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Abstract

In this thesis, the combined effect of conduclion and comvection on magneto
hydrodynamic (MHD} boundary layer flow with viscous dissipation and joule heating
from a vertical flat plate has been investigated. By wiing the appropriale
transformations, the basic equalions are transformed &0 dimensionleas boundary layer
equations which are solved numencally by using the finite difference method known
as Keller box method. The effects of the magnetic parameter M, the dissipalion
parameter ¥, the Prandtl number Pr and the joule heating parameter J have been
examined on the flow field. The anatysis has shown Lhat the flow field is appreciably
infleenced by the efects of conduction and convection. Similarity solulions of the
momentum and snergy equations are derived by introducing the same transformations.
Here we have focused our atiention on the evolution of the skin friction coefficient, the
surface temperature distnibutton, velocity as well as temperature distribubion for a
selection of parameters set consisting of magnelic paramelcr M, the dissipalion
parameter N , the Prandd member Pr and the joule healing parameter J. The
dimensiouless skin friction coefficient, the surface temperature distribution, velocity as
well a3 temperature distribition over the whole boundary layer are shown graphically
for differem valnes of the magnelic parameter Af, the dissipation parameter N, the
Prandtl number Pr and the joule healing parameter J.
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Nomenclature

:Plate thickness

:Specific heat

(T, -L)/T,

:Dimensionless stream function
:Acceleralion due to gravity

: Dimensionless temperalure
:Applied magnetic fietd
‘Reference length, v** 7 g*'f

:Length of the plale

:Magnelic parameter

:¥iscous dissipation parameter
:Joule heating parameter

:Coupling parameter

:Prandt] number

:Temperature of the flow Mluid
:Temperature at outside of the piate

:Solid temperature

‘Temperanue of the ambient fluid

:Velocity component in the x-direclion
:¥elocity compenent in the y-direction
: Stream wise co-ordinate

: Traneverse ¢o-ordinate
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Greek Symbols

: Co-efficient of thermal expansion

: Stream function

: Skin friction

: Dimensionless similarity variable

: Density of Lhe fluid inside the boundary layer
: Kinematic viscosity

: Yiscosity of the fluid

: Dimenmionless temperature

: Electrical conduclivity

» Thermal conductivity

: Thermal conductivity of Lhe ambient fluid

; Thermal conduciivity of Lhe ambient solid
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infroduction

Fiuid dynamics or hydrodynamics is that branch of science which is onternad with
the sdy of the motion of {luids or that of bodies in contact with fluids . The siate of
matter which is capable of Aowing or of changing shape is called fluid. Finids are
classified as liquids and gasses. Gasses have no definite volume and shape but liquids
have a definite volume but no shape. Densily, volume, wempemture, viscosity and
pressure are five characteristics of actual fluids. Viscosity is the property of a fluid
which gives rise to shearing stress. A perfect fluid is frictionless and incompressible.
In the motion of such a perfect fluid, two comlacting [ayers experience no tangential
forces (shearing stress) but act on each other with normal forces (pressures) only. A
perfect fluid offers no imernal resistanee to a change in shape. The motion of perfect
fluid is very far devetoped and supplies in mamy cases a satisfaciory description of real
motions. On the other hand, in real Nuids, the exigtence of inter molecular attractions
causes the fMuid o adhere W 2 solid wall and thia gives rise to shearing siress. The
mner {ayers of a real [luid ransmit tangential and normal stresses. On the boundary
between a perfect fluid and a solid wall there exists a difference in relative wangential
velocities ie there ig slip, The existence of tanpential (shearing) stresses and the
condition of no stip near solid walls constitute the essential differences between a
perfect and a real flmd. In fluid dynamics, the study of individual molecule is neither
necessary nor appropriate from the point of view of use of malthemalical methods.
Hence we consider the macroscopic behavior of fluid by supposing the fluid to be
continuously distributed in a given space. This assumplion is kmown as the conlinuum
hypothesis.

The branch of science which incorporates with the motion of a highly conducting fluid
in presence of a magnetic field is called magneto hydrodynamics. The motion of the
conducting fluid acress the magnetic field produces eleciric currents which change the
magnetic fHieid, The effect of the magnetic held on these currents give rise o
mechanical forces which modify the fluid. If the current is parallel to the magnetic
Reld, it is possible 10 attain equilibrium in a conducting fluid For then the magnetic
forces vanish and the equilibrinm of the fluid is the same as in the absence of mapnetic
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fields. These types of magnetic fields are called force free. For poor conductive fluid,
electromagnelic forces which will be produced may be of the same order of magnitude
as the hydetynamical and inerlial forces. However by ionizing some pases, it is
possible 10 make them very highly conducting, the gas must be very hoi at temperature
upwards of 5000° K or so for ionization. Such ionized gases are called plasmas. The
maierial within a star is piasma of very high conductivity and it exists within a strong
magnitude. MHD incorporated mainly oo the study of severely incompressible fluid
but at present terminology is applied also 1o the studies of ionized gases. Significant
applications have been reporied such as the MHD generator, MHD flow meter, MHD
pump and MHD marine propulsion. Some other quile promising applicaiions are in the
field of metallurgy such as MHD stirring of molten metal and magnetic-levitation
casting. A very useful proposed application which involves MHD is the lithium
cooling blanket in a nuclear fusion reactor, With the high lemperature plasma
coatained in the reaclor by mecans of a torvidal magnetic field, liquid lithium flows in
channels (blankets) berween the plasma and magnetic windings to absorb the thermal
energy rcleased by the fusion reaction. The proximity of the lithium channcls
{blankets) 1o the ficld coils means thet the flow will be acted upon by extremely strong
magnetic fields. Conseguently, knowledge of fundamemal MHD interactions is
necessary in order to determine presgure drops, heat transfer ete in channels or pipes
siwated at different angles to a magnetic ficld. The laminar flow considered here is
also the limiting case for turbulerd flow a1 high Reynolds number (even 10° or higher)
where high magnetic frelds can dump out turbulent fluctuations and inminaries the
Bow, Magneto hydrodynamic was originally appiied 1o astroplrysical and geophysical
problems where it is still important but more recently to the problem of fusion power
where the application is the crealion and comtainmeat of hot plasmas by
elecromagnetic forces since material walls would be destroyed. The primary
geophysical problem is planelary magnetlism, produced by currents deep in the planet,
a problem that has not been solved to any degree of satisfaction.

Omn heat transfer studies, conduction, transfer of heat or electricity through a substance,
results from a difference in temperaiure between different parts of the substance. Since
heat is energy associated with the motions of the paricles, it is transferred by such
meoticns, shifting from regions of higher temperature to regions of lower lemperature.
The maie of heat flow between two regions is proportional 10 the temperature difference
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between them and the heat conductivity of the subsiance. In solids, the molecule
themselves are bound and contribute {0 conduclion of heat mainly by vibrating against
neighboring molecules. Metals which have a high free electron density are good
conductors of heat, while ronmetals, such as wood or glass, have few free electrons
and don not conduct as well. Liguids and gasses have their molecules farther apart and
are generally poor conduciors of heat. In liqmds and gasses, current consists not only
in the flow of electrons but also in that of jons. A highly ionized liquid solution, e.g.,
salt water, is a good conductor. Gasses at high temperatures tend 1o become ionized
and thus become good conductors.

