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Abstract

In this thesis, the combined effect of conduction and convection on magneto

hydrodynamic (MHD) boundary layer flow with viscous dissipation and joule heating

from a vertical flat plate has been investigated. By using the appropriate

transformations, the basil::equations are transformed to dimensionless boundary layer

equations which are solved numerically by using the finite difference method known

as Keller box method. The effects of the magnetic pararmter M, the dissipation

parameter N, !he Prandtl number Pr and the joule heating parameter J have been

examined on the flow field. The analysis has shown that the flow field is appreciably

influenced by the effects of conduction and convection. Similarity solutions of the

momentum and energy equations are derived by introducing the same transformations.

Herewe have focused our attention on the evolution of the skin friction coefficient, the

surface temperature distribution, velocity as well as temperature distribution for a

selection of parameters set consisling of magnetic parameter M, the dissipation

parameter N , the Prandtl number Pr and the joule heating parameter J. The

dimensionless skin friction coefficient, the surface temperature distribution, velocity as

well as temperature distribution over the whole boundary layer are shown graphiea1ly

for different values of the magnetie parameter M, the dissipation parameter IV, the

Prandtl number Pr and the joule heating parameterJ,
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Nomenclature

:Plate thickness

:Specific heat

: (T. -T..)fT .•
:Dimensionless stream function

:Acce1eration due to gravity

: Dimensionless temperature

:Applied magnetic field

:Referencc: length, vtl> f g'"
:Length of the plate

:Magnetic parameter

:Viscous dissipation parameter

:Joule heating parameter

:Coupling parameter

:Prandtl number

:Tempemture of the flow fluid

:Temperature at outside of the plate

:Solid temperature

:Temperature of the ambient fluid

:Velocity component in the x-direction

:Velocity component in the y-direction

: Stream wise co-ordinate

: Transverse co-ordinate
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Greek Symbols

: Co-efficient of thennal expansion

: Strt'am function

: Skin friction
: Dimensionless similarity variable

: ~nsity of the fluid inside the boundary laYeJ"

: Kinematic viscosity

: Viscosity of the fluid

: Dimensionless temperature

: Electrical conductivity

: Thermal conductivity

: Thennal conductivity of the ambient fluid

: Thermal conductivity of the ambient solid
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Fluid dynamics or hydrodynamics is that branch of science which is eOi'reCItieilwith

the study of the motion of fluids or that of bodies in «Intact with fluids .The state of

matter MUch is capable of flowing or of changing shape is called fluid. Fluids are

classified as liquids and gass~s.Gasses hav.: no definite volume and shape but liquids
have a definite volume but no shape. Density, volume, temperature, viscosity and

pressure are five characteristics of actual fluids. Viscosity is the property of a fluid

which gives rise to shearing stre:>s.A perfect fluid is frictionless and incompressible.

In the motion of such a perfect fluid, two contacting layers experience no tangential

forces (shearing stress) but act on each other with nonnal forces (pressures) only. A

perfect fluid offers no internal resistance to a change in shape. The motion of perfect

fluid is very far developed and supplies in many cases a satisfactory description of real

motions. On the other hand, in real fluids, th~ existence of inter molecular attractions

causes the fluid to adhere to a solid wall and this gives rise to shearing stress. The

inner layers of a real fluid transmit tangential and normal stresses. On the boundary

between a perfect fluid and a solid walt there exists a difference in relative tangential

velocities i,e there is slip. The existence of tangential (shearing) stresses and the

condition of no slip near solid walls constitute the essential differences between a

perfect arn1a real fluid. In fluid dynami~ the study of individual molecule is neilhet

necessary oor appropriate from the point of view of use of mathematical methods.

Hence we oonsider the macroscopic behavior of fluid by supposing the fluid to be

continuously distributed in a given space. This assumption is known as the continuum

hypothesis.

The bnmch of science which incorporates with the motion of a highly oonducting fluid

in presence of a magnetic field is called magneto hydrodynamics. The motion of the

conducting fluid across the magnetic field produces electric currents which change the

magnetic field. The effect of the magnetic field on these currents give rise to

mechanical forces which modify the fluid. If the current is parallel to the magnetic

field, it is possible to attain equilibrium in a conducting fluid .For then the magnetic

forces vanish and the equilibrium of the fluid is the same as in the absence of magnetic

1



fields. These types of magnetic fields are called force free. For poor conductive fluid,

electromagnetic forces which will be produced may be of the same order of magnitude

as the hydrodynamical and inertial fol'l:es. However by ionizing some gases, it is

possible to make them very highly conducting, the gas must be very hot at temperature

upwards of 5000" K or so for ionization. Such ionized gases are called plasmas. The

material within a star is plasma of very high conductivity and it exists within a strong

magnitude. MHD incorporated mainly on the study of severely incompressible fluid

but at present tenninology is applied also to the studies of ionized gases. Significant

applications have been reported such as the MHD generator, MHD flow meter, MHO

pump and MHO marine propulsion. Some other quite promising applications are in the

field of metallurgy such as MHO stirring of molten metal and magnetic-levitation

casting. A very useful proposed application which involves MHD is the lithium

cooling blanket in a nuclear fusion reactor. With the high temperature plasma

contained in the reactor by means of a toroidal magnetic field, liquid lithium flows in

channels (blankets) between the plasma and magnetic windings to absorb the therm.al

energy released by the fusion reaction. The proximity of the lithium channels

(blankets) to the field coils means that the flow will be acted upon by extremely strong

magnetic fields. Consequently, knowledge of fundamental MHD interactions is

necessary in order to determine pressure drops, heat transfer etc in channels or pipes

situated at different angles to a magnetic field. The laminar flow considered here is

also the limiting C3.«e fur turbulent flow at high Reynolds number (even }O6 or higher)

where high magnetic frelds can dump oul turbulent fluctuations and luminaries the

flow. Magneto hydrodynamic was originally applied to astrophysical and goopbysical

problems where it is still important bul more recently to the problem of fusion power

where the application is the creation and containment of hot plasmas by

electromagnetic forces since material walls would be destroyed. The primary

geophysical problem is planetary magnetism, produced by currents deep in the planet,

a problem that has not been solved to any degree of satisfaction.

On heat transfer studies, conduction, transfer of heat or electricity through a substance,

results from a dif'feRnce in temperatuu ~en different parts of the substance. Since

heat is energy associated with the motions of the particles, it is transferred by such

motions, shifting from regions of higher temperature to regions of lower temperature.

The rate of heat flow between lwo regions is proportional 10 the temperature difference

2



between them and the heat conductivity of the substancc. In solids, the molecule

themselves are bound and contribute 10conduction of heat mainly by vibrating against

neighboring molecules. Metals which have a high free electron density are good

conductors of heat, whnc nonmetals, such as wood or glass, have few free electrons

and don not conduct as well. Liquids and gasses have their molecules farther apart and

are generally poor conductors of heat. In liquids and gasses. cunent coDllists not only

in the flow of electrons but also in that of ions. A highly ionized liquid solution, e.g.,

salt water, is a good conductor. Gasses at high temperatures tend 10 become ionized

and thus become good conductors.

Only in the presence of a fluid medium, the convection is possible. If a fluid flows in

!be interior of a channel or over a solid body while temperatures of the fluid and the

solid surface are different, heat between the fluid and the solid surface takes place as

an ontcome of the motion of fluid comparative 10 the surface; this type of mechanism

of heat transfer is tcnned as convection. There are two basic procedures of the

convective sort of heat transfer. Free convection is convection in which motion of the

fluid arises solely due to temperature differences existing within the fluid. The basic

premise behind free convection is that heated fluid becomes more buoyant and rises,

while cooler fluid sinks. Free convection occurs in any liquid or gas which expands or

contracts in response to change in temperatures in an acceleration field such as gravity.

