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ABRSTRACT

Continuous improvemen£ in the field of technclogy and transistor
physics have progressively opened up, to bipolar devices, the
area of power applications upto 50 of 100 KQA. In particular the
.control of deep diffusion and thick epitaxies with low impurity
concentrétions had led to use n*pn n* bipolar transistor as
power switches. In this thesis an analytic design model is-
developed for epitaxial bipolar transistor switches where
optimai calculations have been carried out for structural
parameters which make it possible to comply in the best possible
way with given specifications. All the numerical models follow a
lengthy procedure and involes a large amount of computations. On
the other hand this model is simple and straight forward and
needs less computations. Results obtained by using this analytic
model are compared with those evaluated numerically and are

found in good agreement.
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CHAPTER E R

Introduction

'21.21 Epitaxial Bipolar Transistor

The epitaxial technique consists of growing a thin, high-purity
single-crystal layer of silicon or germanium on a heavily doped
substrate of the same material. This'augmented crystal forms the
collector on which the base and emitter may be diffused through
some standard processing. Epitaxial +techniques ﬁre very much
useful for manufacturing power transistors. For a. power
transistor switch, the‘ desired features are current-handling
capability in the on-state, blocking voltage in the off-state, .
switching times and losses. These features can be successfully
achieved in an epitaxial transistor. A typical structure of an
epitaxial bipolar nt*pn—nt power transistor is shown in Fig.l.la.

A typical base-collector impurity concentration profile for an
epiﬁaxial transistor is shown in Fig.1l.1b. The region adjacent
to the base-collector junction is the most lightly doped and
supports the reverse-biased collector—bﬁse voltage. Hence, this
region essentially determines the breakdown voltage. To alter
the breakdown voltage, the thickness and resistivity of the

lightly doped collector region were changed.
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1.2 Transistor used as a Switch

An ideal switch should behave like a short circuit at the on
state and like an open circuit at the off state. A trahsistor
can approximate these behﬁviors of a switch. A switching
transistor is designed to operate between the two regions 1i.e.
the satur;tion region (on state) and the cutoff redgion(off
state), of its output characteristic curve. It must gawitch

between the two states in a very short time.

‘A simple switching circuit for a transistor in the common-
emitter configuration is shown in figure 1.2 . In this figure
the collector current i, 1is controlled .by the base current
ip '‘over most of the family of characteristic curves; The leoad
‘line specifies the locus of allowable (ig,Veog) points for the
circuit. If the base current is zero or negative, the point C is
reached at the bottom end of the load line,and the collector
currént is negligible. This 1is the toff' state of thé
transistor.and the device is said to be operating in the cut
off regime. If the base cufrent is positive and sufficiently
large, the device is driven to the saturation regime, marked S.
This is the "on" state of the transistor, in which a large value
of ic flows with only a very sﬁall voltage drop vog. In a

typical switching operation the base current swings from



10V

(a)

Fig.
common-emitte

—10V

. 5==0J;nA
10
0.08
8H ~
- S . 0.06
< 6
£ N
L4

A \ 0.02

0 20 40
vee(V)

1.2 Simple switching circuit for a transistor in the
r configuration

(a) biasing circuit,

(b) collector characteristics and load line for the
circult, with cutoff and saturation indicated.
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positive to negative, thereby driving the device fpom

saturation to cut-off, and vice versa.

1.3 Design Considerations

Designing a power transistor generally involves the development
of a famiiy of similar devices, each member of which possesses a
* different range of operating characteristics. To cover a wide
spectrum of current-handling aﬁd voltage-blocking capabilities,
changes are made in emitter area and in collectbr thickness and

resistivity, respectively.

A switching epitaxial n*pn™nt* power transistor must block a
given voltage, it must carry a given current under the desired
collector-emitter voltage Vog and it must switch between the
‘on’and ‘off'states as quickly as possible [1]. In this work,'
design model is developed for epitaxial bipolar powef
tranasistor switch, where optimal calculations are carried out
for different structural parameteré (i.e. doping
concentration,layer thickness, g?ometrical dimensions etc.)
ﬁhich make it possible to coﬁply with given specifications

(i.e. BVeoros Ieo hgg etc.) in the best possible way.



1.4 Summary of the Dissertation

The control of deep diffusions and thick epitaxies with low
impurity concentrations has led to great improvements in
structure design. Bipolar transistors have been preferred
devices for a variet& of applications., In this thesis we pursue

the design of optimal parameters of power transistor switches.

In chaptér 2, the avalanche breakdown voltages of an abrupt
p+n‘junction (base-collector) is numerically calculated. An
empirical expression for breakdown voltage ié established. The
results are in good agreement with numerical values; In
evaluation of Ionization integral, the most commonly used
ionization rates given by .Van Overstraetén and De Man [2]

are used.

In chapter 3, breakdown  voltage of an open-base transistor is
calculated numerically. An &nalytical relationship between

open-base and open-emitter breakdown veoltage is established.
This relationship 1s needed to obtain obtimal values of

collector parameters.

Chapter 4, deals with the derivations of mathematical
expressions for optimal collector doping density and epitaxial

layer thickness. Analytical expressions are derived by using the

¢



method of Lagrange multipliers .

Chapter 5, deals with the design of epitaxial bipolar

transistor switches. An optimization procedure is developed

that completely specifies the parameters of the device with
only two input data requirements - the collector-emitter
sustaining voltage BVgpo and the forced gain hgggp. The
analytical results are compared with lnumerical results of

the other authors and are found in godd agreement.

-



CHAPTER 2

Avalanche Breakdoywn wvoltages of
Abrupt pPp¥Yn Junctions

2.1 Introduction

The breakdown voltage is one of the most important parameters in

device design. In the evaluation of optimal parameters of
collector doping density and collecfor width of a lightly doped
collector, an analytic expression for open-emitter breakdown
veltage BVgppgp for ptn base-collector Junctions given by
Sze and Gibbons is often used. However, calculations based upon

the ionization rates determined by = Van Overstraeten and

H. De Man [2] aré shown to deviate substantially from the values

obtained by Sze and Gibbons[3]. Reasons for discrepancies

between ionization coefficients have been discussed in details

by Van.Overstraeten and De Man. In this chapter,the avalanche’
breakdown voltage Vg, is computed numerically for one-sided

ptn junctions basgd on the ionization rates of Van Oyerstraeten

and De Man. Empirical expressions for breakdown voltage, maximum

electric field and depletion layer width as a function of

background doping Np are then fitted to the numerical values.