Only in the presence of a fluid medium, the convection is possible. if a fluid flows in
the interior of a channel or over a sohd body while lemperatures of the fluid and the
solid surface are different, heat between the fluid and the solid surface takes place as
an oulcome of the motion of fluid comparative Lo the surface; this type of mechaniam
of heal tansfer is ermed ss convection. There are two basic procedures of the
conveclive sort of heal transfer. Free conveciion 15 convection in which motion of the
fluid arises solely due 1o temperature differences existing within the fluid. The basic
premise behind free convection is that heated fluid becomes more buoyam and rises,
while cooler fluid sinks. Free convection occurs in any liquid or gas which expands or
conlracts in response 10 change in temperatures in an aceeleration field such as pravity.
In natural convection procedures are govemned essentially by three featurezs namely the
body force, the temperabhunre difference in the flow field and the fluid density
discrepancy with temperature. In the way of life, free convection is the most important
gryle of heal lransfer from pipes, tranamission lines, refrigerating coils, buming
radiators and various realistic sitnations. When with the help of a purnp or a fan the
fiutd motion is urmaturally stirmulated that forees the fluid flow over the surlace, the
heat transfer is lermed forced convection. When a person biows on their food 1o cool
ii, hefshe is using forced convection. Though in a 01 of cases of sensible atiention,
both procedures are significant and hear transfer is by mixed convection in which
neither approach is really most imporiant. The manipulation of natural convection of
the heat transfer can be deserted in the case of Reynolds mumber and Grashof mumber.
The natural convection should be the governing aspect for immense Grashof ournber
and miniature Reynolds number. We observe in nature some situations where forced
and free conveclion is of analogous order. The phenomena may be termed as the
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mixed ot combined convection flows. The main difference between free and forced
convection hes in the nawre of the fuid gemeration. In forced comnveclion the
externally imposed flow is generally known, whereas in free convection it results from
an inleraction between the density difference and the graviwtional field and is
therefore invartably linked with and depend on the temperature field.

It is evident thar the formation of boundary layer over a surface is due to the viscous
nanae of the fleid flowing over the surface. The encrgy equalion for iwo dimensional

O
boundary layer includes the terms puf *5}’* 3%, which accounts for the heat generation

due to fluid friction. In order to explain the effect of viscous dissipation, we shali first
lake a grossly simplified view that the compressibility effect may be neglected and the
properties such as viscosity, thermal conductivity and specific heat are constant and
there consider the flow between parallel flai plates on of which is slalionary and the

other moving in its own plane with a constant velocity U..

in electronics and in phyrics more broadly, joule heating ot ohmic heating refers to the
increase in temperature of 2 conductor as a result of resistance fo an elfectrical curment
flowing though it. At an atomic level, joule heating is the result of moving elecirons
collitting with zloms in a conducior, whereupon momentum is transferred Lo the atom,
increasing its kinetic energy. When similar collisions cause a permanent structural
change, mther than an elastic response, Lhe result is known as eleciro migration,

The problems of free convection boundary layer flow over ot on bodies of vanous
shapes were discussed by many mathemnalicians, versed engineers and researchers.
Amongst thern are Merkin and Mahmood [1], Hossain et al. [2], Yao [3], Nazar 1 al.
[4,53, Hueng and Chen [6]. The problem of free conveclion boundary layer on a
vertical plate with prescribed surface heat flux investigated by Merkin and Mahmood
[17. Hossain ¢t al. {2] also discussed the same problems but with the lemperature
dependent viscosity and thermal conductivity. Yao [3} have studied the problem of
natural convection flow along a vertical wavy surface, Nazar et at. {4,5] consider the
free conveclion boundary layer on an isothermal spbere and on an isothermel
horizontal circular cylinder. The effect of laminar free conveclion from e sphere with
blowing and suction studied by Huang and Chen [6]. The inleraclion of 1the magnetic
Ticld and the moving clectric charge carried by the flowing fluid induces a force which
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tends to oppose the fluid motion. Near the leading edge, the velocity is very small 50
that the magnelic force which is proporiional 1o the magnitude of the longitudinal
velocity and acts in the opposite direction is also very small. Consequeniy the effect
of the magnetic field on the boundary layer is exerted only through induced forces
with in the boundary layer itself, with no additional influences arising from the free
stream pressure gradient, The effect of magnelic field on free convection heat mansfer
has been studied by Sparrow and Cess [7]. Raplis and Kafousius [8] have investigated
the problem of magneto hydrodynamic free convection flow and mass transfer through
a porous medium bounded by an infinite verlical porous plate with constarm heat {hux.
Kuiken {9] smdied the problem of magneto hydrodynamic free convection in a strong
cruss field. Etbashbeshy {10] tiscussed the effect of free convection flow with variable
viscosity and thermal diffusivity along a vertical plate in the presence of magnetic
field. MHD free convectiom flow of visco-elastic fluid past an infinite porous plate was
investigated by Chowdhury and Islam [11). Hossain [12] inboduce the viscous and
joule healing effects on MHD free convection flow with variable plate (emperahire,
Very recently Ahmad and Zaidi {13] investigaled the magnetic effect on over back
conveclion through a vertical stratum. Hossain el al, [14] also have invesiigated the
heat ransfer response of MHD free convection flow along a verlical plate lo surface
temperature oscillalion. Hossain et al. [15,16] thscussed the both forced and free
convection boundary layer flow of an elecmicaily conducting fluid in presence of
maegnetic field. Morcover the effect of comjupate natural convection flow on or from
various heated shapes studied by Bynnycky and Kimura [17], Yu and Lin [18], Merkin
and Pop {19] and Hossain et al. [20}. Hossain and Pop [21] investipated the magmeto
-hydrodynamic boundary layer flow and heat transfer from a conlimuous moving wavy
surface while the problem of free convection flow from wavy verlica! surface in
presence of & transverse magnetic field was studied by Alam et al. [22]. On the other
hand Rees and Pop [23-25] discussed the free convection boundary layer induced by
vertical and horizontal surface exhibiting small amplitude waves einbedded in porous
medium. Natural eonvection heat and mass transfer near a vertical wavy surface with
constant wall temperature and concentration in a porous medium was studied by
Cheny [26]. Kafousius and Williams [27] and Kafousius et al. [28] have studied the
effects of variable viscosity on the free and mixed convection flow from a vertical flas
plate in the region near the leading edge. The combined forced and free conveclion in
boundary layer flow of a micropolar fiuid above a horizomal plale was investigated by
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Hassanien [293. Similarity sohutions are acquired in this work for the case of wall
temperature which is inversely proportional 10 the square root of the distance from the
teading edge. The influence of the magnetic field on the laminar free convection of
liquid metals was investipated by Cramer [30] above a vertical flat plate and between
two paralle] plates. For liquid metals he got an analylical solution. Shiralkar and Tein
[31] studied mumenically natural convection in an enclosure with iemperature gradients
imposed in bath the horizonial and verrical direction simultancously. The coupling of
conduclion with {aminar patural conveclion along a flat plale was investigaied by
Pozzi and Lupo {32} Miyamolo et al. [33] discussed the effect of axial heat
conduction in a vertical flat ptate on free conveclion hear transfer. Effect of conduction
and coovection on magneto hydrodynamic flow from a vertical flat plate was studied
by Mamun {34]. Taher [35] introduced the magneto ydrodynamic natural convection
flow on @ sphere. The governing partial differential equalions are reduced to non-
similar parfial differential forms by adopling appropriate transformations. The
transformed boundary layer equalions are solved numencally by implicit fioite
difference method together with the Keller box method by Keller [36] and later by
Cebeci and Bradshaw [37].

