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ABSTRACT

MOSFETs are extensively used in IC fabrication. Improvement
of the- VLEI techndlogy has resulted in. device dimensions of the
order of fractions of a micron.. In MOSFETs with increased
substrate doping levels and reduced gate oxide thicknesses the
energy-band bénding at the Si/SiOz interface, under inversion
condition, is very steep. Qﬁantum effects arise when the
confinement 6f.invefsion layer carriers in this potential well
Yields an increasingly tﬁowdimensional cafrier system and the
classical treatment of MOSFETs is no longer accurate. The effects
of quantization can be most accurately modeled by solving the
échrﬁdinger's‘ and Poisson's equations’ self—consistenfly. The
‘quantum mechanical calculation is very time consuming and
thefefore‘ it is necessarf to develop a simple model which
includes the quantization effects and requires less computational

time.

In this the31s the eigen energies of the potential well are

determlned by .solv;ng Schrédinger's wave equatlon for a:

triangular potential well by Airy function apprbximations. To
find an analytical expression for quantum capacitance, the
electron population in two sub-bands are considered. The
capac1tance calculated considering quantum effects is found to

.deviate from the classical value,
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1.1 Capacitance of a MOS—-structure

" The metal-oxide - semiconductor (MOS} structure is, without é
doubt, the core structure in modern day microelectronics. With dc
current flow blockea by the oxide, the major observable exhibited
by a MOS-structure 1is capacitance. As it turns out the
capacitance varies as a function of the applied gate voltage and
the capacitance-voltage ({(C-V) characteristic is of considerable
practical impoftance. The C-V  characteristics are routinely

monitored during MOS device fabrication.

~As pictured in (Fig.1.1} the MOS-capacitor is a simple two-
terminal device composed of a thin {0.01 um-1.0 um) SiOz lavyer
sandwiched between a silicon substrate and a metallic field plate
called gate. The most common field plate materials are aluminium
and heavily doped polycrystalline silicon. A second metallic plate

_which provides an electrical contact to the silicon substrate,

.



Fig. 11 The metal oxide-semiconductor capacitor

Vg (gate)
Melal (AL contact
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which is normally grounded, is called the substrate contact,

The ideal MOS structure has the following explicit properties:
(i) The me;allic gate is sufficiently thick so that it can be
considered an equipdtential region biasing conditions;
{(ii) The oxide is a perfect insulator with zero current flowing
through the oxide layer under all static biasing conditions;
{iii) There are no charge centers located in the oxide or at ﬁhe
oxide semiconductor interface;
_(iv). The semicondgctor.is uniformly doped;
(v) The semiconductor is sufficiently thick so that, regardless of
the applied gate potential; a field-free region (the so called

"bulk") is encountered before reaching the back contact.

Electron and holé concentrations in the p-type substrate

are given [1] as:

e(*‘¢ﬁ-£% (1.1)

and

e<¢p—v)7§. (1.2)



whefe,' ny is the intrinsic carrier concentration, K 1is the
Bolﬁzmann's constant, T is the absolute temperature , § and Py
are the potentials of the intrinsic energy level and Fermi level

respectively (Fig.1.2).

The electric field (E = ~-§%) is assumed to vanish aé one

pfoceeds into the semiconductor substrate. Following standard
lconvention, the intrinsic level potential & is chosen to be zero
S in the field-free région of _the-substrate‘refErred to as the
seﬁiconductor bulk. ¥ evaluated at the oxide-semiconductor
interface (at z=0) is given the special symbol ¢, and is Kknown as .

~

the surface potential (Fig.1l.2).
Taking the intrinsic level potential in the bulk region of the
substrate as zero, the electron concentration can be written as,

¥-26p) (1.3
n=N,e T kT

‘where, NA is the”dopihg density of the p-type Substrate}

Positive gate voltage produces an eletric field which bends the
energy bands downward. For a small positive gate voltage (Vg) the

majority carriers (holes) are depletéd from the vicinity of the



INSULATOR

Si/Si0y  INTERFACE

Ev
/ SEMICONDUCTOR

F——— 7.

Fig 12 Substrate energy band diagram.

[ 4 St P



oxide-silicon surface, establishing a space - charge -region
consisting of stationary acceptor ions (Fig.l1.3a). As Ve is
‘increased further, more acceptor atoms are uncovered and ¢5
becomes sufficiently positive to attract a significant number of
ffee electrons to the surface. We consider that these electrons
come from the relatively slow pfocess of electron hole generation
in the depletion region, caused by the thermal vibration of fhe
lattice. Eventually, a sufficiently high V, can bend E, below Ey
and the density of electron will exceed that of holes at the
surféce and. we Vhave surface inversion. - This -situation is

illustrated in (Fig.1.3b).

