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Abstract
This work provides a comprehensive theoretical analysis of a two-dimensional

unsteady free convection flow of an incompressible, visco-elastic fluid past an

infinite vertical porous plate. Solutions for the zero~.orderperturbation velocity

profile, the ,~.fi~t ~order perturbation velocity profile and temperature profile in

closed form are obtained with the help of Laplace transform technique.

It covers the area of boundary layer flow of viscous, incompressible and

electrically conducting fluid in the presence of strong magnetic field along a

heated vertical flat plate. The ensuing boundary layer flows considered here are

governed by a non-similar set of parabolic equations. Local non-similarity method

is employed to investigate the solutions of boundary layer equations representing

the flow and temperature fields. The numerical solutions are carried out for

Prandtl's number, 0.1, 0.72,1.0,1.5 and 2.0 which arc appropriate for ditIerent

types of liquid metals and for different values ofmagnetic field parameter, M.

Finally, a problem on free convection boundary layer flow of visco-elastic

incompressible and electrically conducting fluid past an infinite vertical porous

plate along an isothermal vertical surface are studied in the presence of a

transverse magnetic field. The results thus obtained have a graphical illustration

for different values of the magnetic field parameter M, transpiration parameter a,

Grashofnumber Gr, Visco-elasticity parameter s and the Prandtl number Pro
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Introduction
Magnetofluid dynamics deals with "the

fluids in electric and magnetic fields. It unifies a framework bet\~:een the

electromagnetic and fluid dynamic theories to yield a description of the concurrent

effects of magnetic field on the flow and the flow on the magnetic field. There are

many natural phenomena and engineering problems susceptible to Magnetofluid

dynamics analysis. It is useful in astrophysics because much of the universe is

filled ,vith widely spaced, charged particles and permeated by magnetic fields, and

so the continuum assumption becomes applicable.

The natural convection boundary layer flow of an electrically conducting

fluid up a hot vertical wall in the presence of strong magnetic field has been

studieu by Sing and Cowling (1963), Sparrow and Cess (1961), Riley (1964) and

Kuiken (1970) because of its application in the nuclear engineering in cotUlection

with the cooling of reactors. Sometimes it becomes necessary to control the

connective boundary-layer flows by lnjecting or withdrawing fluid through a

porous heated boundary wall. Since, this can enhance heating(or cooling) the

system and can help to delay the transition from the laminar flow. Most of the

work on the effect of transpiration on free convection boundary layer. had been

confined to cases where there is a prescribed wall temperature. The power law

variations of the plate temperature and the transpiration velocity considered by

Eichhorn (1960) are those for which similarity solutions exist.

Sparrow and Cess (1961) first considered the case of unilorm

transpiration velocity through an isothermal vertical wall. They looked at Lhe

problem of a uniform plate temperature and transpiration velocity. The proble~,
~

was considered in more detail by Merkin (1972) who obtained asymptotic

solution, valid at large distances from the leading edge. For both suction and

•



blowing on general body shapes a similarity solution had been investigated by

Merkin (1975).

A transformation of the equations for general blowing and wall temperature

variations was studied by Vedanayagam el. eL (1980). Clark and Riley (1975,

1976) Lin and Yu (1988) studied the case of heated isothennal horizontal surface

with transpiration in detail and recently by Chaudhary and Merkin (1993). Since

the method proposed by Cess (l961) had a serious drawback in the results it

provides us low accuracy at moderate values of x, Sparrow and Yu (1971)

introduced a method known as local non-similarity method for the thermal

boundary layer. This technique is locally autonomous. Since solutions of the non-

similarity equations at any specified steamwisc station can be obtained without

first obtaining upstream solutions. This local non-similarity method has been used

efficiently by Chen and Sparrow (1976), Minkowycz and Sparrow (1978), Chen

(1988) and very recently by Hossain et.

The presence of roughness on the flat surface disturbs the flow and alters

the heat transfer rate. Using a simple transformation on the governing equation for

the flow considered here, non-similar boundary layer equations for a wavy surface

are derived. The present study deals with the effects of the magnetic field

parameter, M and the amplitude of the transpiration parameter a, on the velocity

field, the temperature field and local Nusselt lltunber on the flow characteristics.

A study of considerable importance in areas concerned with the energy

generation and its utilization is that of heat transfer. The study of heat transfer has,

over the past several years, been related to a wide variety of problems ,each with

its own demands of precision and elaboration in the understanding ofthe particular

processes of interest. Atmospheric, geophysical and environmental problems in

connection with heat rejection, space research and manufacturing system require

such type of studies.

,
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In the diversity of studies related to heat transfer, considerable effort directed at

connective mode, in which relative motion of the fluid provides an additional

mechanism for the transfer of energy.

The connective mode of heat transfer is divided into two basic processes. If

the motion of the fluid arises due to an external agent, such as th", exlemally-

imposed flow of a fluid stream over a heated object, the process is termed as

forced convection. This type of fluid flow is caused in general by a fan, blower, the

wmd or the motion oflhe heated object itself. Such problems are very frequently

encountered ill technology, \vhere thc heat tmnsfer to, or from a body is often due

to imposed flow ofa fluid at a temperature different from that oflhe body.

If. on the otherhand, no such externally induced flow is provided and the

tlow arises "naturally" due to the dIect a density diffcrence, resulting from a

temperature in a body, the process is termed as natural or free convection. The

density difference gives rise to buoyancy effects due to which the flow is

generated. A heated body cooling in ambient air generates such a flow in the

region surrounding it Similarly buoyant flow arising from heat rejection to the

atmosphere and to other ambient media, circulation's arising in heated rooms in

the almosphere, and in bodies of water causes thermal stratification of the medium.

Many other such heat transfer processes, in our natural environment as well as in

many technological applications, are included in the area of natural convection.

The flow of an incompressible V1SCOUS fluid past an impulsively started

inflllite horizontal plate, in its own plane was studied fust by Stoke's. Because of

its particular importance, it has been extended to bodies of different shapes by a
• •number of researchers. Amongst them are IIImgworth (1950), Stewartson (1951),

Hall (1969) and Elliot (1969), Illingworth (1950) considered the flow of a

compressible gas with variable viscosity near an impulsively started vertical plate

;
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and the problem was solved by the method of successive approximation. Elliot

(1969) generalized lIIingworth's (1950) problem by assuming a time-dependent

velocity and temperature for the platc but neglected the viscous dissipation.

However, in both papers, only mathematical results were derived and no physical

situationwas discussed. From the engineering point of view the physical aspects of

such Iypes of problems are impol1ant . In these two papers the t10w past an

impulsively stal1edsemi-infinite horizontal plate has been considered. Stewartson

(1951) studied it by analytical methods whereas HllH (1969) discussed the same

problem by finite-differencemethod.

Analytical studies on llllsteady laminar free-convection problems have

received much attention by many research \vorkers such as Sllrgawara and

Michiyoshi (1951 & 1952). Siegel (1958), Gebhart (1961), Chung and

Anderson (1961), Sparrow and Gregg (1960) and Yang (1960). Exact solutions

were available only for the infinite vertical plate with Prandtl number of unity and

under transient conditions of step change in either the surface temperature or the

surface heat flux. These represent asymptotic solutions expected to be valid not

only at large distances away from the leading edge, but also during a short time

interval after the commllllication of the free convection flow along a finite plate.

Exact asymptotic solution for the same problem with arbitrary surface temperature

or heat flux variations were obtained by MCDold and Yang (1962) and

Soundlllgeker (1977) . In these studies, solutions for the coupled equations

governing the flow field were obtained in eXrlctform using the Laplace transform

technique. Study of the flow of electricrl!ly conducting fluid in presence of

magnetic field across a surface is also important from the technological point of

view. Fluid flowing across a transverse magnetic field produces an

electromagnetic force. The current and the magnetic field combine to produce

force that resists the fluid's motion. TIle current also generates itself magnetic field

which distorts the original magnetic field. An opposing or pumping force~ the



fluid can be produced by applying an electric field perpendicular to the magnetic

field . The disturbance created in the magnetic field or the fluid can produce

magneto-fluid dynamics waves in upstream and downstreamwake phenomena

Cramer and Pai (1974). In natural convection boundary layer flow of a

electrically conducting fluid up a vertical wall in prescnce of a strong cross-

magnetic field has been studied by Singh and Cowling (1963). Sparrow and

Cess(1961), Riley (1964), Kuiken (1970), Wilks (1976), Hossain and Ahmed

(1990) and many others. All the above studies were confIned to forced, free and

combined forced and:free convection flow of an electrically conducting fluid along

a vertical surface in presence of a transverse strong magnetic field.

