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Abstract

This work provides a comprehensive theoretical analysis of a two-dimensional
unstead}; free convection flow of an incompressible, visco-elastic fluid past an
infinite vertical porous plate. Solulions for the Zero-order perturbation velocity
profile, the o ﬁr‘_s_t j order perturbation velocity profile and temperature profile in
closed form are obtained with the help of Laplace transform technique.

It covers the area of boundary laycr flow of viscous, Iincc:mprcssib]c and
electrically conducting fluid in the presence of slrong magnetic field along a
heated vertical flat plate. The ensuing boundary layer flows considered here are
governed by a non-similar set of parabolic equalions. Local non-similarity method
is employed to investipate the solufions of boundary layer equations representing
the flow and temperature felds. The numerical solulions are carried out for
Prandtl’s number , 0.1, 0.72, 1.0, 1.5 and 2.0 which are appropriate for different
types of liguid metals and for different values of magnetic field parameter, M.

Finally, a problem on free convection boundary layer flow of visco-elastic
incompressible and electrically conducting fluid past an infinite vertical porous
plate along an isothermal vertical surface are studied in the presence of a
transverse magnetic field. The results thus oblained have a graphical illustration
for different valncs of the mapnetic field parameter M, lranspiration parameter a,

Grashof number Gr, Visco-elasticity parameter s and the Prandt] number Pr.
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Introduction

Magmetofluid dynamics deals with "the study o
fluids in electric and magnetic fields. It onifies a famework between the
electromagnctic and fluid dynamic theortes to yield a description of the concurrent
effects of magnetic field on the flow and the flow on the magnetic field. There are
many naturzl phenomena and engineering problems susceptible to Magnetofiuid
dynamics analysis. it is useful in astrophysics because much of the universe is
filled with widely spaced, charged particles and permeated by magnetic fields, and
so the contmuum assumption becomes applicable.

The natural convection boundary layer {low of an electrically conducting
fluid up a hot vertical wall in the presence of strong magnetic field has been
studied by Sing and Cowling (1963), Sparrow and Cess (1961}, Riley (1964) and
Kuiken {1970) because of its application in the nuclear engineering in connection
with the cooling of reactors. Sometimes it becomes necessary to conirol the
connective boundary-layer flows by injecting or withdrawing fluid through a
porous heated boundary wall. Since, this can enhance heating{or cooling) the
system and can help to delay the transition from ithe lammar flow, Most of the
work on the effect of transpiration on free convection boundary laver. had been
confined to cases where there is a prescribed wall temperature. The power law
variations of the plate temperature and the transpiration velocity considered by
Eichhorn (1960} are those for which similarity solntions exist,

Sparrow and Cess (1961} first considered the case of uniform
transpiration velociry through an isothermal vertical wall. They looked at the
preblemn of a nniform plate temperature and transpiration velecity, The pmhlf:nj "
was considered in more detail by Merkin (1972) who obtained asymptotic

solution, valid at large distances from the leading edge. For boih suction and
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blowing on general body shapes a similarity solution had been investigated by
Merkin {1975).

A transformation of the equations for general blowing and wall temperature
variations wasl studied by Vedanayagam et. el. (1980). Clark and Riley (1975,
1976) Lin and Yu (1988} studied the case of heated isothennal horizontal surface
with lranspiration in detail and recently by Chandhary and Merkin (1993), Since
the method proposed by Cess (1961} had a serious drawback in the resulis it
provides us low accuracy at moderate values of x, Sparrow and Yu (1971}
introduced a method known as local non-similarity incthod for the thermal
boundary layer. This technique is locally autonomeus. Since solutions of the nen-
similarity equations at any specified sleamwise station can be obtained without
first obtaining upsiream solutions. This local non-similarity method has been used
efficiently by Chen and Sparrow (1976), Minkowycz and Sparrow (19783, Chen
(1988) and very recently by Hossain et.

The presence of roughness on the flat surface disturbs the Now and alters
the heat transfer rate. Using a simple transformation on the governing equation for
the flow considered here, non-similar boundary layer equations for a wavy surface
are derived. The present study deals with the effects of the magmetic feld
parameter, M and the amplitude of the lranspiration parameter a, on the velocity
field, the temperature field and local Nusselt number on the flow characteristics.

A study of considerable imporiance in areas concerned wilh the energy
generation and its utilization is that of heat iransfer. The study of heat transfer has,
over Lhe past several years, been related to a wide variety of prablems ,each with
its own demands of precision and elaboration in the understanding of the particular
processes of interest. Atmospheric, geophysical and environmental problems in
connection with heat rejection, space research and manufacturing system require

such type of studies.



In the diversity of studies related to heat transfer, considerable effort dirccted at
connective mede, in which relative motion of the fluid provides an additicnal
mechanism for the transfer of energy.

The connective mode of heat transfer is divided into two basic processes, 1f
the motion of the fluld arises due to an external agent, such as the externally-
imposed flow of a fluid siream over a heated object, the process is termed as
forced convection. This rype of fluid flow is caused In general by a fan, blower, the
wind or the motion of the heated object itself. Such problems are very frequently
encountered m technology, whete the heat transfer to, or from a body is ofien due

to imposed flow of a fluid at a temperarure different from that of the body.

If. on the otherhand, no such externally induced flow is provided and the
flow arises “naturally™ due to the etfect a density difference, resulting from a
temperature in a body, the process is termed as natural or free convection. The
density ditference gives rise to buovancy effects due to which the flow is
cenerated. A heated body cooling in ambient air generates such a flow in the
region surrounding it. Similarly buoyant flow ansing from heat rejection Lo the
atmosphere and to other ambient media, circulation’s arising in heated rooms in
the atmosphere, and in bodies of water causes thermal stratification of the medium.
Many other such heat (ransfer processes, in our natural environment as well as in

mainy technological applications, are included in the area of natural convection.

The flow of an incompressible viscous fluid past an impulsively started
infinite horizontal plate, in its own plane was studied first by Stoke’s. Because of
its particular importance, it has been extended to bodies of different shapes by a
number of researchers. Amongst them are Illingworth (1930), Stewartsun.{l 951),
Half (1969) and Elliot {1969). Ilingworth (1930} considered the flow of a

cownpressible gas with vanable viscosity near an impulsively staried vertical plate




and the problem was solved by the method of successive approximation. Elliot
(1969) generalized llingworth’s (1930) problem by assuming a time-dependent
velocity and temperature for the plate but neglected the viscous dissipation.
However, in both papers, only mathematical results were derived and no physical
situation was discussed. From ihe engineering point of view the physical aspects of
such types of problems are important . In these two papers the flow past an
impulsively starred semi-infinite horizontal plate has been considered. Stewartson
(1951} studied it by analytical methods whercas Hall (1969) discussed the same
problem by finite-difference method.

Analytical studies on unsteady laminar free-convection problems have
received much attention by many research workers such as Sursawara and
Michivoshi (1951 & 1952). Sjegel (1958), Gebhart (1961}, Chung and
Anderson (1961}, Sparrow and Gregg (1960) and Yang (1960} . Exact solutions
were available only for the infinite vertical plate with Prandd number of unity and
under transient conditions of step change in either the surface temperature or the
surface heat flux . These represent asymptotic solutions expected to be valid not
only at large distances away from the leading edge, but also during a shoerl time
interval after the communication of the free convection flow along a finite plate.
Exact asymptotic solution for the saue problem with arbitrary surface temperarure
or heat flux wvariations were obtained by Menold and Yang (1962} and
Soundalgeker {1977} . In these studies. solutions for the coupled equations
coverning the flow field were obtained in exact form using the Laplace transform
technique. Study of the flow of electrically couducting fluid in presence of
magnetic fleld across a surface 1s also imporlant from the technological pomt of
view. Fluid fowing across a transverse magnetic field produces an
electromagnetic force. The current and the magnetic field combine to produce
force that resists the fluid’s motion. The current also generates itself magnetic field

which distorls the original magnetic field. An opposing or pumping fm‘ceﬁ the



flutd can be produced by applying an electric field perpendicular to the mapnetic
ficld . The disturbance created in the magnetic field or the fluid can produce
magneto-fluid dynamics waves in upstream and downstreamwake phenomena
Cramer and Pai (1974). In natural conveclion boundary layer flow of a
electrically conducting fluid up a vertical wall in presence of a strong cross-
magmelic field has been studied by Singh and Cowling (1963). Sparrow and
Cess(1961), Riley {1964), Kuiken {1970), Wilks (1976), Hossain and Ahmed
(1990) and many others. All the above studies were conflined to forced , free and
combined forced and free convection flow of an ¢lectrically conducting fluid along
a vertical surface in presence of a transverse strong magnetic field.

