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Abstract

In this dissertation, a steady two-dimensional natural convection [low along a

horizontal circular cylinder and a vertical wavy surface with temperaure depend-

enl viscosily (7T} and thermal conductivity &(T) has been investigaled. Using the
appropriatc transformations the basic equations are transformed to non-similar
boundary-layer cquations, which are solved numerically using a very efficient
implicit finite-difference method together with Keller box scheme. Here we have
focused our attention on the evelution of the surface shear stress in terms of local
skin-friction, rate of heat transfer in terms of local Nusselt number, streamlincs,
isotherms, velocity distribution as well as viscosity distribution lor a selection of
parameter sets consisting of the viscosity-variation parameter & thermal conduc-
tiviry-varation parameter % Prandil number Pr and amplilude of the wavy sur-

face.
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Nomenclature

it Radius of the circular eylinder
z  Specific heat at consiant pressure
Cr  Local skin-fiicticn
I Dimensionless stream functlion
g Acceleration due to gravity
Cr Grashof number
{7r. Local Grashof number
A(T)  Thermal conductivity
MNu, Local Nusselt number
Pr Prandil number
i Heat Mux at the sor{ace
F Temperature of the flind in the boundary layer
T.. Temperature of the ambient fluid
T Temperalure at the surface
v  The dimensionless x und - component of the velocity
4,7 The dimensional ¥ and ¥ component of the velocity
x,v  Axis in the direction along and normal to of the surface
Greek svmbols
Jij Yolumelric coefficient of thermal expansion
¥ Stream function
T Shearing stress
c Yiscosily-vanalion parameter
¥ Thermal conductivity-variation parameter
¥ Constant
7 Non-dimensicnal similarity variable
o Density of the [Tuid
Vi Reference kinematic viscosity
4 (N Yiscosity of the lnid
Hen Dynamic viscosity of the ambient Nuid
a Dimensionless temperature function
o(x) Surface profile function defined in (3.1)
Subscript
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w  Wall conditions

o  Ambent temperature
x  Differentiation with respect to x

Superseript

' IDhfferentiation with respect to #
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Chapter 1

Introduction:

Free convection from a honzontal circular cylinder to a surrounding (luid
has received considerable interest not only due to its fundamental aspects but also
due to its importance is many indusinal applicalions. These applications include
nuclear reactors, heat exchangers, hot wires, sieam pipe and many others. Meost of
the studies on free conveclion from cylinder were locused on horizontal circular
cylinders invesiipated for constant viscosily.

Sparrow and Lee [1], locked at the problem of verlical stream over a
heated horizontal circular cylinder. They obtained a solubion by expanding
velocity and temperature prefiles in powers of x, the co-ordinale measuring
distance from the lm;.'est point on the cylinder. The exact solulion 15 still out of
reach due to the pon-linearity in the Navies-Stokes equalions. I appears that
Merkin [2,3], was the first who presented a cemplete selulion of this problem
using Blasins and Gorler series expansion method along wilh an integral method
and a [initc-difference scheme. Also the problem of free convection boundary
layer flow on cylinder of elliptic cross-section was studied by Merkin [4]. Ingham
[5], investigated the boundary layer flow on an isothermal horizontal cylinder,
Hossain and Alim [6] have investigaied natural conveciion-radiation interaction
on boundary layer flow along a verlical thin cylinder. Hossain et al. [7], have
studied radiation-conduction interaction on mixed conveclion from a honzonial
circular cylinder. Recently, Nazar et al. [8], have considered the problem of
natural convection flow from lower stagnation peint to upper stagnation point of a
henzontal circular cylinder immersed in a miero pelar fluid.

Roughcned surfaces arc encountered in several heat transfer devices such
as flat plate solar collectors and flat plate condensers in regeneraiors. Larger scale
surface non-uniformities are encountered, for example, 1n cavily wall insulating
systems and pgrain storage conteiners. The only papérs to date that study the

effects of such non-uniforrmties on the veriical conveclive boundary laver [low of




a Newtonian [luid are those of Yao [9], and Moulic and Yao [10,11]. Hossain and
Pop [12] investigaled the magncto-hydrodynamic boundary layer (low and heat
transfer from a continuous moving wavy surface white the problem of free
convection flow fiom a wavy vertical surface in presence of a transverse magnetic
field was studied by Alam et al [13]. On the other hand, Recs and Pop [14-16]
investigated the free convection boundary layer induced by vermical and honzontal
surface exhibiting small-amplitude waves embedded in a porous medium. Hossain
and Rees [17] have investigated the combined effect of thermal end mass
diffusion on the natural convection [low of a viscous incompressible fluid along a
verlical wavy surface. The cffcct of waviness of the surface on the heat and mass
flux in investigated in combination with the species concentration for a flud
having Prandt] number equal to 0.7. Natural conveclion heat and mass transfer
near a vertical wavy surface with constant wall temperature and concentration in a
porous medium was studied by Cheng [18]. Very recently, Molla ct al, [19,20]
have studied the problem of natural convection flow along a vertical wavy surface
with uniform surface {emperaturc and surface heat (lux in presence of temperature
depcndent heat generalion.

In all the above studies [1-20] the authors assurned that both the viscosity
and thermal conductivity of the fluids are constant throughout the flow regime.
But, these physical properlies may be changed significanily with iemperature. For
instance, the viscosity of water decrease by about 240% when the temperahire
increases from 10°C (x = 0.0131 gmem s to 50°C (u = 0.00548
gm.em™.s7'). To predict accurately the flow behavior, it is necessary to take nto
account of viscosity. Gray and Kasscry [21] and Mehta and Soed [22] found that
the flow characteristics substantially changed when ihe eilect of temperature
dependent viscosity is considered. Hady et at [23] investigaled the mixed
convection boundary layer flow on a conlinuous Mat plate with variable viscosity.

