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Abstract
We examine how the steady free convective boundary-layer flow induced by

a vertical healed surface is affected by the presence of sinusoidal surface

temperature variations about a constant mean value with the effect of

radiation. Besides this, we have also analyze the effect of radiation of steady

slreamwise surface temperature variation of a vertical cone. The problem is

studied using fully numerical techniques. The surface rate of heat transfer

eventually alternates in sign with distance from the leading edge, but no

separation occurs unless the amplitude of the thermal modulation is

sufficiently high. Numerical results are obtained for different values of the

physical parameters, the radiation parameter Rd,Prandll number Pr and the

surface temperature wave amplitude a.

Important aspects of the overall behavior of our analysis by observing that

the boundary layer is thinner when the surface temperature is relatively high

and thicker when it is low. This arises because relatively high surface

temperatures induce relatively large upward fluid velocities with the

consequent increase in the rate of entrainment into the boundary layer. This

causes, in turn, a thinning of the boundary layer. Thus, we should expect

high shear stresses and rates of heat transfer at, or perhaps just beyond,

where the surface temperature allains its maximum values. As x increases,

the amplitude of osdltation of the rate of heat transfer curves increases

gradually, and tile amplitude of oscillation of the shear stress curve

decreases slowly, with x.

The most interesting part of this analysis is that, when radiation parameter

R.Jis increasing, both the shear stress and the rate of heat transfer are also

increasing but when Rd=0. the result of rate of heat transfer is exactly the

same, which was found by Rees [14]. In our study we have found that rate of
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heat lransfer is increasing as Rd is increasing but at a decreasing rale. That

is, when R.; =1 then rate of heallransfer increased more in respect of Rd

=10.

vii

(

.-- '.

•
•



Nomenclature
a Surfacetemperaturewaveamplitude

aR Rosseland mean absorption coefficient

f Dimensionless velocity function

9 Dimensionlesstemperature

Gr Grasllof number

Pr PrandU number
d Half the dimensional thermal wave length

Ro Radiation Parameter

p Pressure

u,v Velocity components

T Temperatureof the fluid

T~ Temperature of the ambient fluid

x, y Streamwise and cross stream Cartesian coordinate

'II Stream fUllction
(Y Stefan-Boltzman constant

as Scattering coefficient

jJ Coefficient expansion

~ Kinematic coefffcient of viscoaity

1] Psuedo-similarity variable

.; Dimensionless x coordinates

() Temperature

~ Surface Temperature parameter

p Density of Ihe flllid

Tw Mean-surface temperature 10 Ihe wall

q, radiative ftux

1r1 absorptioncoefficient

eOA Planck function
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Chapter 1

Introduction

Man's study of the Universe has led to the realization that all physical phenomena

are subject to natural laws. The term nature might well be used to describe the

framework or system. Of fundamental and universal importance within this system

are the mechanisms for the transfer of energy. The mention of mechanisms

suggests the familiar process of conduction convection and radialion. These so

called modes of heat transfer are standard and widely used concepts, not only in

engineering but also in all fields of nalural science. They have been adopted by the

engineer from the natural scientist.

The formation of a physical picture of the process of thermal conduction is a simple

task for the imagination. It is a matter of experience that heat flows from a region of

higher to one at a lower temperature. Since temperature is considered an index of

degree of molecular activity, it is logical to picture energy transfer as occurring by

collision of faster with slower moving molecules. This idea appears to essentially

correct. In the case of gasses, molecular interaction is responsible; however, in

solids such as metals an 'electron gas' -rather than molecules -is the primary

energy transfer medium.

The mechanism of convection is simply the transfer of energy by actual physical

movement from one location to another of a substance in which energy is slored.

The free or forced movement of hot air throughout a room to provide is a familiar

example. The process may not seem quite so elementary when we begin to deal

with heat transfer in complex fluid flows. But this as it may, to understand the

principle of convection one need only visualize the displacement of usually small

quantities of matler inescapably carrying along their various forms of stored energy.
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Energy transfer by radiation is usually considered last, probably because radiation

is more of a mystery. It is very difficult to provide a simple mental or physical picture

of something, which is quite invisible and travels with infinite ease through empty

space. Its manifestations have been extensively studied, however, and we are able

to deal with it at least in the spirit expressed by Oliver Heaviside when he said,

'Shalll refuse my dinner because I do not understand the process of digestion?"

Whether radiation is a wave or corpuscular phenomenon has long been subject to

controversy. The establishment of the electromagnetic theory in the latter half of the

nineteenth century seemed to be a victory for the wave hypothesis, but the

introduction and subsequent success of the quantum theory have indicated

corpuscular nature.

It is possible that in the final analysis we may not find the various modes of heat

transfer to be fundamentally different. The true nature of energy is of such a subtle

character that it is still beyond our understanding and description. More insight into

its basic qualities could well prove that unrelated phenomena are different

manifestations of the same fundamental process This is already becoming evident

in connection with radialion and conduction. The quantum theory has been equally

useful in explaining thermal phenomena in solids as well as radiation effects.

In dealing with heat transfer from an engineering point of view, we might overlook

such matters since only macroscopic effects are considered. Although this is, in

general, permissible, we must remember our objective, which is the continued

application of basic knowledge for the advancement of humanity. This we can

accomplish only by regular review of fundamental progress, alertness in its use in

the interpretation of our work, and its possible applications.

The study of heat transfer is of great interest in many branches of science and

engineering. In the design of heat exchangers such as boilers, condensers,

radiators, etc., for example, heat transfer analysis is essential for sizing such

2
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equipment. In the design of nuclear-reaclor cores, a thorough heat transfer analysis

offuel elements is important for proper sizing of fuel elements to prevent burnout. In

aerospace technology, heat transfer problems are crucial because of weight

limitations and safety considerations. In heating and air conditioning applications for

buildings, a proper heat transfer analysis is necessary to estimate the amount of

insulation needed to prevent excessive heat loses or gains.

The three distinct modes of heat transfer, namely conduction, conveclion and

radiation must be considered. In reality, the combined effects of these three modes

of heat transfer control temperature distribution in a medium. Conduction occurs if

energy exchange takes place from the region of high temperature to that of low

temperature by the kinetic motion or direcl impact of molecules, as in the case of

fluid at rest, and by the drift of electrons, as in the case of metals. The radiation

energy emitted by a body is transmitted in the space in the form of electromagnetic

waves. Energy is emitted from a malerial due to its temperature level, being larger

for a larger temperature, and is then transmitted to another surface, which may be

vacuum or a medium, which may absorb, reflect or transmit the radiation depending

on the nature and extend of the medium. Considerable effor! has been directed at

the radiative mode of heat transfer. In this mode, relative motion of the fluid

provides an additional mechanism for energy transfer. A study of radiative heat

transfer involves the mechanisms of conduction and, sometimes, those of radiation

processes as well. This makes the study of radiative mode a very complicated one.

