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ABSTRACT 

 

This thesis deals with the effect of bounding wall on the Stokes drag for a spherical 
particle moving eccentrically inside a cylindrical channel. Numerous investigations 
were conducted in the past to find the increased drag for a particle flowing along the 
channel centerline. However, in reality particles may take any radial position inside the 
channel. This necessitates averaging the local enhanced drag coefficients for particles of 
all radial positions to get the resulting overall convective flux of the particle containing 
fluid. In this thesis, the values of local enhanced drag coefficients for an eccentrically 
moving spherical particle of different sizes and eccentric positions are quantified.  

A general three dimensional finite element particle transport model consisting of 
Navier-Stokes and continuity equations defined in arbitrary Lagrangian-Eulerian 
kinematics has been developed to study the motion of a rigid uncharged spherical 
particle moving eccentrically inside a cylindrical channel. Wall correction factors and 
lag factor have been calculated in the Stokes flow regime (ܴ݁ ൏ 1) covering the range 
of particle to channel radii ratio, 0.2 ≤ 0.9  ≥ ߣ  and eccentricity,0 ≤ ݁ ≤  0.8 , where, 
ߣ ൌ ଴ݎ/ܽ , ݁ ൌ ݀/ሺݎ଴ െ ܽሻand ܽ, ݎ଴ , and ݀ represent particle radii, channel radii, and 
displacement of particle center from the channel centerline, respectively. Three different 
flow situations have been considered: i) steady particle motion in an otherwise 
quiescent fluid, ii) particle held fixed in a Poiseuille flow, and iii) freely suspended 
particle in a pressure driven flow. 

The unique feature of this model is that, it directly provides precise quantitative insight 
about how slow a particle moves compared to the surrounding fluid i.e. the lag factor at 
any eccentric position inside the channel. The calculated values match closely with the 
results obtained by lubrication theory for higher eccentric positions. However, with the 
increase of surface to surface separation distance at lower eccentric positions and lower 
particle to channel radii ratio the present model shows deviation from results obtained 
by lubrication theory. 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 
 

Item  Page

Title Page i 

Board of Examiners ii 

Candidate’s Declaration iii

Certificate of Research  iv 

Dedication   v 

Acknowledgements vi 

Abstract vii

Table of Contents viii

Nomenclature x 

List of Table xi 

List of Figures xii

Chapter 1  Introduction 1 

1.1 Background and Motivation 1 

1.2 Objective of the Thesis 3 

1.3 Outline of the Thesis 3 
   

Chapter 2  Literature Review 4 
   

Chapter 3  Theoretical Description of the Model 9 

3.1 Model Geometry 9 

3.2 Governing Equations for Fluid Flow 10

3.3 Calculation of Wall Correction Factors 12

3.4 Necessity of Arbitrary Lagrangian Eulerian (ALE) Method 13

3.5 Arbitrary Lagrangian Eulerian Kinematics 15

3.6 Mesh Updating Method 16

3.7 Non-Dimensionalization of the Equations 16

3.8 Newton’s Second Law of Motion for Unsteady Particle Motion 17



ix 
 

3.9 Boundary Conditions 18

3.9.1 Boundary conditions for Case-I 18

3.9.2 Boundary conditions for Case-II 19

3.9.3 Boundary conditions for Case-III 20
   

Chapter 4  Numerical Solution Methodology 21

4.1  Finite Element Method 21

4.1.1 Weak form of Navier-Stokes equation in ALE kinematics 21

4.1.2 Weak form of the continuity equation 23

4.1.3 Weak form of the elliptic mesh smoothing equation 23

4.2  Computer Implementation 25

4.2.1 Mesh generation 25

4.2.2 Shape functions or basis functions 25

4.2.3 Gauss quadrature integration order 25

4.2.4 Algebraic equations solving technique 25

4.2.5 Computer configuration 26

4.3  Implementation of Case-III 26

4.4  Mesh Sensitivity Analysis 26

4.5  Flowchart of the Overall Solution Methodology 28
   

Chapter 5  Result and Discussion 29

5.1  Model Validation 29

5.2  Effect of Eccentricity of the Particle on its Motion 32

5.3  Effect of Size of the Particle on its Motion 38

5.4  Comparison with Lubrication Theory Results 42
   

Chapter 6  Conclusion and Recommendations 47

6.1  Concluding Remarks 47

6.2  Recommendation for Future Works 48
   

References  49

Appendix  52
 



x 
 

NOMENCLATURE 

 

Notation  Definition 

 Density of the fluid   ߩ
 Dynamic viscosity of the fluid   ߤ
߭    Kinematic viscosity of the fluid 

௠ܸ௔௫   Maximum centerline velocity of fluid in a Poiseuille flow  
௠ܸ   Mean velocity of the fluid in channel 

ܽ   Radius of the spherical particle 
 ଴   Radius of the cylindrical channelݎ
௥௘௦ݎ    Radius of the reservoir 
݀   Distance of the particle center from the channel axis 
݄   Separation distance of the particle from the channel wall 
݁   Eccentricity of the particle inside the channel 
 The ratio of the particle and channel radius    ߣ
K1, K2   Wall correction factors 
 Lag factor   ܩ
࢛   Velocity vector of the fluid 
,ݑ ,ݒ  Velocity components in x, y and z direction respectively   ݓ
ܷ௣   Velocity of the particle 
 Pressure of the flowing fluid at any point within the channel   ݌
 Fluid body force   ࢈ࡲ
߬௜௝   Viscous stress tensor 
 ௜௝    Total stress tensorߪ
ܴ݁   Reynolds number 
,ߔ ߮, ߰ Mapping functions for transforming different co-ordinate systems 

in ALE description 
,ݔ ܺ, ࣑  Symbols used in ALE description to denote co-ordinate points at 

spatial, material and referential domains respectively 
ܴ࢞, ,ࢄܴ ܴ࣑   Symbols for different reference domains in ALE description 
Ω   Fixed frame of reference 
Ωഥ   Moving Mesh frame 
߰௠   Mesh velocity 
߰௠௫ , ߰௠௬ , ߰௠௭  Mesh velocity in x, y and z directions respectively 
ොݑ     Shape function for x component of velocity 
 Shape function for pressure    ̂݌
xො୧    Shape function for coordinates in moving mesh frame 
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1. INTRODUCTION 

 

1.1 Background and Motivation 

Numerous engineering applications involve fluid flow containing suspended particles 
and require particle filtration. The diversity of such applications may be illustrated by a 
few examples: membrane filtration, the characterization of hemodialysis membranes, 
the modeling of size-exclusion and hydrodynamic chromatography, the determination 
of an optimal pore size for supported catalysts, DNA and protein separations, porous 
media flow and blood flow modeling [1-3]. To understand the separation technique of 
these filtration membranes, the hindered transport theory has been extensively 
investigated. It is well known that solutes in liquid filled pores of molecular dimensions 
have reduced diffusivities. For large solute molecules that are in the order of channel 
radius in size, this hindered transport can be explained by a combination of the particle-
wall hydrodynamic interactions and steric restrictions. This phenomenon has been 
studied both theoretically and experimentally in past, to understand the effect of size of 
the solute particles on membrane permeability. 

The description of membrane transport in terms of a series of parallel pores of 
cylindrical shapes has received considerable attention over the years. Modeling the 
pores as the summation of parallel cylinders has significant benefit as it requires only 
analyzing the problem of a single particle in a single cylindrical channel. The 
fundamental research on the hydrodynamic interaction of spherical particle moving 
through liquid filled channel is comprehensively investigated in the past. 

The effect of the vicinity of the wall on the particle motion is usually characterized in 
terms of dimensionless wall correction factors and lag factor. Wall correction factor is 
the ratio of the drag force encountered by a moving particle through a liquid filled 
channel to the drag force experienced when moving through unbounded liquid. Lag 
factor is the ratio of the steady velocity of particle to the velocity of the fluid in absence 
of particle. This defines how slow a particle moves relative to the flowing fluid. The 
vicinity of the particle surface to the channel wall is characterized by the particle to 
channel radii ratio ߣ ሺൌ ܽ ,଴ሻ, whereݎ/ܽ  = particle radii, ݎ଴  = channel radii and the 
eccentricity ݁ of the particle is defined as, ݁ ൌ ݀/ሺݎ଴ െ ܽሻ, here, ݀ = displacement of 
particle center from the channel centerline.  

The wall correction factors and lag factor for a rigid spherical particle flowing along the 
channel centerline is available in the literature for a variety of flow situations. Both 
analytical and numerical calculations were reported for the centerline motion of the 
particle through the channel, and those results were later verified by experimental 
results. However, in real applications e.g. protein transports, DNA separation, blood 
flow simulation, particles may take any radial position inside the channel. This 
necessitates averaging the local enhanced drag coefficients for particles of all radial 
positions to predict the resulting overall convective flux of the particle containing fluid. 
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So, the values of local enhanced drag coefficients for an eccentrically positioned 
spherical particle of different sizes should be precisely quantified. Literature provides 
some attempt to model the flow of eccentrically moving particle inside the channel. 
However, the analysis was limited to very small particles where the particle separation 
from the channel wall is higher compared to its radius [4]. Another attempt was made to 
find the dependence of the particle drag on its lateral position [5]. However, no exact 
quantification was presented. A numerical approach, namely the spectral boundary 
element method was used to find the wall correction factors and lag factor for an 
eccentrically flowing particle inside the channel [6]. 

These investigations have been done using the linear Stokes equation with the complete 
omission of the nonlinear inertia term in the Navier-Stokes equation. At very low 
Reynolds number, this is a rational choice as the inertia effect is negligible compared to 
the viscous effect at this flow region. However, this limits the analysis to be performed 
at very low Reynolds number only. In this thesis, the full Navier-Stokes equation is 
solved, considering the inertia effects on the particle motion. This facilitates analyzing 
the wall effects on the particle motion at any Reynolds number, utilizing the same 
model. Advantage is taken of the linearity of the Navier-Stokes equation at low 
Reynolds number to get the full description of the problem from linear superposition of 
two different simpler ones.  

In conventional fluid mechanics problems governing Navier-Stokes equation is usually 
solved in Eulerian framework. In this description the frame of reference remains fixed 
in space and the continuum moves with respect to the reference frame. However, 
presence of the moving particle within the fluid results in a geometrical domain which 
deforms with time. This prevents defining the Navier-Stokes equation in purely 
Eulerian framework. On the other hand, the large distortion of the material resulting 
from the fluid motion makes the Lagrangian description unsuitable. So, a new 
kinematical description is utilized in the present research which is known as arbitrary 
Lagrangian Eulerian (ALE) description [7]. In ALE description, the frame of references 
i.e. the mesh nodes on the computational domain can be held fixed in a pure Eulerian 
way or can be allowed to move with the deforming continuum in Lagrangian fashion at 
certain interfaces, or can be given some arbitrary velocity with respect to the deforming 
material. The motion of the moving particle is tracked by the Lagrangian framework 
and the position of the computational grid and the associated flow field variables are 
updated after each time step. Simulating the movement of the particle through liquid 
filled channel is not possible by the Lagrangian or Eulerian methods independently. 
This method has overcome this limitation.  

The off-centerline position of the particle prevents axi-symmetric analysis of the 
problem. A three dimensional geometric model is utilized to obtain the solution for 
eccentric motion of a particle in the cylindrical channel. A commercial finite element 
package is used. Total drag force on the particle is calculated by integrating the stress 
tensor on the particle surface. The calculated drag force is used to find the wall 
correction factors and lag factor of the particles. 
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1.2 Objective of the Thesis 

The specific objectives of this thesis are as follows:   

(a) To develop a 3-D finite element model consisting of Navier-Stokes and 
continuity equations defined in arbitrary Lagrangian-Eulerian (ALE) kinematics 
to study the motion of rigid, uncharged spherical particles moving through liquid 
filled cylindrical microchannel. 

(b) To study the wall effect on the eccentrically moving particle in a cylindrical 
microchannel. Three flow situations are considered: 

Case-I:  considers the translation of the spherical particle parallel to the channel 
axis with a uniform velocity in an otherwise quiescent fluid. The wall correction 
factor determined in this case is termed as K1. 

Case-II:  considers a fixed spherical particle in a Poiseuille flow at different 
radial positions of the cylinder. Wall correction factor determined in this case is 
termed as K2. 

Case-III:  considers a spherical particle suspended in the Poiseuille flow and free 
to move with the fluid. From this analysis the lag factor G can be directly 
determined. 

(c) To calculate the wall correction factors and lag factor of a spherical particle 
moving eccentrically in a cylindrical channel for different particle to channel 
radii ratios ሺ0.2 ≤ 0.9  ≥ ߣሻ and different eccentric positions ሺ0 ≤ ݁ ≤  0.8ሻ. 

1.3 Outline of the Thesis 

A detail literature review is provided in Chapter 2. The theoretical description of the 
model is described in Chapter 3. The particle-channel geometrical configuration, the 
governing equations for fluid flow, arbitrary Lagrangian Eulerian kinematics of particle 
movement, boundary conditions, non-dimensionalization of the model, and calculation 
procedure of wall correction factors are described. In Chapter 4, numerical solution 
methodology of the model is described. A brief description of the procedure involved in 
finite element analysis along with the weak form formulation of Navier-Stokes 
equation, continuity equation and mesh smoothing equation is provided. Procedure for 
implementing the solution methodology i.e. meshing, shape functions, algebraic 
equation solving techniques etc. are delineated. A flowchart of the overall solution 
methodology is also provided. Chapter 5 presents the simulation results. First the model 
is validated by comparing the calculated wall correction factors of a spherical particle 
flowing along the channel axis, against existing analytical and numerical results found 
in the literature. In the later sections, the values of the wall correction factors are 
presented for spheres of different sizes, moving at different radial positions inside the 
channel. In Chapter 6, the conclusion and the recommendations for future works are 
presented. 