Kafoussius and Williams [24], and Kafoussius ct al [25] have studied the
elTects of variable viscosity on the free and mixed convection flow from a vertical
flat plate in the region neer the leading edge. Recently, Hossain et al. [26,27] have

considered (he natural convection along a vertical wavy cone and surface placed
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in uid having large Prandu number with vanable viscosity when the viscosity 1s
inverscly proportional to a linear function of temperalure, a modcl that was
proposed by Ling and Dybbs [28]. Besides these, it has been found that for liquid,
such as orpan gas, the viscosity varies with temperalure in an approximately
linear manner. From Kays [29], it has also been [ound that the thermal
conductivity varies wilh temperature 1s an approximately linear manner in the
range from 0 to 400° F.

A semi-empirical formula for the thermal conductivity was used by Arunachalam
and Rajappa [30]. Assuming the viscosity and thermal conduetivity of the fluid to
be proportional (0 a linear function of temperalure, two semi-empirical formulas
were proposed by Charraudean [31]. Following him Hossain et al [32]
investigated the natural convection [low pasl a permeable wedge for the fluid
having temperature dependent viscosity and thermal conductivity,

Since the natural convection flow along a honzontal circular cylinder with
temperature dependent viscosity hasn’t been considered yet, in Chapter 2, the
attention has been given to a study of the natural conveciion {low of a viscons
incompressiblec (luid having viscosity (7)) dependmg on temperature from an
isothermal horizontal circular cylinder. The surface temperature T, of the eylinder
is higher than that of the ambient fuid temperature 7., . In formulating the
equalions govermng the Mow the viscosity of the uid has been assumed to be
inversely properiional to a linear function of temperature, a semi-empincal
formnula for the viscosity had been used by Ling and Dybbs [2R]. The governing
pariial differential equations are reduced 1o locally non-similar partial differential
forms by adopting appropnale transformations. The transformed boundary layer
equations are solved numerically using very eflicient implicit finite-difference
scheme together with Kcller box technique [33,34]. Effect of viscosity-vanation
parameter £, on the velocity and viscosity distribution of the fluid a5 well as on
the local rate of heat transfer in terms of the Nusselt number and the local skin-
friction are shown graphicelly fer [luids having large Prandtl number rangimg
from 1.0 to 30.0.

L]
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In Chapter 3, we investipate the natural convection boundary laycr (low

along a vertical wavy surfacc maintained at a uniform surface temperature
immersed in a (uid with a temperature dependent viscosity (7)) and thermal
conductivity &(T) as [32, 35). The bounduary layer cquations ere solved by using
implicit finite difference method [33,34]. We give our atlenlion 1o the situation
where the buoyancy forces assist the flow for various values of the viscosity-
varialion parameter & end the thermal conductivity-variation parameter y with the
small Prandt] number Pr ranging from 0.01 to 1.0. From these results we can
observe the different flow and heat transfer characteristics by varying the rcicvant

parameters.



Chapter 2

Natural convection flow from an isothermal horizontal
circular cylinder with temperature dependent viscosity

2.1 INTRODUCTION

Free convection flow from an i1sothermal horzontal circular cylinder im-
mersed in a fuid wilh viscosity proporiional to inverse Linear function of lempera-
ture i5 studied. The goverming boundary layer eguations are transformed into a
non-dimensional form and the resulting nonlinear system of partial differential
equations are reduced to local non-similanty equations, which ere solved numen-
cally by very efficient implicit fimte difference method together with Ketler box
scheme, Numencal results are presenied by velocily and viscosily profiles of the
flnd as well as heat transfer characterisiics, nemely the local heat transfer rale and
the local skin-fiction coefficienis for a wide range of viscosity parameier £ (=
0.0, 0.5, 2.0, 3.0 and 4.0} and {he Prandtle number Pr (= 1.0, 7.0, 10.0, 15,0, 20.0
and 30.0}.

2,2, FORMULATION OF THE PROBLEM

A steady two-dimensional laminar free convective Mow from a uniformly
heated horizontal circular cylinder of radius @, which is immersed in a viscous
incompressible Nuid having temperature dependent viscosity. It is assumed that
the surfacc temperature of the cylinder 15 T, where 7,>T . Here T, is the ambi-

ent lemperature of the fluid. The configuration considered i= as shown in Fig. 2.1.

Fig. 2.1. Physical modzl

and coordinate systemn.



The goveming boundary layer equations of the low are

& 2
Z+Z -0 (2.1)
ax o
N . 6 o e (2.2)
—_—t e |=—| g— |+ -7, )sin| —
P[‘ua} E&J @[ﬂey} AT -T,) [a]
o ,of 1 8(,oT
H— - = ICH— ' (23)
gr oy pe, dvl Oy
The boundary conditions for equations {2.1) to {2.3) are
Hi=0=0, T=T , aty=0 (2.4a)
g—=0, ToT a5 jpow (2.4b)

where (i, 7} are velocity components along the (%, j')axes, g is the acceleralion

) ) . 1{8 X .
due to gravily, 715 lhe density, J =——(§J 18 the coellicient of thermal ex-
P e

pansion, i () is the viscosity of the luid depending on the [uid lemperature T, &
15 the thermal conductivity, for this problem & is constant.