In natural convection procedures are governed essentially by three features namely the

body force, the temperature difference in the flow field and the fluid density

discrepancy with temperature. In the way of life, free convection is "themost important

style of heat transfer from pipes, transmission lines, refrigerating coils, burning

radiators and various realistic situatioDll. When with the help of a pump or a fan the

fluid motion is uooaturally stimulated that forces the fluid flow over the surface, the

heat transfer is termed forced convection. When a person blows on their food to cool

it, he/she is using forced convection. Though in a lot of cases of sensible attention,

both procedures are significant and heat transfer is by mixed convection in which

neither approach is really most important. The manipulation of natural convection of

the heat transfer can be deserted in the case of Reynolds number and Grashof number.

The natural convection should be the governing aspect for immense Gr3shof number

and miniature Reynolds number. We observe in nature some situations where forced

and free convection is of analogous order. The phenomena may be termed as the

3
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mixed or combined convection flows. The main difference between free and forced

convection lies in the nature of the fluid generation. 1n forced convection the

externally imposed flow is generally known, whereas in free convection it results from

an interaction between the density difference and the gravitational field and is

therefore invariably linked with and dt:pend on the temperature field.

It is evident that the formation of boundary layer over a surface is due to the viscous

nature of the fluid flowing over the surface. The energy equation for two dimensional

""boundary layer includes the tennspv( f)y/' which accounts for the heat generation

due to fluid friction. In order to explain the effect of viscous dissipation, we shall fIrSt

take a grossly simplified view that the compressibility effect may be neglected and the

properties sm:h as viscosity, thermal condnctivity and specific heat are constant and

there consider the flow between parallel flat plates on of which is stationary and the

other moving in its own plane with a constant velocity U.,.

In electronics and in physics more broadly, joule heating or oinnic heating refers 10 the

increase in temperature of a conductor as a result of resistance to an electric.al current

flowing though it. At an atomic level, joule heating is the result of moving electrons

colliding with atoms in a conductor, whereupon momentwn is transferred to the atom,

increasing its kinetic energy. When similar collisions cause a permanent structural

change, rather than an elastic response, the result is known as electro migration.

The problems of free convection boundary layer flow over or on bodies of various

shapes were discussed by many mathematicians, versed engineers and researchers.

Amongst them are Merkin and Mahmood [I], Hossain et al. [2], Yao [3J, Nazar et al.

[4,5], Hwmg and Chen [6]. The problem of free convection boundary layer on a

vertical plate with prescribed surface heat flux investigated by Merkin and Mahmood

[1]. Hossain et al. [2] also discussed the same problems but with the temperature

dependent viscosity and tllermal conductivity. Yao [3] bave studied the problem of

natural convection flow along a vertical wavy surface. Nazar et at. [4,5] consider the

free convection boundary layer on an isothermal sphere and on an isothermal

1u:»izonta.lcircular cylinder. The effect of laminar free convection from a sphere with

blowing and suction studied by Huang and Chen [6]. The interaction of the magnetic •

field and the moving electric charge carried by the flowing fluid induces a force which

4
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tends to oppose the fluid motion. Near the leading edge, the velocity is very small so

that the magnetie force whieh is proportional to the magnitude of the longitudinal

veloeity and acts in the opposite direction is also very small. Consequently the effect

of the magnetie field on the boundary layer is el\erterl only through induced forces

with in the boundary layer itself, with no additional influences arising from the free

stream pressure gradient. The effect of magnetic field on free convection heat transfer

has been studied by Sparrow and Cess [7J. Raptis and Kafousius [8] have investigated

the problem of magneto hydrodynamie free eonvection flow and mass transfer through

a porous medium bounded by an infinite vertical porous plate with constant heat flUK.

Kuiken [9] studied the problem of magneto hydrodynamic free convection in a strong

cross field. Elbashbeshy [10] discussed the effect ofiree convection flow with variable

viscosity and thcnna1 diffusivity along a vertical plate in the presence of magnetic

field. MHO free convection flow of visco-elastic fluid past an infinite porous plate was

investigated by Chowdhury and Islam [1\]. Hossain [12] introduce the viscous and

joule healing effects on MHO free convection flow with variable plate temperature.

Very recently Ahmad and Zaidi [13] investigated the magnetic effect on over back

convection through a Vertical stratum. Hossain et al. [14] also have investigated the

heat trnnsfer response of MHO free convection flow along a vertical plate to surface

temperature oscillation. Hossain et aI. [15,16] discussed the both forced and free

conveetion boundary layer flow of an electrically conducting fluid in presence of

magnetie field. Moreover the effect of conjugate natural convection flow on or from

various heated shapes studied by Bynnycky and Kimura [17], Yu and Lin [18], Merkin

and Pop [19] and Hossain et aI. [20]. Hossain and Pop [21] investigated the magneto

-hydrodynamic boundary layer flow and heat transfer from a continuous moving wavy

surface while the problem of free eonvection flow from wavy vertical surface in

presence of a transverse magnetic field was studied by Alarn et al. [22]. On the other

hand Rees and Pop [23.25J discussed the free convection boundary layer induced by

vertical and horizontal surf~ exhibiting small amplitude waves embedded in porous

mediwn. Natural convection heat and mass transfer near a vertical wavy surface with

constant wall temperature and concentration in a porous mediwn wa.~ studied by

Cheng [26]. Kafousius and Williams [27] and Kafousius et al. [28] have studied the

effects of variable viscosity on the free and mixed convection flow from a vertical flat

plate in the region near the leading edge. The combined forced and free convection in

boundary layer flow of a micropolar fluid above a horizontal plate was investigated by

,



Hassanien [29]. Similarity solutions are acquired in this work for the case of wall

temperature which is invenlely proportional to the square root of the distance from the

leading edge. The influence of the magnetic field on the laminar free convection of

liquid metals was investigated by Cramer [30} above a vertical flat plate and between

two parallel plates. For liquid metals he got an analytical solution. Shiralkar and Tein

[31}studied rnunerically natural convection in an enclosure with temperature gradients

imposed in botl:1the horizontal and vertical direction simuitancnusly. The coupling of

conduction with laminar natural convection along a flat plate was investigated by

Pozzi and Lupo [32J. Miyam<rto et aI. [33] discussed the effect of axial heat

conduction in a vertical flat plate on free oonvection heat transfer. Effect of oonduction

and convection on magneto hydrodynamic flow from a vertical flat plate was studied

by Mamun [34}. Taber [35}introduced the magneto hydrodynamic natural convection

flow on a sphere. The governing partial differential equations are reduced to non.

similar partial differential forms by adopting appropriate transformations. The

transfonned boundary layer equations are solved nwnerically by implicit finite

difference method together with the Keller box method by Keller [36} and later by

Cebcci and Bradshaw [37}.

In chapter - lavailable infonnation regarding MHO heat and mass tranSfer flows are

studied from both analytical and numerical point of view. In chapter.2 we have

considered a steady laminar MHO free convective boundary layer flow with viscous

dissipation and joule heating from a vertical flat plate. In chapter.3 a two dimensional

laminar free convection flow with viscous dissipation -&oma vertical flat plate is

con;;idered. The above two problems have been solved numerically by using a most

practical. an efficient and accurate solution method, known as implicit finite difference

method together with Keller box scheme.

