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Abstract

In this dissertation, a steady two-dimensional natural convection flow along a

horizontal circular cylinder and a vertical wavy surface with tcmpcmllirc depend-

ent viscosity JJ(7) and thermal conductivIty k(Tj has been investigated. Using the

appropriate transformations the basic equations are transformed to non-similar

boundary-layer equations, which are solved numerically using a vcry efficient

implicit finite-difference method together with Keller box scheme. Here we have

focused our attention on the evolution of the surface shear stress in terms oflocal

skin-friction, mle of heat transfer in terms of local Nusselt number, streamlines,

isotherms, velocity distribution as well as viscosity distribution for a selection of

parameter sets consisting of the viscosity-variation parameter 6, thermal conduc-

tivity-vanation parameter 1, Prandll number Pr and amplitude of the wavy sur-

face.
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Nomenclature
a Radius of the circular cylinder
Gp Specific heat at constant pressure
e;:, Lueal skin-friction
f Dimensionless stream function
g Acceleration due to gravity
Gr Grashofnumber
Grx Local Grashofnumber
k(T) Thermal conductivity
Nux Local Nusselt number
Pr Prandtl number
q... Heat nux at the surface
T Temperature oflhe thlid in the bOlilldary layer
T", Temperature of the ambient fluid
Tw' Temperature at the surface
U,l' The dimensionless x andy- component of the velocity
ii,v The dimensional x and y component of the velocity

x,y Axis in the direction along and normal to of the surface

Greek symbols

p
•
r•r

"p
p"e
0(.1')

Volumetric coefficient of thermal expansion
Stream function
Shearing slress
Viscosily-vanalion parameter
Thermal conducti~ity-variation parameter
Constant
Non-dimensional similarity variable
Dcnsity of the fluid
Reference kinematic viscosity
Viscosity of the fluid
Dynamlc viscosity of the ambient fluid
Dimensionless temperature function
Surface pro!11e function defined in (3.1)

SubSCript
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w Wall conditions
00 Ambient temperature
x Differentiation with respect to x

Superscripl

Differentiation with respect to I}
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Chapter 1

Introduction:

•

Free convection from a horizontal circular cylinder to a surrounding fluid

has received considerable interest not only due to Its fundamental aspects but also

due to its importance is many industrial applications_These applications include

nuclear reactors, heat exchangers, hoI wires, steam pipe and many others. Most of

the studies on free convection from cylinder were focused on horizontal circular

cylinders investigated for constant VISCOSIty.

Sparrow and lee [1], looked at the problem of vertical stream over a

heated horizontal circular cylinder. They obtained a solution by expanding

velocity and temperature profiles in powers of x. the co-ordinate measlU1ug

distance from the lowest point on the cylinder. The exact solution is still out of

reach due to the non-linearity in the Navies-Stokes equations. It appears that

Mcrkin [2,3], was thc first who presented a complete solution of this problem

using Blasins and Gortlcr scries expansion method along with an integral method

and a finite-differcnec schemc. Also the problem of free convection boundary

layer flow on cylindcr of elliptic cross-section was studied byMerkin [4J. Ingham

[5J, investigated thc boundary layer flow on an isothermal horizontal cylinder.

Hossain and Alim [6J have investigated natural convection-radiation interaction

on boundary layer flow along a vcrtical thin cylinder. Hossain et al. [7], have

studied radiation-conduction interaction on mixed convection from a honzontal

circular cylinder. Recently, Nazar et al. [8J, have considered the problem of

natural convection flow from lower stagnation point to upper stagnation point of a

honzontal circular cylinder immersed in a micro polar fluid.

Roughened surfaces arc encountered in several heat transfer devices such

as flat plate solar collectors and flat plate condensers in regenerators. Larger scale

surface non-uniformities are encountered, for example, in caVltywall insulating

systems and grain storage containers, The only papers to date that study the

effects of such uon-uniformities on the vertical convective boundary layer flow of

,
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a Newtonian fluid are those of Yaa [9], and Moulic and Yaa [1O,llj. Hossam and

Pop [12] investigated the magneto-hydrodynamic boundary layer flow and heat

transfer from a continuous moving wavy surface while the problem of free

convedion flow from a wavy vertical surface in presence of a transverse magnetic

field was studied by Alam at al [13J. On the other hand, Roes and Pop [14-16]

investigated the free convection boundary layer induced by vertical and horizontal

surface exhibiting small-amplitude waves embedded in a porous medium. Hossam

and Rees [17J have investigated the combined efTect of thermal and mass

diffusion on the natural convection flow of a viscous incompressible fluid along a

vertical wavy surface. The effect of waviness of the surface on the heat and mass

flux in investigated in combination with the species concentration for a fluid

having Prandtl number equal to 0.7. Natural convection heat and mass transfer

near a vertical wavy surface wilh constant wall temperature and concentration in a

porous medirun was studied by Cheng [18]. Very recently, Molla ct al, [19,20)

have studied the problem of natural convection flow along a vertical wavy surface

with uniform surface temperature and surface heat flux in presence of temperature

dependent heat generation.

In all the above sludies [1-20) the authors assumed that both the viscosity

and thermal conductivity of lhe fluids are constant throughoul lhe now regime.