2. LITERATURE REVIEW 

 

Transport of particles through microscopic pores filled with viscous fluid plays an 
important role in many engineering disciplines. The maximum achievable flux for 
particle-containing fluid through microscopic channel is found significantly less than 
the pure fluid flux. The rate of convective transport of the solute particles is found to be 
lower than the product of bulk solute concentration and fluid flow rate. In absence of 
channel fouling, this hindered transport results entirely from the hydrodynamic 
retardation effect on the moving particle due to the proximity of wall. Extensive studies 
on this topic by different researchers are reviewed in literature [8-9].  

Different theoretical methods have been introduced to explain this hindered transport 
phenomena. Most investigators have modeled the pores as the summation of parallel 
cylinders. As a result, in most of the cases, the motion of a single particle in a 
cylindrical channel is analyzed. Another simplification is done by assuming the particle 
motion to be along the axis of the cylinder that reduces the problem from three 
dimensional analysis to two dimensional axi-symmetric analysis. The effect of 
proximity of the cylinder walls on the drag of an axially moving sphere was initially 
analyzed using the method of reflection [10]. In this method, starting with the known 
solution for the drag of a rigid sphere in an unbounded medium i.e. the Stokes solution, 
a ‘reflection flow’ is superposed such that the boundary conditions on the sphere are 
satisfied exactly. The drag of the sphere is obtained from Stokes law using the velocity 
of the sphere increased by the average ‘reflection’ velocity on the sphere. Approximate 
expression for the drag of the rigid spheres was given. 

An exact solution for the wall correction factors for the axial motion of rigid spheres in 
stationary and moving liquids within an infinitely long cylindrical channel has been 
obtained in terms of an infinite set of linear algebraic equations for the coefficients of 
Stokes stream functions [11]. In this analysis, it was pointed out that, the drag of a 
sphere in motion within a moving liquid is composed of two parts: namely, the drag due 
to the motion of the sphere in a quiescent liquid inside the cylindrical tube, and the drag 
due to the motion of the liquid within the cylindrical tube. Both cases were analyzed for 
rigid spheres and fluid spheres (i.e. spheres which have different physical properties 
than the external fluid and are characterized by internal motion). However, the provided 
solution for the fluid spheres was approximate. Moreover, the results of the wall 
correction factors of particles they provided were limited to the ratios of particle to 
channel radii ߣ ൑ 0.8, where ߣ ൌ  ,଴ are the particle and channel radiiݎ ଴ and a andݎ/ܽ
respectively. 

The change in the different aspects of the behavior of the flowing suspended particles 
due to change in particle size and shape and flow induced deformation was investigated 
[4]. The analysis was done using the linear creeping flow equations for very small 
particles i.e. ߣ ൏൏ 1. Method of reflection was used to find the additional pressure drop 
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required for a single spherical particle in a Poiseuille flow. Eccentrically moving 
particles was also considered for cases where the particle separation from the tube walls 
is large compared to the particle radius. It was pointed out both theoretically and 
experimentally that, due to the linearity of the creeping flow equations, radial migration 
of an eccentrically moving particle can be neglected, but at higher Reynolds number, 
due to the presence of nonlinear inertia force, particles have a tendency to move radially 
across streamlines. Experimental evidences were presented to state that, a neutrally 
buoyant sphere migrates towards a position of stable equilibrium at a distance of 0.5ݎ଴ 
to 0.6ݎ଴. Deformations of deformable fluid drop and flexible filaments, and effect of 
unsteady flow thorough cylindrical tube were also discussed. 

Singular perturbation techniques was used to investigate the slow, asymmetric flow 
around a sphere positioned eccentrically within a viscous liquid filled long, circular, 
cylindrical channel [5]. They provided wall correction factors for the axially flowing 
spherical particle accurately for all λ values (0 ൑ ߣ ൑ 1). The obtained results covered 
the situations in which the sphere occupies virtually the entire cross section of the 
cylinder, so that the clearance between the particle and tube wall was everywhere small 
compared with both the sphere and tube radii which eventually presented an improved 
version of the conventional “lubrication-theory” analysis. Asymptotic expansions, valid 
for small dimensionless clearances were obtained for the hydrodynamic force, torque 
and pressure drop for flow past a stationary sphere, and for a sphere translating or 
rotating in stationary fluid. However, the dependence of drag force on the spherical 
particle upon its lateral position was represented by an undetermined function. Change 
in the translational velocity for a sphere in a Poiseuille flow with its eccentric position 
was predicted. It was stated that, displacement of the sphere to eccentric position 
decreases its velocity only slightly, unless eccentricity is very close to unity. The sphere 
translates faster than the mean fluid velocity for most eccentric positions. Lateral 
displacement of the sphere from the concentric position leads to a considerable increase 
in additional pressure drop, all other things being equal. Sedimentation of a sphere in a 
vertical tube was also analyzed. It was found that, the settling velocity increases 
monotonically with lateral position until the eccentricity equals to 0.98. 

The governing hydrodynamic equations of transport through microchannel were re-
examined and necessary conditions for a simplified, one-dimensional treatment of the 
diffusion and convection processes were established [12]. Both empirical and 
theoretical approaches were carried out and wall correction factors for the centerline 
motion of a rigid spherical particle were calculated for 0 ൑ ߣ ൑ 0.9 [13]. These were 
the more accurate values of these factors than calculated by [11].  

The objective of the above mentioned research works on hindered transport was to 
predict transport coefficients from the information of size, shape and electrical charge of 
the solute particles and pores. The theoretical development of diffusive and convective 
transport of dilute solutions of neutral spheres in cylindrical pores is reviewed and 
extension of this basic theory including electrostatic interactions, non-spherical solutes, 
pore shapes other than cylindrical and finite solute concentration is discussed [8]. 
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First numerical investigation of this topic was initially performed using the finite 
element method to calculate the wall correction factors for single particle and short 
chain of particles flowing along the axis of the cylinder [14]. The values of the wall 
correction factors were obtained for ߣ ൑ 0.8. Limiting particle spacing for short chain 
of particles was found, for which single sphere approximation gives accurate results for 
the inner spheres of the particle chain. It was shown that, single sphere calculations have 
a wide range of applicability, which simplifies the effort involved in numerical 
calculations considerably. The calculated values of the wall correction factors were used 
to evaluate the maximum achievable flux of a particle containing fluid through a micro-
porous membrane. In extension of this analysis, the same researchers have included the 
electrostatic effect with the pure hydrodynamic retardation effect to find the forces on a 
charged spherical particle as a function of distance of approach and entry to a charged 
cylindrical channel in a charged planar surface [15]. Galerkin finite element scheme was 
implemented for getting the numerical solution of the nonlinear Poisson-Boltzmann and 
Navier-Stokes equations for electrostatic interaction and hydrodynamic interaction, 
respectively. 

The resistance force for a torque free spherical particle flowing eccentrically inside a 
cylindrical channel was first analyzed numerically [6]. Stokes equation with the 
boundary conditions was formulated using the boundary integral method. The boundary 
integral equation was numerically solved by spectral boundary element method. They 
have considered rigid solid spheres, fluid droplets and bubbles. A lubrication theory was 
also presented for predicting the limiting resistance of bodies near contact with the 
cylindrical walls. The calculated numerical data was represented by algebraic 
expressions for entire eccentricity values ( 0 ൏  ݁ ൏ 1 ) and for all particle sizes 
(0 ൏ ൏ ߣ  0.9). The numerical coefficients in these algebraic expressions were obtained 
from the detailed computational results together with known asymptotic limits. 

Lattice-Boltzmann method was used to calculate the total hydrodynamic force and the 
wall correction factors for a sphere flowing inside an orthogonal circular cylinder and in 
a prismatic enclosure with various rectangular cross-sections [16]. Wall correction 
factors for the centerline motion of the sphere in the creeping flow region were obtained 
for ߣ ൑ 0.8 . The effect of inertia on the particle motion was also determined by 
computing the hydrodynamic force at several values of the Reynolds number. Off-
center settling of a solid sphere was also investigated. Using direct numerical 
simulation, considering the inertia effect, they have found that there exists a lateral force 
on the eccentrically moving particle for finite Reynolds number flows. This lateral force 
combined with the viscosity of the fluid, results in damped oscillations around the 
channel axis and the particle finally settles along the centerline. They have also found 
that when the Reynolds number is very small but finite, particle simply approaches the 
centerline and then settles there. For higher Reynolds number, the lateral oscillation of 
the particle is more significant. Another observation was that, more confined space in 
cylindrically channel generates a stronger lateral force on the sphere. 
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Numerical and asymptotical investigations were performed on the influence of uniform 
and Poiseuille flow on the wall correction factor of spherical particle placed at the axis 
of the channel [17]. The Stokes and continuity equations were expressed in terms of the 
stream function and vorticity formulation and were solved using finite difference 
method. In all the numerical computations they have calculated the separate 
contributions of the pressure and viscosity forces. This calculation was in good 
agreement with those obtained by asymptotic expansions. They have pointed out the 
prevalence of the pressure term over the viscosity term in the lubrication regime (very 
high ߣ values) which is opposite to what happens for dilute regime. The calculated wall 
correction factors covered the entire range of particle sizes, i.e. 0 ൏ ߣ ൏ 1. 

Most recent status on the development of hindered transport theory was reviewed for 
neutral spheres in long pores of cylindrical and rectangular cross section [9]. Diffusive 
and convective hindrance factors for macroscopic fluid flux are derived for uncharged 
spherical particles. However, the theory presented was for dilute solutions. Expressions 
for diffusive and convective hindrance factors were provided by utilizing the cross 
sectional averaging of local enhanced drag coefficients. They have employed the 
previously found results of local enhanced drag coefficients available for centerline 
approximation and eccentric particle positions found from [6]. Comparisons were made 
between the updated theory and recent experimental data. 

A finite element particle transport model consisting of Navier-Stokes and continuity 
equations defined in arbitrary Lagrangian Eulerian kinematics was employed to describe 
the axial motion of a rigid uncharged spherical particle in an infinitely long cylindrical 
channel of uniform cross-section [19]. Wall correction factors were calculated covering 
the entire particle size range (0 ൏ ߣ ൏ 1). Finite channel length effects on the motion of 
the particle were also investigated. These are particle transport at the channel entry and 
the exit from the reservoir and motion of a particle in a dead end under the influence of 
an external force. This model directly provides the lag factor G which is a unique 
feature of it, as the lag factor was previously determined separately by calculating the 
wall correction factors. Therefore, this model provides a self consistent solution of the 
particle transport in the cylindrical capillary including the complete hydrodynamic 
interactions between the particle and channel wall.  

Evidences of experimental investigations to find the hydrodynamic interactions between 
the particle and the bounding wall and also between individual particles are found in 
literature [20-22]. The major difficulty in the experimental determination of the 
hydrodynamic interactions between individual particles and of the presence of bounding 
walls arises due to the fact that, controlling the spatial position of the particle becomes 
difficult as the particle either move due to the presence of external force field or 
imposed velocity field. However, different experimental techniques have been 
developed. Sphere rheometer was used to study the effect of wall on the hydrodynamic 
force exerted on a sphere moving parallel to it at a constant velocity. Particle-tracking 
experiments were performed to study the motion of a particle in a low-Reynolds-
number Poiseuille flow between two parallel plane walls considering neutrally buoyant 
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spherical particles for particles sizes up to ߣ ൌ 0.95 [22]. Translational velocities of 
particles and their distribution across the channel was found out. Non spherical particles 
such as, cubes, parallelepipeds, cylinders, needles, thin plates and circular discs of 
different sizes was also considered [23]. The wall correction factors and lag factors were 
calculated for the low Reynolds number flow (ܴ݁ ൏ 7). These experimental results 
confirm the theoretically and numerically computed values. 

Although the study of wall correction factors has reached a very mature state, the effect 
of wall on an eccentrically moving particle at any finite Reynolds number, have not 
been exactly quantified. The only available data for the wall correction factor for this 
case was determined by solving the linear Stokes equation [6]. They have employed the 
boundary integral method for Stokes equation to calculate the values of wall correction 
factors, which neglects the inertia effect on the particle motion in the close proximity of 
the wall. However, for finite values of Reynolds number the inertia effect cannot be 
totally neglected. This warrants a general numerical scheme which includes the inertia 
effect, thus allowing calculation of wall correction factor at any Reynolds number in the 
laminar flow regime. In this thesis, a general numerical model is presented which 
considers the full Navier-Stokes equation to include the inertia effect for calculating 
wall correction factor of an eccentrically moving spherical particle inside a cylindrically 
channel. This model can be employed to find out the wall correction factor and lag 
factor for particles of any shape, size and position at any Reynolds number within the 
laminar flow region. 



3. THEORETICAL DESCRIPTION OF THE MODEL 

 

3.1 Model Geometry 

An infinite channel is modeled as a cylindrical channel of finite length ܮ௖௛  and of 
uniform radius ݎ଴ having reservoirs at both ends, as shown in Fig. 3.1. The reservoir 
radius ݎ௥௘௦ is taken to be five times larger than the channel radius. The channel length is 
taken sufficiently long (20~50 times ݎ଴) so that the effect of the channel ends on the 
particle motion can be neglected at the center of the channel. The fluid having density ߩ 
and dynamic viscosity ߤ flows inside the channel due to the applied pressure gradient. 
In this analysis, a uniform velocity profile is applied at the reservoir inlet and the outlet 
of the fluid receiving reservoir is set as a zero total stress condition, which implies un-
restrained channel end.  