Out of many forms of viscosity vaniation, which are availzhle in the litera-
ture, we have considered only the following form proposed by Kafoussias and

Wilhams [24] and Lings and Dybbs [28] for large Prandil number

Mo
= . 2.5
1+7 AT -T,) (2.5)
I {duy . .
where yy =——1——| 15 evalualed at the film temperalure of the (wd
H 7

Ty = %{Tw ~T,,)and g, =1.45x107872/2 J(T,, +110.33) (Suthcrland’s law).

We now introduce the following non-dimensional variables:

x=2, y = Gry:[ij, = EGr_};ﬁ
a

a U
_ _ _ 3
v=2Gr X‘ﬁ, 9=&, Gr=gﬁ{Tw . ,P‘I=V—m (2.6a)
He Tw _Tm V:le:l a
6



where vd=u./0) is the reference kinemalic viscosity, a 18 the thermal diffusivity,
Gr is the Grashol number, Pris the Prandtl number and & is the non-dimensional

temperature.

In order to non-dimensionalize the governing equations here we have shown some

calculations:

00 _ e gm0 (2.6b)
&r  pa o

?‘? ='u—mIGr”1 ﬁ {2.6¢)
ay pd cy

E: — F‘n&l Grl--l E - (Zﬁd]
& pa ey

g(#aﬁ]: Bopl 1w & 08B (2.6¢)
FU &) p® [1+£608° (1+e8) & &

ar _Ara0 @60
ax g ox
o _AT 1. 30 2.69)
&y a dy

T AT L2 a8’ (2.6h)
@jjz = ﬂ'2 G!" ayi

The equation (2.5) can be wnitten as

po 1 (2.61)

M 1+

1 (@& : N L

where £ = —[ﬁ] (T,,, — T, }is the viscosity variation parameter
JACLES,

Substitution of (2.6) inlo equations (2.1)-(2.3) leads to the following non-

dimensional equations

LU {2.7)
ox Oy

™,



(o7, -& dudf 1 2u

H— — 4 -
& ¥ (l+s0Y v l+sfoy
06, 00 _ 105

N—

ax a  Pr ?
With the boundary conditions (2.4) reduced io

+8sinx

u=v=0 O=0at x=0, forany ¥
u=v=0 #&=1 at v=0, x>0
u—>0, 8230, aa v—omw x>0

In equation (2.9} Pr is the Prandt]l number delined in (2.11)

(2.8)

(2.9)

(2.102)
(2.10b)
(2.10¢)

(2.11)

To solve equations (2.7)-(2.9), subject to the boundary condilicns {2.10), we as-

sume the following variables

v =xflx.y) 8=8(xy)

(2.12)

where i is the non-dimensional stream function defined in the usual way as

w0

& o

Also we have found

(2.132)

(2.13b)

(2.13¢)

(2.13d)

(2.13¢)

(2.130)

(2.13g)



(2.13h)

29 2% (2.13D)

a*
Substituting (2.13} into cquations (2.8)-(2.9) we get, afler some algebra the fol-

o8
3
i

S

lowing transformed cquations

1a3f+fazf_(g]2_ e, 0Uf @sinx

1 A Fhe’ 2 . 2 2z x
ted dy P \&) ({+8) & 2.14)
_ ¥y yels
ey ary?
1%, 00 (a8 0%
Fr@, —+ 8}' x(@y(:lr ay&r] (2.15)
Along with boundary condilions
f—é—vﬂ, =0a x=0 any ¥ (2.16a}
f= %’;— =1 at y=0, x>0 (2.16b)
@r—bﬂ &0, as y—oow, x>0 (2.16c)

It can be seen that near the lower stagnalion point of the cylinder Le. for x = 0,

equations (2.14)-{2.15) reduce to the following ordinary difTercniial equations:

- )E By +68=0 (2.17)
i§'+f9’ =0 (2.18)
Pr
Subject ta the boundary conditions
Jo}=r=0, 6(0)=1 (2.19a)
f'50, 850 a3 y—ow (2.19b)

In practical applicalions, the physical quantities of principle intercst are
the rate of heal (ransfer and the skin-friction coefficients, which can be written, in

non-dimensional form as

S 3



~Lid 342
alrr, Gr,”""a

My =————y4 , C, = . 2.20
TR T . 229
5T i
where qw=—ﬁ:[ﬂﬁ] , rw=[,u 4) (2.21)
ay F=0 E‘h'? =0
Using {2.6) into {2.12) and the boundary condition (2.16b), we get
561x,0
M, =~ 2220) )
)Y
x ¥ (x0)
C, =— = >+
T o (2.23)

We also discuss the effect of the viscosity-variation parameter £ and the
Prandtl number Pr on the velocity and viscosity disiribution. The values of the

velocity and viscosity distribufion are calculated from the following relations:

yoa_ 1 (2.24)

Sy op, 1+4f
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2.3. RESULTS AND DISCUSSION

Equations {2.14)-(2.15) subjecl 1o the boundary conditions {2.16) arc
solved numencally using # very eflicient implicil ke hmie-difTerence methed
together with Keller box, which is described by Cebeci and Bradshow [34]. The
numerical solutions start at the lower stagnation point of the cylinder i.e at x = 0,
wilh initial profiles as given by equations {2.17)-(2.18) along with the boundary
conditions (2.19) and proceed round the cylinder up to the upper stagnation point,
x = & Solutions are obtained for fluids having Prandtle number, Pr = 1.0, 7.0,
10.0, 15.0, 20.0, 30.0 and for a wide range of values of the variable viscosity pa-
rameter, = 0.0, 0.5, 2.0, 3.0 and 4.0.

