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Abstract

We examine how the steady free convective boundary-layer flow induced by
a vertical heated surface is affected by the presence of sinusoidal surface
temperature vanations about a constant mean value with the effect of
radiation. Besides this, we have also anaiyze the effect of radiation of staady
streamwise surface temperature variation of a vertical cone. The problem is
studied using fully numericat techniques. The surface rate of heat transfer
eventually alternates in sign with distance from the leading edge, but no
separation occurs untess the amplitude of the thermal modulation I8
sufficiently high. Numerical results are obtained for diflerent values of the
physical parameters, the radiation parameter Rq, Prandtl number Pr and the
surface temperature wave amplitude a.

Important aspects of the overalt behavior of our analysis by observing that
the boundary layer is thinner when the surface temperature is relatively high
and thicker when it is low. This anses because relatively high surface
temperatures induce relatively ‘arge upward fluid velocities with the
consequent increase in the rate of entrainment into the boundary layer. This
causes, in turn, a thinning of the boundary layer. Thus, we should expect
high shear stresses and rates of heat transfer at, or perhaps just beyond,
where the surface lemperature attains its maximum values. As x increases,
the amplitude of oscillation of the rate of heat transfer curves increases
gradually, and the amplitude of oscillation of the shear stress curve
decreases slowdy, with x.

The most interesting part of this analysis is that, when radiation parameter
Ry is increasing, both the shear stress and the rate of heat fransfer are also
increasing but when Ry =0. the result of rate of heat transfer is exactly the
same, which was found by Rees [14]. In our study we have found that rate of
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heat transfer is increasing as Rg is increasing but at a decreasing rate. That
is, when Ry =1 then rate of heat transfer increased more in respect of Rq

=10.
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Surface temperature wave ampliiude
Rosseland mean absorption coefficient
Dimensionless velocity function
Dimensionless lemperature

Grashof number

PrandU number

Half the dimansional thermal wave length
Radiation Parameter

Pressure

Velocity components

Temperature of the fluid
Temparature of the ambient fluid
Streamwisa and cross stream Carlesian coordinate
Stream function

Stefan-Bollzman canstant

Scattering coeflicient

Coefficient expansion

Kinematic coafficient of viscosity
Psuedo-similarity variable
Dirmensionless x coordinates
Temperature
Surface Tempemture parametar
Density of the fluid
Mean-surface temperatura to the wall
radiative flux

absorption coefficient
Ptanck function
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Chapter 1

Introduction

Man’s study of the Universe has led to the realization ihat alt physical phenomena
are subject to natural faws. The term nature might well be used to describe the
framework or system. Of fundamental and universal importance within this system
are the mechanisms for the transfer of energy. The mention of mechanisms
suggests the familiar process of canduction canvection and radiation. These so
called modes of heat transfer are standard and widely used cencepts, not only in
engineering but also in alt fields of natural science. They have been adopted by the
enginear from the natural scientist.

The formation of a physical picture of the process of thermal conduction is a simple
task for the imagination. It is a matter of experience that heat flows from a region of
higher o one at a lower temperature. Since temperature is cansidered an index of
degree of malecular activity, it is logical fo picture energy transfer as occurring by
callision of faster with slower moving molecules. This idea appears to essentially
carrect. In tha case of gasses, molecular interaction is responsible; however, in
solids such as metals an ‘electron gas’ —rather than molecules —is the primary
energy transfer medium.

The mechanism of convection is simply the transfer of energy by actual physical
movement from one location to another of a substance in which energy is stored.
The free or forced movement of hot air throughout a room to provide is a familiar
example. The process may not seem quite so elementary when we begin to deal
with heat transfer in complex fluid fows. But this as it may, to understand the
principle of convection one need only visualize the displacement of usually small
quantities of matter inescapably carrying along their various forms of stored energy.



Energy transfer by radiation is usually considered last, probably because radiation
is more of a mystery. it is very difficult to provide & simple mental or physical piclure
of something, which is quite invisible and travels with infinite ease through empty
space. lts manifestations have been extensively studied, however, and we are able
to deal with it at least in the spirit expressed by Oliver Heaviside when he said,
*Shall | refuse my dinner because | do not understand the process of digestion?”

Whether radiabion is a wave or corpuscular phenomenon has long been subject to
controversy. The establishment of the electromagnetic theory in the latter half of the
nineteenth century seemed to be a victory for the wave hypothesis, but the
introduction and subsequent success of the quantum theory have indicated
corpuscutar nature.

It is possible that in the final analysis we may not find the various modes of heat
transfer to be fundamentally different. The true nature of energy is of such a subtle
character that it is still beyond our understanding and description. More insight int
its basic qualites could well prove that unrelated phenomena are different
manifestations of the same fundamental process This is already becoming evident
in connecticn with radiation and conduction. The quantum theory has been equally
useful in explaining tharmal phenomena in solids as well as radiation effects.

In dealing with heat transfer from an engineering point of view, we might overlaok
such matters since only macroscopic effects are considered. Although this is, in
general, permissible, we must remember our objectiva, which is the continued
application of basic knowledge for the advancement of humanity. This we can
accomplish only by regutar review of fundamental progress, alertness in its use in
the interpretation of our work, and its possible applications.

The study of heat transfer is of great interost in many branches of science and
angineering. In the desion of heat exchangers such as boilers, condensers,
radiators, etc., for example, heat transfer analysis is essential for sizing such



equipment. In the design of nuclear—reactor cores, a thorough heat transfer analysis
of fuel elements is important for proper sizing of fuel elements to prevent burnout. In
aerospace technology, heat transfer problems are crucial because of weight
limitations and safety considerations. In heating and air conditioning applications for
buildings, a proper heat transfer analysis is necesgary to estimate the amount of
insulation needed to prevent excessive heat loses or gains.

The three distinct modes of heat transfer, namely conduction, convection and
radiation must be considered. In reality, the comhbined effects of these three modes
of heat transfer contral temperature distribution in a medium. Conduction occurs if
energy exchange takes placé from the region of high temperature to that of low
temperature by the Kinetic motion or direct impact of molecules, as in the case of
fluid at rest, and by the drift of electrons, as in the case of metals. The radiation
energy emitted by a body is transmitted in the space in the form of electromagnetic
waves. Energy is emitted from a material due to its temperature level, being larger
for a larger temperature, and is then transmitied to another surface, which may be
vacuum or a medium, which may absorb, reflect or transmit the radiation depending
on the nature and extend of the medium. Considerable effort has been directed at
the radiative mode of heat transfer. In this mode, relative motion of the fluid
provides an additional mechanism for energy transfer. A study of radiative heat
transfer involves the mechanisms of conduction and, sometimes, those of radiation
processes as well, This makes the study of radiative mode a very complicated one.

