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ABSTRACT

MOSFETs are extensively used in Ie fabrication. Improvement
of the~VLSI technology has resulted in device dimensions of the
order of fractions of a micron. In MOSFETs with increased
substrate doping levels and reduced gate oxide thicknesses the
energy-band bending at the Si/SiOZ interface, under inversion
condition, is very steep. Quantum effects arise when the
confinement of inversion layer carriers in this potential well
yields ~nincreasingly two-dimensional carrier system and the
classical treatment of MOSFETs is no longer accurate. The effects
of quantization can be most accurately modeled by solving the.
Schrodinger's and Poisson I s equations. self-consistently. The
quantum mechanical calculation is very time. consuming and
therefore it is necessary to develop a simple model which
includes the quantization effects and requires less computational
time.

In this thesis the eigen energies of the potential well are
determined by solving Schrodinger's wave equation for a
tr~iangular potential well by Airy function approximations. To
find an analytical expression for quantum capacitance, the
electron population in two sub-bands are considered. The •.~
capacitance calculated considering quantum effects is found to
.deviate from the classical value.
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CHAPTER 1

INTRODUCTION

1.1 capacitance of aMOS-structure

The metal-oxide - semiconductor (MOS) structurs is~ without a
doubt, the core structure in modern day microelectronics. With de
current flow blocked by the oxide, the major observable exhibited
by a MOS-structure is capacitance. As it turns out the
capacitance varies as a function of the applied gate voltage and
the capacitance-voltage (C-V) characteristic is of considerable
practical importance. The C-V characteristics are routinely
monitored duringMOS device fabrication.

As pictured in (Fig .1.1) the MOS-capaci tor is a simple two-
terminal device composed of a thin (0.01 pm-l.0 pm) Si02 layer
sandwiched between a silicon substrate and a metallic field plate
called gate. The most common field plate materials are aluminium
and heavily doped polycrystalline silicon. A second metallic plate
which provides an electrical contact to the silicon substrate,

1
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VG (gate)
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Si02 (insulator)
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Si (P-type Substrate)

i

•Fig. 1-1 The metal oxide-semiconductor capacitor.
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which is normally grounded, 'is called the substrate contact.

The ideal MOS structure has the following explicit properties:
(i) The metallic gate is suff iciently thick so that it can be
considered an equipotential region biasing conditions;
(ii) The oxide is a perfect insulator with zero current flowing
through the oxide layer under all static biasing conditions;
(iii) There are no charge centers located in the oxide or at the
oxide semiconductor interface;
(iv) The semiconductor is uniformly doped;
(v) The s~miconductor is sufficiently thick so that, regardless of
the applied -gate potenti'al; a field-freeregion (the so called
"bulk") is encountered before reaching the back contact.

Electron and hole concentrations in the p-type substrate
are given [lJ as:

(1.1)

and

(1.2)

r
'\
)
I
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where, ni is the intrinsic carrier concentration, K is the
Boltzmann's constant, T is the absolute temperature • and iZSF

are the potentials of the intrinsic energy level and Fermi level
respectively (Fig.l.2).

is .assumed to vanish as oneThe electric field (~ = - ~)
dz

proceeds into the semiconductor substrate. Following standard
convention, the intrinsic level potential • is chosen to be zero
in. the field-free .region of. the substrate referred to as the
semiconductor bulk. • evaluated at the' oxide-semiconductor
interface (at z=O) is given the special symbol.5 and is known as.
the surface potential (Fig.l.2).

Taking the intrinsic level potential in the bulk region of the
substrate as zero, the electron concentration can be written as,

(1.3)

where, NA is the 'doping density of the p~type substrate.

Positive gate voltage produces an eletric field which bends the
energy bands downward. For a small positive gate voltage (VG) the
majority carriers (holes) are depleted from the vicinity of the

~' ., .
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Fig. 1.2 Substrate energy band diagram.
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oxide-silicon surface, establishing a space -charge -region

I'
'II

consisting of stationary acceptor ions (Fig.l.3a). As is

increased further, more acceptor atoms are uncovered and '5
becomes sufficiently positive to attract a significant number of
free electrons to the surface. We consider that these electrons
come from the relatively slow process of electron hole generation
in the depletion region, caused by t-he thermal vibration of the
lattice. Eventually, a sufficiently high VG can bend Ej below EF
and the density of electron will exceed that of holes at the
surface and we have surface inversion.
illustrated in (Fig.l.3b).