Empirical expression for breakdown voltage is used to calculate

optimal values of collector parameters.

9



2.2 Avalanche Muaultiplication

Avalanche multiplication is the most important mechanism in
junction breakdown, since the &avalanche breakdown voltage
imposes an upper limit on the reverse bias for most diodes, and
on the collector voltage of ﬁipolar transistors. Avalanche
breakdown is caused by collisions between charge carriers and
valence electrons in the reverse-biased depletion layers. As
reverse bias voltage 1s increased, electron and/or holes (part
of the reverse saturation current} achieve sufficient kinetic
energies to generate hole-electron pairs when they collide with
valence electrons. The new holes and electrons are accelerated
by the electric field, achieving sufficient energy to generate
more hole-electron pairs through collisions and so on. Thus each
new carrier may, in turn, produce additional carriers through
collision and +the actiﬁn of disrupting bonds. This cumulative
process is referred to as avalanche multiplication. It results
in large reverse currents, and the diode is said to be in the
region of avalanche breakdown. The avalanche multiplication and
breakdown processes are most probable inlthe lightly doped

region of the depletion layer.

2.3 Tonization Integral
In the following section the basic ionization integral which

determines the breakdown condition, is derived. Let us consider

10



the reverse biased junction, schematically shown in fig. 2.1.
The origin of the x-axis is taken at thé ﬁetallurgicﬁl Jjunction.
The boundaries of the depletion layer are respectiveiy xb and
Xn+ The total voltage acrosé the junction is |

V = Vg + Vg : ‘ (2.1)
with Vo, the external applied voltage and Vg the builtfin
potential. The sign convention for V, used here, is that Va'igt

negative for reverse bias. The currents considered here to

measure the multiplication factor, result from external

\VA

excitation.

]

PloNV=\V,+\, IN -

Xp 0 X,

Fig. 2.1 A reverse biased p-n junction;

]




The minority carrier currents are referred to as Jpn, the hole

current at x,; and an, the electron current at Xp respectively.

 For qV = q(Vg+Vq) much larger than the threshold energy for

ionization, the electrons and holes ionize, resulting in an
increase of Jpn to Jpp at xp and of Jpp to Jpp at x;,. Since
for Vg = O the total voltage across the junction corresponds to
an energy qu. which is smaller than the threshold energy, there
is no ionization. Consequently, the multiplication factor at a

reverse voltage V may be defined and is calculated as [2 ]

' M(V) = J(V) = Jnn +Jpn _ JPP +an
TVa) ™ Ty ¥ Jpm T+ mp - (22

exp|— f:,"(a,, — ap)dz] + k
(U4 k) (1= [ aw expl— [T (an — ap)deldz)

Mv) = (2.3(2))

kexp[ [ (an — ap )de] + 1

M(V) =
(1+k) (1 - f:; ap exp[— [ (ap - a,.)d:c]d:r)

(2.3(b))

with. k = J o/do,.

12



For an abrupt p'n junction, the avalanche breakdown voltage is
defined as the voltage at which the avalanche multiplication
factor becomes infinite. For pure hole injection,

k =0 (an = 0) and M =<

1= /Owe ap exp|— /:w‘(a, — a,)dz}dz (2.5)

If Xp is taken as reference{(0), then x, = Wc.'So the above

equation becomes

1= / ay exp|- '/:"(a,, — an)dz]ds (2.4)

4

where Wg is the thickness of the space-charge layer in the

n-region at breakdown.

[}

2.4 Numerically Calculasted Bresicdown
Voltages

The threshold condition for avalanche breakdown in a one-sided

p*n junction where the avalanche multipliéation is initiated by

holes can by expressed by equation (2.5). The space-charge layer

thickneas in the heavily doped base (p+) region is assumed to be

negligible . The field dependence of the ionization ratese,can

13



be expreased by

o = A exp( -b/E(x)) (2.6)
Therefore, for hole ionization
Kp= A, expl -bp/B(x)) (2.7) o
and for electron ionization
X,z Ap expl -bp/E(x)) ‘ (2.8)
where the value of A and B are given by Van Overstraeten and De
Man [ 2 J].

A 1.582 x 106 cm-1

P
2.036 x 106 Vv cm-1

bp
Ap = 7.03 x 105 cm"l
b

n 1.211 x 106 V em—t.

1

Poisson’s equation and other relevant equations used in solving

the integral equation of (2.5) numerically are.as follows:

dE ¢
- =-(P+Np —n) (2.9)
_ 1 '
13 _ \
Vp = —- (2.11) (ﬁ:

where € is the permittivity of silicon, q is the electronic -

14



charge, and n and p are electron and hele densities,
respectively. In carrying out the integration of (2.5), =a
powerful and efficient numerical technique , Romberg method, is
used. The values of peak electric field E, for given values of
doping densities Np are calculated numerically in such a way
that equatiﬁn {2.9) is satisfied. With known value of E, the

breakdown voltage Vg can be obtained from (2.11).

The numerical results are plotted in Figs. 2.2-2.14. The
breakdown condition for a one sided n*p junction can be obtained
by using Jpn = 0 and K = & . The breakdown field for this
Junction is slightly greater than that for P*n junction. Because
this difference is not significant and because mostly P*n base-
collector junction is used in epitaxial power transistor switch,
the breakdown voltages for one-sided p+n junction are carried

out in this chapter.

2.5 Fmpirical Expression for Brealkdown
Voltages

With the help of numerical results obtained in the previous

section, the empirical expression for Vg in terms of the doping

density NB is derived using the method of least‘sqﬁare. Using

this expression and equations (2.10) and (2.11) of previous

section, the empirical expressions for E, and W; are derived in .