In many cases of practical interest forced and natural convection processes are

important. Heat transfer by mixed convection is one in which neither forced

convection nor nallJral convection is predominant. A heated body lying in still air

loses energy by natural convection. But the body generates a buoyant flow above it.

If another body is placed in that flow, the body is subjected to an external flow. Now

it becomes essential to determine the natural as well as the forced convection

effects and the region in which the heat transfer occurs.
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Though natural convection process is much more complicated than that of forced

convection, yet the study of natural convection process is also important because of

the problem of heat rejection and removal in many devices, processes and systems.

Natural convection represents a limit on the heat transfer rates and this becomes a

very important consideration for problems in which other modes are either not

possible or not practical. It is also relevant for safety consideration under conditions

when the usual mode falls and the system has to depend on natural convection 10

get rid of the generated heat. To overheating such consideration in design are

essential in many electronic devices and system and in power generation.

Free convection flow and heat transfer problems is an important consideration in the

thermal design of a variety of industrial equipment and also in nuclear reactors,

geophysical fluid dynamics. The problem of boundary layer with transpiration has

become very important in recent times; in particular in the field of aeronautical

engineering; in actual applications it is often necessary 10 prevent separation in

order 10reduce drag and to attain high lift.

We have d~scrlbed an investigation of the combined effects of surface temperature

variations and radiation on the steady boundary-layer flow of a Newtonian fluid from

a heated vertical surface. It is well known thai power-law surface temperature

distributions (and also power-law surface heat fluxes) give rise to self-similar

boundary layer flows [26, 16]' But here we are interested in another form of surface

variation, namely, sinusoidal variations about a mean temperature, which is held

above Ihe ambient temperature of the fluid. As in [141 this type of surface

distribution may be taken as a simplified model of the effects of a periodical array of

heaters behind or within the healed surface. An accurate analysis of such a

configuration requires a detailed examination of the effects of solid conduction

within the heated surface, but the aim of the present work is to simplify the problem

by imposing a surface temperature distribution. In this way we can determine a

large amount of information about the resulting flow using both numerical methods.
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Various papers have been published which deal with the effects of surface

variations, For example, Yao [25] and Moulic and Yao [30, 31J have sought to

investigate the effects of streamwise surface undulations of free and mixed

convection from vertical surfaces held at uniform temperatures. More recently, Chiu

and Chou [3j, Hossain et. al. (22] and Kim 115] have extended these analyses to

micropolar fluids, magnetohydrodynamic convection and' non-Newtonian

convection, respectively. In a series of papers Rees and Pop [8-12] and Rees [13]

have also considered a large variety of analogous flows in porous media. Of these,

only (14] has been concerned with the effect of sinusoidal surface temperature

variations, although in that case the surface variations were spanwise, thereby

giving rise to a three-dimensional flow-field.

A significant numbers of authors have investigated laminar free convection for two-

dimensional axisymmetric flows. Mark and Prins [34-35] developed the general

relations for similar solutions on isothermal axisymmetric foll1'lSand showed that the

vertical cone has such a solution. Approximate boundary layer techniques were

utilized to arrive at an expression for the dimensionless heat transfer. Broun at a/.

[36] contributed two more isothermal axisymmetric bodies for which similar solutions

exist, and used an integral method to provide heat transfer results for these and the

cone ovet a wide range of Prandtl number. Similarity solutions for free convection

from the vertical cone have been exhausted by Hering and Grosh [37J. They

showed thai the similarity solutions to the boundary layer equations for a cone exist

when the wall temperature distribution is a power function of distance along a cone

ray. In their investigation, they presented the results by numerical integration of the

transformed equations for non-isothermal temperature distributions for Prandtl

number equals to 0.7. Latter, Hering [38] extended the analysis to investigate for

low Prandtl numbers. The study of Hering and Grosh (371has also been extended

by Roy [39] to treat the case of high Prandtl number fluid.

Effect of slenderness on the natural convection flow over a slender cone with

constant wall heal flux has been studied by Na and Chiou [40]. The problem of

natural convection flow over a frustum of a cone without transverse curvature effect
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(I.e., large cone angles when the boundary layer thickness is small compared with

the local radius of the cone) has been treated in the literature, even through the

problem for a full cone has been treated quite extensively by Sparrow and Guinle

[411, Lin 1421,Kuiken [43], and Oosthuizen and Donaldson [44]' Latter, Na and

Chiou [4546] studied the laminar natural convection flow over a frustum of a cone.

They included the constant wall temperature as well as the constant wall heat flux

cones in the thermal boundary conditions at the wall. Alamgir [47] used an integral

method to study the over-all heat transfer from vertical cones in laminar natural

convection. Recently, Hossain and Paul [48] have investigated the natural

convection flow from a heated vertical permeable circular cone. The solutions were

obtained against the local variable ~ that represents the streamwise distribution of

the transpiration velocity.

Radiative convective flows are encountered in many industrial and environmental

processes e.g. heating and cooling chambers, fossil fuel combustion energy

processes, evaporation from large open water reseNoirs, astrophysical flows, solar

power technology and space vehicle re-entry. Mathematically the equations for

radiative heat transfer with absorption, scattering and emission can be generated by

one of two approaches, namely the continuum model or the spectral radiative

treatment of a single particle. Details of the derivation of the general equation of

radiative heat transfer are provided In the classic monograph by Chandrasekhar (7).

Utile is currently known about the boundary layer flows of radiating fluids. The

inclusion of conduction-radiation effects In the energy equation, however, leads to a

more highly nonlinear partial differential equation. The majority of studies concerned

with the Interaction of thermal radiation and natural convection were made by

Sparrow and Cess [29], Cess [4], Arpaci [1], Cheng and Ozislk [51,Hasegawa et al.

[18], and Bankston et al. [2] for the case of a vertical semi.Infinite plale. In recent

years, Soundalgekar and Takhar [28] have studied radiation effects on free

convection flow of a gas past a semi-infinite flat plale using Cogley-Vincentine-Giles

equilibrium model (Cogley et aI., [6]l and Hossain and Takhar 11g] have analyzed

6



the effect of radiation using the Rosseland diffusion approximation which leads to a

nonsimilar mixed convective boundary-layer flow of an optically dense viscous

incompressible fluid past a heated vertical plate with a uniform free stream velocity

and surface temperature. The boundary layer equations were obtained using a

group of transformations and they are valid in both the forced convective and free

convective limits, The resulting equations were solved using an implicit finite

difference method. Recently the problem of natural convection-radiation interaction

on boundary layer flows with the Rosseland diffusion approximation been studied by

Hossain and A1im[20] and Hossain et al. [211;and very recently, Hossain and Rees

\23] have investigated the effect of radiation-conduction interaction in the mixed

convective flow along a slender impermeable vertical cylinder. M. Kutubuddin, M.