But, these physical properties may be changed significantly ""ith temperature. For

instance, the viscosity of water decrease by about 240% when the temperature

increases from WOC (p. = 0.0131 gm.cm-1.s-l) to 50uC (J-l = 0.00548

gm.cm-I.S-1). To predict accurately the flo"" behavior, it is necessary to take into

account of viscosity. Gray and Kasscry [21J and Mehta and Sood [22) fonnd that

the flow characteristics substantially changed when the eITeel of temperature

dependent viscosity is considered. Hady et at [23] investigated the mixed

convection bOlUldarylayer flow on a continuous flat p1atc with variable viscosity_

Kafoussius and Williams [24), and Kafoussius ct a1 [25] have studied the

eITects of variable viscosity on the free and mixed convcction flow from a vertical

flat plate in the region near the leading edge. Reccntly, Hossain et aL [26,27] have

considered the natural convection along a vertical wavy cone and surface placed



-in fluid having large Prandtl number with vanable viscosity when the viscosity is

inversely proportional to a linear function of temperalure, a model that was

proposed by Ling and Dybbs [28J. Besides these, it has been found that for liquid,

such as organ gas, the viscosity varies with temperalure in an approximately

linear manner. From Kays [29], it has also been round that the thermal

conductivity vanes with temperature is an approximately linear manner in the

range from 00 to 4000 F.

A semi-empirical formula for the thermal conductivity was used by Arunachalam

and Rajappa [30]. AsslUlling the viscosity and lhemlal conductivity of the fluid to

be proportional to a linear function of temperatlJre, two semi-empirical formulas

were proposed by Charraudeau [31]. Following him Hossain ot al [32]

investigated the natural convection flow past a permeable wedge for the fluid

having temperature dependent viscosity and thermal conductivity.

Since the natural convection flow along a horizontal circular cylinder with

temperature dependent viscosity hasn't been considered yet, in Chapter 2, the

attention has been given to a study of the natural convection flow of a viscons

incompressible fluid baving viscosity p(1) depending on temperature from an

isothermal horizontal circular cylinder. The surface temperature Tw orthe cylinder

is higher than that of the ambient fluid temperature T,," • In rormu1ating the

equations governing the flow the viscosity of the fluid has been assumed to be

inversely proportional to a linear function of temperature, a semi-empirical

formula for the viscosity had been used by Ling and Dybbs [28]. The governing

partial differential equations are reduced to locally non-similar partial differential

forms by adopting appropriate transformations. The transformed boundary layer

equations are solved numerically using very efficient implicit finite-difference

scheme together with Keller box technique [33,34]. Effect of viscosity-variation

parameter E, on the velocity and viscosity distribution of the fluid as well as on

the local rate of heat transfer in terms of the Nusselt number and the local skin-

friction are shown graphically for fluids having large Prandt1 number ranging

from 1.0 to 30.0.
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1n Chapter 3, we investigate the natural convection boundary layer flow

along a vertical wavy surface maintained at a uniform surface temperature

Immersed in a fluid with a temperature dependent viscosity fi{1) and thermal

conductivity /«1) as [32, 35). The boundory layer equations ore solved by using

implicit fmite difference method [33,34]. We give our attention to the situation

where the buoyancy forces assist the flow for various values of the viscosity-

variation parameter t: and the thermal conductivity-variation parameter ywith the

small Prandtl number Pr ranging from 0.01 to 1.0. From these results we can

observe the different flow and heat transfer characteristics by varying the relevant

parameters.

,
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Chapter 2

Natural convection now from an isothermal horizontal
circular cylinder with temperature dependent viscosity

2.1 INTRODUCTION

Free convection flow from an isothermal horizontal circular cylinder im-

mersed in a fluid with viscosity proportional to inverse linear function of tempera-

lure is studied. The govemmg boundary layer equations are Iransfonned into a

non-dimensional form and the resulting nonlinear system of portial differential

equations are reduced to local non-sllllihuity equations, which are solved numeri-

cally by very efficient implicit finite difference method together with Keller box

scheme. Numerical results are presented by velocity and viscosity profiles of the

fllJid as well as heat lnillsfer characteristics, llllffiely the local heat transfer nile and

the local skin-friction coefficients for a ",ide range of viscosity parameter {; (=

0.0,0.5,2.0,3,0 and 4.0) and the Prandtle number Pr (= 1.0, 7.0, 10.0, 15,0,20.0

and 30.0).

2.2. FORMULATION OF THE PROBLEM

A steady two-dimensionallaminar free convectlVe flow from a lIflifonnly

heated horizontal circular cylinder of radius a, which is immersed in a viscous

incompressible fluid having temperature dependent viscosity. It is assumed that

the surface temperature of the cylinder is Tu', where T">T"," Here Tcois the ambi-

ent tempenlture of the fluid. The configuration considered is as shown in Fig. 2.1.

o
y Fig. 2.1. Physical model

and coordinate system.
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The governing boundary layer equations of the flow are

8ii iJo-+-~oax 0'

p(II:+i,:,j= (~.(p:)+pgP(T-T~)Sin(:J

II aT + fJ aT = _I_~[k aT]
ax 0' PCp 0' By

The boundary conditions for equations (2.1) to (2.3) arc

U=V=O T=r at)""'O• ••

(2.1)