Compared with the steady state situation, there are relatively few solutions

available for the transient flow of the electrically conducting fluid in presence of a

magnetic field. Rossow (1958) investigated the problem of an infinite fla! plate

given impulsive motion in presence of transvcrse magnetic field. Latcr Gupta

(1960), Singh (1964), Pop (1970) studied the transient free convection flow in

presence of magnetic field. Recently Hossain and MandaI (1985) have

investigated the frce convection flow of an electrically conducting fluid past an

accelerated vertical porous plate with time dependent suction for an arbitrary

Prandtl number.

Studies in the visco-elastic fluid, which exhibits both viscous and elastic

properties such as bituminous, flour dough, napalm and similar jellies, polymers

and polymer melts such as nyion and many polymer solutions, arc of great interest

from the technological point of view to many researchers. Oldroyd (1950) was

the first to outline a method of formulating consecutive equations whieh would be

valid for largc deformation. The equation

d, (dV d'V]
T+A'di""iJ d/+;t, dt'



was taken as the basis for his theory which gives a liner relation between the shear

stress" , the rate of shear ~~ and their time rates of change.

The expression contains 3 constants, a viscosity J.l.and " relaxation times"

1_] and 1..2. The relaxation times obviously have the physical significance that if the

motion is suddenly stopped, the shear stress decays as exp( - ~ J and if the stress

is removed the rate of strain decays as exp( -~J.The quantity J.l. is the

Newtonian viscosity observed in the fluid at very low rates of shear. This equation

reduces to the Newtonian fluid (1..1_1..2=0) and to Maxwell fluid ("2=0) as special

case.

The boundary layer treatment for an idealized visco-elastic fluid was

introduced by Beard and Walters (1964). There has been a continued interest in

tile investigation of natural convection heat transfer of non-Newtonian fluid, which

exhibit visco-elasticity. Recently Rajagopal (1980) and others investigated the

heat transfer in the forced convection flow of a visco-clastic fluid of Walters

model. Most recently Dandpath and Gupta (t989) have investigated the flow

and heat transfer in an incompressible second order fluid caused by a stretching

sheet with a view to examining the influence of visco-elasticity on the flow and

heat transfer characteristics. The above work were confmed to the study of steady

forced convection flow. Less interest was shown in the problem of transient

forced and free convection flow of a visco-elastic fluid. Teipcl (198 t) first studied

the transient flow of non -Newtonian visco-elastic fluid for an impulsive motion of

a flat plate.

The flow-along a harmonically oscillating flat plate of the visco-elastic fluid

has been studied by Rajagopal (1983) and Panda (1979) etal . It is now a well-

Imown fact that magnetic field has stabilizing effect on the botmdary layer growth.



With this understanding, Singh (1983) and Singh (1984) have investigated the

effect of a transverse magnetic field of an electrically conducting visco-elastic

fluid past an accelerated flat ph:te of infinite extension. The effect of elasticity on

,\1Hl) flow of an elastico-viscous fluid past an accelerated plate has been

investigated. and in, analysis of the Stokes problem for the l'vlHDfree convection

flow of a visco-elastic fluid past an impulsively started vcrtical plate has been

performed employing the Llp1ace transform technique for Prandtl number 1','"1. In

this work. it is proposed to stud) the effects of free convection flow of an

electrically conducting visco- elastic fluid past an infinite venical porous plate in

presence of transverse magnetic fluid. The plate is allowed to move in its own

plane with a velocity u=Uof(t),where Uo is COllstantand f(t) is a function of time

only. In chapter 1, the energy and momentum equation of have been deduced by

introducing the non- dimensional quantities into the boundary layer equations. In

chapter 2. the energy equation has been solved for different values of Prand!l

number. The rate of heat transfer has been studied. In chapter 3, the problem of

free convection boundary layer flow of a visco-elastic fluid along an intlnite

vertical plate in presence of magnetic field has been studied. Here both impulsive

and uniformly accelerated motion of the plate have been considered. The results

for the velocity fields are shown graphically. The skin friction factor is represented

graphically and in tabular form for different values of the parameters P, (prandtl

number), M (Magni/ic field parameter), Gr(Grashof number), a(Transpiration

parameter) and S(visco-e1asticparameter). Finally the flow of visco-elastic fluid

past an infInite vertical porous plate has been studied and results are discussed in

chapter 4. The velocity profiles for impulsive and uniformly accelerated starts of

the plate are given graphically. The skin friction factor is represented graphically

and in tabular form for different values of the parameters P"S, (I, ,md Gr.

,
,
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Non-Newtonian fluids:

The Newtonian hypothesis has worked very well in explaining many

physical phenomena iu various branches of fluid dynamics. This allures us to

remark that most of fluids at least in ordinary situations behave like Newtonian

fluids. But in the recent years, especially with the introduction of polymers, it has

been found that there are fluids which show a distinct deviation from Newtonian

hypothesis. Such fluids are called non-Newtonian fluids.

There arises a strong feeling to develop new theories to explain the behavior

of different types of non-Newtonian fluids. The non-Newtonian fluids are broadly

classified into the following three categories:

(i) Viscous fluids,

(ii) Visco-plastic fluids and perfectly plastic materials, and

(iii) Visco-elastic fluids

The idea is that the stress tensor is isotropic when the fluid is at rest, is

followed for all fluids whether it is a Newtonian fluid or a non-Newtonian fluid.

Therefore we define T,J == - PD'I +P'j where p is the pressure, P'
J
is zero when

the fluid is at rest and 1;, is the stress tensor .When a non-Newtonian flnid is

undergoing a general deformation then p'J may not be a deviatric stress tensor and

so its values is other than.

(i) Viscous fluids: The term "viscous" has come from the internal friction

between the fluid layers. In Newtonian fluids the strain-rate depends linearly on

the applied stress. Moreover, when the fluid is at rest the stress tensor is isotropic

and thus the results in pressure only. So one naturally asks why not take the stress

tensor as a general function of the strain-rate tensor but which is isotropic when the



strain -rate is zero. Well a fluid in which the stress tensor PI} is a given function of

the strain-rate is called a purely viscous fluid, provided in the absence of strainrate

the stress tensor is zero.

(ii) Visco-plastic fluids and perfectly plastic materials: One of the

important observations in the viscous fluids is that if we apply a certain shearing

stress on a fluid, however small it may be, it causes a continuous deformation in

the fluid. But in many materials like paints, pastes, etc., v.,e find that if we apply a

shearing stress less than a certain quantity, the materials does not move at all. But

when this shearing stress exceeds a certain value the material starts moving and the

strain-rate of the material depends upon the applied stress. Such materials are

called plastics.

(iii) Visco-elastic fluids: In the elastic materials the stress depends on the

strain only; that is , the stress is a certain function of the strain, Thus if we apply a

certain stress on an elastic material, the material undergoes some detbrmation and

when this stress is removed the material returns to its original position. So we can

say that the elastic materials have memory (rather perfect memory), I.e., it is

capable of recognizing its original shape. On other hands, the stress depends upon

the rate of deformation and when the stress is removed the strain-rate becomes

zero. But the deformation it has accumulated persists. That is , it forgets its

original position. In other words, we can say that fluids have no memory. But

there are some fluids like soap solution, polymers, which have SOlle elastic

properties, besides having usual fluid properties. Such fluids are called visco-

elastic fluid. A visco-elastic model can easily be illustrated by a spring dashpot

assembly (figs 1.1& 1.2).Now if we take a spring and apply a certain force to it,

we see that the spring extends by a certain amount which is proportional to the

force applied to it. On the other hand, in a dashpot if we apply a certain force on

•
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the piston we find that the piston moves with a certain speed which is proportional

to the force applied to it. We can say that the elastic properties of a material can be

represented by a spring and the viscous

---- -

F

F

Fig( 1.2)

F,

properties by a dashpot. Now we shall take two models containing a dashpot and a

spring to illustrate visco-elastic models.

In general heat transfer estimates the rate at which heat is transferred across

the system, where the boundaries are subjected to specific temperature differences

and the temperature distribution of the system during the process. The physical

processes involved in the generation and utilization of heat are of practical

importance.

•



There are three basic processes of thermal energy transport:

0) conduction, (ii) convection and (iii) radiation,

In various types of studies related to heat transfer or thennal energy

transport, considerable effort has been directed at the connective mode, in which

heat transfer processes take place with the motion of the fluid. As a consequence of

this fluid motion, the heat transfer rate, as given by conduction is considerably

altered. We are interested here to deal with the forees of convection only.