A. Hossain and I. Pop 133,27]analyze the effect of conduction-radiation interaction

on the forced, free and mixed convection flow from a horizontal cylinder

The inclusion of radialion term is complicated and the resulting equations are very

difficult to solve. Grief and Habib [17] have shown that, in the optically thin limit, the

physical situation can be simplified and they derived an exact solution of the

problem of fully-developed radiating laminar convection flow in an infinite vertical

heated channel. Their analysis was based on the work by Cogley et al. {61.In the

optically thin limit the fluid does not absorb its own emitted radiation but the fluid

does absorb radiation emitted by the boundaries. It was shown by Cogley et a/. [61

that in optically thin limit for a gray-gas near equilibrium. the following relation holds:

"J. '4(T_T.)!K,.(te,,] d)"4(T-T.)1,
0' 0 ill',.

where J~lK~(~J.dJ.
Here q, is the radiative flux, IQ is the absorption coefficient, e.l>~ is the Planck

function and the subscript w, represents the value of a quantity at the waiL Further

simplification may be made concerning the spectral properties of radiating gases,

but this is not essential for the present analysis, It should be mentioned that

7



Soundalgekar and Takhar [281 have considered the radiative free convective flow of

an optically thin grey -gas past a semi-inflnite vertical plate.

But, the Rosseland model is valid for isotropic local intensity and high optical

density of the medium and the radiative heat flux is given by

16aVTJ VT
3(aR +0",)

where T denotes the temperature, 8R is the Rosseland absorption coefficient,a. is

the scattering coefficient and a is the Stefan-Boltzmann constant [7]. The thermal

boundary-layer equation can be written as

Here we have considered in detail how the combined effects of surface radiation

and sinusoidal surface temperature profiles in the streamwise direction modify the

otherwise self-similar boundary-layer flow. Solutions are presented in terms of the

surface rate of heat transfer and shear stress and detailed isotherms are also given.

An important feature of the flow is that a near-wall layer develops at large distances

down-stream of the leading edge. The numerical evidence suggests that this inner

layer decreases in thickness with distance down-steam. A finite difference method

was employed in obtaining the numerical solutions. The effect of varying different

physical parameters on the local skin-friction and local rate of heat transfer are

presented.
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Chapter 2

Governing equations and boundary-layer analysis

We consider the boundary layer induced by a healed semi-infinite surface immersed in

an incompressible Newtonian fluid. In particular, the heated surface is maintained at

the steady temperature.

y

Fig: The flow configuration

j

T =T., +(Tw -TooXl-asin(i'Ud)) (2.1)

where T'" is the ambient fluid temperature, T" is the mean-surface temperature which

is such that T" > T." a is the relative amplitude of the surface temperature variations

and 2d is the wavelength of the variations. The steady two-dimensional equations of

motion are given by

"."' l' "A
uu.+VUy=-p,+Gy!2(lkftu)y)+T-7;.,

p

~A AA 1 A A ~

G -'''( )UVx+VVy =--Py+ r Vxx+ V",
P

~T+~T=_IG'_"[T+ 16" v'Tl]
, Y Pr ". 3K(a+cr,) Y,

9

(2.2)

(2.3)

{2.4}

(2.5)



Boundary conditions are

u=O, v=O, T=T«)+(Tw-T",,)(I+asiuJr1) at y=O

where Gr is the Grashof number and Pr. is the PrandU number. In the derivation of

equations (2.2) the Soussinesq approximation has been assumed. We note that the

Grashof number has been based on d, half the dimensional wavelength of the thermal

waves.

In the equations, U and v are, respectively, the velocity components in the x and y
directions, T is the fluid temperature, v is the kinematic viscosity, P is the thermal

expansion coefficient, a is the thermal diffusivity, Ie is the thermal conductivity, a is

the Rosseland mean absorption coefficient, (]' is the Stephan-Soltzman constant, as is

the scattering coefficient.

When the surface temperature is uniform and the Grashof number is very large, the

resulting boundary-layer flow is self-similar. But the presence of sinusoidal surface

temperature distributions, such as that given by (2.1), renders the boundary-layer flow

non-similar. The boundary-layer equations are obtained by introducing the scaling
,

L -,'
ue=~Gr u,,

,
L 4' x

v=~Gr v, x=~,
, L

y ,
Y=-Gr'L '

L' G-'P'--2 r p,
P'

(2.6)

into equations (2.3)-(2.5), formally letting Gr becomes

retaining only the leading order terms. Thus we obtain

UUx +VUy :::::uyy +8

10

asymptotically large and

(2.7)

(2.8)

(2.9)

f



(2.10)

(2.11)

where the asterisk superscripts have been omitted for clarity of presentation. Equation

(2.9) serves to define the pressure field in terms of the two velocity components and is

decoupled from the other three equations. Therefore, we shall not consider it further.

As the equations are two-dimensional we define a stream function V', in the usual way.

U=lf/y, v==-If/x

and therefore, (2.7) is satisfied automatically. Guided by the familiar self-similar form

corresponding to a uniform surface temperature, we use the substitution

If! ~ X"'f(TJ,X), e ~ g(TJ,X)
where

1] == y / XI/4

is the pseudo-similarity variable. Equation (2.8) and (2.9) reduce to

r+g+tff' -tfl' +x(fJ' - J;f')~O
,

~T[{I+ ~RAI+ (8.-I)g)' }g'J
+Ug'+x(f,g'- fg,)=O

and the boundary conditions are

f~O, J'~O, g~l+asin11X

at 17= 0 and [g ------)-0 as ,,~OO.

In equations (2.14H2.16), primes denote derivatives with respect to 11.

II

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Chapter 3

Finite difference method and asymptotic analysis

In our analysis, we have employed a number of methods for the numerical solution

of the differential equations. Of them the most practical, efficient and accurate

solution technique is implicit finite difference method together with Keller-box

elimination technique, which is wetl-documented and widely used by Keller-box and

Cabac! [24] and recently by Hossain [48].

f",+'i If" _.!.. f" +g =x(f' if - f" Of)
4 2 Ox Ox (3.1)

To apply the aforementioned method, we first convert the momentum Eqs. (3.1) inlo

the following system of first order equations with dependent variables,

u(q."A v(q.")"

f'=u

u'=v

where x=q
and the boundary conditions are

(3.2a)

(3.2b)

(3.2e)

f(~,O)=O, u(,;,O)=O, g(.;,O)=I+asini'Z'q (3.3)

We now consider the net rectangle on the (';,7/) plane and denote the net points

by



% 0= 0, '1j 0= 'Ilj_1 +hj ,j 0= 1,2,... ,J

,;0 =0,';" =,;'.1 +k. ,no=I,2,"',N (3.4)

Here nand j are just sequence of numbers on the (';,'7) plane, kn and hj' be the

variable mesh widths.

