, = [{x,) F{0)=v{ax+bt+c)"* F{0)

Taking Cs =1 in (3.47) implies,

a={v/a) ln{ax+bt+c}

In a similar manner, considering
C4 =] and Cg =1
equations {3.43),(3.45) and (3.47} implies

Cz=]

Using (3.26), (3.44) becomes

25
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Ci=-hi2v

Now considering as Cip= 1 then (3.51) using (3.26) implies

¥ (%, ) = -{v/a) [:5|J-L+‘t:|t+|::)'l

Using (3.26), {3.57) and (3.61), it can be shown {rom {3.48} that

o= =biv

Again Cq=1in {3.58} implies

[{x, t) = vm) = v(ax +ht+c) -l

Applying (3.26), (3.56),(3.60), (3.62) in(3.42),(3.46) and (3.50) implies
CL=Cs=1/2

Cg = -hiv

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

Substituting the above obtained values into equations (3.52) to (3.54) and taking & = -b/v,

we et

dF 1 du
—t——+
dn  2dn

=10

d? d
H—Ef;+F+£u —u-uz-cmhg:ﬂ
a".r?z 2 2 dr

26
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Chapter 3: Surface temperature varying inversely as a linear combination of x and ¢

1
if—?—[£+£u+ﬁ']£—(¢r+u}9=ﬂ
Pr dn 2 2 dn (3.08)
with the boundary conditions are
u({y =1 ,0 {0 =1, F{; =F,, =0 atn=0
(3 69)
ufma) = 0,0y =0 at n—w
v = T(x,t) F{0) = v (ax +bt +¢) "*F(0) (3.70)

vy, < 0 Sigruliss suction.
v, > { Sigmifies injection.

The variations of A7, ,, and suction v,, are proportional to (ax+b¢+¢) ",ln(a xthitc)

and (a x + b 1 + ¢} " respectively.

For the above case, the boundary-iayer charactenstic (Surface heat flux) is
Surface heat flux,
1%

q9=- 303 {_9'({]}]

alar + bt +¢)
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3.4. Results and discussion

Similarity solution for unsteady free convection flow from a moving vertical surface with
suction and injection has been investigated analytically using group theory method and then
numerically by sixth order Runge-Kutta shooting method. The case “Unsteady free-
convection with surface temperature varying inversely as a linear combination of x and £, the
flow velocity at wall varying directly with log lunction of {x, £) and the suction and injection
velocity varying inversely as a square root of the linear combination o x and 1" is considered
in this chapter. Aftcr making proper use of similarity transformations, three independent
variables reduced to one similarity variable . Analytical solutions have been derived for the
present case and then numerical solution have been oblained using Runge-Kutta shooting
method. numerical results of the problem in terms of u-velocity, v-velocity and temperature
profiles have been presented graphically against the similarity variable v, for different values

of suction and injcction parameter, viscosity varialion parameter and Prandt] number.

The inflluences of different values of suclion and injection parameter IF,, on the u-velocity, v-
velocity and temperalure profiles are shown in figs. 3.1, 3.3 and 3.5 respectively while
Prandtl number Pr = 0,72, viscosity variation paramcter o =1.0. The results are obtained for
F.=-0.22, -0.20, -0.15, -0.10, -0.05 and 0.0. u-vclocity, v-velocity and temperature prohles
for three situations when F,, takes the valucs of suction, mjection and neuiral position (no
suction or injection) while Prandil number Pr = 0.72, viscosity variation paramecier ¢ =1.0
are prescnted by the figures 3.2, 3.4 and 3.6. In figs. 3.7-3.9, u-velocity, v-velocity and
temperature profiles are shown for different values of Prandtl aumber Pr while Fi = 0.1, o
=1.0. For viscosily variation parameter o, u-velocity, v-velocity and temperature profiles are

dispiayed in figs.3.10-3.12 while Pc=0.72, F, = 0.1,

It has been observed from the fg. 3.1 that u-velacily increases slightly with the increasing
values of suction paramecter F,, while Prandtl number Pr = 0.72, viscosity wvariation
parameter ¢ =1.0. The maximum values of the dimensionless u-velocities have been found
as 1.0 at the boundary wall 5 = 0.0 for all F.. and then the u- velocity decrease along 5 and

finally approach te zero {the asymptotic value).
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In fig. 3.3, v-velocily profiles become negative in the boundary layer for different values of
suction parameter F,, while Prandt] number Pr = 0.72, viscosity variation parameter o =1.0.
Tt has been found (hat v-velocity decreases for the increasing of suction. v-velocity profiles

decrease slowly for increasing values of n and converge to different asymptotic values.

Far the temperature profiles, figure 3.5 shows that the temperature increases slightly with
increasing values of suction parameter F.. The maximum values of dimenstonless
temperature is 1.0 for F, = -0.22, -0.20, -0.15, -0.10, -0.05 and 0.0. The change of
temperature profiles in the 1 direction alse shows the typical temperature profile for free
convection boundary layer flow that is the value of temperature profile is 1.0 (onc) at the
boundary wall then the temperaturc profile decreascs gradually along 1 direction to the

asyniptotic value,

In fig 3.2 u-velocities for two suction values, two injection values and ncutral value of Fy
{16 suclion or injeclion} are represented. The maximum velocity has been found as 1.0 at the
same point i = 0.0 and afler then velocity decreases owing to increasing values of 7 for F.,
=0.40, 0.10, 0.0,-0.10 and -0.15. From the figure it has been found that u-velocity for nautral
position {no suction or injection) is larger than that of due to suction but smaller than u-
veloeity due to injection. It is observed that at i = 5.0 the velocity increases by 24.599% as

the suclion and injection paramcter F,, changes from, -0.15 to 0.40

v-velocities for two suction values, two injection values and neutrai value of £, (no suction
or imjection) are presented in fig.3.4. It has been found that v-velocity for neutral pusition
(no suction or injection) is larger than that of duc to suction but smaller than +-velocuty due

to injection.