The electron concentration at the surface 1is given by:

(#3_24’?) Tc%- ( 1.4)

nsurface- = NA e

At ¥ =-¢F v Ngyrface = 0 7 intrinsic concentration as seen from

equation {1.1) and from np:nﬂ then, Ngface = Pyyrface = D ~this is

defined as the lihit point between the depletion and inversion
regions. With increasing ¢,-above @ ng ... increﬁses'drastically,
and at ¢, =2¢, we have ny,., = N, and this situation is shown in

(Fig.1.4).

The density of the induced charge below the oxide denoted by Q,

is  given by Gauss' law
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where €, = free-space permittivity
"k, = dielectric constant of oxide
Fy = electric filed in the oxide.
ko, = dielectric cénstant of semiconductor.
F. =

s field at the semiconductor surface.

The- electric field at the interface is given by [21],

*.! 2¢p tg '
EF/N - - .
r,= 2 50 N ¥, - ) (1.6)

where F=[2ge and the + sign for F, is to be used with
] § §

>0, and the - sign with ¢, < 0 ; #. = kT/q, and the

total semicoductor charge per unit area Q, ,is given as

L 24
7 ' - T1a - r ¢'
0, =7 F\/NAJ (d.e b s ¥, - P) +te ™ (¢c_1 ~ Y, -9,
P
' ‘ (1.7)
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The total charge {per unit area) below the oxide is the sum of
the charge due to the electrons in the inversion layer Q; and the

charge due to the ionized acceptor atoms in the depletion region Qp

Q = Qp + 9 - (1.8)
The small-signal capacitance per unti area corresponding to the

semiconductor change region is denoted by,

c;= - ;ﬁ”"

from equation (1.8},

C = _dQI + -dQB,
o dy, dy,

(1.10)

We have then separated the total semiconductor capacitance C,
into two components, one owing to the depletion region charge and
one owing to the inversion layer charge. So we can define a

inversion region incremental capacitance per unit area ,

ci=%' | o (1.11)

This capacitance relates changes in the charge of the inversion

10



layer to the associated potential changes.

We can also define a depletion region incremental cpacitance

per unit area:

~40, (1.12)
dir,

Cp

This capacitance relates changes of the potential across the
depletion region to the associated changes. of the charge in it.

The resulting exact Ci and Cb are given by [2]

{(¥,-2¢,)
[

e
C; = FyN, el (1.13)
) ¥
2\1% th. e ¥

- 1 ! .
c, = F/N
» = BV, TR : (1.14)

24:{;8 +.¢.e *e

1.2 Quantum effects on inversion 1layer

capacitance.

The interest in MOS structure is enhanced because they show the

11



electronic properties expected of a 2-DEG electron gas. Quantum
effects arise when band bending confines the carriers to a narrow
surface channel. The combination of thinner gate oxides and higher
levels of channel doping increases the electric fiéld associated
with inversion layer to such an extent that 1t produces a
potential well whose width. in the z—directibn, the direction
perpendicular to the surface, is small compared to the wavelength
of the carriers. It is clear that if the carrier wavelengtﬁ is

comparable to the distance from the interface to the classical
. Eﬁ

qr,

direction into discrete. levels_.is expected i.e. a 2-DEG gas is

y. then quantiztidn of the motion in this

turning point {

formed [(3].

The Quantdm mechanical picture differs in several aspects from
the classical one [4]. First of all, the energy spectrum consists
of a set of discrete energy levels and the first allowed energy
level E;, does not coincide with the bottom of the conduction
band E, (Fig.1.5). This energy difference increases. as MOS
devices are scaled down because the channel doping N, increases.
This effectively -widens the band gap for all temperatures and
hence a larger sﬁrfaée poteﬂtial is needed for a givén channel
charge. The quantization of energy has the effect of dcreasing the

_inversion layer charge density for a given gate voltage.

The second gquantum mechanical effect to be taken into account

is that the average distance of the spatial distribution of the

12
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inversion layer charge from the interface is larger in the guantum-
mechanical framework. Hence, a larger band bending is needed for a

given population in the conduction band.

Considering all these effects we conclude that the inversion

lavyer capacitanqe {C is decreased when compared with the

mv)

classical wvalue.