D
~ .. A

Tl;.-11Z
............... ~ .............• h,

'l>' -+----'----+-'--
c

~n-11Z ("

B

Fig. 1 Not rectangle of the difference approximation

We approximate the quantities (I, u, v, g) at the point (,;", '1) of the net by

(I; ,u;, v; ,g;), which we call net function. We also employed the notation g; for

the quantities midway between net points shown in figure 1 and for any net function

"

(3.5a)

"



(3.5b)

(3.5c)

(3.5d)

Now we write the difference equations that are to approximate Eqs. (3.5a)-(3.5d) by

considering one mesh rectangle for the mid point (.;" ,If)-],'l) to obtain

(3.6a)

(3.6b),

Similarly Eqs. (3.6a)-(3.6b) are approximated by centering about the mid point

(.;"_lI2,11'-'1'). Centering the Eq.(3.6a) about the point k"-''"' ,If) without specifying If

to obtain the algebraic equations. If we denote the left hand side of eq.{3.2c) by l,

then the difference approximation to eq. (3.2c) is

(3.7)

where

aod

I'

';';
"•



where

R'-' =-L"-' +al(j;t' -(u't' I
(-1

a=--
k,
3

a =-+a, 4

Ia =-+a, 2

Now we take position at TJ = TJ I

ri

[v'J" ,+ a,(jV)' ,
j-- j--, ,

then eq.(3.8) becomes

- a 2 (u 2 Y I,--,

[
H f' 'f '-,]+ a v j~.!... j_.!... - v j_.!... J-.!... +

2 2 2 2

where

g' . ,,--,
R n-l

. ,,--,
(3.9)

R;~:=-L;:', +a[(jV);: -(u');:~]
2 2 2 2

"d

r-' =h:'(v'-' -v~-')+!.("')'-' _.1:.(u'''-'' + ,-,
. I J J J-I 4 J' ., 2 h-- g. 1J.-- J-- 2 J--, "

"
,



Eqn. (3.8) becomes

h)-lk-v~_l]+al(fv~_!-a2(uztl +g~_!
, "

The boundary conditions reduce to the following form

Ion =0, u; =0, g; =l+asinJr~
Finally we get

h-' (" .) •j u] -U
j
_l =V.1,--,

(3.10)

(3.11)

(3.12a)

(3.12b)

(3.12c)

We define the iterates

Vi'), uJ), -J/, ill 1 j=1,2 ...

with initial values equal to those at the previous.; station (which is usually the best

initial guess variables). For higher iterales we gel

fU+l) =Pi) +0 f(i)
, j ,

,
(3.13a)



V(l+I) = V(i) + 6 v~i), , ,
97+1) "" g;" + rY g;il

(3.13b)

,
(3.13c)

(3.13d}

Now we insert the right hand side of the expression in place of fp U/> v/> 9/> in eqs.,
(3.12a)-(3.12b) and drop the terms that are quadratic in

o Ill) t5 UU) t5 v(') t5 g'"
J' j' j' j

to yield the following linear system (for simplicity, the subscript i in Ii quantities is

dropped)

if, ~if,., ~; (ro, +ro,J~(',),

Ouj -Ouj_1 -; (Ov
J
+OvjJ= (r,)j

(S,); ""] + (S,)] ""I" + (S,)] if] + (SJ; if)., + (S,)] ro]
+(SJjOuj_1 + (S7)jOgj + (S8)jOgj_1 = (r2)j

where

(,) = 1.(1) ~ 1.(1) + h U(I)
IJ J-l j Jj_.!. ,

(r). =u(i) _U(l) +h.V(l)
4J j-I j J 1,..,

() R'" h"(' ,) ( •. J' (')' ,r, J = I ~ i Vi-Vi_1 +a1VV 1-at U l +g.l
i-- J~- 1-- 1--
, " z

+a(v":/', ~v' J';')
j-- j-- j-- j--
2 2 , 1

(3.14a)

(3.14b)

(3.14c)

(3.15a}

(3.15b)

(3.15c}



The coefficients of momentum equation are

(8 ) = -hi +a, fl'! _ a f'.'
2 J J-) 2 ;-1 2 j_~,

(8 ). = ar v\i) + a V"-l
4} 2}-' 2J-I

(8) ~-a u")
6) lj-1

(8,) = 0.0

(8')1 = 0.0

Now for energy equation

(3.15d)

(3.15e)

(3.151)

(3.15g)

(3.15h)

(3.15h),

(3.15i)

(3.15j)

,

;r[{l + ; RAI + (B, -1)g r }g'] +tJg' +x(f,g' - fll') =0

4
Lei Rdd = ""i,Rd and Tw= (0" -1)

In the similar way as menlioned above Ihe coefficienls of Ihe energy equation are

o



1 [1+ Rdd(1+3Twg'., ](b)---h-' '
2j-Pr1 2,1313

+3Tw gj-' +Tw 91-1

+ K, f(;) _ KfH
2 i_I 2 j-!..,

(b) =; ~p(') + a pn_'
Jj2}2j-~ ,

(b ) = ~ (,) + ~ ._1
'J 2 P ,-1 2 P j_.!.-,

(b) ~_ ag(,)+ ag"_," 2' 2 .,,--,
(b ) _ a (,) a "-,--g +-g6 j - 2 j-j 2 j_!,

(b) K,,' "-'j 3Rdd , '(1
8 j=-2"\Uj-I+Uj--1 + Pr Pj-l +

2T ' T 2 ; 2jh-,wgj-j+wgj_1 j

(b,), ~ 0.0

(bw)j ~ 0.0

"

(3.16a)

(3. 16b)

(3.16c)

(3.16d}

(3.16e)

(3.16f)

(3.16g)

(3.16h)

(3.16il

(3.16j)



Asymptotic Analysis

The momentum and energy equations are

I'"+g+t ff~-tIT' +x(IxI" - IxI') = 0
,

~[ {I+ ~RAI+ (8. -I)g)' }g'J +t!g' + x(l,g' - [11,) ~ 0

4
For simplicity let al "" - Rd al =Ow-]

3 '
Then eq. (3.18) becomes

~[I+a,(I+a,g)' ~'J+t!g' +x(l,g' - [11,) ~ 0p,

And the boundary conditions are

/=0, /,=0, g=l+asinm

at 17 =° and f'g ---? 0 as '7-+ roo

(3.17)

(3.18)

I,

(3.19)

(3.20)

FOllowing Rees (1999) the boundary layer looks like the uniform case (a=O) al the

leading order in the main part of the flow (i.e. not near the surface. Therefore set

/ - /0(11) and 9 - go(11) where fl) & go satisfy the following equations

f," ; f, f," 'f,'f,' - 00+90 +'4 0 0-2 0 0-

~1 [I+a, (I+a,g y~'!+t fY' +x(l,g' - /11,) ~ 0
Pr

,,
(3.21)

(3.22)

,(II



Subject to the boundary conditions

f = 0, l'= 0, g = 1+ asinm

at 1]= 0 and f'g -). 0 as ,,---')<Xl.

(3.23)

We need to look near to /FO to account for the variation in g there. We need a

Taylor Series representation of '0 & go:

1 2 1 3fo =-021] --1] + ...
2 6

where

a2(Pr, Rd,Bw) = 02 (Pr,al ,a2) = fo"(O) > 0

~ "9,(0) < 0

(3.24)

(3.25)

To find the scaling for the inner region we need to balance for (highest derivative),

g (buoyancy term which drives the flow) and x(fxi" - f;l') ( which mediates

the boundary temperature effect). This process is more stable than is usual for such

problems.