 

Fig. 3.1: Schematic depiction of the model geometry  

The laminar boundary layer from the channel wall will merge at a distance of ܮሖ  from the 
channel entrance and a fully developed flow i.e. Poiseuille flow will be generated, 
where ܮሖ  [24] is given by,  

ሖܮ ൌ 0.058 כ ܴ݁஽ כ (3.1) ܦ

and, ܴ݁஽  is the Reynolds number based on channel diameter, and ܦ  is the channel 
diameter. For the Poiseuille flow the velocity profile takes a parabolic shape which can 
be represented by the following equation,  

ݒ ൌ െ
1

ߤ4
݌݀
ݔ݀

ሺݎ଴
ଶ െ ଶሻ (3.2)ݎ

where, ௗ௣
ௗ௫

 is the applied pressure gradient and ݒ is the fluid velocity at radial distance ݎ 

from the channel axis. At the center of the channel (at ݎ ൌ  0) maximum velocity is 
achieved which is denoted as ௠ܸ௔௫ . The mean velocity ௠ܸ  for a parabolic velocity 
profile is equal to half of this maximum velocity, i.e. ௠ܸ  ൌ ௠ܸ௔௫/2 . The velocity 
profile in the fully developed flow region found from the numerical computation is 
compared with the velocity profile from the above equation to validate the accuracy of 
this finite channel length approximation. A spherical particle having radius ܽ is placed 



10 
 

at the mid-way along the length of the cylinder. Thus it is ensured that the particle is in 
the fully developed flow region and also effects from the channel entrance and exit on 
the particle motion will be minimum.  

The presence of the particle will disturb the Poiseuille flow and an additional pressure 
will be required to sustain the flow. The main driving force for the particle is the applied 
pressure and the hydrodynamic drag force acts on it as a resistance to its flow. For a 
non-accelerating particle, these two forces will reach an equilibrium and the particle 
will attain a uniform velocity ܷ௣. However, the particle velocity will not be equal to the 
fluid velocity; specifically it will be somewhat lower than the undisturbed fluid velocity 
which will be discussed later in detail. 

During the flow inside the channel, the particle takes different radial position i.e. 
eccentric positions from the channel axis. The eccentricity of the particle is denoted by 
݁  and is expressed as: 

݁ ൌ
݀

଴ݎ െ ܽ  (3.3)

where d is the distance of the particle center from the channel axis. The minimum and 
maximum value of ݀  can be zero and ሺݎ଴ െ ܽሻ , respectively. So, the range of this 
eccentricity value becomes 0 ൏ ݁ ൏ 1. The analysis is done for different ߣ (ൌ   ଴ሻݎ/ܽ
values ሺ0.2 ≤ 0.9 ≥ ߣሻ and eccentricity values ሺ0 ≤ ݁ ≤ 0.9ሻ.  

3.2 Governing Equations for Fluid flow 

The momentum conservation of an incompressible Newtonian fluid in the continuum 
approximation in Eulerian framework is described by the Navier-Stokes equation, 

ߩ
߲࢛
ݐ߲ ൅ ࢛ߩ · ࢛׏ ൌ െ݌׏ ൅ ׏ߤ · ሺ࢛׏ ൅ ሻ்࢛׏ ൅ ௕ (3.4)ࡲ

where the first term in the left side of the equality sign is the unsteady term and the 
second term is the nonlinear inertia term. The first term at the right of the equality sign 
denotes pressure gradient, the second term denotes the viscous force i.e. dynamic 
viscosity ࣆ multiplied by gradient of viscous stress tensor ࣎࢐࢏, and the third stands for 
body force such as gravity, electrical forces. In this analysis, the body force of the fluid 
is not considered. However this term will not be discarded during the theoretical 
description of the model. With total stress tensor notation the Navier-Stokes equation 
becomes, 

ߩ
߲࢛
ݐ߲ ൅ ࢛ߩ · ࢛׏ ൌ െ׏ · ࢐࢏࣌ ൅  ௕ࡲ

 
(3.5)

where the total stress tensor ࣌࢐࢏ equals, 

࢐࢏࣌ ൌ െ݌IӖ ൅ ࢛׏ሺߤ ൅ ሻ (3.6)்࢛׏
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and IӖ is the identity tensor. As in this analysis three dimensional analysis is performed, 
here the elaborated form of the total stress tensor for three space dimensions is 
illustrated: 

࢐࢏࣌ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ߤ2

ݑߜ
ݔߜ െ ݌ ߤ ൬

ݑߜ
ݕߜ ൅

ݒߜ
൰ݔߜ ߤ ൬

ݑߜ
ݖߜ ൅

ݓߜ
ݔߜ ൰

ߤ ൬
ݒߜ
ݔߜ ൅

ݑߜ
൰ݕߜ ߤ2

ݒߜ
ݕߜ െ ݌ ߤ ൬

ݒߜ
ݖߜ ൅

ݓߜ
ݕߜ ൰

ߤ ൬
ݓߜ
ݔߜ

൅
ݑߜ
ݖߜ

൰ ߤ ൬
ݓߜ
ݕߜ

൅
ݒߜ
ݖߜ

൰ ߤ2
ݓߜ
ݖߜ

െ ݌
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

where ݑ, ,ݒ  and ݓ  denote the fluid velocity components in ݔ, ݕ  and ݖ  coordinate 
directions, respectively. This expression for the total stress tensor is used to determine 
the total force on the particle due to its relative motion to the fluid. 

To ensure the conservation of mass, continuity equation needs to be considered, 

ߩߜ
ݐߜ ൅ ׏ · ሺ࢛ߩሻ ൌ 0 (3.7)

As the fluid is considered incompressible, the time derivative of the density term 
vanishes and the continuity equation becomes, 

׏ · ࢛ ൌ 0 (3.8)

A very common way of simplifying the Navier-Stokes equation at very low Reynolds 
number region (ܴ݁ ൏൏ 1) is complete omission of the inertia force of the fluid arising 
from its velocity. At very low Reynolds number, the fluid velocity is very small, so the 
resulting inertia forces are comparably small in terms of viscous forces. This 
simplification results in creeping flow or Stokes equation. Since the only non-linear 
term in the Navier-Stokes equation is the inertia term there is substantial benefit of this 
simplification because the resulting equation is linear. That means, if (v1, p1) and (v2, 
p2) separately satisfies this linear equations then (v1+v2, p1+p2) will also satisfy the 
equation. So by applying the classical superposition technique of linear partial 
differential equation, solution of a complex problem can be found by splitting the 
problem into simpler ones and superposing those solutions linearly. 

In this analysis, the Navier-Stokes equation is used, although the inertia effects are 
negligible. However, to analyze the problem the linearity of the equation is taken as an 
advantage. The problem considered here involves analyzing motion of a spherical 
particle flowing eccentrically through a cylindrical channel. This problem is split up 
into simpler ones, which are: Case-I: fixed particle in a moving fluid, and Case-II: 
moving particle in a stationary fluid. A complete description of the problem can be 
found by analyzing these two cases separately. 
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However, this simplification is only valid when the Reynolds number is near to zero. In 
practical cases for higher Reynolds number, inertia effects cannot be neglected, which 
inhibits the linear superposition of the separate results. So, another case i.e. Case-III is 
developed, which considers a spherical particle suspended in the Poiseuille flow and 
free to move with the fluid. From this analysis the lag factor G is directly determined. 
The result from this third case is used to validate that; the results from the first two 
cases can be confidently employed to get the full description of the problem at very low 
Reynolds number. Moreover, this model can be employed for high Reynolds number 
flows in the laminar region. 

3.3 Calculation of Wall Correction Factors 

G. G. Stokes first derived the drag on a spherical particle moving with a uniform 
velocity ܷ௣ in an unbounded stationary fluid by solving the creeping flow equations, 
given by: 

ஶܨ ൌ ௣ (3.9)ܷܽߤߨ6

For the particle motion in a region bounded by channel wall the value of this drag force 
increases. This increased drag is usually characterized by two wall correction factors. 
The first situation (Case-I) considers a uniformly moving particle through a stationary 
fluid. In this case the ratio of the actual drag to the Stokes drag is termed as wall 
correction factor K1. If the value of the actual drag force in this case is F1, K1 can be 
expressed as: 

݇ଵ ൌ
ଵܨ

ஶܨ
 (3.10)

which yields: 

ଵܨ ൌ ݇ଵ6ܷܽߤߨ௣ (3.11)

The second situation (Case-II) considers a stationary particle held fixed in a moving 
fluid. This wall correction factor is termed as K2. In case of pressure driven flow the 
drag on the particle is calculated in terms of the maximum velocity ௠ܸ௔௫  inside the 
channel. If the value of the actual drag force in this case is F2, K2 can be expressed as: 

݇ଶ ൌ
ଶܨ

ஶܨ
 (3.12)

which yields: 

ଶܨ ൌ െ݇ଶ6ܽߤߨ ௠ܸ௔௫ (3.13)

The minus sign accounts for the fact that, in this case the direction of the force exerted 
by the flowing fluid on the particle is opposite to that found from the previous case. As 
previously mentioned, due to the linearity of the Navier-Stokes equation in the Stokes 
flow regime the particle-wall hydrodynamic interaction in a pressure driven flow can be 



13 
 

expressed as linear superposition of this two cases. So, the drag on a moving particle in 
a flowing fluid is expressed as: 

ଷܨ ൌ ሺ݇ଵܷ௣ܽߤߨ6 െ ݇ଶ ௠ܸ௔௫ሻ (3.14)

The net force acting on a uniformly moving particle inside a flowing fluid should be 
zero because of its zero acceleration. By setting the value of the force ܨଷ to be zero 
Equation 3.14 yields: 

ܷ௣ ൌ
ଶܭ

ଵܭ
௠ܸ௔௫ ൌ ܩ ௠ܸ௔௫  (3.15)

here the new parameter ܩ is called lag factor. The physical significance of this factor 
suggests how slow a particle moves with respect to the flowing fluid. Most studies in 
literature presents the hydrodynamic interactions in terms of either K1 and K2 or K1 and 
ܩ . These three factors are dependent on the parameter ߣ  and eccentricity ݁  of the 
particle inside the channel. 

In this thesis, the values of K1 and K2 are determined by considering two different cases 
(Case-I and Case-III) as mentioned above. However, from the third case which 
considers a moving particle in a moving fluid the value of the lag factor can be directly 
calculated by taking ratio of the particle velocity and the undisturbed fluid velocity 
along the axis of the channel, ௠ܸ௔௫. 

3.4 Necessity of Arbitrary Lagrangian Eulerian (ALE) Method 

To have a clear delineation of the fluid-solid surfaces where large distortion of the 
continuum under consideration is present, it is very important to have an appropriate 
kinematic description of the continuum. This kinematic description should give a 
relationship between the deforming continuum and the computation domain which can 
be used for solving the equations. In general classical Eulerian and Lagrangian 
description of the continuum are used though both of them have some advantages and 
limitations which are discussed in the following paragraphs. 

Eulerian description is widely used in fluid mechanics and is very efficient when the 
computational domain remains fixed with time. In this description the frame of 
reference remains fixed in space and the continuum moves with respect to this. Large 
distortion of the continuum motion can be handled properly but as the frame of 
reference remains fixed with time it cannot handle the scenario where the geometrical 
domain under consideration is deforming with time. In this thesis, in Case-II, the 
analysis involves a stationary particle held fixed at some point in a Poiseuille flow. As 
the geometrical domain considered here is not changing with time, a pure Eulerian 
description of the governing equations can be used. However, Case-I involves analyzing 
a uniformly moving particle in a stationary fluid, where the geometrical domain is 
changing with time due to the change in particle position, Eulerian description of the 
governing equations cannot be used. 
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On the other hand, in pure Lagrangian description each individual material particle is 
tracked or followed to define the overall state of the moving continuum. This method is 
generally used in solid mechanics problems where material deformation is small. But in 
the problems considered here, a large distortion of the material is resulted due to the 
fluid motion, which makes this Lagrangian description unsuitable. The advantages of 
Lagrangian description is, it facilitates clear definition of interfaces of different 
materials e.g. particle surface.  

Both of the Eulerian and Lagrangian description have some limitations and specific 
advantages. However, neither of those can be employed individually to handle a time 
dependent geometrical domain involved in this analysis. Another kinematical 
description which uses the best features of each of this method is the arbitrary 
Lagrangian Eulerian (ALE) description [7]. In this method, the frame of references i.e. 
the mesh nodes on the computational domain can be held fixed in a pure Eulerian way 
or can be allowed to move with the deforming continuum at certain interfaces in 
Lagrangian fashion or can be given some arbitrary velocity with respect to the 
deforming material. The comparison between these three descriptions can be understood 
from a one dimensional case shown in the figure below: 

  

                

Fig. 3.2: Comparison of Lagrangian, Eulerian and ALE description 

In Lagrangian description, as shown in Fig. 3.2, the mesh points are moving along with 
the material point and in the Eulerian description, the mesh points are fixed in space 
which allows large material distortion. In the third figure, arbitrary Lagrangian Eulerian 
description is shown where mesh points have some velocity though this need not be 
equal to material velocity. This mesh velocity can be imposed arbitrarily at different 
points in the domain. 
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The problem of solving the equations in a time dependent geometrical domain, while 
capturing the fluid-solid interfaces involved in this thesis, can be effectively handled by 
defining the equations in arbitrary Lagrangian Eulerian kinematics [19, 25-26]. The 
freedom of allocating arbitrary mesh velocity in ALE kinematics allows handling large 
material velocity while the Lagrangian interface tracking helps to get a clear picture of 
the moving particle.  

