DESIGN OF MICRONAVE BANDEASS FTYTERES USIMG HATAE WAVE DIGITAL TEM LINESS

[^0]MAINUL HABAN

August 1983

DECIARATION

I hereby declare that this work has not been submitted elsewhere for the award of any degree or diploma or for publication.

MHAccon
Mainul Hasan

The Thesis " dESIGN OF MICROWAVE BAHDPASS FILTERS USING HALF WAVE digital te h lines " submitted by Mainul Masan, Roll No. 891310P, session 1987-'88 to the Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, has been accepted n satisfactory in partial fulfilment of the requirements for the degree of Master of Science in Engineering (Electrical and Electronic).

Board of Examiners

1. Dr. Saiful Islam Professor and Head

EEE Department
BUET, Dhaka 1000, Bangladesh.
2. Dr. Saiful Islam

Professor and Head
Member(Ex-officio)

EEE Department
BUET, Dhaka 1000, Bangladesh.
3. Dr. A. B. M. Siddique Hossain

Professor
Member
EEE Department
BUET, Dhaka 1000, Bangladesh.

4. Dr. Shamsuddin Ahmed Head

Member(External)

EEE Department
ICTVTR, Gazipur

ACIKNOWTLEDGEMEANT:

The author takes the opportunity to express his profound gratitude and indebtedness to Professor Dr. Saiful Islam, Head of the Department of Electrical and Electronic Engineering, BUET for his ceaseless cooperation and meticulous guidance in completing this work. The author thanks him for his expert opinion in designing and fabricating the filter. The author also feels proud to acknowledge him for his important suggestion in improving the performance of the filter.

Thanks are due to Mr. Mollah Ahmed Ali and Mr. Selim Kaiser of Machine Shop and Mr. Zulfigar Ali Bhuiyan of Helding Shop for their active help and assistance in fabricating the experimental filter.

The author wishes to thank Dr. Mohammad Ali Choudhury, Mr. Md. Sayeed Akmal and Mr. Kohsin Mollah for their support and cooperation. Also thanks are given to friends and colleagues who helped the author completing this work. Finally, the author likes to thank his wife and other family meabers for their constant inspiration.

CONTHENTPS

Declaration (i)
Approval(ii)
Acknowledgement (iii)
Contents (iv)
Abstract(vii)
List of principal symbole(x)
Chapter 1 Introduction
1.1 Historical background 1
1.2 Objective of this work 7
1.3 Brief introduction of this thesis 7
Chapter 2 Some well-known methodx of filter design
2.1 Introduction 9
2.2 Different methods of filter design 10
2.2.1 Comparison of image method and network synthesis method 11
2.3 Definition of image impedance and image propagation function 12
2.4 Image parameter method 15
2.5 Insertion loss method 21
2.6 Sumany 24
Chapter 3 The design of half wave digital TEM line band-pass elliptic function filter
3.1 Introduction 25
3.2 Hethod of transformation from low-pass to band-pass 25
3.3 Conversion of filter elements 28
3.4 Sumany 29
Chapter 4 Obtaining characteristic admittance matrices
4.1 Introduction 31
4.2 Transformation from low pass prototype to resonated pi-section 31
4.2.1 Calculation of poles 38
4.3 Both end shorted approximation 41
4.4. Characteristic admittance matrix of network 1 45
4.5 Characteristic admittance matrix of network 2 48
4.6 Summary 50
Chapter 5 Parallel coupled lines between ground planes
5.1 Introduction 52
5.2 Different types of parallol coupled lines 52
5.3 Coupling with interleaved thin lines 56
5.4 Coupling with thick rectangular bars 57
5.5 Coupling with unsymmetrical parallel coupled lines 63
5. 6 Coupling with arrays of parallel coupled lines 67
5.7 Summary 70
Chapter 6 Designing a filtar and obtaining its physical dimensions
6.1 Introduction 71
6.2 Design of the experimental filter 71
6.2.1 Low pass prototype element values 72
6.3 Length of the networks 72
6.4 Characteristic admittance matrices of two networks 72
6.4.1 Input and output transformer elements 73
6.4.2 Admittance scaling factor 75
6.5 Static capacitance matrices 78
6.6 Calculation of physical dimensions 80
6.7 Correction of widths of network 2 85
6.8 Summary 88
Chapter 7 Fabrication of the designed filter and measurement of insertion loss
7.1 Introduction 89
7.2 Fabrication of the designed filter 89
7.3 Measurement of insertion loss characteristics 90
7.4 Sumary 102
Chapter 8 Discussions and suggestions for future work 103
References 107
Appendices
Appendix A FORTRAN program for computation of static capacitance watrices from low-pass prototype element values 110
Appendix B Result of the computer program 122
Appendix C Experimental data of the filter characteristics 125

ABSTRRACT

A desigr method is developed for designing a bandpass elliptic function filter using resonators made up of TEM transmission line segments. Each resonsting segment of transmission line is of half-wave length long at the center frequency of the band-pass filter. Each of these resonating segment is short circuited at both ends and is stepped in impedance at an electrical distance of $\pi / 3$ from one end of the resonator so that the other fraction of length is ($\pi-\pi / 3$). The resonstors are coupled along the sides with an arrangement to achieve nearest neighbor interaction only.

This design method starts with a lumped low-pass prototype. A lumped low-pass to distributed band-pass transformation is used to transform to a physically realizable band-pass structure. For physical realization the obtained distributed band-pass filter is modified so that it car be realized with stepped impedance half-wave transmission lines short fircuited at both ends. For this purpose, equivalence is established between a segment of resonators of the distributed band-pass filter circuit and a segment of both end short circuited transmission line considering the point of stepping
as the input port. Ultimately the band pass filter has been reslized in the form coupled stepped impedance lines. Two transformer elements are needed for coupling at the input and output ports of the filter. The transformer coupling allows to change the impedance levels of the short circuited stepped impedance coupled lines in the middle portion of the filter.

An elliptic function filter has been chosen because it has got an upper hand over the other filter responses namely butterworth and chebychev filter responses. Butterworth response gives maximally flat pass-band, very wide bandwidth and stop-band to pass-band transition is not steep, which makes it unsuitable for narrow-band band-pass filter desigr. Again chebychev response has steeper transition from stop-band to pass-band but still not suitable for some practical applications. Considering theses points, an elliptic function filter may be designed for narrower bandwidth. It has steeper transition from stop-tand to pass-band and the difference between maximum pass-band attenuation and minimum stop-band attenuation is larger compared to other two filter responses.

Based on the developed analytic design method a computer program in FORTRAN has been prepared for designing this type of filters. With the help of this program a five resonator 1% bardwidth elliptic function filter has been designed for 2.0 GHz center frequency. From the line parameters thus obtained, the physical dimensions of the filter are next computed with the help of previously published graphs and analytical expressions. Using these values an experimental filter has been fabricated and measured in the laboratory. The designed parameters and the measured results are presented.

LISST OF PRINCTEAK SYMBOLS

ω	Radian frequency variable for band-pass filter
ω^{*}	Radian frequency variable for low-pass prototype filter
ผ	Fractional bandwidth
${ }_{0}^{0}$	Midband radian frequency
$\boldsymbol{r}_{\mathrm{t}}$	Propagation constant per unit length
α	Image attenuation constant
β	Image phase constant
P_{i}	Incident power
$\mathrm{P}_{\text {LR }}$	Power loss ratio
p	Reflection coefficient
Γ	Input reflection coefficient for lossless network
Γ^{*}	Conjugate of F
L	Insertion loss in dB
H, N	Real and non-negative polynomials
A, B, C, D	Transmission line constants
T_{r}	Voltage transforaation ratio
Y_{0}	Characteristic admittance
$\mathrm{Z}_{\mathrm{I} 1}, \mathrm{Z}_{\mathrm{I} 2}$	Image impedances
8_{0}	Arbitrary stepped impedance plarie
Ω_{r}	Resonant angular velocity
ϵ	Absolute dielectric constant

ϵ_{r}	Relative dielectric constant
η_{0}	Intrinsic impedance of free space
${ }^{W} k$	Width of the kth bar
$s_{k, k+1}$	Spacing between $k t h$ and ($k+1$)th lines
t	Thickness of the rectangular bar
b	Ground plate spacing
$C_{f e}{ }^{\prime}$	Fringing capacitance
c_{k}	Self capacitance
$C_{k, k+1}$	Mutual capacitance between k th and ($k+1$) th lines

Introduction

1.1 Historical Background_: From the beginning of microwave engineering until today, filter design has been a persistent and fruitful field of investigation. According to Cohn [1] there are two very good reasons for the continuing attraction of microwave filters. The first is the ever increasing importance of filters to microwave systems, as these systems become more complex and as the spectrum becomes more densely filled with signals. The second reason is a singular appeal of microwave filters for creative study. This appeal results from the amenatility of filter circuits to theoretical analysis, the unlimited variety of circuits and structures, and the close experimental agreements that can usually be achieved.

Advances in filter design fortunately are keeping pace with the growing needs. In early days of microwave work, filters were designed by means of hit-or-miss image parameter theory and by analogy to single- and double-tuned IF transformers. Rapid progress led to more sophisticated design yielding maximally flat and equal ripple responses. In most practical cases today filters are designed as
distributed constant approximations to rigorous prototype circuits. Developing formulas, simple to use yet yielding highly accurate approximations has proved to be 9 fascinating occupation for many engineers leading to a wealth of design information in technical litergture.

An exact method of designing microwave filters was
based on Richards' [2] transformation, which was only for microwave circuits with commensurable line lengths. His [2] transformation mapped the real-frequency axis of the lumped constant prototype onto finite portions of the reslfrequency sxis of the transmission line circuit snd then the response pattern wos repeated periodically. Physioglly the this repetition corresponded to repegted increments of one holf wave length in the electrical line lengths of the tronsmission line circuit as the frequency increased. A remarkably accurate formuls for the midband dissipation loss of band-pass filters was given by Cohn [3] for well matched filters that are designed from a low-pass prototype. Filters using circular rods were constructed by Cristal [4]. Each resonator was one guarter wave length long at band center when the ends of the rods were open circuited. As in the parallel coupled filter, the resonator spacings were not very critical. In addition the resonstors commended itself for many applications by its compact form.

A number of structures were snslyzed by Bolljahn and Matthaei [5] which consist of arrays of parsilel conductors between ground planes or above a single ground plane. These included interdigital line, meander line, a form of helix, "hairpin line", and reactively loaded combline. They [5] also derived the equations for determining the phase function per section of line in terms of voltage coupling fgctors $K_{1 n}$ which were obtained from the static capacitances per unit length of the conductors. Their results indicated that certain of the structures had special merit for use as filters. They concluded with the construction of an interdigital-line filter using ten conductors which was found to have excellent band pass characteristics and a band width which was in very good agreement with the theory. Interdigital filters are attractive in that they sre compact, easily fabricated, free of spurious responses at twice the pass band frequency f_{0} (second pass band is at $3 f_{0}$). The interdigital line filter was first built by Bolliahn and Matthrei [5]. Matthaei [6] gave design equations for interdigitsl filters of prescribed bandwidth and number of cavities N. The low-pass prototype elements were found from tables. He [6] used Getsinger's [7] charts of capacitance for coupled rectangular bars between parallel plates for
determingtion of the widths and spacings of the stripline resonators. Another very compact structure was the combline filter developed also by Matthaei [8] which was similar in many ways to the capacitively losded interdigital-line filter. In this combline filter he [8] placed all the capacitances on the same side. They were necessary to the functioning of the filter, since there was no coupling between quarter wave digital resongotors when they were sill grounded on one side and all open circuited on the other. The rods were typically one-eighth of a wave length long sit midbond.

An exact theory of interdigital-line networks and related coupled structures were presented by Wenzel [9]. He briefly reviewed the theory of parallel coupled line srrays and the derivation of exact equivalent eircuits from the impedance matrix. Wenzel [9] introduced a simplified theory of equivalent coupled structures in order to g.void the lengthy analysis required when using the impedance matrix approach. Equivalent networks for the interdigitsl line were obtained by inspection, using a transformed capacitance matrix associated with the two-dimensional geometry of the conductors and the ground planes. The technique presented by Henzel [9] were simple to apply and allow a given transmission response to be obtained in as. viety of line
configurations. He also gave a practical design example and experimental results to illustrate the simplicity of the approach, along with general criteria for the design of practical filter networks with optimum transmission characteristics. His [9] technique can be used to snalyze and design a much broader class of microwave networks.

Wenzel [10] described TEM propagation on an array of parallel conductors in terms of the normsized static capacitance matrix. Jmportant properties of capacitance matrices were discussed and a physical and network interpretation was given to a useful linear transformation of the static capocitance matrix. Wenzel [10] also used the results of Getsinger [7] to obtain the physics. dimensions from the matrix of static capacitance.

A design procedure for a practical digital elliptic function filter capable of providing either band pass or band stop characteristics was presented by Horton and Wenzel [11]. They gave examples to illustrate typical design procedure for both types of filters. Levy and Whiteley [12] devised a synthesis procedure for distributed elliptic function filters utilizing published tables of lumped constant elliptic function filters. It was dependent upon the application of a new generalized transformation for distributed networks.

A design procedure for narrow-band band pass TEMline elliptic function filters was presented by Rhodes [13]. He proposed the resilization in the form of s. steppedimpedance digital n-wire line which was one half of 8 wave length long at midtand and short circuited to ground at both ends, where the digital line was stepped in impedance along any arbitrs.ry prescribed plane in the filter. Rhodes [13] presented a detailed design procedure for the construction of the two characteristic admittance matrices which described the digits. 1 -wire line from the low poss prototype element values. He also showed that the normalized impedance values of the elements in the filter were all of the order of unity and independent of the actual bandwidth of the filter except for the input and the output transformer elements. Rhodes [13] gave s numerical example and experimental results on a seventh degree 1% bandwidth filter with a center frequency of 3.7 GHz . This demonstrated the significant improvements which might be obtained from the half wave stepped digital elliptic filter over most other known form of microwave TEM-line narrow-band band-pass filters, especially for percentage bandwidth of 5% and below. The compactness and inherent physical rigidity also made the filter attractive for applications where size, weight and stability under mechanical vibrgtions were
important. The only factor which did not compare favorably to conventional forms was that of harmonic rejection. However, the use of a guasi-low-pass filter at the end blocks of the filter through single interdigital sections would attenuste the harmonics without increasing the external size or affecting the other advantages of the filter.
1.2 Objective of this mork: The objective of this work is to develop a design method for designing narrow-band band-pass elliptic function filter using coupled TEM transmission-lines so that the filter is compact in size. One of the targets of this development is to achieve a design method which is easy to use. The other objectives are to develop a computer program so that one can readily get the normalized capacitance values from the low-pass protatype element values. The last objective is to verify the design method by fabricating a designed band-pass filter and performing necessary measurements.
1.3 Brief introduction to this thesis: Sone well known methods of filter design are described in chapter 2.

In chapter 3, the method of obtaining band-pass characteristic fron low-pass prototype filter specifications has been discussed. The determination of characteristic admittance matrices of two subnetworks has been given in
chapter 4 with elaboration of oach etap.
Chapter 5 consists of some important information regarding different types of parallel coupled TEH lines between ground planes. Various configurations like ooupling with thick rectangular bars, unsymmetrical parallel coupled lines, arrays of parallel coupled lines, etc. have been discussed individually in this chapter.

Chapter six deals with the design procedure of the experimental filter and realization of its physical dimensions using the Getsinger's [7] curves and Saal's [16] catalogue. In chapter 7 experimental results of the filter response and characteristic curves have been given in detail. The experimental set up with the network analyzer and the discrete frequency generator are also given in this chapter.

In chapter 8, a discussion on the filter characteristics and its future development have been given. Computer program to obtain the static capacitance matrices and some measured values are presented in apppendices.

CHAPTMER

 2
Some well-known methods of filter design

2.1 Introduction: Most of the low pass, high pass, band pass and band stop filters derive important transmission charaoteristics from those of a low pass prototype filter used in their design. Element values for such low pass prototype filters were originally obtained by network synthesis methods. However, sfterwards, concise equations were developed which were convenient for computer programming and were used for the element values of the types of prototype filters of interest. At low frequencies the filters are designed from ideal lumped inductors and capacitors. They have very simple frequency characteristics and also very accurate and complete design procedure has been developed for designing filters using them. Therefore at low frequencies it is possible to design filters directly with a wide variety of prescribed frequency characteristics. But at microwave frequency filter design becomes much more complicated and difficult and at that range of frequencies lumped elements are replaced by distributed parameter elementa. In fact no complete
theory or design procedure exists for microwave filter. Microwave filters are realized by replacing all inductors and capacitors by suitable microwsve circuit elements that have similar frequency characteristics over the frequency range of interest. In the present chapter two different methods of filter design have been discussed.
2.2 Different methods of filter design: There are two filter design techniques at low frequency ramely (a) Imbge parameter method and (b) Insertion loss method. The imsge impedance and attenuation function of a filter section are defined in terms of an infirite chain of identical filter sections connected together. Using a finite, dissipationless filter retworkwith resistor terminations will permit the image impedances to be matched only at discrete frequencies, and the reflection effects can cause sizeable attenuation in the pass band, as well as distortion of the stop band edges. Proper designing of end sections will reduce these reflection effects. Although such methods will defiritely reduce the size of reflections in filters designed by the image method, they give no assurance as to how large the peak reflection loss values may be in the pass band. Thus, though the image method is conceptually simple, it requires
a guod deal of cut-and-try or know-how if a precision design with low pass band reflection loss and very accurately defined band edges is required. While the insertion loss method begins with a complete specifications of a physically realizable frequency characteristics, and from this a suitable filter network is desigried. Thet is why the insertion loss method is more preferable than the image parameter method.
2.2.1 Comparison of image method and network synthesis method: Network synthesis method of filter design generally starts out by specifying e. transfer function, such as the transmission coefficient t as given by,

$$
\begin{equation*}
t=2 \sqrt{\frac{R_{1}}{R_{2}}} \cdot \frac{E_{2}}{E_{g}} \tag{2.1}
\end{equation*}
$$

where R_{1} and R_{2} are the input and output terminations, and E_{g} and E2 are the generator ard load voltages respectively of a two port filter network. This transfer function is specified as a function of complex frequency p. From the transfer function the input impedance to the circuit is found as a function of F. Then by various continued-function or partial-fraction expansion procedures; the input impedance is expanded to give the element values of the circuit. The circuit obtained by these procedures
has the same transfer function that was specified at the outset, and a.ll guess work and cut-and-try is eliminated. But image concepts never enter such procedures, and the effects of the terminations are included in the initigl specifications of the transfer function. In general, a low pass filter designed by the ias.ge mettrod and an arialogous filter designed for the same application by the retwork synthesis method will be quite similar. However, the filter designed by retwork syrathesis method will have somewhat different elenent values, $=0$ give it the specified resporise.
2.3 Definition of image impedance and ingge propggation function: The image viewpoint for the analysis of cirouits is a wave viewpoint much the same as the wave viewpoint commonly used for snalysis of transmission lines. In fact, for the case of a uniform transmission line the chargcteristic impedance of the line is also its image impedarice, ard if γ_{t} is the propagation constant per unit length then $\gamma_{t} l$ is the image propagation furnction for 8 line of length 1. However, the terms image impedance and ing.ge propagation furction have much more general meaning than their definition with regard to a unifora transmission line slone would suggest.

Let us consider the case of a two port network which can be symmetrical, but for the sake of generality we assume that the network is unsymetrical with different impedance characteristics at end 1 and end 2. Figure 2.1% shows the case of an infinite rumber of identical networks of this sort, all connected so that at each junction either end 15 are connected together or end $2 s$ are connected together. Since the chain of network extends to infinity in each direction, the same impedance ${ }^{2}{ }_{11}$ is seen looking both left and right at a junction of the two end 15 , while at a junction of two end 2 s another impedance $Z_{\text {I2 }}$ will be seen when looking either left or right. The impedonces Z_{11} and Z_{12} as shown in figure (2. 1/̧are the image impedances for end 1 and end 2, respectively of the network. For an unsymmetrical network they are generally unequal.