From (3.24) we obtain

d
3
{ = 0(1);;:;>f= 0(1]-3)

d.
9"°(1)
xfJ' "O(xf)
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-,
Hence IJO:=O(x J) and f==O(x-1). However,wenolelhat r=O(l) in (3.20)

-,
and these scaling should give f~== O(x J) the resolution comes from the facl that

the O{r/) term in (3.20) is transmitted passively into the inner layer without

modification.

In the inner layer we let f == F(,; ,x) 9 == O(,;,x) where
,

,; == 1]t"lfrom our scaling.

Hence

a ~ a-~x-'-"q aI;'
a a 11;0-"-+---
ax ax 3xB,g (3.26)

and equations (3.17) & (3.18) become

, ,
FlO + x -lCiFr -%F'F')+x -10 + x"J(Fxr - F;F') == 0

Guided by the scaling analysis and by (3,20), we set

-~ IF=x JFo +x- F] + ...
-'G=Go +x lG] + ...

into (3.23) and (3.24) to get

_1 _1
/=/o(,,)+x lJi+X 3/2+",

~_I _~_

9=90(17)+X '9]+x '92+'"

I
(3.27)

(3.28)

(3.29)

(3.30)
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where F*F'*O, G=l+asiniIX at ';=0

andF& Gmatchwithf &gas ';-400 and '1-40.

Inner region leading order

Equation for Fo Is

F;=O

Solution of this equation must be

I ,
Fo = 2a2'; (3.31)

which satisfies Fo =Fo =° at .; =° and the small '1 matching condition from

(3.20)

Equation for Go is

Using (3.27) we have

Subject to

Go=l+asiniIX at ';=0
and Go -41 as ';-400

(3.33)

•



Now at this point we obtain the first essential difference between the present

problem and Rees(14). Here eq (3.28) is nonlinear where as eq (3.25) reduced

(3.22) to ordinary differential form. In this problem we cannot do this and it is

essential to solve (3.28) using the Keller Box method using Go=1 at x=O,

continuing until the solution becomes periodIc.

However we also need to obtain the next term in F in order to recover the leading

order effect of boundary temperature variations. From (3.27) we see that it is

Fj"'+ Go + F[iP!;r ~ FoFl~== 0

subject to Fj == Fj' == 0 at ,,== 0
I ,

and Fi-~6q asq---+oo

Hence

(3.34)

Probably best to use Fj" ~ -q as'; ---+00 as the matching condition. Therefore

we solva (3.28) & (3.34) simultaneously.

Returning to the initial scaling, the rate of heat transfer becomes

ag 1aGo_ =x3__ + ...
a,., '1~O a.; ';=0

oed

(3.35)

(3.36)

To get a second term in the heat transfer expansion we need to go to the next order

in the inner layer to obtain:



_1 [?+a,(I+azGo)'}3; +3a1app' + 00'«1(1+apo)2G~G;]
Pr + 6aja2lG~G~G,

+ .F;.G~- F~GIx ~ F,'Go,) '" 0

Subjectto G\(O)=O, Gj ~bl

Again, solve with (3.28) and (3.30) until periodicity is obtained, Then

25

(3.37)

(3.38)



Chapter 4

Numerical solutions and discussions

The parabolic system of equations (2.f4)-(2.15) together with the boundary

conditions (2.16), is non-similar and its numerical solution must be obtained using a

marching method. The results presented here were obtained using the Keller-box

method, introduced by Keller and Gebeci [24] and described in more detail in

Gabeei and Bradshaw [32]. After reduction of equations (2.14)-(2.15) to firsl-order

kmn in fl, the subsequent second-oroer accurate discretisa!ion based halfway

between the grid points in both the 1J and x-directions (discussed detailed in

Chapter 3) yields a set of nonlinear difference equations which are solved using a

mulli-dimensional Newton-Raphson iteration scheme. The results presented in Fig.

4.1 to Fig. 4.14 are based on uniform grids in both coordinate directions. There

were 201 gridpoints lying between 11= a and 11= 20 and 401 between l( = a and l( =
20. We restrict the presentation of our results to the three values of the Prandtl

number: Pr-0.01{Liquid Metal) Pr- 0.7 (air) and Pr = 7 (water).

Fig. 4.1 shows the evolution with x of /"(11= 0), a scaled surface shear stress, for

constant values of the temperature wave amplitude, a, and the constant radiation

parameter R.. for various values of Pro In this figure we observe that as Pro is

decreasing skin friction is increasing. One point is mentionable that when Pr.=O.01,

then wave amplitude is higher than that of Pr-7. As x increases, the amplitude of
oscillation of the shear stress curves decays slowly.

We observe in Fig. 4.2- Fig.4.4 the evolution with x of surface shear stress, for
various values of the temperature wave amplitude, a, and the constant radiation

parameter Rdfor different values of Pro In these figure we observe that as Pr is

decreasing skin friction is increasing. We also observe that as surface temperature .
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wave amplitude is increasing shear stress is also increasing, and for decreasing of

wave amplitude it is decreasing gradually.

Some aspects of the overall behaviour of these curves may be explained by

observing that the boundary layer is thinner when the surface temperature is

relatively high and thicker when it is low. These arises because relatively high

surface temperatures induce relatively large upward fluid velocities with the

consequent increase in the rate of entertainment into the boundary layer. This

causes, in turn, a thinning of the boundary layer. Thus, we should expect high shear

stresses and rates of heat transfer at, or perhaps just beyond, where the surface

temperature attains lis maximum values. There is an obvious qualitative difference

between the curves shown in Fig. 4.1 and those in Fig. 4.4. As x increases, the

amplitude of oscillation of the shear stress curves decays slowly, with x.

Now we want to give our attention to the Fig 4.5 to Fig: 4.7. where the evolution

with x of surface shear stress, for constant values of the temperature wave

amplitude, a, and the various radiation parameter R.Jfor different values of Pr. The

most interesting part of this analysis is that, when radiation parameter R.J is

increasing skin friction is also increasing but when Ro"'0. the result of skin friction is

exactly the same, which was found by Rees [141.In our study we have found that

skin friction is increasing as R.Jis increasing but at a decreasing rate. That is, when

Ro=1 then skin friction increases more in respect of Ro=10.

Now we have to analyze the curves, which represents in Fig 4.8 to Fig 4-14, which

represents the local Nusselt number that is, the rate of heat transfer.

Fig. 4.8 shows the eVOlutionwith x of surface rate of heat transfer, for constant

values of the temperature wave amplitude, a, and the constant radiation parameter
Rofor various values of ProIn this figure we observe here that as Pr is decreasing •rate of heat transfer increasing. One point is mentionable that when Pr-7.0 (water),
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then wave amplitude is higher than that of Pr.=O.01. As x increases, the amplitude

of oscillation of the rate of heat transfer increasing significantly.