•
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Combined Effect of Conduction and Convection on Magneto
Hydrodynamic Flow with Viscous Dissipation and Joule Heating

From a Vertical Flat Plate

2.1 Introduction:

In the present chapter we shall describe the effect of conduction and convection on

magneto hydrodynamic flow with viscous dissipation and joule heating in the entire

region from up stream 1lI down stream of a viscous incompressible and electrically

conducting fluid from a vertical flat plate. The governing boundary layer equations are

trarulfonned into a non dimensional form and the resulting non linear system of partial

differential equations are reduced to local non similarity equations which are solved

numerically by very efficient implicit finite difference mrn:hod.llIgether with Keller

box method. Numerical results are presented by skin friction coefficient, surface

temperature distribution, velocity and temperature distribution for a wide range of

magnetic parameter M = (0.2, 0.5, 0.8, 1.0). The Prandtl number Pris to be taken 0.05,

0.73, 1.0 which correspond 1lI sodiwn, air, electrolyte oolutions such as salt water. In
the following section detailed derivations of the governing equations for the flow and

heat tran!lfer and the method of solutions along with the results and discussions are

presented. All the investigations for the fluid with low Prandtl number appropriates for

the liquid metals are carried out.

2.2 Governing equations of the flow:
The mathematical statement of the basic conservation laws of mllSs, momentmn and

energy for the steady viscous incompressible and electrically conducting fluid with

joule heating elTect are given by

V.1f. "" 0

p~.V'.k:.Vp+pV11J.+F+,Lx!1

JX~~.V')r:kep V"T +u(,lxlD

,

(2.1)

(2.2)

(2.3)

•



Where q = (11,1'),U and I' are the velocity oomponents along the x and y axes

respectively, F is the body fon:e per unit volume which is defined as -pg, the terms J

and B are respectively the current density and magnetic induction vector and the term

l. x l!. is the force on the fluid per unit volume produced by the interaction of current
and magnetic field in the absence of excess charges. Tis the temperature of the fluid in

the boundary layer, g is the acceleration due to gravity, k is the thermal conductivity

and Cp is the specific heat at constant pressure and /' is the viswsity ofilie fluid. Here

B = /" H", /" being the magnetic permeability of the fluid, H~ is the applied magnetic

field and OJ is the vector differential operator and is defined by

, .
Where ix and the j, are the unit vector along x and y axes respectively.

When the external electric field ill zero and the induced electric field is negligible, the

current density is related to the velocity by Ohm's law as follows

(2.4)

Where (f denotes the electric conductivity of the fluid. Next under the conduction that

the magnetic Reynold's number ill small, induced magnetic field is negligible

compared with applied field. This condition is usually well satisfied in terrestrial

applications, especially so in (low velocity) free convection flows. So we can write

(2.5)

Bringing together equations (2.4) and (2.5) the fOl\:e per unit volume l. x !1 acting
along the x axis takes the form:

(2.6)

Under the Boussinesq approximation, the variation of p is taken into only in the term t:.
in equation (2.2) and the variation of p in the inertia term is neglected. We then can

write:

p=p.[I-p(T-T.)] (2.7)

Where p", and Too are the density and temperature fespeciively outside the boundary

layer, fJ is the oo-efficienl of thermal expansion.

,
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We consider the steady two dimensional laminar free convection boundary layer flow

of a viscous incompressible and electrically conducting fluid along a side of a vertical

fiat plate of thickness 'b' insulated on the edges with temperature Tl>maintained on the

oth~ side. The flow configuration and the coordinllteli system are shown in figure 2.

T.

1u_
=fuo<

• ,
HoL.T~T.

Co_.- T(lI,O)

,
Flg. 2; Phplcal model.nd coonttnne eysteR1S

Using the equations (2.4) to (2.6) with respect to our above considerations into the

basic equations (2.1) - (2.3), the steady two dimensional laminar free convection

boundary layer flow ofl! visrous incompressible and electrically conducting fluid with

viscosity and also constant !henna.! conductivity past a vertical flat plate lake the

following form:

"" '"-+-=0
it< iJy

(2.8)

au au. iJ1u"-H-=' -+gfJ(T-ox oy ilyl
(2.9)

The appropriate boundary conditions 10 be satisfied by the above equations are

u ~ (I, v = (laly = U
u_ 0,T_ To.asy_'J>

(2.10)

(2.11a)
(2.l1b)

The temperature and the heat flux are required continUmlS at the interface for the

coupled conditions and at the interface we must have

,
•
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(2.12)

ClilJpter 2

k, aT", =' k (aT)
kj oy j ~ .-

Where k. and kr are the thermal conductivity of the 3Qlid and the fluid respectively.

The temperature T•• in the solid is given by

T",='T(x,o)-v. -T(x,o)~ (2.13)

Where T(x,o) is the unknown temperature at the interface to be detennined from the

solutions of the equations. We observed that the equations (2.8) - (2.10) together with

the boundary conditions (2.11) - (2.13) are nQIl.linear partial differential equations. In

the following sections the solutions methods of lhese equations arc discussed in

details.

2.3 Tral\8fonnatlon of the governing equations

Equations (2.8) - (2.13) may now be nondimensionalized by using the following

dimensionless dependent and independent variables:

,
, , 'TT '-x-y-v-~v--- v 1_)

x ••- ,y ""-Ld',u = -d1 U, V = L d' v, T,_i =O,L= ---y ,d =PV. -T.
L L •• jg

(2.14)

As the problem of natural convection, its parabolic character has no characteristic

length; L has been defined in terms of v and g which is the intrins.ic properties of the

system. 'The reference length along the 'y' direction has been modified by a fuclor d.114

in order to eliminate this quantity from the dimensionless equations and the boundary

conditions.

The magneto hydrodynamic field in the fluid is governed by the boundary layer

equations, which is the nondimensiona1 form obtained by introducing the

dimensionless variables described in (2.14) may be written as

1m iN-+-~O
ih 0/

10

(2.15)

(2.16)

(2.17)



Where N -= L"c
p

r:'d_T. )' the dimensionless viscous dissipation parameter
,

uH tOO2
J= G; _ T ), the dimensionless joule heating parameter

PCp' •
r1H "L'

M = ~/f" ,the dimensionless magnetic parameter

,<
Pr =_P ,the Prandtl num!)t,r

"The corresponding boundary conditions (2.11) - (2.13) take the following form:

ao
u=v=a,O-I=pq. at Y=Q (2.18a)

u- a,v...•a as Y ...•<fI (2.18b)

Where p is the conjugate conduction parameter given by p = tt, /k,1P; L)d/f'
Here the coupling parameter 'p' gOVernJl the described problem. The order of

magnitude of'p' depends actually on (bIL), (kJk,) and ~!4being the order of unity. The

tenn (bIL) attains values much greater than one because of L being small. In case of

air, (kllk,)becomes very small when the vertical plate is highly conductive i.e. k.» I

different but not always a small such as glass. Therefore in different cases 'p' is
different but not always a small number. In the present investigation we have

conmderedp = I which is ac<,;eptedfor (bIL) of O(k,Ik,).

To solve the equatiorm (2.15) - (2.17) subject to the boundary conditions (2.18), the

following trnnsfonnations are introduced for the flow region starting from up stream to

down stream;

Here 1] is the dimenmonless similarity variable and 'I' is the stream function which

satisfies the equation of continuity and u =W' v = - 0;; and h{1],x) is the

dimensionless temperature. Substituting equation (2.19) into equations (2.16) and

(2.17) we get the following transformed nondimcnsional equations

J" + 16+15x ff" - 6+ 5x J l -MX"(J+X)'IIO f' +h= x
2({1+x) IdJ+x)

!I

(2.20)

•••
''f''



,iJh 0/"'x (/ --h-)ox ox
In the above equations the primes denote differentiation with respect to 1].