Compared with the steady state situation, there are relatively few solutions
available for the transient flow of the electrically conducting fluid in presence of a
magnetic field. Rossow (1958) investigated the problem of an infinite flat plate
given impulsive molion in presence of transverse magnetic field. Later Gupta
{1960} , Singh {1964) , Pop (1970) studied the transient free convection flow in
presence of magnetic field. Recently Hossain and Mandal (1985) have
investigated the free convection flow of an electrically conducting fluid past an
accelerated vertical porous plate with time dependent suclion for an arbitrary
Prandt] number.

Stndies in the visco-glastic fluid , which exhibits both viscous and elastic
properties such as bituminous, flour dough, napalm and similar jellies, polymers
and polymer inelts such as nylon and many polymer solutions, arc of great interest
from the technelogical point of view to many researchers. Oldroyd (1950) was
the first to outline a method of formulating consecutive equations which would be
valid for larpe deformation. The equation

ar gy dzv]
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was taken as the basis for his theory which gives a liner relation betwcen (he shear

dv

slress © , the rate of shear o

and their time rates of change.

The expression contains 3 constants, a viscosity p and * relaxation times”

i and A; . The relaxation times obviously have the physical significance that if the

!
molion is suddenly stopped, the shear stress decays as &xp[— 2 ] and if the stress
1

. { . .
is removed the rate of strain decays as exp|--— |. The quantity p is the
P 1, q ¥

Newtonian viscosity observed in the fluid at very low rates of shear. This equation
reduces to the Newtonian fluid (%,.3,=0) and to Maxwell fluid (3,=0) as special
case.

The boundary layer treatment for an idealized visco-elastic fluid was
introduced by Beard and Walters (1964} , There has been a continued intcrest in
{he investigation of natural convection heat (ransfer of non-Newionian flnid, which
exhibit visco-elasticity, Recently Rajagopal {1980) and others investigated the
heat transfer in the forced convection flow of a visco-clastic fluid of Walters
model. Most recently Dandpath and Gupta (1989) have investigated the flow
and heat transfer in an incompressible second order fluid caused by a stretching
sheet with a view o examining the inflnence of visco-elasticity on the flow and
heat transfer characteristics. The above work were confined to the study of steady
forced convection flow. Less interest was shown in the problem of transient
forced and free convection flow of a visco-elastic fluid, Teipel (1981) first studied
the transient [low of non -Newtonian visco-elastic fluid for an iinpnlsive motion of
a flat plate.

The flow-along a harmonically oscillating flat plate of the visco-elastic flnid
has been studied by Rajagopal (1983) and Panda {1979) et.al . It is now a well-
known fact that magnetic field has stabilizing effect on the boundary layer prowth.



With this understanding, Singh (1983) and Singh {1984) have investigated the
effect of a transverse magnetic [ield of an electrically conducting visco-elastic
fluid past an accelerated flat plote of infinite extension. The effect of elasticity on
MHD flow of an elastico-viscous fluid past an accelerated plate has been
investigated. and in , analysis of the Stokes problem for the MHD free convection
flow of a visco-elastic fluid past an impulsively started vertical plate has been
performed emploving the Loplace transform techaique for Prandtl number P=1. [n
this work. it is proposed to study the effects of free convection tlow of an
electrically conducting visco- elastic fluid past an infinite vertical porous plate in
presence of transverse magnetic fluid . The plate is allowed to move in ils own
plane with a velocity u=u,i{t), where u, is constant and f{t) 1s a function of time
only. In chapter 1, the energy and momentum equaticn of have been deduced by
introducing the non- dimensional quantitics into the boundary layer cquations. In
chapter 2 . the energy equation has been scolved for different values of Prandtl
number. The rate of heat wransfer has beeu smdied. In chapter 3, the problem of
free convection boundary layer tlow of a visco-elastic fluid along an infinite
vertical plate in presence of magnetic field has been studied. Here both impulsive
and uniformly accelerated motion of the plate have been considered . The results
for the velocity fields are shown graphically. The skin friction factor is represented
graphically and in tabular form for different values of the parameters P, (prandtl
number), M (Magnitic field parameter), Gr(Grashof number), «(Transpiration
parameter) and S{visco-elastic parameter). Finally the flow of visco-elastic fluid
past an infinite vertical porous plate has been studied and results are discussed in
chapter 4. The velocity profiles for impulsive and uniformlby accelerated starts of
the plate are giveu graphically. The skin friction factor is vepresented graphically

and in tabutar form for different values of the parameters P, .S, @, T and Gr.



MNon-Newtonian [uids:

The Newtonian hypothesis has worked very well in explaining many
physical phenomena in various branches of fluid dynamics. This allures us to
remark that most of fluids at least in ordinary situations behave like Newtonian
fluids. But in the recent years, especially with the introduction of polymers, it has
been found that there are fluids which show a distinct deviation from Newtonian
hypothesis. Such fluids are called non-Newtonian fluids,

There arises a strong feeling fo develop new theories to explain the behavior
of different types of non-Newtonian fluids. The non-Newtonian fluids are breadly
classified into the following three categories:

{i) Viscous fluids,

(i1} Visco-plastic Muids and perfectly plastic materials, and
(iii) Visco-elastic [luids
The idea is that the stress tensor is isotropic when the fluid is at rest, is
followed for all fluids whether it is a Newtonian fluid or a non-Newtonian fluid.

Therefore we define T} =—pé, +p,; where p is the pressure , p,, is zero when

the flnid is at rest and T, is the stress tensor .When a non-Newtonian flnid is

undergomg a general deformation then p,, may not be a deviatric stress tensor and

50 ils values is other than,

_ (i) Viscous fluids: The term “viscous” has come from the internal friction
between the fluid layers, In Newtonian fluids the strain-rate depends linearly on
the applied stress. Moreover , when the fluid is at rest the stress tensor is isotropie
and thns the results n pressure only. So one naturally asks why not take the stress

tensor as a general function of the strain-rate tensor but which is isotropic when the



am
strain -rate is zero. Well a fluid in which the stress tensor p,, is a given function of
the strain-rate is called a purely viscous fluid, provided in the absence of strainrate
the stress tensor is Zero.

(if) Visco-plastic lluids and perfectly plastic materials: One of the
important observations in the viscous fluids is that if we apply a cerlain shearing
stress on & fluid, however small it may be, it causes a continuous deformation in
the fluid. But in many materials like paints , pastes, etc., we [ind that if we apply a
shearing stress less than a cerlain gnantity, the materials does not move at all. But
when this shearing stress exceeds a certain value the material starts moving and the
stram-rate of the material depends upon the applied stress. Such materials are

cailed plastics.

(iii) Visco-elastic fluids: In the elastic materials the stress depends on the
strain only, that is , the stress is a cerlain function of the strain, Thus if we applv a
certain stress on an elastic material, the material undergoes some deformation and
when this stress is removed the material retumns to its original position. So we can
say that the elastic materials have memory (rather perfect memory), l.e., it is
capable of recogmzing its original shape. On other hands, the stress depends upon
the rate of deformation and when the stress {s removed the strain-rate becomes
zero. But (he deformation it has accumulated persists. That 1s , it forgets its
original position. In other words , we can say that fluids have no memory. But
there are some fluids like soap solution, polymers, which have some elastic
properties, besides having usual fluld properties. Such fluids are called visco-
elastic fluid. A visco-elastic model can easily be illustrated by a spring dashpot
assemnbly (figs 1.1 & 1.2). Now if we take a spring and apply a certain force to it,
we see that (the spring extends by a certain amount which is proportional to the

torce applied to it. On the other hand , in a dashpot if we apply a certain force on

e



the piston we find that the piston moves with a certain speed which is proportional
to the force applied to it. We can say that the elastic properties of a material can be

represented by a spring and the viscous

N N

R T

F F
Fig(1.1) Fig(1.2)

properties by a dashpot. Now we shall take two models containing a dashpot and a
spring to illustrate visco-elaslic models.

In general heat transfer estimates the rate at which heat is transferred across
the system, where the boundaries are subjected to specific temperature differences
and the temperature distribution of the system during the process. The physical
processes involved in the generation and utilization of heat are of practical

tmportance.