In many cases of practical interest forced and natural convection processes are
important. Heat transfer by mixed convection is one in which neither forced
convection nor naturat convection is predominant A heated body lying in still air
loses energy by natural convection. But the body generates a buoyant flow above it.
If another body is placed in that Row, the body is subjected to an external flow. Now
it becomes essential to determine the natural as well as the forced convection
effects and the region in which the heat transfer occcurs.
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Though natural convectian process is much more complicated than that of forced
convection, yet the study of natural convection process is also important because of
the problem of heat rejection and remavat in many devices, processes and systems.
Natural convection represents a limit on the heat transfer rates and this becomes a
very important consideration for problems in which other modes are either not
possible of not practical. It is also relevant for safety consideration under conditions
when the usual mode fails and the system has to depend on natural convection to
get rid of the generated heat. To overheating such consideration in design are
essentiai in many alectronic devices and system and in power generation.

Free convection flow and heat transfer problems is an important consideration in the
thermal design of a varety of industrial equipment and also in nuclear reactors,
geophysicat fluid dynamics. The problem of boundary layer with transpiration has
become very important in recent times; in parliculas in the feld of aeronautical
engineering; in actual applications it is often necessary to prevent separabon in
order to neduce drag and to attain high lift.

We have described an investigation of the combined effects of surface temperature
variations and radiation on the steady boundary-layer flow of a Newtonian fluid from
a heated verticel surface. it is well known that power-law surface temperature
distributions {and also powerJaw surface heat fluxes) give rise to self-simiar
boundary layer Mlows [28, 16]. But here we are interesited in another form of surface
variation, namely, sinusoidal varations about a mean temperature, which is held
above the ambient temperalure of the fluid, As in [t4] this type of surface
distribution may be teken as a simplified model of the effects of a pericdical array of
heaters behind or within the heated surface. An accurate analysis of such a
configuration requires a detailed examination of the effects of sofid conduction
within the heated surface, but the aim of the present work is to simplify the problem
by imposing a surface temperature distribution. In this way we can determine a
large amount of information about the resulting flow using both numerical methods.



Various papers have been published which deal with the effects of surface
variations, Far example. Yao [25] and Moulic and Yao [30, 31] have sought to
investigate the effects of streamwise surface undulations of free and mixed
canvection from vertical surfaces heid at uniform temperatures. More recently, Chiu
and Chou [3], Hossain et. al. [22] and Kim [15] have extended these analyses to
micropolar  fluids, magnetohydrodynamic  convection and  non-Newfonian
convection, respectively. In a series of papers Rees and Pop [B-12] and Rees [13]
have also considered a large variety of analogous flows in porous media. Of these,
only {14] has been concerned with the effect of sinusoidal surface temperature
variations, although in that case the surface variations were spanwise, thereby
giving rise to a three-dimensional flow-field.

A significant numbers of authors have investigated laminar free convection for two-
dimengional axisymmetric flows. Mark and Prins [34-35] developed the generat
relations for similar solutions on isothermal axisymmetric forms and showed that the
verlical cone has such a solution. Approximate boundary layer techniques were
utilized to amive at an expression for the dimensionless heat transfer. Broun et al.
[38] contributed two more isothermal axisymmetric bodies for which simiar solutions
exist, and used an integral method to provide heat transfer results for these and the
cone over a wide range of Prandtl number. Simitarity solutions for free convection
from the vertical cone have been exhausted by Hering and Grosh [37]. They
showed that the similarity solutions to the boundary layer equations for a cone exist
when the wall temperature distribution is a power function of distance along a cone
ray. In their investigation, they presented the results by numerical integration of the
transformed equations for non-isothermal temperature distributions for Prandt
number aquals to 0.7. Latter, Hering [38] extended the enalysis to investigate for
low Prandtl numbers. The study of Hering and Grosh [37] has also been extended
by Roy [39] to treat the case of high Prandti number fluid.

Effect of slenderness on the natural convection flow over a slender cone wath
constant wall heat flux has been studied by Na and Chiou [40]. The problem of
natural convection flow over a frustum of a cone without transverse curvature effect



(i.e., large cone angles when the boundary layer thickness is smali compared with
the local radius of the cone) has been treated in the literature, even through the
problem for a full cone has been treated quite extensively by Sparrow and Guinle
[41], Lin [42], Kuiken [43], and Oosthuizen and Donaldson [44). Latter, Na and
Chiou [45-46] studied the laminar natural convection flow over a frustum of a cone.
They included the constant wall temperature as wel as the constent wall heat flux
cones in the thermat boundary conditions at the wall. Alamgir [47] used an integral
method to study the over-all heat transfer from vertical cones in laminar natural
convection. Recently, Hossain and Paul [48] have investigated the natural
convection flow from a heated vertical permeable circular cone. The solutions were
obtained against the local vaniable £ that represenis the stmahﬁse distribution of

the transpiration velocity.

Radiative canvective flows are encountered in many industrial and environmentat
processes eg. heating and cooling chambers, fossil fuel combustion energy
processes, evaporation from large open water reservoirs, astrophysical flows, solar
power technology and space vehicle re-entry., Mathematically the equations for
radiative heat transfer with absorption, scattering and emission can be generated by
one of two approaches, namely the continuum model or the spectral radiative
treatment of a single particle. Details of the derivation of the general equation of
radiative heat transfer are provided in the classic monograph by Chandrasekhar [7).

Little is currently known about the boundary layer flows of radiating fluids. The
inclusion of conduction-radiation effects in the energy equation, however, leads o a
mare highiy nonlinear partial differential equation. The majority of studies concemed
with the interaction of themmal radiation and natural convection were made by
Spamrow and Cess [29], Cess [4], Arpaci [1], Cheng ang Ozisik [5}, Hasegawa et al.
[18], and Bankston et ai. [2] for the case of a vertical semi-infinite plate. In recent
years, Soundalgekar and Takhar [28] have studied radiation effects an free
convection flow of a gas past a semi-infinite flat plate using Cogley-Vinconting-Giles
equilibrium modei (Cogley et al., [6]) and Hassain and Takhar [19] have analyzed



the effect of radiation using the Rosseland diffusion approximation which leads to a
nonsimilar mixed convective boundary-layer flow of an optically dense viscous
incompressibie fluid past a heated vertical plate with @ uniform free stream velocily
and surface temperature. The boundary layer equations were obtained using a
group of transformations and they are valid in both the forced convective and free
convective limits. The resuling equations were solved using an implicit finite
difference method. Recently the problem of natural convection-radiation interaction
on boundary layer flows with the Rosseland diffusion approximation been studied by
Hossain and Alim [20] and Hossain et al. [21]; and very recently, Hossain and Rees
{23] have investigated the effect of radiation-conduction interaction in the mixed
convective flow along a slender impermeable vertical cylinder. M. Kutubuddin, M.
A. Hossain and |. Pop [33,27] analyze the effect of conduction-radiation imeraction
on the forced, free and mixed convection flow from a horizontal cylinder

The indusion of radiation term is complicated and the resulting equations are very
difficult to solve. Grief and Habib [17] have shown that, in the opticaily thin limit, the
physical situation can be simpiified and they derived an exact solution of the
problem of fully-developed radiating (aminar convection flow in an infinite vertical
heated channel. Their analysis was based on the wark by Cogiey et al. {6]. In the
opticaliy thin limit the fluid does not absorb its own emitted radiation but the fluid
does absorb radiation emitted by the boundaries. It was shown by Cogley et &f. [6]
that in opticalty thin limit for a gray-gas near equilibrium, the following relation holds:

[ AP _@) (T —
3 AT w)ﬁ]‘xh[é?, di=4T-T)I,

w

where 7= jx“[&u] di.
8 a

Hefe g, is the radiative flux, x; is the absorption coefficient, &,: is the Planck
function and the subscript w, represents the value of a quantity at the wall. Further
simplification may be made concering the spectral properties of radiating gases,
but this is not essential for the present analysis. It should be mentioned that



Soundalgekar and Takhar [28} have considered the radiative free convective fliow of
an optically thin grey -gas past a semi-infinite vertical plate.