1.3 Review of recent works on MOSFET Capacitance.

The need for careful treatmént of inversion layer quantization
has recently become more pressing due to the increasing impact of
the quantization on low dimension MOSFET characteristics with the
}educed gate oxide thickness and increased channel doping required
in scaled devices. The quantum nature of the two dimensional

electron gas in MOSFETs has been studied in detail im Ref [3].

Two dimentional (2-DEG) electron gas in a quantum well or
inversion layer,funlike an ordinary grounded métalliémplate, dcoes
not éompletely SCreen an applied electric field. A 2-DEG manifests
itself as a capacitor in series in the direction transverse to the
qunatum well [5]. Recent works on this issue were carried out
mosfly on double barrier structures [6] and a few numerical works

have been done on MOS structures [7]. To find the expression of

14



capacitance of a double—barrier.structure,.the Fermi level was not
considered horizontal. By taking the derivative of electron
concentration in sub-bands with respect to the Fermi level an
expression of capacitance was determined. In contrary to'this, in
MOS8 structures the 8i0; acts as an insulator and prevents the-
cﬁrrent flow through it so that the Ferﬁi level is flat. The
derivative of carriers in the subbands with respect to the surface

potential gives the expression for capacitance 1in this case.

1.4 Objective of this work

The_ effects of quantization on MOS dévice behavior have been
known for decades. Recently it has become important and necessary
to physically account for these effects in MOS device at room
temperature. The main objective of this research is to establish aﬁ
analytical expression of inversion layer capacitance considering
quantization effects in the MOS-structures. 1In this thesis,
expression .for eigen energies of sub-bands is derived by applying
Aliry function approximation method for a'triangular pbtential well
in MO0OS under inversion.The eléctron populatibnl in rthe two
consecutive sub-bands are then related with thé two sub-band
energies.Expression for surface potential is established as a
function of total electron concentration N;;y 1n the inversion

layer. Differentiating the total electron concentration with

15



respect to the surface potential the quantum capacitance expression
is found out. This work also compares the inversion lavyer

guantum capacitance with the classical one.

1.5 Summary of 'the- thesis

In this thesis an analytical expre551on for inversion lavyer
capacltance con51der1ng quantlzatlon effects in the MOS-structure
is established. The Schrddinger's wave equation 1s solved using
Airy function’approximaticn in chapter 2. An analytical model to
calculaee inversion layer quantum capacitance is discussed and

expression for capacitance is also established in. chapter 2.

The results of the‘quantum mechanical effects on inversion

laver charge concentration, the spatial distribution of carriers

inside the potential well,the electron concentration in the lowest“

'and the first. energy sub~band$ and also the predicted difference
between classically and quantum mechanically calculated inversion
layer capacitances are given Ain‘chapter 3.Chapter 4 contains the
concluding remarks aiong with recommendations for future work on

this topics.

16
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CHAPTER 2

MATHEMATICAL ANALYSIS FOR CAPACITANCE
OF MOS-STRUCTURES CONSIDERING QUANTUM EFFECTS

2.1 Introduction

It 1is well-known that the motion of the electrohs
perpendicular to the 81-8i0, interface of a MOS structure is
quantized, because the electrons are cbnfined to a well-defined
potential well in this direction. Infquantumlnechanical picture

the energy spectrum consists of a discrete set of energy

levels. The lowest energy level is shifted substantially ahove_

the conduction band minimum.

The charge density, quantum mechanically, goes essentially

to zero in the oxide because of the high barrier here and has

its peak well inside the silicon. The classical Thomas-Fermi

solution, in which the charge density depends only on the local
separation of the band edge and the Fermi level, has a peak at

the interface. In addition, the average spatial extent of the

17
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charge from the interface.is greater when calculated quantum

mechanically than when calculated classically.

Approkimate guantum mechanical sdlutions can be obtained
if the shape of the poﬁential well is simplified. Assuming a
homogeneous channel doping it can be shown that the potential
may be.approximated as, V(z) = £z (triangular approximation)
with £ the normal electrid field due to the charge in the
depletion layer. Trianguiar potential well approximation, so
called because the potential well is bounded on one side by the
vertical barrier that keeps eleqtrons,out'of the insulation and

on the other side by the linearly rising potential.