In figure 3.6 temperature profilcs are represented for suction, injection and neutrat value of
F,. (no suction or injection). It has been found that temperature profiles decrease duc to
increasing values of suction apd increase due to increasing values of injection. From
maximum and common value 1 0 of temperature profiles decrease along p-axis for ali the

values of F,,.

Figures 3.7-3.9 display results for the u-velecity, v-velocity and temperature proliles, for
different values of Prandtl number Pr while suction and injection parameter F. = 0.1

vigcosity variation parameter ¢ = 1.0. Fig. 3.7and 3.9 indicate u-velocity boundary-layer
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Chapter 3: Surface temperature varying inversely as a linear combination of x and t

thickness and temperature boundary-layer thickness decrease with increasing values of
Prandtl number Pr. v- velocity in the [ig.3.8 shows that the v-velocity increases
corresponding to increasing values of Pr. For different values of Pr, dimensionless v-
veloeity profiles have unit value near the edge of the boundary layer and difference between

the velocity proliles increases pradualty from n = 0.5 onwards.

The influcnce of viscosity variation on the velocity and temperature profiles while Prandtl
number Pr = 0.72 and suction and injection paramcter Fy, = 0.1 are shown in figures 3.10-

312,

It appears from the figure 3.10 that the u- velocity decreases in the vicinity of the plate with
increasing valucs of viscosity variation paraméter a. The maximum value of the u-velocity
has been found as 1.0 at the boundary wall then the u-velocity decreases as  increascs. It
can easily be understood froin the figurc 3.11 that the v-velocily and the corresponding
boundary layer ihickness incrcase owing to increasing values of viscosity variation
parameter . The v-velocity profiles in the fig. 3.11 show that v- velocily becomes positive
tn a certain region of the boundary layer and negative in the rest of the region lor varying

values of a.

From figure 3.12 shows that as the viscosity vanation parameter g increases, the temperature
profites decrease. The changes of temperature profiles show the typical profiles of
temperature for natural convection boundary layer flow lhal 15 the value of temperature
profile which is 1.0 (one) at the boundary wall and then the tcmperature profile decreases

gradually for increasing values of n.

Numercal values of u- velocily, v- velocity and temperature profiles, for difTerent values of
F. {Suction, injection or neutral position of suction and injection) are depicted in Table

3.1.u-velocity, v-velocity and temperature increase with increasing 7., are found to the table.
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Table 3.1 Dimensionless u-velocity, v-velocity profiles and temperature profiles against 7
for different values of Suction and injection parameter F,, with other controlling parameters

Fr=072, 0=1.0

u-velocity for different | v-velocity for different | Temperature profile for
values of Fl. values of Fy ditferent values of F,.

Fo =010 F, = 0.0 |F,= 0.10[F,=-0.10| F, = 0.0 |F, = 0. 1A, =-0.10 £, = 0.0 1, =0 10

Q0000 | 10000 [ 1.0000 | 10000 | -0.1000 | Q000G | 03000 | 1.0000 [ 1.0000 | 10000
0.1000 | 0.9156 | 0.919] | 0.9224 | -0.1936 | -0.0939 | Q0059 | 08947 | 08975 p 0.9002
0.2000 | 0.8405 | 0.83468 | 0.3528 | -0.2757 | -0.1767 | -0.0776 | 0.8024 | 0.8074 | 0.8122
03000 | 0.7736 | 0.78320 | 07902 | 03485 | -02500 | -0.1519 | 0.7214 | 0.7280 | 0.7344
Q4000 | 07136 | 07239 | 0.7337 | 04119 | 03151 | 02182 | 0.6500 | 0.6578 | 0.6633
0.5000 | 0.659% | 0.6714 | 0.6825 | -0.4684 | -0.3730 | -0.2775 | 0.5870 | 0.53%37 | 0.6043
0.6000 | 06114 | 0.6240 | 0.6362 | -05186 | -0.4247 1 -0.33006 | 05313 | 0.5406 | 05453
07000 | 0.5677 | 05811 | 05940 | -0.5634 | 04710 ] -0 3784 | 04819 | 04916 | 05012
08006 | 05282 | .5421 | 05536 | -0.6033 | -0.5125 | -0 4215 | 0.4379 | 04479 | 04578
09000 | 0.4923 | 0.5066 | 0.3205 | -06391 | -0.5498 | -0 4603 | 03988 | 0.4085 | 04189
1.0000 | 0.4508 | 0.4742 | 0.4883 | -0.6711 | -0.5835 | -0.4935 | 0.363% | 03740 | (3840
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Figure 3.1: Dimensionless u-velocity profiles against similarity
variable i for different valucs of I, (suction) while P» = 0.72,
o=1.0
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Figure 3.2: Dimensionless u-velocity profiles against similarity
veriable 7 for different values of Fy, (sucticn and injection) while
Pr=0.72, o0=1.0
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Figure 3.4: Dimensionless v-velocity profiles against similarity
vanable n for different values of F,, (suction and injection} while
Pr=0.72, =10
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Figure 3.5: Dimensionless lemperature profiles against similanty
variable # for different values of F, (suction) while Pr=0.72,
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Figure 3.6: Dimensionless temperature profiles against similarity
variable 5 for different values of F, (suction and injection) while
Pr=072.a=1.0
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Figure 3,7; Dimensionless u-veloeity profiles against similarily
varigble 7 tor different values of Prwith I, = 0.1, =10
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Figure 3.8: Dimensionless v-velocity profiles against similanty
variable n for different values of Prwith F, = 0.1, =10
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Figure 3.9: [hmensionless temperature profiles against similarity
variable # for dillerent values of Prwith F,, =0.1, =10
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Figure 3.10: Dimensionless u-velocity profiles against similarity
variable » for different values of owith Pr =0.72, F, = 0.1
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Figure 3.11: Dimensionless v-velocily profiles against similasity
variable & for different values of @ with Pr =072, F,, = 0.1
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Figure 3.12: Dimensionless temperature profiles against similarity
variable » for different values of o with Pr =0.72, F, = 0.1
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Chapter 3: Surlace temperature varying inversely as a linear combination of x and t