3.5 Arbitrary Lagrangian Eulerian Kinematics 

The Lagrangian kinematical description follows each individual particle and uses the 
material points as a reference domain, while the Eulerian description uses spatial points 
as the reference domain. Here, the material domain i.e. the Lagrangian domain of 
reference is denoted by ܴࢄ , made up of material particles ܺ and the spatial domain i.e. 
the Eulerian domain of reference is denoted by ܴ௫ , consisting of spatial points ݔ. As 
discussed in the previous section, in arbitrary Lagrangian Eulerian description neither of 
this material domain or spatial domain is taken as the reference. A third domain is 
introduced, the referential configuration ܴ࣑  where coordinates ߯ are used to identify 
the grid points. These three domains are related to each other by three conformal 
mappings ߮, ߶ and ߰ which is shown in the following figure: 

 

Fig. 3.3: Different reference domains and the associated mappings relating those. 

The referential domain ܴ࣑  is mapped into the material and spatial domains by ߰ and 

߶, respectively. The mapping ߮ defines the relationship between the spatial domain 
and material domain and can be viewed as the motion of material points. This is 
associated with the Lagrangian description. The mapping ߶ from the referential domain 
to the spatial domain can be understood as the motion of the grid points in the spatial 
domain. The mapping ߰ defines the relationship between the referential domain and the 
material domain and by varying the definition of this mapping both the Eulerian and 

ࢄܴ :   Material domain,     
reference for  
Lagrangian description 

 

ܴ௫  :   Spatial domain, 
            reference for 
            Eulerian description 
 

ܴ࣑  :   Referential domain, 
            reference for 
            ALE description 
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Lagrangian description can be achieved. These three mappings are related to each other 
as:  

߮ ൌ ߶ כ ߰ିଵ (3.16)

A detail description of these three mappings along with the resulting change in the 
Navier-Stokes equation due to the arbitrary Lagrangian Eulerian kinematics is 
delineated in Appendix A. The Navier-Stokes equation and the continuity equation in 
arbitrary Lagrangian Eulerian description are expressed as: 

ߩ ቆ
࢛ߜ
ݐߜ ฬ

࣑
൅ ሺ࢜ െ ሻ࢓࣒ · ቇ࢛׏ ൌ െ݌׏ ൅ ׏ߤ · ሺ࢛׏ ൅ ሻ்࢛׏ ൅ ௕, (3.17)ࡲ

׏ · ࢛ ൌ 0 (3.18)

here, ࣒࢓  is the mesh velocity. It should be noted that, the equation is similar to the 
Eulerian equations and can be solved in a similar way in the referential domain. 

3.6 Mesh Updating Method 

For computer implementation of the ALE method a mesh update procedure is necessary 
which will assign mesh-node velocities and displacements after each time step. When 
the velocity of a boundary is known a priori it is assigned to that boundary and far away 
from that moving boundary, mesh velocity is assigned zero. So, Lagrangian description 
is assigned at the moving boundary and Eulerian description is assigned far away from 
it. In between there is a transition region where arbitrary mesh velocity need to be 
defined. In this thesis, Laplacian mesh smoothing method is used for rezoning of mesh 
nodes in this transition region. A Laplace equation is solved to get the arbitrary mesh 
velocities and displacements. The elliptic mesh smoothing equation used in this analysis 
is: 

࢓ଶ࣒׏ ൌ 0 (3.19)

This equation is solved for all the mesh velocity and displacement components. 

3.7 Non-Dimensionalization of the Equations 

The Navier-Stokes equation, Continuity equation and the mesh smoothing equations 
have been non-dimensionalized with respect to viscous time scale, ܽߩ/ߤଶ. Details of the 
scaled parameters are given in Table 3.1. Length scales are non-dimensionalized with 
respect to particle radius ܽ. Same scaling parameters are used to non-dimensionalize the 
mesh smoothing equations. The resulting equations are given below: 

߲ഥ࢛
߲߬ ൅ ሺഥ࢛ െ ഥ࣒ ሻ࢓ · ഥഥ࢛׏ ൌ െ׏ഥ݌ҧ ൅ ഥ׏ · ሺ׏ഥഥ࢛ ൅ ഥഥ்࢛ሻ׏ ൅ ഥ௕ (3.20)ࡲ

ഥ׏ · ഥ࢛ ൌ 0 (3.21)

ഥଶ׏ ഥ࣒ ࢓ ൌ 0 (3.22)

Here, the overbars denote non-dimensionalized quantity. Non-dimensionalized values 
for all variables are taken as input to solve the above non-dimensional equation. These 
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equations are solved to find the wall correction factors which are also non-dimensional 
parameter.  

 

Table 3.1: Non-dimensional parameters used to scale the governing equations 

Variable Name Non-dimensionalized Variable Non-dimensionalizing Parameter 

Pressure ݌ҧ 
ଶܽߩ

ଶߤ  ݌

Velocity ݑത 
ܽߩ
ߤ  ݑ

Time ߬ 
ߤ

ଶܽߩ  ݐ

Force ܨതb 
ଷܽߩ

ଶߤ  ௕ܨ

 ׏ഥ a׏ operator ׏

Radial coordinate rҧ 
ݎ
ܽ 

Axial coordinate zത 
ݖ
ܽ 

 

3.8 Newton’s Second Law of Motion for Unsteady Particle Motion 

In Case-III, the motion of the suspended solid particle flowing with the fluid is 
analyzed. Only solving the equations for fluid flow disregarding it’s interaction with the 
solid particle is not adequate for proper description of the problem. Here, the motion of 
the particle is fully developed from its hydrodynamic interaction with the fluid. The 
particle initially moves with an unsteady velocity, and after some time attains a uniform 
velocity, as the net drag force acting on it vanishes with time. Newton’s second law of 
motion is employed to capture the instantaneous particle velocity. For a non-rotating 
rigid particle, with translational motion Newton’s second of motion can be written as: 

݉
ࢂ݀
ݐ݀ ൌ ࡲ ൌ െ න ࣌ · ܖ

డΩ
݀ܵ (3.23)

here, ݉  stands for the individual particle mass, ࢂ  for particle velocity and ࡲ  for 
hydrodynamic force on the particle. ࡲ can be found from the surface integral of the total 
stress tensor over the particle surface ߲Ω. 
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3.9 Boundary Conditions 

3.9.1 Boundary conditions for Case-I 

In present model, a spherical particle is moving with a predefined uniform velocity in a 
stationary fluid in the ݔ coordinate direction. To ensure no slip condition on the particle 
surface axial fluid velocity ݑ is set to be equal to particle velocity Up. The mesh on the 
particle surface should deform with a velocity equal to particle velocity. This is handled 
by assigning the x component of the mesh velocity ߖ௠௫  to be equal to Up. Fluid 
velocity and mesh velocity on the particle surface in other coordinate directions are set 
to be zero. For the mesh smoothing equation mesh displacement on all boundaries need 
to be defined. Since, the boundaries other than the particle surface will not deform with 
time mesh displacement is set to be zero on those. 

For Navier Stokes equation no slip condition is applied on cylinder walls and on the 
walls adjacent to the reservoir. Slip condition is applied to the reservoir walls. At inlet 
of the reservoir a zero velocity condition is employed and the outlet of the fluid 
receiving reservoir is set to be a zero total stress condition. This is illustrated in Figure 
3.4. In Table 3.2, the mathematical form of the applied boundary conditions are given. 

 

 

(a) Navier-Stokes equation 

 

(b) Mesh smoothing equation 

 

Fig. 3.4: Boundary conditions for Case-I (a) Navier Stokes module (b) Mesh 
smoothing equation 
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Table 3.2: Boundary conditions for Case-I  

Boundaries 

Boundary Type 

Incompressible Navier Stokes 
Equation  Mesh Velocity 

Cylinder Wall No Slip ሬ࢛ሬԦ ൌ 0 No Disp. 

Particle Surface Velocity ݑ ൌ ܷ௣, ݒ ൌ 0, ݓ ൌ 0 
௠௫ߖ ൌ ܷ௣, 

௠௬ߖ ൌ ௠௭ߖ ൌ 0

Wall Adjacent 
to Reservoir 

No Slip ሬ࢛ሬԦ ൌ 0 No Disp. 

Reservoir Wall Slip 
࢔ · ሬ࢛ሬԦ ൌ 0 

࢚ · ൣെࡵ݌ധ ൅ ࢛ߘሺߤ ൅ ሺ࢛ߘሻ்ሻ൧࢔ ൌ 0 
No Disp. 

Reservoir Inlet Velocity ሬ࢛ሬԦ ൌ 0 No Disp. 

Reservoir 
Outlet 

Zero 
Total Stress ൣെࡵ݌ധ ൅ ࢛ߘሺߤ ൅ ሺ࢛ߘሻ்ሻ൧࢔ ൌ 0 No Disp. 

3.9.2 Boundary conditions for Case-II 

In Case-II scenario, the particle is set to be fixed at a point. The computational mesh is 
not deforming with time and boundary conditions are only applied for the Navier-
Stokes equation. A Poiseuille flow is produced inside the cylinder. At reservoir inlet a 
uniform inflow velocity is applied and the outlet of the fluid receiving reservoir is set to 
the zero total stress condition. All the other boundaries are set as no slip condition, 
except at the reservoir wall where slip condition is employed. These are illustrated in 
Figure 3.5 below. In Table 3.3, the applied boundary conditions are summarized. 

 

 

Fig. 3.5: Boundary conditions for Case-II  
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Table 3.3: Boundary conditions for Case-II  

Boundaries Boundary Type 

Channel Wall No Slip ሬ࢛ሬԦ ൌ 0 

Particle Surface No Slip ሬ࢛ሬԦ ൌ 0 

Wall Adjacent 
to Reservoir 

No Slip ሬ࢛ሬԦ ൌ 0 

Reservoir Wall Slip 
࢔ · ሬ࢛ሬԦ ൌ 0 

࢚ · ൣെࡵ݌ധ ൅ ࢛ߘሺߤ ൅ ሺ࢛ߘሻ்ሻ൧࢔ ൌ 0 

Reservoir Inlet Normal Inflow Velocity ሬ࢛ሬԦ ൌ െܷ௢࢔ 

Reservoir Outlet Zero Total Stress ൣെࡵ݌ധ ൅ ࢛ߘሺߤ ൅ ሺ࢛ߘሻ்ሻ൧࢔ ൌ 0 

3.9.3 Boundary conditions for Case-III 

The boundary conditions for Case-III are same as that of Case-I. However, as the 
particle velocity ܷ௣ is not known a priori, the fluid velocity in the ݔ direction and the 
mesh velocity in the same direction on the particle surface are found from solving an 
ordinary differential equation (Eq. 3.23). The dependent variable of this equation is 
applied to be equal to ݑ  and ߖ௠௫ as the boundary condition. In Table 3.4, the applied 
boundary conditions are summarized. 

Table 3.4: Boundary conditions for Case-III  

Boundaries 
Boundary Type 

Incompressible Navier Stokes 
Equation 

 Mesh Velocity 

Cylinder Wall No Slip ሬ࢛ሬԦ ൌ 0 No Disp. 

Particle Surface Velocity ݑ ൌ ܷ௣, ݒ ൌ 0, ݓ ൌ 0 
௠௫ߖ ൌ ܷ௣, 

௠௬ߖ ൌ ௠௭ߖ ൌ 0

Wall Adjacent 
to Reservoir 

No Slip ሬ࢛ሬԦ ൌ 0 No Disp. 

Reservoir Wall Slip 
࢔ · ሬ࢛ሬԦ ൌ 0 

࢚ · ൣെࡵ݌ധ ൅ ࢛ߘሺߤ ൅ ሺ࢛ߘሻ்ሻ൧࢔ ൌ 0 
No Disp. 

Reservoir Inlet Velocity ሬ࢛ሬԦ ൌ 0 No Disp. 

Reservoir Outlet 
Zero Total 

Stress ൣെࡵ݌ധ ൅ ࢛ߘሺߤ ൅ ሺ࢛ߘሻ்ሻ൧࢔ ൌ 0 No Disp. 

 



4. NUMERICAL SOLUTION METHODOLOGY 

 

4.1 Finite Element Method 

Finite element method (FEM) is employed for solving the governing equations. The 
method is well described in literature [27-28] and is widely used for solving differential 
equations in many areas of engineering and science. In finite element method, the 
computational domain is approximated as a piecewise combination of small 
interconnected domains. This involves discretizing the problem geometry to finite 
number of elements. This process is called mesh generation. The responses of the 
dependent variables are assumed a priori. State variables are approximated by discretely 
describable functions. These functions are called shape functions or basis functions, 
which are formulated from simple functions like polynomials, based on the 
discretization of the problem geometry. Approximating piecewise function for state 
variables are called test functions. Then variational principle, the Galerkin method is 
applied to find the weak form of the governing equations. The dependent variables in 
this weak form are replaced by their corresponding discrete form i.e the test functions. 
Replacing the shape function in the discretized weak equations by the shape functions 
associated to each computational node gives a single algebraic equation which satisfies 
the discretized form of the governing equations. In this way a system of algebraic 
equations are formed. These equations describe the relationship between the coefficients 
of the test functions. Solving these algebraic equations for these coefficients the 
behavior of the dependent variable is obtained. 

Here, the weak form of the governing equations that are formulated in the previous 
chapter is derived. 