In this chapter,in order to determine the expressions for
the energy sububands of the potential well, the Schrodinger
wave equation‘is solved with the cohdition £hat the envelope
wave fﬁnctibﬁ goes to zero atlé = 0 and at infinity. The
solutions are Airy funcfions (8). Only the first two
consecutive sub-bands aré taken. The average separation of
carriers in the two<subbands from. the. surface 1is —then
Calculated by using the standard method of integration. By

using Fermi-Dirac statistical distribution law the carrier

18



population in the two sub-bands are also determined. Knowing
" the carrier concentration in the sub—bands, an analytical
expression for _ capacitance is - determined by simply
differentiating the total charge in the inversion layer with

respect to the surface potential.

2.2 Sub-bands of a triangular potential well
2,2.1 Airy function approximation

This is an approximate method of solution of ordinary
differential equation ' and is useful for the approximate

solution of quantum-mechanical problems {81.
2.2.2 Triangular potential approximation

inrthe ﬁOSFET:structure the width of the inversion layer
is in the nanometer range for high substrate doping levels, so
fhe electrostatic potential of tﬁe well can be assﬁmed to be
triangula;. The depth of the potential'ﬁell at the 8i/siQ,
interface is approximately several electron volts, so it can

be assumed as infinite-potential wall,

~ 19



2.2.3 Approximate_solution

The potential'energy of the particle under consideration
is of ‘the form

- Vi{z) 12 <0,

o
er_z ;Z 2 0.

Hou

where the direction z is taken along the positive z-axis

and where z = 0 is the-reflecting plane.

This potential energy and alsoc the energy levéls and wave
functions which we shall obtain are depicted in (Fig.2.1). We
restrict ourselves to an investigation of the motion of the
particle in the z-direction éince the motion in the xy-plane
is‘ free and is of no interest at the moment. The 'time—
' independent Scﬁrédinger equation for the particle wave function

¥(2) in the region z20 is then:

' ;i;lzl+ 2;” (E - eFz)§ =0 O (2.1)

where E is the particle energy. This egquation must be solved

- with the boundary conditions
¥ -0 as zZ -~ (2.2)

and
¥ =0 for z =0 (2.3)

20
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To simplify equation (2.1) we introduce a new independent

variable { which is connected with z by the relation

2m_eF 2m _
w2 R E otk (2.4)

where ¢ is for the moment an arbitrary constant,

Substituting this variable ¢ into equation (2.1)

transforms it to

%}-é(w’*;—ﬁ] EW (E) =0 (2.5)

It is now- clear that if we take

2m eF, 2
C=(__z__3)3’

1.'2

that is , write egquation (2.4) in the form

2m eF \% E '
Ez( hZ ]3(2_6&] - e

we are led to the- very simple form} pufting the vélue of c.in

(2.8),

$(E) -EY (&) =0 (2.7)
The solution of this equation which is finite for all values

of £, that is, also for all value of z, is

22



Y =A¢ (§) =4 Coé(Et+3]-‘-t3)dt (2.8)

sk
ot— ¢

where @(f)} is the Airy function and A is a normalization factor

It is clear that the energy levels of a particle which is
in the potential well shown in (Fig.2.2), form a discrete
_ sbectrum and their number is infinite. To find these levels we
use the boundary coqditidn (2.3f; ¥ = 0 for z = 0, in
equation (2.6),that is ,

() )
2 eFr

or
a 1
23m}
I NP
,e,,3AFB3h3
and from equation (2.8) we have, ¢ = A @& (£) = 0 or
i 1
23m>
¢ T Z 3 El =0 (2.9}
3};-533.'73

Putting the argument of equation (2.9) equal to the roots
of the Airy function which we shall define by - a; , {(i=1,2,..)

O<a1<u2< ......... €A €iw vt meennn ,

23
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2m, \3 . _ _
(e‘*‘?:v] o | A

Hence, the required energy spectrum of the potential has the

form -

L
252323 :

E, =(:i_33_]3 &, (i=1,2,3...... ) (2.11)
2m,

- The wave functions of the corresponding stationary states

can. also be foﬁndd From equation (2.6).and (2.8) we have,

- 2mzéFa _:Ji- - Ei
S

Then putting the value of E; from equation 2.11 in the above

equation we have,

0

‘l’](z) = Ai¢“('Ei)
-ad (£ - a) (2.12)

In this equation 'a' denotes characteristic length.

wlk

. (2.13)
a= [2nkeF;) A

The normalizing factor A depends on i and a. As the Airy

function is real for real values of its argument, we have

ldir(E)I2 =[$(E) P (2.14)

24



The constant factor in equation (2.12) is determined from the

normalization of ¥§.