Since values of - J{I,ﬂ) and R{I,ﬂ:l are known from the solulions of the
coupled equations {2.14) and (2.15), numerical values of the local heat transfer
rate, Nu from (2.22) and the loeal skin-friction coelficients Cr from (2.23) are cal-
culatcd for the surface of the cylinder from lower stagnation point to npper stag-
nation point, Numerical values of —¢ "(x,0) and /" (x,0) are depicted in Table 2.1,
Table 2,2, Fig 2.3 and Fig. 2.5.

Numerical values of =8 (x,0) and f~ {x,0) are depicted in Table 2.1, Table
2.2 respectively for Pr= 1.0, ¢ = 0.0, and the results of Merkin [2] and Nazar et
at.[8] show excellent agreament among these three solutions.

Effect of viscosity variation parameter, £ (= 0.0, 0.5, 1.0, 2.0, 4.0) on the
dimensionless velocity f {x,m) at x = x2 for the fluid having Pr = 7.0 15 shown 1n
Fig. 2.2{a). The comesponding temperature dependent viscosity, it profilcs arc
tllusirated in Fig. 2.2(b). From Fig. 2.2(a} it can be observed that increase in the
value of the viscosity-variation parameter £ leads to increase in the velocity pro-
file. Increase m the value of the viscosily-vanation parameter £ also leads to de-
crease in the viscosity at x = £/2 and these approach to unity at the ouier edge of
the boundary layer for every values of the viscosily-varialion parameter.

Fig. 2.3(a) and 2.3(b) deal with the elfect of viscosity-variation parameter
e{=0.0 05,1020, 4.0) lor Pr=7.0 on the rate of heat transfer and the local

skin-friction coefficient respectively. From Fig. 2.3{a) it is seen that the rate of

11
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heat, -8 ’(,1:,[‘1) increascs monotonically with the increase of Lthe viscosity-varniation
parameter £ We also obscrve that the value of -8 ’ {x,}) rcaches to some mini-
mum valies at x = &, the top surface of the cylinder for every values of £ . Such as
for value of £ = 0.0, 0.5, 1.0, 2.0 and 4.0 the minimum values attained by (he rale
of heat transfer - (x,0) are 0.2681, 0.2852, (.2955, 0.3092 and 0.3312 respec-
tively. From these we may conclude thal these inimmum values increase with the
increase of the viscosity-vanation parameter & Fig. 2.3(b) shows thal for increas-
ing values of g the local skin-fiiction coeflicients decrease. The decreasing values
of £ (x,0) converge lo individual finite values for every valucs of . We have
also got for £ = 0.0, 0.5, 1.0, 2.0 and 4.0 the limiting values of f " (x,0} are 0.1368,
(.1220, 0.1103, 0.0949 and 0.0813 respectively.

Fig. 2.4(a) depicts the velocity prolile for different values of the Prandtl
nurmber Pr (= 7.0, 10.0, 15.0, 20.0, 30.0) whilc x = &2 and the viscosity-variation
paramcter £ = 3.0. Corrcsponding distribution of the viscosity in the fluids is
shown in Fig. 2.4(b). From Fig. 4(a) it can be seen that il the Prandt] number m-
creases, the velocity of the flwd decreases. Um the other hand, from Fig. 2.4{b} we
observe that the viscosity of the [luid increases within the boundary fayer region
owing to increase the value of the Prandtl number. This viscosity pmofiles asymp-
iote to the unit value near the edge of the boundary layer, since this where ambi-
ent conditiens are recovered.

The elTect of Prandtl number Pr, on the rate ol heat transfer, —& (x,0} and
ihe skin-frction, " (x. ) are illustrated in Fig. 2.5(a) and 2.5(b) respectively
while & = 3.0. From Fig. 2.5(a) it reveals that, increase in the value of the Prandtl
numbcr lcads to increase the values of the rate ol heat transfcr. Opposite effects
cn the local skin-friction is obscrved duc to incrcasce the valuc of Prandtl number.
We may also ohserve that the absolute maxima of the local skin-friction shifls

near to the middle of the surface.

12



2.4, CONCLUSIONS

The ellfect of temperature-dependent viscosity on thc natural conveclion
boundary layer {low from an isothermal horizontal cireular cylinder has been in-
vestigated (theoretically, Wumerical solutions of the equations goveruing the flow
are obtamed by usmg the very efficient implicit {inite dillerence method topether
with Keller box scheme. From the present investigation, the following conclu-
s1oms may be drawn:

1.The velocily disinbution increases and the viscosity of the luid de-
creases at the middle of the surface for increasing value of viscosity-variation pa-
Tameter €.

2. Increased value of the viscosily- vatiation parameter & leads to increase
in the local heat trans{er rate and to decrease the local skin-frction.