The boundary ~onditions (2.18) then take the foUowing form:

/(x,o)= I'(x,o)= o,h' (x,o)= -(1+ xyi<+xl/'(1+ x)II'"h(x,())

/' (x,'" ) '" 0,h ' (x,"') '" 0

2." Method of Solution

(2.21)

} (2.22)

To get the solutions of the paraboli~ differential equations (2.20) and (2.21) along with

the boundary condition (2.22), we shall employ a most practical, an efficient and

acCUl'ate!IIllution technique, known as implicit finite differen~e method together with

Keller- box elimination te~hnique.

To apply the aforementioned method, we first convert the equations (2.20) and (2.21)

and their boundary ~onditioIlll into the system of first order equations. For this reason

we introduce new dependent variables u(,;,'7), v(';,IJ)and P(.;,'7) !Ill that the

transfonned momentum and energy equations can be written as

/"'U

, ,
v + p,fv - P2U

U'''''V

ou of
- pu +g"'{(u--v-)

• o{ o{

I , og Of
P, P +ptfp- p,ug+ p,vJ +P.u1 =?(u O{.P 0')

where .; ""x, h ""g and

16+5x _ 6+5x ~ I ~ Nx~ Jx'/'(I+x)I/IO-
20(1+x) P" 10(1+X)-P2"5(l+x) p" -p" -Po

p, '" MX.%~ + xfY,o

and the boundary conditions (2.20) are

12

(2.23)

(2.24)

(2.25)

•



(2.26)
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f(~ ,0)",,0, u(~,O)""O,p(~,O)",,-(1 + ~)ll. +~IIS (I +f)JIlO g(~,D)

u(q ,<o)=O,g(~,<o) ",,0

We now consider the net rectangle on the (1;.1']) plane shown in the figure (2.1 ) and

denote the net points by

~o""O, ~"=~n-l+k", 11""1,2, N

110=0, IIj =lIj_l+hj' j=1,2, J

, P

'li-lll

i
-"- - Q---

I

P,

i
ibj

1;""'

Figure 1.1 : Net rectangle for difference approximations for the Box scheme.

Here 'n' and 'j' are just sequence of numbers on the (I; , '1 ) plane, k" and hJ are the

variable mesh widths.

We approximate the quantities f, u, v, P at the points (1;",Tti) of the net by f"J ' uTI), v"j.

p"j which we call net function. We also employ the notation g"j for the quantities

midway between net points shown in figure (2.1 ) and for any net function as

q._112 =!..(q" +~"-J)
2

I
T/j-112=2(t7j -t7j_J)

...-1/2 I(" "-I)g, =-g +g-, 2 J J

"

(2.27)

(2.28)

(2.29)
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" '("")g)_1/2 ='2 gj +.t:'j_1

The finite difference approximations according to Box method to the three first order

ordinary differential equations (2.23) are written for the mid point (~n. T1HtV of the

segment PIP2 shown in the figure (2.1 ) and the finite difference approximations to the

two first order differen1ial equations (2.24) and (2.25) are written for the mid point (.;n-

112,'1i'I/1.) of the rectangle PjP2PJP 4. This procedure yields.

(2.30)

" "
•-'(f" f")" Uj_1+Uj
j ) ~ )-j =U)_112 = 2 (2.31)

(2.32)

(2.33)

, v" v" v"-J ~V"-I
_( ) ~ rl j )_1) ( ,,)"-1!2 ( ')"_112
2 • + h + Pu' )_1/2 ~ P2U j_]/2-, ,

• "-I+ n-JI2_J<"-112( "_I/2l1j_112-1I)_112
g)-1I2 -"j_lll 11)_112 k

"

"_112
Vj-li2

L •••.'/2
PPlj'1/2

f" f"-')_112 ~ rill)

'.
(234)

(2.35)

,<" {_ ,\0-'11 (_ l\o-1/1
(p,ug), Ii' +V'lV 1,_\'2+l,P,u Ij_~'

f' f"'
jll) I';')

"

• " .1 .1
_'_(p, P,,+P, PJ,)+( ,)'111
2P h, h P,iP}III

+" j

• ••
_)<. III ( "Ill g}]I) g, J;2
-", '" U,I/2 k

•
Now from the equation (2.34) we get

14



h" (' ') h" ('-' .-') ( J' '"')' ()'-' (i:..)~'=:-, Vj-Vr, + 1 Vj -V_,.., + P, r"ZV' I-"Z+ P, }_I/lV' j-'IZ

( )' (')' (),., (').-l • .~112 I \., [.1_- PI i-lll U ,_l."- Pl j_112U ,_tll+g,_JII+g}_lIl - VJ'~_'i2I"j.'i2

""a. ku' );-1" -( u );_112(U )';:::Ilj

!( )' (),., (')'" (..)' 'r'" 1u .~~'Il ~ j_LI' - ~_, }_112- J' ,-Ill +Vj_1Il j-II'

+a. - vI_",lj_", +(/v),_'ll

hI ft'-Vl
W erea. = k• .",-lIl

c!UtpUr z

=:- h;' (v; -V;~l)+kp, )~-lIl+a. }t/v);-'J2 -/<P, );_lIl+a. }(U2)~_L"
+g;_1i 2+a. (V;::"'l /;'_lIl - V;--l12 /j:~;l)"{vJ r,. 'IZ + 0I.,.0~-'/2
{(,,)~,(')'"I ( ),.,'"'J'"",a. J' J-IiZ- U I-Ul - P, rl/lV' r'12

( )'" (')'" h" (._1 '-') ( ),., ( ),.,+ PI j_lI2 U ,~l" -, v, -v1-l - P, ,-]I' U ,_lI2

,.,
-g,_lIl

~ h,-' (v; -v;_, )+kPL );_'12+u.} (ft)~_1I' -{<Pl );_'il +u. J<ul);_lIl
+g;-lIl +a, ( V;:::I' 1}:'12 - V;_'IZI,":,;l)- (p, t.112 + an jp }j.'/2
=- L:_, '2 +a. {{fv )';:::1' _{UZ );:::,2}

(2.36)

Again from the equation (2.35) we get

" .- -,.
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I h-' (" ") J, )"-'" }(fp)" ")"-'" j()"P J P1-PI_l +fPl l_lll+a• 1-lll-fP) i_1Il+a. ug )-112
,

+ (PI )~-112(Vl ):-112 + (P6~~112(U2 i-112

(• ,-) n_l, 'fO-' 0~1 f" )
+ao ul_112g/~112-uI_1/2grI12-PI_l!~ )-112+PrI12 J-112

""- M;::~'l+ao {cffi)~=:'2-(Ug);:,J
he Mn-l 1 h~l(0_1 n-l) ( )n-lI1 (fp)"-' ( )0-112 ( VW re, ;-112"" p ] PJ -PJ-l + PI I-l/l ;_112- Pl J-112 ug",ug.