15
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terms of Np. They are given by

Vg = 6.31 x 1013 Ng=0-76  volts (2.12)
Ep = 4.41 x 103 ng0-12 v/cm (2.13)
We = 2.861 x 1010 Np=0-88 ¢y (2.14)

Analytically calculated breakdown voltage Vg is shown in
Fig. 2.5. The analytical— results are in good agreement with

numerical results.

2.6 Charu;ljasﬁicunss

Solving the ionization integral the avalanche breakdown voltage
as a function of background doping for abrupt 8Si ptn junction
is calculated nuherically ba;ed upon the ioniz&tiqn rates
determined by Van Overstraeton and De Man[2]. An empirical
expression for breakdown voltage is also derived. This
analytical expression for bulk breakdown voltage can be used in

the calculation of optimal parameters of the collector region of

epitaxial power transistors.

18



CHAPTER 3

Breakdown Voltage of Open Base
Transistorxr

3.1 Introduction
Designing a power transistor always involves optimal
calculations of collector doping and collector width for desired
values of blocking Qoltage specified either in terms of open
base breakdown voltage or open emitter breakdown voltage. In the
evaluation of optimal parameters, closed-from analytical
expressions for collector doping density and collector width are
oftén determined by using the relationship of open base
breakdown voltage BVogpo¥ with maximum {low level) current gain
hpgo and open emitter breakdown volt;ge BVopo*¥ given by
VMilier [4}. In this chépter, both BVpogp¥ and BVpgp* are
calculated numerically and then an empirical relationshib is
fitted to numerical values. These relationships are useful in
obtaining analytical expressions for optimal parameters of

collector region.
3.2 Numerical Solutiomn

In the case of open emitter breakdown voltage BVppo¥, equation

{2.12 } of chapter 2 can be used for an ntpn~nt transistor. For

19



convenience, the equation is rewritten here,
BVopo* = 6.31 x 1013 Np=0.76  vyolt (3.1)

where Np is the doping density of the lightly doped n region.
The breakdown condition for BVpgp* is given by M« = 1,whereo( ins
the current transfer ratio. For n*pn™n* transistor, K:ICO/GKIE)

il/hFEO and ¢( :hFEO/( 1+hFE0) then Mex = M hpgo/( 1+hFE0) ,where

Ico i8 the collector saturation current with open emitter
junction. Now with M o€ = 1 equation (Z.ﬁ(b)) of chapter 2
becomes
(1 +hrpo)® _  expl- Jo “(an = a;)dz] + hreo
hreo  1- fow‘ ay, exp|— fzw‘(a,, — ap)dzldz ¢.2)

vwhere the meaning of X and OCP have been described in the

previous chapter.

The electric field and potential in the lightly doped collector
space charge region of a transistor are determined from the
solution of Poisson’'s equation. For a given hpgp, the breakdown
voltage is given by

BVcEo* = 1/2 (Ep Wo) = (€ Ep?)/(2q Np) V (3.3)

20



where Ep is the maximum electric field, W, is the space charge
width, q is the electronic charge, € is the dielectric constant

of silicon and Np is the collector doping density.

Now if equation (3.2} 1is numerically solved along with the
equations (2.10) and (2.11) of chapter 2 and equation (3.2) of
this chapter, then maximum electric field Ep and breakdown
voltage BVggo* aé a function of collector impurity density Np
for different values of current gain hFEO_are obtained. Plots of
these numerically obtained data are shown in Figs. 3.1

and 3.2.

3.3 :Eknxxi]?i&:il]_ Iix;px13&ssnic:cn§

From the numerical data obtained from the numerical solution in
the previous section, curves of bulk breakdown voltage BVcEO*
versus the impurity concentration Np can be plotted with hggo as
a parameter. Now for fixed hgpgg empirical expressions of BVggo¥
as a function of Ny can easily be obtained following any one of
the standard numerical techniques. Again from the BVggg¥*¥ VS. Np
curQes which were drawn for different values of hggo,
variation of BVggo* with hpgp for a fixed Np can be read
easily. Thus an empirical expression for BVpgo¥ as a function of
hggo can be obtained easily. Combining the two empirical

expressions of BVggp¥ another empirical expression expressing

21
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BVogo* as a function of both hpgo and Ny can be obtained.
An empirical expression of maximum electric field Ej as a
function of both hggp and Np can be obtained by a similar

process. The expressions are given below

BVopo* = 2.979 x 1014 (1+hpgo)~0-183 Npp=0.82 v (3.4)

E, = 9.55 x 103 (1+hpgo)~0:09 Np0-09  v/cm (3.5)
A plot of BVgogp* as a function of Np is shown in Fig. 3.3.

3.4 Relationship Between Open Emitter
and Open Base Breakdown Voltages

The transistor is designed to block a specified voltage. This

voltage is specified either in BVpggp or in BVgpp:. Here a

relation between bulk open-base and open-emitter voltages has

been established on .the basis of numerical results.

Equation(3.1) can be written as

H

Np = [ 6.31 x 1013 (BVppo*)~111/0.76

1.4385778 x 1018 (BVopo*)~1/0.76 ~ cm=3  (3.6)

or, Np

Now, if the Np of equation (3.4) is replacéd with  the above

24
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Fig. 3.3 Analytical plot of bulk breakdown voltage as a function
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expression of Np, then the iexpréssion for BVpogpo* becomes
BVogo* = 0.385(1 + hpgo)~0:183 Bvgpox!-079 v (3.7)

3.5 Conclusions

Open base breakdown voltage as a function of collector doping Np
and current gain hggpp for npn transistor with lightly doped
collector is éalculated numerically based upon the most widely
used ionization rgtes given by Van Overstraeten[2]. An empirical
expression for breakdown voltage as a function of collector
doping density and current gain is also established. Then an
analytical expression relating open base breakdown voltage
BVego* with open emitter breakdown voltage BVepo* and
current gain hggpg is derived. By using the analytiéal
expfession for breakdown voltage BVgppo¥: more accurate optimal
values of collector doping density and width under reach through
condition can be obtained and will, therefore, be useful to the

practical designers.,
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CHAPTER a

Calculation of Optimal Values

of Collector Parameters

4.1 Introduction

In designing a power transistor, determination of the optimal
values of collector parameters is most important. In this
chapter analytical expressioné for two most important collector
parameters 1i.e. the collector doping concentration N; and the
collector width Wclare determined. These two expressions give
the optimal values of collector doping and collector width. In
the determination of the expressions for optimal values of the
colllector parameters, the wellknown method of Lagrange
multipliers is used. Thesa very impoftant analytical expressions
‘are used in the next chapter for designing the collector section

of the transistor.