3.5 Conclusion

The effect of suction and injection parameter on unsteady free-convection [lew from a
moving vertical surface has been investigated for different values of relevant physical
parameters. The case “Unsteady free-convection with surface temperature varying inversely
as a linear combination of x and t, the flow velocity at wall varying dircetly with log
function of (x, £} and the suction velocity varying inversely as a square root of the linear
cormbination of X and t" has been studied numerically. The u-velocity profile, v-velocity and
temperature prolile are presented for finite values of suction and injection parameter,

viscosity vanation parameter and Prandtl aumber.,

» The increases values of suction and injection parameter F,, lead to increase of the u-
veloeity profile, v-velocily profile and the temperature profile while P» =0.72 and &
=1.0. Vanations of velocity and temperature profiles due to suction, injection and
neutral position {neither suction nor injection) have been presented here graphically and
in tabular form. It has been observed that velocity and temperaiure due to injection are
larger than veloeity and temperature due to suction.

o Forincreasing values of Prandtl number Pr leads to increase of the v-velocity profiles

but decrease of the u-velocity and the temperature profiles for F, =0.1 and o =1.0.

» The effects of viscosity variation parameter & on the u- velocity profile, v-velocity
profile and temperature profile are also found here. For incrcasing values of viscosity
variation parameter o leads to decrease of the u -velocity profile and the temperaturc
prohle but wcrease of v-velocity profile while Pr =0.72, F,, =0.1.

———
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Chapter 4

ATec x(ay t +b;) 7 Juy, o x(a; t+by) ™ and v, o (a,t +by) ™

1. ¢. Unsteady free-convection with surface temperature varying directly with a
function x and inversely with the square of a function of t, the flow velocity at
wall varying directly with a function x and inversely with a function of t and
snction and injection velocity varying inversely with a square root of a function
of t

4.1. Introduction

This chapter describes the two- dimensional unsteady free convection boundary layer flow
with suction and 1njection on moving vertical plate for the case of “Unsteady free-convection
with surface temmperature varying dircetly with a function v and inversely with the square of a
function of 1, the flow veloeity at wall varying dircetly with a function x and inversely with a
function of t and suction and injeciion velocity varying inverscly with a square root of a
functien of £.” Using the group derived in chapier 2 absolule tnvanants have becn found for
mdependent and dependent variables and then governing non-dimensional partial differential
equation and boundary conditions are reduced to ordinary differential equations with
boundary conditions. For numerical solution we have taken the help of shooting method
known as Runge-Kutta-Butcher initial value problem solver together with the Nachtsheim-
Swigert iteration scheme described by Nachtsheim and Swigert (1965). Here attention has
been given on the evaluation of the u- velocity profiles, v-velocity profiles as well as
temperature profiles for some selected values of parameters sel consisting of suction and
injechion parameter F,, viscosity variation parameter 7 and the Prandlt number Pr.
Variations of velocity and temperature profiles due to suction, injection and neutral position

{no suction or injection) have been presented graphically and in tabular form.



Chapter 4: Surface temperature varying with function of x ard inversely with fenction of ¢

4.2 Transformation of variables
4,2.1 Independent variables as absolute invariants

Owing to equations (2.23) and {2.24), n(x, vy, t) 15 an absolute invariant of the independent

Variables (x, v, 1} if it satisfics the two first —order partial dilferential equations:

2n &7 on _
[c:.qu+c1r2)'ax+(c1r5j..'+c:.r‘,)ay+(rrse‘+arﬂ}ﬁr =0 {4.1)
and
Bt By (By+ BY L e (e )L —0 (42)
| 2 ax 1 d ay i [} a-f

Since K'=0s0ay=4=0.