3. Tt has heen ohserved that the velocity distribution and skin-friction de-
creasc as well as the viscosity distribution and the rate of heat transfer increase

with the increase of Prandt] number Pr.
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Table 2.1. Numecrical valucs of —#'(x, 0) for different values of curvature parame-
ter ¥ while Pr=1.0 end £=0.0

- (x,0)
% Merkan [2]  Mazarctal. [8]  Present
0.0 0.4214 0.4214 0.4241
b 041461 0.4181 04161
'3 0.4007 0.4005 04005
2 0.3745 0.3741 0.3740
273 0.3364 0.3355 {13355
S5 02825 02811 0.2812
T 0.1545 0.1916 0.1917

Table 2.2. Numerical values of £ (x,0} for different values of curvature paraimeter
x while Pr=1.0and £=0.0

i
x  Merkin[2] WNazaretal [8]  Present
0.0 0.0000 0.0000 0.0000
&6 04151 0.4148 0.4145
3 0.7558 0.7542 (.7539
o2 0.9579 0.9545 0.9541
201 09758 0.969% 0.9696
Sme  0.7822 0.7740 0.7739
o (.3391 0.3265 0.3264
. .
{a) 0.3 (b 1.2
£ £ AN
E E 1.0
202 g £
= 4.0 el 1R
& 0.0
& 2.0 % s
__a 1.0 2 - 1.0
2 0.0 2.0
@ ()1 w 40
g i J '
& g 04
g &
E 0 T T T T T 1 g 0 T T T 1
2080 20 40 60 50 100 8090 10 2.0 L3040
¥

Fig. 2.2, {a) Yelooity profiles {b} viscosity pmoliles for different e while x = #2 and Pr =
7.0
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Fig. 2.4. (a) Velomty profiles {b) viscosity profiles for different Pr while x = 72 and = 3.0
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Fig. 2.5. (a) Rate of heat transfer {b) skin-friction cocllicient for dilferent Pr while £= 3.0
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Chapter 3

Natural convection flow with temperature dependent vis-
cosity and thermal conductivity along a vertical wavy sur-
face

3.1 INTRODUCTION:

The effect of variable viscosity and thermal conductivily on a steady two-
dimensional natural convection flow of viscous incompressible Aluid along a um-
formly heated vertical wavy surfacc has been mvestigaled. We consider the
boundary layer regime having large Grashof numher. Using the apﬁrﬂpﬁate vari-
ables, the basic equations are transformed to non-similar boundary layer equations
and then sclved numerically employing the implicit finite dificrence methed to-
gether with Keller-box scheme. Effects of the pertinent parameters, snch as the
viscosity parameler, thermal conductivity paramcter, the amplitude of the wavi-
ness of the surface and Prandtl number on the rate of heat transfer in terms of the
local Nusselt number (Vu,), surface shear stress in terms of local skin-fction

{Ci}, isolherms and the streamlines are discussed.

2. 2. FORMULATION OF THE PROBLEM
The boundary layer analysis outlined below allows &(#) bemg arbitrary,

but cur detailed numerical work will assume that the surface exhibils sinusoudal

deformations. The wavy surface may be described by
3, =cl@)=a sin[%}

where [ 15 the characteristic length associated wilth the wavy surface.

(3.1)

The geometry of the wavy surface and the two-dimensional Cartesian co-

ordinate system are shown in Fig. 3.1,
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Fig. 3.1: Physical model and coordinate system
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we consider the [low govermned by the followmng squations:

i A

—t+ ==

oy (3.2)
WO, Ol 1 80

— ===+ =V Vi |+ g{T - T. 3.3
050 TV ep(r ) 63
§E+ﬁ3’f’=_l@+ V{uvi)

& & pd p (3.4)
BT o7 1

i+ —=——V{iVT) 3.5
ox gy pC, (3.5}

where (J’&, j‘a) are the dimensional coordinates along and normal to the tangent of
the surface and (£, §)are the velocily components parallel to {£, ¥), g is the accel-
eration due to gravity, £ 1s the dimensionless pressure of the uid, pis the density,

# (D) 15 the dynamic viscosity, &(T) 1s the thermal conductivity of the flwd in the
boundary layer region depending on the [luid temperature and C, is the specific

heat at constant pressurc.

The houndary conditions for the present problem are

16



G=09=0 T=T.at =7_=a(f) {3.6)
=DT T ﬁzpa:- B,Sjr'—i"m

where T, 15 the surface temperature, 715 the ambient temperature of the fluid.

There are very few forms of viscosity and thermmal conductivity vanations
available in the lhilerature, Among them we have considered that one which is ap-

propriate for liquid introduced by Hossain et al. [32] and Gorla ei al.[35] as fol-
lows:

H= i, [1+£‘(T—Tw )] (3.7)
k=k fl+7(T-7,)

where &’ =L[ﬁ—‘u) and ¥ =L[£] are evaluated at the Alm temperature
o \aT ), EAOT j;

of the fow Ty =1(T,+7T,)

Following Yao (%], we now introduce the following non-dimensional vari-

ablcs:

. . - , 1
x:ir y:'}—a{'ﬂgrlm! u:P_LGr_l'zﬂ, P= Lz G_r_l'ﬁ’

L L Ho f i
p=— pL G- )0 = r-1. , {3.8a}

-lum Tw _Tm

T =T
Ux dﬂ' dr"-T G .ﬁ( W m)Lf'l
&% dx 2

@

where € is the dimensionless temperature funclion and v, {=uo/0) is the kine-
mealic viscosity. The {x,;») are not orthogonal, bul a regnlar rectangunlar compula-
tional grid can be casily fitted in the transformed coordinales. It is also worlh-
while to point out that (u,7) are Lhe velocity compenents parallel to (x,v) which are

not parallel to the wavy surface. Now we have shown some caleulation for di-

mensicnless of the above equations.