Here we observe in Fig. 4.9. Fig. 4.11 the evolution with x of surface rate of heat

transfer, for various values of the temperature wave amptilude, 8, and the constant

radiation parameter R.Jfor different values of Pr. In these figure we observe that

as Pro is decreasing rate of heat transfer increasing. We also observe as surface

temperature wave amplitude is increasing rate of heat transfer is also increasing,

and for decreasing of wave amplitude it is decreases gradually.

Important aspects of the overall behavior of these curves may be explained by

observing that the boundary layer is thinner when the surface temperature is

relatively high and thicker when it is low. These arises because relatively high

surface temperatures induce relatively large upward fluid velocities with the

consequent increase in the rate of entertainment into the boundary layer. This

causes, in turn, a thinning of the boundary layer. Thus, we should expect high shear

stresses and rates of heat transfer at, or perhaps just beyond, where the surface

temperature attains its maximum values. There is an obvious qualitative difference

between the curves shown in Fig. 4.810 Fig. 4.11. As x increases, the amplitude of

oscillation of the rate of heatlransfer curves increases gradually, with X.

Indeed, the curves in Fig. 4.9 to Fig. 4.11 suggest thaI, whatever the value of a,

there will always be a value of x beyond which some part of the rate of the heat

transfer curve between successive surface temperature maxima will be positive.

This somewhat unusual phenomenon for boundary layer nows may be explained by

noting that when relatively hot nuid encounters a relatively cold part of the heated

surface the overall heat transfer will be from the fluid into the surface, rather than

the olher way around.

Now we have to give our attention to the figures Fig. 4.12 to Fig.4.14 where the

evolution with x of surface rate of heat transfer, for constant values of the ~
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temperature wave amplitude, a, and the various radiation parameter R:.for different

values of Pro The most interesting part of this analysis is that, when radiation

parameter Rd is increasing rate of heat transfer is also increasing but when R:."'0.

the result of rate of heat transfer is exactly the same, which was found by Rees

[14]. In our study we have found that rate of heat transfer is increasing as R:. is

increasing but at a decreasing rate. That is, when Rd "'1 then the rate of heat

transfer increased more in respect of R:.=10.

Fig. 4.15 to 4.17 show the isotherms for Pr."'0.7 and a = 0.2, for R:.=0.0,5.0, 10.0.

Here we see that the boundary layer maintains its overall thickness in terms of ."

when x is large, although variations in thickness are clearfy present when x is

small. The thickness of the region in which strong, surface induced temperature

variations are present reduces slowly in size as x increases. It is also clear that

isolines are increasing due to increasing of radiation parameter.

In Fig. 4.18 to 4.20 are showing the isotherms for Pr.=7.0 and a =0.2, for RcFO.O,

5.0, 10.0. Here we see that the boundary layer maintains its overall thickness in

terms of 17 when x is large, although variations in thickness are clearly present

when x is small. The thickness of the region in which strong, surface induced

temperature variations are present reduces slowly in size as x increases. It is also

clear that isolines are increasing due to increasing of radiation parameter.
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Presentation of Figure
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Fig 4.2: Skin friction against;; for R.i=O.O, a=O.O,0.2, 0.4, 0.6, 0.8, 1.0 at
Pr.=7.0

31

,



,

16
1.5
1.4 a=1.0
13
1.2
1.1

r 1
0'
0.8
0.7

0.8 a=O_O
0.5

0 5 10 15

Fig 4.3: Skin friction against S for R,r:O.O,8"'0.0, 0.2, 0_4, 0.6, 0.8,
1.0 at Pr."'O.7
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Fig 4.4: Skin friction against S for ~=O.O. 8"'0.0, 0.2, 0.4, 0.6, 0.8,
1.0 at Pr.=O.01
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Fig 4.5: Skin friction against ~ for Rd"'O.O,1.0,5.0,10.0 a=0.2, at Pr-7.0
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Fig 4.6: Skin friction against ~ for R,pO.O, 1.0, 5.0, 10.0 a=0.2, at Pr.=O.7
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Fig 4.7: Skin friction against S for Rd""O.O,1.0, 5.0, 10.0 a=0.2, at Pr.=O.Ol
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Fig 4.6: Rate of heat transfer against ~ for R,;=O,O,a=0.2, and
Pr.::7.0, 0.7, 0.01.
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Fig 4.9: Rate of heat transfer against S for Rd=O.O,a::O.O, 0.2, 0.4, 0.6,
0.8, 1.0 at Pr.=7.0
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Fig 4.10: Rate of heat transfer against S for R<FO.O, a=O.O, 0.2, OA,
0.6,0,8,1.0 al Pr,=O.7
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Fig 4.11: Rate of heat transfer against S for Rd"'O.O,a=O.O, 0.2, 0.4,
0.6, 0.8, 1.0 at Pr.=O.01
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Fig 4.12: Rate of heat transfer agBinst ~ for Ro=O.O,1.0,5.0, 10.0
a=0.2 al Pr.=7.0
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Fig 4.13: Rate of heat transfer against S for Ro=O.O,1.0, 5.0, 10.0 a=0.2
al Pr.=O.7

37



0

-0.02

-0.04

-0.06
g'

-0.08

-0.1

-0.12

-0.14

-0.16

-0.18

-0.2

-0.22
0 2 4 6 , 10

!

Fig 4.14: Rate of heat transfer against S for R.J=O.O, 1.0, 5.0, 10.0 a=0.2 at
Pr-O.01
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Fig: 4.15 Isotherms for Pr =0.7, a = 0.2, Rd =0.0
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Fig: 4.16 Isotherms for Pr =0.7, a = 0.2, (b) Rd =5.0
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Fig: 4.17 Isotherms for Pr =0.7, a '" 0.2, Rd =10.0
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Fig 4.18 Isotherms for Pr=7.0, a '" 0.2, Rd =0.0
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Fig 4.20 Isotherms for Pr "'7.0, a = 0.2, Rd =10.0
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Chapter 5

Effect of Radiation of steady streamwise surface temperature

variations on a vertical Cone

Mathematical formalism

We consider a steady two-dimensional laminar free convection flow of the

boundary layer induced by a heated semi-infinite surface immersed in an

incompressible Newtonian fluid. In particular, the heated surface is maintained at

the steady temperature, fluid having temperature, T, from a vertical cone. The

physical coordinates (x, y) are chosen such thai x is measured from the leading

edge in the stream wise direction and y is measured nannal to the surface of the

cone. The coordinate system, velocity direction and the gravity orientation are

shown in Figure 5.

y
Figure 5: Physical model and co-ordinates

For this problem we have

T =T~+(Tw - T.Xl-a'in(nid))

42
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where T"" is the ambient fluid temperature, T •• is the mean-surface temperature

which is such thaI T" > To" a is the relative amplitude of the surface temperature

variations and 2d is the wavelength of the variations. The steady two-dimensional

equations of motion are given by

(5.2)
o(ru) o(rv) 0

A + A-

oX By

'ou "au 1 op l~
U-, +V-, oo , +VV u+gP(T ~T",)cosip
ox oy PBx

~aT + ~aT =~[T" + 16" {T'T,} ]
ax oy Pc 3K(a+oJ Y

with r == xsinlj>

Boundary conditions are

u=O, vooO, T=Too+(Tw-Too)(l+asinJTl) at y=O

u=O, TooT"" asy-+rYJ

(5.3)

(5.4)

(5.5)

Here Gr is the Grashof number and Pr is the Prandtl number. In the derivation of

equations (5.2) the Boussinesq approximation has been assumed. We note that the
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Grashof number has been based on d, half the dimensional wavelength of the

thermal waves.