rl

WNow (4.1) and (4.2} can be writlcn as

. . O &
(A + A2 ) L+ (At + ) 2= 0 (4.3)
ad
{131.\‘."!' ljz]_}’g— [l]j.‘t'f'i‘?‘.m.ﬂ'i‘lzsf'f' 125}% = (4.4}

where &, =a, (-, [ i,7=1,2,3,4.5.6

Now the iransformation group G given by (2.22) and making use of the definition of the as

and ('s and invoking that @s=2a; ,Bs=20; ,mplies

Ays=aas—csfa=0 {4.5)

)

ay
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By considenng only one of the co-cfficient in {4.3) and (4.4) vanishes and taking
{4.6)

A3iX than = 0, Aast+hag = 0,0 5% tHA X Hast+426 = 0 shows

m_,
ax

which shows that 1 is only a function of y and t.
4.7

Using (4.3} and (4.4} in (4.1} and {4.2), wc get

5”:{:

dr
ﬂﬂa"‘ {rxsf + a&)a—
(4.5}

and
)2 =0
ot

'y
By Tt (Bst + B
oy
Applying the standard technique for linear partial differential equations the solution of (4.6)
(49}

of the form
(4.10)

T = ymalt)
Where

oty =1¢a t+b)) ™2

and a; = a5 = [3s

by =ag=0s

-aits = -fy/Ps = —1/2
Without loss of gencrality, the value of I can be taken as unity. Then the absolute invanant
(4.11)

far this eaze will be
-1i2

T =y (a; U}

where
41
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Aty = (ar t4b ) "% (4.12)

4.2.2 Dependent variables as absolute invariants

In this step , absolute invariants have to be obtained comesponding to the dependent

vanables u, v, u,, AT and 8, From the group transformation (2.22) it can be written as

gz, y, tu)=u{mn) (4.13)
and
gz (x, ¥, 1;8) = B(n) {4.14)

According to (2.23} and (2.24} any function g; (%, t; u, ) satisfies

O og dg
(ahx+r:r1)a—;+(r:rjr +rzﬁ}a—:+{auuh m”}aui. =0 (4.15)
and J
ag c, )
(.ﬁix"'ﬁz),._j""(ﬂs'r +ﬂ5]ﬁ+{ﬂu”w + 5a) ..g3 ={ (4.16)
£ &t e

The solution of cquations {4.15) and (4.16) gives
gl tuw) = i {uw /o (x, 1)} =E(n) {4.17)
In a similar manner, gq (x, t;v) and g5 {x, t ;AT ) are ebtained

g, tv )= (WIx, ) }=F ()
{4.18)

gs (x, 11 AT) = @s(ATH(x, t 3} =G (1)
(4.19)

where o (%, i}, T{x, &}, v {x, t}, E(m), F(n) and G{n) are functions to be determined.
Without loss of generality, the ¢'s in (4.17) to (4.19) are selected to be the identity functions.
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Then the functions can be expressed as u, (x , t) ,v{x, v, t) and AT{x, t) in terms of the

absoluic invariants E(n), F(n) and G{n) respectively, in the form

u, {xr, t}=o (x, t}E(n)

(4.20
v{x, ¥, 1) =I{xt) F(n) (4.21)
AT{x B =7{x, ) G () (4.22)

Sinece w (x, 1) ,0,{x,t) and AT { x, 1) ,¥ (x ,1 ) are independent of y, whereas 1 depends on ¥, 1l

follows that E (1) and (G{n) must be equal to constant By and Gy respectively. Without loss
of generality it can also be laken Eq =1 and Gy = 1. Then (4.20) and (4.22) become

X, t 1 =oix,t) {4.23)
AT (5 =7 (xt) (4.24)
4.3 The reduction to the ordinary differential equations

Substitution from {(4.11) to (4.14), {4.21}, (4.23) & (4.24) into cquations (2.5}, {2.6) and
(27} yields,

dF 5 :
i o - R L P (4.25)
dn | =0 ax )dnp | 7,0 &x
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du | ¥ E'Jr2+PT du [ ay 0=, ud_u_ I do ¥
dn® \vw? & wm ldy v, & ) dn e, &

_[ 1 a_m]H 08 _,

F) 2
v, Of WET

(4.26)

! a
1dﬂ_[ ¥ ﬁ2+ym ﬁ;rzu+Fl"]r!9_[ | 5,?’+ i ‘_a_{”]g:{} (4.27)
1

Pr d7’ 7 & wm, Ox VI, dn wriyE yvr, O

The co-efficient of the functiens u (1), 8{n) and I¥ () and their denvatives, be constants or
functions of nonly, 1o reduce (4.25) to (4.27) as a system of equations in 4 single variable n.

Since mafx, t ), w(x, t) and ¥ (x ,t) arc indepeadent of ¥, so

c, iriT if {4.29)

C, = wlr; 6;2 (4 30)

Ci = = (4.31)
W,

G = ﬁ?% {(4.32)

Cs = éf%f" {4.33)
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G = % (4.35)
C, = mliy‘Z—T (4.36)
Cyo = WE{% (4.37)

Where (s are constants and to be determined corresponding to cach sct of absolute

invariants. The equations (4.25) to (4.27) takc the forms as follows:

ar dte
—+Cn—+Chu=0 4.
oy + O+ G (4.38)
dz
I;—(C'31'|+C4F)?r—u—[:’51]ud—u—£'ﬁu2 —Cou+CeB8 =0 (4.39)
dn dn| dn
and
iﬂ—(c Lo+ C Y28 () + ¥ =0 (4.40)
Pr dﬂz Al +5m 4 an 9 10 .
The boundary conditions are
uiM)=1,00=1,F{0)=F,(=0 atn— 0
(4.41)
u ()= 0,8 () = 0 as N> o