The way the infinite chain of network in figure ${ }^{2} \cdot 1^{6}$ is cornected, the impedances seen looking left and right at each junction are always equal, hence there is never any reflection of a wave passing through a junction. Thus from the wave point of view, the networks in figure 2 . 1 are all perfectly matched. If a wave is set to propagating towaras the right, through the chain ! of networks, it will be atteruated as determined by the

Fig 2.1 Infinite chain of identical networks used for defining image impedances and the image propagation function

Fig 2.2 A cascade arrangement of two networks
propagation function of each network, but will pass on from network to network without reflection. Here the image impedances $Z_{I 1}$ and $Z_{I 2}$ are actually the impedance of infinite networks, and as such they should be expected to have a mathematical form different from that of the rational impedance functions that are obtained for finite, lumped element networks. In the cases of lumped element filter structures, the image impedances are usually irrational functions and in the cases of microwave filter structures which involve transmission line elements, the image impedances are usually both irrational and transcendental.
2.4 Lmage parameter method: An equation for the image impedance is easily derived in terms of the circuit in figure $2,2 \%$ If Z_{L} is made to be equal to $Z_{I 1}$ then the impedance $Z_{i n}$ seen looking in from the left of the circuit will also be equal to $Z_{I_{1}}$. Now if A, B, C, and D are the general circuit parameters for the box on the left in figure 2 assuming that the network is reciprocal, the gerieral circuit parameters A_{5}, B_{S}, C_{S}, and D_{S} for the two boxes connected as shown can be computed. Therefore,

$$
\begin{equation*}
Z_{\text {ingut }}=\frac{A_{s} Z_{L}+B_{s}}{C_{s} Z_{L}+D_{s}} \tag{2.2}
\end{equation*}
$$

Now setting $Z_{i n}=Z_{L}=Z_{I 1}$ and solving for $Z_{I 1}$ in terms of A, B, C,

Fig 2.3 Network having terminations which are matched on the image basis

Fig 2.4 Insertion loss calculation for resistive termination
and D, we get,

$$
\begin{equation*}
z_{x 1}=\sqrt{\frac{A B}{C D}} \tag{2.3}
\end{equation*}
$$

The same procedure carried out with respect to end 2 giver,

$$
\begin{equation*}
z_{12}=\sqrt{\frac{D B}{C A}} \tag{2.4}
\end{equation*}
$$

Figure $(2) 3 /$ shows a network with a generator whose internal impedance is the same as the image impedance at end 1 and with a load impedance on the right equal to the image impedance at end 2. With the terminations matched to the image impedances in this manner it can be shown that,

$$
\begin{equation*}
\frac{E_{1}}{E_{2}}=\sqrt{\frac{Z_{n 1}}{Z_{12}}} \cdot \theta^{\gamma} \tag{2.5}
\end{equation*}
$$

or,

$$
\begin{equation*}
e^{\gamma=} \frac{E_{1}}{E_{2}} \sqrt{\frac{Z_{x 2}}{Z_{I 1}}} \tag{2,6}
\end{equation*}
$$

The image propagation function is defined as,

$$
\begin{equation*}
e^{-\gamma}=\sqrt{A \bar{D}}-\sqrt{B C} \tag{2.7}
\end{equation*}
$$

from where it is found that,

$$
\begin{equation*}
e^{Y}=\sqrt{A D}+\sqrt{B C} \tag{2.8}
\end{equation*}
$$

or,

$$
\begin{equation*}
\gamma=\alpha+j \beta=\ln (\sqrt{A D}+\sqrt{B C}) \tag{2.9}
\end{equation*}
$$

where a is the image attenuation in neper and β is the image phase in radian. It is to be noted that the $\left.\sqrt{\left(\mathrm{Z}_{\mathrm{I} 2^{/ 2}} \mathrm{I} 1\right.}\right)$ factor in eqn. (2.6) has the effect of making $\boldsymbol{\gamma}$ independent of the relative impedance levels at ends 1 and 2. Eqn. (2.6) can also be written as,

$$
\begin{equation*}
\gamma=\alpha j \beta=\ln \sqrt{\frac{E_{1} I_{1}}{E_{2} I_{2}^{\prime}}} \tag{2.10}
\end{equation*}
$$

where, $I_{1}=E_{1} / Z_{I 1}$ ard $I_{2}^{\prime}=E_{2} / Z_{I 2}$ From eqr. (2.8) it is seen that, $\operatorname{Cosh} \boldsymbol{\gamma}=\sqrt{A D}$ and $\operatorname{Sinh} \boldsymbol{\gamma}=\sqrt{B C}$.

The factor D / A is interpreted as an impedance transformation ratio and may be viewed as an ideal transformer of turns ratio $\sqrt{(\bar{D} / A)}$.

If the network iss lossless, A and D are real and B ard C are imaginary for frequencies $j \omega$. In the pass band $a=0$, therefore γ is purely imaginary ard equal to $j B$ and thiss ocours for $\mid A D<1$. So the phase angle constant β becomes $\cos ^{-1} \sqrt{\mid A D}$ or $\sin ^{-1} \sqrt{\mid B C T}$. Because in the pass band B and C wust be of the same sign, so that, $B C=j|B| j|C|=-|B C|$ which will make the second part of eqr. (2.8) imaginary. Thus the solution for $Z_{I 1}$ and $Z_{I 2}$ will be real and positive since $A D$ aust be positive to give a real solution for Coshy or Cosß. Hence the image impedances are real in a pass :
baird.

Let N two-port networks gre connected in cascade ard they hove propagation constants γ_{n}, where $n=1,2,3, \ldots, \ldots, N$ arid voltage transformation ratios $T r$, where $n_{1}=1,2,3, \ldots, N$. If the output section is terminated in image impedance, the overall voltage transfer ratio will be given by,

$$
\begin{equation*}
\frac{V_{\Delta}}{V_{1}}=\prod T_{n} e^{-\gamma_{n}}, n=1,2,3 \ldots N \tag{2.11}
\end{equation*}
$$

with the assumption that the output inge impedance of any section is equal to the input image impedance of the following section. If al the sections. in the cascade are properly matched then maximum power will be transferred. Let the generator at the input has an internal impedance of $Z_{I N}$ and $Z_{I N}$ be the image impedance of the Nth section. Therefore an overall impedance ratio change will be given by,

$$
\begin{equation*}
\frac{\left(Z_{1}\right)_{N}}{Z_{1}}=\prod T_{n}^{2}, n=1,2,3 \ldots N \tag{2.12}
\end{equation*}
$$

In the image parameter method of filter design the two port parameters A, B, C, D are chose to provide the required pass bands and stop bands. The image parameters are chosen equal to the terminating impedances at the center of the pass band. The
major disadvantage of this method is the frequency dependency of the image impedances. that is why the impedances do not remain constant and equal to the terminating impedances over the entire pass band. This mismatch results in some loss in the pass band. Moreover this amount of transmission loss can neither be predicted nor can be determined before designing the filter. Also there is no means to control the rate at which the attenuation builds up with frequency beyond the edges of the pass band apart from increasing the number of filter sections.
2.5 Insertion loss nethod: The insertion loss function is defined as the ratio of power delivered directly to the load when connected across the generator without the network and power delivered to the load when the network is inserted. Mathematically the function can be expressed, with reference to figure \boldsymbol{R}_{2}^{4} as,

$$
\begin{equation*}
\frac{P_{20}}{P_{2}}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right)^{2}\left|\frac{E_{g}}{E_{2}}\right|^{2} \tag{2.13}
\end{equation*}
$$

where the quantity P_{20} is the power in R_{2} wher the network is removed and R_{2} is connected directly to R_{1} and E_{g} and P_{2} is the power absorbed by R_{2} when the network is in place as in figure 2.4. The insertion loss function or the power loss ratio can also
be expressed as,

$$
\begin{equation*}
P_{L R^{\prime}}=\frac{P_{I}}{P_{1}\left(1-\rho^{2}\right)}=\frac{1}{1-\rho^{2}}=\frac{1}{1-\Gamma T^{4}} \tag{2.14}
\end{equation*}
$$

where p is the reflection coefficient and Γ is the input reflection coefficient for a lossless network terminated in a resistive load. The insertion loss in decibel is given by,

$$
\begin{equation*}
L=10 \log P_{L R} \tag{2.15}
\end{equation*}
$$

when the terminating resistive load is equal to the internal impedance of the generator.

The insertion loss method begins by specifying the power loss ratio $P_{L R}$ or the magnitude of the reflection coefficient $|\Gamma|=\rho$ as a function of 0 . The network which gives the desired power loss ratio is taken as the design guideline. But a completely arbitrary $\Gamma(0)$ can not be chosen since it may not give a. physically realizable network. So there are some restrictions on $\Gamma(\omega)$ for physical realizability.

For a passive network it is obvious that the reflected power can not exceed the incident power. So $|\Gamma(\omega)| \leq 1$. If the normalized input impedance is,

$$
\begin{equation*}
Z(\omega)=R(\omega)+j X(\omega) \tag{2.16}
\end{equation*}
$$

we get,

$$
\begin{equation*}
\Gamma(\omega)=\frac{z_{\text {ingut }}-1}{Z_{\text {input }}+1}=\frac{R(\omega)-1+j X(\omega)}{R(\omega)+1+j X(\omega)} \tag{2.17}
\end{equation*}
$$

Since R is ari ever function of ω and X is an odd function of ω we get,

$$
\begin{equation*}
\Gamma(-\omega)=\Gamma^{*}(\omega) \tag{2.18}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
|\Gamma(\omega)|^{2}=\rho^{2}(\omega)=\Gamma \Gamma^{*}=\Gamma(\omega) \Gamma(-\omega) \tag{2.19}
\end{equation*}
$$

From the above relation it is apparent that $\rho^{2}(\omega)=\rho^{2}(-\omega)$ is an even function of ω. Now any low frequency impedance function such as impedance of a network made of resistors, capacitors, and inductors can be expressed as the ratio of two polynowials in 0. Therefore $\rho^{2}(\omega)$ can be expressed as,

$$
\begin{equation*}
\rho^{2}(\omega)=\frac{M\left(\omega^{2}\right)}{\left[M\left(\omega^{2}\right)+N\left(\omega^{2}\right)\right]}=\frac{\left[(R-1)^{2}+X^{2}\right]}{\left[(R+1)^{2}+X^{2}\right]} \tag{2.20}
\end{equation*}
$$

where K and N are real and non negative polynomials in ω^{2}. Now eqn. (2.14) becomes,

$$
\begin{equation*}
P_{L R}=1+\frac{M\left(\omega^{2}\right)}{N\left(\omega^{2}\right)}=1+\frac{(R(\omega)-1)^{2}+X^{2}(\omega)}{4 R(\omega)} \tag{2.21}
\end{equation*}
$$

In the above equation $N\left(\omega^{2}\right)$ must be an even polynomial of ω because it is equal to $4 R(\omega)$. Now writing $N\left(\omega^{2}\right)=Q^{2}(\omega)$ and $M\left(\omega^{2}\right)=P\left(\omega^{2}\right)$, we get,

$$
\begin{equation*}
P_{L R}=1+\frac{P\left(\omega^{2}\right)}{Q^{2}(\omega)} \tag{2.22}
\end{equation*}
$$

The conditions specified on $P_{\text {LR }}$ upto this point are necessary conditions in order that the network may be physically realizable. The condition that the power loss ratio be expressible in the above form is also a sufficient condition for the network to be realizable.
2.6 Sumary: The complex frequency behavior of microwave circuits makes it difficult to develop a complete design procedure of microwave filters. Although the two methods of filter design described in this chapter are essentially for low frequency filters, still the study of these design techrigues helps one to formulate design procedures for complex microwave filters. The image parameter method describes the pass-band and stop band but does not give any information about the behavior of the circuit in these regions. On the other hand the insertion loss method gives optimun specifications for aphysically realizable filter.

CHAPIHER 3

The design of half wave digital TEM lint band-pass elliptic function filter

3.1 Introduction: In this chapter the design method of half wave digital ${ }^{-}$TEM line band-pass elliptic function filter has been discussed. The design method is based on two step transformation. Firstly, the band pass filter characteristics have been derived from the specifications of the low pass prototype filter. A functional relationship between the low pass cut-off frequency ω_{1} and the band pass mid-band frequency ω_{0} has been utilized to transform the low pass prototype to the band pass filter. But this transformation only is not sufficient for physical realization of the filter. So, as the second step, two characteristic admittance matrices will be derived and expressed in terms of low-pass element values, which describe the digital n-wire line. In this chapter, only the first step i.e. transformation from low-pass characteristics to band-pass characteristics has been discussed. The second step is covered in the next chapter.
3.2 Method of transformation fron loH-pass to hand-pass: The functional relationship is given by,

$$
\begin{equation*}
\frac{\omega^{\prime}}{\omega_{1}^{\prime}}=F\left(\omega, \frac{\omega}{\omega_{0}}\right) \tag{3.1}
\end{equation*}
$$

where the primed frequencies refer to the low pass prototype

Fig 3.1 Low pass prototype response

Fig 3.2 Band pass filter response
filter as shown in figure (3 . ${ }^{3}$) and the unprimed frequencies refer to the band pass filter as shown in figure $3 . \omega_{1}$ is the low pass cut-off frequency and ω_{0} is the mid band frequency of the band pass filter. w is called the fractional bandwidth of the band pass filter and is denoted by,

$$
\begin{equation*}
w=\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \tag{3.2}
\end{equation*}
$$

where ω_{1} and ω_{2} are the lower cut-off and upper cut-off frequencies of the band pass filter.

For a fixed low pass cut-off frequency eqn. (3.1) can be written 8 s ,

$$
\begin{equation*}
\frac{\omega^{\prime}}{\omega_{1}^{\prime}}=\left(\frac{\omega_{0}}{\omega_{2}-\omega_{1}}\right)\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \tag{3.3}
\end{equation*}
$$

The above equation when solved for 0 , gives,

$$
\begin{equation*}
\omega=\left(\frac{\omega^{\prime}}{\omega_{1}^{\prime}}\right)\left[\left(\frac{\omega_{2}-\omega_{1}}{2}\right) \pm \sqrt{\left(\frac{\omega^{\prime}}{\omega_{1}^{\prime}}\right)^{2} \cdot\left(\frac{\omega_{2}-\omega_{1}}{2}\right)^{2}+\omega_{0}^{2}}\right. \tag{3.4}
\end{equation*}
$$

Now let, $\omega_{0}{ }^{2}{ }^{-\omega_{1}} \omega_{2}$
Therefore,

$$
\begin{equation*}
\omega=\left(\frac{\omega^{\prime}}{\omega_{1}^{\prime}}\right)\left(\frac{\omega_{2}-\omega_{1}}{2}\right) \pm \frac{1}{2} \sqrt{\left(\frac{\omega^{\prime}}{\omega_{1}^{\prime}}\right)^{2}\left(\omega_{2}-\omega_{1}\right)^{2}+4 \omega_{1} \omega_{2}} \tag{3.5}
\end{equation*}
$$

It is fourd from equation (3.5) that when $\left(\omega^{\prime} / \omega_{1}^{\prime}\right)=0, \omega= \pm \sqrt{\omega_{1} \omega_{2}}= \pm \omega_{0}$ and when $\left(\omega^{\prime} / \omega_{1}\right)= \pm 1, \omega= \pm \omega_{1}, \pm \omega_{2}$.

Therefore the zero frequency of the low pass filter corresponds to a pair of freguencies nomely $t_{0} 0_{0}$ and $-\omega_{0}$. Again
$\left(\omega^{\prime} / \omega_{1}^{\prime}\right)= \pm 1$ or the cut-off frequency of the low pass prototype filter corresponds to four points namely ${ }^{ \pm} \boldsymbol{\omega}_{1}$ and $\pm \omega_{2}$. So the low pass filter characteristics $\left(\omega^{\prime} / \omega_{1}^{\prime}\right)=0$ and $\left(\omega^{\prime \prime} / \omega_{1}^{\prime}\right)= \pm 1$ are transformed into a band pass filter of mid-band frequency at $\pm \omega_{0}$ and cut-off frequencies at to_{1} and $\pm 0_{2}$. Figur 3.2 shows only the positive portion of the band pass filter characteristics.
3.3 Conversion of filtex elenents: The series and shunt elements of the required band pass filter will be derived in terms of the series and shunt elements of the low pass prototype filter. From egn. (3.3) we find,

$$
\begin{equation*}
\omega^{\prime}=\left(\frac{\omega_{1}^{\prime}}{\omega}\right)\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \tag{3.6}
\end{equation*}
$$

Now the series element of the low pass prototype filter becomes,

$$
\begin{equation*}
\omega^{\prime} L=\left(\frac{\omega_{1}^{\prime}}{W}\right)\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) L^{\omega} \omega L^{\prime}-\frac{1}{\omega C^{\prime}} \tag{3.7}
\end{equation*}
$$

where $L^{\prime}=\left\{\omega_{1} \quad /\left(\omega \omega_{0}\right)\right\} L$ and $C^{\prime}=\omega /\left(\omega_{1} \omega_{0} \omega_{0}\right)$
similarly the shunt element becomes,

$$
\begin{equation*}
\omega^{\prime} C=\left(\frac{\omega_{1}^{\prime}}{\omega}\right)\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) C=\omega C^{\prime \prime}-\frac{1}{\omega L^{\prime \prime}} \tag{3.8}
\end{equation*}
$$

where $C^{\prime \prime}=\left\{\omega_{1} / /\left(\omega_{0}\right)\right\} C$ and $L^{\prime \prime}=\omega /\left(\omega_{1} \omega_{0} C\right)$
Therefore it is seen from the above two equations (3.7) and (3.8) that the series element of the low pass prototype filter has become a series combination of L and C and the shunt element has become a parallel combination of L and C in the band pass filter
when the required transformation is used. The specific function $F\left(h, \omega / \omega_{0}\right)$ varies with different filter structures. For two frequencies ω^{\prime} and ω, which satisfy such a mapping, the attenuation is the same for both the prototype and the band pass filter. Hence the low pass prototype attenuation characteristics can be mapped into corresponding band pass attenuation characteristics by use of such mapping.
3.4 Sumary: The low pass prototype to band pass transformation has been discussed in this chapter. The lumped low pass prototype filter circuit and its response are used to transform into corresponding band-pass filter circuit and its response. Using the mapping given for the band pass filter radian frequency variable, the attenuation characteristics of the band pass filter car be obtained from the given specifications of the low pass prototype filter since the application of the mapping suggests the same attenuation characteristics for both the prototype and the band pass filter. But this transformation is not sufficient to realize the physical dimensions of the elliptic function band-pass filter. For physical realizatility, the characteristic admittance matrices are needed which is described in the next chapter.

CHAPITER

Obtaining characterigtic admittance matrices

4.1 Latroduction : A distributed resonated pi-section is derived upon application of the frequency transformation [12] to the lof pass prototype elliptic function filter for $n=5$. The resonated pisection is then decomposed in to two subnetworks each consisting of single short circuited transmission line and relating the lof pass prototype element values and admittances are derived for both the subnetworks and thus the characteristic admittance matrices are formed.
4.2 Transformation fron lor pass protatype to resonated pi-section : The input impedance and admittance of a shorted transmission line as shown in figure 4 . Vare given by, $^{\text {g }}$

$$
\begin{align*}
& Z_{1}=j Z_{0} \tan \theta \tag{4.1}\\
& Y_{1}=-j Y_{0} \cot \theta
\end{align*}
$$

Where $Z_{o}=$ Characteristic impedance
$Y_{o}=$ Characteristic admittance
$\theta=a l / v$

$$
\begin{aligned}
\text { Where } \quad & \rightarrow \text { angular velocity of propagation } \\
v & \rightarrow \text { velocity of propagation } \\
\quad 1 & \rightarrow \text { length of the transmission line }
\end{aligned}
$$

Figg 2 , shows the same for open transmission line. In this figure

Fig 4.1 input impedance of a short circuited transmission line

Fig 4.2 Input impedance of an open circuited transmission line

$$
\begin{align*}
& Z_{1}^{\prime}=-j Z_{0} \cot \theta \tag{4.3}\\
& Y_{1}^{\prime}=j Y_{0} \tan \theta \tag{4.4}
\end{align*}
$$

The low pass prototype filter for $n=5$ is shown in figure (4.11) A section of the low pass prototype of the band-pass filter is shown in figure (4.3) which is transformed into resonated pi-section as shown in figure (4.4) by the frequency transformation method given by Rhodes [13].