0



There are three basic processes of thermal energy transport :
{1) conduction, (i1} convection and {iii) radiation,

In various types of studies related to heat transfer or thermal energy
iransport, considerable effort has been directed at the connective mode, in which
heat iransfer processes take place with the motion of the fluid. As a consequernce of
this fiuid motion, the heat transfer rate, as given by conduction is considerably
altered. We are interested here to deal with the forecs of convection only.

The convective heat transfer is divided into two basic processes namely (a}
forced convection and (b} narural or free convection.

Free convection: If there is no intemally induced flow but the flow arises
“naturally” due to the effect of a density difference, resulting from a temperature or
concentration difference in a body force field, such as gravitational field. the

process is termed as “natural”™ or “free” convection. The density difference causes

buoyancy effects due to which the flow 1s generated.

Porous plates: By porous plates we mean that plates possess very fine
holes diswributed uniformly over the enter surface of the plates through which tluid

can fiow freely and continuously.
Plates with suction and injection : The plate from which the fuid

enters the flow region is known as the plate with injection and the plate from

which the fluid leaves the flow region is known as the plate with suction.

11



Chapter 1
BASIC EQUATIONS GOVERNING THE FLOW

An unsteady free convection flow of an electrically conducting viscous
incompressible fluid past an infinite vertical porous plate with time dependent
suctionfinjection has been considered. A magnetic field of uniform Stl‘EElg‘[h B, is
applied transversely to the plate. The induced maggetic field is neglected as the
magnetic Reynolds number of the flow is taken very small. We assume that all the
fluid properties are constant and the influence of densiry variation with
temperature is considered only the body force term. The flow is assumed to be in
the x-direction which is along the verrical plate in the upward direction and y-axis
is takeu to be the surface of the plate. Initially the temperature of the plate and the
fluid are same.

Continuity equation

o "
Momentum equation
% 2 1.2
Energy equation
aT_ ATk &T 1.3

Here u and v are the velocity components associated with the direction of
increasing x and vy co-ordinates. T is the temperature of the fluid in the boundary
layer , g is the acceleration due to gravity , § is the volumetric coefficient of
expansion , « is the thermal conductivity, p the density of the fluid , og is the
electric conductivity, v is the kinematics coefficient of viscosity , Cp is the specific
heat at constant pressure, T, is the temperature of the ambient fluid , x; defined
rotational viscosity coefficient and A is the suction parameter.

‘.
12



The associated initial and boundary conditions are

(20 w(y,8)=0; Tyt = In.
t >0 w{0,f)= uﬂf(r); 70,y = TPF“
TI:‘IJ:I} = Tm+

£ =0

Initially the temperature of the plate is the same as that of the fluid (no slip
condition ). At t>0 , the plate starls moving in its own plane with a velocity
v=ii, {1} where u; is constant and f(t) is a function of time . The plate temperature
is instantaneously raised or lowered to T,, , which is therefore maintained constant
in order to produce boundary effect. The heat due to viscous and joules dissipation
are neglected in the energy cquation because of small v2locity usually encounters

in free convection flow.

In order to non-dimensionalize the governing equations, we miroduce the

u{oo, 2y =10

following non-dimensional varnables:

with the help of these non-dimensional variables the momentem equation (1.2)

take the following forms:

3
ou _Hg cw
gt v or

2
u_Lo ow
é'_}r- v &n

2

Ftu Hy 7

13



Put T-T, =AT ,T-T.=68AT

3 2 3 2 5 A
) Uy Ay iy A4 Calalaw L 50
R e L B
vV oGT Voo Vo g P v anTor
- - 7 303
&v A v PeATv . Fw TpHpY ¥y Fw
- 3 T2 2 MRy T 7.
Gt Uy o iy &n 0 ve anter

' ..-.2 ! -
o A N B VY

&t ty an ,5'??2 An

Energy equation (1.3) takes the form

14
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where v = H

Je!
6 100 159
&t g 21 Py ,_«;-,?2
where
Gr= &b ?T { Grashof Number),
u
T

f=_X—P (Prandt! Number),

2
. ¥

S=K [—HJ (Visco- elasticity Parameter),
¥

"Jﬂﬁ% -
M=—r7 (Magmetic field of Parameter }.

U O
subject to the boundary conditions:

720, w(io)=86(nr1=0
>0, wl0,n)=1", 80,7 =1
wiowo, 7} =0, {‘](m:r]=ﬂ

where nis an exponent.

LA

(1.7)

(1.8}



CHAPTER 3

SOLUTION FOR THE VELOCITY DISTRIBUTION
AND SKIN FRICTION FACTOR IN PRESENCE OF
TRANSVERSE MAGNETIC FIELD

Here free convecton flow of a visco-elastic fluid past an infinite vertical
flat plate in presence of a transverse magnetic field has been discusscd . The form
of the boundary layer equations is invariant under the transformation, and the
surface condition can therefore the applied on a transformed flat plate surface. The
equations for the velocity field have been solved with ihe help of (he Laplace
transform technique. In the present chapter a problem on free convection boundary
layer flow of a viscous incompressible and electrically condncting fluid aleng an
isothermal vertical surface in the presence of a transverse magnetic field is
proposed to be discussed. The results thus obtained are shown graphically for
differcnt vatues of the magnetic field parameter M, transpiration parameter{suction
parameter) g, visco-elasticity parameter S, Grashof number Gr and the Prandtl’s
number Pr. Finally, effects of the above parameter on the zero-order perturbation

velocity profile, first order perturbation velocity profile and temperature are also
shown graphically.

3.1 Solution of momentum equation

Momentum equation is

ow__ow_&w . Fw G-
st onter

~ Mw+G,0

the boundary conditions are,

r <0, w(n, 1) =0,
>0, w(0,r)=7", (3.2)
>0, w(w,7)=0,

Equation (3.1) is a third order partial diffcrential equation. For 8=0, it reduces to
equation governing the Newtonian fluid. Hence, the presence of elastic parameter
increases (he order of the govemning cquation from two to three. There are
prescribed only two boundary conditions (3.2). Therefore it needs one boundary

20



and

{2.6}

8(0,7)=2,8(w,7) =0

1
q

Where ¢ is the transformed function of 8 and q is the Laplace transformed
independent variable.

The solution of equation (2.5) satisfying the boundary conditions (2.6) is obtained
a5

2
_%_})r._. HE..'_#P}}Q

i T
00 7 (2.5b)
5=5
g
where —=a
Hﬂ
n_(2p2
aP,- a2 P +4F,,qn 056
~ 7
o==%
g
alP ‘
V5 \/" P +q
- [P
5 2 V1 |7 (2.5d)
==
€
—JJ‘T &+ af2+q !}
p 2.7
g_¢
g

where a...I'P_,, =

The temperature distribution 8 is now obtained by taking the inverse
Laplace transformation of equation (2.6). Since & has peles of different orders we
apply Bromwich integral defined as

17



f=——o | Be"’d:
2r 5w
gquation (2.7) to obtain
Lo
1 ~VE|atyaltq)rrar 7
£ -
HKnt)= | o/
(?? ) 2ri’ g 7
3 2
where a” +q =4~ = dg =2kdk
—WJ'P_r[a+k:|r;+{k2—a2]r
(1) = —|° 2k dk
(mr)=5 1 242 (2.7b)
—k [P n+kli (2.7¢)
1 —afPrn-ait r
ont)=—-e aybn-a f 2k dk
2 kz ,22
| —a Byl { 1 1 Y —k /P n+klt
&it)=——e VA I[ ] VE ks (2.7d)
21 k+a k—a
— (Pl 2 B f
Hnt)=e -\/—rﬁ" @il e? Ha"'llPr??erfc Ei+,.l'c:z.r
2 2t (2.7¢)

azr -a Ry {?}Jg J_”
(rf,z}de‘ﬂ'f ﬁ[ aB 7, (’;J;Jr J‘J ayEn [*‘?i; JE]] (2.8)
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For «=0 i.e. X =0 the solution in {2.8) is exactly the same given by Menold and
Yang (1962).