The parameter F,, = F(0) related to the suction parameter v,, when n =0

Taking C s = 1 in (4.33) yields
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e=v(at+b) ' (4.42)
In a similar manner, we can take

Ca=land Cz=1 (4.43)

Now (4.29), (4.31) ,(4.33) and {4.43) implies

C:=1 (4.44)

Wiih the help of (4.11) the equation (4.3() implies

Cy=—-a,/2v (4.45)

(4.12), (4.34) and (4.42) mves

C",r = =i fy (445]

In (4.43) Cz = 1 shows that

y=vx(a t+b )™ (4.47)

(4.36), (4 42) and (4.47) implies

Co=—2aifv - (4.48)

Substituting (4.12), (4.42), (4.47) in (4.37) implies
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Cu=1 (4.49)

Using (4.12} in (4.28) and {4.32) implies

C, =0 {4.50)

Cs=0 (4 51)

Subshiluting the above obtaincd values into equations (4.38) to {4.40) and takingt © =-4y5.

viclds

E +u=0

dn {4.52)

'y (7 du

F_[EHH-FJE_H —tu+t/=0 (4.53)

140 (r 48

e = g+ F | ——|2r+u)f =0 ;

Pr di’ [2” ]d?; (27 +u) (4.59)
with the boundary conditions:

(M =1,{01=1,F0)=F (0} 0 atn=10

{4.535)

W) =0 ,Bw) =0 as N — o

v =[x ) F(0) = v (2, +b;)) " F(O)
Yo < 0 sipnifies suction

v > 0 signifies ryection
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For the above case, the boundary-layer characteristics (Surface heat flux ) 13

g=vx(ag+)" [-6'(0)]

4.4. Results and discussion

Similarity solution for unsteady free convection [low from a moving vertical surface with
suction and injection has been investigated analytically using group theory metheod and then
numerically by sixth order Runge-Kutta shooting method. The case “Unsteady free
convection with surface temperature varying directly with a function x and inverscly with the
square of a function of ¢, the flow veloeity at wall varying directly with a function x and
inversely with a function of ¢ and suction velocity varying inversely with a square root of a
function of " s considered in this chapter. Afier making proper use of similarity
transformations, three independent variables reduced to one similanty varable 7. Analytical
solutions have been denved for the present case and then numencal solution have been
pbtained using Runge-Kutta shooting methed. numereal results of the problem in terms of
u-velocity, v-velocity and temperature profiles have been presented graphically against the
similarity variable 7, for dilferent values of suction and injection parameter, viscosity

variation parameter and Prandtl number.

The effects of suction parameter F,, on u-velocity, v-velocity and temperatute prohiles while
Prandtl number Pr = 0.72, viscosity variation parameler T =1.0 are displayed in figures 4.1,
4.3 and 4.5 respectively. Different values of suction parameter F, = -1.15,-1.0.-0.8,-0.5,-0.2

and 0.0 have been considered.

u-velocity, v-velocity and temperature profiles for three situations when F,, takes the values
of suction, injection and neutral position (no suction or injection) while Prandtl number Pr =

(.72, viscosity variation parameter 7 = 1.0 are represented by the figures 4.2, 4.4 and 4.6

In figs. 4.7-4.9, u-velocity, v-velocity and temperature proliles are shown for different values
of Prandtl number Pr while F, = 0.5, 7 =1.5, For different values of viscosity vanation
parameter T, u-velocity, v-velocity and temperature profiles are displayed in figs. 4.10-4.12

while Pr=0.72,F,=0.5.
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In fig. 4.1, it is observed that u-velocity profiles increase with the increasing values of
suction parameter F... The maximum values of the u-velocities have been found as 1.0 at the
boundary wall for F,,=-1.15, -1.0, -0.8, -0.5, -0.2 and 0.0 which occur at the same pointp =
0.0 and then the velocities decrease with the increasing values of  and finally velocity

profiles approach to zero (the asymptotic value).

In fig. 4.3 v-velocity becomes negative in a cerlain region of the boundary layer for dilferent
values of suction parameter F, whilc Prandtl number Pr = (.72, viscosity variation
parameter T = 1.0. Slightly ups and downs of v-velocity profiles for different valucs of

suclion parameter F,, are found in the boundary layer.

For the temperature profiles, figure 4.5 shows that boundary layer thickness increases with
increasing values of suction paramcter F,,. The maximum values of temnperature profiles are
found as 1.000 for F.=-1.15 -1.0, -0.8, -0 5, -0.2 and 0.0 that occur at the same point The
change of temiperaturc profilcs in the n direction also shows the typical temperature profile
for free convection boundary layer flow (hat is the value of lemperature profile is 1.0 {one) at
the houndary wall then the {emperaturc profile decreases gradually along n direction to the

asymptotic value. -

u-velocities for three suction values, two injection values and ncutral value of F. {neither
suction nor injection) are represented in fig. 4.2, It has been found that u-velocity takes the
values -0.0204, -0.00%4, -0.0089, -0.0075,-0.0081,-0.0015 and 0.0108 at = 5.000 for £, = -
1.0, -0.50, -0.20, -0.10, 0.0, 0.5, 1.0 respectively 1.e. velocity increases with the mcreasing
value of F,. From the Ggure it has been found that u-velocity boundary layer thickness for
neutral (ho suction or injection) position is larger than boundary layer thickness due to
suction but smatler than boundary layer thickness due to injection. It 15 observed that at p =
5.000 the velocity increases as the suction and injcction parameter 7, changes from, -1.0 to