4.2 Breakdosm Voltagsgse under Reach
Through Condition
With regard of W, the obvious choice would be to allow the

depletion layer to spread freely in order to sustain the given
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BVcgo. However, a moderate reduction of W, below the value Wg,
corresponding to the free extent of the depletion layer
{Fig.4.1) can lead to an advantageous rise in maximum on—st#te
current Iopax [5]. In order to avoid affecting the voltage-
blocking capability, such a reduction must be accompanied by a
decrease in collector impurity concentration N . This is
quantitatively explained in Fig.4.1. Poisson’s equation shows
that the slope of E va W curve is directly proportional to the
the doping density NC.. Again the area under the E/W curve
determines the blocking voltage BVpogpg. Now , if a reduced value
of No and W, is chosen in such a way that the required
blocking voltage BVopo 1is supported then from Fig.4.1 the

following expressions can be written.

The sustaining voltage BVppp* which would be observed in case of
free spreading {extent Wg,) of the depletion. layer into the
collector region, is given by

BVCEO* = 1/2 En WSC . (4.1)

and Wg., =é€Ep/aqNg ' {4.2)
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Fig. 4.1 Illustrating the (WC,NC) relationship for a given BV_CEO
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The blocking voltage under reach-through condition BVggqp is

given by
BVeogo = 1/2(Ep + Eg)Wg {4.3)
and Ep - Eg = gN W,
€
or En + ﬁz = 2E, - Eycwc
€
or Ep + Eg = 2(2q NgBVggo¥)1/2 - g NgWg (4.3a)
€ €
So, from {(4.3) it can be written
BVcEO = (2aNcBVopo¥/e)l/2Wo - gNoW 2 (4.4)

2€

4.3 Analytical Expressions for Doping
Density and Width Under Reach
fr}IIWDIJg;t;_(JCJIldliﬁt:iCJII

In designing an epitaxial ntpn n?' power transistor switch it

‘must be kept in mind that the transistor must block a given

voltage, it must carry a giveﬁ current under the desired

collector-emitter voltage Vog: In regard to collector width

Wos the obvious choice would be to allow the depletion layer to

spread freely at the specified open base breakdown voltage
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BVcgo: However, in the previous section it is pointed out that a
moderate reduction of W; to some what less than the unbounded
depletion layer width is advantageous. But a reduced We must be
accompanied by a reduced collector impurity concentration Ng»
in order to avoid affecting the voltage-blocking capability.
Again, a decrease of N; increases the collector resistance.
Therefore, the best performance demands a combination of high
doping ievels and small epitaxial layers, while meeting the
requirement of supporfing the given BVpgpp voltacge. Optimization
of a collector layer in this respect leads to a reach-through
condition at breakdown..To find the optimized values of N, and
W as a fﬁnction of current gain hpgp "and sustaining voltage

BVogp the method of Lagrange multipliers [ 6 1 is used.
In the previous section the mathematical expression for open-
base breakdown voltage BVego (NgyWe) due to reach -through in

terms of bulk breakdown BVcpo* and doping concentration Ng is

found , which is

BVeEO = Wo(2aNGBVogo*/€)1/2 - (q/2€)W 2N,  (4.5)
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The open-base bulk breakdown voltage is given by the expression

[see section 3.3}

BVipo =B(1 4 hpgo) "' NJ™ (4.6)
where B, my and my are constants. Their values are
B = 2.979 x 1014

0.183

mj

mo = (.82

Using equations (4.5) and (4.6), one can write

| 2 _

BVopo = W.(Z gyt -z, lome

oro =MDt hrror FNF Loy,

The above equations for breakdown are derived on the assumption
that the peak electric field at breakdown is insensitive to the
epitaxial layer thickness (a premise based upon the very sﬁfbng

dependence of ionization rate on electric field strength).

Eqn. (4.7) is a function of W, and No. It can be written as

2 Mol g
g=W(IBY (L +hppo) TN T - '2?;“’31\: — Blcro (4.8)
€
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1]

The resistance per unit area of the collector region is given by

W,
qiin N,

H=

(4.9)

wherela“ is the electron mobility. The minimum value of
resistance R can be obtained by using Lagrange multipliers (6]
with the constraint given by equation (4.7}, Taking derivatives
of R with respect to W, and N, we get

1

R. = 4.10
“ qualN, (4.10)
w.

R, = —
Q’IJnNE _ . (4.11)

Also the first derivatives of g (Nc; Wo) with respect to W, and

No result in

2q my 1-— ms
Ju = (-;-B)*(l +hreo) 2 N. 2 _Iwn, (4-12)
€

#n = Wol(2aB/e )1/2((1-m3)/2) (1+hpgo)=mi /2 j_~{1+my) /2

From the method of Ladrange multipliers

Ry, - Agy; = O (4.14)
(4.15)

1l
(=

Rp - Agp

i3

-a¥,2/26(4.13)



where A\ is a Lagrange multiplier. Solving equation (4.7), (4.14)

and (4.15), we can write

m L

N.=K,(1 + hrgo) M2BV., % ' (4.16)
ny 1+ ma
5 Tz By 22
W, = K;(1 4+ hrpo) 2BV-po (4.17)
| 2
where =B - mz)?)_m2 (1.18)
9