For P=1, equation (2.8) tumns into

I - o n ~ [ n (2.9)
9(??-.f)=-2-€ aq[e nﬂ?fﬂ[ﬁ'l‘ﬁ) t+e qerﬂ'LE“xﬁJ}
For equation (2.9} we get the rate of heat transfer defined by

&t
Zy%

gy =—k

y=0

k ‘P
~ .20 AT-L (2.10)
Vo) B

T

It follows from equation (2.10) that the rate of heat transfer is directly

proportional to the square root of the Prandtl number P, and inversely proportional
to the square root of the time varigble T.
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CHAPTER 3

SOLUTION FOR THE VEYLOCITY DISTRIBUTION
AND SKIN FRICTION FACTOR IN PRESENCE OF
TRANSVERSE MAGNETIC FIELD

Here free convection flow of a visco-elastic fuid past an infinite vertical
flat plate in presence of a transverse magnetic field has been discussed . The form
of the boundary layer equations is invariant under the transformation, and the
surface condition can therefore the applied on a iransformed flat plate surface, The
equations for the velocity field have been solved with the help of the Laplace
transform technique. In the present chapter a problem on fiee convection boundary
layer flow of a viscous incompressible and electrically conducting fiuid along an
1sothermal vertical surface in the presence of a transverse magnetic field is
proposed to be discussed. The results thus obtained are shown graphically for
different values of the magnetic field parameter M. ranspiration parameter{suction
parameter} a, visco-elasticity parameter S, Grashof number Gr and the Prandtl’s
number Pr. Finally, effects of the above parameter ou the zero order perturbation
velocity profile, first order perturbation velocity profile, heat iransfer and
temperature are also shown graphically.

3.1 Solution of momentum equation

Momentum equation is

(3.1)
oW aﬁw 52;’—5' é‘zw - Mw+G.0
7 Z on aoncor

the bouudary conditions are,

20, w(n7)=0,
r>0, w(0,z}=1", ' (3.2)
>0, ww,r)=0.

Equation (3.1} is a third order partial differential equation. For $=0, it reduces to
equation governing the Newtonian fluid. Hence, the presence of elastic parameter
increases the order of the goveming equation from two to three. There are
prescribed only two boundary conditions (3.2). Therefore it needs one boundary

C
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condition more for a unique solution. Thus to overcome the difficulty we adopt the
perturbation technique in which the elastic parameter S can be regarded as a small
quantity. We therefore, follow the technique of Beard and Walters and assume the
solution in the form w=wgtSw|.

putting w=wy+Sw in equation (3.1)

! -j -
| wiy + 8w &l w +Sw) &7 win + S 7w, + Swe
[ 0 1)_,;; ( 0 if_ ( D2 l)—M(wﬂ+Swl)—S [ ID2 l}
et an an &R o
equating the coefficient of S° and S, we obtain the following equations:
Ewﬂ f?"wﬂ 5* Wy (3.3)
——a =-— —;‘lffwﬂ+G,.E‘.
or &1 &n
oW oW (;_-,2 W el 3w (3.4)
1_ 1_ L yrn 0
- a = Mul -
ot an g on’ At

the boundary conditions {3.2} becomes

=0, wﬂ(q,r)z 0, wl(r},r).—_ 0,
>0, W{]('D> r) =", wl(ﬂ', r) =0, . (3.5)
wﬂ(ﬂj,f}: Wi (ec,7)=0.

Applying Laplace transform on (3.3) , we pget

PRy oW, _
5 t+a —gﬁﬂ—iw{}ﬂ}rﬂ:ﬂ,
on* én
*wy, oW, o+ i) _ (3.6)
+a —lg+ Mw, =-G.0.
5??2 o 0 r

+G, 8



and the boundary conditions takes the from

3.7
Wu(r?-‘?)=ﬂi Wu(ﬂ-‘?)=é= w,(,q)=0 G0

—i:z+ﬁ|'.::2+~cl{¢;r+M}rir -a+ |'a2+4|[q+M:| »
2 ~ B 2

(Wﬁ}a = de e

—at.fa’ +4{g+ M)

2

—Mn"PTJ{ah,Iagﬂ;]q
(-G.)-

(%), = D" +aD-(g+ M) q

and m =

where D=— , a=

d.) P,
an 2

'\Jrf-i;[ﬂwlﬂ:*q |f?
(7 e ’

q {E(a+ﬁ)}z +a{—-q€(a+ﬁ)}—(q+ M)

G, [Falatlo
£ P,(a+1||'a: +c;r)2 —aﬁ[ahm’ +q)—(q+ M)
the solulion of differential equation (3.6} is

—a+,‘||'a2+4[q+ﬂﬂn -a+“|'.::2+4[c_,r+.-'v4":|?Ir
2 2

w, = de + Be

- [aﬂ;'az—ﬁ?j n (3.8)
. £

g R(cx+ M)z —aﬁ(a + \/E)—(M% g)

P -1

r

where 97 =



Using inverse Laplace transform on (3.8) we obtain

—a+ ,’02+4(q+},ﬂ —a+ f02+4[9+MJ "

i
It 2 Gr -1_¢ 2
W o= L + L
° g -1 TV 2
q(a+«,l'a +q| —QF (3.9)
G —,#Pria+\/a2+g]?;r
p—1_ %

G G, (3.10)
wu(?;r,r)=fu+P —lj]_P _1I1

»

where

—a+,ja? +4{g+!
a+.la : (¢ M':l?? G.11)

—1e
=L
0 g

{

—a+,]a? +4 g+ M
€ 2 1
2
q{(a+1ﬂa2 +g _QE}
~JFa+faT+q]n
-1 €
L 2
q[(a + q'az +g| - Qg]

The values of I, [}, and I; are oblained as

(3.12)

(3.13)

Iy =



(3.14)

2
02+

I ! =2 [(af + Qr }Hlagr Te.l;fc{(a + Qr )J;}

| 2 Q_r
{[m“‘ahq: _QE} 2 (3.16)
) [a g )E—zaQ,. 3 ,_:__-—fc{(ﬂ -0, }J?]]

From (3.14) and (3.16) by convelution theorem

Y A a%+4 ﬁr{ﬁ. (dz + 4M)v
i = flﬁ 2l 2 erfe] —1 +
b o2 24 2
—_— {3.17)
yﬂ&f_” (ﬂ'2 +4M)v OF{r-v)
+e 2 erfe| — b= — {(a-&-Q )EEQQ”{T_V’
2% 2 20,

erfl{c+ 0 W77 ) (- Qr)e—-iagr[f—w]e;j&((a -0 )m)}du
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I E_ﬁar} !EE_JP_FMEU(C[E_E_GE]

2 20 ae” - 07

Fan (VB
_(4;_:2 - Q_E ]e” ’r'aTE»&*J"_;‘?:.'[."lI v + au'r;]

2z
[ 5 - . (3.18)
Ofr+2aQut+ | Pant [p O p
+(4:I+Q,,J{2£::—Q}..)€‘ J_r Jerfc ?‘;f +r:f-.;"r’.r_+Qr«.l'{;
T
QZr-2aQ,r+,[Pan— FQ,:;?] P
+(H—Qr)(zﬂ+QrJ€[ VY o ’;J—” talr-g,r
T
similarly applying Laplace transform on equation (3.4), we obtain
ow  dw  w 3w,
L —-al =L—s-~LMw -1 3
ar i an &t ér
_ 2
dw, d“w 2
_ 1 1 d° [
gw, —w, (0, )—ga—=—F7"— M, ———jgw, —w,(0,7
1~ (0.7) dn  an 1 dﬁz[ 0~ ol )]
where q is the Laplace transform parameter
T YT — -
L 619
di” an dn”
substituting wy, from (3.9} on (3.19) we get
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7 _
d°w dw
21+a 1-(M+q]Wl
di dy
— P ]
IIE-H" EI2+4 {!’+MJ] _ﬁ[a+,|’a2+q]n
a1 Ge G, e '

T ha

ZQF {[cx+\'£1 +g QE]_q{Pr_l)[[ﬂ+va2+?]2—Q

|

\ f12+4rq+M)|]

j —— E‘J.]--l-

=|1+

G.P'
p . 2 |
(Pr']}[[ka""u"laz +q ‘QE]
| ]

2 ;e
G Fr(ﬂwlﬁz +g)  -J/B] ﬂﬂ'ﬂzm]n
¥ _ e "
P11}/ 2
(" }{Lﬂ’ﬂﬂzﬂl -QEJ

—%|;a+.,la2+4(q+M]Jf}‘ %[‘£1+1.'ﬂ2+4[‘?+M]]??