In chapter - lavailable information regarding MHD heat and mass transfer flows are
siidied from both analyiical and numerical point of view. in chapler-2 we have
considered a sleady laminar MHDY free convective boundary fayer flow with viscous
dissipation and joule heating from a vertical flat plate, In chapler-3 a fwo dimensional
leminar frec convection flow with viscous dissipation from a vertical flal plae is
considered. The above two problems have becn solved numercally by using 8 most
practical, an efficient and accurate solution method, known as implicit finite difference
method together with Keller box scheme,



Combined Effect of Conduction and Convection on Magneto
Hydrodynamic Flow with Viscous Dissipation and Joule Heating
From a Vertical Flat Plate

2.1 introduction:

In the present chapier we shal! describe the effect of conduciion and convection on
magneto hydrodynamic flow with viscous dissipalion and joule healing in the entire
region from up stream to down stream of a viscous incompressible and electrically
eonducting fluid from a vertical flat plate. The governing boundary layer equations are
transformed inlo a non dimensional form and the resulting non linear system of partial
differential cquations are reduced to local non similarity squations which are solved
numerically by very efficient impticit finile difference method together with Keller
box method. Numerical results are presented by skin friction coefhcient, surface
temperature distribution, velocity and temperature distribulion for a wide range of
magnetic parameter M = (0.2, 0.5, 0.8, 1.0). The Prandtl mumber Pris 1o be 1aken 0.05,
0.73, 1.0 which correspond to sodium, air, electrolyte solutions such as salt water, In
the following section detailed derivations of the govemning equations {or the flow and
heat tranafer and the method of golutions along with the resutls and discussions are
presented. All the investigations for the fluid with low Prandtl number appropriates for
the liquid metals are carried out. '

2.2 Governing equations of the flow:
The mathematical statement of the basic conservalion laws of mass, momentton and
energy for the steady viscous incompressible and electricaliy conducting flmd with

joule heating effect are given by
Vg=0 2.1
plg ¥l =-Vp+uVig+ F+Jx B (2.2
o gV = ke, VT +u(Ix B) (2.3)
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Where ¢= {uv}, v and v are the velocity componenis along the x and y axes

respectively, F is the body force per unit volume which is defined as -pg, the terms J
and B are respectively the ¢urrent density and mapnetic induction vecior and the 1erm
J x B is the force on the fluid per unit volume produced by the interaction of current
and magnetic field in the absence of excess charges. T'is the temperature of the fluid in
the boundary layer, g is the acceleralion due 1o gravity, & is the thermal eonductivity
and C, is the specific heat al constant pressure and g is the viscoaity of the fluid. Here
B = u, H,, y. being the magnetic permeabiticy of the fluid, A, is the applied magnetic
field and V is the vecior differential operator and is defined by
~g

Vei, L4 2
x oy

Where i, and the 7, are the unit vector along x and y axes respectively.

When the exiemnal eleciric ficld i3 zero and the mduced electric field is negligible, the

cwrent density is related to the velocity by Ohm's Jaw as follows
J= algxB) 24)

Where 7 denotes the elesiric conductivity of the fluid. Nexi under the conduction that
the magnelic Reynolds number is small, induced magnetic field is negligible
compared with applied field This condition is usually well sarisfied in ferrestrial

applications, especially so in (fow velocity} free convection flows. So we can wriie

B=j, H, (2.5)

Bringing together equations (2.4) and (2.5} the force per unit voiume J x B acting
along the x axis taked Lhe form:
JxB= JH;H (2.6)

Under ihe Boussinesq approximation, the variation of g is taken into only in the term F
in equalion {2.2) and the vanation of p in the inertia term is neglected. We then can
Wrtle:

p=pfl-8T-T.) Q@mn

Where p.. and T, are the density and temperature respectively oulside the boundary
layer, #is the co-¢fficient of thermal expansion,
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We considet the steady two dimensional laminar free convection boundary tayer flow
of a viscous incompressible and electrically conducting fluid along a side of a vertical
flat plate of thickness 'b" insulated on the edges wiih lemperature Ty, maintined on the
other side. The flow configuraiion and the coordinales system are shown in figure 2.

e
—F

Upper ‘ < Interface
sur face /E'

X Hy

T=T, | |
Lower v
sarface™| T {30}

S
o > ¥

Fig. 2: Pirynicai model ard coordinete systonTs

Using Lthe equations (2.4) to (2.6) with respect 1o our above considerations into the
basic equations (2.1} — (2.3), the steady two dimensional laminar free comvection
boundary layer flow of a viscous incompressible and electrically conducting fluid with
viscosity and also conslant Lhermal conduclivity past a vertical flat plate take the

following form:
L L (2.8)
& &
. . ol 'u
Uu—+yv—=v—+gfll- 7, )-—= 9
aI vay Vﬂ}'z gﬂ( n) (2 )
Y 2 22
,,EE+V?E=__!_£+L(E] Lo (2.10)
o & o, \Oy £,
The appropriate boundary conditions to be satisfied by the above equations are
w=0v=0aty==0 (2.11a)
4—p 0T — T .asy—»w (2.11b}

The temperature and the heat flux are reqnired comtinuous at the interface for the

coupled condibons and at the interface we must have
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k. OT T
£ = (-

== }
k, &y oy
Where k, and k; are the thermal conductivity of the solid and the fluid respectively.
The lemperature T,, in the solid is given by

(2.12)

T, =T(xo)-{, - T(x, a}}% (2.13)

Where T(x,0) is the unknown temperature at the interface Lo be delermined from the
solutions of the equations. We observed that the equations (2.8) — {2.10) 1ogether with
the boundary conditions (2.13) — (2.13) are non-linear partial differential equations. In
the following seclions the solutions methods of hese equations arc discussed in
details.

2.3 Tranaformation of the goveming equations

Equations (2.8) — (2.13) may now be nondimensionalized by using the foilowing
dimensionless dependent and independent variables:
2
dTay— %d%;, ;__? =8,1= —‘%,d =41 -T.}) @14
* - g_;-
As the problem of natural convection, its parabolic character has no characteristic
length; L has been defined in terms of » and g which is the intrinsic properties of the
syslem. The reference length along the 'y direction has been modified by a {actor 4

in order Lo eliminale Lhis quantity from the dimensionless equalions and the boundary

E

d

=

[l ]
=

— I —
I=—,p=
I ¥

conditions.

The magneto hydrodynamic figld in the fluid is govemed by the boundary taver
equations, which iz the nondimensiomal form oblained by introducing the
dimensionless variables described in (2.14) may be wrilten as

E_{._E—ﬂ
o o @.15)
du  _du #u
u5;+ \'g'l' Mu =_"_a}r2 +& (2.16)

u@-kvﬂ':iﬂ-{-ﬁf"‘aﬁ
ax 3 P&’ dy

¥+ 217

10
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vid

Where N = Te I, - T.

, the dimensionless viscousg dissipation parameter

3
o Pud?

J= _‘.T—)’ the dimensiondess joule heating parameter
mp B - T:a

o ‘L’
M =—%= 1he dimensionless magnctic parameler

st

and Pr =‘1i, the Prundtt number

f

The corresponding boundary conditions (2.11) — {2.13) take the following form:

oe
u=v=ef-f=p— o y=u (2.18a)
"oy
U— O¥—> & g8 Y-+ o (2.18h)

Wheres p is the conjugate conduction parameter given by p = (kf /&, Ib,a’L}d” )

Here the coupling parameler p’ governs the described problem. The order of
magpnitude of 'p' depends actually on (3/L), (k/kJ and & being the order of unity. The
term (&/1) atiains values much grealer than one because of I being small. In case of
ait, (ky/kg) becomes very small when the vertical plate is highly conductive i.e. £, >> 1
different but not always a small such as plass. Therefore in different cases p' is
different bul not always a small number. In the present investigation we have

considered p = [ which is accepted for (5/L) of O¢k:/k).

To solve the equalions (2.15) — (2.17) subject to the boundery conditions (2.18), the
following transformalions are introduced for the flow region starting from up stream o
down sireamn;
w=x P+ plgxlg= (4 x ™) o= 1+ hp,x)  (2.19)
Here 1 is the dimensionless similarity variable and ¥ is the stream function which
o
gatisfies the equation of continuity apd w= %,v = *Exﬁand hinX) is Lhe

dimensionless lemperature. Substituting e¢quation (2.19) into equations (2.16) and
{2.17) we et the following transformed nondimensional equations

L .l'ﬁ+fjx w 6+j}r
4 TZGLHJI:}J"r 181+x}

=MD" £ h=x ( f‘%-f”%) {2.20)
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In the above equations the primes denote differentiation with respect to n.