4.1.1 Weak form of Navier-Stokes equation in ALE kinematics 

Neglecting the body force and using the total stress tensor notation the Navier-Stokes 
equation in arbitrary Lagrangian Eulerian framework takes this form: 

ݑߜ
ݐߜ ൅ ሺݑ െ ߰௠ሻ. ݑ׏ െ .׏ ௜௝ߪ ൌ 0 (4.1)

Considering momentum conservation in three space directions three different equations 
can be obtained. Using Einstein summation convention, which implies summation over 
repeated index the Navier-Stokes equation is written as: 

௜ݑߜ

ݐߜ ൅  ൫ݑ௝ െ ߰௠௝൯ߜ௝ݑ௜ െ ௜௝ߪ௝ߜ ൌ 0 , (4.2)

here ݅ denotes the coordinate direction for momentum conservation. So, ݑ௜ denotes the 
velocity component in ith space direction. It is important to note here that, the equations 
are needed to be solved in a time dependent domain, which is denoted as the deformed 
frame Ωഥ  having coordinate dimensions x, y and z. So, to get the weak form of this 
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equation it is multiplied by the basis function for velocity and integrated over the whole 
subdomain Ωഥ. This is the well known Petrov-Galerkin discretization method. Here, the 
basis function or the test function of the ith component of the velocity ݑ௜ is denoted as 
పෝݑ . So, the weak form can be written as: 

න పෝݑ  ൜
௜ݑߜ

ݐߜ ൅ ൫ݑ௝ െ ߰௠௝൯ߜ௝ݑ௜ െ ௜௝ൠߪ௝ߜ dΩഥ
Ωഥ

ൌ 0 

ฺ න పෝݑ  
௜ݑߜ

ݐߜ
dΩഥ  ൅ 

Ωഥ

න పෝݑ ൫ݑ௝ െ ߰௠௝൯ߜ௝ݑ௜dΩഥ
Ωഥ

െ න పෝݑ ௜௝dΩഥߪ௝ߜ
Ωഥ

ൌ 0 (4.3)

Now, the order of differentiation in the third term is reduced by using the integration by 
parts rule. 

න పෝݑ ௜௝dΩഥߪ௝ߜ
Ωഥ

 

ൌ పෝݑ න ௜௝dΩഥߪ௝ߜ
Ωഥ

െ නሺߜ௝ݑపෝ ሻߪ௜௝dΩഥ
Ωഥ

 

ൌ න పෝݑ ௜௝dsߪ
ఋΩഥ

െ නሺߜ௝ݑపෝ ሻߪ௜௝dΩഥ
Ωഥ

 (4.4)

The first term in Equation (4.4) denotes integration over the boundary ߜΩഥ. This term is 
the natural boundary condition and should be satisfied by choosing appropriate basis 
function. It is taken care of by the applied boundary conditions. 

So, the weak form of the Navier-Stokes equation without the boundary integrals takes 
the following form: 

න పෝݑ
௜ݑߜ

ݐߜ dΩഥ  ൅ 
Ωഥ

න పෝݑ ൫ݑ௝ െ ߰௠௝൯ߜ௝ݑ௜dΩഥ
Ωഥ

൅ නሺߜ௝ݑపෝ ሻߪ௜௝dΩഥ
Ωഥ

ൌ 0 (4.5)

From this, one can easily find three weak equations for three coordinate directions. 
Here, by taking ݅ = 1 the equation denoting momentum conservation in the ݔ coordinate 
direction is written. Since, Einstein summation convention is used the value of the 
repeating index ݆ is taken to be 1, 2 and 3 representing three space dimensions. The 
resulting equation is as follows: 

න ൜ݑଵෞ  
ଵݑߜ

ݐߜ ൅ ଵݑଵෞሺݑ െ ߰௠ଵሻߜଵݑଵ ൅ ଶݑଵෞሺݑ െ ߰௠ଶሻߜଶݑଵ ൅ ଷݑଵෞሺݑ െ ߰௠ଷሻߜଷݑଵ

Ωഥ

൅ ଵଵߪଵෞݑଵߜ ൅ ଵଶߪଵෞݑଶߜ ൅ ଵଷൠߪଵෞݑଷߜ Ωഥߜ ൌ 0 

 

 

(4.6)

Now, the following are replaced in the above equation: 

ଵݑ ൌ ,ݑ ଶݑ ൌ ,ݒ ଷݑ ൌ ,ݓ ଵෞݑ ൌ ,ොݑ ଵߜ ൌ
ߜ

ݔߜ  , ଶߜ ൌ
ߜ

, ݕߜ ଷߜ ൌ
ߜ

  , ݖߜ
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ଵଵߪ ൌ , ௫௫ߪ ଵଶߪ ൌ ଵଷߪ  ௫௬ߪ ൌ   , ௫௭ߪ

߰௠ଵ ൌ ߰௠௫ , ߰௠ଶ ൌ ߰௠௬ , ߰௠ଷ ൌ ߰௠௭ (4.7)

to get the equation presented below: 

න ൜ݑො  
ݑߜ
ݐߜ ൅ ݑොሺݑ െ ߰௠௫ሻ

ݑߜ
ݔߜ ൅ ݒො൫ݑ െ ߰௠௬൯

ݑߜ
ݕߜ ൅ ݓොሺݑ െ ߰௠௭ሻ

ݑߜ
ݖߜ ൅

ොݑߜ
ݔߜ ௫௫ߪ

Ωഥ

൅
ොݑߜ
ݕߜ ௫௬ߪ ൅

ොݑߜ
ݖߜ ௫௭ൠߪ Ωഥߜ ൌ 0 

 

 

(4.8)

Here, ݑ, ݒ  and ݓ  are the fluid velocity components and ߰௠௫ , ߰௠௬ and ߰௠௭  are the 
mesh velocity components in the x, y and z coordinate direction respectively. The 
values of ߪ௫௫, ௫௬ߪ  and ߪ௫௭  can be expressed in terms of velocity gradient, kinematic 
viscosity ߭ and pressure. The above equation can be written as: 

න ൜ݑො  
ݑߜ
ݐߜ  ൅ ݑොሺݑ െ ߰௠௫ሻ

ݑߜ
ݔߜ ൅ ݒො൫ݑ െ ߰௠௬൯

ݑߜ
ݕߜ ൅ ෝݑ ሺݓ െ ߰௠௭ሻ

ݑߜ
ݖߜ  

Ωഥ

൅ 
ොݑߜ
ݔߜ ሺ2߭

ݑߜ
ݔߜ െ ሻ݌ ൅

ොݑߜ
ݕߜ ߭ ൬

ݑߜ
ݕߜ ൅

ݒߜ
൰ݔߜ ൅

ොݑߜ
ݖߜ ߭ ൬

ݑߜ
ݖߜ ൅

ݓߜ
ݔߜ ൰ൠ Ωഥߜ

ൌ 0 
 

 

(4.9)

4.1.2 Weak form of the Continuity equation 

The weak form of the continuity equation is found by multiplying it by the pressure 
basis function and integrating over the whole subdomain (in deformed frame Ωഥ). Here 
the basis function or test function for pressure is denoted as ̂݌. So the weak form of 
continuity equation becomes: 

න  
ௗΩഥ

ሼ̂݌ሺ׏. Ωഥߜሻ ሽݑ ൌ 0 

 

ฺ න  
Ωഥ

൜̂݌ ൬
ݑߜ
ݔߜ ൅

ݒߜ
ݕߜ ൅

ݓߜ
ݖߜ ൰ ൠ Ωഥߜ ൌ 0 (4.10)

 

4.1.3 Weak form of the elliptic mesh smoothing equation 

The elliptic mesh smoothing equation that have been used is as follows: 

ଶ߰௠ߘ ൌ 0, (4.11)
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here, 

߰௠ ൌ
௜ݔߜ

ݐߜ  (4.12)

and, x୧ denotes the deformed mesh coordinate in the ith coordinate direction i.e. it could 
be x, y or z. So the elliptic equation can be written as: 

ଶߘ ௜ݔߜ

ݐߜ ൌ 0 (4.13)

One point to note here that, it is needed to find the mesh deformation at each node point 
in the geometrical domain, which is denoted as reference frame Ω . So, the above 
equation is solved in this fixed frame Ω. To find the weak form of this differential 
equation, it is multiplied by the basis function of x୧ , which is denoted by xො୧  and 
integrated  over the reference frame Ω where the coordinate of each point is denoted by 
X, Y and Z. 

So the resulting equation is: 

න
ఆ

൜ݔො௜ ଶߘ ௜ݔߜ

ݐߜ ൠ ߗ݀ ൌ 0 (4.14)

Now, the integration by parts rule is applied to reduce the order of differentiation in the 
above equation, which results: 

ො௜ݔ න  
ఆ

ଶߘ ௜ݔߜ

ݐߜ ߗ݀  െ න  
ఆ

.ො௜ݔ ߘ ൭න  
ఆ

ଶߘ ௜ݔߜ

ݐߜ ൱ߗ݀ ߗ݀  ൌ 0 

ฺ න  
డఆ

ො௜ݔ ൬ߘ
௜ݔߜ

ݐߜ ൰ . ݊ ݏ݀ െ න
ఆ

ߘ .ො௜ݔ ߘ
௜ݔߜ

ݐߜ ߗ݀ ൌ 0 (4.15)

The first boundary integral term is specified through the given boundary conditions, so 
the final equation becomes: 

න
ఆ

ߘ .ො௜ݔ ߘ
௜ݔߜ

ݐߜ ߗ݀ ൌ 0 (4.16)

The equation for x component of mesh displacements or velocity can be found by 
placing ݅ =1. 

න  
ఆ

.ݔ ߘ ߘ
ݔߜ
ݐߜ ߗ݀  ൌ 0 

This can be written in detail as: 

ฺ න  
ఆ

൜
ොݔߜ
൬ ܺߜ

ߜ
ܺߜ

ݔߜ
൰ݐߜ ൅

ොݔߜ
ܻߜ ൬

ߜ
ܻߜ

ݔߜ
൰ݐߜ ൅

ොݔߜ
ܼߜ ൬

ߜ
ܼߜ

ݔߜ
൰ൠݐߜ ߗ݀ ൌ 0 (4.17)
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4.2 Computer Implementation 
 
In the previous description of arbitrary Lagrangian Eulerian viewpoint, it is described 
that, Navier-Stokes and continuity equations are solved in a time dependent domain and 
the mesh smoothing equations are solved in a fixed geometrical domain. Two frames of 
references are introduced. One is the fixed domain Ω ሺX, Y, Zሻ  which is called the 
reference frame and the other frame Ωഥ ሺx, y, zሻ  is the time dependent domain. As 
Ωഥ ሺx, y, zሻ is deforming with time it is termed as the deformed frame. The elliptic mesh 
smoothing equations along with the specified boundary conditions defines the mapping 
between the reference frame and the deformed frame i.e. the coordinate transformation 
between  ሺx, y, zሻ and ሺX, Y, Zሻ.  

4.2.1 Mesh generation 

In this analysis the three dimensional problem geometry is discretized by tetrahedral 
elements. The surfaces are discretized by triangular elements. Higher number of mesh 
elements is used on the spherical particle surface. This facilitates capturing the higher 
velocity gradient near the particle surface arising from the no slip boundary condition. 
To find the force on the particle total stress tensor is integrated over the particle surface. 
This local higher mesh density ensures the accuracy of this integration.  

4.2.2 Shape functions or basis functions 

Second order quadratic Lagrangian shape functions are used to approximate velocity 
function and first order linear Lagrangian shape functions are used to approximate the 
pressure function. 

4.2.3 Gauss quadrature integration order 

To implement the integrals arising from the discretized weak form of Navier-Stokes and 
other equations Gauss quadrature rule need to be implemented. In this analysis 4th order 
Gauss quadrature integration technique is used for all integrations. 

4.2.4 Algebraic equations solving technique 

For models with many dependent variables direct solver needs a huge memory. So, a 
memory efficient iterative solver GMRES (Generalized Minimum Residual) is used to 
solve the resulting matrix equations. Unlike direct solvers iterative solvers does not 
converge easily. To improve the convergence of the iterative solver a precondtioner 
named, incomplete LU, that performs an incomplete LU factorization of the system 
matrix A, is used. Thus, it saves memory and the resulting factors L and U are 
approximation to A. An optimum value of drop tolerance is used for the LU 
preconditioner. A high value of drop tolerance minimizes memory requirement, 
however, it causes inaccuracy in the LU factorization, which as a result affects the 
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convergence of the iterative solver. So, the maximum value of drop tolerance that 
ensures convergence is selected. 

4.2.5 Computer configuration 

Intel Core i5 processor and 4GB RAM are employed to obtain the solutions presented 
here. 

4.3 Implementation of Case-III 

The whole procedure in Case-III is same as Case-I, except that here the particle velocity 
ܷ௣  is not prescribed a priori, but determined by solving Equation (3.23). It is 
implemented by coupling an ordinary differential equation with the governing partial 
differential equations such as, Navier-Stokes and mesh smoothing equations. The right 
hand side boundary integration term in Equation (3.23) is implemented by defining an 
integration coupling variable with global destination. The value of this integration 
coupling variable is the integration of total stress tensor over the particle surface and is 
available during the simulation as global variable. The mass of the spherical particle is 
defined to be equal to that of the fluid as neutrally buoyant particle is considered in the 
analysis. The dependent variable of the Equation (3.23) is the particle velocity and its 
value is given as ܷ௣ in the boundary condition for Navier-Stokes and mesh smoothing 
equations. 

4.4 Mesh Sensitivity Analysis 

The mesh sensitivity analysis is performed for both Case-I and Case-II by observing the 
improvement in the calculated values of wall correction factors K1 and K2, respectively, 
with increasing number of mesh elements. A spherical particle having particle to 
channel radii ratio 0.5 is taken. In both cases of this analysis the particle lies along the 
axis of the cylinder. Tests are performed from nearly 5000 elements to 30000 elements 
in Case-I and up to 50000 elements in Case-II. Since, in Case-I, the problem is time 
dependent, memory requirement for computation is higher than the stationary problem, 
i.e. the Case-II. Moreover, in Case-I, three mesh smoothing equations are coupled with 
the Navier-Stokes and continuity equation, which increases the number of degrees of 
freedom for each mesh node. This means, at each node three additional mesh 
displacement variables (ݔ, -are solved with the dependent variables of Navier (ݖ and ݕ
Stokes equation (ݑ, ,ݒ  For this reason, number of mesh elements for Case-I, is .(݌ and ݓ
taken lower than that of Case-II to minimize the memory and time requirement.  