; {a + J; +4{g+ M) q

(lecziie +he i
- 2
(ﬁ) . Gr _a+\/a2+4(q+M)]
1/p ™~ 2 y
’ (Pr—l]{[aﬂiﬂzﬂ —QEJ - 2

{a + \{az +4{g + M}}r;.'

e 3 G, (a+ a’ +q J_|a+ a’+q|y
za+\’az+4(q+M} _l(cx+ I'a'2+¢_,r QZ
2
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G

7

(}{(J—)Qz] e valge )

[a+ a* +4(g+ M)]z {‘HW]W

2

1+ e

La | —

A ARl
G Pr[a+1ﬂltr'+f} E_\{ Aetvattan

s —

Pr_l[gﬂfmg QE( )[(Q+JEI—+{?]2_QE:‘

ﬂ+m"| a2 +4[q+ M] '”+1.,I'I'“' +4fq+ M )
- 1

i
w o= Ade = + Be 2 L 1+

G
| 1 - ){(a#az—wf—gﬁ}

i

[ tya® {q+M)T ‘”Wﬂ Gr Pf“(“‘/a—“})

ne -

a2+ +
4(q W) {[ah.'a +q| Q}

—ﬁ[ﬂ+«ia2+q 77

e (3.20)

applying boundary condilion, w; = 0 where n—= . This gives B=0 . Again w; =0
where 1=0,
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Grﬂ(a+,/?+_q): 1
(R~1)1{(H+J&:—+q]z—gf}"

0=A-

-

_ GP [a+,jal +q)
(P-1) {(a +~Jm)3 3 Qf}z

substituting A and B equation {3.20) we obtain

2 TRV
e (a+1lu'|::c2 ) a+Jat+4{g+ M)
_ pr 5 7
W) = 7€ <
2 % -
(Pr—l) a++a” +g —Q?
2
n[a+ \/a?' +4(q + M)] G
- \/;2_= 1+ r I (3.21)
Ha +d(g+ M) (B =1) (a+ﬁ,’a2+q| —{22}
L . e )
' 2 -".'
[ a2’ .t | ]
a+.,ja ?Lq""m?? Gr | PF[H+"..|'III2+C}]5;' -JP_?_{J+~1,I|.:12 +q |77
e - 3 —— €
(Pr'l)_ )

using inverse Laplace transform on (3.21) we obtain

28



a+,fa? +4{

g+
m"?

{a +Jat +4{g + M}:|

4

2

—ELHI = 1+ L
4 'Ia2+4{g+Mr) 2 2 2
V (B.—1) (a+ﬁja +q| -
3 _ 2 ¢ 5 )
G P, (a+ya +4g -.uu'PrLﬂ”w'Q“"'? 1
. & L"l e
2 2

(£ -1} {(H+m2_93}d

where
2 -
L a2
[a’+ 'IEIZ-I-ql g+ fa +4(q+M];}
2
III 2
+ +4ig+ M
J —L"l[a (o e )] 1+ Cr
27 2 [ 2
a’ +4{g+ M) | (P,—l]{(a+1.}a2+q"—g}?]
[q2
a+,ja«+d{g+ M
( n

2

s

(3.22)

(3.23}

(3.24)

{3.25)




(afeq) (el

g1 5e (3.26)

[[mm Q}

How

(a+«.|'a -rq 1 et [GE+1.,II|£I +q

! =

(ol ss) Q,%] [(ﬁ) }

putting
az +4 =1I5:2 — dg = 2kdg
.-
(<2
_ 1 e (a+%) > bdk
2 ) 2
|:(‘I + Jrc) - O ]
(¥2-a2] 2 -
_ | e (a+4) 2 b dk (G.27)
7 a4k +Q, ) (a+k-0)
let
(@ + k) k y B C
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k(mk}z =A(a+k—Qr)2(a+k+Qr]+B[a+k—Qr)

+C(a+k—Qr)(a+k+Qr]2 +D(a+k—Qr)2
wherek =0, ~a
(Q, —r:r)(a+Qr —rx}z = D{EI+Q, —-:1+Q,)1

Q{0 - a)=40.D

equating the coefficient of K

l=A4+C = 4=1-C and k=0

2

0= 4(a-0)(a+0)+Ba-0) +Cla-0)a+0) + Da+Q)

0= g~ 0 (a+0)- L) -0 +cla-0 a0 -

{f.'f - Qr}(g " Q,-}l

4

0= (-0 (e +0) 4- 1) +(a-0)ar @) (c-)

oo-fs-t)erfe-]

E]!

»T



i

0=(a- Q,)[l - C-ﬂ +(a+ Q,)[c—ﬂ
0=-Cla-0,) +%(a -0, )+Cla+ Qr}——i-(a +0.)
0=C{-e+0, +a+Q,]—i—(-3a+3Q, ~a+{,)

20.C = %{4@, ~2q)

o0, -20 _20,-a
420 40

—a+20, 40 +a-20 g +e
Qg 4Q,

A=1

Equation {3.24) is obtain

-

(a+1,fa1+q)_ 1 Iefkl-ﬂ21ft2Q,+a 1 o+ 1

(o ieeaf -] © ket ¢ (rraro)

a—20 1 _a-0 1 Jk
40, k+e-0, 4 (k+a-Q)

L—]

_ 2 —a2 2
20, +a e azrf R e+ e TJ R ik
40, mi T kta+Q, 4 i (k+a+Qr)2
2 2 . 2
a—-20, e as ek 4 a - aly ek v
| dk f 7 dk
40, T Tkta-Q, 4 i (k+a—Q,.)
32



. 2
_2+a —a2c (0]

40,

2
e:;ﬂ:((::c + Qr)-ﬂ) - zg} _ %Q_re_azfeta—.@r] F fc((a -0, ) J;) . %QL ol

l:e{a—'erz Tg(a - Qr )z‘ erfc((a - Qr ){?) - 21\'@]

2
Erfc((a + QP‘ )‘\J'{;) + %QLEE_JET[E(H-FQFJ T 2({2’ N Qr )r

100 20 P )22 0 g

2 :Qr {EEQQFHQ‘ETE(G +0, )'—’erfc((a +Q. ]w’lf)} +Z ;Qr {E_EEQ"'HQ’?T (3.28)

sa-0, eontl{—0, W] - s~

Again
2
ﬂ+-\ja +4(q+ 1”}
ﬂﬂ#azz‘*wM! =t @ 7 7
L"le i da
_an Jﬁ
e 2 feqr_ = TatMa

2 i

pufting

2 2
GT""?‘PAM:JEE = dq = 2kdk andq=k2—{a—4-+ MrJ



i

1 47 (3.29)

aT

From (3.28) and {3.29) by convolution theorem

20, (200507
_G Ly 4;52‘? e[‘ L8 ]verfc((anQr}w.l'{;)

a0 12
[E[ 2a0,+03 v

4y ='j[ 10, ’ eo‘l‘[{a—:—Qr]v';)

a+0, [E[ZanfQ?JV

T{ZQ,, + HE[E{IQ,‘+Q,‘2‘|V

4 2{\(1 —Q,)v

2(“+9rlwofc((a+9r)ﬁ)}Lf*'

7
an_al+4 M ./ il

erfef{a - Q,.)ﬁ)]—ae‘ﬂz"Jl}ie 2 & U m Ay, (330
x| 2 ..‘.'f_ 3
ay(r—v)

2 P
{a + 1,||:,1r2 + 4{q + M}} G €+, ﬂz"”‘ﬂq"ﬂw}
g, =i 1+ r e 2 7
2 2
Fr i 4{q + Jlrf}

y 5 _1}{(“@2 -Q;}
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e 1{a+JaE+4(q+M)}

2z

2
g2
: {a +'Jr:12 +4(g + M]} a+jat+d{g+ M)
=L

— g 2 + rL-

«ha2+4{q+M') Pr_l
a+,|'a2+4(q+M)

! 2

7

=T tn
where
2 5 - -
N v S LI
-l ) 2
J21_£ €
a2+4{q+M)
"
a Z L
: {a+\{a2+4(q+f~f]} gt atya 4:}4(97“&1’?'}?
=—| e = dq
27 JJ2+4(Q+M]
2
a2
a+2-.|'—+ + M
4 1 qr—a]r-?—1/£+q+Mr;
1 i 2 4 4
=—] ¢ q
2l ’HZ
Z T-Fq‘-l“M

2
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2 4 y 2 4 2
_¢ [a2ef TR L O jaake® T* 4
2ai i
arn az+4Mr
2 4 2
Mo B Yt P
2l
a7 _al+d M 2 7
e 2 T ﬂz _4 a _'4,, 4 1}2 _4-
.fz.l = e 17 4 ne + -5?—1 g TF
4 VT 2T 2w A
2 2
an q +4zwr 7 {ﬁ 33:}
J.
e 2 4 AT 5 2an 2 ;;rz
le = — a~ +-—+= Sy
= 2Tt ¢ Ter
where
3 2 |2 )
G {a+\/a"‘+4(q+M)} atyat 405'**’”1,? , (3.34)
Jpgzt e e L, 2

2

22 ~1 2
P, a” +4(g + M) [ﬁ !a2+q] .