For the shunt element of the resonated pi-section as shown in the figure 6.5

$$
\begin{gathered}
C_{1}^{\prime}=\frac{a C_{1}}{\tan \theta_{0}}, L_{1}^{\prime}=\frac{1}{a C_{1} \tan \theta_{0}} \\
Y_{L 1}^{\prime}=\frac{1}{j \omega L_{1}^{\prime}}=-j a C_{1}\left(\frac{\tan \theta_{0}}{\tan \theta}\right), Y_{C 1}^{\prime}=j \omega C_{1}^{\prime}=j a C_{1}\left(\frac{\tan \theta}{\tan \theta_{0}}\right)
\end{gathered}
$$

(Conversion from lumped to distributed element is made with the assumption $\omega \rightarrow$ tan θ)

Similarly, for the series element of the resonated pi-section as shown in the figure 84.6 ,

$$
\begin{gathered}
L_{2+}=\frac{1}{a C_{2}\left(1+\lambda_{2+}^{2}\right) \tan \theta_{0}}, I_{2-}=\frac{1}{a C_{2}\left(1+\lambda_{2-}^{2}\right) \tan \theta_{0}} \\
C_{2+}=\frac{a C_{2}\left(1+\lambda_{2-}^{2}\right)}{\tan \theta_{0}^{\prime}}, C_{2-}=\frac{a C_{2}\left(1+\lambda_{2+}^{2}\right)}{\tan \theta_{0}}
\end{gathered}
$$

Fig 4.11 Low pass prototupe filter for $n=5$

Fig 4.3 Low-pass prototype of the band-pass filter

Fig 4.4 Distributed resonated pi-section of the low-pass prototype

Fig 4.5 Shunt element of the resonated pi-section

fig 4.6 Series element of the resonated pi-section

$$
\begin{gathered}
Y_{x_{2+}}=\frac{1}{j \omega L_{2+}}=-j a C_{2}\left(1+\lambda_{2_{+}}^{2}\right) \frac{\tan \theta_{0}}{\tan \theta} \\
Y_{x_{2-}}=\frac{1}{j \omega L_{2-}}=-j a C_{2}\left(1+\lambda_{\lambda_{-}}^{2}\right) \frac{\tan \theta_{0}}{\tan \theta} \\
Y_{C_{4}+}=\frac{1}{-\frac{j}{\omega C_{2+}}}=j \omega C_{2+}=j a C_{2}\left(1+\lambda_{2-}^{2}\right) \frac{\tan \theta}{\tan \theta_{0}} \\
Y_{C_{2-}}=\frac{1}{-\frac{j}{\omega C_{2-}}}=j \omega C_{2-}=j a C_{2}\left(1+\lambda_{2+}^{2}\right) \frac{\tan \theta}{\tan \theta_{\theta}}
\end{gathered}
$$

How to determine the distributed element parameters from low pass prototype, we get from figure $\mathrm{G}_{4} .7$,

$$
\begin{equation*}
Z_{r}=\frac{j \omega L_{r} \cdot \frac{1}{j \omega C_{r}}}{j \omega L_{r}+\frac{1}{j \omega C_{r}}}=\frac{-j \omega L_{x}}{\omega^{2} L_{r} C_{r}-1} \tag{4.5}
\end{equation*}
$$

For distributed pi-section. $\omega+a\left[\Omega / \Omega_{0}-Q_{0} / Q\right]$
Here $Q_{r}=1 / \sqrt{\mathrm{L}_{\mathrm{r}} \mathrm{C}_{r}}$ is the resonant angular velocity
Therefore,

$$
\begin{aligned}
& Z_{x}=-j \frac{a\left[\frac{\Omega}{Q_{0}}-\frac{Q_{0}}{Q}\right] L_{x}}{a^{2}\left[\frac{Q}{Q_{0}}-\frac{Q_{0}}{Q}\right]^{2} L_{x} C_{x}-1} \\
& =\frac{a\left[j \frac{Q}{Q_{0}}-j \frac{Q_{0}}{Q}\right] L_{x}}{a^{2}\left[j \frac{Q}{Q_{0}}-j \frac{Q_{0}}{Q}\right]^{2} L_{r} C_{x}+1}
\end{aligned}
$$

In S-plane $j \Omega \rightarrow s$

$$
\therefore Z_{r}=\Omega\left(s / \Omega_{0^{-}} \Omega_{0} / s\right) L_{r} /\left\{s^{2}\left(s / \Omega_{0^{-}} Q_{0} / s\right)^{2} L_{r^{\prime}} C_{r}+1\right\}
$$

Fig 4.7 A section of the low-pass prototype filter

Fig 4.8 Both end shorted approximation of the resonated pi-section

$$
\begin{align*}
& \left.=s \operatorname{sis} 0^{L} r^{\left(s^{2}+Q_{0}\right.} 0^{2}\right\} /\left\{s^{2}\left(s 4+2 s^{2} Q_{0}{ }^{2}+\Omega_{0}{ }^{4}\right) L_{r} C_{r}+s^{2} \Omega_{0}{ }^{2}\right\} \\
& =\left\{\operatorname{sis} \Omega_{0}\left(s^{2}+\Omega_{0}^{2}\right) / C_{r}\right\} /\left\{a^{2}\left(s^{4}+2 s^{2} \Omega_{0}^{2}+Q_{0}^{4}\right\}+s^{2} \Omega_{0}^{2} / L_{r} C_{r}\right\} \\
& =\left\{\operatorname{sis} Q_{0}\left(s^{2}+Q_{0}{ }^{2}\right) / C_{r}\right\} /\left\{a^{2}\left(s^{4}+2 s^{2} \Omega_{0}{ }^{2}+Q_{0}^{4}+s^{2} Q_{0} Q_{r}^{2} / g^{2}\right)\right\} \\
& =\left\{Q_{0} s\left(s^{2}+Q_{0}\right) / a C_{r}\right\} /\left\{s^{4}+\left(2 Q_{0}^{2}+Q_{0^{2}} Q_{r}^{2} / a^{2}\right) s^{2}+Q_{0}{ }^{4}\right\} \tag{4.6}
\end{align*}
$$

4.2.1 Calculation of poles : Auxiliary equation of the characteristic impedance is given by

$$
\begin{aligned}
& s^{4}+\left(2 Q_{0}{ }^{2}+Q_{0} Q^{2} Q^{2} / \varepsilon^{2}\right) S^{2}+Q_{0}{ }^{4}=0 \\
& s^{2}=\left[-\left(2 Q_{0}{ }^{2}+Q_{0}{ }^{2} Q_{r^{2}}{ }^{2} / s^{2}\right) \pm \sqrt{ }\left\{\left(2 Q_{0}{ }^{2}+Q_{0}{ }^{2} Q_{r}{ }^{2} / s^{2}\right)^{2}-4 Q_{0}^{4}\right\}\right] / 2 \\
& =\left[-\left(2 Q_{0}^{2}+Q_{0}^{2} Q_{r} / \alpha^{2}\right) \pm \sqrt{\left.\left(4 Q_{0}^{4} Q_{r}^{2} / \Omega^{2}+Q_{0}^{4} Q_{r}^{4} / Q^{4}\right)\right] / 2}\right. \\
& =-\Omega_{0}{ }^{2}\left\{Q_{r}{ }^{2} /\left(2 \varepsilon^{2}\right)+1\right\} \pm\left(Q_{0}{ }^{2} \Omega_{r} / a\right) \sqrt{ }\left\{1+Q_{r}{ }^{2} /\left(4 a^{2}\right)\right\} \\
& =\left(Q_{0} Q_{r} / \varepsilon\right)\left[-\left\{\left(Q_{r} / 2 \varepsilon\right\}+\varepsilon / Q_{r}\right\} \pm \sqrt{ }\left\{1+\left(\Omega_{r} / 4 a^{2}\right)\right\}\right]
\end{aligned}
$$

Let the roots of the suxiliary equation are $\Omega_{1}{ }^{2}$ and $\Omega_{2}{ }^{2}$ Therefore,

$$
\begin{align*}
& {\Omega_{1}^{2}}^{2}=\frac{\boldsymbol{Q}_{0}^{2} \Omega_{r}}{a}\left[-\frac{\Omega_{r}}{2 a}-\frac{a}{\Omega_{r}}+\sqrt{1+\frac{\boldsymbol{Q}_{r}^{2}}{4 a^{2}}}\right] \tag{4.7}\\
& {\Omega_{2}^{2}}_{2}=\frac{\Omega_{0}^{2} \Omega_{r}}{a}\left[-\frac{\Omega_{r}}{2 a}-\frac{a}{\Omega_{r}}-\sqrt{1+\frac{\Omega_{r}^{2}}{4 a^{2}}}\right] \tag{4.8}
\end{align*}
$$

Let,

$$
\begin{align*}
& \lambda_{r_{+}}=\frac{\Omega_{x}}{2 a}+\sqrt{1+\frac{\Omega_{r}^{2}}{4 a^{2}}} \tag{4.9}\\
& \lambda_{r-}=-\frac{\Omega_{x}}{2 a}+\sqrt{1+\frac{\Omega_{r}^{2}}{4 a^{2}}} \tag{4.10}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& \mathbf{\Omega}_{1}^{2}=\frac{\Omega_{0}^{2} \Omega_{x}}{a}\left(-\frac{a}{\Omega_{x}}+\lambda_{x-}\right) \\
& \Omega_{2}^{2}=\frac{\Omega_{0}^{2} \Omega_{x}}{a}\left(-\frac{a}{\Omega_{x}}-\lambda_{x-}\right)
\end{aligned}
$$

From the expression of Z_{r}, we oran write,

$$
\begin{aligned}
Z_{r} & =\left\{\Omega_{0} s\left(s^{2}+\Omega_{j}{ }^{2}\right\} / a C_{r}\right\} /\left\{\left(s^{2}-\Omega_{1}^{2}\right)\left(s^{2}-Q_{2}^{2}\right)\right\} \\
& =\left(\Omega_{0} / \pi C_{r}\right) Z_{r}
\end{aligned}
$$

$$
\begin{equation*}
\text { where, } \quad Z_{r}^{\prime}=\frac{s\left(s^{2}+\Omega_{0}^{2}\right)}{\left(s^{2}-\Omega_{1}^{2}\right)\left(s^{2}-\Omega_{2}^{2}\right)} \tag{4.11}
\end{equation*}
$$

Let, $\quad Z_{r}{ }^{\prime}=s\left(s^{2}+Q_{0}{ }^{2}\right) /\left\{\left(s^{2}-Q_{1}{ }^{2}\right)\left(s^{2}-Q_{2}{ }^{2}\right)\right\}$

$$
=K_{1} s /\left(s^{2}-Q_{1}^{2}\right)+K_{2} s /\left(s^{2}-Q_{2}^{2}\right)
$$

where, $\quad K_{1}=\left.\frac{s^{2}+\Omega_{0}^{2}}{\left(s^{2}-\Omega_{1}^{2}\right)\left(s^{2}-\Omega_{2}^{2}\right)} \cdot\left(s^{2}-\Omega_{1}^{2}\right)\right|_{s^{2}=\Omega_{1}^{2}}$

$$
=\frac{\mathbf{Q}_{1}^{2}+\mathbf{Q}_{0}^{2}}{\mathbf{Q}_{1}^{2}-\mathbf{Q}_{2}^{2}}=\frac{\lambda_{r_{-}}}{\lambda_{r-}+\lambda_{r^{+}}}
$$

$$
\begin{equation*}
\left.=\frac{1}{1+\lambda_{r_{-}}^{2}} \text { [using } \lambda_{r_{+}} \cdot \lambda_{r_{-}}=1\right] \tag{4.12}
\end{equation*}
$$

similarly,

$$
\begin{equation*}
K_{2}=\frac{\Omega_{2}^{2}+Q_{0}^{2}}{\Omega_{2}^{2}-Q_{1}^{2}}=\frac{\lambda_{x^{+}}}{\lambda_{x_{-}+}+\lambda_{x^{+}}}=\frac{1}{1+\lambda_{x_{-}}^{2}} \tag{4.13}
\end{equation*}
$$

Now, $\quad K_{1} s /\left(s^{2}-Q_{1}^{2}\right)=\left\{s /\left(1+\lambda_{r+}{ }^{2}\right)\right\} /\left\{s^{2}-\left(\Omega_{0}{ }^{2} Q_{r} / a\right)\left(-a / Q_{r}+\lambda_{r-}\right)\right\}$

$$
=1 /\left[s\left(1+\lambda_{r+}^{2}\right)-\left\{\left(\Omega_{0}^{2} \Omega_{r} / \theta\right)\left(-\theta / Q_{r}+\lambda_{r--}\right)\left(1+\lambda_{r+}{ }^{2}\right)\right\} / \mathrm{s}\right]
$$

Similarly,

$$
\begin{aligned}
\mathrm{K}_{2} s /\left(s^{2}-Q_{2}{ }^{2}\right\} & =\left\{s /\left(1+\lambda_{\mathrm{r}-}{ }^{2}\right)\right\} /\left\{s^{2}+\left(Q_{\mathrm{O}^{2}} Q_{\mathrm{r}} / a\right)\left(a / Q_{\mathrm{r}}+\lambda_{\mathrm{r}-}\right)\right\} \\
& =1 /\left[s\left(1+\lambda_{\mathrm{r}}{ }^{2}\right)+\left\{\left(Q_{0}{ }^{2} Q_{\mathrm{r}} / a\right)\left(a / Q_{\mathrm{r}}+\lambda_{\mathrm{r}}+\left(1+\lambda_{\mathrm{r}}{ }^{2}\right)\right\} / s\right]\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& Z_{r}=\left(\Omega_{0} / 8 C_{r}\right) Z_{r}=\left(\Omega_{0} / a_{r}\right)\left[K_{1} s /\left(s^{2}-Q_{1}{ }^{2}\right)+K_{2} s /\left(s^{2}-\Omega_{2}{ }^{2}\right)\right] \\
& =\left(\Omega_{0} / \mathrm{aC}_{\mathrm{r}}\right)\left[1 /\left[s\left(1+\lambda_{\mathrm{r}}{ }^{2}\right)-\left\{\left(\Omega_{0}{ }^{2} \Omega_{\mathrm{r}} / a\right)\left(-a / \Omega_{\mathrm{r}}+\lambda_{\mathrm{r}}\right)\left(1+\lambda_{\mathrm{r}}{ }^{2}\right)\right\} / s\right]\right. \\
& \left.+1 /\left[s\left(1+\lambda_{r-{ }^{-}}{ }^{2}\right)+\left\{\left(\Omega_{0}{ }^{2} \Omega_{r} / a\right)\left(a / Q_{r^{\prime}}+\lambda_{r_{+}}\right)\left(1+\lambda_{r_{-}}{ }^{2}\right)\right\} / s\right]\right\}
\end{aligned}
$$

From the above equation the following parameters are equated,

$$
\begin{equation*}
C_{r-}=\frac{a C_{r}\left(1+\lambda_{r+}^{2}\right)}{\mathbf{Q}_{0}}=\frac{a C_{r}\left(1+\lambda_{r+}^{2}\right)}{\tan \theta_{0}} \tag{4.14}
\end{equation*}
$$

$$
\begin{aligned}
& L_{r_{-}}=\left(\Omega_{0} / \varepsilon_{r}\right) /\left\{\left(\Omega_{0}{ }^{2} \Omega_{r} / a\right)\left(a / \Omega_{r}-\lambda_{r_{-}}\right)\left(1+\lambda_{r+}{ }^{2}\right)\right\} \\
& =1 /\left\{C_{r} Q_{0} \Omega_{r}\left(a / Q_{r}+\left(a / Q_{r}\right) \boldsymbol{\lambda}_{r+}{ }^{2}-\boldsymbol{\lambda}_{r-}-\lambda_{r-} \boldsymbol{\lambda}_{r+}{ }^{2}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =1 /\left[Q _ { r } Q _ { 0 } \Omega _ { r } \left\{2 a / Q_{r}+\left(2 a / Q_{r}\right)\left(\Omega_{r} / 2 a\right)^{2}+\sqrt{ }\left\{1+\left(\Omega_{r}^{2} / 4 a^{2}\right)\right\}\right.\right. \\
& \left.\left.-2 \sqrt{ }\left\{1+\left(Q_{r}{ }^{2} / 4 a^{-}\right)\right\}\right\}\right] \\
& =1 /\left[C_{r} \Omega_{0} \Omega_{r}\left(\varepsilon / \Omega_{r}\right)\left\{2+2\left(\Omega_{r} / 2 a\right)^{2}-2\left(\Omega_{r} / 2 a\right) \int\left\{1+\left(\Omega_{r}{ }^{2} / 4 a^{2}\right)\right\}\right\}\right] \\
& =1 /\left[a C_{r} Q_{0}\left\{1+1+\left(\Omega_{r} / 2 a\right)^{2}+\left(\Omega_{r} / 2 a\right)^{2}-2\left(\Omega_{r} / 2 a\right) \sqrt{ }\left\{1+\left(Q_{r}{ }^{2} / 4 a^{2}\right)\right\}\right\}\right] \\
& =1 /\left\{\operatorname{aC}_{\mathbf{r}_{0}}{ }_{0}\left(1+\lambda_{\mathbf{r}_{-}}{ }^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad L_{r-}=\frac{1}{a C_{r}\left(1+\lambda_{r_{-}}^{2}\right) \tan \theta_{0}} \tag{4.15}
\end{equation*}
$$

similarly equating from the second term of the expression of Z_{r} we get,

$$
\begin{equation*}
C_{r+}=\frac{a C_{r}\left(1+\lambda_{r-}^{2}\right)}{\mathbf{Q}_{0}}=\frac{a C_{x}\left(1+\lambda_{r-}^{2}\right)}{\tan \theta_{0}} \tag{4.16}
\end{equation*}
$$

$$
\begin{equation*}
L_{r+} \cdot \frac{\frac{Q_{0}}{a C_{r}}}{\frac{Q_{0}^{2} \Omega_{r}}{a}\left(\frac{a}{\varrho_{r}}+\lambda_{r_{+}}\right)\left(1+\lambda_{r_{-}}^{2}\right)}=\frac{1}{a C_{r}\left(1+\lambda_{r_{+}}^{2}\right) \tan \theta_{0}} \tag{4.17}
\end{equation*}
$$

4.3 Bathend shorted approximation : The basic pi-section in the resonated distributed prototype consists of a ladder formation of second order reactance functions whose susceptances may be expressed in the form,

$$
Y_{2} \frac{\tan \theta}{\tan \theta_{0}}-Y_{1} \frac{\tan \theta_{0}}{\tan \theta}
$$

This susceptance is now equated to a single stepped impedance half wave cavity at the center frequency $\boldsymbol{\theta}^{=} \boldsymbol{\theta}_{0}$. The half wave cavity consists of two short circuited transmission lines of characteristic admittance Y_{1}^{\prime} and Y_{2} connected in parallel at the nodes. The combined length of these stubs is \boldsymbol{n} radian long at $\boldsymbol{\theta}_{\boldsymbol{\theta}} \boldsymbol{\theta}_{0}$ with the step in impedance occurring at $\boldsymbol{\theta}_{0}$ radian from one end as shown in figure $4_{4} 8$ because,

$$
\begin{equation*}
\theta^{\prime}=\pi\left(\frac{\theta}{\theta_{0}}\right)-\theta \tag{4.19}
\end{equation*}
$$

so that at wid band frequency when, $\boldsymbol{\theta} \rightarrow \boldsymbol{\theta}_{0}, \quad \theta \rightarrow \pi-\boldsymbol{\theta}_{0}$
The susceptance of this cavity at the stepped impedance nodes is given by,

$$
\begin{equation*}
\frac{-Y_{1}^{\prime}}{\tan \theta}-\frac{Y_{2}^{\prime}}{\tan \left[\theta\left(\frac{\pi}{\theta_{0}}-1\right)\right]} \tag{4.20}
\end{equation*}
$$

Now let,

$$
\begin{equation*}
M=Y_{2} \tan \theta / \tan \theta_{0}-Y_{1} \tag{4.21}
\end{equation*}
$$

and,

$$
\begin{equation*}
N=-Y_{1} / / \tan \theta-Y_{2}^{\prime} / \tan \left\{\theta\left(\pi / \theta_{0}\right)-\theta\right\} \tag{4.22}
\end{equation*}
$$

At $\theta=\boldsymbol{0}_{0}$

Equating $M_{i} N, \frac{d M}{d \theta}, \frac{d N}{d \theta}$ at $\theta=\theta_{0}$, we get

$$
\begin{align*}
& \quad Y_{2}-Y_{1}=-Y_{1}^{\prime} / \tan \theta_{0}+Y_{2} / \tan \theta_{0} \\
& \text { or, } Y_{1}^{\prime}=Y_{2}^{\prime}+\left(Y_{1}-Y_{2}\right) \tan \theta_{0} \tag{4.25}
\end{align*}
$$

and,

$$
Y_{2} \sec ^{2} \theta_{0} / \tan _{0}+Y_{1} \tan _{0} \operatorname{cosec}^{2} \theta_{0}=\left[Y_{1}^{\prime}+Y_{2}^{\prime}\left(\pi / \theta_{0}-1\right)\right] \operatorname{cosec}^{2} \theta_{0}
$$

$$
\text { or, } \quad Y_{2} \sec ^{2} \theta_{0} / \tan \theta_{0}+Y_{1} \tan \theta_{0} \operatorname{cosec}^{2} \theta_{0}
$$

$$
=\left[Y_{2}^{\prime}+\left(Y_{1}-Y_{2}\right) \tan \theta_{0}+Y_{2}\left(\pi / \theta_{0}-1\right)\right] \operatorname{cosec}^{2} \theta_{0}
$$

or, $Y_{2}\left(\cos \theta_{0} / \sin \theta_{0}\right)\left(1 / \cos ^{2} \theta_{0}\right)+Y_{1} \tan \theta_{0} \operatorname{cosec}{ }^{2} \theta_{0}$

$$
\begin{aligned}
= & Y_{2} \operatorname{cosec}{ }^{2} \theta_{0}+Y_{1} \tan \theta_{0} \operatorname{cosec}^{2} \theta_{0}-Y_{2} \tan \theta_{0} \operatorname{cosec}^{2} \theta_{0} \\
& +Y_{2}\left(\pi / \theta_{0}\right) \operatorname{cosec}^{2} \theta_{0}-Y_{2} \operatorname{cosec}^{2} \theta_{0}
\end{aligned}
$$

or, $Y_{2}\left(2 / \sin \theta_{0} \cos \theta_{0}\right)=Y_{2}{ }^{\prime}\left(\pi / \theta_{0}\right) \operatorname{cosec}^{2} \theta_{0}$

$$
\begin{equation*}
Y_{2}^{\prime}=\frac{2 \theta_{0}}{x}\left|\tan \theta_{0}\right| Y_{2} \tag{4.26}
\end{equation*}
$$