The convective heat transfer is divided into two basic processes namely (a)

forced convection and (b) natural or free convection.

Free convection: If there is no internally induced flow but the flow arises

"naturally" due to the effect of a density difference, resulting from a temperature or

concentration difference in a body force field, such as gravitational field, the

process is termed as "natural" or "free" convection. The density difference c.:luses

buoyancy effects due to which the flow is generated.

Porous plates: By porous plates we mean that plates possess very fine

holes distributed uniformly over the enter surface of the plates through which tluid

can flow freely and continuously.

Plates with suction and injection: The plate from which the fluid

enters the flow region is knO\\fll as the plate with injection and the plate from

which the fluid leaves the flow region is knO\\fllas the plate with suction.



Chapter 1
BASIC EQUATIONS GOVERNING THE FLOW

An unsteady free convection flow of an electrically conducting viscous
incompressible fluid past an infinite vertical porous plate with lime dependent
suction/injection has been considered. A magnetic field of uniform strength E, is•
applied transversely to the plate. The induced magijetic field is neglected as the
magnetic Reynolds number of the flow is t~en very smalL We assume that all the
fluid properties are constant and the influence of density variation with
temperature is considered only the body force term. The flow is assumed to be in
the x-direction which is along the vertical plate in the upward direction and y-axis
is taken to be the surface of the plate. Initially the temperature oflhe plate and the
fluid are same.

Continuity equation

ov =0
oy

Momentum equation

Energy equation

oT oT k J2T--,-=----
01 oy pCpoy2

(1.1)

(1.2)

(1.3)

Here u and v are the velocity components associated with the direction of
increasing x and yeo-ordinates. T is the temperature of the fluid in the boundary
layer, g is the acceleration due to gravity , 13is the volumetric coefflcient of
expansion, K is the thermal conductivity, p the density of the fluid, Go is the
electric conductivity, v is the kinematics coefficient of viscosity , Cp is the specific
heat at constant pressure, Toois the temperature of the ambient fluid, Ko' defined
rotational viscosity coefflcient and t. is the suction parameter.

,



The associated initial and boundary conditions are

1::;0; u(y,t) ",0; T(y,I);Too,

1>0; u(O,I) "'uof(t); T(O,t) ",TW'

1>0; U(oo,t) ",0; T(oo,t)",T('JJ'

(1.4)

Initially the temperature of the plate is the same as that of the t1uid (no slip
condition ). At t>O , the plate starts moving in its own plane with a velocity
lI"'lIaf{t)where Uois constant and f(t) is a function of time . The plate temperature
is instantaneously raised or lowered to Tw, which is therefore maintained constant
in order to produce boundary effect. The heat due to viscous and joules dissipation
are neglected in the energy equation because of small v~locity usually encounters
111 free convection flow.

In order to non-dimensionalIzc the goveming equations, "'ie introduce the
fo11o\\ing non-dimensional variables:

w~~- ,
"0

"I]=~Y,
v

( 1.5 )

with the help of these non-dimensional variables the momentum equation (1.2)
take the following forms:

301' tlO&.-=--
01 v Or

2 _
au uo ow-=--oy v 877



0\ _ U~ c3w
oy20t - y3 01J2iif

Put T - Too= tJ.T ,T - Too" B!1T

c2w B J,

'" J. 0l-' j3g.AT.y uo'oy *uO c"w
---- B+--- W-K
a Uo ell 3

_ 2 2 o y2 or/-iif"0 en P"o

Energy equation (1.3) takes the fonn

or uOAT aJ
=---

oy y i77

(1.6)

•
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02r 116bTile

oi"'v2cl

oe ;1, 08 k I 0-20
----=----2
or UOOlJ pCpVOlJ

where v'" J.!
I'

ae ). otJ 1 c2g
Or - 140 OlJ '" Pr er,2

where
gj3bT

Gr= 3 (GrashofNumber),

"pC
Pi''' KP (Prandt! Number),

2
S"'KQo( u~J (Visco- elasticity Parameter),

2
vCYoj3oM'" 2 (Magnetic field of Parameter ).
"01'

subject to the boundary conditions:

•. sO, w(lJ,r)=e(lJ,r)=o

•.>0, w(O,r)= •.n, 8(0,r)=1

w(oo,r) = 0, O(oo,r)=O

where n is an exponent.

15
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CHAPTER 3

SOLUTION FOR THE VELOCITY DISTRIBUTION
AND SKIN FRICTION FACTOR IN PRESENCE OF

TRANSVERSE MAGNETIC FIELD

Here free convection flow of a visco-elastic fluid past an infinite vertical
flat plate in presence of a transverse magnetic field hus been discussed. The form
of the boundary layer equations is invariant under the transformation, and the
surface condition can therefore the applied on a transformed flat plato surface. The
equations for the velocity field have been solved with the help of the Laplace
transform technique. In the present chapter a problem on free convection boundary
layer flow of a viscous incompressible and electrically conducting fluid along an
isothermal vertical surface in the presence of a transverse magnetic field is
proposed to be discussed. The results thus obtained are shown graphically for
different values of the magnetic field parameter M, transpiration parameter(suction
parameter) a, visco-elasticity parameter S, Grashof number Gr and the Prandtl's
number Pro Finally, effects of the above parameter on the zero-order perturbation
velocity proflle, first order perturbation velocity prolile and temperature are also
shown graphically.

3.1 Solution of momentum equation

Momentum equation is

ow Ow a2w a3w
--a-e---S-_-_ Mw+GrO
or 0" 0,,2 0,,2or

the boundary conditions are,

r $ 0, w(", r) == 0,
pO, w(O,r)=rn,
pO, w(co,r)=O.

(3.1)

(3.2)

Equation (3.1) is a third order partial differential equation. For 8=0, it reduces to
equation governing the Ne\vtonian fluid. Hence, the presence of elastic parameter
increases the order of the governing equation from two to three. There are
prescribed only two boundary conditions (3.2). Therefore it needs one boundary

'"



e(o,r)= ~,e(co,r) = 0
q

(2.6)

Where 0 is the transformed firnction of e and q is the Laplace transformed
independent variable.

The solution of equation (2.5) satisfying the boundary conditions (2.6) is obtained

"

(2.5b)

q

2
where -="

"0

-aP, -la2 p2+4P. qr], r. r

2 "0=-'---------
q

[
" iF ~92P+q_rp'/r+ r 17..,rr 2 4

B= -,-----------
q

-~Pr( a+Ja2 +q)17
7J = -'---------

q

where a~Pr = a

(2.5e)

(2.5d)

(2.7)

The temperature distribution e is now obtained by taking the inverse
Laplace transformation of equation (2.6). Since e has poles of different orders we
apply Bromwieh integral dermed as

•



1 o+ioo_ Sf
0=-. f Be dl

2n- j o-ioo

equation (2.7) to obtain

, ,
where a- +q = k- => dq= 2kdk

( )_ 1 -ajP;!Ja2r i( 1 1) -kjP;'IJ+k2r d'Bry! __ , --+-_ , ,
, 2n-i k+a k-a

( ) --J7f,-a2tl[ a21+a~P" ,,[,~p, =]o I},! =e - e eljc Ji +-val
2 2 I

a2t-a-J7f, "[,,fP; =]]+e erJc r: - -Va!2V1

1 -a,p;,[ a-J7f, [,p; ] -a-J7f, [,-J7fB(r:r,r)=-e r e r eric ; +Jai +e r eric ~
2 2r 2'11

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.7e)

.JaI]] (28)



For a=O i.e. Ie =0 the solution in (2.8) is exactly the same given by Menold and
Yang (1962).

For PI=!, equation (2.8) turns into

(2.9)

For equation (2.9) we get the rate of heat transfer defmed by

(2.10)

It follol'is from equation (2.10) that the rate of heat transfer is directly
proportional to the square root of the Prandtl number P, and inversely proportional
to the square root ofthe time variable T.

f _



CHAPTER 3

SOLUTION FOR THE VELOCITY DISTRIBUTION
AND SKIN FRICTION FACTOR IN PRESENCE OF

TRANSVERSE MAGNETIC FIELD

Here free convection flow of a visco-elastic fluid past an infmite vertical
flat plate in presence of a transverse magnetic field has been discussed, The form
of the boundary layer equations is invariant under the transformation, and the
surface condition can therefore the applied on a transformed flat plate surface. The
equations for the velocity field have been solved with the help of the Laplace
transform technique. In the present chapter a problem on free convection boundary
layer tlow of a viscous incompressible and electrically conducting fluid along an
isothermal vertical surface in the presence of a transverse magnetic field is
proposed to be discussed. The results thus obtained are shown graphically for
ditferent values of the magnetic field parameter M. transpiration parameter(suction
parameter) G, visco-elasticity parameter S, Grashof number Gr and the Prandtl's
number Pro Finally, effects of the above parameter on the zero order perturbation
velocity profile, first order penurbation velocity profile, heat transfer and
temperature are also shown graphically.