But, the Rossetand modef is valid for isotropic local intensity and high optical
density of the medium and the radiative heat flux is given by

160VT*

g E_S{HR +o,)

where T denotes the temperature, ag is the Rosseland absorption coefficient, o, is
the scattering coefficient and o is the Stefan-Bolizmann constant [7]. The thermal
boundary-layer equation can be writien as

[ o é‘I] 5[[16:&"3 ]ﬁr}
L\ —+v—— |=-— +K |
& &) N\ I, %4

Here we have considered in detail how the combined effects of surface radiation

and sinusoidal surface temperature profiles in the streamwise direction modify the
otherwise self-similar boundary-layer flow. Solutions are presented in terms of the
surface rate of heat transfer and shear stress and detailed isotherms are also given.
An important feature of the flow is that a near-wall layer develops at large distances
down-stream of the ieading edge. The numerical evidence suggests that this inner
layer decreases in thickness with distance down-steam. A finite difference method
was employed in obtaining the numerical solutions. The effect of varying different
physical parameters on the local skin-friction and local rate of heat transfer are
presented,



Chapter 2

Governing equations and boundary-layer analysis

We consider the boundary layer induced by a heated semi-infinite surface immersed in
an incompressible Newtonian fluid. [n particular, the heated surface is maintained at

the steady temperature. .

&

> ¥
Fig: The flow configuration

T=T_+(T, -T, X1 - asin{zid)) (2.1)
where T.. is the ambient fluid temperature, T, is the mean-surface temperature which
is such that 7, >7,, a is the relative amplitude of the surface temperature variations

and 2d is the wavelength of the variations. The steady two-dimensional equations of
motion are given by

. - {(2.2)
Hx+Vy=0
Aow S l.n " ~ A {23]
anL+y, =— Px'l‘GFl (Mu_}y) +T _?;
p
LI L 1 " 2 ) Lt {24}
UVt VYV, =——p .+ Gr " (Vatvy)
TR T 160 ¢
ul +vT, —ﬁGr T”+—__3x(a+a',){T Ty}y] (2.5)
e



Boundary conditions are

u=0, v=0, T=T +(T,-T,)1+asmn¥)at y=0

u=0, T=T asy—>»w

where Gr is the Grashof number and Pr. is the Prandil number. In the dervation of
equations {2.2) the Boussinesq approximation has been assumed. We note that the
Grashof number has been based on d, half the dimensional wavelength of the thermal
waves.

in the equations, 4 and v are, respectively, the velocity components in the x and y
directions, T is the fluid temperature, v is the kinematlic viscosity, § is the thermal
expansion coefficient, « is the themmal diffusivity, x is the thermal conductvity , & is
the Rosseland mean absorption ceefficient, ~is the Stephan-Bollzman constant, o is
the scattering coefficient,

When the surface temperature is uniform and the Grashof number is very large, the
resuling boundary-layer flow is self-similar. But the presence of sinusocidal surface
temperature distributions, such as that given by (2.1), renders the boundary-layer fow
non-similar. The boundary-layer equations are obtained by introducing the scaling

1 t ~
_iﬁ. _d.l'\:
u:EGr ¥, v=—0r v I=£.
¥ v L
L 4" T-T
y=2Gr, p=Z_@rlp, g=ille (2.6)
L v Tw_Tm ’

into equations {2.3)<{2.5), formally letting Gr becomes asymptotically large and
retaining only the leading order terms. Thus we obtain

u, +v, =0 (2.7)
uuy +vi, =u,, +6 (2.8)
(2.9)

uv, +Wy =‘"py +vyy
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1 160 3
uf +vl, =—| 8 _+ & 2.10)
Y pr ¥ 3x(a+crs){5 y}y (

where the astensk superscripts have been omitted for clarity of presentation. Equation
(2.9} serves o define the pressure field in terms of the two velocity components and is
deceoupled from the other three equations. Therefore, we shall not consider it further.
As the equations are two-dimensional we define a stream function , in the usual way.

u=y,, v=-u, @211

and therefore, {2.7) is setisfied autbmatically. Guided by the familiar self-simiiar form
corresponding to a uniform surface temperature, we use the substitution

2.12
v=x"f(,%), 0=g(mx) @
where
szfxuai (2.13
is the pseudo-similarity variable. Equation {2.8) and {2.9) reduce to
S G+ =3I XS L) =0 @14
L {1+iRd(1+(€ -hgVig’ (2.15)
Pr 3 i
+3/3'+x(fg8 - 1§,)=0
and the boundary coenditions are
f=0, f'=0, g=1+asinmx
(2.16)

at7=0and fG@ > 0asno>m

In equations (2.14}-(2.16}, primes dencte derivatives with respect to 7.
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Chapter 3

Finite difference method and asymptotic analysis

In our analysis, we have employed a number of methods for the numerical solution
of the differential equations. COf them the most practical, efficient and accurate
solution technigue is implicit finite difference method together with Keller-box
elimination technique, which is well-documented and widely used by Keller-box and
Cebeci [ 24] and recently by Hossain [48].

& f..c’éf)

1) 3 n___-l [ — [ i
f+1ﬁ’ zf +g r[far ™

(3.1)

To apply the aforementioned method, we first convert the momentum Eqgs. {3.1) into
the following system of first order equations with dependent wvariables,

ulg, ) vlg,n)as

=u (3.2a)
W'=v (3.2b)
SR UPS O " 4 (320
v+4ﬁ' 2u +g—g‘,{ua§ va‘fJ
where x= £
and the boundary conditions are
FEN=0, u(£,0)=0, g(£,0)=1+asinzf {3.3)

We now consider the net rectangle on the (&,n) plane and denote the net points

by

12



=0, 1m,=n,,+h, ,j=12,J

‘fu =0, £ zé'ﬂ-l t+k, ,n=12-- N {3.4)

Here n and j are just sequence of numbers on the (£,7) plane, k, and hjl be the

variable mesh widths.