Again,

$$
\begin{aligned}
Y_{1}^{\prime} & =Y_{2}^{\prime}+\left(Y_{1}-Y_{2}\right) \tan \theta_{0} \\
& =\left(2 \theta_{0} / \pi\right) \mid \tan \theta_{0} l Y_{2}+\left(Y_{1}-Y_{2}\right) \tan \theta_{0}
\end{aligned}
$$

$$
\begin{align*}
& H=Y_{2}-Y_{1} \\
& \mathrm{~N}=-\mathrm{Y}_{1} \quad / \tan \theta_{0}+\mathrm{Y}_{2} \quad / \tan \theta_{0} \\
& \left.\frac{d Y}{d \theta}\right|_{\theta=\theta_{0}}=\frac{Y_{2} \sec ^{2} \theta_{0}}{\tan \theta_{0}}+Y_{1} \tan \theta_{0} \operatorname{cosec}^{2} \theta_{0} \tag{4.23}\\
& \frac{d N}{d \theta} \log _{0-0_{0}}=Y_{1}^{\prime} \operatorname{cosec}^{2} \theta_{0}+Y_{2}^{\prime}\left(\frac{\pi}{\theta_{0}}-1\right) \operatorname{cosec}^{2}\left[\theta_{0}\left(\frac{\pi}{\theta_{0}}-1\right)\right] \\
& =Y_{1}{ }^{\prime} \operatorname{cosec}^{2} \theta_{0}+Y_{2}{ }^{\prime}\left(\pi / \theta_{0}-1\right) \operatorname{cosec}^{2}\left(\pi-\theta_{0}\right) \\
& =\left[Y_{1}{ }^{\prime}+Y_{2}{ }^{\prime}\left(\pi / \theta_{0}-1\right)\right] \operatorname{cosec}^{2} \theta_{0}
\end{align*}
$$

Fig 4.9 Network 1 of the distributed element

Fig 4.10 Network 2 of the distributed element

$$
\begin{equation*}
Y_{1}^{\prime}=\left[Y_{1}+\left(\frac{2 \theta_{0}}{\pi}-1\right) Y_{2}\right]\left|\tan \theta_{0}\right| \tag{4.27}
\end{equation*}
$$

4.4 Characteristic admithance natrix of network 1 : From figure (4.9), one car write the node current equations as, Nade 1:
$I_{1}=Y_{1} V_{1}+Y_{2+}\left(V_{1}-V_{2}\right)=\left(Y_{1}+Y_{2+}\right) V_{1}-Y_{2+} V_{2}$
Hode 2:
$\mathrm{I}_{2}=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \mathrm{Y}_{2+}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \mathrm{Y}_{2-}=-\mathrm{Y}_{2+} \mathrm{V}_{1}+\left(\mathrm{Y}_{2+}+\mathrm{Y}_{2-}\right) \mathrm{V}_{2}-\mathrm{Y}_{2-} \mathrm{V}_{3}$
Bode 3:
$\mathrm{I}_{3}=\left(\mathrm{V}_{3}-\mathrm{V}_{2}\right) \mathrm{Y}_{2-}+\mathrm{Y}_{3} \mathrm{~V}_{3}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \mathrm{Y}_{4+}=-\mathrm{Y}_{2-} \mathrm{V}_{2}+\left(\mathrm{Y}_{2-}+\mathrm{Y}_{3}+\mathrm{Y}_{4+}\right) \mathrm{V}_{3}-\mathrm{Y}_{4+} \mathrm{V}_{4}$
Mode 4:
$\mathrm{I}_{4}=\left(\mathrm{V}_{4}-\mathrm{V}_{3}\right) \mathrm{Y}_{4+}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \mathrm{Y}_{4-}=-\mathrm{Y}_{4+} \mathrm{V}_{3}+\left(\mathrm{Y}_{4+}+\mathrm{Y}_{4-}\right) \mathrm{V}_{4}-\mathrm{Y}_{4-} \mathrm{V}_{5}$
Nade 5:
$\mathrm{I}_{5}=\mathrm{Y}_{5} \mathrm{~V}_{5}+\left(\mathrm{V}_{5}-\mathrm{V}_{4}\right) \mathrm{Y}_{4-}=-\mathrm{Y}_{4-} \mathrm{V}_{4}+\left(\mathrm{Y}_{4-}+\mathrm{Y}_{5}\right) \mathrm{V}_{5}$
Now writing the above node equations in matrix form,

We now make the following substitutions,
$Y_{11}=\left(Y_{1}+Y_{2+}\right) ; \quad Y_{12}=Y_{2+} ; Y_{22}=\left(Y_{2+}+Y_{2-}\right) ; Y_{23}=Y_{2-} ;$
$Y_{33}=\left(Y_{2-}+Y_{3}+Y_{4+}\right) ; \quad Y_{34}=Y_{4+} ; \quad Y_{44}=\left(Y_{4+}+Y_{4-}\right) ; \quad Y_{45}=Y_{4-} ;$ $Y_{55}=\left(Y_{4-}+Y_{5}\right)$

With these substitutions, the characteristic admittance matrix of nethork 1 may be written as,
$\left[\begin{array}{ccccc}Y_{11} & -Y_{12} & 0 & 0 & 0 \\ -Y_{j 2} & Y_{22} & -Y_{23} & 0 & 0 \\ 0 & -Y_{23} & -Y_{33} & -Y_{34} & 0 \\ 0 & 0 & 0 & -Y_{44} & -Y_{45}^{45} \\ 0 & 0 & & Y_{55}\end{array}\right]$

The matrix element values are calculated from the following equations,

$$
\begin{align*}
& Y_{11}=Y_{1}+Y_{2+} \\
& \neq \tan \theta_{0}\left|\left\{\mathrm{aC}_{1}+\left(2 \theta_{0} / \pi-1\right) \mathrm{aC}_{1}\right\}+\tan _{0}\right|\left\{\mathrm{aC}_{2}\left(1+\lambda_{2+}{ }^{2}\right)\right. \\
& \left.+\left(2 \theta_{0} / \pi-1\right) a C_{2}\left(1+\lambda_{2-}{ }^{2}\right)\right\} \\
& \Rightarrow \tan \theta_{0}\left|\left(2 a \theta_{0} C_{1} / \pi\right)+1 \tan \theta_{0}\right|\left\{\mathrm{aC}_{2}\left(1+\lambda_{2+}{ }^{2}\right)-\mathrm{aC}_{2}\left(1+\lambda_{2-}{ }^{2}\right)\right. \\
& \left.+\left(2 \theta_{0} / \pi\right) a C_{2}\left(1+\lambda_{2-}{ }^{2}\right)\right\} \\
& =2 a\left(\theta_{0} / \pi\right)\left|\tan \theta_{0}\right| \mathrm{C}_{1}+2 \mathrm{a}\left(\theta_{0} / \pi\right)\left|\tan \theta_{0}\right|\left\{\left(\pi / 2 \theta_{0}\right) \mathrm{C}_{2}\left(1+\lambda_{2+}{ }^{2}\right)\right. \\
& \left.-\left(\pi / 2 \theta_{0}\right) C_{2}\left(1+\lambda_{2-}{ }^{2}\right)+C_{2}\left(1+\lambda_{2-}{ }^{2}\right)\right\} \\
& =2 a\left(\theta_{0} / \pi\right) \operatorname{tari} \theta_{0}!\left[C_{1}+C_{2}\left(1+\lambda_{2-}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{2+}{ }^{2}-\lambda_{2-}{ }^{2}\right)\right\}\right] \\
& \therefore Y_{11}=b\left[C_{1}+C_{2}\left[1+\lambda_{2-}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{2+}^{2}-\lambda_{2 .-}^{2}\right)\right]\right] \tag{4.35}
\end{align*}
$$

where, $\quad b=2 a \frac{\theta_{0}}{\pi}\left|\tan \theta_{0}\right|$
$Y_{12}=Y_{2+}$
$\Rightarrow \tan \theta_{0}!\left\{\mathrm{aC}_{2}\left(1+\lambda_{2+}{ }^{2}\right)+\left(2 \theta_{0} / \pi-1\right) \mathrm{aC}_{2}\left(1+\lambda_{2-}{ }^{2}\right)\right\}$
$=2 a\left(\theta_{0} / \pi\right)\left|\tan \theta_{0}\right| C_{2}\left[\left(\pi / 2 \theta_{0}\right)\left(\lambda_{2+}{ }^{2}-\lambda_{2-}{ }^{2}\right)+1+\lambda_{2-}{ }^{2}\right]$

$$
\therefore \quad Y_{12}=b C_{2}\left[1+\lambda_{2-+}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{2+}^{2}-\lambda_{2-}^{2}\right)\right]
$$

$$
\begin{aligned}
Y_{22}= & Y_{2+}+Y_{2} \\
& =\tan \theta_{0} \mid\left\{\mathrm{aC}_{2}\left(1+\lambda_{2+}{ }^{2}\right)+\left(2 \theta_{0} / \pi-1\right) \mathrm{aC}_{2}\left(1+\lambda_{2-}{ }^{2}\right)\right\} \\
& +\tan \theta_{0} \mid\left\{\mathrm{aC}_{2}\left(1+\lambda_{2-}{ }^{2}\right)+\left(2 \theta_{0} / \pi-1\right) \mathrm{aC}_{2}\left(1+\lambda_{2+}{ }^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& =2 a\left(\theta_{0} / \pi\right)\left|\tan \theta_{0}\right| c_{2}\left[1+\lambda_{2-}{ }^{2}+1+\lambda_{2+}{ }^{2}\right] \\
& \quad \therefore Y_{22}=b c_{2}\left[2+\lambda_{2+}^{2}+\lambda_{2-}^{2}\right] \tag{4.37}
\end{align*}
$$

$$
\begin{align*}
Y_{23} & =Y_{2-} \\
& =\left\{\operatorname{tar} \theta_{0} \mid\left\{a C_{2}\left(1+\lambda_{2-}{ }^{2}\right)+\left(2 \theta_{0} / \pi-1\right) a C_{2}\left(1+\lambda_{2+}{ }^{2}\right)\right\}\right. \\
& =2 a\left(\theta_{0} / \pi\right)\left|\tan \theta_{0}\right| C_{2}\left[1+\lambda_{2+}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{2-}{ }^{2}-\lambda_{2+}{ }^{2}\right)\right] \\
& \therefore Y_{23}=b C_{2}\left[1+\lambda_{2+}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{2-}^{2}-\lambda_{2+}^{2}\right)\right] \tag{4.36}
\end{align*}
$$

$$
Y_{33}=Y_{2-}+Y_{3}+Y_{4+}
$$

Here $Y_{3}=\tan _{0} \mid\left\{a C_{3}+\left(2 \theta_{0} / \pi-1\right) a C_{3}\right\}$

$$
=2 \varepsilon\left(\theta_{0} / \pi\right)\left|\tan \theta_{0}\right| C_{3}
$$

$$
\begin{equation*}
\therefore \quad \boldsymbol{Y}_{3}=b C_{3} \tag{4.59}
\end{equation*}
$$

$$
\begin{array}{r}
Y_{4+}=\tan _{0}{ }_{0}\left(a C_{4}\left(1+\lambda_{4+}{ }^{2}\right)+\left(2 \theta_{0} / \pi-1\right) a C_{4}\left(1+\lambda_{4-}{ }^{2}\right)\right\} \\
\therefore Y_{4+}=b C_{4}\left[1+\lambda_{4-}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{4+}^{2}-\lambda_{4-}^{2}\right)\right] \tag{4.40}
\end{array}
$$

Therefore

$$
\begin{aligned}
Y_{33} & =b C_{2}\left[1+\lambda_{2+}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{2-}{ }^{2}-\lambda_{2+}{ }^{2}\right)\right]+b C_{3} \\
& +b C_{4}\left[1+\lambda_{4-}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{4+}{ }^{2}-\lambda_{4-}{ }^{2}\right)\right] \\
& =b\left[C_{2}\left\{1+\lambda_{2+^{2}}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{2-^{2}}-\lambda_{2+}{ }^{2}\right)\right\}+C_{3}\right. \\
& \therefore Y_{33}=b\left[C_{2}\left[1+\lambda_{2+}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{2-}^{2}-\lambda_{2+}^{2}\right)\right]+C_{3}+C_{4}\left[1+\lambda_{4-}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{4+}^{2}-\lambda_{4-}^{2}\right)\right]\right](441)
\end{aligned}
$$

$Y_{34}=Y_{4+}$

$$
\begin{equation*}
\therefore Y_{34}=b C_{4}\left[1+\lambda_{4-}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{4+}^{2}-\lambda_{4--}^{2}\right)\right] \tag{442}
\end{equation*}
$$

$$
\begin{aligned}
Y_{44} & =Y_{4+}+Y_{4-} \\
& =6 C_{4}\left[1+\boldsymbol{\lambda}_{4-}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\boldsymbol{\lambda}_{4+}{ }^{2}-\boldsymbol{\lambda}_{4-}{ }^{2}\right)\right]+6 C_{4}\left[1+\lambda_{4+}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\boldsymbol{\lambda}_{4-}{ }^{2}-\boldsymbol{\lambda}_{4+}{ }^{2}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad Y_{44}=b C_{4}\left[2+\lambda_{4+}^{2}+\lambda_{4-}^{2}\right] \tag{4.43}
\end{equation*}
$$

$Y_{45}=Y_{4}{ }^{\prime}$

$$
\begin{equation*}
\therefore Y_{45}=b C_{4}\left[1+\lambda_{4+}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{4-}^{2}-\lambda_{4+}^{2}\right)\right] \tag{4:44}
\end{equation*}
$$

$$
\begin{aligned}
Y_{55} & =Y_{4-}+Y_{5} \\
& =b C_{4}\left[1+\lambda_{4+}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{4-}{ }^{2}-\lambda_{4+}{ }^{2}\right)\right]+1 \cdot \tan \theta_{0} \mid\left\{a C_{5}+\left(2 \theta_{0} / \pi-1\right) a C_{5}\right\} \\
& =b C_{4}\left[1+\lambda_{4+}{ }^{2}+\left(\pi / 2 \theta_{0}\right)\left(\lambda_{4-}{ }^{2}-\lambda_{4+}{ }^{2}\right)\right]+b C_{5}
\end{aligned}
$$

$$
\begin{equation*}
\therefore Y_{55}=b\left[C_{5}+C_{4}\left[1+\lambda_{4+}^{2}+\frac{\pi}{2 \theta_{0}}\left(\lambda_{4-}^{2}-\lambda_{4+}^{2}\right)\right]\right] \tag{4.45}
\end{equation*}
$$

4.5 Characteristic admittance matrix of network 2 : From figure (4.10), one can write the current node equations as,

Hade 1:
$\mathrm{I}_{1}{ }^{\prime}=\mathrm{Y}_{1} \mathrm{~V}_{1}{ }^{\prime}+\mathrm{Y}_{2+}{ }^{\prime}\left(\mathrm{V}_{1}{ }^{\prime}-\mathrm{V}_{2}{ }^{\prime}\right)=\left(\mathrm{Y}_{1}{ }^{\prime}+\mathrm{Y}_{2+}{ }^{\prime}\right) \mathrm{V}_{1}{ }^{\prime}-\mathrm{Y}_{2+}{ }^{\prime} \mathrm{V}_{2}{ }^{\prime}$
Bade 2:
$\mathrm{I}_{2}{ }^{\prime}=\left(\mathrm{V}_{2}{ }^{\prime}-\mathrm{V}_{1}{ }^{\prime}\right) \mathrm{Y}_{2+}{ }^{\prime}+\left(\mathrm{V}_{2}{ }^{\prime}-\mathrm{V}_{3}{ }^{\prime}\right) \mathrm{Y}_{2-^{\prime}}=-\mathrm{Y}_{2+^{\prime}} \mathrm{V}_{1}{ }^{\prime}+\left(\mathrm{Y}_{2+}+\mathrm{Y}_{2-^{\prime}}\right) \mathrm{V}_{2}{ }^{\prime}-\mathrm{Y}_{2-}{ }^{\prime} \mathrm{V}_{3}{ }^{\prime}$ (4-47) Hade 3:

$$
\begin{align*}
I_{3} & =\left(V_{3}-V_{2}^{\prime}\right) Y_{2-}+Y_{3} V_{3}^{\prime}+\left(V_{3}-V_{4}\right) Y_{4+} \\
& =-Y_{2-}{ }^{\prime} V_{2}+\left(Y_{2-}+Y_{3}+Y_{4+}\right) V_{3}-Y_{4+} V_{4}^{\prime}
\end{align*}
$$

Node 4:
$\mathrm{I}_{4}{ }^{\prime}=\left(\mathrm{V}_{4}{ }^{\prime}-\mathrm{V}_{3}{ }^{\prime}\right) \mathrm{Y}_{4+}{ }^{\prime}+\left(\mathrm{V}_{4}{ }^{\prime}-\mathrm{V}_{5}{ }^{\prime}\right) \mathrm{Y}_{4-}=-\mathrm{Y}_{4+} \mathrm{V}_{3}{ }^{\prime}+\left(\mathrm{Y}_{4+}+\mathrm{Y}_{4-}\right) \mathrm{V}_{4}{ }^{\prime}-\mathrm{Y}_{4-}{ }^{\prime} \mathrm{V}_{5}{ }^{\prime}$ (4.49)
Node 5:
$\mathrm{I}_{5}{ }^{\prime}=\mathrm{Y}_{5} \mathrm{~V}_{5}{ }^{\prime}+\left(\mathrm{V}_{5}{ }^{\prime}-\mathrm{V}_{4}{ }^{\prime}\right) \mathrm{Y}_{4-}{ }^{\prime}=-\mathrm{Y}_{4-} \mathrm{V}_{4}{ }^{\prime}+\left(\mathrm{Y}_{4-^{\prime}}+\mathrm{Y}_{5}{ }^{\prime}\right) \mathrm{V}_{5}{ }^{\prime}$
Now writing the above node equations in matrix form,

We now make the following substitutions,

$$
\begin{array}{lllll}
Y_{11}=\left(Y_{1}^{\prime}+Y_{2+}{ }^{\prime}\right) ; \quad Y_{12}=Y_{2+} ; & \left.Y_{22}=\left(Y_{2+}+Y_{2-}\right)^{\prime}\right) ; & Y_{23}=Y_{2-} ; \\
Y_{33}=\left(Y_{2-}+Y_{3}^{\prime}+Y_{4+}\right) ; & Y_{34}=Y_{4+}^{\prime} ; & Y_{44}=\left(Y_{4+}^{\prime}+Y_{4-}^{\prime}\right) ; & Y_{45}=Y_{4-} ;
\end{array}
$$

$$
Y_{55}=\left(Y_{4-}+Y_{5}{ }^{\prime}\right)
$$

With these substitutions, the characteristic admittance of network 2 may be written as,
$\left[\begin{array}{ccccc} & & & & 0 \\ Y_{11} & -Y_{12} & 0 & 0 & 0 \\ -Y_{j 2} & Y_{22} & -Y_{23} & 0 & 0 \\ 0 & -Y_{23} & -Y_{33} & -Y_{34} & 0 \\ 0 & 0 & Y_{34} & -Y_{45}^{44} & Y_{45} \\ & & & & \end{array}\right]$