£.0.

v-velocity for two suction values, two injechion values and neutral values of F, arc
represented by fg.4.4. It has been found from the figure that v-velocity for injection is larger
than that of due to suction, v-velocity takes the values-1.0, -0.50, -0.20, 0.00, 0.50, 1.00 for
F, =-1.0, -0.50, -0.20, , 0.0,, 0.5, 1.0 respectively at stading point 7 = 0.0 then velocity

decreases gradually.
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In Ggure 4.6 temperature profiles are presented for suction, injection and neutral position.
Temperature for neutral is larger than temperature due to suction and smaller than
temperature due to injection. From maximum and common value 1.0 temperature profile

decreases for increasing values of g while F,, =-1.0, -0.50, -0.20, 0.0, 0.5, 1.0.

The variation of the u-velocity, v-velocity and temperature profiles for different values of
Prandt! number Pr while suction parameter F,, = 0.5 and viscosity variation parameter 7
=1.5 are shown in the figures 4.7 to 4.9, For the velocity profile, fgures 4.7 and 4.8 jndicate
the occurrence of the increase in u-velocity and decrease in v-velocily respectively wilh
increasing Prandt! number Pr. It can also be seen that u-velocity increases and v-velocity
decreases with increasing values of Prandt] number Pr except Pr = 0.2, It is observed that
the value of u-velocity and v-velocity ups and downs against some values of 57 while Pr =
{.2.This phencmencn is known as velocity defect. In the figure 4.9, it can be shown that

temperature profiles decreasc with increasing values of the Prandt] number £r.

The elfect for different values of viscosity vanation parameter 7, the velocity and
temperature profiles while Prandtl number £ = 0.72 and suction parameter £, =0.> are

shown 1n the figures 4.10 to 4.12.

The increasing values of the viscosity variation parameter 7 in {igure 4,10 represent that the
u-velocity profiles decrease near the surface of the moving vertical plate but the valucs of the
u-velocity profiles don't decrease smoothly for = 0.7, sometimes the velocity profiles
increase for decreasing v while 7 < 2.10 they meet and then cross and increase lor

increasing « afler y > 2.15.

It is observed from the figure 4.11 that the v-vclocity increases gradually with increasing
value of viscosity variation parameter 7. Starting with the fixed value the v-velocity profile
increases slowly near the surface of the moving vertical plate and increases rapidly far from

the plate.

The changes of lemperature profiles in figure 4.12 show the Lypical temperature profile for
natural convection boundary layer flow that is the value of dimensionless temperature 1s 1.0
at the boundary wall then the temperature profile decreases gradually along p direction and
approaches to zem, the asymptotic value. Numerical values of u-velocity, v-velocity and

temperature profiles, for different values of £, (Suction, injection or neutral position of
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suction and injection) have been shown in Table 4.1. All the u-velocity, v-velocity and

temperature are observed to increase for increasing &, from the table.

Table 4.1: Dimensionless u-velocity, v-velocity profiles and temperature profiles against n

for different values of suction and injection parameter &, with other controlling paramelers

Pr=0.792,7=1.0

u-velocity for different | v-velocity for different | Temperature profile for

. values of /7, values of I7, different values of F,,

Fo=-0.10 F,= 00 |F,= 010|F.= -0 10 F,,= 0.0 [F, = 0.10[F .= -0.10| F.= 0.0 [£,=0 10

0.0000 | 100000 [ LOOM | 10000 | -0.3000 | 0.0000 | {5000 i 0000 | LOGGD | 100600
01000 | 0.8073 | 0.8599 | 0.9224 | -0.53900 | 00915 | 0.4072 | 0.8575 | 08723 | 0.8854
02000 | 0.6516 | 0.7404 | 08528 | -0.64626 | -0.1680 | 0.3274 | 0.7375 | 0.7627 | 0.7833
03000 | 05257 | 06389 | 07902 |-0.7213 | -0.2320 | 02585 | 0.6360 | 0.6686 | 06983
04000 | 04238 | 03520 {07337 | 07635 | -02836 | 01991 | 033500 | 0.5874 | DAZIY
05000 | 0.3410 | 0.4777 | 0.6825 | -0.8066 | -0.3305 | 0.1477 | 04769 | 0.5172 | 0.3350
0.6000 102738 | 0.4139 | 06362 | -0.8372 | -33682 1 0.1032 | 04145 | 04564 | 04351
07000 {02101 | 03592 | 05040 | -0.3618 | -0.3998 | 0.0647 | (LIG1D | 04036 | 04443
QRO (01745 | 03121 | 05556 1§ -0.8814 | 04263 | 00312 | 03155 | 03577 | 0.39486
o0 | 01383 | 02715 | 05205 | 08970 | 04485 | 00020 | 02762 | 217G | (0.3582