3.1 Solution of momentum equation

Momentum equation is

the boundary conditions are,

r S;0, w('1, r) = 0,
00, w(O,r)=rn,
00, w(ro,r)=O.

(3.1)

(3.2)

Equation (3.1) is a third order partial differential equation. For 8=0, it reduces to
equation governing the Newtonian fluid. Hence, the presence of elastic parameter
increases the order of the governing equation from two to three. There are
prescribed only two boundary conditions (3.2). Therefore it needs one bOlmdary



condition more for a unique solution. Thus to overcome the difficulty we adopt the
perturbation technique in which the elastic parameter S can be regarded as a small
quantity. We therefore, follow the technique of Beard and Walters and assume the
solution in the form W=WO+SWI'

putting w=WO+SWIin equation (3.1)

O(H'O+SI~I)

0,

c2(WO +SwI)

cry'
equating the coefficient of SOand S, we obtain the following equations:

(3.3)

the bOlUldaryconditions (3.2) becomes

(3.4)

r"';O, wO(II,r) = 0, w1(II,r)=O,

;>0, wO(o,r)=rn, II"I(O,r)=O,

wO(o:>, r) eo WI (ee, r) = o.

Applying Laplace transform on (3.3), we get

(3.5)

(3.6)



and the boundary conditions takes the from

1w,(I7.Q)==O, w,(O.q)=-, w.(:>o,q)==O
q

(3.7)

d
whcreD=-

dry

aJP: -aI~a'+4(q+M)a ~ -- and m = --~-~-~2 2

-'/ Prl a+J a2+'1 J /I

(w0\== D:+aD~(q+M)(-G.)e q

-,JP;( a+~,'a2+q1'1
== G, e '
-q (FH-a'-+q))' +al-JJ;(a+~a'+q))-(q+Ai)

-JP,:{ a+,/",,2+q )'1
G, '
P p'(a+~a' +q)' -a.JP.(a+~a' +'1)-(Q+ Ai)

the solution of differential equation (3.6) is

w, ==Ae

-,JP;( a+,ia2.;-q)/I
G, '

q p,(a+)al+q)" -aJP:(a+Ja'+q)-(M+q)
, W

whereQ: == -' -
P -1,

(3.&)

,



Using inverse Laplace transform on (3.8) we obtain
-a+)a2+4(q+MJ ~a2+4(q+.!J)-" ."-1 e 2 G -I e 2

].V '" L -------+ ' L
o q P,-1 q[(a+P+q)' _Q;]
G -.,JP;la+~a2+qll7

r C1 e
P,-1 q[(a+p+q)2 _Q;]

(3.9)

where

-a+Ja2+4(q+A1) 17

-I e 2
10 = L -------

q

-.,JP;[a+~a2+q]17
-I '

12=L {(a+~a2+q)2 _Q;]

The values ofIo, 11,and 12 are obtained as

(3.10)

(3.11)

(3.12)

(3.13)

•



(3.14)

-a+Ja2+4(q+M)
, "

I
_je -

I == L
q

1 (3.15)

From (3.14) and (3.16) by convolution theorem

(3.16)

q _gn ""+4.\1_" {" J(,' +4,11),]
1 == J-e 2 e 2 erfi - + . -
1 02 2~ 2

_-1,2+4.\1" [ 1(,2 +4,11),], ",_Qf_I'-_'1 { 2aQ ,_,+e 2 eric _ry__ c~~ __ ~ ~_ (a+Qr)e r( I
2.[; 2 2Qr

erfc((a + Qr).Jr-v )-(a-Qr)e -2aQ,(r-Vlerjc((a - Qr)~)}dv

(3.17)



-jP;(a+~~
21

2
==Cl~' _

q[(a+~a2+q)2 ~Q;]

similarly applying Laplace transform on equation (3.4), we obtain

J "- ",2 _3
WI ""1 {/ W 0 waL---aL--=L-~I_LMw-L-~-or 01] 01]2 1 01]2or

where q is the Laplace transform parameter

(3.18)

d'w, dw, ( )_ dlwo--. +a-- M+q w, =q--.
dr( d1] d1]-

substituting Wo from (3.9) on (3.19) we get

(3.19)



G,
QIP,-I)[( ,,--,2 2]

a+'iu +q) -Qr

rye

a+~a2. +4(q+M)
2 2 +a

I
2

[-fP,( a+~a2+Q)] +a[-fP,( a+p +qJ]- M-q



G
== 1 1+ r

4 (r,_I{(a+~a2+q12 _Q;]
G p(a+,)a2+q)2 -p';(a+.Ja2+Q)17
r T\ e

Pr-l(a-;-,1a2+qt -Q;(Pr-l*a+~a2+qt -Q;]

G,
(p,_l)2{( ~2 2)2

a+"a +q) -Qr

(3.20)

applying boundary condition, WI 0= 0 where 11-+00. This l,rivesB=O . Again wI = 0
where 1)=0,

,



G,p,(a+,ja' +q)'
A 0 ---~----~--

(p, - J)' {(a +~-a'.-+qr -Q;r
substituting A;md B equation (3.20) we obta.in

17[a+ ~a2 +4(q + M)r
4~a2 +4(q+ M)

a+,Ja2+4(q+AfJ
- "" 2

using inverse Laplace tr;msform on (3.21) we obtain

•,
i
i

I

(3.21)



2
_17 C1[a+~a2 +4(q+ M)]

4 ,)a2+4{q+M)

-

G
1+ r e

(P,_'I\(0+002+q)2 -Q;l
GrPr -I (a+,/a2+q/ -,iPrla+,,/a2+qJIJ

__~~? L ? e

(p,-I)- \(0+002+q)' -Q;f (3.22)

G P,
r 2 J3(P,-I)

(3.23)

where

[a+"I-,-2-+-4(-q-+-M-)]2 G

J,=C

I
0,2+4(q+M) I 1+(P,_I)\(a+0~2+q)2Q;} (325)

a+,Ja2+4(q+Mj
2 q,

.~..,"'



Now

putting
a2 +q == k2 =:;, dq == 2kdq

q=k2 _a2

I,La2], 2
~_l_( (a+k) 2kdk
2ff! [ 2 2]2(a+k) -Qr

let

I,La2]. 2
1 J e (a+k)

~-. 2 22kdk
2m (a+k+Qr) (a+k-Qrl

(3.27)

ABC D+~--~-+----+----
(a+k+Qr) (a+k+Qr)2 (a+k-Qr) (a+k-G/

••



2 2 'k(a+k) =A(a+k-Q,) (a+k+Qr)+B(a+k-Q,f
2 2

+C(a+k-Q,)(a+k+Qrl +.D(a+k-Q,l

wherek '" Q,-(l

(Q, _ alta + Q, _ a)" == D(a + Q, -a +Q,)2

Q -(l a-Q.
D= ' =---4 4

k=-Q.-a

(-a- Q,,)(a-a- Q,)' == B(a- a - Q, - Q,)'

B=

equating the coefficient ofkJ

l=A+C=>A=l-C and k=Q

0= A(a-Q,j'(a +Q,)+ E(a- Q,)2 +C(a - Q,)(a +Q,)' + D(a +Q,)'

••



3 1)0= -e(a - Q,) +"4(a-Q,) + C(u + Q')-"4(a +Q,

1
0= C(-a+ Q, + a+ Q,j-"4(-3C1 +3Q, -'-a +Q,)

c = 4Q, - 20: _ ~2_Q,_~_a~
4.2Q, 4Q,

A = 1__~a_,2~Q~,; 4Q,+a-2Q, = 2Q,+ a
4Q, 4Q, 4Q,

Equation (3.24) is obtain

L-1 (a+~a'+q)' __1_r}kLa2]'[2Q,+a 1
[( r-'-)' Q']' la! 4Q, k+a +Q,a+'10 +q - ,

0-2Q, 1 a-g, 1 Jdk
4Q, k+a-Q, 4 (k+a-Q,)'

a+Q, 1

4 (k+a+Q,)'