The matrix element values are calculated from the following equations,

$$
\begin{aligned}
Y_{11} & =\left(Y_{1}^{\prime}+Y_{2+}\right) \\
& =\left(2 \theta_{0} / \pi\right)\left|\tan \theta_{0} l \mathrm{aC}_{1}+\left(2 \theta_{0} / \pi\right)\right| \tan \theta_{0} l \mathrm{aC}_{2}\left(1+\lambda_{2-^{2}}{ }^{2}\right) \\
& =2 \mathrm{a}\left(\theta_{0} / \pi\right) \mid \tan \theta_{0} l\left[\mathrm{C}_{1}+\mathrm{C}_{2}\left(1+\lambda_{2-^{2}}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore Y_{11}=b\left[C_{1}+C_{2}\left(1+\lambda_{2-}^{2}\right)\right] \tag{4.53}
\end{equation*}
$$

$\mathrm{Y}_{12}=\mathrm{Y}_{2+}$.

$$
\begin{equation*}
\therefore \mathbf{Y}_{12}=b C_{2}\left(1+\lambda_{2-}^{2}\right) \tag{4.54}
\end{equation*}
$$

$$
\begin{aligned}
Y_{22} & =\left(Y_{2+}+Y_{2-}{ }^{\prime}\right) \\
& =b c_{2}\left(1+\lambda_{2-^{2}}{ }^{2}\right)+b c_{2}\left(1+\lambda_{2+^{2}}{ }^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad Y_{12}=b C_{2}\left[2+\lambda_{2+}^{2}+\lambda_{2-}^{2}\right] \tag{455}
\end{equation*}
$$

$$
Y_{23}=Y_{2}-
$$

$$
\begin{equation*}
\therefore \quad Y_{23}=b C_{2}\left(1+\lambda_{2+}^{2}\right) \tag{4.66}
\end{equation*}
$$

$$
\begin{aligned}
Y_{33} & =\left(Y_{2-}{ }^{\prime}+Y_{3}{ }^{\prime}+Y_{4+}{ }^{\prime}\right) \\
& =b C_{2}\left(1+\lambda_{2+^{2}}\right)+b c_{3}+b C_{4}\left(1+\lambda_{4-}{ }^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad Y_{33}=b\left[C_{2}\left(1+\lambda_{2+}^{2}\right)+C_{3}+C_{4}\left(1+\lambda_{4-}^{2}\right)\right] \tag{4.57}
\end{equation*}
$$

$\mathrm{Y}_{34}=\mathrm{Y}_{4+}$.

$$
\begin{equation*}
\therefore Y_{34}=b C_{4}\left(1+\lambda_{4-}^{2}\right) \tag{4.58}
\end{equation*}
$$

$$
Y_{44}=\left(Y_{4+}+Y_{4-^{\prime}}\right)
$$

$$
=b C_{4}\left(1+\lambda_{4-}{ }^{2}\right)+b C_{4}\left(1+\lambda_{4+}{ }^{2}\right)
$$

$$
\therefore \boldsymbol{Y}_{64}=b C_{6}\left[2+\lambda_{6+}^{2}+\lambda_{6 .-1}^{2}\right]
$$

$Y_{45}=Y_{4-}$.

$$
\begin{equation*}
\therefore \quad Y_{45}=b C_{6}\left(1+\lambda_{d+}^{2}\right) \tag{4.60}
\end{equation*}
$$

$$
\begin{aligned}
Y_{55} & =\left(Y_{4-}+Y_{5}{ }^{\prime}\right) \\
& =b C_{4}\left(1+\lambda_{4+}{ }^{2}\right)+\mathrm{tC} C_{5}
\end{aligned}
$$

$$
\therefore Y_{55}=b\left[c_{5}+c_{4}\left(1+\lambda_{6+}^{2}\right)\right]
$$

4.6 Summary: The distributed resonated pi-section has been formed from the low pass prototype elliptic function filter. The resonated pi-section has been converted to a half wave cavity which is stepped in impedance and has two short circuited transmission lines connected in parallel at the nodes. The transformation equations from prototype element values to characteristic admittance values
have been deduced in detail and the characteristic admittance matrices for both the networks have been formed using the calculated sdmittance values.

GHAPIMER 5

Parallel coupled lines between ground planes

5.1 Introduction: A number of strip line components utilize the natural coupling existing between parallel conductors between ground plates. Examples of such components are directional couplers, filters, baluns, and delay lines such as interdigital lines. The present chapter describes elaborately the nature of various types of parallel coupled lines between ground plates. 5.2 Different types of parallel coupled lines: A number of examples of parallel coupled lines are shown in figure 5 . The corfigurations (a), (b) and (c) are primarily useful in applications where weak coupling between the lines desired. The configurations (d), (e), (f) and (g) are useful where strong coupling between lines is desired. The characteristic of these coupled lines can be specified in terms of $Z_{\text {oe }}$ and $Z_{\text {oo }}$ i.e. their even and odd impedances [14] respectively. $Z_{o f}$ is defined as the characteristic impedance of one line to ground when equal currents are flowing in the two lines in the same direction. Zoo is defined as the characteristic impedance of one line to ground when equal and opposite.currents are flowing in the two lines. The even and odd mode characteristic impedances shown in figure G. $\mathcal{B}(a),(d)$ and (e) are modified slightly when the strips have a finite thickness. Correction terms that account for the effects. of finite thickness have been derived by cohn [15].

Fig 5.1 Cross sections of various coupled transmission line configurations

Fig 5.1 Cross sections of various coupled transmission line configurations

(e)

(f)
fig 5.1 Cross sections of various coupled transmission line configurations

Fig 5.1 Cross sections of various coupled transmissiom line conflgurations
5.3 Coupling with interleaved thin lines: The configurstion of coupled strip lines illustrated in figure 5 (f) in which the two lines of width o are always operated st the same potertial, iss earticularly useful when it is desired to obtain tight coupling with thin strips that sre supported by s. homogeneous dielectric of relative dielectric constant ϵ_{r} that completely fills the region between the ground planes. The dimensions of the strips for particular values of $Z_{\text {oe }}$ and $Z_{\text {oo }}$ can be determined Erom graphs. For this purpose one needs the definitions that,

$$
\begin{align*}
& \sqrt{e_{r}} Z_{o \theta}=\frac{376.6 e}{C_{00}} \tag{5.1}\\
& \sqrt{e_{r}} Z_{o 0}=\frac{376.6 e}{C_{00}} \tag{5.2}
\end{align*}
$$

where $C_{o e}$ and C_{00} are the total capacities to ground per unit length of the strips of width c or the strip width a, when the lines are excited in the even and odd modes respectively. The sbsolate dielectric constant ϵ is equal to $0.225 \epsilon_{r}$ pf per inch. Using the values of $Z_{o e}$ and $Z_{o o}$ which are assumed to be known orie then computes $\Delta C / E$ from,

$$
\begin{equation*}
\frac{\Delta C}{e}=\frac{188.3}{\sqrt{B_{r}}}\left[\frac{1}{Z_{\infty}}-\frac{1}{Z_{o s}}\right]=\frac{1}{2}\left[\frac{C_{\infty}}{e}-\frac{C_{o o}}{e}\right] \tag{5.3}
\end{equation*}
$$

Volues of g, b are then selected and $d^{\prime} g$ is determined from the graph. Next, values of $C_{c c e} / \epsilon$ and $C_{c e} / \epsilon$ are read from the graphs. These quantities together with the value of $c_{\text {oef }} f$ from
ego. (5.1) are then substituted in the following equation to get $c \cdot b$,

$$
\begin{equation*}
\frac{c}{b}=\frac{1-\frac{g}{b}}{2}\left[\frac{C_{o \theta}}{2 e}-\frac{C_{c o}^{\prime}}{e}-\frac{C_{c \theta}}{e}\right] \tag{5,4}
\end{equation*}
$$

Finally $C_{g e} / \in$ is found from the graph and substituted in the following equation to get a / b

$$
\begin{equation*}
\frac{a}{b}=\frac{1}{2}\left[\frac{C_{0 \theta}}{2 e}-\frac{C_{a \theta}^{\prime}}{B}-0.441\right] \tag{5.5}
\end{equation*}
$$

In this way all the physical dimensions are determined for coupling with interleaved thin lines. These formulas are exact in the limit of a and $c>b$ so that fringing fields at opposite edges of the strips do not interact.
5. 4 Coupling with thick rectangular bars: The thick rectangular bar configuration of coupled transmission lines as shown in figure (S_{3} (h) can also be conveniently used where tight coupling between lines is desired [7]. the dimensions of the strips for particular values of Z^{2} oe and $Z_{\text {oo }}$ can be determined with the aid of Getsinger's [7] curves in figure $[5.2$ figure 3.3 arid figure Wh.4) The above curves are used in the following way. First, $\Delta C / \in$ is determined from eq. 5 . 3 fusing the specified values of $Z_{\text {oe }}$ and. $Z_{a o}$. Next a convenient value of t, b is selected and the value of s, b is determined from figure \boldsymbol{B}^{2} The value of w / b is then determined from,

Fig 5.2 Normalized even mode fringing capacitance and interbar

capacitance forscoupled rectangular_bars.[7]

青

Fig 5.4 Normalized fringing capacitance for an isolated rectangular bar [7]

$$
\begin{equation*}
\frac{W}{b}=\frac{1}{2}\left(1-\frac{t}{b}\right)\left[\frac{C_{o \theta}}{2 e}-\frac{C_{f e}^{\prime}}{e}-\frac{C_{f}^{\prime}}{e}\right] \tag{5.6}
\end{equation*}
$$

The value of $C_{o e}$ is determined from the specified value of $Z_{o e}$ using eg. (5. W) The fringing capacitance $c_{f e}$, for the even mode con be read from figure \boldsymbol{c}_{6})and C_{f} can be determined from figure

The various fringing and parallel plate capacitates are shown in figures. The odd mode fringing capacitances $C_{f o}$. correspond to the fringing capacitances between the inner edges of the bars and a metallic wall halfway between the bars. The total odd mode capacitance of a bar is given ty the following equation,

$$
\begin{equation*}
\frac{C_{\mathrm{o}}}{6}=2\left[\frac{C_{p}}{6}+\frac{C_{f o}^{\prime}}{6}+\frac{C_{f}^{\prime}}{6}\right] \tag{5.7}
\end{equation*}
$$

and the total even mode capacitances of a bar is given by,

$$
\begin{equation*}
\frac{C_{o \theta}}{B}=2\left[\frac{C_{p}}{B}+\frac{C_{f \theta}^{\prime}}{6}+\frac{C_{f}^{\prime}}{B}\right] \tag{5.8}
\end{equation*}
$$

The normalized per unit length parallel plate capacitance $C_{p^{\prime}} / \epsilon=2 W /(b-t)$ and $\epsilon=0.225 \epsilon_{r}$ pf per inch. The even and odd mode fringing capacitances are derived by conformal mapping techniques and are exact in limits of $\left[\omega / \omega^{\prime}(1-t / t)\right] \rightarrow \infty$. It is believed that when $[\mathrm{w} / \mathrm{b} /(1-\mathrm{t} / \mathrm{t})]>0.35$ the interaction between the fringing fields' is small enough so that the values of $C_{o o} / \epsilon$ and $C_{\text {of }} / \epsilon$ determined from eqns. (5.7) and (5.8) are reduced by a maximum of 1.24% of their true values.

Fig 5.5 Coupled rectangular bars centered between parallel plates illustrating the various fringing and parallel plate capacities

In situations where an initial value，w^{\prime} b is found fromeqn． （5．6）to be less than $0.35[1-(t / b)]$ so that the fringing fields interact，new value of $w \%$ can be used where，

$$
\begin{equation*}
\frac{w^{\prime}}{b}=\frac{\left(0.07\left[1-\frac{t}{b}\right]+\frac{w}{b}\right)}{1.2} \tag{5.9}
\end{equation*}
$$

provided $0.1<\left(w^{\prime} / b\right) /[1-(t / b)]<0.35$
5．5 Coupling with unsymmetrical parallel coupled lines：Figure （氙．By shows an unsymmetrical pair of parallel coupled lines and various line espacitances．C_{a} is the capacitance per unit length between line a and ground，$C_{a b}$ is that between line a and b ， while C_{b} is the capacitance per unit length between line b and ground．When C_{b} is not equal to C_{b} the two lines will have different od and even mode admittances．In terms of odd and even mode capacitances，for line a，

$$
\left(C_{o o}\right)_{a}=C_{a}+2 C_{a b},\left(C_{o \infty}\right)_{a}=C_{a}
$$

while for line b ，

$$
\left(C_{o o}\right)_{b}=C_{b}+2 C_{a b},\left(C_{o Q}\right)_{b}=C_{b}
$$

For symmetrical parallel coupled lines the odd mode impedances are simply the reciprocals of the odd mode admittances and analogously for the even made impedances and admittances． However this is not the case for unsymmetrical parallel coupled lines．For unsymmetrical．lines the odd and even mode iapedarices are rot simply the reciprocals of the add and even mode

Fig 5.6 An unsymmetrical pair of parallel coupled lines
admittances. The reason for this lies in the fact that when the odd and ever mode admittances are computed the basic definition of these admittances assumes that the lines are being driven with valtages of identical magnitude with equal or opposite phase, while the current in the lines may be of different magnitudes. While for the case of odd and even ande impedances it is the other way round. These two different sets of boundary conditions can be seen to lead to different voltage-current ratios if the lines are unsymmetrical.

Some unsymetrical parallel coupled lines which are guite easy to design are shown in figure σ_{0} Both bars have the same height and both are assumed to be wide enough so that the interactions between the fringing fields at the right and left sides of each bar are negligible or at least small enough to be corrected. On this basis the fringing fields are same for both bars and their difêerent capacitances C_{a} and C_{b} are due entirely to different parsllel plate capacitances $\left(C_{p}\right)_{a}$ and $\left(C_{p}\right)_{b}$. For the structure shown in figure (5.7),

$$
\begin{gathered}
C_{a}=2\left(\left(C_{D}\right)_{a}+C_{f}^{\prime}+C_{f G}^{\prime}\right) \\
C_{a b}=\left(C_{f o}^{\prime}-C_{f \theta}^{\prime}\right) \\
C_{D}=2\left(\left(C_{D}\right)_{\Delta}+C_{f}^{\prime}+C_{f G}^{\prime}\right)
\end{gathered}
$$

To design a pair of lines such as those in figure (5.7) to have specified odd and even ande admittances or impedances, first the values of $C_{a} / \in, C_{a b} / E$ and C_{b} / E are computed fromi the following equations,

Fig 5.7 Cross section of a pair of coupled rectangular-bar parallel coupled lines. The two lines ' a ' and ' b ' are unsymmetrical in width

$$
\begin{align*}
& \frac{C_{A}}{c}=\frac{\eta_{o}\left(Y_{o \infty}\right)_{a}}{\sqrt{\epsilon_{I}}}, \frac{C_{a b}}{e}=\frac{\eta_{o}}{\sqrt{\epsilon_{I}}}\left(\frac{\left(Y_{o \infty}\right)_{a}-\left(Y_{o Q}\right)_{a}}{2}\right) \tag{a}\\
& \frac{C_{b}}{c}=\frac{\eta_{0}\left(Y_{00}\right)_{b}}{\sqrt{\epsilon_{I}}}, \frac{C_{c b}}{\epsilon}=\frac{\eta_{0}}{\sqrt{\epsilon_{r}}}\left(\frac{\left(Y_{o o}\right)_{b}-\left(Y_{o \phi}\right)_{b}}{2}\right) \tag{b}
\end{align*}
$$

Next a convenient value of t / b is selected and using figure (5.2) both s, b and $C_{f e} / \epsilon$ are calculated. Lastly the value of $C_{f}^{\prime} / \epsilon$ is determined from the selected value of t / b and figure 45 Then the width of the bars are calculated from the following equations,

$$
\begin{align*}
& \frac{w_{\mathrm{a}}}{b}=\frac{1}{2}\left(1-\frac{t}{b}\right)\left[\frac{C_{a}}{2 a}-\frac{C_{f_{e}}}{\epsilon}-\frac{C_{f}}{b}\right] \tag{5.14}\\
& \frac{w_{b}}{b}=\frac{1}{2}\left(1-\frac{t}{b}\right)\left[\frac{C_{b}}{2 a}-\frac{C_{f_{0}}}{G}-\frac{C_{f}}{B}\right] \tag{5.15}
\end{align*}
$$

This procedure also works for the thin strip case where $t / b \approx 0$. If either w_{a} / b or w_{b} / b is less than $0.35[1-t / b]$, eqn. (5.g) should be applied to abtain corrected values.
5.6 An array of parallel coupled lines: Figureg. 8 shows an array of parallel coupled lines which is used in the interdigital line filters. In the structure shown all of the bars have the same t / b ratio and the other dimersions of the bars are easily obtained by generalizing the procedure described in designing the unsymmetrical parallel coupled lines. In the structure of figure \%. Bthe electrical properties of the structure are characterized in terms of self capacitances C_{k} per unit length of each bar with

Fig 5.8 Cross section of an array of parallel -coupled lines between ground planes
unit length of each bar with respect to ground and the mutual capacitartes $C_{k, k+1}$ per unit lergeth between adjacent bors k and $k+1$. This representation is not necessarily silways highly accurate because there can conceivably be a significant amount of fringing capacitance in some cases between a given line element, and for example, the line element beyond the rearest reighbor. However, at least for geometries, experiment has shown this representation to have satisfactory accuracy for applications such as interdigital filter design.

Equations are given for the normalized self ard mutual capacitances C_{k} / ϵ and $C_{k, k+1} / \epsilon$ per unit length for all the ines in the structure for design of the parallel coupled array of rectangular bars between ground planes. The cross sectional dimersions of the bars and spacings between them are determined by first, choosing values for t and b and then since,

$$
\begin{equation*}
\frac{(\Delta C)_{k, k+1}}{e}=\frac{C_{k, k+1}}{e} \tag{5.16}
\end{equation*}
$$

figure $\}_{6}$) can be used to determine $s_{k, k+1} / b$. In this way the spacings $s_{k, k+1}$ between all the bars are obtained. Also, using
 associated with the gaps $s_{k, k+1}$ between bars are obtained. Ihen the normalized width of the k th bar is,

$$
\begin{equation*}
\frac{w_{k}}{b}=\frac{1}{2}\left(1-\frac{t}{b}\right)\left[\frac{C_{k}}{2 e}-\frac{\left(C_{f a}\right)_{k-1, k}}{e}-\frac{\left(C_{f o}^{\prime}\right)_{k, k+1}}{e}\right] \tag{5.17}
\end{equation*}
$$

In the case of the bar at the end of the saray i.e. the bar
at the far left in figure s. $\mathrm{C}_{\mathrm{fe}} / \in$ for the edge of the bar which has no neighbor must be replaced by \mathcal{C}_{f} / \in which is to be determined from figure S_{5}. As for example, for bar ' 0 ' ign. (5.17) will become,

$$
\begin{equation*}
\frac{w_{0}}{b}=\frac{1}{2}\left(1-\frac{t}{b}\right)\left[\frac{C_{0}}{2 e}-\frac{C_{f}}{e}-\frac{\left(C_{f a}\right)_{0,1}}{e}\right] \tag{5.18}
\end{equation*}
$$

If $W_{k} / b<0.35[1-t / b]$ for any of the bars, the width correction given in eqn. (5.9) should be applied to those bars where this condition exists.
5.7 Summary: Coupling between a pair of parallel coupled TEM lines between ground plates have been described in terms of even and odd mode impedances and admittances. The procedure of calculating the widths of coupled rectangular bars and the interline spacings of the rectangular bars from self and interline capacitance are presented following Getsinger's [7] chart analysis.