Kn
T e e — ™
ni 3 !
[ I SR i
Uz ¥
C B
le‘l—‘! E_ln-ﬂ'.! ?;n

Fig. 1 Net rectangle of the difference approximation

We approximate the quantities (f,u,v,g) at the point (£",7,) of the net by

J.u,v), g7 ), which we call net function. We also empioyed the notation g/ for

the quantities midway between net points shown in figure 1 and for any net function
as

{3.5a)

2l
2

£F =@ e

I3



(3.5b)
7 =—(Tr‘; + 7 )

F

__1 - (3.5c)
2 "_(g; +g} l}

1 " . (3.5d)
G =509, +9. B

Now we write the difference equations that are to approximate Eqs. {3.5a)-(3.5d) by

considering ene mesh rectangle for the mid point (g " J,m) to obtain

f j; L —
n e {3.6a)
!
u; —u, o I{S.Eb]

Simitarly Eqgs. (3.6a)~{3.6b) are approximated by centering about the mid point
(62,1 _,,> ). Centering the Eq.(3.6a) about the point (£, 7) without specifying 7

to cbtain the algebraic equations. If we denote the left hand side of eq.{3.2¢) by L,
then the difference approximation o @q. (3.2c} is

1) - f:"':[u"'%(” e o)

7 n

where

3 1 "
D= v fo——u +
[V PEAS™ g]

and
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L= l:v‘-i-g_ﬁ‘—lh‘z +grl
4 pi

T +a(F) -a, () +aly™ f7 - /' j+g” < R™ (38)
whete
R =™ 4 alm)-—i _(uz )‘—]I
a':é':_E
kﬂ
3
Q=+
4
%4 =l+a
P2
Now we take position at = 7 1 then eq.(3.8) becomes
2
m
[v:]n_ t a'l(fv)" 1 _az(uz), i
j_? J—'? J-i"
(3.9)
* “["Tlf.”_x_ - v’ ._f”’ﬁ} +g"  =R",
J-g i3 -5 i3 Joo -3
where
m— # s A-1
R™ -1 llm[(ﬁ),a-(uz) }
=2 73 2 =
and
_ _ 3 -1 1 -1
Lr.! ] hh-l(v??wl _ n-—l)+“ n __(HZ b4 n-1
J__% JN i 4(ﬁ’)j_; 2 i g;—é—
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Egn. (3.8) becomes

h}'l [v;’ w—v:’_] ]—I— af(ﬁy;_L - HZ(HE):-

|
[

n-l ] n-1 _
+a(v|f1——v|f]] =
e I .-"'E .-f“i

The boundary conditions reduce to the following form
H L] R :
=0, uy =0 g,=1+asinas

Finally we get

Wae define the iterates

[}?”, H}I}, 1&*}’ g}-‘} ]j=]=2--

+qg”
!

-1
2

R?‘i—l

(3.10)

(3.11)

(3.12a)

(3.12h)

{3.12c)

with initial values equal to those at the previous £ station (which is usually the best

iniial guess variables). For higher iterates we get

)y 10 ]
f}:+ — j: +5j:rz

16
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LG uj” +5”}r‘) (3.13b)

i

1) L (3.13¢)

v, ”+§v

(i+1) () 0 3.13d

i ——Qj +6 g . ( )
Now we insert the right hand side of the expression in piace of fi U v % in eqs.
(3.12a)-(3.12b) and drop the terms that are quadratic in

(5 i) (5 uja‘}, (5 le:l, (5 g[r]l

_r' k|

to yield the foliowing linear system (for simplicity, the subscript i in & quantties is

dropped}
A (3.14a)
. ti._p*cyj’:_?j(&fj—l_&{jt) (ri)
h (3.14b)
{511}. w"‘SI"";'—I _'_5—(&’; +&)j—l)=(r3)1
(S, ); v, +(Sz)j§v;—1 + (SJ ); o ; +(S:.r )J'é‘{f—x +(S5 );5“;
3.14
+(Sﬁ)j&£j—l+(ST)j@j+(SE)jé‘gj—l=(r2)j { ":]
where
(rl ); - {:} f{f:r iy Hj__ {3.15a)
( ) *u"’ I:r} +h v {3:15h}
(-rz)J =R:j_ .a_‘(x le)+a1(fv) 1 "az( )_1+g‘._1_
2 3 73 {3.15c}
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The coefficients of momentum equation are

$,), =ht 4L f0 & o
(‘)J‘ i +2f-J' 2f1

2

E =1

o L e
(Sz)j - h;-1+ p) f:f—l p) f';IT

Now for energy equation

f

1

Let Rdd=-;ERd and Tw=(6, -1)

(3.15d)

(3.15e}

{3.15f)

(3,|1 5)
(3.15h)
(3.15h)
(3.150)

(3.15))

ﬁ[{1+§ﬂd(1+(9w —l)g)’}g'] +31fg'+ (fg' - 4.)=0

In the similar way as mentioned above the coefficients of the energy equation are

i



1 . -
(), = Eh;l{l + RAd(1+3Tw g' +3Tw?g’" + Tw gf‘]

J {: n—
f 2 I—E

L+ Rdd( 1+3Twg',

1
6.), = - n
2 Pr +3§t"wzg’.,2+?""ﬂ#35},1'j_,3

E {i) -
L7 - zfj_H

(b,), = p +2p1;

(6,) = %’*pfﬂ + & prt

(bi); I—%Qf) Q a

(44

__2 n-1
(b )_,r' = 5“9;-_1 + “‘Z—Q'j_;_

) :-?{u; +u ’T")+3ﬁpj (142Tw g' + Tw*g )i
(5,), =~—(uJ 1 ’.’"])+3R—:£p‘; (1+
2Twgs, +Tw'g’, )h;l

(3,), =0.0
(6,), =0.0

19

{3.16a)

(3. 16h}

(3.16¢)

(3.16d}

(3.16e)

(3.16f)

(3.16g)

(3.16h}

(3.16i)

(3.16§)



Asymptotic Analysis
The momentum and energy equations are

[T g+ A ST RS = L) =0 @.17)

i%Hl +%Rd(1 +(6, —i)g)ﬁ}g’] +3 /g +x(f,9'-f9,)=0 (3.18)

4
For simplicity let «; =§Rd, a; =@, -1
Then eq. (3.18) becomes

%[{'+a,(l+arzg)]b'] +31/8' +x(f,9'- fg,)=0 (3.19)

And the boundary conditions are

f=0 f'=0, g=l+asinm

atp=0and f§>0as g {3.20)

Following Rees (1999} the boundary layer looks like the uniform case {a=0) at the
leading order in the main part of the flow (i.e. not near the surface. Therefore set

f~ famand g~ g,{(n) where f, & g, satisfy the following equations

Loy, [

3.2%)

f;:;'r"' g, +'i“fﬂ.ﬁ1"‘_%fc:fnr =0

Lo+ ag) ] +345 45010 - 1) =0 322
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Subject to the boundary conditions
f=0, f'=0, g=l+asinmz {3.23)

atp=0and fg >0 as o

We need to look near to /=0 to account for the variation in g there. We need a

Taylor Series representation of fp & go:

1 5 1 4 . (3.24)
= . —_— R
fo Ay

g, =1+bng+--- (3.25)

where
ay(Pr, R;.0,)=as(Pr,ay,7) = f5(0)>0
b =go(0) <0

To find the scaling for the inner region we need to balance ™ {highest derivative),

g (buoyancy term which drives the flow) and x(f,f"—f, /") { which mediates

the boundary temperature effact). This process is more stable than is usuai for such
problems.