% pL ar i

i S

L sz Grt 28 (3.8b)
dv  pL dy

v

Al

"

=%|:GF1M§_G"UZJ ﬁ_i_GrlfzJ v+ Grliig %ﬂx_ Grig? m} (3.8¢c)

X N X @;
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& ,U.x; (G 114 5V+Gruzd_x ﬁ] (3.8d)
¥ ol ay i

a{; pVe ol Pt O (3.8¢)
5 I3 dr oy

- i
P _PVai, P (3.80)
5 L o

or AT 08 ],.4 Gl

_AT(39 _ i, B8 38

o [ax ﬁyJ o
or _Gr . p29 (3.8h)
*F L ¥

2
‘?,{,u‘?{i}= y—"';Gr“z[E[EE— Gr! M::rx 98 o _ Gr“‘*i:rJr 29 2u
Al ox O Sx dv iy ox

7 a2
+ Grm::rf 96 ou +{1+cA gu_ Grlide o + Grmﬂ'x £z (3.81}
By Oy &x’ 5 &y’

2 2
L He o 89 5u +{1+28) E
pL3 a}’z

2
pL P o

% % Pk
G PO a2 B0 202y
& x B & dy dx
G 3f4o_f @E—Grmcrxcrnﬂ—-ﬁfjmﬂf o8 ou 1 &
a'y a'y a}: a}' at ( ' J)
—Gmf—””] e g, ”2[ [(,,.mﬁﬁmrmgxﬁﬁjﬂ]
ay &) ol Y ¥

2
+(1+.5*E{G 1“"5]"'+G'2 5_2:]:|
&y* 2y
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2 2
Vi vT)"ﬁTk , [aa) oy 0908 i : a8
o2 &x o 5}1 6}1
- 8°f
+{1+ yﬁ{ -Gr'i'e P Gri'iol —2]] (8.3k)
2
k AT 5 2
= Grli2y i +[1+yﬂ)g
L & Oy
Introducing the above dimensionless dependent and independent variables

into the equations {3.2)-{3.5) following dimcnsionless form of the povemning

equations are obtained afler ignoring terms for large (7, the Grashof number de-

fined in (3.8a).
cx &y (3.9)
H  w_ @ a4 P &
uar+t} 1 wc+cr (r (+cr Xl+.-:6' (3.10)
+£(]+crx2]%i+9
dy oy
- =2
crx(uﬁ+z:'ﬁ}+crﬂuz= Gr”":ﬁo+cr (1+cr X1+.'_=.15?f"r .
o & G.11)
+£Jx(l+cr12)aquu-
dy &y
2
&6 a8 1 2| [ OF
— 47T L+ ) —+—ll+ — 312
ey lﬁy Pr[ I ?ﬁ@ Pr( T ]V[c?y] @13

In ihe above equations, Pris the Prandu number, s and yare the viscosity and the-

rmal conductivity variation parameter defined as respeciively

Pr="ete paf LN (r 1) and r{lﬁ) (T,-7,)
e i 6F p EoT f {(3.13

-

It can casily be scen that the convection induced by the wavy surface is

described by equations (3.93-(3.12). We further notice that, equation {3.11} indi-

-1id

cates that the pressure gradient along the y-direction is O(G# ), which imphes

that lowest order pressure gradient along x-direction can be determined from the
19



inviscid fow solulion. For the present problem this pressure gradient is zero.
Equation (3.11) further shows that Gr~**&/@ is O(1) and is delermmined by the
left-hand side of this equation. Thus, the elimunation of &/éd from equation
{3.10) and (3.11} leads to

-
O

H—+UE=(+G’ ll+aﬂ JI—J“EHE
dr &y r'J}y l+a, (3.12)
+£(1+JXE)EE+ : —8
ar & l+a,.

The comesponding boundary conditions for the present problem then tumn into
u=0=0, =1 at =0

=0, #=0, p=0 as yow {3.15}
Now we introduce the following transformations te reduce the goverming equation

to a convenient form:

174

w=x"flxn) 7=x""30=60xn) (3.16)
where 77 is the pseudo similarity vanable and y ig the stream-function that satis-
fies the equation {3.9) and is defined by

i Oy
= — T = e — .

Py pw (3.17a}
w=x"2r (3.17b)
'EJ=—1 I-‘]M?Ir‘i‘ 14 f 4 -”4f (3.1?0}

L2 A R T
+— 3.17d
[ 4x m} 2t @174
tar 3.17e
@v (3.17¢}
&%u -
g,'j"=f (3.17D)
o8 1 . 2f

(3.7

20



=1
I

LU _ g ' ’ 3.17h)
Y (

.
2= i2ge (3.17i)
y

Introducing the transformations given in equation {3.16) and calculalions

{3.17) inlo the equations (3.14} and (3.12} we have,

w 3w |1 O, v 1
(1+a-x1ll+a‘3)f +Eﬂ' —[E+;—Gf]f1+£(l+gx2};ff +1+U§E
B rjef_'_ o {(3.18)
—x[f i / EIJ

2 1 . 3 ol
%(1 +J;'ll+y9)9"+ﬁ(l+af]y9“ +Eﬂl‘ = {f’a'—lﬁ"%} 5.19)
The boundary condilions (3.15) now take the following form:
F(x0)= £ (x0)=0,6{zx0)=1
Sx2)=8(x,0)=0

Solutions of local non-similar parual differential cquations (3.18)-(3.19},

(3.20)

subject Lo the boundary conditions {3.20), are oblained by using implicit finile dif-
ference method developed by Keller [33]. This method has extensively been used
recently by Hossain et al. [12,13,17,19,20,26,27]. Sincc good description of this
method and ils application to boundary layer flow problems is given in the book
by Cebeci and Bradshaw [32], the detail of this method has not been discussed in
this chapier.