In the equations, u andv are, respectively, the velocity components in the x and y
directions, T is the fluid temperature, v is the kinematic viscosity, fJ is the thermal

expansion coefficient, (L is the thermal diffusivity, K is the thermal conductivity, a is

the Rosseland mean absorption coefficient, 0- is the Stephan-Boltzman constant, Us

is the scattering coefficient

When the surface temperature is uniform and the Grashof number is very large, the

resulting boundary-layer flow is self-similar. But the presence of sinusoidal surface

temperature distributions, such as that given by (5.1), renders the boundary-layer

flow non-similar. The boundary-layer equations are obtained by introducing the

scaling

L -i'"
u=-Gr u,

v

[2 '
G -,P=~-2 r p,

pv

(5.6)

inlo equations (5.2)-(5.4), formally letting Gr become

retaining only the leading order terms. Thus we obtain

Ux.+Vy =0

UUx +VUy =uyy +8

asymptotically large and

(5.7)

(5.8)

nO+vO ~_l[0 +~_16_U_{0'0}]
x y Pc }Y 3K(a+aJ Yy

(5.10)

Here the asterisk superscripts have been omitted for clarity of presentation.

Equation (5.9) serves to define the pressure field in tenns of the two velocity
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components and is decoupled from the other three equations. Therefore, we shall

not consider it further. As the equations are two-dimensional we define a stream

function If, in the usual way.

(5.11)

and therefore, (5.?) is satisfied automatically. Guided by the familiar self-similar

form corresponding to a uniform surface temperature, we use the substitution

(5.12)

where

is the pseudo-similarity variable. Equation (5.8) and (5.9) reduce to

J"+g+tJf"-tJJ'+x(fJ"- /J')=O
,

~ [{I + ~ R, (1+ (0. - l)g )' }g ,]
+ f fg' + x(fxg' - ftl » = 0

and the boundary conditions are

/==0, 1'=0, g==l+asinm:

at l} = 0 and f'g ---}o 0 as l} ---+ 00.

In equations (5.14)-(5.16), primes denote derivatives with respect to 1].
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(5.14)

1(5.15)

(5.16)
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3. Numerical solutions
The parabolic system of equations (5.14)-(5.16), is non-similar and its numerical

solution must De obtained using a marching method. The results presented here

were obtained using the Keller-box method, introduced by Keller and Cebeci [24]

and described in more detail in Cebeci and Bradshaw 132]. After reduction of

equations (5.14)-(5.15) to first-order form in r" the subsequent second-order

accurate discretisation based halfway between the grid points in both the r;- and x-

directions (discussed detailed in Chapter 3) yields a set of nonlinear difference

equations which are solved using a multi-dimensional Newlon-Raphson iteration

scheme. The results presented in Fig. 5.1 to Fig. 5.14 are based on uniform grids in

both coordinate directions. There were 101 gridpoints lying between r, = 0 and r, =
10 and 201 between x = 0 and x = 10.We restrict the presentation of our results to

the three values of the PrandUnumber: Pr.=0.01(Liquid Metal) Pro= 0.7 (air) and Pr,

= 7 (water).

Fig. 5.1 shows the evolution with x of !"(r,,,,,O), a scaled surface shear stress, for

constant values of the temperature wave amplitude, a, and the constant radiation

parameter R<tfor various values of Pro In this figure we observed that as Pro is

decreasing skin friction is increasing. One point is mentionable that when Pr.=0.01,

then wave amplitude is high than that of Pr."'7. As x increases, the amplitude of

oscillation of the shear stress curves decays slowly.

We observe in Fig. 5.2- Fig.5.4 the evolution with x of surface shear stress, for

various values of the temperature wave amplitude, a, and the constant radiation

parameter RJfor different values of Pro In these figure we observed that as Pr. is

decreasing skin friction is increasing. We also observed as surface temperature

wave amplitude is increasing shear stress is also increasing, and for decreasing of

wave amplitude it is decreasing gradually.
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Some aspects of the overall behaviour of these CUNes may be explained by

observing that the boundary layer is thinner when the surface temperature is

relatively high and thicker when it is low. This arises because relatively high surface

temperatures induce relatively large upward ftuk! velocities with the consequent

increase in the rate of entertainment into the boundary layer. This causes, in tum, a

thinning of the boundary layer. Thus, we should expect high shear stresses and

rates of heat transfer at, or perhaps just beyond, where the surface temperature

attains its maximum values. There is an obvious qualitative difference between the

CUNesshown in Fig. 5.1 and lhose in Fig. 5.4. As x increases, the amplitude of

oscillation of the shear stress curves decays slowly, with x.

Now we have to give our attention to the figure presented in Fig. 5.5 to Fig.5.7.

Where the evolution with x of surface shear stress, for constant values of the

temperature wave amplitude, a, and the various radiation parameter Rdfor different

values of Pro The most interesting part of this analysis is that, when radialion

parameter ~ is increasing skin friction is also increasing but when Rd=0. the result

of skin friction is exactly the same, which was found by Rees D. In our study we

have found that skin friction is increasing as R.:tis increasing but at a decreasing

rate. That is, when Rd=1 then skin friction is increased more in respect of R.:t=10.

Now we have to analyze the curves, which represents in Fig-5.S to Fig-5.14, the

local Nusselt number that is, the rate of heat transfer.

Fig. 5.S shows the evolution with x of surface rate of heat transfer, for constant

values of the temperature wave amplitude, a, and the constant radiation parameter

Rdfor various values of Pr. In this figure we obseNed that as Pr. is decreasing rate

of heat transfer increasing. One point is mentionable that when Pr.=7.0, then wave

amplitude is high than that of Pr.=0.01. As x increases, the amplitude of oscillation
of the rate of heat transfer increasing significantly.
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Here we observe in Fig. 5.9 to Fig. 5.11 the evolution with x of surface rate of heat
transfer, for various values of the temperature wave amplitude, a, and the constant

radiation parameter Rdfor different values of Pro In these figures we observed

that as Pr. is decreasing rate of heat transfer increasing. We also observed as

surface temperature wave amplitude is increasing rate of heat transfer is also

increasing, and for decreasing of wave amplitude it is decreasing gradually.