This situation is

The electron concentration at the surface is given by:

nSUIface-

(1.4)

At • = l2lF , nsurface= n. ; intrinsic concentration as seen from
1

equation (1.1) and from np=n,2 then, nsurface= Psurface= nj this is
1

defined as the liinit point between the depletion and inversion
regions. With
and at .5 =:2121F

(Fig.1.4) .

increasing .5 -above l2lF, nsurfaceincre-as-esdrastically,
we have nsurface= NA and this situation is shown in

The density of the induced charge below the oxide denoted by Qs'
is given by Gauss' law

6
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Fig. 1.4 Electron concentration at the surface
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where EO = free-space permittivity
,kox = dielectric constant of oxide
Fox = electric filed in the oxide,
ks = dielectric constant of semiconductor,
Fs = field at the semiconductor surface.

(1.5)

The:elec,tric--f'ieldat the interf'ace is g,iven by [2],

(1.6)

where and the + sign for Fs is to be used with ~

> 0, and the - sign with .s < 0 -t = kT/q, and the
total semicoductor' charge per unit area Qs ,is give'n as

t.
(~te-~ + Ws - ~t) +

(1.7)

9



The total charge (per unit area) below the oxide is the sum of
the charge due to the electrons in the inversion layer QJ and the
charge due to the ionized acceptor atoms in the depletion region QS

(1.8)

The small-signal capacitance per unti area corresponding to the
semiconductor change region is denoted by,

c~" -

from equation (1.8),

(1.9)

(1.10 )

We have then separated the total semiconductor capacitance Cs
into two components, one owing to the depletion region charge and
one owing to the inver.sion layer charge. So we can define a
inversion" region incr"ement"al"capacitance per unit area ,

(1.11)

This capacitance relates changes in the charge of the inversion

10



layer to the associated potential changes.

We can also define a depletion region incremental cpacitance
per unit area:

-dQ
C - Bb- --

cflIr s_

This capacitance relates changes of the

(1.12)

potential across the
depletion region to the associated changes of the~harge in it.
The resulting exact Ci and Cb are given by [2]

(1.13)

(1.14)

1.2 QuantUll effects on inversion l.ayer
capacitance.

The interest in MOS structure is enhanced because they show the

11



electronic properties expected of a 2-DEG electron gas. Quantum
effects arise when band bending confines the carriers to a narrow
surface channel. The combination of thinner gate oxides and higher
levels of channel doping increases the electric field associated
with inversion layer to such an extent that it produces a

potential well whose width _ in the z-direction, the direction
perpendicular to the surface, ~s small compared to the wavelength
of the carriers. It is clear that if the carrier wavelength is
comparable to the distance from the interface to the classical

turning point Ej} . then quantiztion of the motion in this
qi".

direction into discrete. ley.els.is expected i.e. a 2-DEG gas is

formed [3].

The Quantum mechanical picture differs in several aspects from
the classical one [4]. First of all, the energy spectrum consists
of a set of discrete energy levels and the first allowed energy
level EO does not coincide with the bottom of the conduction
band Ec (Fig .1.5). This energy difference increases- as MOS

devices are scaled down because the channel doping NA increases.
This effectively widens the band gap for all temperatures and
hence a larger surf-ace potential is needed for a given channel
charge. The quantization of energy has the effect of dcreasing the
inversion layer charge density for a given gate voltage.

The second quantum mechanical effect to be taken into account
is that the average distance of the spatial distribution of the

12
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Fig. 1-5 Quantum mechanical effects on inversion
layer charge
(a) Energy layer split.
(b) Spatial distribution of _carriers.
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inversion layer charge from the interface is larger in the quantum-
mechanical framework. Hence, a larger band bending is needed for a
given population in the conduction band.