(2.2)

(2.3)

(2.4a)

(l.4b)

(2.5)

e~allJilled at the film temperalure or the nuid

where (ii,£» are velocity components along the (x,j')axes, g is the accelenllion

due to gravily, p is the density, fJ =-~(,pJis the coerficient of thennal cx-
p aT p

pamion, ).l (1) is the viscosity of the fluid depending on the fluid lernperahlTe T, k

is the thermal conductivity, for this problem k is constant

Out of many ronns of viscosity vanation, which are available in the litera-

ture, we have considered only the following Conn proposed by Kafoussias and

Williams [24J and Lings and Dybbs [28] for large PrandU number

fI = jig,

1+1[(T-Too)

h I('"J.were 1}=-- "
fJj oT j

Tf = .!.(T", - T",) and fJ", = 1.45 x I0-6 T; J 2 /(T", + 110.33) (Sutherland's law).
2

We now introduce the following non-dimensional variables:

x =.i, Y = GrY.[YJ, u = {Xl Gr-Y,u
a afJ~

l' = pa Gr -X;v,
".

B- T-T~
-r,,-T,,' (2.Ga)

• 1-



where v,,{=pdp) is the reference kinematic viscosity, IX is the thermal diffusivity,

Gr is the Grashornumber, Pr is the Prandtl number and e is the non-dimensional
temperarnre.

In order to non-dimcnsionalizc the governing equations here we have shown some

calculations:

DU = P~Gr''"' au
ax pa' ax
8V = Pro Gr'" av
ay pa' ay

a ( "l p, G [ 1 '" , ae ",]
ay Pay = pa' r IH8'J"'-(lH8)' <'(yay

aT AT Q(}
- --
ai aar

aT _ AT ,,_.1'"' ao---0' -ey a Qv

The equation (2.5) can be wrillen as

P 1-=--
Pro I +EB

where & =_1_[a,,) (Tw - T"")is the viscosity vanation parameter
PI aT I

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.61)

(2.6g)

(2.6h)

(2.6i)

SubstilU\lon of (2,6) into equations (2.1 )-(2.3) leads to the following non-

dimensional equations

(2.7)

,



au i'Ju -8 8u a(J 1 a2u
"- H- =------+ --- +0sin x
ax Oy (IHO)' Oy Oy 1HO Oy'

ao ao 1 a'o,-H-=---
ill Oy Pr Oy'

With the boundary conditions (2.4) reduced to

II=;V"'O, O",Oat ;(=;0, forany y

II=;V;~ 0=;1, ~ y",O, x>O

11-+0, 0-+0, as y-+co, ;(>0

In equation (2.9) Pr is the Frandtl number dermed in (2.11)

(2.8)

(2.9)

(2.1 Oa)

(2.10b)

(2.1Oc)

(2.11)
,

Pr=;--
kC,

To solve equations (2.7)-(2.9), subject to the boundary conditions (2.10), we as-

sume the following variables

~I '" xj(x,y1 0'" O(x,y) (2.12)

where lI'is the non-dimensional stream function defined in the usual way as

Also we have found

II=; x'J[
ay

au a21-=,--
"" ",,'
a1u aJ [-=,--
0,2 OyJ

au af pi f
-=-H--
ax Oy a;(0'

ao DB-=-

(2.13a)

(2.13b)

(2.13c)

(2.13d)

(2.13e)

(2.131)

(2.13g)

•
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(2.14)

ae eo (2.13h)-=-ay ay
a', a', (2.13I)
-=-i:y2 ay'
Substituting (2.13) into equations (2.8)-(2.9) we get, al1er some algebra the fol-

lowing transformed equations

1 aJ! folf ('1Jl e g02f Osin"
1+,<,:80'3 + Dyl - oy (1+<:8)' 0-'2 + x

= "[flJ 8
2 f _at 132f)

Dy8xfJy Ox0'2

Along with boundary conditionsf=: =0, O=Oat x=O any y

j=: =0, 8=1, at y=O, x>O

Of --).0, 8-tO, as y-tco, x>O
ay

(2.15)

(2.16a)

(2.16b)

(2.16c)

(2.17)

It can be seen that near the lower stagnation point of the cylinder i.e. for x '" 0,

equations (2.14)-(2.15) reduce to the following ordinary differential equations:

-l-f~+JJ'-f"- [; 8J'+8=0
1+88 (1+1:8)'

~e'+fe'=op,
Subject to the boundary conditions

f'-tO, 0-t0 as y-tco

(2.18)

(2.1%)

(2.19b)

In practical applications, the physical quantities of principle interest arc

the rule of heat tram;fer and the skin-friction coefficients, which can be written, in

non-dimensional form as

,
( -.,



(2.20)

(2.21)

(2.23)

(2.22)

Using (2.6) into (2.12) and the boundary condition (2.16b), we get

Nu = _ 80(x,O), ,

'"
C = ~ iif(x,O)
Ix 1+,; ay

We also discuss the effect of the viscosity-variation parameter E; and the

Prandtl number Pr on the velocity and viscosity distribution. The values of the

velocity and viscosity distribution are calculated from the following relations:

8[
u=Qy' " 1=

Ii., I+d}
(2.24)



2.3. RESULTS AND DISCUSSION

Equations (2.14)-(2,15) subje<:1 to the boundary conditions (2.16) arc

solved numerically using a very efficient implicit finile finite-difference method

together with Keller box, which is described by Cebeci and Bradshow [34]' Thc

numerical solutions start at the lower stagnation point of the cylinder i.e. at .• ""0,

with initial profiles as given by equations (2.17)-(2.18) along with the boundary

conditions (2.19) and proceed round the cylinder up to the upper stagnation point,

.• '" Jr. Solutions are obtained for fluids having Praudtle number, Pr = 1.0, 7.0,

10.0, 15.0, 20.0, 30,0 and for a wide mnge of values of the variable viscosity pa-

rameter, fi= 0.0, 0.5, 2.0, 3.0 and 4,0.