2Q, +a _a2, (a+Q,.)2, (( Q) ,) a+Q, -0"[ ("+Q,)', ( )~---e e erfca+ -..It +---e e 2 a+Q r
4Qr - r 4 r

,
erfc((a+QJlr)-2\~]a~~~re-a2T)a-Qrrrerfc((a_Qr}J"1} a-4Qre-a2r

[,(a-Q,)" 2(a_Q,)"'I,((a - Q,)J'i)- 2H]

2Qr+a 2aQrHQJr <f:(( Q) ,) a-2Qr -2aQrr+OJr ,1:(( Q 1 ,)~---e erJca+ -Jf - e - er;ca- o,fT
4Br r 4Qr r,

a+Q [ 2aQ ,+Q" ( ) (( ) -l] a-Q [ -2aQ ,+Q2,+ 4 r err 2 a+Qr urfc a+Qr .J, + 4 r err

Again

"ry ~2-"2 qr- -+q+ M '7
ooe Je 4

2;ri dq

putting

a: +q+M==k1 =>dq==2kdk andq=k2-( a: +MJ

(3.2&)

I



_ alJ kr-2 _(a: +MJr-k'l
, 2
=--),

2f(i 2kdk

_q]1_[a2 +MJr _!J3...
I 2 4 1 4.

'"-e '7e
2 ~;rr3

From (3.28) and (3.29) by convolution theorem

(3.29)

•



(a+~a2+4(q+M)}2 _G+..Ja2+4(q+}"f)ry G (a+Ja2+4(Q+M)}'
=L-l~~~~~~~-e 2 + r L-l~~~~~~~_

"la2+4(q+M) Pr-i Ja2+4(q+M)
----a+Ja2+4(q+M)

1-"_____ --, 2
(a+,./a2+q)2 -Q;

where
(3.31)

1 {a +~-a2-+-4-(-q+-M-)}2 qr
=-J '

2;ri ~a2 +4(q+M)

a+,ja2~4(q+M)TJ

- dq

{ ~
2 )2

a+2 -+q+M 2
1 4 qr--T-~a4+q+M IJ

=-2 j ~ e dqm a
2 4+q+M



_~.!La2+4MT

+ 41' 2 ') .4 fk2/2,-kTJdk
_lrl

J21==_,_T__ "'_+_:_M_'_.[a2 e-4~ + 4a lJe--i + 4 ['12 _lJe-l,2]
2 fKT 2);r,3 2ln3 2,

where

a+..,/a2+4(q+M)
, " 1

2
(a+~a2+qJ -Q;

(3.34)

From (3.15) and (3.33) by convolution theorem,

_.E.!La2 +4M v-Ii. 2G 'I' 2 4 4vj2 2aTJ 2[,2 J)/2r(T-V)J == r J~-----a +-+- --I {(a+Qrl
22 Pr-IO 2~ v v 2v 2Qr

2aQ2jT-VI -2aQ2(,-V))
I' r er/c((a+Qr),h-v)-(a-Qr)e r er/c((a-Qr)',h-v)

I



Equation (3.26) is obtain,

2
1 (a+~ qr-\/Prra+~a2+ql17

~-J-------~e ' dq

2ff; [(a+~a2+qJ' _Q;j'

? 2 2 2where a-+q=k -:;:::"q=k -a -:;:::"dq=2kdk.

2 k2r-j1i;k17
1 -a2r-j1i;a'lJ 2k(a+k) e r (3.35)

~-.e 2 2dk
2m (a+k+Qrl (a+k-Qrl

ABC D
( )+ 2 +( )+ ,a+k+Qr (a+k+Qrl a+k-Qr (a+k-Qrr

2 "2k(a+k) =A(a+k+Qr)(a+k-Qrt +B(a+k-Qrt

2 '+C(a+k-Qr)(a+k+Qr) +D(a+k+Qrt



where k '" -a - Qr '

2 ( 22(-a - Qr)(a-a-Qr) '" B a- a-Qr -Qr)

where k '" -a +Qr .

. ) 2 2-2(-a+Qr Qr =4QrD=>D'"

equating the coefficient of k],
2=A+C=>A=2-C

a-Qr
2

when k"'O,
') 2 2 ')

Od(a+Q,)(a-Q,r +1J(a-Q,i +C(a-Q,)(a+Q,) +D(a+Q,r

2 (a+Qrl 2 2 (a-Qrl 2
O=A{a+Qr)(a-Qr) - 2 (a-Qr) +C(a-Qrl(a+Qrl - 2 (a+Qr)

. (a-Q,i (HQ,i
-C(a-Qr)+2(a-Qrl- 2 +C(a+Qr)- 2 0

•



) ( ) (a-Q,) (a+Q,)
C(-a+Qr +a+Qr =-2 a-Qr + 2 + 2

--4a+4Qr+a-Qr+a+Qr -2a+4Qr ( 2Q)2QrC= 2 - 2 --a- r

CO" a-2Qr
2Q,

A a1r-flf.aIJ (a+Q)2 +(a+Q h[P; (" ( ) rJ e-a2r-~PraT/
=-e r err rerfc ,+ a+Q --IT -B 2
2 2"7 r

G



= [0:+ 2Q~ + a +Qr (2ar + 2Qr'-+ 17.,JP;)]e2arQr+QrlJjP;+Qtr er/c[? '1, + a~ +Qr'ire)'
4Qr 4 _'i,

+[ a ~~;r + a -4Qr (2ar'-2Qrr-17.)P;)} -2atQy+Qrl/,JP;-QJr

,,[ " r Q r) [a+Q, a-Q']He -a2,-J?;a"-f;erJC--+a'\l,- "r - -~"+-~- -,2.[; r 22;r

= [0:+2Q,. + a +Qr (2ar+2Q r+ 17,JP;)]e2arQr+Qr'lJP,:+Wr erfc[-"-+a-h +Q -h"]
4Qr 4 r r 2# r)

_[a~~;r _ a -4Qr(2ar-2Qrr-'
i\jF;)} -larQ,.-QrlJ.jP;+Qtr

- (3.36)

•



substituting 10,II and 12, equation (3.9) we obtained

•



substituting JI, J1 and J) equation (3.22) we obtain

_"'I
G,P,,!" ' '[!'Q,+a (o+Q,)' ) ['aQ,+Q,1]~ (, ,)

wI '" 2 J + ve eric avv+Qrvv
2(Pr -I) JliO 4Qr 2

!
(a-'Q,) (a_Q,)2 ) [-2aQ,+Q1], .,(. r:: Q ,) _a', 1,]

_ ve er)c a"v- rVv -IXe \1-=
4Qr 2 ;r

,
2 ,,-,-

-a ,-a1jPr7)-~'if'(-'- +a"r;- Q .,.r;) - a I.e r 4,2;; r V-;'

(3.38)

• •



CHAPTER 4
Results and discussions

In the present investigation, free convection boundary layer flow of a visco-
elastic fluid past an infinite vertical porous plate in the presence of a variable
transverse magnetic field is solved numerically by the local non-similarity
method.

Figures l(a), 1(b) and l(c) represent respectively the zero-order
perturbation velocity profile, first order perturbation velocity profile and
temperature profile against lJ for PrandU number Pr =0.1, 0.3, 0.5, 0.72 & 1.0
while Grashof number GF2.0, magnetic field parameter M'" 1.0, transpiration
parameter a=O.5 and visco-elasticity parameters 8==0.4.

From Figure lea) it can be concluded that the zero-order perturbation
velocity prome decreases as the values of the Prandtl number Pr increases in the
region 1] E(O.O, 25). Near the surface of the plate velocity profile increases,
becomes maximum and then decreases and finally takes asymptotic value.

From Figure l(b) it is observed that near the strrface of the plate the first
order perttrrbation velocity profile decreases becomes minimum and then
increases. We also observe that the velocity profile decreases as praudtl number Pr
increases.

From Figure l(e) we see that the temperature profile is large ncar the
surface of the plate and decreases away from the plate and [mally takes asymptotic
value. Here we also see that temperature profile decreases with the increases of the
prandtl number Pro

Figures 2(a), 2(b) and 2(c) represent respectively the zero-order
plrturbation velocity profile, rust order perturbation velocity profile and
temperature profile against IJ for magnetic field parameter M =0.1, 0.2, 0.3, 0.4 &
0.5 while Grashof number Gr=2.0, Prandtl number Pr =0.72, transpiration
parameter tr-O.5 and viseo~elasticity parameters S>eOA.