The boundary conditions (2.18) then wke the following form:

Fix,o)= fxo}=0& (x.0}=-{I+x}y" +1 4+ ) kix,0)
fe)=0h'{x,o)=0

2.4 Moathod of Solution

Chapter2

(221

} (2.22)

To get the solmions of the parabolic differemlial equations (2.20) and (2.21) along with
the boundary condition {2.22), we shall employ a most practical, an efficient and

accurate solulion technique, known as implicit finite difference method together with

Keller- box eliminalion lechnique.

To apply the aforemenlioned method, we first convert the equations (2.20) and (2.21)
and their boundary conditions inlo the system of first order equations. For this reason

we introduce new dependent varables u(£.nm), v(&,7)and (&, )
transformed momentum and energy equalions can be wriiten as

S =u
K=y
g=p
du ar
v +pfv-pu - pu +g#§{ua—£-va—£,}
!, g &
27 +p, fo- pugt pv + pout’ =¢(uae P

where £=x, h=g and

1645 6+35r i
20i+x) Pt 1oi+x) PN 14a)

P, = Mx%{l+x 16

=poNr=pp J5 (145" = p,

and ihe boundary cooditions (2.20} arc

12

so Lhat the

(223

(2.24)

(2.25)
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FED=0, u(&0)=0, p(&0)y=—{1+H +£7 (1451 (£,0)
u(£,0)=0,g(£,=) =0

We now consider the nel rectangle on the (£ q ) plane shown in the figure {2.1 } and

(2.26)

denote the net points by

£0x0, £ =8 4k, n=12,.. N
ne=0, 7; =qy+hy,  j=12...J

K

e e
LT Ps T P]i
| i
i E

rlj-lfl e T 7 d-IJ_ T C} ‘! hj

| !
i' 1
. | :
P3. P2

511-[ ﬁ"'m E"n

Figure 2.1 ;: Net rectangle for difference approximations for the Box scheme.

Here ‘n’ and °j° are just sequence of mumbers on the (§ , n ) plane , k, and h, are the
variable mesh widths.

We approximate the quantities f, u, v, p at the points (E*, v ) of the net by £, u",, v
p"j which we call net function . We also employ the nolation g% for the quantities
midway between net points shown in figure (2.1 ) and for any net function as

g:n-l.l'] 2%{4_-11 +¢'I‘I—l) {22?)

1
ff}—lizz‘z‘{’?j —7;.1) . (228}
gjn—i.rz =_]_ (g-’u +gj.-¢—1 ) (2.29)

2
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i
B = 58 i VB (2.30

The finite difference approximations according w Box method Lo the three first order
ordinary differential equations (2.23) are written for the mid point (£", 1p.12) of the
segment P(P; shown in the figure (2.1 ) and the finite difference approximations to the
two first order differemial equations (2.24) and (2.25) are written for the mid point (§™
12 151 } of the rectangle P,P;P;P,. This procedure yields.

_ n ., TS T
BT L )=u) == > 2 (2.31)
v +v
By ] ~ul )=V, = |2 . 2.32)
pia—P)
- |
h I{E; g_,q) PJ-uz Lﬁ—i (2.3
1 v, v v“ -
s (py M - (pa VA - il
! d (2.34)
;] - n—1 f a=|
$g? 2z g2 nti2 I R R U R o S e U
X2 IRV =Y ¥ )
k, k,
i pn pn pl'l 1 Pn ] ) ] 2 y
3 p (— y £yt h a }+{P1fP]j :ﬁ {P3“E) :ji +(F'5"'= 2 +(Pﬁ”: 2
+ ] ’ ] ! nl " (2'35)
= nl.’!{ <2811 KB, pauz j:flu f Iai
PRI R L TETH k. — P;auz —k"
Now from the equation (2.34) we get
1 vi—vi, 1 VH Jr-i at 14 ﬁp - ]
A Ea AP M0 @A L oy, + Pl
1 L5 i
- _{{qu )_j Tr (Pz" ) jmtl2 } 5 {3;-::§+ g_:—ll:; }
1 .- .
:'ﬁ-;;-llfzz [u;-rin".z + 'H_- 1.-'2 )N b, U, 1.*2)
1 a1 = n—
Zk ':_;F:,'zz{vrll:f"'v; 11;1z YIin- _,F uz
14
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Sk (v R (VT =V D) U+ (200 UDT
Py )ya02 (Y= (25 (WD + 8 an+ 8105 - ) B - b, bh
T, k" Vigra =) as ("};uuzl

[“]‘J-m{”);-u: —{¥ );::,-z‘(ﬁ};-m""':—m fu-_:im

~1 -1
+at, = Vi fraa (Y on

I .
wherea, = L2113

= h,,_l (“: “’:-u )+{(P; )j gt }(ﬁ'}"-m ‘{(Pz :-m ta, }(“z}j-uz +£’f—m' lo.d};-fff +a, !”E-f,fz
{‘{“ }:::fl +V i _;ﬂ-.tixz "_ahuz ;-u: +( 7, z}
n

- (py ]'j-uz {ﬁ'}:::u +{p, );-uz (v ); Uz E:-_:;z = h:‘ { Vr! ”V;-_:I)

= B (00 Vi KD L+ Y~ {22 Ve 4, HY s
+8 1t a, (Vi Fiue —Vian uz) [U }ﬂ 4y T & L’E 1z

=a {(ﬁ' ;-uz‘{" ).H‘I} (P :::.fz (ﬁ'}::};;

+(P2 )33 (87 = B (9] =V (P ) ()5

=l
- =T

= h_l ':"'H'V:-l)"‘{(FL };-l'z‘HI }(f"h-m {(F:L-uz +a, ]{" ):-uz
+gj urta, (V Y _;H-uz puz —uz) ED )nf,-'z + a, i”}jdfz
== L:-;ft"‘ﬂ' {{ﬁ'];qxz (” ;-1.13}

rz-(Pi ;-1;2 (ﬁ')j::u ~(P2 J—Uz(” )_;-:fz'l‘

h;‘ (v~ - L T+ )_;_1;2 {”L-uz "‘E::Lz

IR N TR T AN U7 DR (P30 JUNUM (Lo (0 AP 1) e
F 8 ¥ (Vi Fa =V ,rn-rlxz) R, (2.36)
where, %y == L1y +@, {0 Y~ Vo)

Apain from Lhe equmion (2.35) we get
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| - a
th’fp; ~ ot e Y e, N Y - Y e, S,

+{ps ):-Hl ("’2 E—Iﬂ + (Pa ):*;u (“2 l:'-uz
=

a1 n
ta, ("1 12 E;-wz B iz B~ P_, M2 f;-:u""P,-uz Sh)

M:"tl” {{..-f;v}_,f._:.rz {ug -h'l}

where, M7l = oK (B = Pt e (2 A PV~ (23 V7 (g

1 - L] o m=idy " = ]
= _f-’_hil (p; =P }"‘{(P Vs +a, }(z@)ruz “‘{(Pa X D ta }(”g}f-“z

+(p5}:-uz[‘?2];_.1.rz +(P;,)j,”1[“2r_m

+a, (U, 8 N ::':xz =P S+ P S un =T 00 (237
where, T, = - M™, +a, { UYL - ),

The coresponding boundary conditions (2,263 become

=0 =0 p=—(1+5) P+ (144) P gg

=0 gl=0 } (2.38)
If we assume ], f’l, V) ,gJ ,p_, ! 1o be known for 0% f<.J, equations (2.27)

to (2.35) and (2.36) - (2.37'} form a system of 5] + 5 mon lincar equations for the
solutions of the 55 + 5 unknowns { f;, uy, v} ,g,,p7 ), i =012 ...J. These non
linear systems of algebric equations are to be linearized by Newton’s Quassy
linearization methpd. We define the ferates [f”,uj,vj,gj,pJ },i=0,1,2..N
with initial values equal those at the previous x-station (which is usually the best
initial avaitable). For the hipher ilerales we set

fﬂ+l}: L{n +5 fjp} (2.39)