1.3 Review of recent works on HOSFETCapacitance.

The need for careful treatment of inversion layer quantization
has recently become more pressing due to the increasing impact of
the quantization on low dimension MOSFET characteristics with the.
reduced gate oxide thickness and increased channel doping required
in scaled devices. The quantum nature oJ the two dimensional
electr_on gas in MOSFETs has been studied in detail in-Ref- [3].

Two d-imentional (2-DEG) electron gas in a quantum well or
inversion layer, unlike an ordinary grounded metallic_ plate, does
not completely scre,n an applied electric field. A 2~DEG manifests
itself as a capacitor in series in the direction transverse to the
qunatum well [5]. Recent works on this issue were carried out
mostly on double barrier structures [6] and a few numerical works
have been done on MOS structures [7]. To find the expression of

14



capaci tance of a double-barrier structure, the Fermi level was not
considered horizontal. By taking the derivative of electron
concen'tration in sub-b,ands with respect to the Fermi level an
expression of capacitance was de'termined. In contrary to this, in

Mas structures the SiDl acts as an insulator and prevents the.
current flow through it so that the Fermi level is flat. The
derivative of carriers in the subbands with respect to the surface
potential gives the expression for capacitance in this case.

1.4 Objective of this work

The.effects of quantization on Mas device behavior have been
known for decades. Recently it has become important and necessary
to physically account for these effects in Mas device at room
temperature. The main objective of this research is to establish an
analytical expression of invers-ion layer capacitance considering
quantization effects in the MaS-structures. In this thesis,
expression ,for eigen energies of sub-bands is derived by applying
Airy funct,ion approximation method for a triangular potential well
in Mas under inversion. The electron population in the two
consecutive sub-bands are then related with the two sub-band
energies. Expression for surface potential is established as a
function of total electron concentration Ninv in the inversion
layer. Differentiating the total electron concentration with

15
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respect to the surface potential the quantum capacitance expression
is found out. This work also compares the inversion layer

quantum capacitance with the classical one.

1.5 SUlJlJary of the thesis.•

In this thesis an analytical expression for inversion layer
capacitance considering quantization effects in the MOS-structure
is establ'ished. The Schrodinger.'s wave equation is solved using
Airy function approximation in chapter 2. An analyt'ical model to
calculate inversion layer quantum capacitance is discussed and
expres$ion- for capacitance is also established in chapter 2.

The results of the quantum mechanical effects on inversion
layer charge concentration, the spatial distribution of carriers

I

inside the potential well, the electron concentration in the lowest'.
and the first energy sub-bands and also the predicted difference
between classically and quantum mechanically calculated inversion
layer capacitances are given in chapter 3.Chapter 4 contains the
concluding remarks along with recommendations for future work on
this topics.

16
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CHAPTER 2

HA7HEHAl'ICAL ANALYSIS FOR CAPACITANCE

OF HOS-STRUCTURES CONSIDERING QUAIfTOH EFFECTS

2..1 Introduction

It is well-known that the motion of the electrons

perpendicular to the Si-Si02 interface of a MOS structure is

quantized, because the electrons are confined to a well-defined

potential well in this direction. In quantum mechanical picture

the energy spectr.um consists of a. discrete set of energy

levels. The lowest energy level is shifted substantially above

the conduction band minimum.

The charge density, quantum mechanically, goes essentially

to zero in the oxide because of the high barrier here and has

its peak well inside the silicon. The classical Thomas-Fermi

solution, in which the charge .density depends only on the local

separation of the band edge and the Fermi level, has a peak at

the interface. In addition, the average spatial extent of the

17



charge from the interface is greater when calculated quantum

mechanically than when calculated classically.

Approximate quantum mechanical solutions can be Qbtained

if the shape of the potential well is simplified. Assuming a

homogeneous channel doping it can be shown that the potential

may be ,approximated as, V(z) = ~z (triangular approximation)

with ~ the normal electric field due to th'e charge in the

depletion layer. Triangular potential well approximation, so

called because the potential well is bounded on one side by the

vertical barrier that keeps electrons_out of the insulation and

on the other side by the linearly rising potential.