From {3.24) we cbtain

3
2L -om= £=06)
dn

g=0(1)
xfof" = O(xf)
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_1
Hence 7=x ?) and f=O(x""). However, we note that 7" =0(1) in (3.20)

_1
and these scaling should give /" ={x *) the resolution comes from the fact that

the (X#*) term in {3.20) is transmitted passively into the inner layer without

modification.

1
in the inner layer we let /= F(&,x) g =G(&,x) where &= from our scaiing.

Hence
2,50 8_08,149
g 8" ax & 3xdd (3.28)

and equations {3.17) & {3.18) become

-1 2
F"4x 2CFF —2FF)+x" G+x3(FF = FF)=0 A

i
— l+a,G Y GE"+3 1+a,G)*G'G’
Pt [ﬁ+al( tdy )Bb + ala:i( & ) ] (3.28)
-1 2
+2x SFG'+x3(F,G'-F'G,)=0
Guided by the scaling analysis and by (3.20), we set
F:I-éFﬂ +I_].F] + e
: {3.29)
G=Gu +I_3G] T+
into (3.23} and (3.24) to get
1 _2
Sf=lhim+x 2 fi+x 2t (3.30)

! 2
g=gy{m+x 'g;+x *gy+--
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where F = F'#0, G=l+asinmx at &£=0
and F& G matchwith f & gas £ o and 0.

Inner region leading order

Equation for Fp is
F {;'I ﬂ

Solution of this equation must be

|
Fy=—
0 2”2’5 (3.31)

which safisfies Fy=F; =0 at £=0 and the small 1 maiching condition from
(3.20)

Equation for Go is

é[{l +a{l +a,G )3}3 r+331‘12(l+326}25’9’ +F0,Gg = FyGp, ) =0 (332)

Using (3.27} we have

1 " "G
ety B ot morook a0y

Subject 1o
Gy =l+asinmx at £=0

and Gy »las £ mwm .
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Now at this point we obtain the first essential difference between the present
problem and Rees{14). Here eq (3.28) is nonlinear where as eq (3.25) reduced
(3.22) to ordinary differential form. [n this problem we cannot do this and it is
essential ta solve (3.28) using the Keller Box method using Ge=1 at x=0,
continuing until the solution becomes periodic.

However we also need to obtain the next term in F in order to recover the leading
order effect of boundary temperature varations. From {3.27) we see that it is

F™ Gy + FyFy, — Fofyy =0
subjectto Fi=F'=0at n=0 |

and E~~%§3 as { >

Hence
"+ Gy + ayFry —ayoH =0 (3.34)

Probably bestto use F"—> -{ as £ — = as the malching condition. Therefore

we 50lvo (3.28) & (3.34) simultanecusty.

Returning to the initial scaling, the rate of heat transfer becomes

o9 3% (3.35)
ol 3¢ le—g
and :
|
2 2 1 2 i 2 |
o =ajﬂ ”34{&? =y +x 34{6 g (3.36)
O s 95 lem 95 e L P '

To get a second term in the heat transfer expansion we need to go to the next order
in the inner layer to obtain: Q’
[

4

N



1 [+ a1+ 2,6, 6+ 30.0,GG" + 6aa,(1+ 4,6,V GG,
Pr| + 6a,a*:G)G,G,

+ 'F;xG:J - ‘F;;Glx - F;Gﬁx} =0

Subject to G1(0)=0, G| - &
Again, solve with (3.28) and (3.30) until periedicity is obtained. Then

og

an

%%
=0 o

3G,
.+_

&= alf L=0
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(3.38)
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Chapter 4

Numerical solutions and discussions

The parabelic system of equations {2.14)<2.15) together with the boundary
conditions {2.18), is nan-similar and its numerical solution must be obfained using a
marching method. The resulls presented here were obtained using the Keller-box
method, introduced by Keller and Cebeci [24] and described in more detail in
Cebeci and Bradshaw [32]. After reduction of equations (2.14)-(2.15) to first-order
form in n, the subsequent second-order accurate discretisation based halfway
between the grid points in bath the 4 and x-directions (discussed detailed in
Chapter 3) vields a set of nonlinear difference equations which are saolved using a
multi-dimensional Newton-Raphson iteration scheme. The results presented in Fig.
4.1 to Fig. 4.14 are based on uniform grids in both coordinate directions. There
were 201 gridpoints lying between p =0 and n= 20 and 40t between x = 0and x =
20. We restrict the presentation of our results to the three vaiues of the Prandtl
number: Pr=0.01{Liquid Metal) Pr= 0.7 {air} and Pr = 7 {(water).

Fig. 4.1 shows the evolution with x of /*(s =0}, a scaled surface shear stress, for

constant values of the temperature wave amplitude, a, and the constant radiation
parameter R4 for varicus values of Pr. In this figure we observe that as Pr. is
decreasing skin friction is increasing. One point is menticnable that when Pr.=0.01,
then wave ampiitude is higher than that of P=7. As x increases, the amplitude of
oscillation of the shear stress curves dacays slowly.

We observe in Fig. 4.2- Fig.4.4 the evolution with x of surface shear stress, for
various values of the temperature wave amplitude, a, and the constant radiation
paremeter Ry for different values of Pr. In these figure we observe that as Pris
decreasing skin friction is increasing. We also observe that as surface temperature
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wave amplitude is increasing shear stress is also increasing, and for decreasing of
wave amplitude it is decreasing gradually.

Some aspects of the overall behaviour of these curves may be explained by
observing that the boundary layer is thinner when the surface temperaturs is
relatively high and thicker when it is fow. These arises because relatively high
surface temperatuses induce relatively large upward fluid velocities with the
consequent increase in the rate of entertainment into the boundary layer. This
causes, in turn, a thinning of the boundary layer. Thus, we should expect high shear
stresses and rates of heat transfer at, or perhaps just beyond, where the surface
temperature attains its maximum values. There is an obvious qualitative difference
between the curves shown in Fig. 4.1 and those in Fig. 4.4. As x increases, the
amplitude of oscillation of the shear stress curves decays slowly, with x.

Now we want to give our attention to the Fig 4.5 to Fig: 4.7. where the evolution
with x of surface shear stress, for constant values of the temperature wave
amplitude, a, and the various radiation parameter Rgfor different values of Pr. The
most interesting part of this analysis is that, when radiation parameter R4 is
increasing skin friction is alsa increasing but when Ry =0. the result of skin friction is
exactly the same, which was found by Rees [14]. In our study we have found that
skin friction is increasing as Ry 15 increasing but at a decreasing rate. That is, when
Ra =1 then skin friction increases more in respect of Rq =10.

Now we have to analyze the curves, which represents in Fig 4-8 to Fig 4-14, which
represents the local Nusselt number that is, the rate of heat transfer.