Values of wall correction factor K1 for different number of mesh elements is shown in 
Fig. 4.1. It is well noticeable that, the value of K1 for this specific case cannot be 
improved significantly by taking higher number of elements above 20000. However, in 
this analysis the model is solved for different eccentric positions of the sphere. The 
separation between the particle and channel wall is significantly reduced at higher 
values of eccentricity. This narrow region in geometry requires more mesh elements to 
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capture the sharp velocity gradient developed in that region. To ensure computational 
accuracy, more than 30000 elements are taken when the separation between the particle 
and channel wall is reduced. Another point should be noted that, computations 
containing smaller ߣ values require more mesh elements as the computational domain 
gets bigger. Moreover, to maintain comparatively higher mesh density on the particle 
surface than that in the other regions inside the computational domain, the total number 
of mesh elements increases as the particle size is decreased while the size of the 
computational domain remains the same. So, for Case-I, mesh elements are taken in 
between 20000 to 45000 considering the above mentioned factors. 

 

Figure 4.1: Mesh sensitivity analysis for wall correction factor, K1 

 
Figure 4.2: Mesh sensitivity analysis for wall correction factor, K2 
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Variation of wall correction factor K2 with the number of mesh elements is shown in 
Figure 4.2. It can be observed that, for this specific analysis number of mesh elements 
more than 20000 can be used to get the mesh insensitive result. However, in all the 
analysis around 50000 elements are taken to take into account of the eccentricity of the 
particle and the smaller particle size. 

 

4.5 Flowchart of the Overall Solution Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometry modeling 
(Finite channel length approximation) 

Defining governing equations in arbitrary Lagrangian-Eulerian kinematics 

Non-dimensionalization of the governing equations 

Discretizing the geometry into finite number of mesh elements 

Defining approximating functions for velocity, pressure and mesh coordinates

Applying boundary conditions 

Solving the governing equations in a time dependent 
geometrical domain to find the velocity and pressure field 

Integrating the stress tensor over the particle surface to 
calculate the total force acting on it 

Normalizing the force with respect to the Stokes force to 
calculate wall correction factors K1, K2 and Lag factor G 

For unsteady particle motion, utilizing this calculated force and 
Newton’s second law of motion to calculate the particle velocity 

and updating the boundary conditions on the particle surface. 



5. RESULT AND DISCUSSION 

 

This chapter provides the wall correction factors and lag factor for a spherical particle 
flowing parallel to the channel axis at different radial positions. The developed model 
utilized in this analysis, is validated by comparing the calculated values of wall 
correction factors and lag factor for the centerline motion of the spherical particle, with 
those available in the literature. Later, wall correction factors and lag factor are 
presented for a spherical particle of different sizes, covering the range of particle to 
channel radii ratio, 0.2 ≤ 0.9  ≥ ߣ  and of different radial positions, covering the 
eccentricity value in the range of 0 ≤ ݁ ≤  0.8 . 
 
 
5.1 Model Validation 
 
Values of wall correction factor K1 and K2 for the centerline motion of the sphere for 
different ߣ values are calculated utilizing the developed model namely, NS-ALE model. 
These calculated values are compared with the published analytically and numerically 
computed results. An exact theoretical solution for the wall correction factors for the 
centerline motion is available in terms of an infinite set of linear algebraic equations for 
the coefficients of Stokes stream functions [11]. Very accurate values of wall correction 
factors for all ߣ values were provided using singular perturbation techniques [5]. Values 
of wall correction factors were calculated by using spectral boundary element method, 
which further validated the previously provided results [6]. The latest investigation of 
this problem was done utilizing the finite difference method [17]. In Table 5.1 and 5.2, 
the calculated values of wall correction factors K1 and K2 from the NS-ALE model is 
presented in tabular form, along with the values found from the above mentioned 
theoretical and numerical investigations. It is well noticeable that the values calculated 
by the NS-ALE model are indistinguishable with the other results. 
 
The percentage of error for the values of calculated wall correction factor K1 when 
compared to the values of [5] for ߣ  = 0.2 and ߣ  = 0.8 are 0.519 % and 0.149 %, 
respectively. The percentage of error in K2 for 0.2 = ߣ and 0.8 = ߣ are 0.47 % and 0.201 
%, respectively. A graphical comparison for the values of wall correction factor K1 and 
K2  presented in Table 5.1 and Table 5.2 is shown in Fig. 5.1. In Fig. 5.2, the calculated 
values of lag factor, ܩ ሺൌ ௄మ

௄భ
ሻ   is compared with the other results. These two graphs also 

reveal the accuracy of the presented NS-ALE model. 
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Table 5.1: Comparison of wall correction factor K1  

ߣ ൌ  ଴ݎ/ܽ

Values of wall correction factor, K1 

NS-ALE 
Haberman 
& Sayre 

[11] 

Bungay & 
Brenner [5] 

Higdon & 
Muldowney 

[6] 

Ben Richou 
[17] 

0.1 1.2621 1.263 1.2632 1.2632 1.2764 
0.2 1.67088 1.68 1.6796 1.6794 1.6927 
0.3 2.3502 2.371 2.3707 2.37 2.3824 
0.4 3.57253 3.596 3.5938 3.5913 3.6058 
0.5 5.92496 5.97 5.9548 5.9473 5.9638 
0.6 11.03425 11.135 11.1099 11.0918 11.1136 
0.7 24.52592 24.955 24.7144 24.6759 24.6932 
0.8 74.63405 73.555 74.7459 74.6698 74.6191 
0.9 469.1 - 469.3734 469.2225 468.2021 

 
 

Table 5.2: Comparison of wall correction factor K2  

ߣ ൌ  ଴ݎ/ܽ

Values of wall correction factor, K2 

NS-ALE 
Haberman 
& Sayre 

[11] 

Bungay & 
Brenner [5] 

Higdon & 
Muldowney 

[6] 

Ben Richou 
[17] 

0.1 1.23943 1.255 1.2548 1.2547 1.2691 
0.2 1.62681 1.635 1.6345 1.6347 1.6488 
0.3 2.21656 2.231 2.2285 2.2289 2.2428 
0.4 3.20685 3.218 3.216 3.2157 3.2332 
0.5 4.9837 5.004 4.9992 4.9953 5.0245 
0.6 8.59728 8.651 8.6255 8.613 8.6413 
0.7 17.45599 17.671 17.5029 17.474 14.512 
0.8 47.58021 43.301 47.6762 47.6201 47.6288 
0.9 267.0977 - 266.5299 266.432 265.9404 
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Figure 5.1: Comparison of wall correction factor, K1 and K2 for the centerline 

motion of the sphere 

 
Figure 5.2: Comparison of lag factor G for the centerline motion of the sphere 
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5.2 Effect of Eccentricity of the Particle on its Motion 
 
The effect of eccentricity of the particle on its motion inside the cylindrical channel is 
quantified in terms of the wall correction factor K1, K2 and lag factor G. The relative 
size of the particle is denoted by ߣ ሺൌ ܽ ⁄଴ݎ ሻ and the eccentricity of the particle is 
denoted by ݁ ሺൌ ݀/ሺݎ଴ െ ܽሻሻ. Values of K1, K2 and G are calculated for each ߣ value 
within the range  0.2 ൑ ߣ ൑ 0.9 considering the eccentricity of the particle to be within 
the range of 0 ൑ ݁ ൑ 0.8 for each ߣ value. Fig. 5.3 provides a graphical representation 
of the variation of K1, K2 and G with the particle’s radial position inside the channel, for 
all these relative particle sizes. 
 
The drag on an eccentrically positioned particle held fixed in a Poiseuille flow is 
characterized by the wall correction factor K2. This value represents the ratio of the drag 
force on the particle inside the channel with respect to the Stokes drag in an unbounded 
fluid. For calculating the Stokes drag force on the eccentrically positioned particle, the 
local fluid velocity at that position is used. This is a rational choice, because this 
calculated value of K2 is used to find the lag factor of the particle which is defined as the 
ratio of the particle velocity to the local undisturbed fluid velocity.  
 
From Fig. 5.3, it is observed that, values of wall correction factor K2 for larger sized 
particles ( ߣ ൐ 0.3 ) decreases monotonically with eccentricity. But for smaller sized 
particles ( ߣ ൏ 0.3 ), the values of K2 initially decreases and then have a tendency to 
increase at eccentricity value around ݁ ൌ 0.6. Decrease of K2 with eccentricity can be 
explained by the fact that, when the particle is moved to eccentric position, the gap 
between the particle wall and the channel wall decreases. The additional pressure drop 
resulting from the presence of the particle is increased due to the narrow region between 
the particle and channel wall. This causes the fluid velocity in the narrow region to be 
considerably small. This is illustrated in Figure 5.4. The figure shows the fluid velocity 
parallel to the channel axis at a cross section through the particle center. It can be easily 
noticed that the velocity in the narrow region is considerably smaller than the velocity 
in the wider gap between the particle and channel surface. Pressure gradient across the 
cross section is also shown in Figure 5.5. The smaller velocity gradient on the half of 
the particle surface that is facing the channel wall causes the overall viscous stress 
tensor on the particle surface to decrease compared to the concentric case. This results 
in a lower viscous drag on the particle. 
 
For smaller particle sizes the value of K2 initially decreases with eccentricity and start to 
increase at higher eccentric positions. The parabolic velocity profile accounts for this 
increase. For smaller sized particles at higher eccentricity values the local fluid velocity 
at the radial position same to the particle center is significantly lower than the centerline 
velocity. But for larger sized particles the radial movement of the particle center cannot 
be high due to the narrow available region between the channel and particle wall. So, in 
this case the local velocity at any eccentric position of the sphere is almost near to the 
centerline velocity and also higher than the mean fluid velocity within the channel. To 
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summarize, it can be said that, normalizing the drag with respect to the smaller local 
velocity for smaller particles at higher eccentricity results the increase in K2. But, for 
higher particle sizes the normalizing velocity does not decrease significantly with 
eccentricity. This results in the monotonic decrease in K2. 
 
For a steadily moving particle in an otherwise quiescent fluid, the particle drag is 
characterized by the wall correction factor K1. The value of K1 also decreases because 
the recirculation fluid velocity within the gap between the particle and channel wall is 
restricted. This causes the velocity gradient to reduce on the particle surface and thus 
results in a lower viscous drag on the steadily moving particle near to the channel wall. 
The settling velocity of the particle is increased with eccentricity. 
 
 
 

 

(a) Variation of wall correction factors K1, K2 and lag factor G for 0.2 = ߣ 
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(b) Variation of wall correction factors K1, K2 and lag factor G for 0.3 = ߣ 

 

(c) Variation of wall correction factors K1, K2 and lag factor G for 0.4 = ߣ 
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(d) Variation of wall correction factors K1, K2 and lag factor G for 0.5 = ߣ 

 

(e) Variation of wall correction factors K1, K2 and lag factor G for 0.6 = ߣ 
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(f) Variation of wall correction factors K1, K2 and lag factor G for 0.7 = ߣ 

 

(g) Variation of wall correction factors K1, K2 and lag factor G for 0.8 = ߣ 
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(h) Variation of wall correction factors K1, K2 and lag factor G for 0.9 = ߣ 
 

Figure 5.3: Variation of wall correction factors K1, K2 and lag factor G for different 
particle sizes with its radial position inside the channel. 
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Figure 5.4: Fluid velocity at a cross section through the particle center for particle 
to channel radii ratio 0.6 and eccentricity 0.6. 

 

Figure 5.5: Pressure gradient at the cross section through the particle center 

5.3 Effect of Size of the Particle on its Motion 

Variations of K1, K2 and G with the radial position of the particle inside the channel for 
all particle to channel radii rations i.e. ߣ values are compared in Figure 5.6, Figure 5.7 
and Figure 5.8, respectively. It is well noticeable that the variation of K1 and K2 follows 
the same trend with varying eccentricity for all particle sizes. The variation of lag factor 
with eccentricity for all particle sizes is compared in Fig. 5.8. It can be observed that the 
change in the lag factor with eccentricity is not significant for larger sized particle i.e. 
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particle to channel radii ratio ߣ ൐ 0.8. However, for smaller sized particles change in 
the value of lag factor with eccentricity is significant. 
 
The value of the lag factor decreases with the eccentricity of the particle. However, the 
decrease is not significant for larger particle sizes. The particle velocity remains above 
the mean fluid velocity at most of the eccentric positions for all particle sizes. At the 
highest eccentric case i.e. at ݁ ൌ 1 , there is direct contact between the particle and the 
channel wall, which results the particle velocity to be zero. Thus the value of lag factor 
for a non-rotating particle should approach zero at the highest limit of the eccentricity. 
(However, if such contact exists, rolling of the particle on the channel surface should be 
investigated). This is not the same case for larger particle sizes. For the highest possible 
size for a spherical particle flowing axially in a cylindrical channel i.e. at ߣ ՜ 1 the 
particle radius is nearly equal to the channel radius and the particle would act as a 
piston. So, for larger sized particles the value of the lag factor remains fixed with 
eccentricity and does not approach to zero for higher eccentricity values. 
 
Effect of the particle size on the variation of wall correction factor K1 and K2 and lag 
factor G for the same eccentricity value is compared in Figure 5.9, Figure 5.10 and 
Figure 5.11, respectively. It is observed that, K1 and K2 increases with particle sizes for 
all eccentric positions. For smaller sized particles variation in the values of K1 and K2 
with eccentricity is lower than that occurs for larger sized particles. Change in the lag 
factor with eccentricity is not significant for larger sized particle, but for smaller sized 
particles this change is significant. 
 