From Figure 2(a) we observe that the zero-order perturbation velocity
profile decreases owing to increase in the value of magnetic field parameter M.
Ncar the surface of the plate velocity profile increases becomes maximum and then
decreases and finally takes asymptotic values. From the same tit,'Urewe may also
conclude that an increase in the magnetic field parameter decreases the velocity
protile more rapidly.

From Figure 2(b) we see that the magnetic field parameter M increases as
first order perturbation velocity profile decreases. We also observed that near the
surface of the plate the velocity protile decreases becomes minimum and then
mcreases.

..
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From Figure 2(e) we see that the temperature profile remains unchanged for
different values of the Magnetic field parameter M. Fur 0.1~ M ~ 0.5 the
temperature profile becomes maximum at the surface of the plate then decreases
away from the plate and finally takes asymptotic values at '/ == 10.0.

Figures 3(a), 3(b) and 3(c) represent respectively the zero-order
perturbntion velocity pronle, first order perturbation velocity profile and
temperature profile against 11 for Grashof number Gr""5.0, 4.0, 3.0, 2.0 & 1.0
while l'randtl number Pr =1.0, maglletic field parametcr M=4.0, transpiration
parameter a--0.8 and visco-elasticity parameters 8=0.4.

From Figure 3(a) we see that the zero-order perturbation velocity profile
increases with the increase of the Grashof number Gr. we also observe that near
the surface of (he plate the velocity profile increases bccomes maximum and then
decreases and finally takcs the asymptotic value. It is also observed that the
vclocity profile moves away from the plate as the Grashof number Gr increases.

From Figure 3(b) it is observed that the fisrt order perturbation velocity
profile increases as Grashof number increase. We also observe that for different
values of Grashof number Gr near the surface of the plate velocity profile is
maximum then decreases and finally takes asymptotic value.

From Figure 3(c) we may observe that the effect of Gra&hof number on
temperaturc distribution is constant.

Figures 4(a), 4(b) and 4(e) represent respectively the zero-order
perturbation velocity prot1le, first order perturbation velocity profile and
temperature prot1le against 'I for transpiration parameter Q =1.5. 2.0, 2.5, 3.0 &
3.5 while Prandtl number l'r =0.1, Grashof number Gr-2.0, magnetic field
parameter M=!.O and visco-elasticity parameters S=OA.

From Figure 4(a) it can be concludcd that the zero-order perturbation
velocity profile decreases as the values of the transpiration parameter a increases
in thc rcgion T]E(O.O,8.0). Near the surface of the plate velocity profile increases,
becomes maximum and then decreases and finally takes asymptotic value.

From Figure 4(b) ,ve see that the transpiration parameter a increascs as the
first order perturbation velocity profile dccreases. '

From Figure 4(e) wc see that the temperaturc profile is large near the
surface of the plate and decreases away from the plate and [mally takes asymptotic
value. Here wc also sce that temperature profile decreases with the increases of the
transpiration parameter a.

Fi!,'llrcs 5(a) and 5(b) represent respectively the 7£ro-order pertnrbation
vclocity profile and first order perturbation velocity profile against 1/ for visco-,

•



elasticity parametcrs S=O.O,0.1, 0.5, 1.0 &2.0 while }'randtl number Pr =0.72,
Grashof number Gr=2.0, mal,'llctic field parameter M=1.0 and transpiration
parameter a =0.5.

From Figure 5(a) it is observed that, lhe zcro-order perturbation velocity
profile dccreases as the visco-elasticity parameters S increases. Ncar the surface of
the plate velocity profile increases, becomes maximum and then decreases and
finally takes asymptotic value.

From Figure 5(b) it is observed that near the surface of the plate the first
order perturbation velocity profile decreases becomes minimum and then
increases. We also observe that the velocity profile decreases as visco-elasticity
parameters S increases.

TIle ordinary differential equation (1.6) and (1.7) were solved numerically
by local non-similarity technique. The calculations werc carried out lor several
values ofPrandtl numbers Pr (Tablc 1), Magnetic Held parameter M, (Table 2),
Grashof numbers Gr (Table 3) and Transpiration parameter (I ("rable 4).

From Table I, 2 and 4 we see that the zero-order pertmbation velocity
profile, tirst order perturbation velocity profile and temperature profile increases as
the Prandtl number Pr, Magnetic field parameter M and Transpiration parameter a
decreases. From Table 2 it is further observe that, the effect of Magnetic field
parameter M on the temperature profile effect is negligible.

From Table 3 , it is observed that both the zero-order pel1urbation velocity
profile and first order perturbation velocity prome increases with the increase of
Grashofnumber Gr. From Table 3 it is further observe that, the effect of Grashof
number Gr on the temperature profile effect is negligible.

,



CONCLUSIONS:

(i) The zero-order perturbation velocity profile, first order perturbation
velocity profile velocity profile and temperature profile decrease

with the increase ofPrandti numbers Pr.

(ii) Both the zero and first order perturbation velocity profiles decrease with
the illcrease of the Mal,'Ildic field parameter M. But the effect of Magnetic
field parameter Man the temperature profile is negligible.

(iii) Both the zero and 11r51order perturbation velocity prames increase with
the increase of the Grashof number Gr. But the Grashofnumbcf Gr has no
significant effect on the temperature profile.

(iv) The values of the zero-order perturbation velocity protilc, firs! order
perturbation velocity profile and temperature profile decrease with the
increase of the transpiration parameter G.

(v) 1l1Cvalues of the zero-order perturbation velocity profile and first
order perturbation velocity prolile for Newtonian fluid arc greater than
that for visco-elastic fluid.
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Figure lea): Zero- order perturbation velocity profile against 17for

different values ofPr while Or=2.0, M=1.0, a=0.5 & S=OA for
equation (3.37).
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equation (3.38).
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'"convection flow alon" an infinite vertical porous I

" wo( 1/) w\(17) B(I/)
Pr=O.1

2.0 1.53014 0.06204 -0.06319
4.0 1.42866 -0.09750 -0.05717
6.0 1.22614 -0.10008 -0.05173
8.0 1.03435 -0.09147 "0.04681
10.0 0.86015 -0.08284 -0.04236
12.0 0.70248 -0.07496 -0.03832
14.0 0.55981 -0.06783 -0.03468
16.0 0.43073 -0.06136 -0.03138
18.0 0.31399 -0.05546 -0.02839
20.0 0.20866 -0.04988 -0.02569
22.0 0.11487 -0.04361 -0.02324

Pr=O.]
2.0 1.24277 -0.03496 -0.11401
4.0 0.99934 -0.14647 -0.08446
6.0 0.73212 -0.11782 -0.06257
8.0 0.52746 -0.08800 -0.04635
10.0 0.37532 -0.06525 -0.03434
12.0 0.26258 -0.04834 -0.02544
14.0 0.17905 -0.03581 -0.01885
16.0 0.11718 -0.02652 -0.01396
18.0 0.07138 -0.01961 -0.01034
20.0 0.03764 -0.01433 -0.00766
22.0 0.01371 -0.00952 -0.00568

Pr=O.S
2.0 0.99227 -0.10394 -0.15097
4.0 0.67487 -0.15845 -0.09157
6.0 0.41363 -0.10347 -0.05554
8.0 0.24986 -0.06333 -0.03369
10.0 0.15013 -0.03845 -0.02043
12.0 0,08960 -0,02333 -0.01239
14.0 0.05289 -0.01415 -0.00752
16.0 0.03062 -0.00858 -0.00456
18.0 0.0l7l0 -0.00521 -0.00277
20.0 0.00887 -0.00319 -0.00168
22.0 0.00381 -0.00198 -0.00102

Free

Table I: Numerical values of zero-order perturbation velocity
profile, first order perturbation velocity profile and temparature
profile against 1] for PI-O.I, 0.3, & 0.5 while M=2.0, a=O.5, Gr=2.0,
andS=O.4.



t,'onvection flow alan an infinite vertical Dorous b
ry wo( 'I) WI(") ()( Til

M91.1
10 2.24025 1.05843 -0.25527
2.0 2.66159 -0.04661 -0.17810
3.0 2.38025 -0.43892 -0.12426
4.0 1.38692 -0.51516 -0.08669
5.0 1.39093 -0.46513 -0.06048
6.0 0.96918 -0.37595 -0.04220
70 0.63944 -0.28481 -0.02944
80 0.39554 -0.20540 -0.02054
9.0 0.22365 -0.14083. -0.01433
10.0 0.10933 -0.08991 -0.01000
11.0 0.04016 -0.05003 -0.00698
12.0 0.00653 -0.01840 -0.00487