Important aspects of the overall behavior of these curves may be explained by

observing that the boundary layer is thinner when the surface temperature is

relatively high and thicker when it is low. This arises because relatively high surface

temperatures induce relatively large upward nuid velocities with the consequent

increase in the rate of entertainment into the boundary layer. This causes, in turn, a

thinning of the boundary layer. Thus, we should expect high shear stresses and

rates of heat transfer at, or perhaps just beyond, where the surface temperature

attains its maximum values. There is an obvious qualitative difference between the

curves shown in Fig. 5.8 to Fig. 5.11. As x increases, the amplitude of oscillation of
the rate of heat transfer curves increases gradually, with x.
Indeed, the curves in Fig. 5.9 to Fig. 5.11 suggest that, whatever the value of a,

there will always be a value of x beyond which some part of the rate of the heat

transfer curve between successive surface temperature maxima will be positive.

This somewhat unusual phenomenon for boundary layer nows may be explained by

noting that when relatively hot nuid encounters a relatively cold part of the healed

surface the overall heat transfer will be from the fluid into the surface, rather Ihan

the other way around.

Now we have to give our attention to the figures Fig. 5.12 to Fig.5.14 Where the

evolution with x of surface rate of heat transfer, for constant values of the

temperature wave amplitude, 8, and the various radiation parameter R.:.for different

values of Pro The most interesting part of this analysis is that, when radiation

parameter Rdis increasing rate of heal transfer Is also increasing but when R.:.=0.

the result of rate of heat transfer is exactly the same, which was found by
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Rees [14j. In our study we have found that rate of heat transfer is increasing as R.J

is increasing but at a decreasing rate. That is, when Rd=1 then rate of heat 1ransfer

increased more in respect of Rd=10.
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Fig 5.1: Skin friction against ~ for Rd"O.O, a"'0.2, Pr.=7,O, 0.7, 0.01.
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Fig 5.2: Skin friction against ~ for R.FO,O, a=O.O, 0.2, OA, 0.6, 0.8, 1.0 at Pr.=7.0 - \)

•
51



r ,.

"
'2

o , , •
Fig 5.3: Skin friction against I; for R.pO.O, 8"'0.0, 0.2, 0.4, 0.6, 0.8,
1.0 al Pr.=O.7 '
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Fig 5.4: Skin friction against/; for Rd=O.O,a=O.O,0.2, 0.4, 0.6, 0.8,1.0 at
Pr."'O.01
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Fig 5.5: Skin friction againsl S for R.:."'Q.O,1.0,5.0, 10.0 a=0.2, al Pr.=7
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Fig 5.6: Skin friction against S for R.:.=O.O,1.0, 5.0, 10.0 a=0.2, at Pr.=O,7
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Fig 5.7: Skin friction against ~ for Rd=O.O,1.0, 5.0, 10.0 a=0.2, at
Pr."'0.01
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Fig 5.9: Rate of heat transfer against S for R.:!=O.O, a:O.O, 0.2,

0.4,0.6,0.8,1.0 at Pr:=7.0
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Fig 5.10; Rate of heat transfer against ~ for Rcf'O.O, a=O.O, 0.2, 0.4, 0.6, 0.8,
1.0 at Pr.=O.7
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Fig 5.11: Rate of heat transfer against S for Rd=O.O,a=O.O,0.2, 0.4,

0.6,0.8,1.0 at Pr.=O.01
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Fig 5.12: Rate of heat transfer against S for Rcf"O.O,1.0, 5.0, 10.0 a=0.2 at
Pr.=7.0
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Fig 5.13: Rate of heat transfer againsti; for Rd=O.O,1.0, 5.0, 10.0 a=0.2

al Pr.=O-7
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Fig 5.14: Rate of heat transfer against S for R<f"O.O,1.0, 5.0, 10.0
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Chapter 6

Conclusions

We have analyzed the effect of radiation-conduction interaction with steady

slreamwise surface temperature variations on vertical free convection as well as

vertical cone has been investigated numerically using a finite difference method.

The effect of variations in the Plank number, the surface temperature wave

amplitude, and the Prandll number on the shear stress and rale of surface heat

transfer have been presented graphically.

We have restricted the presentation of our results to the three values of the

Pranrltl number: Pr.=O.01(UquidMetal) Pro'= 0.7 (air) and Pr.:: 7 (water).

In our study we observed thai as Pro is decreasing skin friction is increasing.

One point is mentionable thai when Pr.=O.01, then wave amplitude is high than

that of Pr.:::7. As x increases, the amplitude of oscillation of the shear stress

curves decays slowly.

Physical aspects of the overall behaviour of these result may be explained by

observing that the boundary layer is thinner when the surface temperature is

relatively high and thicker when it is low. This arises because relatively high

surface temperatures induce relatively large upward fluid velocities with the

consequent increase in the rate of entertainment into the boundary layer- This

causes, in turn, a thinning of the boundary layer. Thus, we should expect high

shear stresses and rates of heat transfer at, or perhaps just beyond, where the

surface temperature attains its maximumvalues.

The most interesting part of this analysis is thai, when radiation parameter Rd is

increasing skin friction is also increasing but when R.:. =0. the result of skin

friclion is exactly the same, which was found by Rees (141. In our study we

have found that skin friction is increasing as Rdis increasing but at a decreasing



rate. That is, when Rd=1 then skin friction is increased more in respect of R.J

=10.

Now we have to analyze the local Nussell number that is, the rate of heat

transfer.
We obselVed that as Pro is decreasing rate of heat transfer increasing. One

point is mentionable that when Pr.=7.0, then wave amplitude is high than that of

Pr.=0.01. As J( increases, the amplitude of oscillation of the rate of heat transfer

increasing significantly.

The surface rate of heat transfer, for various values of the temperature wave

amplitude, a, and the constant radiation parameter R.;for different values of Pro

In this case we obselVed that as Pr. is decreasing, rate of heat transfer

increasing. We also obselVed as surface temperature wave amplitude is

increasing rate of heat transfer is also increasing, and for decreasing of wave

amplitude it is decreasing gradually.

Important aspects of the overall behavior of these curves may be explained by

observing that the boundary layer is thinner when the surface temperature is

relatively high and thicker when it is low. This arises because relatively high

surface temperatures induce relatively large upward fluid velocities with the

consequent increase in the rate of entertainment inla the boundary layer. This

causes, in turn, a thinning of the boundary layer. Thus, we should expect high

shear stresses and rates of heat transfer at, or perhaps just beyond, where the

surface temperature attains its maximum values.

Now we have to give our allention 10 the surface rate of heat transfer, for

constant values of the temperature wave amplitude, a, and the various radiation

parameter Rdfor different values of Pr. The most interesting part of this analysis

is that, when radiation parameter Rdis increasing rate of heat transfer is also

increasing but when R.; =0. Ihe result of rate of heat transfer is exactly the

same, which was found by Rees [14]. In our study we have found that rate of

heat transfer is increasing as Rd is increasing but at a decreasing rate. That is,

when Rd=1 then rate of heat transfer increased more in respect of Rd=10.
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