B 1+ mas

. 2e _1,3—my T o
I\Q = (-E-B)I(_E___)I\l 2 (4‘19)

are two purely numerical Coefficients. The values of Kji and Kg

can be calculated as
Ky = 4.076 x 10}7  and Ky - 4.276 x 1076

4.4 (Jqunclljjsticacus

Optimal values of collector parameterse are very useful to the
practical designer. In designing power transistor switches, the

analytical expressions for No, and Wg need to be used. With
these optimal values, the other design parameter of a transistor

switch can be obtained. The detail analysis is give ih the

next chapter.
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CHAPTER 5

Optimal Values of Parameters of

Power Transistor Switches

5.1 Imntryroduction

Although the relationship between a transistor’s operating.
characteriétics and structurai parameters have been known for a
long time, aesignérs often rely on cut—;nd—try methods for the
development of their devices. This is probafly dué to the fact
that technological difficulties. did not permit them to take
advantage of these relationships or even to establish their
validity by experimental measurements. With the availability of
advanced techniques in device fabrication and parameter
measurements, manufacturers have now recognized the importance
of design methods based upon detailed physical models. Designing
a power transistor generally involves calculation of emitter
area Ag, collector doping density Ng, collector width W, and
base doping concentration Np for desired values of open base
breakdown voltage BVpgpo and current gain hyg at given collector

current I, a2nd collector-emitter voltage Vpg.
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In this work a design model is developed for uniformly doped
epitaxial bipolar transistor switches, where optimal
calculations have been carried out for structural parameters
{i.e. doping concentrations, layer thicknesses, geometrical
dimensions etc.) which make it possible to comply in the bést
possible way with given specifications. P.L. Hower in his paper
[ 7 ] outlined a procedure for evaluation of minimum emitter
area Ag meeting both hpg and BVpgg specifications. His proposed.
model is straight forward, but follows a lengthy procedure and
involves more computational efforts than the model presented in

this chapter. The present model is simple and needs less

computations.
5.2 Design Criterion

5.2.1 Collector Region

In chapter 4 it has been pointed out that optimization of the
collector layer width leads to a feach—through condition at
breakdown, wheré the collector impufity_density N is reduced to
support the given BVpgp: But with reduction of collector
impurity density N, the resistivity of the collector region
increéses. Although, very high collector resistivitieg
correspond to the lowest acceptable W, values but it has the

following major drawbacks: i) Intensified quasi-saturation
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effects and ii) Increased liability to current-mode second
breakdown [5]. Therefore, it is very important to choose a pair
of values of N; and W, which minimizes the "collector resistance"

W In the previous chapter, optimum values of No and W. have

R
been determined using the method of Lagrange's multipiiers. For

convenience the expressions for optimum N, and W, are reproduced

here.

Ng

It

Ki (1+hggo) ™ /My BVopo~1/m, (5.1)

Vo Ko {(1+hpgp)™ /2my BVCE0{1+mL)/2mL (5.2)

I

Analytical plots showing Ne and'WC as a function of maximum
current gain hppp are shown in Figs. 5.1 and 5.2 for different

values of BVggp-

5.2.2 Base Region

The impurity charge Qp in the base region, which is the
integral of the base impurity density over the base width, is
the most influential parameter upon the maximum (low-~level)
value of current pgain hpgo in the case of a high carrier life
time. P.L. Hower [ 7 ] derived an expression for the current

g2ain hpp of an n*pn~nt transistor on the basis of the Moll-Rose

[ 8 1 and Gummel-Poon models [ 9 ].
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The expressaion is

9r

D
hrp = . )
" Qp/Dp + Al 24 (N Vep)? Ve NWo (s:3)

where De (Dp) =‘/Q1KT/q, is the diffusion co-efficient of
electron in the collector (Base);/L“,is the mobility of
electrons, I, is the collector current, Vpgg is the collector-
base voltage and A, is the effective emitter area. In the above
derivation, the lifetimes in the base and collector are assumed
tblbe large enough to permit the assumption of unity base
transport factor. Also at the onset of base widening, the low-
field approximation Io = q Af,NcAeVep/We for Vep/We ¢3x103  V/em
is used for the critical current [ 9 1. In absence of base
widening, i.e. for I, <I,, all the terms except the first one
(Qg/Dp} in the denominator will be zero. For this case equation

(6.3) becomes

Qr/De : (5.4)

hrpo =
f7° " Qp/Dp

For the case of zero bulk recombination and infinite velocity at
the emitter contact, Qg is simply the integral of emitter
impurity density over the emitter width [ 8 ]. The value of
Qr/Dg is 4 k 1013 cm-%s for a wide range of emitter and base

diffusion processes [ 7 .
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In the present analysis Qg/Dg 1is assumed constant at this

value.

The denominator of equation {5.3) contains the device
variables Qp, ﬁc and Wgo, while Qg/Dg appears only in the
numerator . From the design point of view, it is desirable to
have the model based on quantities that can be easily
determined from simple measurements. The agreemént between
measured and theoretical values for hgg calculated from
equation (5.3) is quite satisfactory [ 7 1. In this work,
equation (5.3) is used to determine transistor parameters. Since
Vog is usually given, the collector-base voltage Vpg in equation

(5.3) can be replaced by

Ves = VCE - VBE {5.5)

In this work a fixed value for Vpyp equal to 0.7V is used.

5.3 Optinmnmm Emitter Area for Given

BVCcEOos» Ic and h]_:'E
For a given BVggg:, Ig and hpg, the parameter Ao can be

calculated for any hpgg from equations (5.1), (5.2), (5.3) and

(5.4). With the help of equation (5.4}, equation (5.3) can be
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written as

AAg?2 -BAg +C =0 (5.6)

where A = (q Dg No Vpop/R)? | . (5.7)
B taDaD.L 0% (- ) “—“——"NEEE-BJ o9
C = Wo2 1.2 | {(5.9)
R = 2K T/q

Now the above quadratic equation (5.6) can be solved for A,
with the help of equation (5.1) and (5.2) for .any hggo.
Fig. 5.3 shows A, as =a function of hFEO' Ae goes through a
minimum, giving a value of hFEO that corresponds to the
optimized value of A,. For this particular value of Ao, the
optimized valués of N, and W, can be found from eqns {5.1) and.
(5.2). The collector doping density N, as a function of hpgp is
shown in Fig. 5.1, while W, is plotted as a function of hpgo in
Fig. 5.2. Ng decreases with increase of hggo, but W, shows the
opposite trend. Increasing hgpgp will increase W, from the BVcgo
requirement, whereas an increase of Wo will decfease No for the
same’ reason to meet the BVppgp requirement. For each hggg,

equation (5.1) and (5.2) give the optimized values of No and W,
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5.3 Emitter area versus maximum current gain for different
values of collector-emitter breakdown voltage.
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at the given sustaining voltage BVpgg. Therefore, the value of
hggo which gives minimum A, for a given I, hgpg and BVpgro, also

gives the optimized values of N, and Wp at the desired BV(gp-

5.4 Maximum Collectoxr Current fox
Zgiven Ao, hpprp and BVoEo

For maximuﬁ current solution, the emitter area Ao, hypgr, Vor and

BVpegpo are given. Equation (5.3) of section 5.2.2 can be written

as a quadratic equation of I, as follows:

AI2-BI,+C=0 {5.10)
where A = Wcz (6.11)

B = 4D A [NW. Ve /R + 4 x 101Dy (h—}; — ﬁ)] (5.12)

(2qAeNpVCopD/R) 2 . (5.13)

a
n

<
I

2KT/q

Now equation {(5.10) can be solved for I, with fixed BVgpgp and
different hggg. Plots of I, Vs hggo for BVpgpo = 500 V, 750 V
and 1000 V are given in Fig. 5.4. From the plots it is seen. that
fhe collector current goes through a relative maximum ﬁg the
device variables, which can be related to the peak value of
current gain hygg, cause hpgg to be increased from the

specified value of h to larger values.
FE
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5.5 Optimmrm Emitter Area as a Function
of BV for Given Input Power
The optimum A, can be " easily celculated as & function of BVgpp
with constant power I_BVpopp with the help of equation (5.3} of
section 5.2.2. For the optimum solution it turns out that the
term containing ICWC2 in the denominator of ‘equation (5.3) is
dominant and the product increases approximetely in proportion
to BVCE02'22' Wcz is strongly dependent on BVggo and less
sensitive to hppp (equation (5.2)). For constent I BVogp product,
icwcz increases with 1increase of BVgogp even though I, is
decreasing .To determine A, as a function of BVggp we first
find optimum A, as a function of hpgp for fixed BVpogpp and power
using equation{(5.1), (5.2) (5.3} and {5.4}) and the relation
I.=P/BVgogo- Fig. 5.5 shows A, as a function of BVggo for two
différent values of the I . BVcgp product. Computed results show

that A, is approximately proportional to BVCE01'24‘

5.6 Maximuan Current Density Vs.

Opern  Base Breakdown Voltage
The quéstion that often arises is - how large does a device have
to be if it turn onra certain colléctor current at a particuiar
hgp and block & certain voltage in the "off" state. This

question can be answered by plotting I./Ap, 88 a function of
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BVpogo for different values of hpg. The calculation is carried
out for the case hyg = 5, 10 and 15 the result is shown in

Fig. 5.6.

This figure also shows thatlthe current density falls off quite
steeply as BVpopp increases. This means that for a given I BVpgo
product, the device will become more expensive as BVgppp
increases, simply because large values of A, will be required tb

handle the same volt-ampere product.

The curves of Fig.5.6 can be used for values of hpg other then
hgg = 5,10 and 15. For example, if BVpgp=750 V and Vpog = 5V, the
maximum I,/Ag. is 19.32 A/cm2 with hpg=10. If hpg is reduced to,

say to hpg=5, then I /A, will increase to 36.708

5.7 Comparison of the Results svith

T Numerical Data
The optimal parameters obtained by this model for a given
collector current are compared with numerical data and are found

in good agreement. The results are tabulated in Table 5.1.

Also the results for a fixed emitter area are compared with

numerical data and the comparison is shown in Table 5.2.
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Input data Optimum design results
constant value units quantity | value [ 7] | value units
B 1.0 Z A, 0.0665 | 0.0666 pmy
my 0.217 - hreo 18 18 - -
B 2.694 x 10 | V4/5em=12/5 | Op 4.7x 10 | 4.7 x 102 | em-2
ms 0.8004 -- N¢ 2 x 104 22x 10" | om—3.
Qr/Dg 4 x 103 em™4 — sec | We 41 44 . um
Dpg 20 cm/sec BVego | 760 760 \Y%
Specifications 4
hre 10. -

Ic 7.5 A
Vee 5.0 \
BVceo 400 \'

Table 5.1. Optimized design parameters of a switch for a given collector

[y

current.

' Input data(constants are same as in Tables. 1) Optimum design results
Specifications
constant value | units quantity | value[ 7] | value units
Ae 0.12 |} cm? I, 13.5 ¢ 113.1 !

| hpe 10 - hreo 20 18.5 -

t Vee 5 \' 5 4 %100 |41x102 [ em~2

' BCEO 400 \' Np 2 x 10 2.5x 10 | em—3 -

We 42 44.5 pm

|

Table 5.2, Optimized design parameters of a switch for a

area.
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5.8 Conclusions=s

The model presented in this work for designing power transistors
is for a particular class of transistorg, namely those with
uniformly doped collectors. The method outlined here ias found to
be of considerable practical value in the design of high;voltage
power switches. The model is simple and ﬁeeds less computations
for estimation of optimal values of different parameters of the
device. In this wdrk the procedure for designing a power
transistor for optimum emitter area A, with given BVpgo, I¢ and
hgg is shown and a desién procedure for optimum colléctor
current Ig with given BVpgp, hygp and A, is also shown. Analysis
also shows that an increase in the device area is the obvious
choice for +the achievement of higher power-handling

capabilities.
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CHAPTER 6

Conclusions

Although a truely comprehensive bipolar design theory is still
not -a reality, it is now possible to design devices "on paper”
to meet the more important characteristics of high—voltage
sﬁitching transistors. In this thesis an analytical model is
developed for epitaxial bipolﬁr transistor switches, where
optimal calculations have been carried out for structural
parameters which make it possible to comply in the best possible
way with given spécifications. The present model is simple and

needs less computations.

Many effects of lesser importance ﬁave beeh ignored(among them
the impurity mobility feduction by carrier-carrier scattering at
high injection levels) and approximations have been tolarated in
order to make the calculations easier. The effects of storage

time and the current crowding are not included in this design
model. By adding these effects with the present model an

extended form of this model can be developed in future.