CHAPIUER 6

```
Designing a filter and obtaining its
    physical dimensions
```

6.1 Intraduction: This chapter deals in detail with the design procedure of the band pass filter and calculation of its physical dimensions. In determining the widths and spacings of the rectangular bars, the curves by Getsinger [7] and the low pass prototype values from the catalogue by Sal [16] are used.
6.2 Design of the experinental filter: The filter to be designed should have the following specifications : The stop band attenuation level ($A_{s}[d B]$) is 60.1 dB or $\mathrm{a}_{\mathrm{S}}[\mathrm{N}]=6.91$ Neper. Pass band VSHR (Voltage Standing Have Ratio) is less than 1.222. The percentage bandwidth is 1.0 . The center frequency is 2000 MHz . Froal the given VSWR the reflection coefficient is found to be equal to 0.1 i.e. $\rho=10 \%$. Also the maximum attenuation in the pass band is found to be 0.044 dB for a VSWR=1.222. The bandwidth scaling factor calculated from the following equation is 41.35,

$$
\begin{equation*}
a=\frac{f_{0}\left|\sin 2 \theta_{0}\right|}{4 \theta_{0}\left(f_{2}-f_{1}\right)} \tag{6.1}
\end{equation*}
$$

where $f_{0}=\left(f_{1}+f_{2}\right) / 2$ is the center frequency of the filter and f_{1} and f_{2} are the pass band edge frequencies which are 1980 KHz and 2010 MHz respectively. θ_{0} is the arbitrary stepped impedance plane and equals to $\pi / 3$.
6.2.1 Low pass prototype element yalues: The following low pass protatype element values are obtained froa the filter katalag by Saal. The values are given for $n=5, \rho=10 \%, A_{s}=60.1 \mathrm{~dB}$, $\Omega_{\mathrm{s}}=2.202689 ; \theta=27^{\circ}$.
$\mathrm{C}_{1}=0.9265$
$\mathrm{C}_{2}=0.05866$
$C_{3}=1.6660$
$C_{4}=0.1607$
$\mathrm{C}_{5}=0.8363$
$\Omega_{2}=3.611883$
$\Omega_{4}=2.303827$

By using the equations 4.9 sand 4.10 the following transmission zerus are calculated,
$\lambda_{2+}=1.045$
$\lambda_{2-}=0.957$
$\lambda_{4+}=1.028$
$\lambda_{4-}=0.973$
6.3 Length of the netrorks: If the center frequency is f_{0}, the wave length of the signal can be calculated from the relation $\boldsymbol{\lambda}_{0}=c / f_{0}$, where o is the velocity of light and equals to 3×10^{10} cm/sec. Therefore the length of the rectangular bars of network 1 will be $\lambda_{B} /(6 \times 2.54)$ inch and that of the network 2 will be $\left\{\boldsymbol{\lambda}_{0} /(2 \times 2.54)-\boldsymbol{\lambda}_{0} /(6 \times 2.54)\right\}$ inch. From the above relation the length l_{1} of network 1 is $\mathbf{0 . 9 8 4 2}$ and 1_{2} of network 2 is 1.9685. 6.4 Characteristic admittance matrices of tho networks: All the elements of the matrices are calculated using the equations given in chapter 4. Now putting the values of the elements in the matrices, the following two characteristic admittance matrices are formed for network 1 and 2 respectively,

NETHORK 1

$$
\left.\right] .
$$

NETWORK 2

$$
\left.\begin{array}{crrrr}
1 & 2 & 3 & 4 & 5 \\
49.6045 & -5.3674 & 0.0000 & 0.0000 & 0.0000 \tag{6,3}\\
-5.3674 & 11.2246 & -5.8572 & 0.0000 & 0.0000 \\
0.0000 & -5.8572 & 100.3328 & -14.9300 & 0.0000 \\
0.0000 & 0.0000 & -14.9300 & 30.7153 & -15.7853 \\
0.0000 & 0.0000 & 0.0000 & -15.7853 & 55.7157
\end{array}\right]
$$

6.4.1 Input and outpat transformer elements: The input and output terminals of the filter sre shown in figure 6 . Direct comection of the input and output terminals to the external ports will lower the impedance of the internal elements. To Gvercome this problem, two transformers are used at input and output between the external ports and the corresponding interaal elements as shown in figure 26 the transformer elements have unity characteristic impedances and one sixth of a wavelength long st the center frequency. After adding the unit elements at input and output the characteristic admittance matrix of network 1 becomes,

Fig 6.1 Realization of the two networks of a filter using TEM lines short circuited at one endfor $n=5$. The open ends of the coupled lines of the two networks are joined together

Fig 6.2 The complete filter with the input and output transformer elements

$\left[\right.$| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.0000 | -1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| -1.0000 | 51.3392 | -6.1021 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -5.1021 | 11.2246 | -5.1225 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -5.1225 | 100.8811 | -16.2130 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -16.2130 | 30.7153 | -14.5023 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -14.5023 | 55.4327 | -1.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -1.0000 | 1.0000 |$]$

The characteristic admittance matrix of network 2 remains same because the unit eland is not connected with network 2 .
6.4.2 Admittance scaling factor: Admittance scaling factor is necessary for physical realizability of the filter. This factor is chosen in such a way so that capacitances from line to ground for all lines except the input and output lines are almost same. Generally, at first, all the lines except the lines on which the input and output ports are connected are scaled by a factor $1 / \sqrt{6}$ where,

$$
\begin{equation*}
b=\frac{2 a\left(\frac{\theta_{0}}{\pi}\right)}{\left|\tan \theta_{0}\right|} \tag{6.5}
\end{equation*}
$$

and a is given by mgr. (6.1)
In the present case, firstly, the modification of the networks is made in lines 1 and 5 (because line 0 and 6 are the input and output port connection). After scaling of the lines 1 ard 5 of both the networks by the factor $1 / \sqrt{b}$ the resultant admittance artrices become,

NETHORK 1

$\left[\right.$| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.0000 | -0.1447 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| -0.1447 | 1.0752 | -0.8831 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -19.8831 | 11.2246 | -5.1225 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -5.1225 | 100.8811 | -16.2130 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -16.2130 | 30.7153 | -2.0988 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -2.0988 | 1.1610 | -0.1447 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -0.1447 | 1.0000 |$]$

NETHORK 2

5

After scaling line 1 sind 5 of both the networks, the remoining lines are soaled in such a way that the difference anong the disgonal elements of the matrices is not too large. In doing so, the following procedure is followed.

In network 1, the second diagonal element i.e. Y_{11} (1.0752) is multiplied by 1.2 and the product is trested 8 s the new value of third diagonsl element i.e. Y 22 (whish was previously 11.2246). Similarly the new value of fifth diagonal element Y_{44} (which was previously 30.7153) is found by multiplying Y_{55} (1.1610) by 1.2. Firafly the center diagorisl element Y_{33} (which was previously 100.8811) is found fromi the product of 1.2 and the new value of Y_{22} (1.2903). While multiplying the diagonal elements by 1.2 the corresponding row and columin elements are multiplied by $\sqrt{1.2}$ which is demonstrated by a simple example in

Fig 6.3 Modification of different elements of an admittance matrix by multiplying with a factor n
figure Q $_{6}$ 3\} The same procedure is applied to network 2 , where, $\left(Y_{22}\right)_{\text {new }}=1.2 \times\left(\mathrm{Y}_{11}\right)_{\text {old }}, \quad\left(Y_{44}\right)_{\text {rew }}=1.2 \times\left(Y_{55}\right)_{\text {old }}$ and, (Y $\left.Y_{33}\right)_{n e w}=1.2 \times\left(Y_{22}\right)_{\text {rew }}$. After this scaling the admittance matrices take the followirg shape,

NETWORK 1

$\left[\right.$| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.0000 | -0.1447 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| -0.1447 | 1.0752 | -0.2994 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -0.2994 | 1.2903 | -0.2152 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -0.2152 | 1.5484 | -0.4278 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -0.4278 | 1.3932 | -0.4470 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -0.4470 | 1.1610 | -0.1447 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -10.1447 | 1.0000 |$](6.8)$

HETHORK 2

$\left[\right.$| 1 | 2 | 3 | 4 | 3 |
| :---: | ---: | ---: | ---: | ---: |
| 1.0389 | -0.2589 | 0.0000 | 0.0000 | 0.0000 |
| -0.2589 | 1.2476 | -0.2384 | 0.0000 | 0.0000 |
| 0.0000 | -19.2384 | 1.4960 | -0.3893 | 0.0000 |
| 0.0000 | 0.0000 | -0.3893 | 1.4003 | -0.4878 |
| 0.0000 | 0.0000 | 0.0000 | -0.4878 | 1.1669 |$]$

6. S Static capacitance matrices: Now eqn. (6.8) and eqn. (6.9) give the characteristic admittance matrices of network 1 and 2 respectively gfter the required sealing and changing of level. In order to get the static capacitance abtrices all the elements of both the characteristic admittance matrices are multiplied by $\boldsymbol{\eta}_{0}$. Finally to convert the values to a 50Ω termination impedance the elements are divided by 50 . So, to convert the characteristic admittance matrices to static capacitance matrices all the elemerts of the former are multiplied by $\eta_{0} \mathcal{Z}_{0}$ or $376.7 / 50=7.534$. Now multiplying all the elements of the two networks by
7.134 the following static capacitance matrices are formed,

NETHORK 1

$\left[\right.$| 0 | 1 | 2 | 3 | | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 7.5540 | -1.0932 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| -1.0932 | 8.1224 | -2.2617 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -2.2617 | 9.7469 | -1.6254 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -1.6254 | 11.6963 | -3.2314 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -3.2314 | 10.5240 | -3.3765 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -3.3765 | 8.7700 | -1.0932 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -1.0932 | 7.5540 |$]$ (6.10)

NETHORK 2
1
$\left[\begin{array}{r}7.8480 \\ -1.9555 \\ 0.0000 \\ 0.0000 \\ 0.0000\end{array}\right.$
-1.9555
9.4176
-1.8006
0.0000
0.0000
0.0000
-1.8006
11.3011
-2.9405
0.0000
0.0000
0.0000
-2.9405
10.5778
-3.6846
$\left.\begin{array}{r}0.0000 \\ 0.0000 \\ 0.0000 \\ -3.6846 \\ 8.8148\end{array}\right]$

From the above two matrices the physical dimensions of the filter are now calculated. The procedure described in section 6 of chapter 5 is applied to find the mutual capacitance i.e. capacitance between line to line and self capacitance i.e. capacitance between line to eround of the coupled rectangular bars. The matasi capacitaraces aan be easily caloulated from the static capscitance matrices. For example, the mutual capacitarice between line 1 and 2 of retwork 1 will simply be Y_{12} or Y_{21} which is 2.2617 as seen from eqn. (6.10). On the other hand the self capacitance of any line to ground can be calculated by adding up the respective row or column elements. For example, the self capacitance of line 2 of network 1 will be the addition of $-2.2617,9.7469$ and -1.6254 which is equal to 5.8598 as seen fram
equ. (6.10). Ihis capacitance value is same for either the row or the columa addition. After calculating the normalized capacitance values of both the networks, egns. (5.17), (5.18) and Getsinger's [7] curves in figures $(2)(3)$ section (65 6 6 chapter 5, to find the physical dimensions of the filter.
6.6 Calculation of physical dimensions: After cslculating all the widths and spacings of the rectangular bars the following table is constructed.

TABLE 6.1 Calculation of widths and spacings of Network 1

k	C_{k} / \in	$\mathrm{C}_{k, k+1} / \in$	$\left(\mathrm{C}_{\mathrm{E} e^{\prime}}\right)_{k, k+1} / \epsilon$	${ }^{W}{ }_{k} / \mathrm{b}$	W_{k}	$s_{k, k+1} / \mathrm{b}$	$s_{k, k+1}$
0	6.4608			0.6651	0.4430		
0,1		1.0932	0.5300			0.3350	0.2230
1	4.7674			0.5704	0.3800		
1,2		2.2617	0.2240			0.1700	0.1130
2	5.8598			0.8386	0.5580		
2,3		1.6254	0.3100			0.2450	0.1639
3	6.8395			1.034	0.68880		
3,4		3.2314	0.1560			0.1170	0.0780
4	3.9161			0.9782	0.3850		
4,5		3.3765	0.1500			0.1120	0.0750
5	4.30033			0.5145	0.3430		
5,6		1.0932	0.5300			0.3350	0.2230
6	6.4608			0.6651	0.4430		

In the above table,
k - Line rumber
$G_{k}{ }^{\prime \in} \rightarrow$ normalized static capacitance of kth line to ground
$G_{k, k+1} \in \rightarrow$ normalized static capacitance between kth and ($k+1$) th line
(Cé) ${ }_{k, k+1} / \epsilon \rightarrow$ normalized even mode fringing sopacitance between kth sud $(k+1)$ th line
$w_{k} \rightarrow$ width of $k t h$ line in inches
$5 k, k+1 \rightarrow$ spacing between k th sud ($k+1$)th line in inches
In the k colum of the above table 0,$1 ; 1,2$ eto. means between the lines 0 and 1,1 and 2 etc.

The center plate of the designed filter is shown in figure (6.4. The vertical cross section of two retworks of the filter is
 the thickness of the ceriter plate is $t=0.2$ inch and the spacing between the two ground plates is $b=0.666$ inch, so that $t, k=0.3$. The widths of all the coupled lines of network 1 except the input and output unit elements are calculated using egn. (5.17) and figure (5) For width calculation of two unit elements eqn. (5, 18), figure 4.2 and figure 5.4 are used. The width calculation of line 1 and one of the unit elements line 0 are shown below.
For line $\quad 1, \quad C_{1} / \epsilon=4.7674, \quad\left(C_{f e}\right)_{0,1} / \epsilon=0.5300$, and ($\left.\mathrm{Cfe}^{\prime}\right)_{1,2} / \epsilon=0.2240$. The self capacitance is found from table \boldsymbol{G}_{6}. ${ }^{1}$) and the fringing capacitances are found from figure © corresponding to the given values of t / b and the mutual
 these values in egr (5.17),

$$
\frac{w_{1}}{b}=\frac{1}{2}(1-0.3)\left[\frac{1}{2}(4.7674)-0.5300-0.2240\right]
$$

Fig. 6.4: The cross section of the centre plate of the designed filter.

Fig. 6.5(a): Vertical cross section of network 2

Fig. $6.5(\mathrm{~b})$: Vertical cross section of network 1
$\therefore \omega_{1}=0.3800$ inch
But for line U, eqn. (5.18) will be used inctead of (5.17) berguse this line has no neighbor and that is why ($\left.\mathrm{Ce}_{\mathrm{fe}}{ }^{\prime}\right)_{k-1, k}, \mathrm{f}_{\mathrm{k}}$ in eqn. (5.17) is replaced by $C_{f} / / \epsilon$ in eqr. (5.18) For line $0, C_{f}^{\prime} / \epsilon$ isi found, from figure $(5,4$ to be equal to 0.8000 and this is same for both the unit elements. From tablefor $C_{0} / \epsilon=6.4608$, and (Cfe') $)_{0,1}, \in=0.5300$. Now putting these values in eqn. (5.18),

$$
\frac{W_{0}}{b}=\frac{1}{2}(1-0.3)\left[\frac{1}{2}(6.4608)-0.8000-0.5300\right]
$$

$\therefore \mathrm{H}_{0}=0.4430$ inch.
A similar table is formed for network 2 under the same symbols which is given below. Only in the k column G means ground and G, $15, G$ etc. means between ground and 1,5 and ground etc.

TABLE 6.2 Calculation of widths and spacings of Network 2

k	C_{k} / \in	$C_{k, k+1} / \in$	$\left(\mathrm{C}_{\mathrm{fe}}{ }^{\prime}\right)_{k, k+1} / \in$	$\mathrm{W}_{\mathrm{h}} / \mathrm{b}$	H_{k}	${ }^{5} \mathrm{k}, \mathrm{k}+1^{\prime}$	$s_{k, k+1}$
(1, 1							
1	5.8924			0.6590	0.4390		
1,2		1.9595	0.2630			0.2027	0.1350
2	5.6614			0.8010	0.5330		
2,3	. .	1.8006	0.2800			0.2192	10. 1460
3	6.56091			0.9880	0.5580		
3,4		2.9405	0.1780			0.1336	0.0890
4	3.9527			0.5820	0.3880		
4,5		3.6846	0.1350			0.1096	0.0870
5	5.1302			0.5710	0.3800		
$5, i 3$							

6.7 Curfection of widths of metwork 2 : It is seen from table (各. that spacings between ground and line 1 and that between line 5 and ground of network 2 are not given. In retwork 1 the widths of the unit elements as well as their spacings with the nearest neightor lines are identical at both ends thus making the network symmetrical st both ends. To restore the symmetry in network 2 i.e. to modify the widths of line 1 and 5 in such a way that their spacings with ground at both endssare identioal, the following iterations are carried out without affecting the widths and spacings of rest of the lines.

It is seen from tablef 6 that $w_{1}=0.439^{\prime \prime}$. If the ground spsoing of line 1 is sssumed to be $0.2^{\prime \prime}$ i.e. $s_{G}, 1^{=0.2 "}$, whan $s_{G, 1}$ adds up to 0.639°. The objective is to modify the width w and to find so new value of $\mathrm{S}_{\mathrm{G}, 1}$ in such a way that the suan of H_{1} and $s_{G}, 1$ remains 0.639°. The iterations are carried out until two suceessive iterstionss give same result. All the values and caloulations refer to egn. (5.17) and figure(4. 27)

$$
\text { Heration 1: } \quad s_{i}, 1=0.2^{\prime \prime} \text { (assumed) } \quad s_{G, 1} / \mathrm{b}=0.3
$$

 $\left(C_{k}\right)_{\text {new }}=7.8480-1.9555-1.27=4.6225$ (from egn. (6.11)) $\therefore\left(w_{1}\right)_{\text {new }}=0.392 *$ smd $\left(s_{G, 1}\right)_{\text {new }}=0.24 \%^{\prime \prime}$
Iteration 2: $\mathrm{S}_{\mathrm{G}, 1}=0.247^{\prime \prime}$ (from previous itergtion) $\mathrm{S}_{\mathrm{G}, 1} / \mathrm{t}=0.371$
 $\left(\mathrm{C}_{\mathrm{k}}\right)_{\text {new }}=7.8480-1.9555-0.96=4.9325$ (from egr. (6.11) $)$ $\therefore\left(w_{1}\right)_{\text {new }}=0.413^{\prime \prime}$ and $\quad\left(s_{G, 1}\right)_{n e w}=0.226^{\prime \prime}$ Iteration $3: s_{G, 1}=0.226^{\prime \prime}$ (from previous iteration) $s_{G}, 1 / b=0.340$
 $\left(\mathrm{C}_{\mathrm{k}}\right)_{\mathrm{nem}}=7.8480-1.9555-1.09=4.8125$ (from egn. (B.11))
$\therefore\left(w_{1}\right)_{n e w}=0.404^{\prime \prime}$ and $\left(s_{G, 1}\right)_{n e w}=0.235^{\prime \prime}$
Iteration 4: $\mathrm{s}_{\mathrm{G}, 1}=0.235^{\prime \prime}$ (from previous iterstion) $\mathrm{s}_{\mathrm{G}, 1} / \mathrm{t}=0.353$
 $\left(\mathrm{C}_{\mathrm{k}}\right)_{\text {new }}=7.8480-1.9555-1.03=4.8625$ (tromegn. (b.11)) $\therefore\left(\mathrm{H}_{1}\right)_{\text {new }}=0.407^{\prime \prime}$ and $\left(S_{G, 1}\right)_{n e w}=0.232^{\prime \prime}$

Iteration 5: $s_{G, 1}=0.232^{\prime \prime}$ (from previous iteration) $s_{G, 1} / b=0.348$,
 $\left(\mathrm{C}_{\mathrm{k}}\right)_{\text {new }}=7.8480-1.9555-1.05=4.8425$ (from eqra. (6.11))
$\therefore\left(\boldsymbol{H}_{1}\right)_{\mathbf{n e w}}=0.406^{\prime \prime}$ and $\left(\mathbf{s}_{\mathbf{G}, \mathbf{1}}\right)_{\mathbf{n e w}}=\mathbf{0 . 2 3 3 ^ { \prime \prime }}$
Iteration 6: $\mathrm{s}_{\mathrm{G}, 1}=0.233^{\prime \prime}$ (from previous iteration) $\mathrm{s}_{\mathrm{G}, 1} / \mathrm{b}=0.350$

$\therefore\left(\mathrm{H}_{1}\right)_{\mathrm{new}}=0.406^{\prime \prime}$ snd $\quad\left(\mathrm{s}_{\mathrm{G}, 1}\right)_{\text {new }}=0.233^{\prime \prime}$
So the final value of w_{1} and $s_{G, 1}$ are $0.406^{\prime \prime}$ and $0.233^{\prime \prime}$ respectively. An exactly similar procedure of iteration is carried out at the other end of the network 2. Here si,g is assumed to be 0. $2^{\prime \prime}$. Which gives the summation of w_{5} and s_{5}, G to be $\left(0.380^{\prime \prime}+0.2^{\prime \prime}\right)=0.580^{\prime \prime}$. Now the following itergtions are carried out.