Since values of -0' (x,O) andf' (x,O) are known from the solutions oflhe

coupled equations (2.14) and (2.15), numerical values of the local heat transfer

rate, Nu from (2.22) and the local skin-friction coefficients Cjfrom (2,23) arc cal-

culated for the surface of the cylinder from lower stagnation point to npper stag-

nation point Numerical values of -0' (x,O)andf' (.•,0) are depicted in Table 2.1,

Table 2.2, Fig 2.3 and Fig. 2.5.

Numerical values of -0' (••,0) andf' (x,O) are depicted in Table 2.1, Table

2.2 respectively for Pr = 1.0, [;= 0,0, and the results of Merkin [2] and Nazar lOt

at.[8] show excellent agreement among these three solutions.

Effect of viscosity variation parameter, E (= 0.0, 0.5, 1.0, 2.0, 4.0) on the

dimensionless velocity I (X,Il) atx = 71!2for the fluid having Pr = 7.0 is shown in

Fig. 2.2(a). The corresponding temperature dependent viscosity, l-Jilk profiles arc

illustrated in Fig. 2.2(b). From Fig. 2.2(a) it can be observed that increase in the

value of the viscosity-variation parameter li leads to increase in the velocity pro-

file. Increase in the value of the viSCoslty-variation parameter (; also leads to de-

crease in the viscosity at x = nil and these approach to nnity at the ouler edge of

the boundary layer for every values of the viscosity-variation pammeter.

Fig. 2.3(a) and 2.3(b) deal with the effect of viscosity-variation parameter

f; ( = 0.0, 0.5, 1.0, 2.0, 4.0) for Pr = 7.0 on the mte of heat transfer and the local

skin-friction coefficient respectively. From Fig. 2.3(a) it is seen that the rate of



-heat, -0' (x,O)increases monotonically with the increase of the viscosity-variation

parameter e. We also observe that the value of -0' (x,O) reaches to some mini-

mum values at x = Jr, the top surface ofthc cylinder for every values of {;. Such as

for value of {; = 0.0, 0.5, 1.0,2.0 and 4.0 the minimum values attained by (he mte

of heat transfer -0' (x,O)are 0.2681, 0.2852, 0.2955, 0.3092 and 0.3312 respec-

tively. From these we may conclude that these minimum values increase v,ith the

increase of the viscosity-variation parameter ii. Fig, 2.3(b) shows thai for increas-

ing ~alues of e, the local skm-fiiclion coefficIents decrease. The decreasing values

off. (x,O) converge to individual finite values for every values of E. We have

also got for [; = 0.0, 0.5, I 0,20 and 4 0 the liJmting values off (x,D) are 0.1368,

0.1220,0.1103, 0.0949 and 0.0813 respectively.

Fig. 2.4(a) depicts the velocity profile for different values of the Prandtl

munber Pr (= 7.0,10.0,15.0,20.0,30.0) while x =;r/l and the viscosity-variation

parameter [; = 3.0. Corresponding distribution of the viscosity in the fluids is

sho\"TI in Fig. 2.4(b). From Fig. 4(a) it can be seen that if the Prandtl number in-

creases, the velocity of the fluid decreases. On the other hand, from Fig. 2.4(b) we

observe that the viscosity of the fluid increases within the boundary layer region

owing to increase the value of the Prandtl number. This viscosity profiles asymp-

tote to the writ value near the edge of the boundary layer, since this where <llIIbi-

ent conditions are recovered.

The efTed orPrandtl number Pr, on the rate ol"heat transl"er, -B' (x,D)and

the skin-friction, f" (x,D) are illustrated in Fig. 2.5(a) and 2.5(b) respectively

while (; = 3.0. From Fig. 2.5(a) it reveals that, increase in the value of the Pnmdtl

number leads to increase the values or the rate or heat transfer. Opposite effects

on the local skin-friction is observed due to increase the value of Prandll number.

We may also observe that the absolute maxima of the local skin-friction shifts

near to the middle of the surface.



2.4. CONCLUSIONS

The effect of temperature-dependent viscosity on the natural convection

boundary layer flow from an isothennal horizontal circular cylinder has been in-

vestigated theoretically. Numerical solutions or the equations governing the flow

are obtained by using the very efficient implicit finite difference method together

with Keller box scheme. From the present investigation, the following conclu-

sions may be drawn:

1.The velocity distribution increases and the viscosity of the iluid de-

creases at the middle of the surface for increasing value of viscosity-variation pa-

rameter e.