 
 Figure 5.6: Variation of wall correction factor K1 with radial position of the 

particle for different particle sizes 
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Figure 5.7: Variation of wall correction factor K2 with radial position of the 

particle for different particle sizes 

 

Figure 5.8: Variation of lag factor G with radial position of the particle for 
different particle sizes 
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Figure 5.9: Variation of wall correction factor K1 with particle sizes at same 

eccentric position. 

 

 Figure 5.10: Variation of wall correction factor K2 with particle sizes at 
same eccentric position. 
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Figure 5.11: Variation of lag factor G with particle sizes at same eccentric position. 

 

5.4 Comparison with Lubrication Theory Results 

 
Calculated values of K1, K2 and G by NS-ALE model are compared with the values of 
[6] for ߣ ൌ 0.2, ߣ ൌ 0.6 and ߣ ൌ 0.9 as are shown in Fig 5.12, Fig. 5.13 and Fig. 5.14, 
respectively. The solution methodology adopted in [6] is briefly described in Appendix 
B. Their calculated values of K1, K2 and G follow similar trend for all particle sizes 
compared to the values from NS-ALE model. Fig. 5.12 shows that, the values of K2 

calculated by [6] for ߣ ൌ 0.2 decreases monotonically, while the values from NS-ALE 
model increase rapidly at higher eccentricity values. This is due to the fact that, in this 
analysis while calculating the wall correction factor K2, local fluid velocity is used 
unlike in [6] where fluid velocity at the channel centerline was used. 
 
The calculated values of wall correction factors and lag factor by the NS-ALE model 
are in well agreement with those calculated by the lubrication theory analysis for lower 
eccentricity values ሺ݁ ൏ 0.2ሻ  for all particle to channel radii ratios. However, with 
increasing eccentricity the deviation increases and values of K1, K2 and G from NS-ALE 
model are higher compared to calculated values by [6]. For smaller particle to channel 
radii ratios ሺߣ ൌ 0.2ሻ  this deviation is significant. However, for larger particle to 
channel radii ratios ሺߣ ൌ 0.9ሻ the deviation is considerably lower at higher eccentricity 
values. This can be explained by the effect of separation distance of the particle from 
the channel wall and the curvature of the channel and particle surface. The separation 
distance is denoted by ݄  and the curvature of any surface is the reciprocal of its radius.  
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The presumption in the lubrication theory is that, the separation distance between the 
particle surface and the channel wall is significantly small compared to the particle 
radius (i.e. ݄ ൏൏ ܽ) and also to the curvature of the particle and channel surface. For 
larger particles, at all eccentricity values the separation of the particle surface 
everywhere remains small compared to the particle radius, thus the calculations of the 
hindrance factors by utilizing the lubrication theory are accurate. For example, for 
ߣ ൌ 0.9 , when the particle is moving along the channel centerline the normalized 
separation distance ݄/ݎ଴ is equal to 0.1, while at eccentricity ݁ ൌ  ଴ is equal toݎ/݄ ,0.8
0.02. So, for larger sized particles the separation distance is considerably lower 
compared to the particle radius at all eccentricity values. In contrast, for smaller sized 
particles, for ߣ ൌ 0.2, when the eccentricity value is high i.e. at ݁ ൌ 0.8, the separation 
distance ݄/ݎ଴ is 0.16 which is of same order of the particle radius. So, for smaller sized 
particles the separation distance is not comparatively lower even at higher eccentricity 
values. This suggests the reason for deviation between the results obtained by NS-ALE 
model with those obtained by lubrication theory.  
 
Moreover, the curvature of the particle and channel wall comes into play for smaller 
sized particles. At same eccentricity value i.e. at ݁ ൌ 0.8, the ratio of the separation 
distance ݄ to the particle radius ܽ is 0.8 and 0.025 for ߣ ൌ 0.2 and ߣ ൌ 0.9 respectively. 
As the ݄/ܽ  ratio is not negligible for smaller sized particles even at higher 
eccentricities, the effect of the curvature of the particle and channel surfaces causes the 
deviation of the wall correction factors using the lubrication theory.  
 
Another factor that deserves attention to be responsible for the deviation in the 
calculated value of wall correction factors and the lag factors is the inertia effect on the 
particle motion. It was observed in [19] that the wall correction factor K1 for the particle 
motion at the capped end of the channel calculated by the linear superposition of two 
flow regime does not conforms to the numerical calculation taking into account of the 
inertia effects. This suggests that the effect of inertia on the values of wall correction 
factors cannot be neglected fully, although the Reynolds number remains in the fully 
Stokes regime ሺܴ݁ ൑ 1 ൈ 10ିଷሻ. 
 
In Figure 5.15, a graphical representation of the values of lag factor G at different 
separation distances are given for different particle to channel radii ratios. The top and 
bottom boundary of the figure represents the channel wall and channel centerline, 
respectively. Each column stands for a specific particle size. The lag factors are written 
in a position equal to the separation distance of the particle from the channel wall. From 
this figure, a good insight of the lag factor values for each particle sizes and at different 
separation distance can be understood at a glance. 
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 Figure 5.12: Comparison of wall correction factor K1, K2 and lag factor G with 
calculated values of Higdon and Muldowney [6] for 0.2 = ࣅ 

 

 

Figure 5.13: Comparison of wall correction factor K1, K2 and lag factor G with 
calculated values of Higdon and Muldowney [6] for 0.6 = ࣅ 
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Figure 5.14: Comparison of wall correction factor K1, K2 and lag factor G with 
calculated values of Higdon and Muldowney [6] for 0.9 = ࣅ 
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Figure 5.15: Graphical depiction of lag factor G at different separation distances of 
the particle from the channel wall 

 



6. CONCLUSION AND RECOMMENDATIONS 

 

6.1 Concluding Remarks 

The development of the hydrodynamic theory of hindered transport for rigid uncharged 
spheres in pores of cylindrical cross section has reached a state of completion. 
Previously, centerline approximation was used to find the approximate value of overall 
convective flux of the particle containing fluid inside a cylindrical channel. Accurate 
quantitative values are now available for local enhanced drag coefficients for a sphere 
traveling parallel to the channel axis for all of its radial positions. Accurate value of the 
overall convective flux of the particle containing fluid can now be readily obtained by 
utilizing the radial average values of these local enhanced drag coefficients. 

In this chapter, conclusions are drawn based on the analysis performed in the previous 
chapter. The analyses were performed first through investigating the effect of wall on 
the motion of a spherical particle moving along the centerline of a cylindrical channel 
by varying the particle to channel radii ratio ߣ. Later the analyses were performed for 
different eccentric position of the particle i.e. varying the eccentricity ݁ of the particle. 

From the results of wall correction factors and lag factors of a spherical particle of 
different sizes and eccentric positions, the following inferences can be drawn: 

- Wall correction factors K1 and K2 increase with increasing particle size. The 
value of K2 is always lower than the value of K1. The physical significance of 
this is, drag experienced by the particle due to its motion is higher than the drag 
force exerted on the particle by the flowing fluid. This suggests the particle will 
always move slower than the flowing fluid i.e. the lag factor will always be less 
than unity.  

- The variation of K1 and K2 follows the same trend with varying eccentricity. 
Values of wall correction factor K1 and K2 for larger sized particles ( ߣ ൐ 0.3 ) 
decreases monotonically with eccentricity. But for smaller sized particles ( 
ߣ ൏ 0.3 ), the values of K1 and K2 initially decrease and then have a tendency to 
increase at eccentricity value around ݁ ൌ 0.6. This increase accounts for the 
parabolic velocity profile of the flowing fluid. 

- For all particle sizes, values of K1, K2 and G from NS-ALE model follow similar 
trend like the values of [6]. For lower eccentricity values i.e. ݁ ൏ 0.2, both 
results are very close. However, with increasing eccentricity the deviation 
increases and values of K1, K2 and G from NS-ALE model are higher compared 
to the values obtained from lubrication theory [6]. This improvement in the 
calculated results accounts for the consideration of the inertia effect on the 
particle motion in the NS-ALE model. 
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- Values of K1 and K2 increases with particle sizes for all eccentric positions. For 
smaller sized particles variation in the values of K1 and K2 with eccentricity is 
lower than that occurs for larger sized particles. This suggests that the centerline 
approximation for larger sized particles introduce more inaccuracy than that 
would occur for small particle sizes. 

- The value of the lag factor decreases with the eccentricity of the particle. 
However, the decrease is not significant for larger particle sizes. The particle 
velocity remains above the mean fluid velocity at most of the eccentric positions 
for all particle sizes. The value of lag factor for small sized particles approaches 
zero at the highest limit of the eccentricity. However, for larger sized particles 
ሺߣ ൐ 0.8) the value of the lag factor remains fixed with eccentricity and does not 
approach to zero for higher eccentricity values. 

 

6.2 Recommendations for Future Work 

Some possible directions of the future works are as follows: 

- Values of wall correction factors and lag factor for a spherical particle for finite 
Reynolds numbers are lacking in the literature. The present model can be 
utilized to get the accurate quantitative values of the wall correction factors and 
lag factor at any Reynolds number within the laminar flow region. Effect of the 
inertia on the particle motion can be investigated by doing the analysis at 
different Reynolds number. 

- In this model, results were obtained for a single particle moving through the 
channel. A series of particle movement can be simulated for getting a true 
picture of particle distribution inside the channel. 

- Only hydrodynamic interaction is taken into consideration here, whereas 
electrostatic and other physics should also be explored based on the practical 
interests. 

- This model can be utilized to find the wall correction factors and lag factor for 
particles of different geometric shapes, such as, dumbbell, cylindrical, circular 
disk, cubes, parallelepipeds, needles and thin plates etc. 

- In this research, the particles are considered to be rigid in nature. In many 
applications, the particles are not always rigid. Flow induced deformation should 
be taken into consideration for getting the results in future. 
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APPENDIX A 

 

Navier-Stokes Equation in ALE Kinematical Description 

The material domain, denoted by ܴࢄ , made up of material particles ܺ  is used as 
reference in Lagrangian description and the spatial domain, denoted by ܴ௫ consisting of 
spatial points ݔ  is used as reference in Eulerian description. The referential 
configuration ܴ࣑  consists of coordinate points ߯ is used to identify the grid points in 
ALE description. These three domains are related to each other by three conformal 
mappings ߮, ߶ and ߰ which is shown in the following figure 

 

Fig. A.1: Three reference domains and the associated mappings relating those 

The referential domain ܴ࣑  is mapped into the material and spatial domains by ߰ and ߶ 

respectively and ߮ defines the relationship between the spatial domain and material 
domain. Also these three mappings are not independent. They are related to each other 
as:  

߮ ൌ ߶ כ ߰ିଵ (A.1)

The spatial coordinate ݔ  of each material point ܺ  is related by its motion and that 
relationship can be defined as a one to one mapping between the material domain ܴࢄ  to 
spatial domain ܴ௫. So ߮ can be described as: 

߮: ൈ ࢄܴ ,଴ݐൣ ௙௜௡௔௟ൣݐ  ื ܴ௫  ൈ ,଴ݐൣ  ௙௜௡௔௟ൣݐ

ሺܺ, ሻݐ ฽  ߮ ሺܺ, ሻݐ ൌ ሺݔ,  ሻݐ

This gives a relationship between ܺ and ݔ in time, 

ࢄܴ :   Material domain,     
reference for  
Lagrangian description 

 

ܴ௫  :   Spatial domain, 
            reference for 
            Eulerian description 
 

ܴ࣑  :   Referential domain, 
            reference for 
            ALE description 
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ݔ ൌ ,ሺܺݔ ݐ               ,ሻݐ ൌ  ݐ

The gradient of the mapping ߮ can be expressed in matrix form as: 

߮ߜ
,ሺܺߜ ሻݐ ൌ ൭

ݔߜ
ܺߜ ݒ

0் 1
൱ (A.2)

Here ݒ is the material velocity and can be given by: 

,ሺܺݒ ሻݐ ൌ
ݔߜ
ฬݐߜ

ࢄ
 (A.3)

Here |ࢄ means holding the material coordinate fixed. So, it defines the velocity of a 
specific material particle.  

Similarly the mapping ߶  from the referential domain to the spatial domain can be 
understood as the motion of the grid points in the spatial domain and is represented by: 

߶: ܴ࣑ ൈ ,଴ݐൣ ௙௜௡௔௟ൣݐ  ื ܴ௫  ൈ ,଴ݐൣ  ௙௜௡௔௟ൣݐ

ሺ࣑, ሻݐ ฽  ߶ ሺ࣑, ሻݐ ൌ ሺݔ,  ሻݐ

The gradient of this mapping can be represented in matrix form as: 

߶ߜ
,ሺ࣑ߜ ሻݐ ൌ ቌ

ݔߜ
࣑ߜ ොݒ

0் 1
ቍ (A.4)

here, ݒො is the mesh velocity and can be expressed as: 

,ොሺ࣑ݒ ሻݐ ൌ
ݔߜ
ฬݐߜ

࣑
 (A.5)

One important point to note here, in Lagrangian viewpoint, since the material points 
coincide with the same grid points during the whole motion, there are no convective 
effects. In Eulerian viewpoint, the mesh nodes are not attached with the material 
particles, so convective effects arise and the convective velocity i.e. the relative velocity 
between mesh nodes and material points is simply the velocity of the material points. 
However, in arbitrary Lagrangian Eulerian viewpoint both the reference domain and 
material domain are moving with respect to spatial domain. So, in this description the 
convective velocity need to be determined. 