Fig. 4.8 shows the evolution with x of surface rate of heat transfer, for constant
vaiues of the temperature wave amplitude, a, and the constant radiation parameter
R4 for various values of Pr. In this figure we observe here that as Pr is decreasing
rate of heat transfer increasing. One point is mentionable that when Pr=7.0 (water),
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then wave amplitude is higher than that of Pr.=0.01. As x increases, the amplitude
of oscillation of the rate of heat transfer increasing significantly.

Here we observe in Fig. 4.9- Fig. 4.11 the evolution with x of surface rate of heat
transfer, for various values of the temperature wave ampfitude, &, and the constant
radiation parameter Ry for different values of Pr. In these figure we observe that
as Pr. is decreasing rate of heat iransfer increasing. We also observe as surface
temperature wave amplitude is increasing rate of heat transfer is also increasing,
and for decreasing of wave amplitude it is decreases graduaily.

Important aspects of the overall behavior of these curves may be explained by
observing that the boundary layer is thinner when the surface temperature is
refatively high and thicker when it is low. These arises because relatively high
surface temperatures induce ralatively large upward fluid velociies with the
consequent increase in the rate of entertainment into the boundary layer. This
causes, in turn, a thinning of the boundary layer. Thus, we should expect high shear
stresses and retes of heat transfer at, or perhaps just beyond, where the surface
temperature attains its maximum values. There is an obvious qualitative difference
between the curves shown in Fig. 4.8 to Fig. 4.11. As x increases, the amplitude of
oscillation of the rate of heat transfer curves increases gradually, with x.

Indeed, the curves in Fig. 4.9 to Fig. 4.1 suggest that, whatever the value of a,
thera will always be a value of x beyond which some part of the rate of the heat
transfer curve hetween successive surface tempereture maxima wilf be positive.
This somewhat unusual phenomenon for boundary layer flows may be explained by
noting that when relatively hot fluid encounters a relatively cold part of the heated
surface the overall heat transfer will be from the fluid into the surface, rather than

the other way around.

Now wa have to give our attention to the figures Fig. 4.12 to Fig.4.14 where the
avolution with x of surface rate of heat transfer, for constant values of the
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temperature wave amplitude, a: and the various radiation paramater Ry for different
values of Pr. The most interesting part of this apalysis is that, when radiation
parameter Ry is increasing rate of heat transfer is also increasing but when Ry =0.
the result of rate of heat lransfer is exactly the same, which was found by Rees
[14]. In our study we have found that rate of heat transfer is increasing as Ra is
increasing but at a decreasing rate. That is, when Ry =1 then the rate of heat
transfer increased more in respect of Ry =10.

Fig. 41510 4.17 show the isotherms for Pr.=0.7 and a2=10.2, for Ry=0.0, 5.0, 10.0.

Here we see that the boundary layer maintains its overall thickness in terms of »
when x is large, although variations in thickness are clearly present when x is
small. The thickness of the region in which strong, surface induced temperature
variations are present reduces slowly in size as x increases. It is alsc clear that

isolines are increasing due to increasing of radiation parameter. .

In Fig. 4.18 to 4.20 are showing the isothemmns for Pr=7.0 and a=0.2, for Rg=0.0,
5.0, 10.0. Here we see that the boundary layer maintains its overall thickness in
terms of n when x is large, although vanations in thickness are clearly present
when x is small. The thickness of the region in which strong, surface induced

temperature variaticns are present reduces slowly in size as x increases. It is aiso
clear that isolines are increasing due to increasing of radiation parameter.
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Presentation of Figure
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Fig 4.2: Skin friction against & for Ry=0.0, a=0.0,0.2,0.4,0.6, 0.8, 1.0 at
Pr.=7.0
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Fig 4.4: Skin friction against £ for Ry=0.0, 2=0.0,0.2, 0.4, 0.6, 0.8,

1.0 at Pr.=0.01

Fig 4.3: Skin friction against & for Rs=0.0,2=0.0, 0.2, 0.4, 0.6, 0.8,

10atPr.=07
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Fig 4.5: Skin friction against £ for R=0.0, 1.0, 5.0, 10.0 a=0.2, at Pr=7.0
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Fig 4.6: Skin friction against £ for Rs=0.0, 1.0, 5.0, 10.0 a=0.2, at Pr.=0.7
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Fig 4.7 Skin friction against £ for R.=0.0, 1.0, 5.0, 10.0 a=0.2, at Pr.=0.01
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Fig 4.8: Rate of heat transfer ageinst £ for Ry=0.0, 2=0.2, and
Pr.=7.¢, 0.7, 0.01.
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Fig 4.9: Rate of heat transfer against £ for Ry=0.0, a=0.0, 0.2, 0.4, 0.6,
0.8, 1.0 atPr=7.0

33



25
2 1 a=1.0

15

05
g 0

05
=1 -
15 r
i =00
25 F -

o 5 10 £ 15 20
Fig 4.10: Rate of heat fransfer against £ for Rs=0.0, a=0.0, 0.2, 0.4,
06, 08, 1.0atPr=07
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Fig 4.11: Rate of heat transfer against £ for Rs=0.0, a=0.0, 0.2, 0.4,
0.6, C.8, 1.0 at Pr.=0.01
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Fig 4.12: Rate of heat transfer against £ for Rs~0.0, 1.0, 5.0, 10.0
a=0.2 at Pr.=7.0
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Fig 4.13: Rate of heat transfer against £ for Re=0.0, 1.0, 5.0, 10.0 a=0.2
at Pr.=0.7 |
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Fig 4.14: Rate of heat transfer against & for Rq=0.0, 1.0, 5.0, 10.0 a=0.2 at
Pr=0.01
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Fig: 415 Isatherms for Pr=0.7, a=0.2, Rd =0.0

0

Fig: 4.16 Isctherms for Pr=0.7, a=0.2, (b} Rd =5.0
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Fig: 4.17 Isotherms for Pr=0.7, 2= 0.2, Rd =210.0

4

Fig 4.18 Isotherms for Pr=7.0, @ = 0.2, Rd =0.0
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Fig 4.19 Isotherms for Pr=7.0, a = 0.2, Rd =5.0

Fig 4.20 1sotherms for Pr =7.0, a = 0.2, Rd =10.0
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Chapter &

Effect of Radiation of steady streamwise surface temperature

variations on a vertical Cona

Mathematical formalism
I

We consider a steady two-dimensional laminar free convection flow of the
boundary layer induced by a heated semi-infinite surface immersed in an
incompressible Newtonian fluid. in particular, the heated surface is maintained at
the steady temperature, fluid having temperature, 7, from a vertical cone. The
physical coordinates (x, y} are chosen such that x is measured from the leading
edge in the stream wise direction and y is measured nomal to the surface of the
cone. The coordinate system, velocity direction and the gravity orientation are
shown in Figure 5.