2. Increased value of the viscosity- variation parameter e leads to increase

in the local heat transfer mte and to decrease the local skin-friction.

3. It has heen observed that the velocity distribution and skin-friction de-

crease as well as the viscosity distribution and the mtc of heat transfer increase

with the increase ofPrandtl number Pro

.(



Table 2.1. Numcrical valucs of -O'(x, 0) for different values of clUVaturc parame-
ter x while Pr = 1,0 and 5= 0.0

,
0.0
mO
"3
"2
2")
5"6

-8'(.1',0)
Merkin[2] Num et at [8]
0.4214 0.4214
0.4161 0.4161
0.4007 0.4005
0.3745 0.3741
0.3364 0.3355
0.2825 0.2811
0.1945 0.1916

Present
0,4241
0.4161
0.4005
0,3740
03355
0,2812
0.1917

Table 2.2. Numerical values of/"(.1',O) for different values of curvature parameter
x while Pr ~ 1.0 and E~0.0

["(.1',0)
X Merkin [2] Nazar et al. [8]
0,0 0.0000 0.0000
7116 0.4151 0.4148
7113 0.7558 0.7542
7112 0.9579 0.9545
21li3 0.9756 0.9698
57116 0.7822 0.7740
1r 0.3391 0.3265

Present
0.0000
0.4145
0.7539
0.9541
0.9696
0.7739
0.3264
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Chapter 3

Natoral convection flow with temperature dependent vis-
cosity and thermal conductivity along a vertical wavy sur-
face

3.1lNTRODUCTlON:

The effect of variable viscosity and thermal conductivity on a steady two-

dimensional natural convection flow of viscous incompressible fluid along a uni-

formly heated vertical wavy surface has been invesllgaled. We consider the

boundary layer regime having large Grashof number. Using the appropriate vari-

ables, the basic equations are transformed to non-similar boundary layer equations

and then solved numerically employing the implicit finite difference method to-

gether with Keller-box scheme. Effects of the pertinent parameters, such as the

viscosity parameter, thermal conductivity parameter, the amplitude of the wavi-

ness of the surface and Prandtl number on the rate of heat transfer in terms of the

local Nusselt number (Nux), surface shear stress in terms of local skin-friction

(C.e,), isotherms and the streamlines are disenssed.

2.2. FORMULATION OF THE PROBLEM

The boundary layer analysis outlined below allows 6-(x) bemg arbitrary,

but our detailed numerical work will assurne that tbe surface exhibits sinusOIdal

deformations. The wavy surface may be described by

Yw =o-(x)=aSin( ~)
(3,1 )

where L is the char<lCteristic length associated with the wavy surface.

The geometry of the wavy surface and the two-dimensional Cartesian co-

ordinate system are shO\vn in Fig. 3.1.
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Fig. 3.1: Physical model and coordinate system

we consider the flow governed by the following equations:

au Ofj-+-.0ox OJ!

AOU ,au lap 1 A"-H-=---+-V./.'Vu)+gp(T-T)8i OJ! p ox P IJ-' '4

,iJV.av IAjJ 1"00-)"-H-=---+-v, hV
ax oy pay p

,aT ,oT _ 1 "'(koT)"-H----< <
ax of' pCp

(3.2)

(3.3)

(3.4)

(3.5)

whcre(i,y) arc the dimensional coordinates along and normal to the tangent of

the surrace and (", v )are the velocity components parallel to (_i,y), g is the accel-
eration due to gravity, p is the dimensionless pressure of the fluid, p is the density,

JJ (1) is the dynamic viscosity, k(I) is the thermal conducti~ity of the fhlid in the

boundary layer region depending on the fluid temperature and Cp is the specific

heal at constant pressure.

The boundary conditions for the present problem are



(3.6)

(3.7)

ii=O,ii=O, T=Twat y:y:=a(;)
u = 0, T = ToO' P = p", as Y ~ ""
where Tw is the surface temperature, T<cisthe ambient temperature of the fluid.

There arc very few forms of viscosity and thermal conductivIty variations
available in the literature. Among them we have considered that one which is ap-
propriate for liquid introduced by Hossain et al. [32] and Gorla el aL[35] as fol-
lows:

II'" 1(" IIH '(T - T",)j

k~kJ+r(T-T_)1

• 1 ('")where f: = PI ar I • 1 (")and r = - - are evaluated at the film temperature
kl aT I

of the flow 7j= Y,(T",+T",)

Following Yao [9]' we now introduce the following non-dimensional vari-

ables:

-X=-
L'

>'-a(;)G '"y= L r,
pLC-li2-"~-- ".".

L' G -'"P~--2 r p,
IA'.

pLG-114(" ')0 T-T",1'=- r v-a,u, = ,
fi", Tw-T",

a =M =da Gr=gfJ(T~.-T"')LJ
'dXdx'l '.