In this chapter, in order to determine the expressions for

the energy sub-bands of the potent-ial well, the Schrodinger

wave equation' is solved w,i,ththe condition that the envelope

wave function goes to zero at z = 0 and at infinity. The

solutions are Airy functions [8]. Only the first two

consecutive sub-bands are taken. The average separation of

carriers in the two~subbands from, the surface is then

calculated by using the standard method of integration. By

using Fermi-Dirac statistical distribution law the carrier

18
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population in the two sub-bands are also determined. Knowing

the carrier concentration in the sub-bands, an analytical

expression. for capacitance is determined by simply

differentiating the total charge in the inversion layer with

respect to the surface potential.

2. 2 Sub:-bands of a triangular potential well

-2.2.1 Airy function approximation

This is an approximate method of solution of ordinary

differential equation and is useful for the approximate

solution of quantum-mechanical problems [8].

2.2.2 Triangular potential approximation

In the MOSFET structure the width of the inversion layer

is in the nanometer range for high substrate doping levels, so

the electrostatic potential of the well can be assumed to be

triangular. The depth of the potential well at the Si/Si02
interface is approximately several electron volts, so it can

be assumed as infinite potential wall.

19



2.2.3 A~proximate solution

The potential energy of the particle under consideration

is of the form

where the direction z is taken along the positive z-axis

and where z = 0 is the- reflect-ing plane-.

This potential energy and also the energy levels and wave

functions which we shall obtain are depicted in (Fig.2.1). We

restrict ourselves to an investigation of the motion of the

particle in the z-direction since the motion in the xy-plane

is free and is of no interest at the moment. The -time-

independent Schrodinger equation for the par_ticle wave function

,(z) in the region z~O is then:

d"ljr 2mz )+ -- (E - eF z -ljI = 0
dz2 7.2 _8

( 2.1)

where E is the particle energy. This equation must be solved

with the boundary conditions

and
ljI=O

as

for

20
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Fig. 2.1 Energy sub-bands In a triangular
potential well.
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To simplify equation (2.1) we introduce a new independent

variable ~ which is connected with z by the relation

(2.4)

where c is for the moment an arbitrary constant,

Substi tuting this variable c into equation (2.1)

transforms it to

( 2 . 5 )

It is now. clear that if we take

c =

that is , write equation (2.4). in the form

( 2 . 6 )

we are led to the.very s.imple form, putting the value of c in

(2.8),

tilm - ~t m = 0 ( 2 . 7 )

The solution of this equation which is finite for all values

of ~, that is, also for all value of z, is

22



1jr = Acjl m •• A ...!... J Cos (~ t +
.fiCo

..!. t3) dt
3

( 2 . 8 )

where 0(~)is the Airy function and A is a normalization factor

It is clear that the energy levels of a particle which is

in the potential well shown in (Fig.2.2), form a discrete

spectrum and their number is infinite. To find these levels we

use the boundary condition (2.3);

equation (2.6) ,that is-

t = 0 for z = 0, in

or

'.

,.[-
and from equation (2.8) we have, • =A 0(~) = 0 or

+
1 1

EJ
23m3

~ = 0
2 2 2

e3F:'h3
( 2 . 9 )

Putting the argument o.fequation (2.9) equal to the roots

of the Airy function which we'shall def ine by - OJ, (i=1,2, ..)

o < 01 < 02 < ..•..•••. <OJ < ....•..•.. ,

we find for the solutions Ej of this transcendental equation.

23
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(2.10)

Hence, the required energy spectrum of the po.:tential has the

form

E. = (_e_2~_sl>_2)i ".
, 2m 's

(i = 1,2,3 ) (2.11)

The wave functions of the- corresponding stationary states

can_ also be found. From equa.tion (2.6) and (2.8) we have,

Then putting the value of Ei from equation 2.11 in the above

equation we have,

Wi (z) = Aicjl-(~i)

=Aicjl ( Z - "1)a

In this equat-i-on I a' denotes characteristic length.

(2.12)

(2._13)

The normalizing factor A depends on i and a. As the Airy

function is real for real values of its argument, we have

(2.14)

24



The constant factor in equation (2.12) is determined from the

normalizatio~ of *.