However, once we know the values of the function fand & and their de-

rivalives, it is imporlant to calculate the values of the Nussclt number, Mt and the

skin-fnction coefficient, Cy from the following rclations:

N = — Dot and C; = 2”2
km(Tw -Tﬁo} fel i (3.21)

where
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{;‘IW = _(ﬁ'?T]}'=ﬂ
k() (E L jfj_;} where f(%,3)=5-o(®)
=0

¥
2 2 i
AR A (3.22a)
=k, (1+%) MC’L J1+020(x0) where 4T=(T,-T7,)
r, =(pA54), 4
= i (1+£) Ef +Jf [ &u+ &u]
= [Fepz\ % (3.22b)
304
= %(1 +el 1+ o2 {x,0)
fa)
(3.22¢)

and &/, = g, Gr''?/ pL
here #is the unit normal to the surface. Using the transformanon (3.16) and (3.22)

MNu and ; take the following forms

Nu Gr]" = {1+ y Wl+628'(x,0) (3.23)
C,Grl* 12=(1+eW1+0! f7(x,0) (3.24)
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3. . RESULTS AND DISCUSSION

Here we have nvestigated the problem of the natural convection flow of a
viscous incompresgible Muid with variable viscosity and (hermal conductivity
along a vertical wavy surface with uniform surface temperaiure. Solutions are ob-
tained for the Nuid having Prandtl number Pr=0.01, 0.1, 0.7, 1.0, and for a wide
range of values of the vanable viscosity parameter £ = 0.0, 1.0, 2.0, 5.0 and the
variable thermal conductivity paramcter ¥ = 0.0, 1.0, 2.0, 5.0

At first it should be mentioned that for constant viscosity and thermal con-
ductivily (1.e. ¢ = = ) of the {luid, we recover the problem qualitatively dis-
cussed by Yao [9] considering the form ofx}= & sin (2 2x) for Pr=1.0.

The effects of £ on the rate of heat transfer in terms of the local Nussclt
number NuGr, '™ and the surface shear stress in terms of the local skin-friction,
Ci Gr, " arc give in Fig 3.2(a) and 3.2(b) respectively while ¢ = 0.3, y= 0.0 and
Pr = (.7. Fig 3.2(a) indicates that increasing the values of the viscosity-variation
parameter £ results in a decreasc in the values of the rate of heat transfer and an
incrcase in the surface shear stress along the wavy surface. Here we conclude that
for high viscous fluid the skin-friction is large and the corresponding ratc of heat
transfer is slow. Increasing values of £ lead to increase the amphtude of the
Nu,Gr,™" and Gy Gr,™.

Fig. 3.3{(a) and 3.3(b) show the axial distribution of the local Nusselt
Numnber Mu.Gr,”'™ and the skin-friction respectively for different values of the
thermal conductivity parameter y while ¢ =0, & = 0.3 and Pr = 0.7. It is clearly
seer that the losal Nusselt number NHIG!"I_IM and the skin-friction Cg erm lead
o increase wilh the increase of the thermal conductivity parameter . Also at the
downstream region the amplitude of the local Nussclt number and the skin-
fnction reduce gradually.

In Table 3.1 we entered the values of fx,0) and —&1x,0) showing ihe
variation ol Pr whilec = y= 5.0 and & = 0.3. From which we cen conclude that i’

the vatuc of Pr increases the values of f{x,() decreases and —&{x,0) increases. It
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is alse seen ihat for liquid metal (Pr = 0.01) the rate of heat transfer is slow and
the surface shear stress 1s higher than that of air.

Fig.3.4 and 3.5 illustraie the effect of the temperature dependent viscosity-
variation parameter ¢ and the thermal conductivity-vanation parameter ¥ on the
development of streamlines and isotherms respectively which are plotted for Pr=
0.7 and @ = 0.3 where Ay =1.5 and A¢=(.1. We find thal for £= y=0 the valuc
Of Yinax =16.5, for £=5.0and y=0, @, =15.0,for ¢ =y =50 =270
And Yiney = 24.0 where £ = ¥ = 5.0. From Fig.3.4(a), it is seen that the only cifect
of viscosity parameter &, the flow rale in the boundary layer decreascs slights. Be-
sides only the effect of the thermal conduclivity-vaniation parameter y; the llow
(lux increases sigmficantly. Simullaneously, the eliect of viscosity parameler
and the thermal conductivity parameler #, lhe [low rate becomes higher compari-
son with the case of constant viscosity and thermal conductivity of the fluid. From
Fig.3.5 we observe that owing to the effect of c and y, the thermal state of the
fluid increases, causing the thermal boundary layer increase

The effect of vanation of the surface rougbness on the streamlines and the
isolherms for the velues of & equal (o 0.0, 0.1, 0.2 and 0.3 are depicted by the
Fig.3.6 and 3.7 respectively while £ =¥ = 5.0, Pr=0.7 Aw= 1.5 and A8 =1.1.
We observe that as the values of a wncreases the maximum values of w increases
slighily. So we conclude that for much roughness of the surface with the eflect of
temperature dependent viscosity and thermal conductivity the velocity of the [luid
(low increases in the boundary layer. Fig 3.7 shows that for increasing values of
&, the thermal boundary layer thickness becomes larger.