(3.8a)

where e is the dimensionless tempenlture function and v'" (=pdp) is the kine-

matic viscosity. The (x,y) are not orthogonal, bul a regular rectangular computa-

tional grid can be easily fitted in the transformed coordinates. It is also worth-

while to point out that (u.v) arc thc velocity components parallel to (x,y) which are

not parallel to the wavy surface. Now we have sho"ffi some calculation for di-

mensionless of the above equatlOns.

au = fi", Grl12(au _Gr114a au] (3.Sb)ax pL'!. ax x 0'

au = Pc< er3/4 au (3.8b)
iY pL2 0'

ov fl~ [G 114 Ov G 112 2v G '" G 112 au G J/4 2811] (3.8-)-. -- _ a -+ r a u+ r a -- _ a - •
ax pL2 ax '0' u xi);x; X[~J.'



8ft = pv;, Gr op
BY r' ctY

aT = !:J.T[8B _Gr1i4u ae]
alex 'ay

aT = Gr AroO
uf' L 0'

(3.3d)

(He)

(3.81)

(3.8g)

(3.Sh)

(3.8i)

(3.8j)

,



(8.3k)

(3.9)

Introducing the above dimensionless dependent and independent variables

into the equations (3.2)-(3.5) following dimensionless form of the governing

equations are obtained after ignoring terms for large Gr, the Grashof munber de-

fined in (3.Sa).

au+t7u=O
in ily

au au ap 114 ap ( 'I la',,-H-=--+CT Gr -+ 1+". I+EB--
ax 0-' Ox' 0' ' 0'2

+£(1+"./)::+0

(" "'J ' '" iJp ( 'I )""a '-H- +". u =-Gr -+a 1+". I+£B--
'axD)''''' 0'" a/

+ sa)1 +". / )~Bau.
"ily

ae ao 1 I " a'e 1 I ,,(ae]''-+l'--;;:-=-l+a, },l+yBj--'-I+"., P'-ax ay Pr 0'2 Pr 0'

(3.10)

(3.11)

(3.12)

In the above equations, Pr is the Prandtl number,s and rare the viscosity and the-

rmal conductivity variation par3!l1eter defined as respectively

(3.13)

It can casi1y be sccn that the convection indueed by the wavy surface is

described by equations (3.9)-(3.12). We further notice that, equation (3.11) indi-

cates that the pressure gradient along the y-direction is O(Gr-li4), which implies

that lowest order pressure gradient along x-direction can be determined from the

"
,



(3.14)

inviseid flow solution. For the present problem this pressure gradient is zero.

Equation (3.11) further shows that Gr-I/4q,1i)! is 0(1) and is delermmed hy the

left-hand side of this equation. Thus, the elirnmallon of q,k} from equation

(3.10) and (3.11) leads to

au au ( " )a1U UU 1"-H-= I+u ,,J+se __ x "" u
ax 8y , 0" I+u/

+.S{I+Ux2~80+ 1,(J
8y 0' I+ux'

The corresponding boundary conditions for the present problem thcn tum into

u=v=O, (J=I at y=O
u=O, e=o, p=O as y~oo (3.15)

Now we introduce the following transformations to reduce the governing equation

to a convenient form:

". ( )If='>; fX,1], (3.16)

(3.17a)

where 1]is the pseudo similarily variahle and Vis the stream.function that satis-

fies the equation (3.9) and is defined by

aV 8'11"~- v=--
CY' '"

au = xl"f"
CY

8
2
u = f"

CY'
ae '"__I 1]0' + ae
ax 4x ax

(3.17b)

(3.17e)

(3.17d)

(3.17e)

(3.17f)

(3.17g)



(3.17h)

(3.17i)

(3.18)

Introducing the transformations given in equation (3.16) and ealclJlalions

(3.17) into the equations (3.14) and (3.12) we have,

(1+0"/ XI +cO)!" +~fJ' -[~+ XO"P.,; Jf'l +8(1+0"/ fJ" + 1 1 ()
4 2 1+0", 1+0",

0'[[' 'I' -r all
itt D,

The boundary conditions (3.15) now take the following fom]:

10<.0) 0 ['(,.0) 0 O.'(,.0) 0 I

f'(x, "") =O(x, "") = 0

(3.19)

(3.20)

Solutions of local non-similar partial dirferential equations (3.18)-(3.19),

subject to the boundary conditions (3.10), are ohtained by using implicit finite dif-

ference method developed by Keller [33}. This method has extensively been used

recently by Hossain et aL [12,13,17,19,20,26,27]. Sincc good description of this

method and its application to boundary layer flow problems is given in the book

by Cebeci and Bradsha'" [32], the detail of this method has not been discussed in

this chapler.

However, once we know the values of the function! and 0 and their de-

rivatives, it is important to ealclJlate the values of the Nussc1t number, Nu and the

skin-friction coefficient, Cf from the fol1owing relations:

where

andC =~
f pU;' (3.21 )

'f-



qw = -(lrn.VT\..•~

( ) if, + JJy (, tiT . aT)
= -k", 1+r ,~~~ ;-, + j-. where

~f;+f; ax @ yoG

!:J.TG li4
=-k",(l+y) Lx~4 ~l+cr;O'(x,O) where .1T=(T",-T",)

T" = (tuiSii)Y=<J

( )if,'}f,(,,,,,,)=fl", 1+&,~~~'-'l-
'f"f1 ox as, ~'Vx y -,0

_ f.i",C:','4 (1+o)XI!4~l+ u; r(x,O)
pL

and U~ = Ji~Gr112! pL

(3.lla)

(3.22b)