51



Bibliography
4

[1] Ramon U. Martinelli and Ray Ford; " Design guidelines for

power switching transistors," RCA Review, Vol. 44, pp. 342-355,

June, 1983.
[2] R. Van Overstraeten and H. De Man, " Measurement of the
ionization rates in -diffused silicon p-n junctions," Solid-state

Electronics, Vol., 13, pp. 583-608, Pergamqn Press, 1970.

[3] 8. M. Sze and G. Gibbons, " Avalanche breakdown voltages of
abrupt and linearly graded p-n Jjunctions in Ge, S5i, GaAs, and

Gap," Appl. Phys. Letters, 8, pp. 111-113, 1966.

f4] S. L. Miller, " Avalanche breakdown in Germanium," Phys.

Revn; VO].. 99’ pp- 1234"‘1237] 1955.

[5] Ph. Leturcq, " Power bipolar devices," Microelectron.

Reliab., Vol. 24, No. 2, pp. 313-337, 1984,
[6] I. S. Sokolnikoff and R. M. Redheffer, " Mathematics of

physics and modern engineering ," New York, McGraw-Hill, pp.

351-357, 1966,

52



[7] P. L. Hower, " Optimum design of power transistor switches,"”
IEEE Trans. Electron. Devices, ED - 20, No. 4, pp. 426-435,

1973.

[8] J. L. Moll and I. M. Ross, " The dependence of transistor
parameters on the distribution of base layer resistivity," Proc.

IRE, Vol. 44, NO. 1, pp- 72_78’ 19563

[9] H. K. Gummel and H. C. Poon, " An integral charge control
model of bipolar transistors," Bell Syst..Tech. J., Vol. 49, pp.

827-852, 1970.

53



0

a o o a 0

Appendisc A

.
THIS COMPUTER PROGRAMME IS USED FOR SOLVING THE IONIZATION

INTEGRAL (EQUATION NO. 2.5).

THIS PROGRAM HAS BEEN DEVELOPED BY MASHIUR RAHMAN

Q

60

IMPLICIT REAL*B(A-H,0-2Z)
DIMENSIONVATEHP(50)
COMMON/blk/ XEM,XNC,XW
Q=1.6D-19

EPS=1.045D-12
ERS=1.0D-04

wri@e(!,!) ' xno='
read(*,¥) xno
write(*,¥) 'xem='
read{*, ¥} xem

A=0.0

I=1
XW=(XEM*EPS) / (Q¥XNO)
VB=0.5xXEMXXW

B=XW | ’
H=B-A

ATEMP(1)=0.5%({F(A)+F(B))



70

10

15

ZL=H
POWER=1.0
JJ=1
I=I+1

ANS=ATEMP{1)

- TEMPL=ZL

ZL=0,5%ZL

POWER=0, 5*POWER

X=A+ZL

SUﬂ:0.0

DO 10 JCOUNT=1,JJ

SUM=SUM+F({X)

X=X+TEMPL
ATEMP{I):O.5*ATEMP(I-1)+SUM*POWER
N=1I

R=1.0

NM1=N-1

DO 15 HOUNT=1,NM1

KK=N-KOUNT

R=R+R

R=R+R
ATEMP(KK)=ATEMP{KK+1}+(ATEMP(K£+1)—ATEﬂP(KK))/(R—I.O)
CONTINUE

DELTA=ABS{ {ATEMP(1)/ANS}~1.0}

IF{DELTA-ERS} 40,40, 30

ii



30 JJ=JJ+JJ
GO TO 70

40 ANS=ATEMP(1)*H

write{¥,%) 'ans = ’',ans
100 WRITE(*,*) 'ANS = ',ANS,'XEM = ' ,XEM,' XNO = '3XNO,’XW:’,XW
write(¥,x) 'vb=', vb
STOP
END

FUNCTION F(X)

IMPLICIT REAL*8(A-H,0-Z)
COMMON/blk/ XEM,XNO,XW
AP=1.582D+06
BP=2.036D+06

Q@ =1.600D-19
EPS=1.045D~12
AA=XEM-Q*XNO*X/EPS
IF(AA.LE.0.5D+05) THEN
F=0.0

ELSE

BETAN=APXEXP( -BP/AA)
F=BETAN*G(X)

ENDIF

RETURN

END
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FUNCTION G(X)

IMPLICIT REAL*8(A-H,0-Z)
G=EXP(-T{(X))

RETURN

END

FUNCTION T(X)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION TERM({30)
COMMON/blk/ XEM,XNO,XW
ERS = 1.d4-04

A=X

I1=1

B=XW

H=B-A
TERM(1)=0.5%(S(A)+S(B))
ZL=H

POWER=1.0

J=1

II=11+1

AWR=TERM{1)

TEMPL=ZL

2L=0. 5%ZL
POWER=0.5*POWER

Y=A+ZL -
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SUM=0.0

DO 12 JCNT=1,J

SUM=SUM+S(Y)

Y=Y+TEMPL
TERM(II)=0.5%¥TERM(II-1)+SUMXPOWER
NN=I1 |
RP=1.0

NM2=NN-1

DO 14 KNT=1,NM2

K=NN-KNT

RP=RP+RP

RP=RP+RP
TERM(K)=TERM{K+1)+{TERM(K+1)-TERM(K) ) /{RP-1.0)
CONTINUE
DEL=ABS((TERM(I)/AWR)—l;O)
if{del-ers) 62,62,66

J=J+J

go to 170

T=TERM(1)*H

RETURN

END
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FUNCTION S(Y)
IMPLICIT REAL¥8(A-H,0-2)
COMMON/blk/ XEM,XNO,XW
AP=1.582D+06
AN=7.03D+05
BP=2.036D+06
BN=1,231d+06

Q=1.6D-19
EPS=1.045D-12
BB=XEM-Q¥XNO¥Y/EPS
IF(BB.LE.0.5D+05) THEN
8=0.0

ELSE
PETA=APXEXP{-BP/BB)
BETA=ANXEXP(-BN/BB)
SUBT=PETA-BETA

S=SUBT

ENDIF

RETURN

END

END OF THE PROGRAM
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Appendi>c B