,

1,_,(" ")+1, )"-'" }(~)' I, )-"'+ i( )"=>p J Pi - Prl ~I J-I" +a. )1' J~JI'-~p,rUl a. ug J-"~
,

+ (p,)~_II'(V' h-1I2+ (p.h-I" (u I h-112
(
• .-l o-l 0 • f'-' ,-I f" )_TO-I

+a. Ul_1I2~j_1I2-UJ_11,gJ_lIl-Pj_1I2 j-tl2+PJ~lI~ }_U2 - rUl

w1lere,Tj":';l = - M;::,I,! +a. {(fPr;::" -(ug);::,,}
The corresponding boundary conditions (2.26) become

K=0 u;=O p;=_(I+~)1I4+~1I1(1+.;f2<lg; }

(237)

(2.38)

(2.39)

If we assume ItI,U~I,v;-l,g;-t ,p;-l to be known for O:S;j:!:J , equations (2.27)

to (2.35) and (2.36) - (2.37") form 8 system of 5J + 5 non lineal' equations for the

oolutions of the 5J + 5 unknowns (fjn, u;, vj ,g; ,P; ) ,j = 0,1,2 ... J. These non

linear systems of algebrie equations are to be linearized by Newton's Quassy

linearization method. We define the iterates [fj, uj, vj,gj,Pj ], i = 0, 1, 2 ... N

with initial values equal those at the previous x-station (which is usually the best

initial available). For the higher iterates we set

I
j
('+l) == ~(I)+0 f}1\

(i+!) -u'" + "uri)uJ - J U j

(i+l) -v'" + "",,(j)Vj _ j U"j

gtl)=g~J)+ogY)

p;,i+l) =p)/) +0 pYi

16

(2.40)

(2.41)

(2.42)

(2.43)
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Now by substituting the right hand sides of the above equations in place of.0" ,U;,
v; and g; in eqUlltions (2.31) - (2.33) and in eqUlltions (2.36) - (2.37) dropping the

terms that are quadratic in <5f; ,8 u~.8v~.8 p~.This procedure yields the following

linear system of algebraic equations:

fm +8fll) _fll) -8f(l) '" h; {u(l) +8u(l) +u(f) +8u(» 1
} J j-I }-12} } N }-I

,
"fil) _ 8fi'l- -l.. (8 U,I)+ 8 u(;) )=(, ) .

} }-12} }_I I,

Wh () f'" f'" , '"I'1e 1j j= j_l- j + }u}_lil

(2.44)

(2.45 )

(2.47)

(2.46)h
ogO) _ 5g(') _ 2.. (5p(J) + 5p'" )=(, ).
} ;-121 j-I 'J

Wlrere () (I) (,) h ",'s j~gj_I-gj + ,P}-li2

,-'(vll) 0 (I) (,) J (') {(p)' }{(ft)'" 0(1')'" Ij ) + vj -vJ_,- vr' + 'r"2 +a, j_lI2+ J-'."

{(p )' 1(( ')V) o( ')'" 1 0) J iJ)- l rm+a. U 1_'12+ 1/ j_ln +gl-112+ &,_112

(1m "'/"')"' ( \.) ~ (I) )/"' N'-'+a, J-II' +" j_'" Vj_lI, -a, V1_l'1+oVI_lIl 1_"'"'" J-!!l

,_'( ('I ~ I') (I) ~ (") {()' } il()' )("" ~')=> J VJ +"""j -V.r-J-OV,_, + l1,_lil+a• -2 p, /"t/l+a, "Uj+"I1/"1

{(ft)(Il + .!..([(I)15(,)") + ylilJ(/)(') +[") 5(,)(') +V(I) J(fl'" }
r"1 2 j ) j } j-' }_l }_l ;-1

_(( p)' +a 1{(.'){I) +u!'lJ(.)(J) +1/(1)8(.)'" }+gj') +.!(og(') +Jg"')
, J-'12' ,_'/1 J J rl ]-1 j-II' 2 J j-'

{
,-, ([(.) 1 (15".;.) ~["') ({I) '" (I) )/'-,} _ R'-'+a. VJ_1'1 1-112+"2 1J +0 I-I - VI_Iil+"Vj_lIl rill - ]-11'

=:'(Sl) J <5 vjJ) +(S2); <5V~~1+(SJ)J <5f}')+(S4)} <5f}~i+(3$\ <5 u~1)

+(S6) j 8 U}~I+(S1) j <5gj'l +(St)} 8 g;~l+(S9)} .0+eSl~)1.0=('2)}
where'('l) j = R;~112-{h7'evj') -V;?,)+«A);_lI2 +a")(fr);'~lll}
( )' X')'" (.-i') 0_' .-.-1 (.) '"+ Po }_lll+a, U rll2-a, !;_lnVrlll-]i_lIlV,_", -g;_112

Thus the coefficient of momentmn equation is

17
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(S7) J =0.5
(s.) j =0.5

(s9») =0
(S1O) j =0

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

Here the coefficients (59) j and(slO»)' which is :r..emin this case, are included here for
the 8enerality.
Similatly by using the ClIJuations(2.39) - (2.43) we get the equation (2.38) in the

following form:

(t')1 op? +(t,),o p;~!+(t,),o f}i) +(I.)J01;.1 + (1')/ouj')

+(1,)IOU;~,+ (I,)J ovj') +(t,)loVJ'~j+(I,)jOgj') +(lw) J °gj~,'"(~,)J
wh () -T"-I -..!..h-'( (,)~ (,) (PI);_,n+a.(,;..),,,

ere, " I l-lll '" I PI Pj-l 2 Vi-' ;-'12

(P,),-112 +a. (,) ()' (",)'" ()" (')'"+ 2 (ug)rll2 - P, ;-1/2 ;-In - P. J-\" U l-lI2

( ('I 0-1 11:-! 1') (,) 1..-1 .-, f'" )
-0. UI_ld?/_II' - 1-1"gl-1I2 - PI_lI2 }_II' +P,_Ill J-1I2

Again the coefficient of energy equation is

() I ,-I (p,)~_lIZ+a. 1(1) 1 f"', -- +-----. --a!/-pl 2 '2,;-'11,

() I, I (p');_J'2+a• f('I_.!. I""
t'J=-P,)-+ 2 '2a'J-"'

() (P,);_", +a. (t) I ._!
t'l- 2 P, +2"a,Prll'

(, ) _ (PI)~-ll'+a. (i) +.!.a _I
.)- 2 PI-I 2 .Pj_lil

18

(2.58)

(2.59)

(2.60)

(2.61)

(2-62)



) (PJ);~JI2+U. ('I (p \" , I ._1
(t, J = 2 go + _',-1.1'"' + "2a• grIll

(t.) J = (p,);_~2+U. g;~,+(P.r,-II1-"~-1+~a.g;::~12

(I,) j = (p,Y,-112v~

Cliapter z

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

The boundary conditions (2.38) become
010' =0, OU~=0, op~=0~(I+;f~+qll$(1+01120gg]

O"~=O,og~=O
Which just express the requirement for the boundary conditions to remain during the
iteration process.
Now the system of linear equations (2.44) - (2.47), (2.58) together with the boundary

conditions (2.69) can written in a block matrix from a coefficient matrix, which are

solved by modified 'Keller Box' methods especially introduced by Keller[36]. Later,

this method has been lL'ledmost efficiently by Cebeci and Bradshaw [37] and recently

by HossainJl2J.Hossain et al .[15],taking the initial iteration to be given by convergent

solution at ~= l;j-t. Results are shown in graphical form by using the numerical values

obtained from the above technique. The solutions of the above equations (2.20) and

(2.21) together with the boundary conditions (2.22) enable us to calculate the skin

mction t and the rate of heat transfer e at the surface in the boundary layer from the

foUowing relations:

T = J!!5 (1+Xj"5/20f "(O,x)
e =XI!5 (l +xyl!5 h(O,x)

(2.70)

(2.71)

2.5 Result8 and Discussion:

Equations (2.20) and (2.21) subject to the boundary conditions (2.22) are solved

numerically by using a very efficient implicit finite difference method together with

Keller-box method. Numerical soll.ltions are obtained for the fluid having Prandtl

number Pr= (0.05, 0.7, }.O, 1.74, 5.4, 4.24, 2.55) and fot wide tllllge of values of the