™ =y 4 5 u? (2.40)
W 2y +51.{n (2.41)
gi=g¥+6 gm (2.42)
P =pthys pu} (2.43)
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Now by substituting the right hand sides of the sbove equations in place of f,°, 7,
vj-' and g}' in equations (2.31} — (2.33) and in equations (2.36) — (2.37} dropping Lhe
terms that arc quadratic in & /; , 8w}, 8}, & p). This procedure yields the following

linear system of algebraic equations:

oS f0_ o Jf”’—-—-—{ O+ 5u? 4 +5Hff_’1]

it T3 h; N {0 (244)
5[ 5)'_:"—2"{511, + 6w, )=(n);
Where (r;), =/ - f" +Bul,,
(2.45)
Sul’ - 5u'? - (auf" + &V )=(r,),
where,(r,), -H{” u{” +h ‘r’i?m
58— 54 -2 S (697 + 8 )=, (2.46)

Where (1), = 3; - Em +1"';Pj:}u2
B 4857 v =)+ )i + U s + 5N}
‘{(PJJ:-M +Z } {{”1 PR IL )?1”2} + Eﬂnz + 53;—1;2

+a, (2 8 Wi~ (0 a + V200 = R
= B+ 52 v, - D)+ {(BYn + @, ) -;{(n Y+ 0+ 804)
{(ﬁ"}”—}uz + %(Jﬂ”’c‘»"(v}“ +VPE(NY + FA80) + vﬁ’f‘ﬁ(ﬁfﬂ.} |
(P Y +a.,}{(u W +308) +u 6007 20 +%tﬁg§" +5gih,
{ Tl e+ {EJ"‘"+5L‘17{) v + V0 S "_I‘n}= R
=5}, 5V +(s;), 6V +(s5), 8 f10 +(s,), 8 11 +(85), B u’
+(5); 5”;-1"‘(31)1 '-'Fgm +(5y), JE_E;I-}I +(5); .0+ (8); .0=(r, ),

where, {7, ) ;= R;j.rz "'{h_ (‘,U} (‘} )"'{(P]) antd )(ﬁ)?ﬂuz}

311 .1 -t
+({Pz}j-m+aa)(” );-)1;1 e (ﬂ 1!1"': = —1rz""fdwz) K ;..uz

(247

Thus the coefficier of momentum equation is
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(SIJ;':'&_:{*' 2 L“—.._a“ _.F—;tfz
(5,), =—‘ﬁ;‘+&ﬂ;__fm ﬂ:lt'z
P 4
5= P2 e,
(P )i ¥y oy 1
(5.}, = %vﬁ_ﬂ +5@,Van
{.?5)}: _ Lr"?};-zfz + &’Jh—rfz uj . ‘1,-,11::
+
{-ﬁ,} PO &’?r- 2 b r -1z j-r _ Ct‘ﬂi.l’;_f
(s;),=0.5
(s:);=0.5
{S‘}}J =0
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(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
(2.55)
(2.56)
(2.57)

Here the coefficients (s,), and(s,,), , which is zero in this case, are included here for

the generality.

Similarly by using the exquations {2.39) - (2.43) we get the equation (2.38) in the

fotlowing form:

(1), 57 +(,), 500 +(6,), 819 + (1), 55+ (1), 86

+(t), o' (1), B+ 4y, }Jf:'.Fvo"[‘L1 +(t, }jﬁg”’+(rm} Egj” =(n},

(P nta,

2 U

n 1 = ] J
where (), =T =50~ P~

(p.'t)’!—]fz +d " ic) » P
L {rh - _
+ ) {"g}J—lrz {Fs)rm (VI)J e (Pﬁ};-lgz (" );_;;2
- - : H-i
-, ("ﬁm.‘f ;—II i I‘G—:mg jf—juz Pffnlrz ;-If 1t P .ﬂfz
Again the cocfficient of energy equation is
| (P, }j-nz +&,

=5 % g0, fh
), =—%h} R }:”'f e gy —%a., i
(t,); = P * G *’"; = pf,—"+-%a 2T
(14),,=£f'—);";ipj?.+ 24, P}l

I8

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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(1), =T@3_)j*’2£ﬂgjﬂ+(ps)’_m u,+ ;r.r Py (2.63}
), == PRI g0 ()t + S, 85 @
(), =(ps Y 0v) (2.65)
(), ={p: Y1V (2.66)
(9 :-(—-Pi}:%—miuf}— %anu::f,-z (2.67)
oy =~ T2 e Lo, 2.68)
The boundary conditions {2.3%) become

Sf7 =0, Sul =0, 60 =S|(+£) 485 gy ] 6

Sut =0,5g7 =0
Which fust express Lhe requirement for Lthe boundary conditions to remain during the

ieration process.
Now the system of linear equalions (2.44) - (2.47), (2.58) together with Lhe boundary

conditions (2.69) can written in a block matrix from a coefficient matrix, which are
solved by modified ‘Keller Box® methods especially introduced by Keller[36] . Later,
this method has been used mos1 eMiciently by Cebeci and Bradshaw [37) and recenlly
by Hoszain|12].Hoasain et a .[15],laking the initial iteration to be given by convergent
solution at { = {.;. Resulis are shown in graphical form by using the numerical values
obtaimed from Lhe above lechnique. The solutions of the above equations (2.20) and
(2.21) 1ogether with the boundary conditions (2.22) enable us to calculate the skin
friction t and the rate of heat transfer 8 at Lhe surface in the boundary layer from the

foliowing relations:
T =x""(1+x)"*’f (0. x) (2.70)
B=x"" (1+x)"° R(0.x) (2.71)

2.5 Results end Discuselon:

Equations (2.20) and (2.21) subject to the boundary conditions (2.22) are solved
numerically by using a very efficient implicit finite difference method logether wilh
Keller-box method. Numerical solutions are oblained for the flmd having Prandt
number Pr= (0.05, 0.7, 1.0, 1,74, 5.4, 4.24, 2.55) and for wide range of vafues of Lhe
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magnetic parameter M = (0.2,0.5,0.8,1.0), dissipalion parameter N = (0.1, 0.3, 0.5, (.9,
0.02, 0.04, 0.08, 0.2} and the joule hearing parameter J = (0.2, 0.5, 0.8, 1.0, 0.02, 0,05,
0.08, 0.1). If we know the values of the funclions fin,x}, h{n,x) and Lheir derivatives
for different values of the Prandtl number Pr | the magnetic parameter M, the viscous
dissipation parameter N and the joule heating parameter J. We may calculate the
numerical values of (he surface lemperature 8(0,x) and the velocity pradient £'(0,x) at
the surface thar are important from the physical point of view. Numerical values of the
surface temperature §0,x) and the velocity gradient £(0,x) are illustrated in fig. 2.2
and fig. 2.3 respeclively againsl the axial distance x in the interval [0,30] for different
values of the viscous dissipation parameter N = (0.02, 0.04, 0.08, 0.2) for the HAuid
having Prandtl number Pr = 0.73 and the magnetic parameter M = 0.5 and the joule
heating parameter J = 0.05, In fig. 2.4 and 2.5, the share stress coe(ficient £¢0,x) and
the surface temperature %0,x) are depicted praphically for th(Yerent values of Prandtl
number Pr= (0.7, 1.0, 1.74, 5.4, 4.24, 2.55) when the value of the magnetic parameter
M = 0.5, dissipation parameter N = 0.05 and joule heating parameter J = 0.05. In Ag.
2.6 and 2.7, the velocity gradient £°(0,x) and (he surface lemperature 8(0,x) are shown
graphically for differem values of magnelic parameter M = (0.2, (.3, 0.8, 1.0) when the
value of Prandtl mumber Pr = .73, dissipation parameter N = 0.5 and the joule heating
parameter ¥ = 0.05. Fig. 3.8 and 3.9 shows the effect of joule healing parameter J =
{0.02, 0.05, 0.08, 0.10) for Prandtl number Pr = 0.73, dissipation paameter N = 0.03
and for the magnetic parameler M = 0.05 on the skin frction and the surface
temperature distribution. Fig. 2.2 shows that increase in the value of the dissipalion
parameter N leads to increase of the value of the skin {riclion coefftcient F(0.x). Again
from fig. 2.3 il can be observed that the increase of the viscous dissipation parameter N
laads to increase of the surface temparture #0,x). From [ig. 2.4, it is observed that ihe
ghare stress coefficient 17(0,x) decreases monotonically with the increase of the Prandil
mumber Pr* = (0.7, 1.0, 1.74) and from the fig. 2.5, the same result is observed on the
surface temperature due o increase of the Prandtl number Pr.