Iteration 1: $55, G^{=0.2^{\prime \prime}(5 s s u m e d) \quad ~} 55, G^{\prime} b=0.3$
 $\left(C_{k}\right)_{n \in w}=8.8148-3.6846-1.27=3.8602$ ((from eqn. (6.11))
$\therefore\left(\mathrm{H}_{5}\right)_{\mathrm{new}}=0.333^{\prime \prime}$ and $\quad\left(\mathrm{s}_{5, G}\right)_{\text {new }}=0.24^{\prime \prime}$
Iteration $2: 5_{5, G}=0.247^{\prime \prime}$ (from previous iteration) $s_{5, G} / b=0.371$
$\left(\mathrm{C}_{\mathrm{fe}}{ }^{\prime}\right)_{5, \mathrm{G}} / \in=0.430$ (fromifig. $\left.5.2 \psi\right) \quad(\Delta \mathrm{C})_{\mathrm{k}, \mathrm{k}+1} / \in=0.96$ (fig. (5.2)) $\left(\mathrm{C}_{\mathrm{k}}\right)_{\text {new }=8.8148-3.6846-0.96=4.1702 \text { (from eqn. (6.11) }) ~(f)}$

Iteration 3: $5_{5, G}=0.226^{\prime \prime}$ (from previous iteration) $s_{5, G} / b=0.340$
 $\left(\mathrm{C}_{\mathrm{k}}\right)_{\text {new }}=8.8148-3.6846-1.08=4.0502$ (from eqn. (6.11))
$\therefore\left(\mathrm{H}_{5}\right)_{\mathrm{new}}=0.345^{\prime \prime}$ and $\left(\mathrm{s}_{5, \mathrm{G}}\right)_{\text {new }}=0.235^{\prime \prime}$
Iteration 4: $s_{5, G}=0.235^{\prime \prime}$ (from previous iteration) $s_{5, G} / b=0.353$
 $\left(C_{k}\right)_{n \in w}=8.8148-3.6845-1.03=4.1002$ (from eqn. (6.11))
$\therefore\left(\mathrm{H}_{5}\right)_{\text {new }}=0.348^{\prime \prime}$ and ($\left.\mathrm{S}_{5, \mathrm{G}}\right)_{\text {new }}=0.232^{\prime \prime}$
Iteration 5: $\mathrm{s}_{5, G}=0.232^{\prime \prime}$ (from previous iteration) $\mathrm{s}_{5, \mathrm{G}} / \mathrm{b}=0.348$
 $\left(C_{k}\right\rangle_{\text {new }}=8.8148-3.6846-1.05=4.0802$ (from egn. (6.11))
$\therefore\left(\mathrm{H}_{5}\right)_{\text {new }}=0.347^{\prime \prime}$ and ($\left.\mathrm{E}_{5, \mathrm{G}}\right)_{\text {new }}=0.233^{\prime \prime}$
Iteration 6: $\mathrm{s}_{5, G}=0.233^{\prime \prime}$ (from previous iteration) $\mathrm{s}_{5, G} / \mathrm{b}=0.350$
 $\left(C_{k}\right)_{\text {new }}=8.8148-3.6846-1.05=4.0802$ (from eqr. (6.11))
$\therefore\left(\mathrm{H}_{5}\right)_{\text {new }}=0.347^{\prime \prime}$ and $\left(\mathrm{S}_{5, G}\right)_{\text {new }}=0.233^{\prime \prime}$
Thus the finsl value of w_{5} and s_{5}, G are $0.347^{\prime \prime}$ and $0.233^{\prime \prime}$ respertively. The interesting point to be noted is that assumption of any value for $\mathrm{S}_{\mathrm{G}, 1}$ or $\mathrm{s}_{5, G}$ leads to the same result after the required iterations. Now the new entries are made to table form the following table for network 2 which is finally used to realize the physical dimensions.

TABLE 6.2 Calculation of widthe and spacings of Network 2 (Modified)

k	C_{k} / \in	$C_{k, k+1} / \epsilon$	$\left(\dot{C}_{f e}{ }^{\prime}\right)_{k, k+1} / \epsilon$	ω_{k} / b	W_{k}	$s_{k, k+1} /$	$s_{k, k+1}$
$\mathrm{G}, 1$						0.3498	0.2330
1	5.8824		,	0.6580	0.4060		
1,2		1.9555	0.2630			0.2027	0.1350
2	5.6614			0.8010	0.5330		
2,3		1. 8006	0.2800			0.2182	0.1460
3	6.5600			0.9880	0.6580		
3,4		2.9405	0.1780			0.1336	0.0890
4	3.9527			0.5820	0.3880		
4,5		3.6846	0.1350			0.1006	0.0670
5	5.1302		.	0.5710	0.3470		
5,G						0.3498	0.2330

6.8 Sumnary: In this chapter the physical dimensions of the parallel coupled lines of both the networks of the filter are calculated using some specified expressions for width and spacing calculation and the curves of Getsinger [7]. Also for network 2 modifications in width and spacing are made at the two ends to keep the symmetry of the netwo that are used for modification are also given at the end.

CHAPMHER

Fabrication of the designed filter and measurement of ingertion loss

7.1 Introduction: In this chapter, the fabrication technique of the designed filter has been presented in details. After construction, the filter has been tested by measuring the insertion loss characteristics directly from the network analyzer and also with the help of Microwave signal generator and microwave power meter. The experimental results are presented and discussed in this chapter.
7.2 Eabrication of the dasigned filter: A neat drawing of the designed filter with all dimensions has been given in figures
 has been constructed by cutting and machiring brass plates. From figures $6.5(a)$ and 6.5) it is clear that the resonator elements are supported by two cover plates which actually act as the ground plates. These ground plates were made by cutting and machining brass plates with less hardship because the dimensions were large enough to maintain precision. But the cutting and machining of the resonator elements and the small pieces in between them were very much difficult because of their precise dimension upto the third decimal of an inch.

Five resonator elements and two trancermer elemente of thiskness 0.233 inch, ss shown figure (6. 6 , were out and machined very carefinlly from g brass plate of thjokness 0.25 inch. Esch of the cover plates were also made of brass plates and placed 0.2 inch away from the center plate of the filter. The center plste or the resongtor elements slong with the tronsformer elements werefirst assembled together by light welding. After welding, the resonator elements and the suall pieces were screwed tightly in between two spacers of thickness 0.2 inch. After this the two ground plates were screwed to the center plate. In order to connect the filter to the messuring instruments, two Flange Mount Jack Receptscies (Captured Center Contact Straight Terminal, Psrt Number 3052-1201-10 , were mounted on the input and output trsasformer elements 8 s shown in figure 6 . Some photographs of the constructed filter s.re shown in figures f. 8 (ond (b).
7.3 Measurement of insertion loss characteristics: The diggram of the srrangement for measuring the insertion loss of 3 filter by means of a power meter and thermistor mount is shom in figures (7.1) and 2 The arrangement consists of a he-430c microwse power meter, s hp-477B cosxisl thermistor mount and hp-616B UHF signsl generstor. The thermistor is s resistive device cspsble of dissipsting radio frequency power snd can change resistance using the thermal energy sbsorbed. It hass a
$h_{p}-430 \mathrm{C}$
Microwave power meter
$h_{p}-477310 \mathrm{mw}$ Coaxial thermistor mount
R.F power input

Fig. 7.1 Measurement of microwave power of a microwave source at discrete frequency points with the help of a microwave power meter.

Fig. 7.2 Measurement of Input and output power of a microwave filter for obtaining power loss ratio at a particular frequency.
negative temperature co-efficient and is designed to operste s.t 200 ohm resistance.

In this measuring arrangement, the thermistor monnt forms one leg of a self balancing bridge of the power meter. The power meter contains such a bridge, a 10.8 KHz oscillator, a dc bias circuit and a meter cirsuit. Initially the thermistar element is connected to the instrument bridge circuit keeping the bias off but is not connected to the r.f. power source. The thermistor mount bridge is balanced when the element changes its cold resistance state to its operating resistance state. The change tskes place as the element sbsorbs power from the oscillator sud do power from the biss circuit of the power meter.

The input sind sutput power of the filter were messured ot different frequencies within the pass band using the UHF signal generator ss the input power source, the power meter 8.5 the output power measuring device and the theraistor mount. The following procedure was followed to take the readings. First, the indicator of the power meter is set ot zero position by the 'zero set' knobs. The power range indicator is set s.t 1 mW position. The r.f. power source (UHF signal generator, is then connected to the thermistor mount. The thermistor element sbsorbs the external r.f. power, gets heated sund changes its resistsnce which unbslances the bridge.

Fig 7.3(a) Insertion loss characteristics of the designed filter obtained from the network analyzer.

Fig. 7.3(b) Insertion loss characteristics of the designed filter within a short span of frequency.

Fig. 7.4 An extended plot of the pass band of the designed filter obtained from the network analyzer.

Fig 7.5 Insertion loss characteristics of the filter for a particular adjustment of ground plates

Fig 7.6 Insertion loss characteristics of the filter for a particular adjustment of ground plates

Fig 7.7(a) Experimentally obtained Insertion loss characteristics of the filter

Fig. 7.7(b) Theoretical curve for five element elliptical function band pass filter.

Fig 7.8(a) Top view of the constructed filter

Fig 7.8(b) Side view of the constructed filter

Fig 7.8(c) Lateral view of the constructed filter with top plate removed

Fig 7.8(d) Front view of the constructed filter with top and bottom plates removed

This action couses the output from the oscillator inside the power meter to decrease to accomodate the external r.f. power through the thermistor element. The meter circuit inside the power meter measures the amount of this power decrease from the oscillator of the power meter and displays the results of messurement over a calibrated scale as the power increases due to the external r.f. source. This power is taken as the input power. Then the constructed filter is inserted in between the r.f. power source and the theraistor mount. The power now indicated by the power meter is taken as the outpat power. The above procedure was earried out repeatedly at different frequencies over the pass band. Finally the ratio of output, power to input power was determined and the insertion loss was calculated in $d B$. Following the above procedure, set of reading was taken with the experimertal filter which has been given in appendix-D. The curve of attenuation vs. frequency is plotted using this set of reading in figure 7.7)

The insertion loss characteristics of the constructed filter was also obtained from hp-8510B network analyzer. The network analyzer gives directly the insertion loss characteristic curve in attenuation ($d B$) vs. frequency when the filter is conrected between port 1 and port 2 of the network. The insertion loss characteristic curves as were obtained from the retwork analyzer are given in figures
 insertion loss characteristics of the same filter for different adjustments of the ground plates. So it is obvious that spacing of the ground plates from the center plate plays an important role in determining the characteristics of these types of filters.
7.4 Summary: The method of fabrication of the designed filter has beer discussed in this chapter. Operation of the measuring devices has been described in short. The insertion loss characteristic curves of the filter have been obtained both from experimental data and from the network analyzer.

CHAPTER B

Digcumsions and guggestions for
 future work

Discussions: A method of designing microwave band pass filter using half wave digital TEM lines have been presented in this work. In this method a low pass prototype filter has been transformed in to a distributed band-pass filter. The distributed band-pass filter has both series and shunt rearnant eleaents. Using frequency transformation and static capacitance matrices these resonators have been converted to equivalent network of the tand pass filter in the form of coupled half wave digital TEM lines. Using the design procedure developed, a band pass filter has been constructed for a center frequency of 2000 MHz with $\mathbf{1 \%}$ bandwidth i.e. 20 MHz . The filter has been designed to have maximum pass band attenuation of 0.044 dB . The insertion loss characteristic curve as obtained from the network analyzer is giver in figure $]^{3} a$. It was found that the center frequency has shifted to 1923.285 MHz and pass band width has increased to about. 85 MHz . Figure 3.3 b) gives the same curve within a shorter span of frequency. Figure(7.4)shows the extended plot of the pass band to have a better look at the pass band ripples. The pass band attenuation as seen from figureg. 象 a) is about 1.1 dB . Figure $\mathbf{S}^{3} .5$ and give the characteristic curves fron the network analyzer for two different adjustments of the upper
ground plate of the filter. The center frequency in figure 7.5 has occured at about 1910 MHz but the bandwidth became much larger than expected. In figure 7.6, the center frequency has further shifted to a value of about 1850 MHz and bandwidth still larger than before. In figure $7.7(a)$ the characteristic curve has been obtained by plotting the experimental data. It was found from this curve that the center frequency has occured at around 1905 MHz and the tandwidth about 80 MHz . Maximun pass band attenuation was about 2 dB . So it is observed that the maximum pass band atteruation is aore than the theoretically predicted value and the center frequency has increased by about 3.8% and the bandwidth has also increased substantially. Figure 7.7(b) shows the expected theoretical characteristic curve of an elliptic function band-pass filter.

The filter was constructed by cutting and machining brass plates. A high degree of accuracy in physical dimension is reguired for the construction of this type of filters. Introduction of inaccuracy to physical diaension of resonator or transformer element highly influences the overall performance of the filter characteristic. Also the position of the ground plate greatly influences the characteristics as was seen from the curves in figures 7.5 and 7.6 ottained from network analyzer. The length of the resonator elements influences the center frequency of the filter. If the length is increased the center frequency will decrease and vice versa. Probably this was the reason behind the shifting of the center frequency.

Arother reason of introduction of error in dimensions is the reading of Getsinger's chart. Curves of ΔC vs. s / b in figure 5.2 shows that a change in the spacing between the lines causes considerable change in mutual capacitance between lines (ΔC). Moreover the curves are given for $t / b=0,0.025,0.05,0.10,0.20$, $0.40,0.60,0.80$; whereas the present filter was designed for $\mathrm{t} / \mathrm{b}=0.30$ which was not supplied by Getsinger's chart. As a result the ΔC vs. s / b curve for $t / b=0.30$ has to be drann by averaging the two curves for $t / b=0.20$ and $t / b=0.40$. All physical dimensions were then calculated using this newly drann curve for $t / b=0.30$. It was very much likely that the readings taken from this curve were erroneous. On the other hand, lack of precision cutting, machining and joining the small parts together introduced some errar in the interbar spacings. This causes a change in the value of mutual capacitance which in tern causes a change in the response of the filter.

Next, the setting of input and output connectors to the respective transformer elements was also a precision job. Due to the unavailability of two identical connectors to connect the filter to the network arialyzer, two different types of connectors were used at the two ports of the filter which might have changed the characteristic impedance of 50 ohm of the filter. In fact, the difficulties faced in machining and setting made it almost impossible to maintain a high degree of accuracy at those connections. As a result impedance mismatch might have occured at the input and output ports. This type of impedance aismatch is
very much unwanted because it increases the lose in the pass band. At the same tiae loss of power in the connectors itself increases the attenuation in the pass band. Theoretically this type of filters should be constructed with materiale having infinite conductivity. The brass plates were purohased from the local market which were not meant for this type of work. This impurity of material may cause some deviation in filter characteristics.

This type of elliptic function filter is constructed from resonator elements grounded at both ends which make this filter superior over the filters with resonators grounded at one end. Because the free ends of the resonators of the later type are prone to bend due to mechanical shock or rough handling. But the present filter is free from that problem because of its solid bindirg at both ends of the resonators.

RIEESRVINCBES

[1] S. B. Cohn, "Hicrowave filters, an advancing art", IEEE Transactions on Hicrowave Theory and Techriques, Vol. MTT-13, Ho. 5, September 1965, pp.487-488.
[2] P. I.' Richards, "Resistor-transmission-line circuits", Proceedings of the IRE, Vol. 36, February 1948, pp. 217-220.
[3] S. B. Cohn, "Dissipation loss in multiple-coupled-resonator filters", Proceedings of the IRE, Vol. 47, August 1959, PP. 13421348.
[4] E. G. Cristal, "Coupled circular cylindrical rods betweon parallel ground planes", IEEE Transactions on Hiorowave Theory and Techniques, Vol. MTT-12, July 1964, pp. 428-439.
[5] J. T...Bolljahn and G. L. Matthaei, "A study of the phase and filter properties of arrays of parallel conductors between ground planes", Proceedings of the IRE, Vol. 50, March 1982, pp. 299311.
[6] G. L. Matthaei, "Interdigital band-pass filters", IRE Transactions on Hicrowave Theory and Techniques, Vol. MTT-10, November 1962, pp. 479-491.
[7] W. J. Getsinger, "Coupled rectangular bars between parallel plates", IRE Transactions on Hicrowave Theory and Techniques, PGMTT-10, January 1962, PP. 65-72:
[8] G. L. Matthaei, "Conb-line band-pass filters of narrow or moderate bandwidth", Hicrowave Jourral, Vol. 6, August 1963, pe. $82-91$.
[9] R. J. Henzel, "Exact theory of interdigital band-pass filters and related coupled structures", IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-13, No. 5, September 1965, pp. 559-575.
[10] R. J. Wenzel, "Theoretical and practical applications of capacitance matrix transfornations to TEM network design", IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-14, No. 12, December 1966, pp. 635-647:
[11] M. C. Horton and R. J. Wenzel, "The digital elliptic filter - a compact sharp-cutoff design for wide band-stop or band-pass requirements", IEEE Transactions on Microwse Theory and Techniques, Vol. HTT-15, No. 5, Hay 1967, pe. 307-314.
[12] R. Levy and I. Whiteley, "Syntheais of distributed ellipticfunction filters fron lumped-constant prototypes", IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-14, No. 11, Hovember 1966, 506-517.
[13] J. D. Rhodes, "The half-wave stepped digital elliptic filter", IEEE Transactions on Hicrowave Theory and Techniques, Vol. MTT-17, No. 12, December 1969, pp. 1102-1107.
[14] G. L. Matthaei, L. Young, E. M. T. Jones, "Microwave filters, impedance matching networks and coupling structures", McGraw Hill, New York, 1964, pp. 38-39, 49-52, 83-84, 174-197. [15] S. B. Cohn, "Thickness corrections for capacitive obstacles and strip conductors", IRE Transactions on Microwave Theory and Techniques, PGMTT-8, 6, November 1960, pp. 638-644.
[16] R. Saal, "Der Entharf Von Filtern Mit Hilfe Des Kataloges Nornierter Tiefpasse", Germany, Telefunken, Backnay/Wurtemberg, W., GubH, 1964.
APPENBIX A

```FORTRAN PROGRAM FOR COMPUTATION OF STATIC CAPACITANCEMATRICES FROM LOW-PASS PROTOTYPE ELEMENT VALUES
```

* PROGRAM FOR *
* HALF WAVE STEPPED DIGITAL ELLIPTIC FILTER *


```REAL L2P,L2M,L4P,L4M, M2, M4
```

OPEN(9, FILE='FLTR')
WRITE(9,*)'DETERMINATION OF CHARACTERISTIC ADMITTANCE
WRITE(9,*)'MATRICES FOR A 5 ELEMENT STEPPED DIGITAL'
WRITE(9,*)'ELLIPTIC FILTER'
WRITE(9,*)
WRITE(9,*)'SPECIFICATIONS GIVEN ARE:'

```
\[
\mathrm{V}=1.2222
\]
\[
S=60.1
\]
\[
\operatorname{WRITE}(9,20) \mathrm{V}, \mathrm{~S}
\]
\[
20 \text { FORMAT (/'VSWR }=\text { ',F10.3,2X,'STOPBAND LEVEL }=\text { ', F10.3) }
\]
```

**

```* MAXIMUM PASSBAND ATTENUATION*
```
```RHO \(=(\mathrm{V}-1.0) /(\mathrm{V}+1.0)\)
\[
A M A X=-10.0 *(\operatorname{ALOG} 10(1.0-\mathrm{RHO} * * 2))
\]
\[
\operatorname{WRITE}(9, *)
\]
\[
\text { WRITE }(9,30) \text { AMAX }
\]
FORMAT (/'MAX PASSBAND ATTN AS CALCULATED FROM VSWR IS',
\[
\left.+\mathrm{F} 10.3,2 \mathrm{X},{ }^{\prime} \mathrm{DB}{ }^{\prime}\right)
\]
```

 WRITE(9,*)'LOWPASS PROTOTYPE RLEMENT VALUES ARE:
 WRITE(9,*)
 C1=0.9265
 C2=0.05866
 C3=1.666
 C4=0.1607
 C5=0.8363
 M2=3.611883
 M4=2.303827
 WRITE(9,40)C1,C2,C3
 40 FORMAT(/'C1=',F7.4,2X,'C2=',F7.4,2X,'C3=',F7.4)
WRITE(9,50)C4,C5
50 FORMAT'(/'C4=',F7.4,2X,'C5=',F7.4)
WRITE(9,60)M2,M4
60 FORMAT(/'M2=',F7.4,2X,'M4=',F7.4)
**
*
CENTER FREQUENCY, EDGE FREQUENCIES, PASSBAND, % BANDWIDTH *
**
FO=2000.0
PB=20.0
F1=(2.0*F0-PB)/2.0
F2=(2.0*F0+PB)/2.0
PBW=100.0*PB/F0
WRITE(9,70)FO,PB,PBW,F1,F2
FORMAT(/'CEHTER FREQUEHCY OF THE FILTER = ',F9.3,2X,'MHZ',
+/'PASSBAND=',F9.3,2X,'MHZ ,', 2X,'% BANDWIDTH=', F9.3,2X,'%',
+/'PASSBAND EDGE FREQUENCIES ARE: F1=',F9.3,2X,'F2=',F9.3)
WRITE(9,*)

```
```