1.0000 | 0.1087 | 6.2365 | 0.4883 | -0.9093 | -8.4672 | -0.0233 | 0.2423 | 6.2825 | 0.321M
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variable 5 for different values of F,, (suction) while P = 0.72,
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Figurc 4.2: Dimensionless u-velocity profiles against similarity
variable n for different values of F,, {suction and injection) while
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Figure 4.3: Dimensionless v-velocity profiles against similarity
varizble 7 for different values of Fy (suction) while Pr = 0.72,
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Figure 4.4: Dimensionless v-velocity profiles against similarity
variable 7 for different values of Fy, (suction and injection) while
Pr=0.72,7=10
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Figure 4.6: Dimensionless temperature profiles against similarity
variable n for different values of F, (suclion and injection) while
Pr=072 =10

54



Chapter 4: Surface temperature varying with function of x and inverscly with funetion of ¢

Fe=02
- — = - Pr=Q5
------- Praii
—_——— Pr=3ij
———— - Pr=50

u-velocity

Figure 4.7: Dimensionless u-velocity proliles against
similarity vanable » for different values of Pr while £, = 0.5,
r=1.5

vvelogity

Figure 4.8 Dimensionless v-velocity profiles  against
similarity variable n for different values of Pr while Fy = 0.5,

—=1.5

35



Chapter 4; Surface temperature varying with function of x and inversely with function of ¢

Temperature profiles

[ T - - I
,u,lﬂo-'l||||'l|.'—w—_l_- = L=

Figure 4.9: Dimensionless temperature profiles against
similarity vanable 5 fur different values of Pr while £, = 0.5.

T=1.5
’ 1
T=il.7
o T =10
eEFBL.  a- =15
: '1."11 S - =310
[ ———— =30
DE L I'IIII..II:I".- ssasssnnn. T = ?_']
200 4G
E - 1||:||._1\
I AN
1wy
3 o4l ‘}-.;\_1\?-
. \‘\-\‘ \:‘.'
I DN
- WA T
I W
'\\“-.\
a2 A
i PO
- o -
. R Yt
| T e
I Bl
LU el 1 . . A | . .
a 1 a 3 “
l

Figure 4.10: Dimensionless u-profiles against similarity
variable » for different values of T while Pr=0.72, Fy, =0.5
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4.5 Conclusion

Group-theory method has been employed to find similarity solution of the unsteady free-
convection flow from a moving veriical surface with stuchon and injection. The effect of
suction and injection parameter on unsteady free- convection flow from a moving verlical
surface has been investipgated for different values of relevant physical parameters. The case
“Unsteady free-convection with surface temperature varying directly wath a function x and
inversely with the square of a function of ¢, the flow velocily at wall varying directly with a
function x and 1nversely with a function of ¢ and suction and injection velocity varying
inversely with a square root of a funchion of ¢ has been studied analytically using two
parameter group and then numerically. The u-velocily, v-velocity and tempoerature are
presented for different values of suction and injection paramcter F,, wiscosity variation
parameter 7 and Prandtl nurnber Pr.

« Two-parameter group-theory method has been applied to reduce the number of
independent variables and then pamial differential equations have been transformed to
ordinary differential equations. The resulting nonlinear ordinary differential equations
have been solved analytically and then numerically using the sixth order Runge-Kutta
shooting methad.

= The increasing values of suction and injection paramcter Fy, lead 1o increase of the u-
velocity, v-velocity and the temperature profiles while Pr=0.72 and v = 1.0.

» Due to incrcasing values of Prandtl number Pr leads (o increase of u-velocity and
decrease of v-velocity profiles near the moving vertical plate. But u-velocity and v-
velocity ups and downs against some valucs of i far from the moving vertical surface
while Pr = 0.2, Thermal boundary laycr thickness decrcases for increasing values of
Prandtl number Pr while £, = 0.5, r=1.5.

e The effect of viscosity variation parameter T on the u- velocity profile, v-velocity
profile and temperature profile has been investigated here. The u-velocity profile
decreases near the surface of the moving vemical plate but the values of the u-velocity
profiles don’t deccease smoothly for T = 0.7. V-velocity increases pgradually with
increasing viscosity variation parameter 7. Temperature has been observed decreascs
with increasing values of the viscosity vanation parameter 1.
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4.6 Extension of this work

1. Counsideration of mixed convection (low instead of free-convection flow can extend
the problem.

2. Taking sphere or cylinder as a moving surface instead of moving vertical plate can
gxtend the problem

3. Species concentration and mass transfer may be included (o extend the problem.
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Runge-Kutta Shooting Method

In shooting method, the missing (unspecified) imtial conditions at the initial point in the
intcrval is guessed and differential equation is then integrated numerically as an inibial value
problem to the terminal points by Runge-Kutta method. Calculated values are then compared
with the given values at the terminal points, if there 15 any difference (error) found zuessed
values must be changed before next iteration. This process is repeated until the agrecment
berween the calculated and the given condition at the terminal pmint which is wilhin the

specilied degree of accuracy.

The boundary conditions associated with non-dimensional ordinary differential ec-;uatic)ns of
the boundary type are of the two-point asymptotic class. Two-point boundary conditions
have values of the dependent vanable specified at iwo different values of the independent
variable. Specification of an asymptotic boundary conditien implies that u and & teuds to

unity as the outer specificd value of the iIndependent vanable is approached.