(3.22c)

here i1is the unit normal to the surface. Using the transformation (3.16) and (3.22)

Nu and Cj take the following forms

NU,Gr,-'" = -(1+ r}Jl + u; (:1'(.1',0)

C{,Gr;" /2 = (1+ 0),)1 +0-; r(x,O)

(3.23)

(3.24)



3.3. RESULTS AND DISCUSSION

Here we have investigated the problem of the natural convection flow of a

viscous incompressible fluid with variable viscosity and thermal conductivity

along a vertical wavy surface with uniform surfaec temperature. Solutions are ob-

tained for the fluid having Prandtl number Pr = 0,01, 0.1, 0,7, 1.0, and for a wide

range of values of the variable viscosity parameter F. = 0,0, 1,0, 2.0, 5.0 and the

variable thermal conductivity parameter y = 0.0, 1.0,2.0,5.0.

At first it should be mentioned that for constant viscosity and thennal con-

ductivity (i.e. f; = y = 0) of the fluid, wc rccovcr the problem qualitatively diS-

cussed by Yao [9] considering thc form o(x}= a sin (2m) for Pr = 1.0.

Thc effects of E on the rate of heat transfer in terms of the local Nussclt

numbcr Nu"Grr-1I4 and the surface shear stress in terms of the local skin-friction,

eft Grx'14 arc givc in Fig 3.2(a) and 3.2(b) respectively whl1e a= 0.3, r= 0.0 and

Pr = 0.7. Fig 3.2(a) indicates that increasing the values of the viscosity-variation

parameter F. results in a decrease in the valucs of the rate of heat transfer and an

increase in the surface shear stress along the wavy surface. Here we concludc that

for high viscous fluid the skin-friction is large and the corresponding rate of heat

transfer is slow. Increasing values of fi lead to increase the amplitude of the

N.G-114dCG'"Ux rr an Jx rx .

fig. 3.3(a) and 3.3(b) show the axial distribution of thc local Nusselt

Number NurGrx-I,'4 and the skin-friction respectively for different values of thc

thermal conductivity parameter r while Ii = 0, a = 0.3 and Pr ~ 0.7. It is clearly

seen that the local Nusselt number NuxGrr-1!4 and the skin-friction ef,Gr/4lead
to increase with the increase of the thermal conductivity parameter. Also at the

downstream region the amplitude of the local Nussclt number and the skin-

friction reduce gradually.

In Table 3.1 we entered the values off'1:x,O) and -Btx,O) sho\\ing the

variation of Pr whiles = y= 5.0 and a = 0.3. From which we can conclude that if

the valuc of Pr increases the values ofj'(x,O) decreases and -Btx,O) incrcascs, It



is also seen that for liquid metal (Pr = 0.01) the rate of heat transfer is slow and

the surface shear stress is higher than that of air.

Fig.3.4 and 3.5 illustrate the effect of the temperature dependant viseosity-

variation parameter c and the thermal conductivity-variation parameter r on the

development of streamhnes and isotherms respectively which arc plotted for Pr =

0.7 and Ct = 0.3 whcre 81f= 1,5 and .10= 0.1. We find that for [;= y=O the valne

of \!4m.x=16,5, for c = 5.0 and y= 0, If""" = 15.0, for c = y = 5.0 If""" = 27.0

and \!4nax= 24.0 whcre c = y = 5.0. From Fig.3.4(a), it is seen that the onlyeffcct

of viscosity parameter s, the flow rate in the boundary layer decreascs slights. Be-

sides only the effect of the thermal conductivity-variation paramctcr ;v, the flow

flux increases significantly. Simultaneously, the effect of viscosity parameter e

and the thermal conductivity parameter ;v, the flow rate bceomes higher compari-

son with the case of constant viscosity and thcrmal conductivity of the fluut From

Fig.3.5 we obsene that owing to the eITect of E and y, the thermal state of the

fluid increases, causing the thermal boundary laycr increase

The effect of van ation of the surface roughness on thc streamlines and the

isotherms for the values of a equal to 0.0, 0.1, 0.2 and 0.3 are depicted by the

Fig.3.6 and 3.7 respectively while E = Y ~ 5.0, Pr = 0.7 8.1f= 1.5 and .18 = 0.1.

We observe that,as the values of a increases the maximum values of If increases

slightly. So we conclude that for much rouglmess of the surface with the en'ect of

temperature dependent viscosity and thermal conductivity the vclocity of the fluid

flow increases in the boundary layer. Fig.3.7 shows that for increasing values of

a, the thermal boundary layer thickness becomes larger.

Fig.3.8 and 3.9 show the effect ofPrandti number Pr (= 0.01, 0.1, 0.7 and

1.0) on the formation of streamlines and isothenns respective1ywhilc t: = Y = 5.0,

a = 0.2, 8.If = 1.5 and .18 = 0.1. It can bc seen that for Pr equal to 1.0, 0.7, 0.1

and 0.01 the maximum values of l//, that is, \IIn"ox are 19,0, 22.5, 52.5 and 63.5 re-

spcctivcly. Also we obsen'e that for small Pr with eITect oftempcrature dependent

viscosity and thermal conductivity the momentum and thermal bonndary layer

thickness increase.