M=O.2
10 1.79187 0.76767 -0.25477
2.0 2.04447 -0.11121 -0.17774
3.0 1.76843 -0.37878 -0.12401
4.0 1.36551 .0.40401 -0.08652
5.0 0.98717 -0.34603 -0.06036
6.0 0.67905 -0.26997 -0.04211
7.0 0.44509 -0.19982 -0.02050
9.0 0.15630 -0.09732 -0.01430
10.0 0.07708 -0.06260 -0.00998
11.0 0.02862 -0.03536 -0.00696
12.0 0.00474 -0.01301 -0.00486

M=O.3
10 1.51592 0.59477 -0.25440
2.0 1.67419 -0.13978 -0.17749
3.0 1.41137 -0.33393 -0.12383
4.0 1.06905 -0.33352 -0.08639
5.0 0.76277 -0.27515 -0.06027
6.0 0.52085 -0.20945 -0.04205
7.0 0.34078 -0.15266 -0.02934
8.0 0,21147 -0.10793 -0.02047
9.0 0.12133 -0.07392 -0.01428
10.0 0.06090 -0.04807 -0.00996
11.0 0.02333 -0.02778 -0.00695
12.0 0.00427 0.01069 0.00485

Free c

Table 2: Numerical values or Zero-order pertUrbation velocity
profile, first order perturbation velocity profile and temperature
profile against 11for M=0.1,0.2 & 0.3 while P,=.72, a=O.5, Gr=2.0
~ndS=O.4.



Frce convection flow along an infinite vertical porous plate

" woe '1) Wj('1) 0('1)
Gr=1.0

1.0 0.09017 -0.03724 -035659
20 0.04822 -0.03553 -0.16023
3.0 0.02234 -0.01760 -0.07199
4.0 0.01010 -0.00805 -0.03235
5.0 0.00455 -0.00363 -0.01454
6.0 0.00205 -0.00163 -0.00653
70 0.00092 -0.00073 -0.00293
8.0 0.00042 -0.00033 -0.00132
9.0 0.00019 -0.00015 -0.00059
10.0 0.00010 -0.00006 -0.00027

Gr=2.0
1.0 0.18025 -0.07454 -0.35669
2.0 0.09633 -0.07108 -0.16027
3.0 0.04456 -0.03522 -0.07202
4.0 0.02007 -0.01611 -0.03236
5.0 0.00896 -0.00726 -0.01454
6.0 0.00395 -0.00327 -0.00653
7.0 0.00171 -0.00147 -0.00294
8.0 0.00070 -0.00066 -0.00132
9.0 0.00025 -0.00028 -0.00059
10.0 0.00009 -0.00005 -0.00027

Gr=3.0
1.0 0.27028 -0.11187 .0.35678
2.0 0.14435 -0.10665 -0.16031
3.0 0.06667 -0.05284 -0.07203
4.0 0.02993 -0.02417 -0.03237
5.0 0.01326 -0.01090 -0.01454
60 0.00575 -0.00490 -0.00653
7.0 0.00238 -0.00220 -0.00294
8.0 0.00087 -0.00098 -0.00132
9.0 0.00021 -0.00041 -0.00059
10.0 0.00000 0.00000 0.00027

Table 3:Numericai values of zero-order perturbation velocity profile,
first order perturbation velocity profile and temperature profile
against 1] for Gr:1.0, 2.0 & 3.0 while P,"'1.0, M"'4.0,and S=O.4.



Free convection flow along an infinite vertical porous plate

" wo( lJ) Wl(lJ) B(lJ)
a-1.5

1.0 1.05616 0.13891 -0.16656
2.0 0,97922 -0.18127 -0.14336
3.0 0.78335 -0.19603 -0.12339
4.0 0.59814 -0.17296 -0.10621
5.0 0.43803 -0.14746 -0.09141
6.0 0.30269 -0.12344 -0.07868
70 0.19084 -0.10029 -0.06772
8.0 0.10236 -0.07636 -0.05829
9.0 0.03920 -0.04912 -0.05017
10.0 0,00652 -0,01459 -0,04318

a=2.0
1.0 0,95404 0.01416 -0.18974
20 0.81250 -0.20095 -0.15535
3.0 0.61700 -OJ 8263 -0.12719
4.0 0.45094 -0.14976 -0.10413
5.0 0.31616 -0.12053 -0,08526
6.0 020853 -0.09529 -0,06980
7.0 0.12465 -0.07283 -0,05715
8.0 0.06242 -0,05172 -0.04679
9.0 0,02132 -0,03028 -0,03831
10.0 0,00266 -0,00642 -0,03136

a=2.5
1.0 0.83690 -0,07554 -0.21198
2.0 0,66241 -0.19861 -0.16509
3.0 0.48090 -0.16186 -0.12857
4.0 0.33798 -0.12519 -0.10013
5.0 0.22812 -0.09562 -0.07798
6.0 0.14485 -0.07174 -0,06073
7.0 0.08326 -0.05199 -0.04730
8.0 0.03997 -0.03495 -0.03684
9.0 0.01290 -0,0193J -0.02869
10.0 0,00132 -0,00376 0,02234

Table 4: Numerical values of zero-order perturbation velocity
profile, first order perttu"bationvelocity profile and temperature
profile against 11 for a"'1.5, 2.0 & 2.5 while P,"'O.I, M=1.0,
Gr=2.0 and S=O.4.

M

,



Nomenclature

g

Gc

K

k

M

n

N,
P

P,

Q

s
T

U,v,w

x,y

,

transpiration parameter

specific heat at constant pressure

dimensionless stream functions

acceleration due to gravity

average Grashofnumber

constant

the coefficient of thermal diffusivily

magnetic field of prameter

power/exponent

Nusselt number

pressure

Prandtl number

Non-dimensional heat transfer.

visco-elasticity parameter

temperature of fluid

temperature of ambient t1uid

Surface temperature

velocity components in the boundary layer

coordinates along the edges of surface

coordinate normal to the surface



Greek letters
a

~

p

p

p

y

constant

coefficient of thermal expansion

density of the fluid

kinematics coefficent viscosity

suction parameter

electric conductivity

boundary layer thickness

dimensionless temperature function

stream functions

dissipation function

similarity variable

the kinematic coefficient ofviseosity

the density of ambient fluid

coefficient of viscosity

the coefficient of thermal diffusivity

non dimensional skin friction

scaled coordinate defined in equations

the square root of the local boundary layer thickness



References
A.S. Gupta; Sci. app. Res A9, 319,1960.

A. K. Singsh and J. Singh, ".MHD flow of an elastic-viscous fluid pas! an

accelerated plate." nat, Acad. Sci, Letters, Vol. 6, NO.7, 1983.

A. S. Singh, "MHD flow of an elastico- viscous fluid past an impulsively started

vertical plate," Ganit (J. Bangladesh Math. Soc.) Vol. 4, No I and 2 pp 35-

39,1984.

Beard, D.W. Walters, K. "Elastico- viscous boundary layer flow. I. Two dim-

ensional flow near a stagnation point. Proc. Camb .Phil, Soc. 60, pp 667-

674,1964.

B.S. Dandpath and A. S. Gupta, : Flow and Heat Transfer in a Viscoelastic

Fluid Over a Stretching Shell" Jnt. J. Non-Linear Mechanics, Vol. 24 ,

No. 3,pp. 215-219,1989.

Bcjan, A., "Convection Heal Transfer" (2nd. ed.) Wiley, New York, 1995.

B.Gcbhart, "Transient natural convection from vertical elements," Joumal of

Heat Transfer, TRANS, ASME, Series C, Vol.83, ppI961-70,

February,1961.

Cebeci, T. and Bradshaw, P. "Physical and Computational Aspects of

Convective Heat Transfer" , Springer, N.Y, 1984.



Clarke, J. F. and Riley, N. "Natural convection induced in a gas by the

presence of a hot porous horizontal surface, Q. 1.Mech. Appl. Math.,

vol.28, pp. 373-396", 1975.

Chowdhary, M. A. and Merkin, J. H. "The effects of blowing and suction

boundary layers on a vertical surfaces with prescribed heat flux", Journal

of Engineering Mathematics, vol. 27, pp. 165-190, 1993.

C,'armer, K. R. and Pal, S • I . "Magneto Fluid Dynamics for Engineers

and Applied Physicists", McGraw-Hili Book Co., N. Y, 1964.