19
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magnetic parameter M = (0.2,0.5,0.8,1.0), disgipatioll parameter N = (0.1, 0.3, 0.5, 0.9,

0.02,0.04,0.08,0.2) and the joule heating parameter J = (0.2, 0.5, 0.8, 1.0, 0.02, 0.05,
0.08,0.1). If we know the valueg of the functions f(TJ,x). h('l,x) and their derivatives

for different values of the Prandtl number Pr, the magnetic parameter M, the viSCOUll

dissipation parameter N and the joule heating parameter J. We may calculate the

numerical values of the surface temperature 9(0,x) and the velocity gradient fl(O,x) at

thc surface thai: are important from the physical point ofview. Numerical values of the

surfiu;e temperature 6(O,x) and the velocity gradient 1\0,x) are ilIustrnt<:d in fig. 2.2

and fig. 2.3 respectively again!)! the axial distance x in th", interval [0,30J for different

values of the viSlXlU3dissipation parameter N = (0.02, 0.04, 0.08, 0.2) for the fluid

having Prandtl number Pr = 0.73 and the magnetic parameter M = 0.5 and the joule

heating parameter J = 0.05. In fig. 2.4 and 2.5, thc share i!tress coeffichmt fI(O,x) and

the surface temperature 6(O,x) are depicted graphically for different values of Prandtl

number Pr = (0.7, 1.0, 1.74, 5.4, 4.24, 2.55) when the value of the magnetic parameter

M = 0.5, dissipation parameter N = 0.05 and joule heating parameter J = 0.05. In fig.
2.6 and 2.7, the velocity gradient fI(O,x) and the surface tempcratW"e 9(0,x) are shown

graphically for differen1 values of magnetic parameter M = (0.2, 0.5, 0.8, 1.0) when the

value ofPrandt1 number Pr = 0.73, dissipation parameter N = 0.5 and the joule heating

parameter J = 0.05. Fig. 3.8 lll1d3.9 shows the effect of joule heating parameter J =

(0.02,0.05,0.08,0.10) for Prandtl number Pr = 0.73, dissipation parameter N = 0.05

and for the magnetic parameter M = 0.05 on the gkin friction and the surface

temperature distribution. Fig. 2.2 shows that increase in the value of the dissipation

parameter N leads to increase of the value of the skin friction coefftcicnt fl(O,x). Again

from fig. 2.3 it can be observed that the increase of the viscous dissipation parameter N

leads to increase of the surface temparture 6(O,x). From fig. 2.4, it is observed that the

share stress coefficient 1/(0,x) decreasell monotonically with the increase oflbe Prandtl

mnnber Pro = (0.7, 1,0, 1.74) and from !he fig. 2.5, the same result ig observed on the

surface temperature due to increase of the Prandtl number Pr.

Fwther from fig. 2.6 it ill clear that the velocity gradient 1/(0,x.) decreases with the

increasing value of the magnetic parameter M "" (0.2, 0.5, 0.8, 1.0) when Prandtl

number PT"" 0.73, dissipation parameter N = 0.5 and the joule heating parameter J =

0.005 and from fig. 2.7 the game result i:olobtained on the surface temper~

distribution due to increase of magnetic parameter. From fig. 2.8 we observe that the

20



skin friction coefficient fI(o,x) im:reases with the increase of joule heating parameter J

= (0.02, 0.05, 0.08, 0.10) and fium fig. 2.9 the same result is obserwd on the surface

temperature distribution due 10~rease of the joule heating parameter J. Fig. 2.10 and

Fig. 2.11 deul with the effect of the viscous dissipation parameter N = (0.1, 0.3, 0.5,

0.9) when Prandtl number Pr = 0.73. magnetic parameter M'" 0.5 and the joule heating

parameter J= 0.05 on the velocity prome (11,x) and the temperature profile 9(11,x).Fig.

2.12 illustrated graphically the velocity profile for different vulues of the Prandtl

nwnber Pr = (0.05, 0.70, 1.0) while the magnetic parameter M = 0.5, dissipation

parameter N = 0.05 and the joule heating parameter J = 0.05, corresponding

distribution of the temperature profile {l('l,x) is shown in fig. 2.13. Fig. 2.14 depicts the

velocity profile for diffe.tent vulues of the magnetic parameter M = (0.2, 0.5, 0.8,1.0)

when PrandtI number Pr = 0.73, dissipation parameter N = 1.0 and the joule heating

parameter J = 0.05 and the oorresponding temperature distribution 6{'l,x) is shown in

fig. 2.15.

In fig. 2.16 and fig. 2.17 we have shown the effect of the joule heating parameter J =

(0.2, 0.5, 0.8, 1.0) for Prandtl number Pr = 0.73, dissipation parameter N = 0.05 and

magnetic parameter M = 0.05 on the velocity profile (('l,x) and temperature profile

ll('l,x). From fig. 2.10 we see that the velocity profile (('l,x) increases slowly with the

increase of the dissipation parameter N and in fig. 2.11 , small increment is shown on

the temperature profile 9(T),x)for increasing values ofN. From fig. 2.12, it is revealed

lhat if the Prandtl number Pr increases the velocity of the fluid decreases. On the other

hand, from fig. 2.13, we Sl:ethat the smne result is hold for temperature profile within

the boundary layer due to increase of the Prandt! number Pro From fig. 2.14, we

observe that the velocity profile decreases monotonically with the increase of the

magnetic parameter M while the of the Prandtl number Pr , dissipation parameter N

and tbe joule heating parameter J are respectively 0.73, 1.0 and 0.05. Opposite result is

shown in fig. 2.15 for temperature distribution for the same values of the magnetic

parameter M. Again in fig. 2.16, we see that the ve!o,;:ity of the fluid (('l,x) increases

with the iru:rease of the values of the joule healing parameter J when Prandti number

Pr = 0.73, dissipation parameter N = 0.05 and the magnetic parameter M = 0.05. The
smne result is obtained in fig. 2. t7 for temperature distribution for the same values of )

the joule heating parameter J.



Conclusions:
The effect of different values of diSllipationparameter N on the skin friction coefficient

and surface temperatul'e distribution, velocity and temperature profiles while magnetic

parameter M'" 0.5, PrandtI number Pr -=0.73and joule heating parameter J -=0,05and

also the effect of different values of magnetic parameter M, Prandtl number Pr and

joule heating parameter J on the skin friction coefficient, surface temperature

distribution and also on the velocity distribution as well as temperature distribution

have been investigated theoretically. The transformed non similar boundary layer

equations together with the boundary condition based on conduction and convection

are solved numerically by the very efficient implicit finite difference method known as

Keller box method. From the present investigation it may be drawn the following

conclusions:
1. The skin friction coefficient, the surface temperature distribution, the velocity

and the temperature distribution increase for increasing value of the viscous

dis.sipationparameter.

2. An increase in the values of the Prandtl number Pr leads to decrease the skin

friction coefficient, the surface temperature distribution, the velocity and the

temperature distribution over the whole boundary layer.

3. The skin friction coefficient, the surface temperature distribution and the

velocity profile decrease while the temperature profile increases for the

increased values of the magnetic parameter M.

4. It has been observed that skin friction coefficient, the surface temperature

distribution, the velocity and the temperature distribution increase with the

increase of the joule heating parameter J.
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Fig. 2.2: Skin friction for different values of Dissipation Parameter when PrandtJ
number Pr = 0.73, magnetic p3rameter M= 0.5 and Joule Healing Parameter./ = 0.05
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Paramc(cr./= 0.05

.Y



CfuJptff 2

,.
"
,"

" ""e:
'(., ""

"'
"'
0.'1..0 10,0

'.''._._._._ 1,74

15.0

,
Fig. 2.4: Skin friction for different values ofPrandtl number when Ulab'lletic parameter

M= n.s, dissipation paramcter N = o.ns and Joule heating Parametcr J = 0,05

,.