If we normalize (2.12) with respect to ~

• •

-.
= 1.

or,

1.Ai =. -------
• (2.15a)

and if we normalize with respect to z, constant in clearly

equal to,

1.

(2.15b)

We investigate now the asymptotic behavior of the wave

functions *i (z) at sufficiently large distances from the

classical turning point, ziC1, and also the form of the energy

Ei for i=:1. zic1 is the greatest height which a classical

particle of given energy Ei can attain, which is,

Z~l =~

25
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According to the equation (2.11) and (2,13) the lengths

z.e! and 'a' are connected by the relation1

(2.17)

we use equations (2.13), (2.16) and 2.17) to write equation

(2.6) in the form

z - Zf'l~
a

(2.18)

and consider the asymptot.ic expr.essions for the"'fun'ct'ions

Case (1): For the classically inaccessible region and

values of z not too near Zicl:

Z - zie!» aLe., e» 1

Now using the asymptotic expression for the Airy function. of

the following form.

(2.19)

which can be written in the following .form using equations

(2.12) and (2.18);

(2.20)

:26



From the above equation we can conclude that there is

exponential decrease of the probability 'ti(z)12 in the

classically inaccessible region.

Case (2): For the region of classical motion and values

of z not too near zicl:
o < Z < z.e!

1

that is ,

and

z - Zi I » a,

I ~ I » 1

It is clear that to satisfy the second condition at least the

following inequality must be obtained

The required asymptotic expansion of the Airy function has of

the form:

1 S'-- l.n
1

I~I'
(2.21)

Using equations (2.12) and (2.18) we have,

•. (z) '" A ( a )i Sin[~( Iz - zi'll)i + ~]iii z _ zi'l I 3 a 4

27
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The asymptotic expressions (2.20) and (2.22) give us in this

way the semiclassical wave functions. By means.of (2.22) one

can find explicit expressions for the roots of the Airy

function ~j = - OJ and hence also for the energy lev~ls

(2.11) in the semi-classical case.

To do this we must clearly equate the argument of the sine

to an integral multiple of n::

So that.

3

3.1 ~ 12
3

+ ~ = (i + 1) ~
4
i = 0.1.2.3 .......•

CZ1 = 1~11
= [2(i + 1)~ - 2~]i
2 2 4

2

= [~ (i~ + 34~)l'
and from equation (2.11) weget,[3]

(2.23)

2

[2~eF (i + 2)]'32 B 4

i = 0.1,2,3 ,

(2.24)

This is the required analytical expression for energy subbands

in the inversion layer of MOSFETS.
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Taking only the ground and first sub-bands by putting i=O

and i=l we find the following expressions.

= 8.03916 x 10-7 (F )2/3 eV5

Where Fs is in Vim.

2.3 Popu1ation of carriers in the two sub-
bands

The density-of-states for a two-dimensional system is

constant and is given by the following equation [3].

(2.25)

Here, lly and ~ are the valley degeneracy factor and the

density-of-states effective mass per valley.

For a two-dimensional density-of-states given by D between

EO and E1 and equal to 2D for energies greater than E1, we have,

the total electron population taking two subbands into account,
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using, Fermi-Dirac Statistics:

1 + e

Using~the integration formula,

+ 2Df
'"

dE
(B.- B,.l

l+e kT

.(2.26)

we obtain,

[

(B~ - E;,l (B~ - Hi) ]
Ninv = DkTln (1 + e kT ) (1 + e kT )

Therefore,

(2.27)

.,

is the total number of charges per unit area in the inversion

layer.