Fig.3.8 and 3.9 show (he effect of Prandil number Pr (= (.01, 0.1, 0.7 and
1.0) on the formation of streamlines and 1soltherms respectively while £ =y = 5.0,
a=02, Ayr=15and A8 = 0.1. It can be scen that for Pr equal to 1.0, 0.7, 0.1
and (.01 the maximum valucs of 4 Lhat is, yiy,, are 190,225, 52.5 and 63.5 re-
spectively. Also we observe that for small Pr with effect of temperature dependent
viscosity and thermal conductivity the momenturn and thermal boundary layer

thickness increase.
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4, CONCLUSIONS

The cffect of viscosity and thermal conductivily vanation paramctcr for
small Prandt] number Pr (=0.01, 0.1, 0.7 and 1.0) on the natural conveclion
boundary-laver flow aleng a uniformly heated vertical wavy snrfacc has been
studied numerically. New variables transform to complex pecmctry into a simple
shape were used a very efficient implicit-finmte-difference together with Keller
bex scheme to solve the non-similar boundary layer equations. From the present
investipations we may drawn the following conclusions:

1. The rate of heat (ransfer decreases and the surface shear stress increases
for increasing values of the viscosity-vanauon parameter. Tt also leads to cnhance
the amplitude of Mot Gr, ™ and Ce Gr'™ .

2. The rate of heat wransfer and the surface shear siress increase whet the
valucs of the thermal conducvity-variation paremeter incressed. Al this stage the
amplitude of NuyGr ™ and Ca Gr,'™ reduce slowly.

3. With the effect of viscosity and thermal conduciivity vamation parame-
ter the rate of fluid flow and the temperature disinbulion increase in the boundary
laycr significantly.

4. For small Prandil number Pr = 0.01 {(liquid metal) in presence of viscos-
ity and thcrmal conductivity variation parameter the velocily and temperature dis-
tribution highly increase in the boundary layer, consequenlly the surface rate of

heat transfer decreases.
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Table 3.1: The valuss of =#/(x,0} and /*{x,0) while £ = y = 5.0 for different val-

ucs of Prandll number Pr.

Pr=0.01 Pr=0.1 Pr=1.0
X =) fly el 0 -0 D
0.0 (.29833 187630 034336 185304 0.665993 1.57560
0.5 0.22702 312810 034157 3.08430 0.760581 2.59743
1.0 0.29736 201861 032918 1.94338 0.69103 1.33363
1.5 0.23064 310188 0345367 304521 0.74648 2.54459
2.0 0.29575 202056 032618 195484  0.70030 1.57907
2.5 023571 306400 034581 300626 (.73950 2.50812
30 {.29321 203080 032868  1.96802 0.70403 1.58470)
35 024120 304872 034400 298605 0.73683 248817
4.0 028993  2.03486 033101 197599  0.70564 1.60365
4.5 0.24672 303863 034256 297270 073532 2.47543
5.0 0.28620 203792 033271 198138  0.70667 1.60974
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Fig. 3.6: Strcamlines () @=0.0 (b} a=0.1(c) a=0.2{d) a= 0.3 while &
= 5.0, y= 5.0 and Pr=0.7 where Ay = 1.5
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Chapter 4

CONCLUSIONS

In this dissertalien, wec have invesligated the effect of temperature
dependent wviscosity (F) end thermal conductivity &(T) on sicady two-
dimensional natural convection (low (i) from an 1sothermal horizontal circular
cylinder (ii) along a verlical wavy surfacc with uniform surface remperature T,,.
Using the appropriate lransformations the basic equations arc transformed o non-
similar boundary-layer equations, which has been solved numecrically using a very
efficient implicit fimte-difference method known as Keller box scheme. Here we
have locuscd our atiention on the evolution of the surface shear stress in lerms of
local skin-friction, rate of heat transfer in temms of local Nussclt number,
streamlines, isotherms, velocily distdbution, temperature distribution, viscosily
distribution as well as thermal conductivity distribution for a selection of
parameter sets consisting of the viscosity parameter, thermal conductivity

parameter and amplitude of the wavy surface.

From Chapter 2:

The elfeet of temperature-dependent viscosity for large Pr on the natural
gonveclion boundary layer Mow from an isothermal horizontal circular cylinder
has been investigated theoretically. From the present investigation, the following
conclusions may be drawn:

1.The velocity distribution increases and the viscosity of the (luid decrease
at the middle of the surface {or increasing value of viscosity-variation parameter
&

2. Increased value of the viscosity- variation parameter £ leads to increase
in the local heal transler ratc and to decrease the local skin-friction.

3. It has been obscrved that the velocity distribution and skin-frictien
decrease as well as the viscosity distnbution and the rate of heat transfer increase

with the increase of Prandt]l number Pr.
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From Chapter 3:

The effect of viscosity and thermal conductivily variation parameter for
small Prandtl number Pr {(=0.01, 0.1, 0.7 and 1.0) on the natural conveciion
boundary-layer flow along a uniformly heated verlical wavy surface has been
studied numerically. From the present investigalion we may drawn the following
conclusions:

1. The surface rate of heat transfer decreases and the surface shear stress
increases for increasing values ol the viscosity-variation parameter. It also leads
to enhance the amplitude of Nu_;Gr{m and Cg Gry G

2. The rate of heat transfer and the surface shear stress increase whet the
values of the therma! conducvity-variation parameter increased. At this stage the
amplitude of Nu,Gr, " and Cg Gr, V¥4 reduce slowly.

3. Wilh the effect of viscosity and thermal conductivity varalien
parameter (he rate of fluid flow and the temperature distribution increase in the
boundary layer significantly.

4. For small Prandtl number Pr = 0.01 (liquid mctal} in presence of
viscosily and thermal conductivity variation parameter the velocity and
temperature distribution highly increase in the boundary layer, consequently the

surface rate of heat transfor decreases.
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