"---,.
____ 424
_._._._ 1.55

"'

"I. 16.0 20,0
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Effects of Conduction llnd Convection on Magneto
bydrodynamic Flow witb Viscous Dissipation from II Vertical

Flat Plate

3.1 Introduction
This chapter describes the effuct of conduction and convection on magneto

hydrodynamic tlow with viscous dissipation from a vertical flat plate. U,ing the,
appropriate transformalions, the govcrning boundary layer cqulltion~ are transformed

into a non-dimensional fmm which are wived numerically hy using a finite djfferen~'e

method k.nownas Keller box method. We have represented the effect of the dissipation

parameter N, PrandtJ number Pr and the magnetic pardIllctcr M on lhc velocity and

temperature induding the skin friction coefficient and surface temperature coefficient.

The complcte derivalions of the governing cquation for the natural conveclion !low

and heat transfer including the method of wlutions logether with the results and

di<;cussionsare presented.

3.2 Governing equations of the flow:

We consider!hc steady two dimensional laminar free convection boundary layer flow

of a viscous incompressible and electrically conducting fluid along a side of a vertical

fiat plate of lhickness 'b' insulated on the edges with temperature T~ maintained on the

other sid~. 'The flow configuration and the coordinlltes system are shown in figure 3.1.

•fig. 3.1: Physical ",odlll and cOQrdlnata sy!IlBmS

• T.

1
" "

,
L, Ho

'l"~Tb

Lower_.
T(J<,~) ,

,.'
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The equations governing the flow are

'""-+ax

811 D,'
-+--0ax 'y

aH}u
p

(3.J)

(3.2)

aT
"-+ax

aTv-ay v '"-( -)
c" Dy

,
(3.3)

The appropriate boundary conditions to be satisfied by the above equations arc

,,-O,V-O(l/y~O
" ---)0- 0, T ---)0- T", as y---)o-oo

(3.4a)
(JAb)

The temperature and the heal flllx are required continuolls al the intetface for the

coupled conditions and at the intetface we must have

(3 5)

Where k, and k, are the thermal conductivity of the solid and the fluid respectively

The temperature T", in the solid is given by

T",=T(x,o)-{r, -T(x,o)}~ (3.6)

Where T(x,o) is the unknown temperature at the interface to be determined from the

solution, of the equations, We observed that Ihe equations (3.1) - (3.3) together with

the boundary conditions (3 4) - (3.5) are non-linear partial; differential equations, In

the following sections the solutions methods of these equations are discussed 10

details,

3.3 Transformation of the governing equations:

Equations (3,1) - (3.3) may now be non-dimensionalized by using the following

dimensionless dependent and independent variables:

,
, , 'TT '- x _ y _ v -- v -- - v ( )

x~-y--d'II=-d2I1V=-d'v 1 -{)L=-d-PT-T
l." L ' L ' L 'T-T ' !' ;,

'" g'

32
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(3.8)
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As the problem of natural convel.."tion, its parabolic character has no characteristic

length; L bas been defined in terms of \I and g which is me intrinsic properties of the

system. The reference length along the Y direction bas been modified by a factor d.114

in order to e1iminak this quantity from the dimensionless equations and the boundary

conditions.

The magneto hydrodynamic field in the fluid is governed by the boundary layer

equations, which is the non..mmensional form obtained by introducing the

dimensionless variables described in (3.7) may be written as

,. ""~+~.O
'" ily

(3.9)

be oe.-+v--ox oy (3.10)

u'd
WhereN = ~, the dimensionless viscous dissipation parameter

L-C~V.~l~'

(Tf/ IL'
M = )m ' the dimensionless magnetic parameter

Pr = f.lCp , the Prandtl number
k,

The corresponding boundary conditions (3.4) - (3.6) take the following form:

ao
u=v=o,O-J'=piJy at y=o

u ...•0,v ...•° u.~ y ...• '"

(3.11a)

(3.llb)

Where p is the conjugate conduction parameter given by p = tt, /t,lPl L}J'!'
Here the coupling parameter 'p' governs the described problem. The order of

magnitude of'p' depends actually on (bIL), (1v1kJ and tiN being the order of unity. The

term (b1L) attains values much greater than one because of L being small. In case of

air, (kJIt,)becomes very small when the vertical plate is highly conductive i,e. k.» 1

different but not always a small such as glass. Therefore in different cases 'p' is

different but not always a small number. In the present investigation we have

considered p = 1 which is accepted ror (bIL) of O(~IkJ.
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To solve the equations (3.8) - (3.10) subject to the boundary conditions (3.11), the

following transformations are introduced for the flow region starting from up stream to

down stream;

Here 11 is the dimensionless similarity variable and '{' is the stream function which

satisfies the equation of continuity and 1.1=~, v = - V;and h(q,x) is the

dimensionless temperature. Substituting equation (3.12) into equations (3.9) and (3.10)

we get the following transformed non dimensional equations

f,"+16+15xjJ'_ 6+$x f"-M:IIS(l+x)~mf'+h=x
2(.(/+x) uf.}+x)

(3.13)

+16+15xfN"
20~+ xl (3.14)

In the above equations the primes denote differentiation with respect to '1-

The boundary conditions (3.11) then take the following form:

j{x,o)= j' (x,o) = 0,11 '(x.o) =-(1+ X)"'4 +x'/'(1+ x)'-"olI{x,o)
j' (x,«» = o,h'(x,«»= 0

3.4 Method of Solution

} (3.15)

To get the solutions oftbe parabolic differential equations (3.13) and (3.14) along with

the boundary condition (3.15), we shall employ a most practical, an efficient and

accurate solution technique, known as implicit finite difference method together with

Keller box method. Since a good description of this method has been discussed in

details in chapter-2, further discussion is disregarded here. Numerical results obtained

are presented in the following section.

3.5 R88Ult& and dlacunlons

Here we have investigated the effect of conduction and convection on magneto

hydrodynamic flow with viscous dissipation and joule heating from a vertical flat plate

of thickness b insulated on the edges with temperature T~ maintained on the other side

in the presence of a uniformly distributed transverse magnetic field. Solutions are
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obtained for the fluid having Prandtl number Pr = (0.05, 0.73, 1.0) and for a wide

range of the values of the values of the viscous dissipation parameter N = (0.2, 05,

0.8, 1.0) and the magnetic parameter M= (0.2,20.5,0.8,1.0). lfwe know the values of

the functions f{l\,x), h(q,x) and their derivatives for different values of the Prandtl

nwnber Pr, the viscous dissipatioo parameter N and the magnetic parameter M, we

may calculate the numerical values of the surface temperature 9(0,x) and the shear

stress co-efficient £,1(0,x)at the surface that are important from the physical point of

view. Numerical values of the velocity gradient fI(o,x) and tlw surface temperature

9(O,x)are illustrated graphically in fig. 3.2 and fig. 3.3 respectively against the axial

distan~ x in the interval [0, 30] for different values of the viscous dissipation

parameter N '" (0.2, 0.5, 0.8, 1.0) for the fluid having Prandtl number Pr '" 0.05 and the

magnetic parameter M '" 0.05. In fig. 3.4 and 3.5, the share stress co-efficient (I(O,X)

and the surface temperature 9(O,x)are depicted graphically for different values of the

PrandtJnwnber Pr'" (0.05, 0.7, 1.0)when this viscous dissipation parameter N '" 0.005

the magnetic parameter M '" 0.005. The values of the Prandtl number Pr are laken to

be 0.05 that corresponds physically the S<ldiwn,0.7 that corresponds to air and 1.0

corresponding to electrolyte solutions such as salt water. In fig. 3.6 and fig. 3.7, the

slrin friction ('(o,x) and the surface temperature distribution ll(O,x) are shown

graphically for different values of the magnetic parameter M '" (0.2,0.5,0.8,1.0) when

Prandtl number Pr '" 0.05 and the viscous dissipation parameter N '" 1.05. From fig.