2.4 Average separation of ninority carriers
froB the interface.

The average distance from the semiconductor-insulator

interface of the electrons in the ith sub-band is defined by
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f z'P~(z) dz
Zi = _0 _

f 'P~(z) dz
o

Using (2.22), equation (2.28) reduces to

(2.28 )

(2.29)

Zn is the average penetration of all the inversion layer

charge from the surface which is given by

Z '= ~ NiZi
av N

inv
(2.30 )

2.5 Ananalytical expression for inversion-

layer quantumcapacitance

During carrier depletion the total charge per unit area

Qs is given by [9J

where, zd is the depletion layer width QS denotes the bulk

charge in the semiconductor. The relationship between .5 and zd

can be obtained by solving Poissons equation using the

depletion approximation. The result is [9J:
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When '5 > 2f2lF' since the increase of '5 in added to the

diff.er.ence ..of EFand 'Ei, a small increase of 's produces a large
increase of electrons at he surface, from (1.4) according to

the exponential nature of the equation. Therefore, the surface

inversion layer is acting. like a narrow nt layer and the

induced junction resembles an ntp junction for a large positive

gate voltage. However, all induced charge will be in the

inversion layer after strong inversion and the charge inside

the depletion layer will remain constant. Thus, the space-

charge width remains at zdm as we further increase the gate

voltage Le.

and

rv

(2.31)

A small increase in the gate voltage increases the silicon

surface potential '5 so that holes are depleted and the

depletion layer is widened. Therefore more negative fixed
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charge is established at the edge of the neutral p-type

semiconductor as shown in (Fig.2.2a).

If'we assume now that electron-hole pair$ can,be.generated

fast enough, the generated holes will repl.nish the depleted

holes at the edge of the depletion region. At the same time,

the generated electrons will be drawn by the field and

accumulate at the Si-Si02. inter.face (Fig.2.2b). To determine

the inversion. layer capacitance let us, therefore, assume that

the depletion width zd and charge remain essentially constant

after. carrier depletion.

Now, zd is given by,

(2.32)

where ~d is the effective band bending from the bulk to the

surface, apart from the contribution of the inversion. layer

itself, is given by (Fig.2.3),

(2.33)

and

(2.34)
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Xo xd -l
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r;:; -dQst?;
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-

(a)

(b)

-~-
Fig. 2.2 Charge distribution in a MOSjcapacitor.,.

-----
(a) Depletion layer charge
(b) Inversion layer charge
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Fig. 2.3 Band ben'ding due to depletion charges,
(a) surface potential 'fIs and band bending
(b) Potential drop due to inversion charges
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is the number of charges per unit area in the depletion layer

and Ninv = 1:Nj, is the total number of charges per unit area in

the inversion layer.

The electric field Fs is given by,

Fs = ': (Ninv + Ndep1)• (2.35)

Field vanishes for large z and its value at the surface be F
s
.

Here"we have assumed that the depletion charge is constant

for a distance zd from the surface and then goes abruptly to

zero. But actually charge density decays smoothly. This effect

can be accounted for by adding a constant to the band bending

used to calculate zd in equation (2.32).

The correction to -d in taken to be -kTjq [3]

(2.36 )

where the first term (Ee - EY)bis the energy difference between

the bottom of the conduction band in the bulk and the Fermi

level. Ey is the Fermi energy relative" to the nominal

conduction band edge at the surface. (Ee -EY)b is given by

36

..'



= !!.a. + kT In NA
2 ni

(2.37)

The last term in equation (2.36) is the potential drop

across the inversion lay'er V.
, 1 ' due to the inversion layer

charges. From equation (2.36) we can write

(2.38 )

Inversion layer quantum capacitance is denoted by

c = _ dQiDv
inv. ~

y ••••
(2.39)

Qinv is the total charge in the inversion layer and .s is

the surface potential.

Putting Qin = - qNin in equation (2.38) we have,

dNiDvq--dV. (2.40)

Now from equation (2.27) we can write,

where,

(B, - E,l
No = DkTln(l + e kT )
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and

(8, - 8,)

N1 = DkTln(l + e JeT )

Assume,

(8, - "0)

Uo = e JeT

(E, - 8,)

U1 = e JeT

and EO = a Fs 213

E1 = b Fs 2/3

wher.e a and b are adjustable parameter.s

(2.41b)

Differentiating equation (2.30) with respect to Fs we have,

dNinv. _,_ (. 1) 2 -i [auo bU1 ]-- - DAT - - -F + _
dF. kT 3. 1 + Uo 1 + ~ (2.42)