If we'normalize (2.12) with respect to §

[126 (&) e = [(ad (&) P

=1
or,
Ai =- 1 .
\wamzds ' (2.152)

and if we normalize with respect to z, constant in clearly

equal to,

1

- 1
A= o
waa(m%dz . (2.15b)

Ry

We investigate now the asymptotiC'behavior‘of the wave
functions ¥ (zf at sufficiently. large distances from the

classical turning point, z.°

;7, and also the form of the energy

E, for i=>1. zfl is the greatest height which a classical

particle of given energy E; can attain, which is,-

(2.16)

25



According to the equaﬁion (2.11) and (2.13) thé lengths

zfi and 'a' are connected by the relation

z{l = a a; (2.17)

we use equations (2.13), (2.16) and 2.17) to write equation

{2.6) in the form

- el
EV = __‘Z__‘_Z‘I_ = _Z - &, (2.18)
- a - - a *. '

and consider the asymptotic expressions for the—functions

¥ (2).

Case (1): For the classically inaccessible region and

values of z not too near zfl:

ci

Z -z > a i.e., § > 1

Now using the asymptotié expression for the Airy function. of

the following form-

. 3 :
$-(£) = Zexp (-%Ez) (2.19)
28¢ -

which can be written in the following form using equations

(2.12) and (2.18);

3
A 3 1 2z - zfl]i
P.(z) « Z{—S |4 exp|— = | —— (2.20)
1 (2) 2 (z - zfl] 3( a :

‘26



From the above équation we can conclude that there is

exponentiﬁl decrease of the probability [#i(z)|2 in the

classically inaccessible region.

classical motion and values

For the region of

Case (2):
of z not too near zflz
O«:z(zicl z -z >> a,
that is ,
-a;<§ <0
and
| €| >> 1

It is clear that to satisfy the second condition at least the

following inequality must be obtained
Gi)>1‘

The required asymptotic expansion of‘thé Air?ffunétion has of

the form:
212 . ®
e (§) = _15in (Elﬁlz +Z] (2.21)
1Ef*
Using equations {(2.12) and (2.18) we have,
W1 ) AR )
a 1 gin|2[lz % |)2 + E] (2.22)
| ER a 4

. (Z2) = A
wi i(IZ—Zfl'

27
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The asymptotic expressions (2.20) and (2.22) give us iﬁ this
way the sémiclassical wave functions. By means of (2.22) one
can find explicit expressions for the roots of thé Airy
:uqction § = - a; , and hence also for the energy levéls

{2.11) in the semi-classical case.

To do this we must clearly egquate the argument of the sine

to an integral multiple of mu:

2 T
— 4+ — = +
5 18] 7 - L=
i=0,1,2,3....... '
8o that,
a; = |&4]
2
=[3(3 - 3X]3 '
[z‘“.l”‘ 24] (2.23)
2
3

and from equation (2.11) we -get,[3]

()53 Ce 213
E, [21:1] [Ewer(;+E)

£

(2.24)

This is the required analytical expression for energy subbands

'in the inversion layer of MOSFETS.

28



Taking only the ground and first sub-bands by putting i=0
and i=1 we find the following expressions.

E, = 8.03916 x 107 (F

1

$

1.4142582 x 107 (P ev

E

1]

Where F, is in V/m.

2.3 Population of carriers in the two sub—

bands

The density-of-states for a two-dimensional system is

constant and is given by the following equation [3].

D=-££EQ‘.( 1) T (2.25)

Here, n, and m; are the valley degeneracy factor and the

density—of—states effective mass per valley.
For a two-dimensional density-of-states given by D between
Euand Eland equal to 2D for energies greater than E;, we have,

the total electron population taking two subbands into account,
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using, Fermi-Dirac Statistics:

Using the integration-fdrmula,

_dx
1 + ex

= ~Iln{i + &™)
we obtain,.

(Ep - ) (B, - B ‘
r- 5 ._L_EL)] (2.27)

Ninv=Dlen[(1+e o)1 +e

Therefore,

is the total number of charges per unit area in the inversion

layer.

2.4 Average sepai:at:i.on—. of minority carriers

from the interface.