Further {from fig. 2.6 it is clear that the velocity gradient £'(0,x) decreases with the
increasing value of the magnelic parameter M = (0.2, 0.5, 0.8, 1.0 when Prandd
number Pr = 0.73, dissipalion parameter N = 0.5 and the joule healing parameter J =
0.005 and from fig. 2.7 the same result is obtained on the surface lemperature
distribution due to increase of magnelic parameter. From fig. 2.8 we ohserve that the
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skin friction coefficient £'(0,x} increases with the increase of joule heating parameter J
= {0.02, 0.05, .08, 0.10) and from fig. 2.% the same result is observed on the surface
lemperature distribution due to increase of the joule healing parameter J. Fig. 2.10 and
Fig. 2.11 deal with the effect of the viscous dissipation parameter N = (0.1, 0.3, 4.5,
(.9} when Prand(l number Pr = (.73, magnetic parameter M= (1.3 and the joule heating
parameter J= 0.03 on the velocity profile F{n,x) and the temperature profile 8(n,x). Fig.
2.12 illustrared graphicatly lhe velocity profile for different values of the Prandi
number Pr = (.05, §.70, 1.0 while the mapnetic parameter M = 0.5, dissipation
parameter N = (.05 and the joule heating parameter J = 0.05, corresponding
distribution of the temperature profite B(n,x) is shown in fg. 2.13. Fig. 2.14 depicis the
velocity profile for different values of the magnetic parameter M = (0.2, 0.5, 0.8, 1.0)
when Prandil number Pr = 0.73, dissipation paramcter N = 1.0 and the jouie heating
parameter J = .05 and the corresponding temperature distribution 8(n.x) 15 shown in
fig. 2.15.

In fig. 2.16 and fig. 2.17 we have shown the effect of the joule heating parameter J =
(0.2, 0.5, 0.8, 1.0% for Prand! number Pr = 0.73, dissipanon parameter W = 0.05 and
mapnetic parameter M = 0.05 on the velocity profile f(n,x) and temperature profile
B(n.x). From fig. 2.10 we sce thai the velocity profile F{n,x) increases slowly with the
increase of the dissipation parameter N and in fig. 2.11 , small increment is shown on
the temperature profile 8{n.x) for increasing values of N. From fig. 2.12, it is revealed
that if the Prandtl number Pr increases the velocity of the fluid decreases. On the other
hand, from fig. 2.13, we see that the sams resul is hold for lemperature profile within
the boundary fayer due to increase of the Prandti number Pr. From fig. 2.14, we
observe that (he velocity profile decreases monotonically with the increase of the
magnetic parameter M while the of the Prandt! number Pr, dissipation parameter N
and the joule heating paramieter J are respectively 0.73, 1.0 and 0.05. Opposite result is
gshown i fig. 2.15 for wemperature distribution for the same values of the magnetic
parameter M. Again in fig. 2.16, we see that the velocity of the fluid f/(n,x) increases
with the increase of the values of the joule heating pammeter J when Prandl] number
Pr = 0.73, dissipation parameter N = 0,05 and the magnetic parameter M = 0.05. The
same result is obtained in fig, 2.17 for temperature distribuion for the same values of
the jouie heating parameter 3.
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Conclusionsa:

The effect of different values of dissipation parameter N on the skin friction coeflicient
and surface lernperature disiribution, velocity and temperature profiles while magnetic
parameter M = 0.5, Prandil number Pr =(1.73 and joule heating parameter J =0.03 and
akso the effect of different values of magnetic parameter M, Prandt! number Pr and
joule heating parameter } on the skin friclion coefliciemt, surface iemperamure
distribution and also on the velocity distribution as well as temperature distribution
have been imvestigated theoretically. The transformed non similar boundary layer
equations together with the boundary condition based on conduction and comvection
are solved numerically by the very efficient implicit finite difference method known as
Keller box method. From the present investigation it may be drawn the following
conclusions:

i. The skin friction coeficient, the surface temperature distribution, the velocity
and the temperature distribulion increase for incressing value of the viscous
dissipation parameter.

2. An increase in the values of the Prandil number Pr leads lo decrease the skin
friction coefficient, the surface tempermture distribution, the velocity and the
temperature digtribution over the whole boundary layer.

3. The skin friction coefficient, the surface temperature distribution and the
velocity profile decrease while the tomperature profile increases for the
increased values of the magnetic parameter M.

4. It has been observed that skin friction coefficient, the surface ictnperahure
distribution, the velocity and the lemperature distribution increase with the

increase of the joule heating paramster 1.
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Fig. 2.2: Skin friction for different values of Dissipation Parameler when Prandt|
number Pr = 0.73, magnetic parameter Af = 0.5 and Joule Healing Parameter J=003
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Fig 2.3: Surface temperature disiribution for different vatves of dissipation parameter
when Prandtl number Pr = 0,73, magnetic parameter M = 0.5 and Joule Heating
Paramelct J = 0.05
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Fig. 2.4: Skin frciion for different value; of Prandll number when magnetic parameter
A =105, dissipation parameter N = 0.05 and Joule heating Paramcter J= 0.05
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Fig. 2.5 Surluce temperature disiribution for different values of Prandll number when
magnctic parameler Af = 0.5, dissipation parameter N = 0.05 and Joule heating
Parameter J= (.05
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Fig. 2.6: Skin friction for different values of magnelic parameter when dissipatlion
parameter N — 0.5 Prandtl number £ = 0.05 and Joule Healing Parameter ./ = (1.003
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Fig. 2.7: Surface temperature distnibution for different values of mapnetic parameter

when dissipation parameter ¥ = 0.5 Prandll number Pr =0.73 and Joule Heating

Paramcter = .05
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Fig. 2.9: Surface temperature distribution for different values of Joule Healing
Parameict when Pr=0.73 and Dissipation Parameter ¥ = 0.05 and
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Fig. 2.10: Veiocity profile for different valucs of dissipation parameter when Prandtl
number Pr = 0.73 , magnelic parameter Af= 0.5 and Joule Heating Parameter J = 0.00
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Fig. 2.12: Velocity profile for different values of Prandt number when magnctic
puramneter A = (.3, dissipation parameter ¥ = (.05 and
Joule Heating Parameter J = 0.05
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Fig. 2.14: Velocity profile for different values of magnetic parameter when dissipation
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dissipation parameter A = 1.0, Prandil number Pr =0.73 and
Joule Heating Parameter J= (.05
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Effects of Conduction and Convection on Magneto
hydrodynamic Flow with Viscous Dissipation from a Vertical
Flat Plate !