5 T
"'J

A\ /1

=

O
y
Figure 5: Physical mode! and co-ordinates

For this problem we have .
T =T, +(T, - T, X1 - asin(zid)) (5.1)
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where T, is the ambient fluid temperature, T, is the mean-surface temperature
which is such that 7, >7,, a is the relative amplitude of the surface temperature

variations and 2d is the wavelength of the variations. The steady two-dimensional

equations of motion are given by

LA A A ] {52)
Hr f)+a(r:?) _o
0x gy
e (5.3
uguti+vﬂf——- 15‘0 u+gﬂ(T -T Jcosg
ox 8y P 63:
n N {5.4)
u?—"fw—a—jf:i{ﬂy . ]
ox By Pr 3x(a+o0,) y
with » = x8ing
Boundary conditions are
u=0, v=0, T=T,+(T,-T,)X1+asinzy) at y=0 (5.5)

u=0, T=T asy—>wm

Here Gris the Grashof number and Pr is the Prandil number. In the derivation of
equations (5.2) the Boussinesq approximation has been assumed. We note that the

>
AL

43



Grashof number has been based on d, half the dimensional wavelength of the
thermal waves.

In the equations, ¥ and T are, respectively, the velocity components in the x and y
directions, T is the fluid temperature, v is the kinematic viscosity, / is the thermal
expansion coefficient, « is the thermal diffusivity, x is the thermal conductivity , a is
the Rossetand mean absorption coefficient, o is the Stephan-Boltzman constant, o
is the scattering coefficient

When the surface temperature is uniform and the Grashof number is very large, the
resulting boundary-layer flow is self-simifar. But the presence of sinusoidal surface
temperature distributions, such as that given by (5.1), renders the boundary-layer
flow non-similar. The boundary-layer equations are obtained by introducing the

scaling
S T T
2
u=—0r u, v=—0r v I=£.
1% v L
1 2 ~ — ' (BB
}':XGF“, P= LEG?'_IP, 8= T TI‘ }
L ov T, -T,

into equations (5.2)-(5.4), formally letting Gr become asymptotically large and
reteining only the leading order terms. Thus we obtain

u. +v, =0 (5.7)

uu, +vi, =u,, + g {5.9)

1 (5.10)
ub, +v8, =6 +-—7 g )
’ Prl 7 3x(ato)t M

Here the asterisk superscripts have been omitted for clarity of presentation.
Equation (5.8) serves to define the pressure field in terms of the two velocity



components and is decoupled from the other three equations. Therefore, we shail
not consider it further. As the equations are two-dimensional we define a stream

function y, in the usual way.

1 1 (5.1%)
uziw_}!! V:———II{/I
F r

and therefore, (5.7} is satisfied automatically. Guided by the famitiar self-similar
form corresponding to a uniform surface temperature, we use the substitution

w=x""(n.x), 6=g(mx), r=xsing (5.12)
where
|
L {5.13)
is the pseudo-similarity variable. Equation (5.8) and (5.9} reduce to |
g I L fF (S S S =0 (5:14)
1 4 3 '
EHIJFERJ(LF(H" —l)g) }g ] | (5.15)
+Ifg'+x(f.9" - fg,)=0
and the boundary conditions are |
f=0, f'=0, g=l+asinm (5.16)

atn=0and fg—0 as n >

In equations (5.14)-(5.16), primes denote derivatives with respect to ».
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3. Numerical solutions

The parabolic system of equations {5.14)-(5.16), is non-simiiasr and its numerical
solution must be obtained using a marching method. The resulls presented here
were obtained using the Keller-box method, introduced by Keller and Cebeci [24]
and described in more detail in Cebeci and Bradshaw {32]. After reduction of
equations (5.14)-(5.15) to first-order form in n, the subsequent second-order
accurate discretisation based halfway between the grid points in both the s~ and x-
directions (discussed detailed in Chapter 3} yields a set of nonlinear difference
equations which are solved using a multi-dimensional Newton-Raphson iteration
scheme. The results presented in Fig. 5.1 to Fig. 5.14 are based on uniform grids in
both coordinate directions. There were 101 gridpoints lying between 7 =0 and 7 =
10 and 201 between x = 0 and x = 10. We restrict the presentation of our results to
the three values of the Prandtl number: Pr.=0.0%{Liquid Metsl} Pr. = 0.7 {air) and Pr.
= 7 {water}.

Fig. 5.1 shows the evolution with x of f"(7=0), a scaled surface shear stress, for

constent values of the temperature wave amplitude, a, and the constant radiation
parameter Ry for various values of Pr. In this figure we observed that as Pr. is
decreasing skin friction is increasing. One point is mentionable that when Pr.=0.01,
then wave amplitude is high than that of Pr=7. As x increases, the amplitude of
oscillation of the shear stress curves decays siowly.

We observe in Fig. 5.2- Fig.5.4 the evolution with x of surface shear stress, for
various values of the temperature wave amplitude, a, and the constant radiation
parameter Ryfor different values of Pr. In these figure we observed that as Pr. is
decreasing skin friction is increasing. We also observed as surface temperature
wave amplitude is increasing shear stress is aiso increasing, and for decreasing of
wave amplituda it is decreasing gradually.
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Some aspects of the overall behaviour of these curves may be explained by
observing that the boundary layer is thinner when the surface temperature is
relatively high and thicker when it is low. This arises because relatively high surface
temperatures induce relatively large upward fluid velocities with the consequent
increase in the rate of entertainment into the boundary layer. This causes, in tum, a
thinning of the boundary ayer. Thus, we should expect high shear stresses and
rates of heat fransfer at, or perhaps just beyond, where the surface temperature
attains its maximum values. There is an obvious qualitative difference between the
curves shown in Fig. 5.1 and those in Fig. 5.4. As x increases, the amplitude of
oscillation of the shear stress curves deceys siowly, with x.

Now we have to give our attention to the figure presented in Fig. 55 to Fig.5.7.
Where the evolution with x of surface shear stress, for constant values of the
temperature wave amplitude, a, and the various radiation parameter Rqfor different
vatues of Pr. The most interesting pant of this analysis is that, when radiation
parameter Ry is increasing skin friction is also increasing but when Ry =0. the resuit
of skin friction is exactly the same, which was found by Rees []. in our study we
have found that skin friction is increasing as Ry is increasing but at a decreasing
rate. That is, when Rg =1 then skin friction is increased more in respect of Rq =10,

Now we have to analyze the curves, which represents in Fig-5.8 to Fig-5.14, the
local Nusselt number that is, the rate of heat transfer.

Fig. 5.8 shows the evolution with x of surface rate of heat transfer, for constant
values of the temperature wave amplitude, a, and the constant radiation parameter
R for various values of Pr. In this figure we observed that as Pr. is decreasing rate
of heat transfer increasing. One point is mentionable that when Pr.=7.0, then wave
amplitude is high than that of Pr.=0.01. As x increases, the amplitude of oscillation
of the rate of heat transfer increasing significently,
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Here we observe in Fig. 5.9 to Fig. 5.11 the evotution with x of surface rate of heat
transfer, for various values of the temperature wave amplitude, a, and the constant
radiation parameter Ry for different values of Pr. In these figures we observed
that as Pr. is decreasing rate of heat transfer increasing. We also observed as
surface temperature wave amplitude is increasing rate of heat transfer is also
increasing, and for decreasing of wave amplitude it is decreasing gradually.