The mapping ߰ defines the relationship between the referential domain and the material 
domain. This is of particular interest because by varying the definition of this mapping 
both the Eulerian and Lagrangian description can be achieved. It is convenient here to 
write its direct inverse ߰ିଵ as: 



54 
 

߰ିଵ: ܴ௑ ൈ ,଴ݐൣ ௙௜௡௔௟ൣݐ  ื ܴ࣑  ൈ ,଴ݐൣ  ௙௜௡௔௟ൣݐ

ሺܺ, ሻݐ ฽  ߰ିଵ ሺܺ, ሻݐ ൌ ሺ࣑,  ሻݐ

The gradient of mapping ߰ିଵ can be expressed as: 

ଵି߰ߜ

,ሺܺߜ ሻݐ ൌ ൭
࣑ߜ
ܺߜ ݓ

0் 1
൱ (A.6)

here, the velocity ݓ is: 

ݓ ൌ
࣑ߜ
ݐߜ ฬ

௑
 (A.7)

This ݓ can be interpreted as the particle velocity in the referential domain. 

The relation between ݒ ,ݒො and ݓ is found by differentiating equation ߮ ൌ ߶ כ  ߰ିଵ. 

߮ߜ
,ሺܺߜ ሻݐ ሺܺ, ሻݐ ൌ  

߶ߜ
,ሺ࣑ߜ ,ሻ ൬߰െ1ሺܺݐ ሻ൰ݐ ଵି߰ߜ כ

,ሺܺߜ ሻݐ ሺܺ,   ሻݐ

ൌ  
߶ߜ

,ሺ࣑ߜ ,ሻ ሺ࣑ݐ ሻݐ כ ଵି߰ߜ 

,ሺܺߜ ሻݐ ሺܺ,  ሻݐ

This can be represented in matrix form as: 

൭
ݔߜ
ܺߜ ݒ

0் 1
൱ ൌ ቌ

ݔߜ
࣑ߜ ොݒ

0் 1
ቍ כ ൭

࣑ߜ
ܺߜ ݓ

0் 1
൱ , 

which yields after multiplication:  

ݒ ൌ ොݒ ൅
ݔߜ
࣑ߜ · (A.8) ݓ

The above equation can be rewritten as: 

ݒ െ ොݒ ൌ
ݔߜ
࣑ߜ · (A.9) ݓ

This is the convective velocity i.e. the difference between the mesh velocity and 
material velocity.  

Now, the time derivative of any physical quantity in the referential domain needs to be 
discussed, because in the Navier-Stokes equation there is a term representing time 
derivative of velocity. The time derivative of any physical quantity ࢛  for a given 
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particle ܺ i.e. its material derivative can be expressed as the summation of its local 
derivative (with the reference coordinate held fixed) and the convective term taking into 
account the relative velocity between the material and the reference system. This is 
similar to the typical Eulerian framework and can be written as: 

࢛ߜ
ݐߜ ฬ

௑
ൌ

࢛ߜ
ݐߜ ฬ

࣑
൅ ሺݒ െ ොሻݒ · (A.10) ࢛׏

So, the only change that will occur in the Navier-Stokes equation with respect to the 
referential domain, is in the convective term with the convective velocity being equal to 
ݒ െ  ො. However, the continuity equation will remain the same. The resulting equationsݒ
are shown below: 

ߩ ቆ
࢛ߜ
ݐߜ ฬ

࣑
൅ ሺ࢜ െ ෝ࢜ሻ · ቇ࢛׏ ൌ െ݌׏ ൅ ׏ߤ · ሺ࢛׏ ൅ ሻ்࢛׏ ൅ ௕, (A.11)ࡲ

׏ · ࢛ ൌ 0 (A.12)

It should be noted that the equation is similar to the Eulerian equations and can be 
solved in a similar way in the referential domain. Here ෝ࢜ is the mesh velocity and from 
now on it is denoted by ࣒࢓ for convenience. So the Navier Stokes equation in arbitrary 
Lagrangian Eulerian framework can be finally written as: 

ߩ ቆ
࢛ߜ
ݐߜ ฬ

࣑
൅ ሺ࢜ െ ሻ࢓࣒ · ቇ࢛׏ ൌ െ݌׏ ൅ ׏ߤ · ሺ࢛׏ ൅ ሻ்࢛׏ ൅ ௕, (A.13)ࡲ

 

 

 



 
 

APPENDIX B 

 

B.1 Solution Methodology Utilized in [6] 

Stokes equation was solved using the boundary integral method. The calculated results 
are represented using algebraic equations for the entire position of the particle within 
the channel. In selecting the algebraic form used to represent the resistance functions, 
analytical results for three distinct regimes were utilized: (i) particles near the centre, 
଴ݎ/݀ ا 1, (ii) small particles in the vicinity of the wall ݀/ݎ଴ ~ 1 , ܽ/ሺݎ଴ െ  ݀ሻ ا   1, 
and (iii) particles in the lubrication regime where the ratio of gap size to particle radius 
is small, ሺݎ଴ െ ݀ െ ܽሻ/ܽ ا 1. In region (i), the method of reflections and asymptotic 
analysis show that the resistance functions are even functions of ݀/ݎ଴ . In region (ii), 
method of reflections calculations give resistance functions as power series in ܽ/ሺݎ଴ െ
݀ሻ. In region (iii), lubrication theory yields the functional form and limiting behavior of 
the resistance functions. 

A dimensionless position variable or eccentricity is defined as expressed by, ݁ ൌ
݀/ሺݎ௢  െ  ܽሻ. Motivated by the behavior in region (ii), a dimensionless variable ߩ is 
defined to characterize the distance of a small particle from the cylinder wall. Here, 1/ߩ 
is defined as a even function of ݁.  

1
ߩ ൌ

ܽ
଴ݎ

 ൤1 െ ݁ଶ ሺ1 െ
ܽ
଴ݎ

ሻଶ൨
ିଵ

 

A dimensionless variable ߜ is defined to characterize the gap size in the lubrication 
limit. Again it is defined as the even function of ݁: 

ߜ ൌ
1
2 

଴ݎ

ܽ  ൬1 െ
ܽ
଴ݎ

൰ ሺ1 െ ݁ଶሻ 

Note that ߜ scales as the ratio of gap/particle radius in the limit as ݁ ՜ 1, i.e. as the gap 
approaches zero. For convenience, ߜ଴ is defined to be the value of ߜ evaluated at ݁ ൌ 0 
which yields  ߜ଴ ൌ ሺݎ଴ െ ܽሻ/2ܽ. With these specifications, the following approximating 
functions are defined: 

߰଴ ൌ 1;   ߰ଵ ൌ
ܽ
଴ݎ

 ݁ଶ ;    ߰ଶ ൌ
ܽ
଴ݎ

 ݁ସ ; 

߰ଷ ൌ ݁ଶ௠ ݁ଶ

ߩ   ; 

߰ସ ൌ ݁ଶ௠ ቆ
݁ଶ

ߩ ቇ
ଶ

; 
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߰ହ ൌ ൤ln ߜ ൬
ߜ ൅ 1

ߜ ൰ െ ln ൬
଴ߜ ൅ 1

଴ߜ
൰൨ െ  ݁ଶ  ൬

଴ߜ

଴ߜ ൅ 1൰ ; 

߰଺ ൌ ൤ln ൬
ߜ ൅ 1

ߜ ൰ െ ln ൬
଴ߜ ൅ 1

଴ߜ
൰൨ െ ݁ଶ  ൬

1
଴ߜ ൅ 1൰ ; 

߰଻ ൌ
1
ߜ െ  

1 ൅ ݁ଶ

଴ߜ
 ; 

The resistance functions are represented as a single continuous function over the entire 
range 0 ൏ ݁ ൏ 1. This decision dictates the form of the approximating functions ߰௜ . 
The first three terms ߰଴, ߰ଵ, ߰ଶ are determined by the asymptotic behaviour at small ݁. 
The next two terms ߰ଷ, ߰ସ take the form of the method of reflections contributions in 
region (ii) with the additional factors of  ݁ଶ to preserve the approximation in the small ݁ 
limit. The last three terms  ߰ହ, ߰଺, ߰଻ are determined by lubrication theory. As ߜ ՜ 0, 
these terms scale as ߜ ln ߜ , ln  ߰ respectively. In these three cases, the function ߜ/and1 ߜ
is defined by taking the appropriate lubrication result and subtracting the limiting 
behaviour for small ݁ . As before, this serves to preserve the character of the 
approximation at small ݁. 

The value of K1 is presented in the following form: 

ଵܭ ൌ  ෍ ܿ௜

଻

௜ୀ଴

൬
ܽ
଴ݎ

൰ ߰௜  ൬݁,
ܽ
଴ݎ

൰ 

And the value of K2 is presented in the form:  

ଶܭ ൌ  ෍ ܿ௜

ସ

௜ୀ଴

൬
ܽ
଴ݎ

൰ ߰௜  ൬݁,
ܽ
଴ݎ

൰ െ ݁ଶ  ൬1 െ  
ܽ
଴ݎ

൰
ଶ
 

Values of ܿ௜  and exponent ݉ are given in a tabulated form. The value of the exponent ݉ 
is taken to be 2. Here, the values of the coefficients are shown partially for particle to 
channel radii ratios, ߣ ൌ 0.2, 0.6 and ߣ ൌ 0.9 only in Table B.1 and Table B.2. 

 

Table B.1: Values of the coefficients for calculating K1 

a/r଴ ܿ଴ ܿଵ ܿଶ ܿଷ ܿସ ܿହ ܿ଺ 

0.2 1.679480 -1.30422 1.03602 -0.06911 -0.10952 -0.06961 0.58844

0.6 11.091896 -14.32557 13.86957 -8.22332 4.11603 -1.73070 0.93008

0.9 469.222507 -732.58970 1252.70861 -979.70668 645.77045 7400.80980 2.04018
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Table B.2: Values of the coefficients for calculating K2 

a/r଴ ܿ଴ ܿଵ ܿଶ ܿଷ ܿସ 

0.2 1.634787 -3.55069 2.67484 -0.58220 0.63431 

0.6 8.613008 -14.19404 13.70181 -8.49174 5.01887 

0.9 266.432020 -417.14394 557.34338 -477.12013 208.22109 

B.2 Lubrication Theory: 

Here expressions for the asymptotic form of the resistance functions  based  on  
lubrication  theory  for  two  surfaces  in  near  contact are presented.  

Consider two surfaces in near contact such that the minimum distance between the 
surfaces is ݄. One surface, designated the wall, is assumed to be rigid and motionless, 
while the other surface designated the particle may be either fluid or solid. Assume that 
each surface has finite curvature at the point of minimum separation and that the 
curvature is much less than 1/݄ , .  Define a local Cartesian coordinate system with the 
origin on the wall at the point of nearest approach and the x-axis normal to the surfaces 
pointing toward the particle. 

Let the rigid boundary wall be represented locally by 

ݔ ൌ ௪ߟ  ൌ ଶݕ ௪ܣ  ൅  ଶݖ ௪ܤ 

and, the particle surface is represented by  

ݔ ൌ ௣ߟ  ൌ  ݄଴ ൅ ଶݕ ௣ܣ ൅  ଶݖ ௣ܤ 

Define, ݄ሺݕ,  ሻ as the gap between the wallsݖ

݄ሺݕ, ሻݖ ൌ ௣ߟ  െ ௪ߟ  ൌ  ݄଴ ൅ ଶݕ ܣ ൅  ଶݖ ܤ 

and, define a variable ߦ ൌ ݔ െ  ௪ such that the surface between the surfaces occupiesߟ 
the region 0 ൏ ߦ ൏ ݄. 

Assume that ݄଴ܣ, ݄଴ا ܤ 1 and note that changes in ݕ and ݖ scales with 1/ܣ and 1/ܤ 
while changes in ݔ  scale with ݄଴ . Under these circumstances, the lubrication 
approximation for the Stokes equations leads to the simplified form, 

݌ߜ
ݔߜ ൌ 0,   

݌ߜ
ݕߜ ൌ  ߤ

ݒଶߜ
ଶݔߜ  ,    

݌ߜ
ݖߜ ൌ  ߤ

ݓଶߜ
ଶݔߜ   

Now consider the shearing flow of a rigid particle. Assume that the particle velocity at 
the centre of the sphere is ݑ ൌ ሺ0, ܸ, ܹሻ and the angular velocity is Ω ൌ ሺ0, Ωଶ, Ωଷሻ. 
The particle velocity at the contact point ሺ݄଴, 0, 0ሻ  is then ൫0, Vෙ, Wෙ ൯ ൌ ሺ0, ܸ െ
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Ωଷܽ,   ܹ ൅ Ωଶ ܽ ሻ. The no slip at the stationary wall is ݑ ൌ ሺ0,0,0ሻ at ߦ ൌ 0. The no 
slip condition on the particle can be expressed as ݑ ൌ ሺΩଶ ݖ െ Ωଷ ݕ, Vෙ, Wෙ ሻ at ߦ ൌ ݄ . 

Now, integrating the Stokes equation twice, employing the boundary conditions and 
substituting the velocity components a lubrication equation for ݌ is found, which yields, 

݌ ൌ ሺ݇ଶݕ ൅  ݇ଷ ݖሻ/ ݄ଶ 

The no-slip boundary condition yield values for the coefficients ݇ଶ and ݇ଷ in terms of 
ܸ, ܹ, Ωଶ and Ωଷ. Evaluating the force and torque on the particle, a zero torque condition 
is employed to solve for Ωଶ and Ωଷ. The final results for the force on a torque-free rigid 
particle are, 

ଵܭ ൌ  
௭ܨ

ܹܽߤߨ6 ൌ 2 ൬
଴ݎ

଴ݎ4 െ ܽ൰  ൬
଴ݎ

଴ݎ െ ܽ൰
ଵ/ଶ

ln ൬
ܽ
݄଴

൰ 

This equation provides the values for the coefficients ܿ଺ in the table B.1 shown above. 

 

 