The .average distance from the semiconductor-insulator

interface of the electrons in the ith sub-band is defined by
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fz¢§(z)dz
Z_:—-...-.._._..._O (2-28)

x os
| f¢§(z)dz
0
Using (2.22), equation (2.28) reduces to

2E,

3qF, (2.29)

Zy =

2y is the average penetration of all the inversion lavyer

-charge from the surface which is given by

N, Z,
Nimr

(2;30)-

2.5 An analytical expression for inversion

layer quantum capacitance

Dufing carrier depletion tﬁe total chargé perlunit_area

Qs ;5 given by [9]
Qs = O = - qN, z,
" where, Zy is the depletion layer width Qg denotes the bulk
charge in the semicoﬁductor: The relationship petween ¥, and Zy
can be obtained by splving Pqissons equation using the

depletion approximation. The result is [9]:
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z, - 2e. ¢y,
qn,

When ¥, > 2¢F' since the increase of ¥, in added to the
difference. of Epand'Ep a small increase of ¢éproduces a large
increase of electrons at he surface, from {(1.4) according to
the exponential nature of the equation. Therefore, the surface

inversion layer is acting like a narrow n' layer and the

induced junction resembles .an n'p junction for-a large positive.

gate voltage. However, all induced charge will ‘be in the
inversion layer after strong'inversién and the charge inside
the depletion layer will remain_constanf. Thus, the space-
charge width remains at Z;, as we further increase the gate

voltage i.e,.

Qp = - alyzy
and
2e ¥, Ty
z. = sY ai . (2.31)
..} Q'NA .

A small increase in the gate voltage increases the silicon
surface potential ¥, so that holes are depleted and the

depletion layer is widened. Therefore more negative fixed
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.E,ﬂ.;-f

charge 1is established at the edge of the neutral p-type

semiconductor as shown in (Fig.2.2a).

If we éssume how that electron-hole pairs.canube‘generated
fast'enougﬁ, the generated holes will replehish the depleted
holes at the edge of the depletion region. At the same time,
the generated electrons‘ wil} be drawn by the field and
accumulate at the Si—Sidz_interface (Fig.2.2b). To determine
the inversion.layer-cépacitance let ﬁs, tﬁerefore, assume that
the depletion width Zy and charge remain essentially constant

after. carrier depletion.

Now, 2z 1is given by,

L )265% ©(2.32
Zd_ ?NA— ) ( )

where ¢d is the effective band bgnding from the bulk to the
surface, apart from the contribution of the inversion 1laver

itself, is given by (Fig.2.3),

@by =(E, ~ Ep), (2.33)
and
Ny = NpZ, (2.34)
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Z dQg = CdVG

~dQg

(a) |

dQs

NN

Xy ——

‘dQS

B NNNNNNN\N

——
—

_ Fig 2-2 Charge d:strlbutuon in a MOSL(EJE]EIJWCE4
(a) Depletion layer charge

(b) Inversion layer charge.
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Zay -z
(b)

Fig 23 Band bending due to depletion charges,
(a) Surface potential wg and band bending
(b) Potential drop due to inversion charges
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is the number of charges per unit area in the depletion layer
and Nj. = IZN;, is the total number of charges per unit area in

the inversion layer.

The electric field_FS is given by,

Fy= LNy + Nyppy) (2.35)
8

Field vanishes for large z and its value at the ‘surface be F.

Here we have assumed that the depletion charge is constant
for a distance z; from the surface and then goeé abruptly to
zero. But actually charge density dééays smoothly. This effect
can be accounted for by adding a constant to the band bending

used to calculate z; in equation (2.32).

The correction to #; in taken to be -kT/q [37

q%=H@—%u+@¢ﬂ-J%@ (2.36)

g

where the first term (Ec— th-is the energy difference between
the bottom of the conduction band in the bulk and the Fermi

level. Ej is the Fermi energy relative to the nominal

conduction band edge at the surface. (Ec ~Eg)y is given by
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E, N
(E.~Ep)p = —Z + kT1n-2 (2.37)
7 2 ny

The last term in equation (2.36) is the potential drop
across the inversion'laYer, Vi, due to the inversion layer
charges. From equation (2.36) we can write

.qls = ¢d + .._.kI + q____Ni_nvzav

T e (2.38)

Inversion layer quantum capacitarice is denoted by

innv
= - 2.39
v s ( )

Cin

Qi is the total charge in the inversion layer and ¥; is

the surface potential.

Putting Qipy = - 4QN;,, in equation (2.38) we have,
dN, .
Cipw = G : (2.40)
inv dq,s . . . .

Now from equation (2.27) we can write,

NiﬂV = Nu + N1 (241)

where,

} (By‘&) ,
N, = DkT1n(1 + e ¥ ) (2.41a)
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and .