Elliot, L. "Unsteady laminar flow of gas near an infinite flat plate." Zeit,

Angew, Math. Meeh. Vol. 49, pp 647, 1969.

E. M. Sparrow and J.L. Gregg, "Nearly quasi-steady free convection heat

transfer in gases". Journal of Heat Transfer, TRANS, ASME, Series C,

Vol. 82,pp. 258-260,1960.

E.R. Menold and K.:r. Yang." Asymptotic solutions for unsteady laminar tree

convection on a vertical plate ". TRANS.ASJI.1E, pp 124 -126, March

1962.

E.M. Sparrow and R.D. Cess, "Effects of magnetic field on free convection

heat transfer." InU.Heat Mass Transfer 3, pp 267-274, 1961.

G. Wilks, "Magnclohydrodynamics free convection about a semi-infinite vertical

plate in a strong cross field." J. Applied Math. Phys. 27, pp 621-631,1976.

Gerald,C. F. "Applied Numerical Analysis", Addition-Wesley Pub.Coy"Cal,

1980.



G. C. Stokes, , "On the effects of the internal friction offluids on the motion of

pendulums". Camb Phil Trans, IX, Vol. 8, 1951.

Hall, M. G. , "Boundary layer over an impulsively started flat plate".

Proceedings of the Royal society (London), Vol. 31OA, pp 401, 1969.

H.K. Kuiken ," Magnetohydrodynamics free convection in ~trong cross flow

field" J fluid Mech. 40, pp 21-38, 1970.

Hossain, M. A. and Abmed, M. "MIlD forced and free -convection boundary

layer flow near the leading edge" . In!. J. Heat Mass transfer, voU3,

pp. 571-575,1984.

Hossain, M.A., Alam, K.c.A., and Rees, D.A.S. ".MHD frec- convection

boundary layer flow along a vertical porous plate with variable plate tem-

perature" , J. Phys. :D, communicated, 1996.

Hossain, M.A.and Alam, K.C.A "MHD free- convection boundary layer flow

along a vertical porous plate"(Applied Mechanics and Engineering),voI.2.

No.1 , ppOO, 1997.

Hossain, M,A., Bann, N., and Nakayama, A. ''Non-Darcy forced convection

boundary layer flow over a wedge embedded in a saturated porous

medium". Numerical Heat transfer, Part A, vol. 26, pp. 399A 14, 1994.



H. Schlichting ,"Boundary - layer theory" , McGraw-lIell Book Company. 1979.

lIIingwortb, C. R. "Unsteady laminar flow of gas near an infinite flat plate".

Proceedings Cambridge Pbilosophical Society, Vo!.46, pp. 603, 1950.

J. Pop "Z. Angew. Math and Meeh" . 49, 750, 1950.

J.G. Oldroyd, Proc.Roy. Soc. London, Ser. A. 523, 200, 1950.

J. Panda and J. S. Roy" Harmonically oscillating visco-elastic boundary layer

flows." Acta Meehanise 31 ,pp. 213-220, 1979.

K.T. Yang, ., Possible similarity solutions for laminar free convection on vertical

plates and cylinders." Journal of Applied Mechanics, Vol. 27, TRANS,

ASl\1E, Series E, Vol 82, pp. 230-236, 1960.

K. R. Cramer and S.T. Pai , "Magnetofluid- Dynamics for Engineering and

Applied Physicists". pp. 164-172(Me.Graw-Hill Book Co. New York,

1974.

KR, Singb and T.G.Cowling, "Thermal convection in magnetogasdynamies."

J.Meeh App!. Math. 16, pp .1-5, 1963.

K R Rajagopal," On stokes problem for a non-Newtonian fluid ," Acta

Mechanics 48, pp. 233-239, 1983.

K R. Rajagopal, A. S.Gupta and A. S. wineman. "On boundary layer

theory for non-Newtonian fluids" Left APPL. Sci. Engng. 18, pp. 875-

883,1980.

•



K. Stewartson," On the impulsive motion ofa flat plate in a viscous fluid,"

Quart. Appl. Math and Mech. Vol 4, pp. 182, 1951.

L. Tcipel," The impulsive motion ofa flat plate in a visco. elastic fluid," Acta

Mechanics 39, pp 277-279,1981 .

M. K. Chowdhury, "Effects of free convection flow of visco-elastic fluid past

an infinite vertical flat plate in presence of a transverse magnetic field",

March 1992.

M.A. Hossain and Mandai, "Unsteady Hydromagnetic free convection flow

past an accelerated inflllite vertical porous plat." Astrophysics and space

science, pp-Il1, 87-95, 1985.

M.A. Hossain and M. Ahmed, "l\1HD forced and free convection boundary

layer flow near the leading edge." Int. J. Heat Mass Transfer 33, pp571-

575,1990.

,/ P .1\1.Chung and A.D. Anderson," Unsteady laminar free convection." Journal

of Heat Transfer, TRANS, ASME. Series C, Vol. 83 pp. 473-478, 1961.

R. Siegel, "Transient free convection from a vertical flat plate". TRANS. ASl\1E.

Vol. 80, pp 347-359, 1958.

•



S. Sugawara and I. Michiyoshi, "The heat transfer by nalural convection in

the unsteady state on a vertical flat wall." Proceedings of the first Japan

National Congress for Applied Mechanics, 1951, National committee for

Theoretical and Applied Mechanics, Science council of Japan, pp 501-506,

1952.

Spiegel, R. M. "Theory and Problems of Laplace Transforms. Schaums Out

lines Series." 1986.

V.i\l. Soundalgckar, ":Free convection effects on the Stokes problem for an

infinite vertical plate." Journal of Heat Transfer. Vol 99. pp. 499-501,

August 1977.

V.J. Rosow , "On flow of electrically conducting fluid over a flat plate in the

presence of a transverse magnetic field, NACA. Repl . 1358, 1958.

Van Dyke, M. "Perturbation methods in fluid Mechanics, Parabolic press"

California, pp. 202-207, 1975.

Wilks, G. "Magnetohydroynamic free convection about a semi-infinite vertical

plate in a strong cross field J.Appl. Math. Phys., vol. 27, pp.621-631,

1976.

Yao, L. S. ,Natural convection along a vertical wavy sunace. 1. Heat Transfer,

vol. 105, pp. 465-468,1983.

\,



APPENDIX
Derivation ofIG, I), h.

__ ,[,J;;+! -~q+M1]_'(( )" 'I -~-MZ
l,,_L "+1 e - /-z ,J;'c dz

q 0 2 lrZ'

Applying convolution Theorem.

Convolution Theorem: If rl(j(s)) = F(t)

and rl(g(s)l '" G(J) then

,
rl V(s)g(s)) = JF(u)G{t - u)du == F' G,

A(2)

A{l)

•Where F G is the convolution ofF and G and the above Theorem is called the

Convolution Theorem.

For n"'Oequation A(l) becomes

.( 1) -fi-MZ
10= .fi ,e dZ2 1/Z'

"

--' .[ -1,k'=I".[M,( _"_ c~ -I,J,-=J'-.[M.,[ -"- 'ffi}- ,J., - 312+ \ +<' - ,12- Z
brO 4222 4222

n



A(3)

6l
Now I •• , =1" 3M-" ,

I

1, ;1, [ta+~a'+qr _Q:]'

n>O

'I _'W( '"'+3M, [q ~(n'+4M)'JI,= J-e 2 e 2 erfe I +--~-
02 2vv 2

,la2+4M I) [ (a' +4M)v IW(r-v)+e 2 erfe -..!l-_ e l(a+Q )e2aQr(T-V)
2,,/v 2 2Q, l '

erfe( (a +Q,)~ -(a - Q,)e -2",Q,.{,--v)erfc( (a - Q, ).Jr - V)}dV

JI,
I,=T!,+ oM

A(4)



_I' '-Q') jlfWI [F" 'J ( )( [WH'"CHjlfWI' fPC')
(l r e erfe -----,=-+av, + a+Q 2a-Q), V',

2,jr r r

A(5)
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APPENDIX
Derivation afrQ, II, 12.

Applying convolution Theorem.

Convolution Theorem: If r1V(sl)" F(r)

and cl(g(sll '" G(t) then

,
r1(J(s)g(s)) = jF{u)G(t-u)d"", FOG

o

A(l)

A(l)

Where F"G is the convolution ofF and G and the above Theorem is called the

Convolution Theorem.

For n=O equation A(l) becomes

, _a:._!vIZ
I=JIl,e4Z"dZ
Q tl2.j1iZ'
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