And differentiating equation (2.38) with respect to F
s

(assuming that ~d is fixed after the inversion layer begins to

form) we have,

where Zav is given by equation (2.30). Using equations (2.26),

(2.41a) and (2.41b) we get,
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•
+ (-~)F~3{aln(1+Uo) +bln(1+u,)}

(2.43)

Dividing equation (2.42) by (2.43) and multiplying by q we get

the inversion capacitance i.e.,

Thus the inversion layer quantum capacitance is given by,

3 i au" bu, ]-e F ~-- + -0----
2$1+00 1+U1

Ci~ = ."'"[F---~-(-a-'u,,--+-b-'-U-,-) + 2kT(aln(1 + "--)-+-b-l-n-(-l-+-u-,)~l
. • 1+u" 1+"" -0

(2.44)

The inversion layer quantum capacitance depends upon the

electric field Fs and eigen energy of two sub-bands. The

algorithm for finding Cinv is developed in chapter 3.
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2.6 Summary

In this chapter, an analytical expression for inversion

layer quantum capacitance is derived. The populations of

electrons in two sub-bands are determined using density of

states and Fermi-Dirace statistis. Knowing the electron

population and average seperation of minority carries from the

interface, an expression for surface .potential ts is

established in this chapter. The total charge of the carriers

Qinv, in the two sub-bands are shown as a function of surface

potential. Derivative of .Qinvwith respect with ts gives Cinv..
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CHAPTER 3

RESULTS BASED ON ANALYTICAL SOLUTION

3.1 Introduction

A MOS-capacitor is studied using computational method. The
analytical model developed in chapter 2 is used here to determine
the inversion layer capacitance considering quantum effects.
One dimensional searching algorithm is used in the -computational
method. The inversion layer charge density, the eigen energies
obtained using different approximations, the average separation
of carriers from the surface, the carrier concentration in two
consecutive sub-bands and finally, the classical and quantum
mechanical inversion region gate capacitance for a MOS capacitor
have been compared in this study.

3.2 Collputational. Ilethod in studying the HOB

device.

The classical inversion layer capacitance is calculated
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inversion and the
given by equation (2.35). When Fsl andlayer charges

Ndep1 from equation (2.34) ..A new
is then found from the sum of the

layer charge

by using equation (1.13). First we assumed the surface electric
field to be Fsl (Vim). The lower and the first energy sub-bands
EO and EI respectively were calculated using equation (2.24). The
inversion layer charge Ninvl (m-3) is then assumed and using a
one dimensional searching algorithm EF i.e., the position of the
Fermi level is determined. Knowing EF we can now calculate ~d

from equation (2.36), zd from equation (2.32) and the depletion
value of electric

field Fs2
depletion

Fs2 matches then the searching algorithm comes to an end. For a
particular value o.f Es' then the corresponding Fermi energy
level (EF), surface potential (.s)' the lowest and the first

are determined. Finally using equationenergy levels (EO and EI)
(2.44) the inversion
calculated.

layer quantum capacitance Cinv is

3.3 Resu1ts and discussions

3.3.1 Quantization of Energy levels

The predicted energy levels of the lower two-subbands ( EO
and EI) for a MOS capacitor with a gate oxide thickness lOnm
and with a uniform channel doping of NA = 1021 -3 is shown inm
(Fig.3.1 and Fig. 3.2). The energy levels of the lower two-
subbands (EO and EI) increases as the device becomes more
strongly inverted.
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3.3.2 Inversion layer charge concentration

(Fig. 3.3) shows the inversion layer charge concentration for
a uniform channel doping of 1021 mcl and for a gate oxide
thickness of 10nm. The inversion layer charge concentration (Ninv)

increases with the surface potential (t5).

3.3.3 Depletion layer charge concentration

From (Fig. 3.4) we find that the var iation of depletion layer
charge with the surface potential is very small compared to the
inversion layer charge concentration. After strong inversion, a
small increase of t5 produces a large increase of electrons at
the surface and the inversion layer acts like a narrow nl layer
by shielding the semiconductor from further penetrat-ion of the
electric field. Therefore the depletion layer charge remains
constant and after strong inversion the depletion layer width
becomes fixed atZb.