The methed of numerically intcgrating a two-point asymptotic boundary-value problem of
the boundary layer type, the initial value method, requires that it be recast as an ininal value
problem. Thus it 15 necessary to estimate as many boundary conditions at the surface as were
given at infinity. The solution has been achieved assunung the required outer boundary
conditions are satisfied afler the integration of goverming differential equations by the
assumed surface conditions. If this 1s not satisfied, another new surface boundary condition
15 estimated for the next trial integration. But this is not so easy, because selecting a value
may result in the divergence of the tmal integration or in slow convergence of surface
boundary conditions required satisfying the asymptotic outer boundary condition. Moreover,
selecting too large a value of the independent variable is expensive n terms of computer
time. Nachtsheirm-Swigert developed an iteration method, which overcomes these
difficulties. If in boundary equations there are two asymptotic boundary conditions and

hence two unknown surface conditions are «' =g, andf =g,



Appendix

Within the context of the initial value method and the Nachisheim-Swigerl itcration
technique, the outer boundary conditions may be functionally rcpresented as

“(’?mu):”(glsgz):‘ﬁ-l

{Al)
87 )= 0(81: 22 )= 5, (A2)
F('F max) F{g15g2}=é (AEJ
With the asymptotic convergence criteria given by
0 (ae } = {2, £2) = 5, (A4)
Hr(}'?m“)=§'(g|,gz)= 55 (AS}
Expanding the equation (A1)-{A5) in a {irst order Taylor's series gives
cu Ot
H(Tj’m“] = uu:(”:umx)—l-m‘ﬁg +n_-5g3 =4 AD
%o | tE ] (86
5(? &l .
I9{'?:"”!.15: ) = H(- (?;"rnnx )+ I ‘5-33 = ':52 {A?)
dg,
aF i
F("?mu ) T}H“ )+ ‘lﬁg] f ﬂg? - 5 (ﬁg]
2, o8
HI(Hmnw - (‘F?ma.t )+ Sgt 53_ ‘532 = d:"-4 (‘d"—g)
O (Foas ) = E{nwha—a +a ag, = (A10)

Where subscript *C’ indicates the value of the function at 7, determined from the trial
integration. Solution of these equations in a least-squares sense requires determining the
minimum value of

E=58+8+5+8l+ 6}

(ALD
Differentiating (A11) with respect to g,, we have
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&
2cﬁ§i+2§2%+2§32—}-+25 E{5—“'+2c‘,-‘jﬁci =0
dg, g, g, ag, dg,

d be)
= g Ad +6, 9 + 35, J +5¢—a—£5‘i+§52—’ =
og, I og, ) g,

i ﬁgi agz ) ‘ £ 533 ag|
aF g ' d '
+[F; +"£‘f131 +__332J'5iﬂ'+[”: +—dg, +E”_'ﬂ 2Jﬁt‘
g %, I g og, ¢,
’ ag" '
+[E; +-£.=:I.g__-J +-—-.¢1ng§£—{}
g, g, og,
5g! de, 53
[ﬁu Ou , 36 00  oF oF @_‘_.au_' 29 g¢' Jﬂg (A12)
og, agz dg, og, E‘g, agﬂ og, og, og, ag,

h(u:.i“-m g g 2 EHJ
CE) ae, dg ag] og,
Differentiating (A11) with Iespect to g, we have
26, 2% 4 25, 9% 55 ey D 28,95
L$ z g, e, * dg,

5 8
:[Hﬁ_eiﬁgﬁ_ﬂu_ﬁgzp{gﬁ“ﬁg[ 2 ,Jfﬁ
&g, g, de, I og, o,
~ E)F oo ' =
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[Eu du 36 30 L OF oF Lo A aﬂ’aajﬁg
agl agz ﬁgl z Egl 53’2 agi agz 5’g1 &g,

aF ar Y a6
[ 5.5'2 (é;z_] +(“5EJ {55] Jﬂg; (A13)

-
AnRan L, =y
g, e, %, ﬁgz g,

We can write equations (A12) and (A 13) in a systent of linear equations as foilows:

@88, +a,Ag, =5 {Al4)
25,48, tanhe, =b,

(A15)
Wherc

(ﬁu]z (ﬁﬂ'Jj (ﬁF] (UH] [EE'JE

a, = — ] {22 H—— 4| 2L

CEy og) £, g,

a 1 51; 09' ﬁﬂ E‘r 5F i’:‘u au; 5" o
" %%, %, ", ag, 8z, og, 621 %,

LrASTR 5

§g| 552
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2. = Cu r.';‘rf? CE? ::F @F (:‘u’ et +5r5” e’
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o, dg, 53 @.5*1 e, de, ogj og, dg e,
2 2 2
) () (2 e
Ay =| = T+ =] ] Z5
g, 532 53’2 5.2’1 Ge,

bﬁ{ufﬂmﬁﬂﬁi”gfﬂq tvﬂ}
8z, de, e, ce, %,

From equations (Al2) and (A13), we have
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3 det 4, Ag. = det A,

& = Geta’ 5 T oA

= TS
Where, det4 = =42y —dydy,

Ay

detd = .

=4 b, a,,

and

det 4, = w B
a, b

Then we obtain the missing {unspecified) values g ,g,as
& = & t4g
2, = 8 AL,

Thus adopting the numerical techrique described above, the solutions of the non-linear
differential equations with the boundary conditions are obtained together with the s1xth-order

implicit Runge-Kuita intial value solver.
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