3.1 Introduction
This chapter describes the cftect of conduction and convection on  magnelo

hydrodynamic flow with viscous dissipation from a vertical fAac plate. Using the
appropriate transformations, the goveming boundary layer cquetions are fransformed
into a non-dimensional form which are solved numerically by using 2 finite difference
method known as Keller box method. We have represented the effect of the dissipation
parameter N, Prandii number Pr and the magnetic paramcier M on the velocily and
temperature including the skin friction cocfficient and surface wmperature cocfhicient.
The compleie derivaiions of the governing cquation for the natural convection fiow

and heat transfer including the method of sclutions logether with Lhe results and

discussions are presented.

3.2 Governing equations of the Mow:

We consider (he steady 1wo dimensional laminar free convection boundary layer flow
of a viscous incompressible and electrically conducting fluid along a side of a verlical
flat plate of thickness 'b" insulaled on the edges with temperature 'y maintained on the

other side. The Tlow configuration and the coordinates system are shown in figure 3.1.
X

A T
Upper T} K, w— Intorface

kr H.{J
=T 1 l
Lonwar v

surface™ TIxL0)

=

Fig. 2.3: Physical model and coordinats systame
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The equations govermng the flow are

fu ov

—+——=0 31
dx gy @)
du N du " & u A .B{T T } af *u G2)
u—_— - - =1 -
&x 3y dy’ v o
~ E H
WLy Lk 0T v Ou, (3.3)
ax o cc, Oy c, Oy

The appropriate boundary conditions to be satistied by the above equations are

w0 v—Oaty =8 {3 4a)
07— asy—»w (34b)

The temperature and the heat flux are required continucus at the interface for the

coupled conditions and at the interface we must have

k. 8T ol
T o=k (4, (33)
k_r’ 5}, £ ]

Where k. and k; are the thermal conductivity of the solid and the Auid respectively

The temperature T., in the solid is given by

T, =T(ro)-{T - r{x,a}}% (3.6)

Where T{x 0} is the unknown temperature at the interface to be determined from the
solutions of the equations. We observed that the equations (3.1) — (3.3) together with
the boundary conditions (3 4) — {(3.5) are non-hnear parmal, differentizl equaticns. In
the following scctions the solutions methods of these equations are discussed in

details.

3.3 Transformation of the govemning equations:

Equations (3.1} — (3.3) may now be non-dimensionalized by using the following

dimensionless dependent and independent variables:

LY}

c X=— pgo 0 A-  w -T-L v
€=y pdiws pd T = Tt =0 L= d -1} 67

4
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As the problem of natural convection, its parbelic character has no characteristic
lengih; L has been defined in terms of v and g which is the intrinsic properlies of the
system, The reference fength along the 'y’ direction has been modified by a factor a4
in order to eliminste this quantity from the dimensionless equations and the boundary
conditions.

The magneto hydrodynamic field in the fluid is govemed by the boundary layer
equations, which is the non-dimensional form obtained by introducing the

dimensionless variables described in (3.7) may be written as

ou v,
&x By (-8
@+ E+M -Eiuﬂ?
a8 a0 1 2% au ,
Y ke o — + HN—
"ox T '3y P By fayj (3.10)
v'd
Where & = , the di ionl g dissipatt le
ere m imensionless viscous dissipation parameler
al ‘I N _
M= "'};;?u_ , the dimensionless magnelic parameter

and Pr =% , lhe Prandtl number
i

The corresponding boundary conditions (3.4) — {3.6) lake the following form:

a8
u=v=pl-j=p_— at y=o (3.11a)
dy
U=+ V= 0 af Y- w® {3.11b)

Where p is the conjugate conduction pararneter given by p = ka /&, Yo/ L)

Here the coupling parameter ‘p' governs the described problem. The order of
magnitude of 'p' depends actually on (/L}, (k/kg and 4" being Lhe order of unity. The
term (A1) attains values much greater than one because of L being small. In case of
air, {k;/k,) becomes very small when the verlical plate is highly conductive i.e. & >> J
different but not always a small such as glass. Therefore in different cases p' is
different bul not aiwavs a small number. In the preseot investigation we have

considered p = ! which is accepted lor (b/L) of Ofk/ky.
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To solve the equations (3.8) ~ (3.10) subject (o the boundary conditions (3.11}), the
following transformations are imroduced for the flow region surting from up siream 1o
down stream;

v =2+ flg k= T o= x " (142 P Hpn)  GAD)

Here 1 is the dimensionless similarity variable and ‘¥ is the stream function which
2

satisfies the equation of continuity and u=%}_ﬁ,v=— ; and h{nx) is ithe

dimensionless temperature. Substituling equation {3.12) into equations (3.9) and (3.10)
we pet the following Lransformed non dimensional equations

&

e K 6 *+ ! ! ; ¢
J6+15x +5x oM DO F wp=x ( f %--f E) (3.13)

I g T’

P I6 4+ .
R L . WV SN RV R ——Zf; (3.12)
X

200 + ) 50+ %) B

I

In the above equations the primes denote differentialion with respect to .
The boundary conditions (3.11) then take the following form:

fix,0)= ff{x,n]=ﬂ,hJ(x.u)='U+ "+ x¥ (14 1) bz, 0) } (3.15)
S em)=0h (x0)=0

3.4 Mathod of Solution

To el the solutions of the parabolic differential equations (3.13) and (3.14) along with
the boundary condilion (3.13), we shall employ & most practical, an efficient and
accurate solution technique, known as implicit finite difference method together with
Keller box method. Since a good description of this method has been discussed in
details in chapter-2, further discussion is disregarded here. Numerical resuils obtmined

are presented 1n the following section.

3.5 Results and discussions

Here we have investigated the effect of conduction and convection on magneto
hydrodynamic flow with viscous dissipation and joule healing from & vertical flat plare
of thickness b insulated ou the edges with temperature Ty, maintained on the other side
in the presence ol a uniformly distribuled transverse magnetic field, Solutions are

M
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obtained for the fluid having Prandud oumber Pr = (0.05, 0.73, 1.0) and for a wide
range of the values of 1he values of the viscous dissipalion parameter N = {0.2, 0.5,
0.8, 1.0) and the magnetic parameter M = (0.2,20.5,0.8,1.0). If we know 1he values of
the functions f{n.x), h{n,x) and their derivatives for dilferent values of 1he Pramdul
number Pr, the viscous dissipation parameter N and the magnelic parameter M, we
may calculate the numerical values of the surface wemperature 8{0x) and the shear
stress co-efficient f'{0,x) at the surface that are imporiant from the physical point of
view. Numerical values of the velocity gradient f'{o,x) mnd the surface temperature
8(0,x) are illustrated graphically in fig. 3.2 and fig. 3.3 respectively against the axial
distance x in the interval [0, 30] for different values of Lhe viscous dissipation
parameter N = (0.2, 0.5, 0.8, 1.0) for the fluid having Prandil number Pr = 0.05 and the
magnetic parameter M = 0.05. In fig. 3.4 and 3.5, the share siress co-eflicient F'(0,x)
and 1he surface temperature 8(0.x) are depicted graphically for differem values of the
Prandtl number Pr= (0.05, 0.7, 1.0) whea this viscous dissipation parameter N = 0,005
the magnetic parameter M = 0.005. The values of the PrandU number Pr are waken to
be 0.05 that corresponds physically the sodium, (.7 thal comresponds to air and 1.0
corresponding to electrolyle solutions such as salt water. In fig. 3.6 and fig. 3.7, the
skin friction f{ox) and the surface lemperature distribwtion ©(0.x) are shown
graphically for different values of the magnetic parameter M = (0.2,0.5,0.8,1.0) when
Prandll mumber Pr = 0.05 and the viscous dissipation parameter N = 1.05. From fig.
3.2 it can be observed that increase in the value of the viscous dissipation parameter N
leads to increase of the skin friction f{0,x). Again fig. 3.3 shows thal the increase of
the viscous parameler N leads to increase of the surface temperatare 8(0.x). From fig.
3.4, it is shown that the skin friction f{0,x} decreases monotonically with the increase
of the Prandt! number Pr = {0.05, 0.7, 1.0} and from the fig. 3.5 the same result is
observed on the surface temperature distribution 8{(0,x) due o increase of the value of
the Prandl] number when the value of the dissipation parameter N = 0.005 ond the
value of the magnetic parameter M= 0.005. Further from fg. 3.6 it is clear that the
shear stress co-efficient f* (0,x) decreases wids the increase of the magnetic parameter
M = (0.2,0.5,0.8,1.0) and from fig. 3.7 the same result is observed on the suriace
\emperature distribution due to increase of the value of 1he magnetic parameter. Fig.
3.8 and fig. 3.9 dea! with the effect of the viscous dissipation parameter N = (0.2, 0.5,
0.8, 1.0} for Prand( number Pr = .73 and for the magnetic parameter M = (.05 on the
velocity profile £(71.X) and the temperature profite for 8 (n.x). Fig. 3.10 depicts the
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velocity profile for differermt values of the Prandtl number Pr = (0.65, 0.7, 1.0} when
the viscous dissipation parameter N = 0.2 and the magnetic parameler M = 10,
Cormesponding distribution of the lemperature profiie 9(n,x} in the fluid is shown in
fig. 3.11. Again in fig. 3.12 and in fig. 3.13, the velocity profile and the temperature
profile are shown graphically for different values of the magnetic parameter M = (0.2,
0.5, 0.8, 1.0} when Prandtl number Pr = 0.7 and the dissipation parameter N = 0.2.