3.2 it can be observed that increase in the value of the viscou.~dissipation parameter N

leads to increase of the skin friction fI(o,x). Again fig. 3.3 shows that the increase of

!he viscous parameter N leads to increase of the surface temperature 9(0,x). From fig.

3.4, it is shown that the skin friction ('(O,X) decreases monotonically with the increase

of the Prandtl nwnber Pr '" (0.05, 0.7, 1.0) and from the fig. 3.5 the same result is

observed on the surface temperature distribution 6(0,x) due to increase of the value of

the Prandtl number when the value of the dissipation parameter N '" 0.005 and the

value of the magnetic parameter M'" 0.005. Further from fig. 3.6 it is clear that the

shear stress co-efficient (I (O,x)decreases with the increase of the magnetic parameter

M'" (0.2,0.5,0.8,1.0) and from fig. 3.7 the same result is observed on the surface

temperature distribution due to increase of the value of the magnetic parameter. Fig.

3.8 and fig. 3.9 deal with the effecl of the viscous dissipation parameter N '" (0.2, 0.5,

0.8, 1.0) for Prandtl number Pr = 0.73 and for the magnetic parameter M '" 0.05 on the 0
velocity profile f(1J,x) and the temperature profile for {l (1J,x).Fig. 3.10 depicts the



velocity profile for different values of the Prandtl number Pr = (0.05, 0.7, 1.0) when

the viscous dissipation parameter N '" 0.2 and the magnetic parameter M = 1.0.

Corresponding distribution of the temperature profile 1l(T\,x) in the fluid is shown in

fig. 3.11. Again in fig. 3.12 and in fig. 3.13, the velocity profile and the temperature

profile are shovo1lgraphically for different values of the magnetic parameter M '" (0.2,

0.5,0.8, 1.0) when Prandtl number Pr = 0.7 and the dissipation parameter N '" 0.2.

From fig. 3.8, it is !'t'vea1ed that the velocity profile f(ll,x) increases slowly with the

increase of the viscous dissipation N and the same result is observed in fig. 3.9 for

temperature forthe same values of the viscous dissipation parameter N. From fig. 3.10,

iI can be seen that if the Prandtl number increases, the velocity of the fluid decreases.

On the other hand, from fig. 3.11 we observe that the temperature profile decreases

within the boundary layer due to increase of the Prandtl number Pr. From fig. 3.12, it

is clear that the velocity profile decreases monotonically with the increase of the

magnetic parameter M when the values of the Prandtl number Pr and the dissipation

parameter N are respectively 0.7 and 0.2. Opposite result is shown in fig. 3.13 for

temperature distribution for the same values of the magnetic parameter M.

3.5 Conclusion

The effect of viscous dissipation and the magnetic parameter N and M respectively for

small prandtl number Pr = (0.05, 0.7, 1.0) on the convective natural convection

boundary layer flow have been investigated. The transformed dimensionless boundary

layer equations governing the flow are solved numerically by using the very efficient

implicit finite difference method known as Keller box scheme. The coupled effect of

natural convection and conduction required that the temperature and the heat flux be

continuous at the interface. From present investigation, the following conclusions may

be drawn:

I. The skin friction coefficient, the surface temperature distribution, the velocity

distribution and the temperature distribution increase for increasing valUe of

the viscous dissipation parameter N.

2. It has been observed that the skin friclion coefficient ,the surface temperature

distribution ,the velocity distribution and the temperature distribution over the

whole boundary layer decrease with the increase of the pmndtl number Pro
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3. Increased value of the magnetic parameter M leads to decrease the skin friction

coefficient, the surface temperatuTe distribution and the velocity distribution

while the temperature distribution increases.
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when PrandU number Pr = 0.05 and Magnetic PaT"dITletcrM = 0.05
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Fig. 3.7 Surface temperature distribution for different values of Magnetic
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Fig. 3.8: Velocity profile for different values of Dissipation parameter when

!'randtl number Pr ~ 0.73 and Magnetic parameter M ~ 0.05
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Fig. 3.9: Temperature distribution for differenl values of Dissipation parnmelcr

when Prandtl number Pr ~ 0.73 and Magnetic parnmelCr M = 0,05
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Conclusions

In this theses, conjugate effect of conduction and convection with natural convection

flow on steady two dimensional magneto hydrodynamic flows with viscous dissipation

and joule heating have been investigated. The basic equations are transformed to non

similar bolUlrlary layer equations by using the appropriate transformations which have

been solved numerically using a 'very effieient implicit finite difference method known

as Keller box method. Here we have focused our attention on the evolution of the skin

friction, the surface temperature distribution, velocity distribution as well a~

temperature distribution for a selection of parameters set consisting of the Prandtl

number Pr, magnetic parameter M, the viscous dissipation parameter N and the joule

heating parameter J.

From chapter 2

The effect of different values of dissipation parnmeter N on the skin friction coefficient

and surface temperature distribution, velocity and temperature profiles while magnetic

parameter M = 0.5, Prandtl number Pr =0.73 and joule heating parameter J =0.05 and

also the effect of different values of magnetic parameter M, Prandtl number and joule

healing parameter J on the skin friction coefficient, surface temperatul'tl distribmion

and also on the velocity distribution as well as temperature distribution have been

investigated. The transformed non similar boundary layer equations together with the

boundary conditions based 00 conduction and convection are solved numerically by

the very efficient implicit finite difference method known as Keller box method. From

the present investigation the following conclusions may bc drawn.:

I. The skin friction coefficient, the surface temperature distribution, the velocity

and the temperature distribution increase for increasing value of the viscous

dissipation parameter.

2. An increase in the values of the Prandtl mlIDber Pr leads to decrease the skin

friction coefficient, the surface temperature distribution, the velocity and the

temperature distribution overthe whole boundary layer .
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3. The skin friction coefficient, the surface temperature distribution and the

velocity profile decrease while the temperature profile increases for the

increa~edvalues of the magnetic parameter M.

4. It has been observed that skin friction coefficient, the surface temperature

distribution, the velocity and the temperature distribution increase with the

increase of the joule heating parameter J.

From chapter 3

The eITectof viscous dillsipationand the magnetic parameter N and M respectively for

small prnndtl number Pr '" (0.05, 0.7, 1.0) on the convective natural convection

boundary layer flow have been investigated. The transformed dimensionless boundary

layer equations governing the:flow are solved numerically by using the very efficient

implicit ftnite difference method known as Keller box scheme. The coupled effei:t of

natural convection and conduction required that the temperature and the heat flux be

continunus at the interface. From present investigation, the following conclusions may

be drawn:

I. The skin friction coefficient, the surface temperature distribution, the velocity

distribution and the tempcra1ure distribution increase for increasing value of

the viscous dissipation parameter N.

2. It has been observed that the skin friction coefficient, the surface temperature

distribution, the velocity distribution and the temperature distribution over the

whole boundary layer decrease with the increase of the prandtl number Pr.

3. Increased value of the magnetic parameter M leads to decrease the skin friction

coefficient, the surface temperature distribution and the velodty distribution

while the temperature distribution increases.
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