From {3.13) and (3.33} by convolution thecrem,

an_aZ+a M, 12
G I'E 2 4 v J02L203+E

] 2 )| )
oy 2.Jmv | v el TKM@P}

2a02(r—v —2a Q?[T—V}
€ lerfc((a+Qr)xl'r—v)—(a—Qr)e erﬁ((a—Qr)«Jr—vJ]
Ja=dp1 1
6



Equation (3.26) is obtain,

2

[a+1.,frx2 +q —,ﬂ.@[aﬁ'azm'n
. .
2 5 2
[{I+~.,I|'£12+gl ~ O

_ 1
J3—L

2

; (a + o a’ + g gr—,ﬁ;‘?r[a+q.l'az+q 't
| —5°¢ ‘ " dg
2o ) . “
[(a e’ + g| -0 ‘1

where = +q = k% =g =k* —a* = dg = 2kdk.

1 (@i [B-ad[Rlotkn

e -02]

2 k2- [Pk
~ L etefRan Kark) e i ” (3.35)
2t (cx+k+QP.)2(a+k—Q,.)2
let
Zﬁ:(a+k)2 N A . B N C N D

2

(a+k+Qr]2(a+k—Qr}2H(“"'k*Qr) (c:c+ﬁ:+Q,,)2 (a+k-0) (a+k—-0,)

2k(c +Ja:)2 =dla+k+ 0 Ja+k —Q,]?‘ +Bla+k- Q,.)z

2 2

sC(a+k~ QY la+k+ Q) +Dla+k+0;)

=
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where &k =-a—0,,

o-a-0rfama-0,)" = Ha-a-gr-0:)

a+ o

a0, )07 =407 B= B=-—

where k=—-a+0Q,.

g{_a+Q,.)[a—a+Q,.}2 =Da+0, —ﬂ+Qr]2

A-a+0,)0F =g} D= D=2

equating the coefficient of k',
2= A+ C=4=2-C

when k=0,
0= da+0fa—0r) +Bla-0,) sCla-g ) a+@)* +Da+g)’

o

0= dlas 0 )a-0,)" - E 2
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(Q_QrJ_!_(a"‘Qr)
2 2

-a+Q, +a+ 0, )=-2a-0,}+

da+40,.+a-0, +a+ -2a+40
EQrC: Q.F' > Q}‘ Q?‘= ; rz_[a—ZQ_,-)

_z — 20
20,

=

A_j+::c+2Q,. _4Q, +a-20, 20, +a
T20, 20, 20,

~a?r- [P.an . k- [Pk ~alr—[P.an , k2e- [Bnk

€ g
Jy3=4 dk + B d
3 2mi j Eta+0, 2P I(k+ﬂ+Qr)2 q
e—air—JP_rm} Ekif—ﬁ?}k E_azfuﬁm? Esz‘m“{*p_r??k
+C I dag+ D f dg
27i k+a-0, 2l (k-l“ﬂ—Qr)z

2 B
e Ry AU e

2

e(mQr]zr+[a+QrJﬁﬂ{z(a+Qr)f+qﬁ}wfc(zj?+(a+gr)ﬁ)_z\/% v

2,
L C —aki-JPan (a0 a0 0P

17 D -a’t-[Pan
2 erfc[zﬁ"" G_Qr]‘u'q) ~-—¢ F

3

r—

2
i

E(a—Qr}E r{a-0r) Py {z(a— 0 )+ ﬁ}e,ﬁ 2 j; Ha-0,) \;;)_2 \Ee 4z
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_a+20, "ﬂzfﬂl'r_ﬂ”?*W-“HZQTQr+QET‘“??vr_+Q"H”‘r_erfC( PP T+Qr"*"{_)
374, ’

L + 0 E—azruﬁa?;+a2r+2argr+er+m?\f_,-+Qr’?ﬂ {z(a + Qr)f + ”JE}
2 _

2
. S - -
oA vl guiF) s 2ol ey [ _atg
E_aif-ﬂa?ﬁa?r—2ter,-+Q,2T+H’?JP_r_Qr’?v‘{?re,ﬁ(if+ adr - o, \E]
2T

+

x — E—air—,ﬁ’_ra malr—2arQ+Qfrran (P -0 [P {E(Gr o)~ fﬁ@}

4
A _._?f_
e sz -0, 7)o 2R AT [7
{a:;f r +aer (2a7+20,7+ /R )}Ezaﬁﬁgﬁmﬂr Erfc[ 2Jr ”“erwj

_ - : - —02
{ma 20 & 4QF (Ear—Zer—’?JE]]e 2010+ G B ~05 7

40y
_._HZT_V('_{];?._
erfc[zj'? + J\l"?— Qr-\n'{;J _[a +ZQ}' i EQ!" ]J;

a+20, 1::+Q1.r 2+ Q[P +02t .
|:4Qr 2 (2&!‘+29r1'+1?~f_]:i rfc( N a«f_+QrJ_]

_[“;;Qr = ;Qr (2‘” —-20,7- Hﬁ)}e_za@_gr??ﬁJrQr T
Fa

2
il (P oan=-tE )
Erf“’[ fﬂz‘r J_] H\E‘? atr-JBan—; (3.36)
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substituting Iy, I; and I , equation (3.9) we obtained

2

e_% :jﬂz_t‘hii.?? (a +4 M)r HEHMH
- 2 2
Wy = 3 e erfc 2-\;’?4_ 2 +e
g .
(az —1—4M)r GE"_Z?I r M
erfe T + fle 2
24t 2 4B -10, 0
2 p
al+aM , w,lf(“ +4M) - a0 r-v)
= - R F r g
+é erfc W 5 1 _(a . Q?.)e ufc{[a+Qr)w'f v}

_|:(a -0, ]e—z a7 EJ':F'FC{(EI -0, )m}]e

[Qge_ﬁa ??erf :{

B

VK 2

41

- HEJ - [4{:2 - QE )eﬁaﬁeﬁc[

Qr-)
Y

B GE_JP_"{I”
20,(P. - 1)(4a2 - Qf)

VBT

N +a~JrH (3.37)



substituting J;, J; and J; equation (3,22} we obtain

_an

Wy = GrPy?}'E ’ T 2Q}‘.Hl’+(H+Qr}2'w E[EQQ?-+Q;]verfc(aﬁ+Qrﬁ]
i 2(1:;.—1)24?'3 4oy 2
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CHAPTER 4

Results and discussions
In the present investigation, free convection boundary layer flow of a visco-
clastic fluid past an infinite vertical porous plate in the presence of a variable

transversc magnelic [ield is solved numerically by the local non-similarity
method.

Figures 1(a), 1(b) and 1(c} represcnt respectively the zero-order
perturbation  velocity profile, first order perturbation velocity profile and
temperature profile against 7 for Prandtl nomber Pr =0.1, 0.3, 0.5, 0.72 & 1.0

while Grashof number Gr=2.0, magnctic field parameter M=1.0, transpiration
parameter ¢=0.5 and visco-elasticity parameters §=0.4.

From Figure 1(a) it can be concluded that the zero-order perturbation
velocity profile decreases as Lhe values of the Prandt] number Pr increases in the
region 1€(0.0, 25). Near (he surface of the plate velocity profile increases,
becomes maximnm and then decreases and [inally takes asymptotic value.

From Figure 1(b) it is observed that near the surface of the platc the first
order perturbation velocity profile decreases becomes minimum and then
increascs, We also observe that the velocity profite decreascs as prandtl nnmber Pr
increases.

From Figure 1{c) we see (hat the temperature profile is large ncar the
surface of the platc and decreases away from the plate and [inally takes asymptotic

vaiue, Here we also sce that temperature profile decreases with the increases of the
prandt]l nnmber Pr.