THIS PROGRAM CALCULATES THE EMITTER AREA FOR DIFFERENT

VALUES OF CURRENT GAIN UNDER SATURATION CONDITION

PROGRAM STARTS HERE

IMPLICIT REAL*B(A—H,O;Z)

M1 = 0.183
XM2 = 0.82
XK1 =4.076D17
Q@ = 1.6D-19
XK2 = 4.276D-6
HFEF = 10.
- 5,
XICc = 7.5

FOR VCE = 5.0V, VCB=5-.7=4.3V
VCB =4.3

X1 =-XM1/XM2

X2 = -1./XM2.
X3 = XM1/{2.xXM2)
X4 = {(XM2+1.)/(2.%XM2)

WRITE(*,%*) 'HFEO= '
READ(X, %) HFEO
WRITE{*, %) 'BVCEO= ’

READ{(*,%) BVCEO
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XND = XK1%({(1+HFEO)*%X1)*%BVCEO¥%X2
WC = XK2%((1. + HFEO)*%X3)*BVCEO¥*X4
KT/Q=0.0259,D/MU=.0259

A= (Q%¥%2)%(30./0.0259*xXND*¥VCB)**¥2
B:Qxao.xXICt((77.ztiNDxVCBtwp)+32.D14x(HFEO—HFEF)/(HFEO:HFEF))

C = (WCX*2)%(XIC*%2)

D =(BXX2)-4%A%C

IF(D) 20,30,40

WRITE(*,%) 'ROOTS ARE IMMAGINARY'’
GO TO 50

AE = B/(2%A)

WRITE{%,%*) 'AE = ',AE

GO TO 50

Y = SQRT(D)

AE1 = B/{2.%A)+Y/(2.%A)

AE2 =B/(2.%A)-Y/(2.%A)

WRITE(*,*) 'AEl = ’',AEl,’AE2 =',AE2
STOP

END

END OF PROGRAM
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Appendisc C

CALCULATION OF MAXIMUM COLLECTOR CURRENT FOR DIFFERENT

VALUES OF CURRENT GAIN UNDER SATURATION -CONDITION

IMPLICIT REAL*8(A-H,0-Z)
DC=30.0

RT=2.%0.0259

BK=1./RT

DB=20.0

PE= 4.0D13

XM1 -

0.183
XM2 = 0.82

XK1 =4.076D17

Q 1.6D-19
XK2 = 4.276D-6

HFEF = 10.

FOR VCE = 5.0V, VCB=5-.7=4,3V

VCB =4.3

X1l =-XM1/XM2

XZ = -1./XM2

X3 = XM1/{2.xXM2)

X4

(XM2+1.)/{2.%XM2)
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30

40

WRITE(*,%) 'HFEO= '
READ(*,*) HFEO
WRITE{(%,*) 'BVCEO= '
READ(*,%*) BVCEO
WRITE(*,*) ’'AE= '

READ(*,%) AE

XND = XK1%*((1+HFEO)*%xX1)*BVCEOX*X2

WC = XK2x({1. + HFEO)%*X3)*BVCEOX*X4

KT/Q=0.0259,D/MU=.0259

A = WCxx2.
B=4xQ*DCXAEX (BKXXNDXWCX*VCB+DB*PE* (HFEO-HFEF) / (HFEOXHFEF) )

C = (2%¥Q*AEXXND*VCBXDC*BK) **2

D =(BXx%2)-4xAxC

IF(D) 20,30,40

WRITE(*,*) 'ROOTS ARE IMMAGINARY'
GO TO 50

XIC= B/(2%A)

WRITE(*%,%) 'IC= ',XIC

GO TO 50

Y = SQRT(D)



XIC1= B/(2.%*A)+Y/(2.%A)

XIC2=B/(2.%¥A)-Y/(2.%A)

_WRITE(%,%) 'IC1 = ’,XIC1,'IC2=',XIC2
50 STOP <

END

END OF THE PROGRAM
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Appendi>x D

CALCULATION OF OPTIMUM EMITTER AREA AS A FUNCTION OF
COLLECTOR-EMITTER BREAKDOWN VOLTAGE FOR DIFFERENT VALUES

OF INPUT POWER UNDER SATURATION CONDITICN.

IMPLICIT REAL*8(A-H,0-2)

AM1 0.183

XM2 = 0.82

XX1 =4.076D17

Q@ = 1.6D-19

XK2 = 4.276D-6

HFEF = 10,

XIC = 7.5

FOR VCE = 5.0V, VCB=5-.7=4,3V
VCB =4.3

X1 =-XM1/XM2

X2 = -1./XM2
X3 = XM1/(2.%xXM2)
X4 = (XM2+1.)/(2.%xXM2)

WRITE{*,*) 'HFEO= '
READ(*x, %) HFEO
WRITE(*,*) ’'BVCEO= '
READ(*,x) BVCEO

WRITE{*,x) 'POW:='

xii



READ(*,%) POW

XIC=POW/BVCEO

XND = XK1%((1+HFEO)%$X1)*BVCEOX¥X2
WC = XK2%((1. + HFEO)%$X3)$BVCEO®*X4
KT/Q=0.0259,D/MU=.0259

A = (Q¥x2)x(30./0.0259%XND*VCB)*x2
B=Q*30.*xXIC¥((77.22%xXND*VCB*WC)+32.D14*(HFEO-HFEF ) /(HFEO*HFEYF) )

C = (WCx*2)x(XICxx2)

D =(BX*X2)-4%AxC

IF(D) 20,30,40

WRITE(*,%*) 'ROOTS ARE IMMAGINARY'
GO TO bHO |

AE = B/(2xA)

’“‘""‘""""“"*-\-.‘
WRITE(*,%) 'AE = ’,AE @E'@ﬁﬁf% )
GO TO 50 : } | 98 1%
Y = SQRT(D) : ’é‘\\ !( - .9/61’@‘
AE1l = B/(2.%A)}+Y/(2.%A) ﬁ ;%ﬂ. ﬁg\ L
*Q;;;u;:ﬁﬁﬁ;

AE2 =B/(2.%A)-Y/(2.%A)
WRITE(*,%) 'AE1 = *',AEl,’AE2 =',AE2
STOP

END °

END OF THE PROGRAM
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