(By - B)

N, = DKTIn(1 + e ¥ ) (2.41b)

Assume,

and Ej = a F,

2/3
E, b F,

il

where a and b are adjustable parameters

Differentiating equation {(2.30) with respect to F, we have,

dNin? = DkT(—- i)_%pai al, |, _buy (2.42)
dr kT} 3 1+ u, 1+ u,

8

And differentiating equation (2.38) with respect to Fs'
'(assuming that #; is fixed after the inversion layer begins to

form) we have,

d"’a . d(qunvzav)
dF e

g g

where 2,, 1s given by equation (2.30}. Using equations (2.26),

(2.41a) and (2.41b) we get,
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_2 2 2
: 35, a<u - b
=D %el é(-le)F’a(1+zjl+1+ul;)

g 0 .t (2.43)

-3
+(-3)F {aln(1+uy) + bln(a + u,))

Dividing equation (2.42) by (2.43) and multiplying by q-we get

the inversion capacitance ile.,

Thus the inversion layer quantum capacitance is given by,

38,? ay, | bu
2 1+, 1+
Ci = .

2
- 1b+u:1-_k,) *+ 2kT{aln(1 + u,) + bln(1 + ui)J

(2..44)

The inversion layer quantum capacitance depends upon the

electric field F, and eigen energy of two sub-bands. The

algorithm for finding Cipv 18 developed in chapter 3.
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2.6 Summary

In this chapter, an analytical expression for inversion
layer gquantum capacitaﬂce is derived. The populations of
electrons in two sub-bands are determined using density of
states' and_'Fermi—Diréce statistis. Knowing. the electron
population and average seperation of minority carries from the
,interfaée,‘-an ‘expression for surface ‘potential @, is
estéblishea—in this chapter. The total charge of the carriers
Qinv, in the“two sub-bands are shown as a function of surface

potential. Derivative of Q;,, With respect with ¥, gives C;.
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CHAPTER 3

RESULTS BASED ON ANALYTICAL SOLUTION

3. 1 Int:roduction

A MOS-capacitor is studied using computational method. The
'analytical model developed in chapter 2 is used here to determine
the inversion layer capacitance consideriﬁg guantum effects.
One dimensional searching algorithm is used in the -computational
method. The inversion layer charge density, the eigen energies
obtained using different approximations, the average separation
of carriers from the surface, the carrier concentration in two
conéecutive sub-bands and finally, the classical and gquantum
mechanical inversion region gate caﬁacitance for a MOS capacitor

have been compared in this study.

3.2 Computational method in studying the MOS

device.

The classical inversion layer capacitance is calculated

-
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by using equation (1.13). First we assumed the surface electric
field to be F.1 {V/m). The lower aﬂd the first energy sub-bands
Ey; and E, respectively were calculated using equation (2.24). The
inversion layer charge N 1 (mq) is then assumed and using a
one dimensional searching algorithm Ep i.e., the position of the
Fermi level is determined. Knowing E; we can now calculate By
from equation (2.36), 2y from equation (2.32) and the depletion
layer charge NMM from equation (2.34). - A new value of electric
field F.2 is then found from the sum of the inversion and the
depletion layer charges given'by equation (2.35). When F,1 and
F,2 matches then the séarching algorithm comes to an end. For a
particular value of F,, then the corresponding Fermi enerqgy

level (EF)' surface potential'(ts), the lowest and the first

energy levels (EU and El) are determined. Finally using equation
(2.44) the inversion layer quantum capacitance Cipy 1is
calculated.

3.3 Results and discussions
3.3.1 Quantization of Energy 'levels

The predicted energy levels of the lower two~subbands (EU
and E;) for a MOS capacitor with a gate oxide thickness 10nm
and with a uniform channel doping of N, = 1,04 m is shown in
(Fig.3.1 and Fig.3.2). The energy levels of the lower two-
subbands (E0 and 'El) increases as the device becomes more

strongly inverted. -
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Fig. 31 .Effect of surface electric field on the

energy levels.
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3.3.2 Inversion layer charge concentration

{Fig.3.3) shows the inversion layer charge concentration for
a uniform channel doping of 10“ m? and for a gate oxide
thickness of 10nm. The inversion layer charge concentration (va)

increases with the surface potential (ts).
)