From fig. 3.8, it is revealed that the velocity profile F(n,x) increnses slowly with the
increase of the viscous dissipation N and the same result is observed in fig. 3.9 for
temperature for the same values of the viscous disripation parameter N. From fig. 3.10,
it can be seen that if the Prandll number increases, the velocity of the fluid decreages.
On the other hand, from fig. 3,11 we observe that the temperature profile decreases
within the boundary layer due to increase of the Prandtl number Pr. From fig, 3.12, it
is clear that the velocity profile decreases monolonically with the increase of the
magnetic parameter M when the values of the Prandtl mumber Pr and the dissipation
parameter N are respectively 0.7 and 0.2. Opposite result is shown in fig. 3.13 for
temperature distribution for the same values of the magnetic parmneter M.

3.5 Conclusion

The effect of viscons dissipation and the magnetic parameter N and M respectively for
small prandtl number Pr = (0.05, 0.7, 1.0% on the convective natural convection
boundary layer flow have been investigaled. The ransformed dimensionless boundary
faver equations governing he flow are solved numerically by using Ithf: very efficient
implicit finite dilference method known as Ketler box acheme. The coupled elfect of
nanmal convection and conduction required that the temperature and the heat {lux be
continuous a1 the interface. Frimm present investigation, the [oHowing conclusions may

be drawn:

I. The skin friction coefficient, the surface temperature distribution, the velocity
distribution and ihe iemperature distribulion increase for increasiang value of

the viscous dissipalion parameier M.

2. It has been observed that the skin friction coefficient ,the surface lemperatire
distribution ,2the velocity distribution and the temperature distribution over the
whale boundary layer decrease wilh the increase of the prandll number Pr.

k.
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3. Increased value of the magnetic parameter M leads to decrease the skin friction
coefficienl, the surface temperature disiribulion and the velocity distribution
while the temperature distribution increases.
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Fig. 3.2: Skin friction for different values of Dissipation Parameter when
Prandit pumber Pr = 0.05 and Magnetic parameter M = 0.05
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when Prandil number Pr = 0.05 and Magnetic parameter M = 0.05
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Fig. 3.6: Skin friction for different values of and Magnetic parameter
when Pr = 0.05 and Dissipation Parameter ¥ = 1.05

25
4
/s
s
20 ry
r s -
s s
- M - "
- — = 10 4 -
15 ————. LE o
e — 05 - f.-" -
% 02 e T
= e [
SN R e =l - —
o
-
Ve
0SSk
0 1 [ 1 1 | ] ]
%.n 40 #0120 160 200 MO IR0
X

Fig. 3.7 Surface temperature distribution for difTercnt valves of Magnetic
paramneter M when #, =0.05 and Dissipation Parameter ¥ = 1.05

40



Chapter 3

1] o

Fonx)

0z

1 1 S 1
ﬁ%ﬂ zh 40 31 a0

7
Fig. 3.8: Yelocity profile for dilferem values of Dissipation parameter when
Prandtl number Pr =0.73 and Magnetic parameter M = 0.05
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Fig. 3.9: Temperature distribution for different values of Dissipation parameler
when Prandti number Pr = 0.73 and Magnetic parameter M = 0,03
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Fig. 3.10: Velocity profile for different values of Prandtl number when and Magnetic
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Magnelic parameter M = 0.05 and Dissipation Parameter N= 0.2
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Conclusions

In this theses, conjugate effect of conduction and convection with natural convection
flow on steady two dimensional magneto hydrodynamic flows with viscous dissipation
and joule heating have been investigated. The basic equations are transformed to non
similar boundary layer equalions by using the appropriate Lransformations which have
been solved numerically using a ‘very efficient implicit finite difference method known
as Keller box method. Here we have focused our attention on the evolution of the skin
friction, the surface temperature diswribution, velocity distribulion as well as
wmperature distribution for a selection of parameters set consisting of the Prandtl

number Pr, magnetic parameter M, the viscous dissipation parameter N and the joule

heating parameter J.

From chapter 2

The effect of differer values of diesipation parameter N on the skin friction coefficient
and surface tempemture distribution, velocity and temperature profiles while magnetic
parameter M = 0.5, Prandtl number Pr =0,73 and joule heating parameter J =0.05 and
also the effect of different values of magneric parameter M, Prandill mumber ard joule
healing parameter J on the skin friction coefficient, surface temperature distribution
and also on the velocity distribution as well as lemperature distnbution have been
investigaied. The transformed nor similar boundary layer equations together with the
boundary condilions based on conduclion and conveclion are solved numerically by
1the very efficient implicit finite difference method known as Keller box method. From
the presenl investigation the following conclusions may be drawn:

1. The skin friction coefficient, the surface temperature distribution, the velocity
and the wmperature distribution increase for increasing value of the viscous
dissipation parameter.

2. An increase in the values of the Prandil mumber Pr leads to decrease the skin
friction coefficiem, the surface lemperafure distriburion, the velocity and the
temperature distribulion over the whole boundary layer.
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3, The skin frction coefficienl, the surface temperature distribution and the
velocity profile decrease while the emperature profile increases for the
increased vatues of the magnetic parameter M.

4, Tt has been observed that skin friction coeflicient, the surlace lemperature
distribution, the velocity and the femperature distribution increase with the
increase of the joule healing parameter J.

From chapter 3

The effect of viscous disstpation and the magnetic parameter N and M respectively for
smail prandtl number Pr = (0.05, 0.7, 1.0) on the convective natural convection
boundary layer flow have been investigated. The transformed dimensioniess boundary
layer equations governing the flow are sotved numerically by using the very efficient
implicit finite difference method known as Keller box scheme, The coupled effect of
najural convection and conduction required that the temperature and the heat flux be
continuous at the interface. From present investigatian, the following conclusions may
be dravn:

1. The skin friction coefficient, the surface temperature distribution, the velocity
distribution and the temperalure distribution increase for increasing value of

the viscous dissipalion parumeter M.

2. It has been observed that Lthe skin focdon coefficient, the surdace lemperature
distribution, the velociry distribulion and the teinperature distnibution over Lhe
whole boundary layer decrease with the increase of the prandtl number Pr.

3. Increased value of the magnetic parameter M leads to decrease 1he skin friction
coefhicierd, the surface temperature distribution and the velocity distnbution
while the temperature distribution incrzases.
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