Figures 2(a), 2(b) and 2(c) represent respectively the zero-order
p’b’rturbation velocity profile, first order perturbation velocity profile and
temperature profile against r for magnetic Geld parameter M =0,1, 0.2, 0.3, 04 &
0.5 while Grashof number (Gr=2.0, Praudtl number Pr =0.72, irauspiration
parameter @=0.5 and visco-glasticity parameters S=0.4.

From Figure 2(a) wc observe that the zero-order perturbation velocity
profile decreases owing 10 increase in the value of magnetic field parameter M.
Near the surface of the plate velocity profile increases becomes maximum and then
decreases and finally takes asymptotic values. From the same figurc we may also
conclude that an mcreasc in the magnelic field parameter decreases the velocity
prafile more rapidly.

From Figure 2{b) we see that the magnetic field parameter M increases as
first order perturbation velocity profile decreases. We also observed that near Lhe

surface of the plate the velocity profile decreases becomes minimum and (hen
INCreascs.



From T'igurc 2(c) we see that the temperature profile remains unchanged for
diffcrent values of the Magnetic {ield parameter M. For 0G.1< M <05 the
temperature profile becomes maximum at the surface of (he plate then decreases
away from the plate and finally takes asymptolic values at =100,

Figures 3(a), 3(b} and 3(c} represent respectively the zero-order
perlurbation  velocity profile, first order perturbation velocity profile and
temperature profile against n for Grashof number Gr=5.0, 4.0, 3.0, 2.0 & 1.0
while Prandtl number Pr =1.0, magnetic field parameter M=4.0, transpiration
parameter a=0.8 and visco-elasticity parameters 5=0.4,

From Figure 3(a} we see that the zero-order perturbation velocity profile
increases with the increase of the Grashof number Gr. we also observe that near
the surface of the plate the velocity profile increases becomes maximum and then
decreases and [inally takes thc asymptotic value. It is also observed that the
velocity profile moves away from Lhe plate as the Grashof number Gr increases.

From Figure 3(b}) it is observed that the fisrt order perturbation velocity
profile increases as Grashof number increase. We also observe that for different
values of Grashef number Gr near the surface of the plate velocity prolile is
maximum then decreases and finally Lakes asymptotic value.

Yrom Figure 3{c} we may observe that the effect of Grashof number on
temperature distribution is constant.

Figures 4{a), 4(b) and 4(c) represent rcspectively the zero-order
perturbation velocity profile, first order perturbation wvelocity profile and
temperature profile against # for transpiratiou parameter 2 =1.5. 2.0, 2.5, 3.0 &
3.5 while Prandtl number Pr =0.1, Grashof number Gr=2.0, magnctic [eld
parameter M=1.0 and visco-clasticity parameters 5=0.4.

Urom Figure 4{a} it can be concluded that the zero-order perturbation
velocity profile decreases as Lhe values of the transpiralion parameter o increases
in the region ne(0.0, 8.0). Near Lhe snrface of the plate velocity profile increases,
becotnes maximum and then decreases and finally takes asyinptotic value.

From Figure 4(b) we see Lhat the transpiration parameter a increases as the
first order perturbation velocity profilc decreases. '

From Figure 4{c) we see (hat the lemperaturc profile is large near the
surface of the plate and decreases away from the plate and finally takes asymptotic
value. Here we also sce that temperature profile decreases with the increases of the
transpiration parameler 4.

Figures 5(a} and 5{b) represent respectively thc zero-order perturbation
velocity profile and first order perturbation velocity profile agaiust 7 for visc?—

i
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elasticily parameters $=0.0, 0.1, 0.5, 1.0 &2.0 while Prandil number Pr =0.72,
Grashof number Gr=2.0, magnctic field parameter M=1.0 and iranspiration
parameter g =0.5.

From Figure 5(a) it is observed that, the zero-order perlurbation velocity
profile decreases as the visco-elasticity parameters S increases. Near the surface of
the plate velocity profile increases, becomes maximum and then decreases and
finally takes asymptotic value.

From Figure 5(b) it is obscrved that near the surface of the plate the first
order periurbation veloclty profile decreases becomes minimom and then
increases. We also observe that the velocity profile decreases as visco-clasticity
paramctcrs 5 increases.

The ordinary differential equation (1.6) and (1.7} werc solved numerically
by local non-similarity technique. The calculations were carried out lor several
valnes of Prandl numbers Pr (Table [), Magnetic field parameter M, (Table 2) |
Grashof numbers Gr (Table 3) and Transpiration parameter « (Table 4).

From Table 1, 2 and 4 we see that the zero-order perturbation velocity
profile, tirst order pedurbation velocity profile and temperature profile increases as
the Prandtl number Pr, Magnetic field parameter Af and Transpiration parameter a

decreases, From Table 2 it is furher observe that, the effect of Magnetic feld
parameter Af on the temperature profile effect is neglipible.

From Table 3 , it is observed that both the zero-order perturbation velocity
profile and first order perturbation velocity profile increases with the increase of

Grashof number Gr. From Table 3 it is furlher observe that, the effect of Grashof
number Gr on the temperature profile effect is negligible.

P T
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CONCLUSIONS:

(i} The zero-order pedurbation velocity profile, [irst order perturbation
velocity profile velocity profile and temperature profile decrease
with the increase of Prandtl numbers Pr.

{(11) Both the zero and first order perturbation velocity profiles decrease with
the incrcase of the Magnelic [ield parameter M. Bul the effect of Magnetic
field parameter M on the temperaturc profile is negligible,

{iii) Both the zero and tirst order perlurbation velocity proliles increase with
the increase ol the Grashof number Gr. Dut the Grashof number Gr has no
significant effect on the temperature profile.

{iv) The values of the zero-order periurbation velocity profile, first order
pedurbation velocity profile and temperature profile decrease with the
increase of the transpiration parameler a.

{v) The values of Lhe zero-order perurbation veloctty profile and first

order perturbation velocity prefile for Newtonian tluid are greater than
that for visco-elastic fluid.

At
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Figure 1(a): Zero- order perturbalion velocity profile against 5 for

different values of Pr while Gr=2.0, M=1.0, 2=0.5 & 5=0.4 for
equation (3.37).
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Figure 1{b): First order periurbation velocity profile for diffcrent
values of Pr against n while Gr=2.0 , M=1.0, a=0.5 & §=0.4 for

equation (3.38).
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Figure 1(c): Temperature prolile for differcnt Pr agaainst 5
while Gr=2.0, M=1.0, a=0.5 & 5=0.4 for equations arc {2.8).
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Figure 2{a): Zero-order perturbation velocity profile against 7 for

different 3/ while Pr=0.72 , Gr=2.0, ¢=0.5 & 5=0.4 for equation
(3.37).

30



w (7}

n——*

Figure 2(b): First order perturbation velocily profile for different M
against 7 while Pr =0.72 , Gr=2.0, «=0.5 & §=0.4 for equation {3.38).
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Figure 2(c): Temperature profile against # for different M while
Pr=0.72 , Gr=2.0, a=0.5 & 5=0.4 for equation (2.8).
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Figure 3(a): Zero-order perturbation velocity profile against # for
diflrent values of Gr while Pr=1.0, M=4.0, o=0.8 & 5=0.4 for
equation (3.37).
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Figurc 3(b ): First order perturbation velocity profile for different Gr
against i while Pr=1.0, 4=4.0 , 4=0.8 & 5=0.4 for equation (3.38).
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Figure 3(c): Temperature profile against n [or different Gr while
Pr=1.0, M=4.0 , &=0.8 & 5=0.4 [or equations (2.8).
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Figure 4(a): Zero-order perturbation velocity profile against 7 for
differcnt valnes of ¢ while Pr=0.1, M=1.0, Gr=2.0 & $=0.4 for
equation (3.37).
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Figure 4(b): First order perturbation velogcity profile for different
values of g against 7 while Pr=0.1, A=1.0, Gr=2.0 & 5=0.4 for

equation (3.38).
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Figure (4¢c): Temperature profilc against n for different valucs of
a whilc Pr=0.1, M=1.0, Gr=2.0 & 5=0.4 for cquation (2.8).
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Figure 5(a): Zerc-order perturbation velocity profile against for
different S while Pr=0.72 , Gr=2, M=1.0 & a=0.5for equation {3.37).
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Figure 5(b): First order perturbation velocity profile [or different §
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Free convection flow along an infinite vertical porous plate