Important aspects of lhe overall behavior of these curves may be explained by
observing that the boundary fayer is thinner when the surface temperature is
relatively high and thicker when it is low. This arises because relatively high surface
temperatures induce relatively large upward fluid velocities with the consaquent
increase in the rate of entertzinment into Lhe boundary layer. This causes, in turn, &
thinning of the boundary iayer. Thus, we should expact high shear stresses and
rates of heat fransfer at, or perhaps just beyond, where the surface temperature
attaing its maximum values. There is an obvious gualitative diffierence between the
curves shown in Fig. 5.8 to Fig. 5.11. As x increases, the amplitude of oscillation of
the rate of heat transfer curves increases gradually, with x.

Indeed, the curves in Fig. 5.9 to Fig. 5.11 suggest that, whatever the value of a,
there will always be a value of x beyond which some part of the rate of the heat
transfer curve between successive surface temperature maxima will be positive.
This somewhat unusual phenomenon for boundary layer flows may be explained by
noting Lhat when relatively hot fluid encounters a relatively cold part of the heated
surface the overall heat transfer will be from the fluid into the surface, rather than
the other way around.

Now we have to give our attention to the figures Fig. 5.12 te Fig.5.14 VWhere the
evolution with x of surface rate of heat transfer, for constant  values of the
temperature wave amplitude, &, and the various radiation parameter Rqfor different
values of Pr. The most interesting part of this analysis is that, when radiation
parameter Rq is increasing rate of heat fransfer is also increasing but when Rq=0.
the result of rate of heat transfer is exactly the same, which was found by
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Rees [14}. In our study we have found that rate of heat transfer is increasing as Ry
is increasing but at a decreasing rate. That is, when Ra =1 then rate of heat transfer

increased more in respect of Ry =10.
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Presentation of Figure
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Fig 5.1: Skin fricion against £ for R.=0.0, a=0.2, Pr=7.0,07,0.01.
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Fig 5.2: Skin friction against £ for Rs=0.0, a=0.0, 0.2,04,086, 08 10atPr=70 - D
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Fig 5.3: Skin friction against £ for R¢=0.0, a=0.0, 0.2, 0.4,0.68, 0.8,
1.0 at Pr.=0.7
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Fig 5.4: Skin friction against £ for R.=0.0, a=0.0, 0.2, 0.4, 0.8, 0.8, 1.0 at
Py =0.01
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Fig 5.6: Skin friction against § for Rg=0.0,1.0,5.0, 10.0 a=0.2, at Pr.=0.7
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Fig 5.7: Skin friction against& for R¢=0.0, 1.0, 5.0, 10.0 a=0.2, at
Pr.=0.01
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Fig 5.8: Rate of heat transfer against £ for Rg=0.0, a=0.2, Pr=7.0, 07,
0.01.

Fig 5.9: Rate of heat transfer against & for Re=0.0, a=0.0, 0.2,
0.4,06 08, 1.0atPr=70
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Fig 5.10: Rate of heat transfer against & for Re=0.0, 2=0.0, 0.2, 0.4,0.8, 08,
1.0atPr.=0.7
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Fig 5.11: Rate of heat transfer against & for Rg=0.0, a=0.0,0.2, 0.4,
0.6,0.8, 1.0 at Pr.=0.01
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Fig 5.12: Rate of heat transfer against & for R¢=0.0, 3.0, 5.0, 10.0 a=0.2 at
Pr=7.0
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Fig 5.13: Rate of heat transfer against & for R=0.0, 1.0, 5.0, 10.0 a=0.2
at Pr.=0.T
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Fig 5.14: Rate of heat transfer against § for Rg=0.0, 1.0, 5.0, 10.0

a=0.2 at Pr.=0.01
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Chapter 6

Conclusions

We have analyzed the effect of radiation-conduction interaction with steady
streamwise surface temperature vanations on vertical free canvection as well as
vertical cone has been investigated numerically using a finite difference method.
The effect of vanations in the Plank number, the surface temperature wave
amplitude, and the Prandtl number on the shear stress and rate of suface heat
transfer have been presented graphically.

We have restricted the presentation of our results to the three values of the
Prandtl number: Pr.=0.01{Liguid Metal) Pr. = 0.7 (air) and Pr. = 7 (water).

In our study we observed that as Pr. is decreasing skin friction is increasing.
One peint is menticnabie that when Pr.=0.01, then wave amgplitude is high than
that of Pr.=7. As x increases, the ampiitude of osciltation of the shear stress
curves decays slowly.

Physical aspects of the averall behaviour of these result may be explained by
observing that the boundary fayer is thinner when the surface temperature is
relatively high and thicker when it is low. This arises because retatively high
surace temperatures induce relatively iarge upward fluid velocities with the
cansequent increase in the rate of entertainment into the boundary layer. This
causes, in turn, a thinning of the boundary layer. Thus, we should expect high
shear stresses and rates of heat transfer at, or perhaps just beyond, where the
surface temperature attains its maximum values.

The mast interesting part of this anafysis is that, when radiation parameter Rgis
increasing skin friction is also increasing but when Rq =0. the result of skin
friction is exactly the same, which was found by Rees [14]. In our study we
have found that skin friction is increasing as R is increasing but at a decreasing
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rate. That is, when Ry =1 then skin friction is increased more in respect of Ry
=10.

Now we have fo analyze the fjocal Nusselt number that is, the rate of heat
transfer. !
We observed that as Pr. is decreasing rate of heat transfer increasing. One
point is mentionable that when Pr.=7.0, then wave amplitude is high than ihat of
Pr.=0.01. As x increases, the amplitude of oscillation of the rate of heat bansfer

increasing significantly. .

The surface rate of heat transfer, for various values of the temperature wave
amplitude, a, and the constant radiation parameter R for different values of Pr.
In this case we observed that as Pr. is decreasing, rate of heat transfer
increasing. We also observed as surface temperature wave amplifude is
increasing rate of heat transfer is also increasing, and for decreasing of weve
amplitude it is decreasing gradually. '

Important aspects of the overall behavior of these curves may be explained by
observing that the boundary layer is thinner when the surface temperature is
refatively high and thicker when it is low. This arises because relatively high
surface temperatures induce relatively large upwerd fluid veiocities with the
consequent increase in the rate of entertainment into the boundary layer. This
causes, in turn, a thinning of the boundary layer. Thus, we should expect high
shear stresses and rates of heat transfer at, or perhaps just beyond, where the
surface {emperature attains its maximum values. .

Now we have to give our attention {o the surface rate of heat transfer, for
constant values of the temperature wave amplitude, &, and the various radiation
parameter Rqfor different values of Pr. The most interesting part of this analysis
is that, when radiation parameter Rq is increasing rate of heat transfer is also
increasing but when Ry =0. the result of rate of heat transfer is exactly the
same, which was found by Rees [14]. In our study we have found that rate of
heat transfer is increasing as Ry is increasing but at a decreasing rate. That is,

when R4 =1 then rate of heat transfer increased more in respect of Rq =10.
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