* STEPPED IMPEDANCE PLAIE (THETAO)
**
PI=4.0*ATAN(1.0)
THETAO=PI/3.0
WRITE(9,80)THETAO
80
WRITE(9,*)
X1=2.0*F0*SIN(2.0*THETAO)
X2=4.0*THETAO*PB
A=X1/X2
WRITE(9,90)A
FORMAT(/'CALCULATED BANDWIDTH SCALING FACTOR= ,F7.3)
**
AB=M2*0.5/A
BC=M4*0.5/A
L2P=SQRT(AB**2+1.0)+AB
L2M=SQRT(AB**2+1,0)-AB
L4P=SQRT(BC**2+1.0)+BC
L4M=SQRT(BC**2+1.0)-BC
WRITE(9,*)
WRITE(9,110)L2P,L2M,L4P,L4M
110 FORMAT(/'LAMBDA2+=',F7.3,2X,'LAMBDA2-=',F7.3,2X,
+ 'LAMBDA4+=',F7.3,/'LAMBDA4-=',F7.3)
WRITE(G,*)

```
```

* CHARACTERISTIC ADMITTAHCE MATRIX (HETWORK 1)

Z=0.5*PI/THETAO
Y11=1.0
Y12=-1.0
Y22=B*(C1+C2*(1.0+L2M**2+2*(L2P**2-L2M**2)))
Y23=Y22-B*C1
Y33=B*C2*(2.0+L2H**2+L2P**2)
Y34=B*C2*(1.0+L2P**2+Z*(L2M**2-L2P**2))
Y45=B*C4*(1.0+L4M**2+Z*(L4P**2-L4M**2))
Y44 =B*С З Y Y 34+Y45
Y55=B*C4*(2.0+L4H**2+L4P**2)
Y56=B*C4*(1.0+L4P**2+Z*(L4H**2-L4P**Z))
Y66=B*(C5+C4*(1.0+L4P**2+Z*(L4M**2-L4P**2)))
Y67=-1.0
Y77=1.0
Y=0.0
WRITE(9,*)
WRITE(9,*)'THE CHARACTERIstiC ADmItTANCE MATRIX*
WRITE(S,*)'OF NETWORK 1 IS (WITHOUT SCALING):
WRITE(9,*)
HRITE(9,100)Y22,-Y23,Y,Y,Y
WRITE(9,100)-Y23, Y33,-Y34,Y,Y
WRITE(9, 100)Y, -Y34,Y44,-Y45,Y
WRITE(9,100)Y,Y,-Y45,Y55,-Y56
WRITE(9,100)Y,Y,Y,-Y56,Y86
FORHAT(5(F8.4,2X))

```
```

*

WRITE (9,*)'PHE AUGMENTED CHARACTERISTIC MATRIX OF NETWORK 1 '
WRITE ($9, *$) AFTER ADDING A UNIT ELEMENT TO EACH END OF NETWORK
1:
WRITE (9,*)
$Y 22=Y 22+1.0$
$Y 66=Y 66+1.0$
WRITE(9,10)Y11, Y12, Y, Y, Y, Y, Y
WRITE(9,10)Y12,Y22,-Y23,Y,Y,Y,Y
$W \operatorname{RITE}(9,10) Y,-Y 23, Y 33,-Y 34, Y, Y, Y$
WRITE $(9,10) Y, Y,-Y 34, Y 44,-Y 45, Y, Y$
WRITE(9, 10)Y,Y,Y,-Y45,Y55,-Y56,Y
WRITE (9, 10) Y, Y, Y, Y, -Y56, Y66, Y67
$\operatorname{WRITE}(9,10) Y, Y, Y, Y, Y, Y 67, Y 77$
10 FORMAT(7(F8.4,1X))
$\operatorname{WRITE}(9, *)^{\prime}$ CHARACTERISTIC ADMITTANCE MATRIX FOR NETWORK $2:{ }^{\prime}$
WRITE(9,*)'(WITHOUT SCALING)'
$W \operatorname{RITE}(9, *)$
$211=\mathrm{B} *(\mathrm{C} 1+\mathrm{C} 2 *(1.0+\mathrm{L} 2 \mathrm{M} * * 2))$

$$
212=211-\mathrm{B} * \mathrm{C} 1
$$

$$
\mathrm{Z} 22=\mathrm{B} * \mathrm{C} 2 *(2 . \mathrm{O}+\mathrm{L} 2 \mathrm{M} * * 2+\mathrm{L} 2 \mathrm{P} * * 2)
$$

$$
223=\mathrm{B} * \mathrm{C} 2 *(1.0+\mathrm{L} 2 \mathrm{P} * * 2)
$$

```
```

 234=B*C4*(1.0+L4M**2)
 233=B*C3+223+234
 Z44=B*C4*(2.0+L4M**2+L4P**2)
 245=B*C4*(1.0+L4P**2)
 255=B*(C5+C4*(1.0+L4P**2))
 WRITE(9,*)
 WRITE(9, 120)Z11, - Z12,Y,Y,Y
 WRITE(9,120)-Z12,Z22,-Z23,Y,Y
 WRITE(9,120)Y,-223,233,-234,Y
 WRITE(9, 120)Y,Y,-Z34, 244,-245
 WRITE(3,120)Y,Y,Y,-245,255
 120 FORMAT(5(F8.4,2X))
 * EIRST MODIFICATIOH OF ADMITTANCE MATRIX : NETWORK I
**
R=1.0/SQRT (B)
Y22=Y22*R*R
Y12=Y12*R
Y23=Y23*R
Y66=Y66*R*R
Y67=Y67*R
Y56=Y56*R
WRITE(9,*)
WRITE(9,*)'FIRST MODIFICATION OF ADMITTANCE MATRIX :
 + HETWORK 1'
WRITE(9,*)
WRITE(9, 200)Y11, Y12,Y,Y,Y,Y,Y
WRITE(9,200)Y12,Y22,-Y23,Y,Y,Y,Y

```
```

 WRITE(9, 200)Y,-Y23,Y33,-Y34,Y,Y,Y
 WRITE(9, 200)Y,Y,-Y34,Y44,-Y45,Y,Y
 WRITE(9, 200)Y,Y,Y,-Y45,Y55,-Y56,Y
 WRITE(9, 200)Y,Y,Y,Y,-Y56,Y66,Y67
 WRITE(9,200)Y,Y,Y,Y,Y,Y67,Y77
 200 FORMAT(7(F8.4,1X))
    ```

```

 Z11=211*R*R
 Z12=Z12*R
 Z45=Z45*R
 Z55=255*R*R
 #RITE(9,*)
 WRITE(\vartheta,*)'FIRST MODIFICATION OF ADMITTANCE MATRIX :
 + NETWORK 2.
 WRITE(9,*)
 WRITE(9,210)Z11,-Z12,Y,Y,Y
 WRITE(9,210)-212,Z22,-Z2S,Y,Y
 WRITE(9,210)Y,-Z23,Z33,-Z34,Y
 WRITE(9, 210)Y,Y,-Z34,244,-245
 WRITE(9,210)Y,Y,Y,-Z45,Z55
 210 FORMAT(5(F8.4,2X))
 **

```

```

 F1=SQRT(Y22*1.2/Y33)
 B1=SQRT(Y66*1.2/Y55)
 Y33=Y33*F1*F1
    ```
```

 Y23=Y23*F1
 Y 34=Y34*E 1
 Y55=Y55*B1*B1
 Y56=Y56*B1
 Y45=Y45*B1
 F2=SQRT(Y3.3*1.2/Y44)
 Y44=Y44*F2*F2
 Y34=Y34*F2
 Y45=Y45*F2
 WRITE(9,*)
 WRITE(9,*)'SECOND MODIFICATION OF ADMITTANCE MATRIX :
 + NETWORK 1'
 #RITE(9,*)
 WRTTE(9,300)Y11,Y12,Y,Y,Y,Y,Y
 WRITE(9,300)Y12,Y22,-Y23,Y,Y,Y,Y
 WRITE(9, 300)Y,-Y23,Y33, -Y 34,Y,Y,Y
 WRITE(9, 300)Y,Y,-Y34,Y44,-Y45,Y,Y
 WRITE(9, 300)Y,Y,Y, -Y45,Y55, -Y56,Y
 WRITE(9,300)Y,Y,Y,Y,-Y56, Y66,Y67
 WRITE(9,300)Y,Y,Y,Y,Y,Y67,Y77
 300 FORMAT(7(F8.4,1X))
    ```

```

* SECOND MODIFICATION OF ADMITTAACE MATRIX : NETWORK 2


```
            F1=SQRT(Z11*1.2/Z22)
            Z22=Z22*F1*F1
            Z12=Z12*F1
            Z23=Z23*F1
```

```
            B1=SQRT(255*1.2/244)
            Z44=Z44*B1*B1
            Z34=234*B1
            245=245*B1
            F2=SQRT(222*1.2/233)
            Z33=233*F2*F2
            Z23=223*F2
            Z34=Z34*F2
            WRITE(9,*)
            WRITE(9,*)'SECOND MODIFICATION OF ADMITTANCE MATRIX :
            + NETWORK 2'
            WRITE(9,*)
            MRITE(9,400)Z11,-Z12,Y,Y,Y
            WRITE(9,400)-212,222,-z23,Y,Y
            WRITE(9,400)Y,-Z23,Z33,-Z34,Y
            WRITE(9,400)Y,Y,-Z34,Z44,-245
            WRITE(9,400)Y,Y,Y,-Z45,Z55
            400 FORMAT(5(F8.4,1X))
                ***********************************************************************
                    * STATIC CAPACITANCE MATRIX OF NETWORK 1*
*****************************:沑***************************************
    E=377.7/50
    Y11=Y11*E
    Y12=Y12kE
    Y22=Y22*E
    Y23=Y23*E
    Y33=Y 33*E
    Y34=Y34*E
```

```
    Y44=Y44*E
    Y45=Y45*E
    Y55=Y55*E
    Y56=Y56*E
    Y66=Y66*E
    Y67=Y67*E
    Y77=Y77*E
    WRITE(9,*)
    WRITE(9,*)'STATIC CAPACI'TARCE MATRIX OF NETHORK 1'
    WRITE(9,*)
    WRITEE(9,500)Y11,Y12,Y,Y,Y,Y,Y
    WRITE(9,500)Y12,Y22,-Y23,Y,Y,Y,Y
    HRITE(9,500)Y,-Y23,Y33,-Y34,Y,Y,Y
    WRITE(9,500)Y,Y,-Y34,Y44,-Y45,Y,Y
    WRI'TE(9,500)Y,Y,Y,-Y45,Y55,-Y56,Y
    WRITE(9,500)Y,Y,Y,Y,-Y56,Y66,Y67
    HRITE(9, 500)Y, Y, Y,Y,Y,Y67,Y77
    500 FORMAT(7(F8.4,1X))
* STATIC CAPACITANCE MATRIK OF NETWORK 2
*
```



```
    Z11=Z11*E
    Z12=Z12*E
    Z22=222*E
    Z23=223*E
    Z 33=233*E
    234=234*E
    Z44=244*E
```

```
245=245*E
255=255*E
WRITE(9,*)
WRITE(9,*)'STATIC CAPACITANCE MATRIX OF NETWORK 2'
WRITE(9,*)
HRITE(9,600)Z11,-Z12,Y,Y,Y
WRITE(9,600)-Z12,Z22,-Z23,Y,Y
WRITE(9,600)Y, -223,Z33,-234,Y
WRITE(9,600)Y,Y,-Z34,Z44,-Z45
WRITE(9,600)Y,Y,Y,-Z45,Z55
FORMAT(5(F8.4,1X))
    WRITE(9,*)'NORMALIZED CAPACITANCE VALUES OF NETWORK 1'
    WRITE(9,*)
    WRITE(9,610)Y11+Y12
    WRITE(9,620)-Y12
    WRITE(9,610)Y22+Y12-Y23
    WRITE(9,620)Y23
    #RITE(9,610)Y33-Y23-Y34
    WRITE(9,620)Y34
    WRITE(9,610)Y44-Y34-Y45
    WRITE(9,620)Y45
    WRITE(9,610)Y55-Y45-Y56
    WRITE(9,620)Y56
    WRITE(9,610)Y66-Y56+Y67
```

```
            WRITE(9,620)-Y67
            WRTTE(9,610)Y77+Y67
    610 FORMAT(FB.4)
    FORMAT(8X,FB.4)
```

**

* NORMALIZED CAPACITANCE VALUES DF NETWORK 2
**
WRITE(9,*)
WRITE(9,*)'NORMALIZED CAPACITANCE VALUES OF NETHORK 2'
WRITE(9,*)
WRTTE (9,710)211-212
WRITE(9,720)212
$\operatorname{WRITE}(9,710) 222-212-\mathrm{Z} 23$
WRITE(9,720)223
WRITE(9,710)233-223-Z34
WRITE (9,720)234
WRITE $(9,710) 244-234-245$
WRITE (9,720)245
WRITE (9,710)255-245
710 FORMAT(Fg.4)
720 FORMAT(8X,F8.4)
STOP
EHD

APPIENDEX 3

RESULT OF THE COMPUTER PROGRAM

DETERMIAATION OF CHARACTERISTIC ADMITTANCE
MATRICES FOR A 5 ELEMENT STEPPED DIGITAL

ELLIPTIC EILTER

SPECIFICATIONS GIVEN ARE:
VSWR = $\quad 1.222$ STOPBAND LEVEL= 60.100
MAX PASSBAND ATTG AS CALCULATED EROM VSWR IS 0.044 DB
LOWPASS PROTOTYPE ELEMENT VALUES ARE:
$C 1=0.9265 \quad C 2=0.0587 \quad C 3=1.6660$
$\mathrm{C} 4=0.1607 \quad \mathrm{C} 5=0.8363$
$M 2=3.6119 \quad M 4=2.3038$
CEATER FREQUENCY OF THE EILTER $=2000.000 \mathrm{MHZ}$
PASSBAND $=20.000 \mathrm{MHZ}, \%$ BANDWIDTH $=1.000 \%$
PASSBAND EDGE FREQUENCIES ARE: $F 1=1990.000$ F2 $=2010.000$
CHOSEN STEPPED IMPEDANCE PLANE=THETAD= 1.047 RAD
CALCULATED BANDWIDTH SCALING FACTOR= 41.350
LAMBDA2 $+=1.045$ LAMBDA2 $-=0.957$ LAMBDA4 $+=1.028$
LAMBDA4-= 0.973
THE CHARACTERISTIC ADMITTANCE MATRIX OF NETHORK I
(HITHOUT SCALING):

| 50.3392 | -6.1021 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: |
| -6.1021 | 11.2246 | -5.1225 | 0.0000 | 0.0000 |
| 0.0001 | -5.1225 | 100.8811 | -16.2130 | 0.0000 |
| 0.0000 | 0.0000 | -16.2130 | 30.7153 | -14.5023 |
| 0.0000 | 0.0000 | 0.0000 | -14.5023 | 54.4327 |

AFTER ADDING A UNIT ELEMENT TO EACH END OF NETWORK 1:

| 1.0000 | -1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1.0000 | 51.3392 | -6.1021 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -6.1021 | 11.2246 | -5.1225 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -5.1225 | 100.8811 | -16.2130 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -16.2130 | 30.7153 | -144.5023 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -14.5023 | 55.4327 | -1.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -1.0000 | 1.0000 |

CHARACTERISTIC ADMITTANCE MATRIX FOR NETWORK 2: (WITHOUT SCALING.)

| 49.6045 | -5.3674 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: |
| -5.3674 | 11.2246 | -5.8572 | 0.0000 | 0.0000 |
| 0.0000 | -5.8572 | 100.3328 | -14.9300 | 0.0000 |
| 0.0000 | 0.0000 | -14.9300 | 30.7153 | -15.7853 |
| 0.0000 | 0.0000 | 0.0000 | -15.7853 | 55.7157 |

FIRST MODIFICATION OF ADMITTANCE MATRIX : NETHORK 1

| 1.0000 | -0.1447 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -0.1447 | 1.0752 | -0.8831 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -0.8831 | 1.2246 | -5.1225 | 0.0000 | 0.0000 | 0.00000 |
| 0.0000 | 0.0000 | -5.1225 | 100.8811 | -16.2130 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -16.2130 | 30.7153 | -2.0988 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -2.0988 | 1.1610 | -0.1447 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -0.1447 | 1.0000 |

FIRST HODIFICATION OF ADHITtANCE hatrix : NETHORK a

| 1.0389 | -0.7768 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: |
| -0.7768 | 11.2246 | -5.8572 | 0.0000 | 0.0000 |
| 0.0000 | -5.8572 | 100.3328 | -14.9300 | 0.0000 |
| 0.0000 | 0.0000 | -14.9300 | 30.7153 | -2.2845 |
| 0.0000 | 0.0000 | 0.0000 | -2.2845 | 1.1669 |

SECOND MODIFICATION OF ADMITTANCE MATRIX: NETWORK 1

| 1.0000 | -0.1447 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -0.1447 | 1.0752 | -0.2994 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -0.2994 | 1.2903 | -0.2152 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -0.2152 | 1.5484 | -0.4278 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -0.4278 | 1.3932 | -0.4470 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -0.4470 | 1.1610 | -11.1447 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -0.1447 | 1.0000 |

| 1.0389 | -0.2589 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: |
| -0.2589 | 1.2467 | -0.2384 | 0.0000 | 0.0000 |
| 0.0000 | -0.2384 | 1.4960 | -0.3893 | 0.0000 |
| 0.0000 | 0.0000 | -0.3893 | 1.4003 | -0.4878 |
| 0.0000 | 0.0000 | 0.0000 | -0.4878 | 1.1669 |

STATIC CAPACITANCE MATRIX OF NETWORK 1

| 7.5540 | -1.0932 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1.0932 | 8.1224 | -2.2617 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | -2.2617 | 9.7469 | -1.6254 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | -1.6254 | 11.6963 | -3.2314 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | -3.2314 | 10.5240 | -3.3765 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | -3.3765 | 8.7700 | -1.0932 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -1.0932 | 7.5540 |

STATIC CAPACITANCE MATRIX OF NETWORK 2

| 7.8480 | -1.9555 | 0.0000 | 0.0000 | 0.0000 |
| ---: | ---: | ---: | ---: | ---: |
| -1.9555 | 9.4176 | -1.8006 | 0.0000 | 0.0000 |
| 0.0000 | -1.8006 | 11.3011 | -2.9405 | 0.0000 |
| 0.0000 | 0.0000 | -2.9405 | 10.5778 | -3.6846 |
| 0.0000 | 0.0000 | 0.0000 | -3.6846 | 8.8148 |

NORMALIEED CAPACITANGE VALUES OF NETWORK 1
6.4608
1.0932
4.7674
2.2617
5.8598
1.6254
6.8395
3.2314
3.9161
3.3765
4.3003.
1.0932
6.4608

NORMALIEED CAPACITANCE VALUES OF NETWORK 2
5.8924
1.9555
5. 6614
1.8006
6.5600
2.9405
3.9527
3.6846
5.1302

APEIENDIX C

EXPERIMENTAL DATA OF THE FILTER CHARACTERIGTICS

| f in $\mathrm{GHz}^{\text {a }}$ | $\mathrm{P}_{\text {in }} \text { in } \mathrm{mW}$ | $\mathrm{P}_{\text {out }} \text { in wil }$ | Attn. in $d B$ |
| :---: | :---: | :---: | :---: |
| 1.75 | 0.32 | 0.001 | -25.05 |
| 1.77 | 0.30 | 0.005 | -17.78 |
| 1.80 | 0.32 | 0.01 | -15.05 |
| 1.83 | 0.31 | 0.01 | -14.91 |
| 1.85 | 0.28 | 0.015 | -12.71 |
| 1.86 | 0.27 | 0.02 | -11.30 |
| 1.87 | 0.30 | 0.02 | -11.76 |
| 1.88 | 0.30 | 0.025 | -10.79 |
| 1.89 | 0.28 | 0.06 | -6.69 |
| 1.90 | 0.26 | 0.10 | -4.15 |
| 1.905 | 0.26 | 0.16 | -2.11 |
| 1.91 | 0.27 | 0.03 | -8.54 |
| 1.92 | 0.31 | 0.02 | -11.9 |
| 1.93 | 0.30 | 0.015 | -13.01. |
| 1.94 | 0.31 | 0.01 | -14.91 |
| 1.95 | 0.32 | 0.01 | -15.05 |
| 1.96 | 0.31 | 0.015 | -13.15 |
| 2.00 | 0.35 | 0.02 | -12.30 |
| 2.05 | 0.38 | 0.01 | -15.80 |
| 2.10 | 0.46 | 0.01 | -16.63 |
| 2.15 | 0.51 | 0.01 | -17.07 |
| 2.20 | 0.58 | 0.005 | -20.64 |
| 2.25 | 0.60 | 0.001 | -27.20 |

[^0]: A Thesis submitted to the Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, in partial fulfilment of the requirements for the degree of Haster of Science in Engineering (Electrical and Electronic).