n Wol 77} wi( 1) ()
Pr=0.1
20 153014 006204  -0.06319
40 142866  -0.09750  -0.05717
6.0 122614  -0.10008  -0.05173
8.0  1.03435  -009147  -0.04681
10.0  0.86015 -0.08284  -0.04236
120 070248  -0.07496  -0.03832
14.0 055981 -D.06783  -0.03468
160 043073 -D06136  -0.03138
18.0 031399  .0.05546  -0.02839
200 020866 -0.04988  -0.02569
220 0.11487  -0.04361  -0.02324
Pr=0.3
2.0 124277 -0.03496  -0.1140]
40 099934  -0.14647  -0.08446
6.0 0.73212  -0.11782  -0.06257
8.0 052746 -0.08800  -0.04635
10,0 037532  -0.06525  -0.03434
12,0 026258  -0.04834  -0.02544
140 0.17905 -0.03581  -0.0188S
160 011718 002652  -0.01396
18.0  0.07138 -0.0196f  -0.01034
200 003764  -D.01433  -0.00766
220 001371 -0.00952  -0.00568
Pr=0.5
20 099227  -0.103%4  -0.15097
40  0.67487 -0.15845  -0.09157
6.0  0.41363  -0.10347  -0.05554
8.0 02498 -0.06333  -0.03369
10,0 015013  -0.03845  -0.02043
120 0.08960  -0.02333  -0.01239
140 0.05289 001415  -0.00752
160 0.03062  -0.00858  -0.00456
18.0  0.01710  -0.00521  -D.00277
20.0  0.00887 -0.00318  -0.00168
220 0.00381  -0.00198  -0.00102

Table I: Numerical values of zero-order perturbation velocity
profile, first order perturbation velocity profile and temparature
profile against j for Pr=0.1, 0.3, & 0.5 while M=2.0, a=0.5, Gr=2.1,
and S=0.4.
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Free convection flow along an infinite vertical porous plate

7 win) wil(77) #{n)
M={.1
1.0 2.24025 1.05843 -0.25527
2.0 266159  -0.04661 -0.17810
30 238025 -043892 -0.12426
4.0 1.88692  -0.51516 -0.08669
5.0 139093 -046513 -0.06048
6.0 096918 -0.37595 -0.04220
1.0 0.63944 02848 -0.02944
3.0 0.39554  .0.20540 -0.02054
9.0 0.22365  -0.14083. -0.01433
10.0 (.10933  -0.0899] -0.01000
110 0.04016  -0.05003  -0.00698
12.0 0.00653  -0.01840 -0.00487
M=).2
1.0 179187 0.76767 -0.25477
2.0 204447  -0.11121 -0.17774
3.0 1.76843 -0.37878 -0.12401
4.0 1.36551 -0.4040] -0.08652
5.0 0.98717  -0.34603 -0.06036
6.0 067905 -0.26997  -0.0421]
7.0 044509  -0.19982  -0.02050
90 015630 -0.09732 -0.01430
1.0 007708 -0.06260 -0.00998
11.0 0.02862  -0.03536  -0.00596
12.0 0.00474  -0.01301 -0.00486
M=0.3
1.0 1.51592 0.59477 -0.25440
2.0 1.67419  -0.13978 -0.17749
3.0 141137 -0.33393  _0.12383
4.0 1.069205  -0.33352 -0.08639
5.0 076277 -0.27515 -0.06027
0.0 052085  -0.20945  -0.04205
70 034078  -0.15266  -0.02934
8.0 021147 -0,10793  -0.02047
8.0 0.12133  -0.07392 -0.01428
10.0 0.06090  -0.04%07  -D.00996
1.0 0.02333  -0.02778%  -0.00695
2.0 0.00427 001069 -0.00485
Table 2: Numerical values of Zero-order perturbation velocity
profile, first order perturbation velocity profile and temperature
profile against n for M=0.1,0.2 & 0.3 while P,=.72, =0.5, Gr=2.0
and 5=0.4.
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Irce convection flow along an infinite vertical porous plate

n wol 7) w1l 77) ()
Gr=1.0
1.0 009017 -0.03724  -0.35659
2.0  0.04822  .0.03553 -0.16023
3.0 0 002234 001760  -0.07199
4.0  0.01010 -0.00805  -0.03235
50  0.00455 -0.00363  -0.01454
6.0 000205  -0.00163  -0.00653
70 0.00092  -0.00073  -0.00293
8.0  0.00042 -0.00033  -0.00132
9.0  0.00019 -000015  -0.00059
10.0 000010 -0.00006  -0.00027
Gr=2.0
1.0 018025 -0.07454  -0.35669
2.0 009633 007108  -0.16027
3.0 0.04456  -0.03522  -0.07202
40 002007 -0.01611  -0.03236
50 000896 -0.00726  -0.01454
6.0  0.00395 -0.00327  -0.00653
7.0 000171 -0.00147  -0.00294
8.0 000070 -0.00066 -0.00132
9.0  0.00025 -0.00028  -0.00059
10.0  0.00000  -0.00005  -0.00027
Gr=3.0
1.0 027028 011187  -0.35678
2.0 014435 -0.10665 -0.1603]
3.0 D.06667 -0.05284  -0.07203
40 002993  -0.02417  -0.03237
50  0.01326  -0.01090  -0.01454
6.0  0.00575 -0.00490  -0.00653
7.0 000238 0060220  -0.00294
8.0 000087 -0.00098 -0.00132
9.0 000021 -0.00041  -0.00059
10.0  0.00000 000000 -0.00027

Table 3:Numerical values of zero-order perturbation velocity profile,
first order perturbation velocity profile and temperature profile
against 1 for Gr=1.0, 2.0 & 3.0 while P.=1.0, M=4.0,and 5=0.4.
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Free convection flow along an infinite vertical porous plate

7 welap) wils7)  8(xn)
a=1.5
1.0 105616 (0.13891 -0.16656
2.0 097922 018127 -0.14336
3.0 0.78335  -0.19603 -,12339
4.0 0.59814  -0.17296 -0.10621
5.0 0.43803 -0.14744 -.09141
0.0 0.30269 012344 -(.078068
7.0 0.19084  -0.10029 -0.06772
5.0 0.10236 -0.076386 -0.05829
9.0 0.03920  -0.049172 -0.05017
100 000652 001459 004318
=21
1.0 095404  0Q.01416  -0.18974
2.0 081250 -0.20095  -0.15535
3.0 0.61700 -0.18263 -0 12719
4.0 0.45094  -0.14976 -0 10413
5.0 031616 -0.12053 -D08526
6.0 020853 -0.09529 -0.06980
7.0 0.12465  -0.07283 005715
2.0 006242  -0,05172 -0.04679
9. 002132 -0.03028 -.03831
10,0 0.00266 -0.00642 ~003136
a=2.5
1.0 0.83690 -D.07554  -0.2119%
2.0 0.6624F  -0.19861 -0.16509
3.0 048090  -D.16186 -0.12857
4.0 0.33798 -0.12519 -0.10013
3.0 0.22812  -0.09562 -0.07798
6.0 0.14485 -0.07174 -0.06073
7.0 0.08326 -0.0519% -0.04730
3.0 0.03997 003495 -0.03684
9.0 001290  -0.0193} -0.02869
10,0 000132 -0.00376 002234

Table 4: Numerical values of zero-order perturbation velocity
profile, first order perturbation velocity prefile and temperature
profile against i for a=1.5, 2.0 & 2.5 while P=0.1, M=1.0,
Gr=2.0 and §=0.4.
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Nomenclature

lranspiration parameter

specilic heat at constant pressure
dimensionless stream functions
acceleration due to gravity

average Grashof number

constant

the coefficient of thermal diffusivity
magnetic lield of prameter
power/exponent

Nusselt number

pressure

Prandtl number

Non-dimensional heat trans/ler.
visco-elasticity parameter

tempcerature of fluid

temperaturc of ambicni fluid

Surface temperature

velocity components in the boundary layer
coordinates along the edges of surface

coordinate normal 1o the surface
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Greek letters

il
B
p
Y

A

oy

Tw

&8

constant

coefficient of thermal expansion
density of the fluid

kinematics coefficent viscosity
suction parameter

electric conduclivity
boundary layer thickness
dimensionless temperalure function
stream functions
dissipation function
similarity variable
the kinematic coefficient of viscosity
the density of ainbient fluid
cocfficient of viscosity

the coelficient of thermal diffusivity
nondimensional skin friction

scaled coordinate defined in equations

the square root of the local boundary layer thickness
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