,.
"



4.CONCLUSIONS

The effect of viscosity and thermal conductivity variation parameter for

small Prandtl number Pr (=0.01, 0.1, 0.7 and 1,0) on the natural convection

boundary-layer flow along a uniformly heated vertical wavy surface has been

studied numerically. New variables transform to complex geometry into a simple

shape were used a very efficient implicit-finite-dlfferenee together with Keller

box scheme to solve the non-similar boundary layer equations. From the present

investigations we may drawn the follo"ing conclusions:

1. The rate of heat tnlll:;fer decreases and the surface shear stress increases

for increasing values of the viscosity-vanation parameter. Ttal:;o leads to enhance

the amplitude of NuxGrx-li4 and Cft Gr/4 .

2. The rate of heat transfer and the surface shear stress increase whet the

valnes of the thermal conducvity-variation parameter increased. At this stage the

amplitude of NuxGrx-114 and Cft Gr,'14 reduce slowly.

3. With the effect ofvi:;cosity and thermal conductivity vanation parame-

ter the rate of fluid flow and the temperature distribution increase in the bOWldary

layer significantly.

4. For small Prandtl number Pr = 0,01 (liquid metal) in presence of vise os-

ity and thermal conductivity variation parameter the velocity and temperature dis-

tribution highly increase in the boundary layer, consequently the surface rate of

heat transfer decreases.
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Table 3.1: The values of -8'(__,0) andf'{_t,O) while s = r = 5.0 for difTerenl val-
ues of Prandtl number Pr.

Pr=O,OI Pr =0.1 IT-1.0, -8'(x,0) rtx,O) -O'(x,O) I1x,O) -8'(x,0) ('{x.O)
0.0 0.29833 1.87630 0.34339 1.85304 0.66993 1.57560
0; 0.22702 3.12810 0.34157 3.08450 0.76081 2,59743
1.0 0.29736 2.01861 O.32'J18 1.94338 0.69103 1,55365
1.5 0.23064 3.10188 0.34567 3.04521 0.74648 2,54459
2.0 0.29575 2.02056 0.32618 1.95484 0.70030 1.57907,; 0,23571 3.06400 0.34581 3.00626 0.73950 2.50812
3.0 0,29321 2.03080 0,32868 1.96862 0.70403 1.59470
3.5 024120 3.04872 0,34406 2.98605 0.73683 2.48817
4.0 0,28993 2.03486 0,33101 1.97599 0,70564 1.60365
45 0.24672 3.03863 0,34256 2.97270 I}73532 2.47543
;0 0.28620 2.03792 0.33271 1.98138 0,70667 1.60974
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Chapter 4

CONCLUSIONS

In this dissertation, wc have investigated the effect of temperature

dependent viscosity J1{Tj and thennal conductivity k(T) on steady two-

dimensional natural convection flow (i) from an Isothermal horizontal circular

cylinder (ii) along a vertical wavy surface with uniform surface temperature Two

Using the appropriate transformations the basic equations arc transfoffiled to non-

similar boundary-layer equations, which has been solved numerically using a very

efficient implicit fimle-difference method knovm as Keller box scheme. Here we

have focused our attention on the evolution of the surface shear stress in terms of

local skin-friction, rate of heat transfer in terms of local Nussc1t number,

streamlines, isotherms, velocily distribution, temperature distribution, viscosity

distribution as well as thermal conductivity distribution for a selection of

parameter sets consisting of the viscosity parameter, thermal conductivity

parameter and amplitude ofllie wavy surface.

From Chapter 2:

The effect of temperature-dependent viscosity for large Pr on the natural

convedion boundary layer flow from an isothermal horizontal circular cylinder

has been investigated theoretically. From the present investigation, the following

conclusions maybe drawn:

1.The velocity distribution increases and the viscosity of the fluid decrease

at the middle of the surface for increasing value of vIscosity-variation parameter

,
2. Increased value of the viscosity- variation parameter {;leads to increase

in the local heat tnmsrer rate and to decrease the local skin-friction.

3. It has been observed that the velocity distribution and skin-friction

decrease as well as the viscosity distribution and the rate of heat transfer increase

with the increase ofPrandtJ number Pr.
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From Chapter 3:

The effect of viscosity and thermal conducti'nty variation parameter for

small Prandt! number Pr (=0.01, 0.1, 0,7 and 1.0) on the natural convection

boundary-layer flow along a uniformly healed vertical wavy surface hall been

studied numerically_From the present investigation we may drawn the following

conclusions:
1. The surface rate of heat transfer decreases and the surface shear stress

increases for increasing values of the viscosity-variation parameter. It also leads

to enhance the amplitude of Nu-,Grx-li4 and Cft Gr, 114 •

2. The rate of heat transfer and the surface shear stress increase whet the

values of the thenna1eonducvity-variation parameter increased. At this stage the

amplitude of NuxGrr-i,'4 and Cl, Grx ]/4 rcdncc slowly.

3. With the effect of viscosity and thermal conductivity variation

parameter the rate of fluid flow and the temperature distribution increase in the

boundary layer signilicant1y.

4. For small Prandt1 number Pr = 0.01 (liqnid metal) in presence of

viscosity and thennal conductivity variation parameter the velocity and

temperature distribution highly increase in the boundary layer, consequently the

surface rate of heat transfer decreases.
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