3.3.4 Electron Concentrations in the two
sub-bands

The electron distribution in the two sub-bands as a function
of the applied surface potential is shown in (Fig.3.5). Here we
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observe that, as 's increases the electron concentration in the
lowest sub-band increases whereas the electron concentration in
the first sub-band decreases. This can be explained from
(Fig.3.1) where we find that as 's increases the difference
between EO and E1 increases i.e., the probability for the
electrons to occupy the lowest sub-band also increases.

"

3.3.5 Average spatial extent of the inversion
layer electrons from thesurfa~e.

The average penetration of the inversion layer charge
densi.t'Yfr.omthe surf.ace Zav as a function of the inversion layer
charge concentra~ion and the surface potential for p-type silicon
with 1021 acceptors per m-l in the bulk at 300K is shown in
(Fig.3.6 and Fig.3.7) respectively. The decrease of. Zav with
increasing inversion layer charg.e is a reflection of the
increasing surface electric field seen by the electrons which
pushes them closer to the surface.

3.3.6 Inversion layer capacitance:

The predicted difference between quantum mechanically and
classically calculated capacitance in inversion for an MOS

capacitance with a gate oxide thickness of 10nm and a uniform
channel doping of 1021 m-l is shown in (Fig.3.8). From figure we
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find that, the difference between the predicted inversion layer
capacitance when the quantum mechanical effects are included
with that calculated classically increases markedly when
surface potential is increased. The variation of inversion
layer quantum capacitance with the applied surface potential is
small because with the increase of .5 the energy levels EO and E1
shifts upward and the number of inversion layer carriers cannot
increase at the previous rate which is exponential in
nature. Therefore for a given value of surface potential the
inversion layer capacitance calculated quantum mechanically will
be smaller than when calculated classically.

3.4

The analytical model developed in chapter 2 is used here to
determine the inversion region quantum capacitance of the MOS-
capaci tor. The approach 'of the analysis and the computational
method is also described.

The variations of the energy levels and the inversion layer
charge concentration with the applied surface potential and
electric field are studied and are found to be increasing in
nature.

The depletion layer charge concentration varies but very
slightly with the surface potential.

The electron concentration in the two sub-bands is studied
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and is seen that most of the carriers occupy the lowest energy
level with the increasing gate voltage.

The..average separ.ation of.the inversion layer electrons from
the interface decreases with the applied field.

FinallY,the variation of the inversion layer quantum
capacitance with the applied surface potential is studied and is
found to be small compared to the classical one.
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CHAPTER 4

CONCLUSIONS

4.1 Conclusions

In this work an analysis is presented to determine the
inversion layer capacitance of MOSFETs incorporating quantum
mechanical effects.

The Schr5dinger wave. equation is solved by using triangular
po.tential appr_oximation which leads to the Airy equation. From
the solution we find the eigen energy equation Ej from which only
the.first two consecutive subbands are considered. The average
separation of carriers in the two subbands from the surface is
calculated by using the standard method of integration. The
Fermi-Dirac statistical law give~ the carriers population in the
two subbands. From the equations of separation of carriers and
the carrier concentration an analytical expression for inversion
layer capacitance is established.

The variations of electron concentrations in the two
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subbands, the average separation of carriers and the eigen
energies with the applied field and surface potential are
studied. Lastly, the classical and the quantum mechanical
inversion layer capacitances are compared. The difference between
the classical and the quantum mechanical calculations increases
markedly with the applied voltage.

4.2 Suggestions for. future work

The mathematical model developed in this work uses only the
lower two energy subbands of the inversion layer. In future, a
similar model can be developed considering three or more energy
subbands for more accurate results. Also the frequency response
of the quantum capacitance can be studied using the model
deve loped in this work. Since the quantum mechanical calculation
is very time consuming our aim must be to develop a method which
can derive a result that approximates the quantum mechanical
calculation and that requires the same CPU time as that of the
classical calculation. In this thesis we used the triangular well
approximation and Airy equation to solve the Schrodinger wave
equation. In future similar model can be. developed by using
variational technique.
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