3.3.3 Depletion layer charge concentration

From (Fig.3.4) we find that the variation of depletion 1ayer
charge with the surface potential is very small compared to the
inversion laver chérge concentration. After strong inversion, a
small increase of ¥, produces a large increase of electrons at
the surface and the inversion layer acts like a narrow n' layer
Iby shielding the semiconductor ffqm further*penetratioﬁ of -the
electric field. Therefdre the depletion layer charge remains
constant” and after strong inversion the depletion layer width

becomes fixed at By -

3.3.4 Electron Concentrations in the two

sub-bands

The electron distribution in the two sub-bands as a function

of the applied surface potential is shown in (Fig.3.5). Here we
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layer charge.
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observe that, as ¥, increases the electron concentration in the
lowest sub-band increases whereés the electron concentration in
the first sub-band decreases. This can be explained from
(Fig.3.1) where we find that as ¢, increases the difference
between E; and El'increases i.e., the probability for the

electrons to occupy the ‘lowest sub-band alsoc increases.

3.3.5 Average spatial extent of the inversion

layer electrons from the surface.

The average penetratioﬁ of the inversion layef charge
density.irom‘the surface 2, as a function of the inversion layer
cha;ge concentration and the surface potential for p-type silicon
'with_ 104 acceptors per m'3 in the bulk at 300K is shown 1in

(Fig.3.6 and Fig.3.7) respectively. The decrease of 2, with
increasing inversion layer charge is a reflection of the
increasing surface electric field seen by the electrons which

. pushes them closer to the surface.

3.3.6 Inversion layer capacitance:

The predicted difference between quantum mechanically and
classically calculated capacitance in inversion for an MOS
cépacitance with a gate oxide thickness of 10nm and a unifo;m

channel doping of 10 m? is shown in {Fig.3.8). From figure we
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find that, the difference between the predicted inversion layer
capacitan;e when the quantum mechanical effects are included
with that calculated <c¢lassically increases markedly when
surface potential is increased.The variation of inversion
layer quantum capacitance with the applied surface potential is
small because with the increase of §, the energy levels E, and E
shifts upward and the number of inversion layer carriers cannot
increase at the previous rate which 1is exponential in
.nature.Therefore for a given value of surface potential the
inversion layer capacitance calculated quantum mechanically will

be smaller than when calculated classically.

3.4 Summary

The analytical model de#eloped in chapter 2 is used here to
determine the inversion region quantum capacitance of the MOS-
capacitor. The approach of the analysis and the computational

method is also described.
The variations of the energy'levels and the inversion layer
charge concentration with the applied surface potential and

electric field are studied and are found to be increasing in

nature.

The depletion layer charge concentration varies but very

slightly with the surface potential.

The electron concentration in the two sub-bands is studied
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and is seen that most of the carriers occupy the lowest energy

level with the increasing gate voltage.

The average separation of. the inversion layer electrons from

the interface decreases with the applied field.
Finally,the variation of the inversion layer quantum

capacitance with the applied surface potential is studied and is

found to be small compared to the classical one.
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CHAPTER 4

CONCLUSIONS

4 .1 Conclusions

In this work an analysis is presented to determine the
inversion layer capacitance of MOSFETs incorporating gquantum

mechanical effects.

The Schrddinger wave. equation is solved by using triangular
potential approximation. which leads to the Airy equation. From

the solution we find the eigen energy equation Eifrom which dnly

-the first two consecutive subbands are considered. The average

separation of carriers in the two subbands from the surface is

calculated by using the standard method of integration. The

Fermi-Dirac statistical law gives the carriers population in the

two subbands. From the equations of separation of carriers and
the carrier concentration an analytical expression for inversion

layer capacitance is established.

The variations of electron concentrations in the two
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subbands, the average separation of carriers and the eigen
energies with the applied field and surface potential are
studied. Lastly, the <classical and the gquantum mechanical
inversion layer capacitances are compared. The difference between
the classical and the gquantum mechanical calculations increases

markedly with the applied voltage.

4.2'Suggestions for future work

The mathematical model developed in this work uses only the
lower two energy subbands of the inversion layver. In future, a
similar model can bhe developed consideriﬁg three or more energ?
subbands for more accurate results. Alsc the frequency response
of the quantum cabacitance can be studied wusing the model
developed in this work. Since the quantum mechanical calculation
ié very time consuming our aim must be to devéldp a method which

can deriye a result that approximates the guantum mechanicél

palculation and that requires the same CPU time as that of the

classical calculation. In this thesis we used the triangular well
approximation and Airy eguation to-solve the Schrddinger wave
egquation. In future similar model can be developed by using

variational techhique.
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