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ABSTRACT

'Die availability of digital computers has stipulated the use of digital signal processing in many

diwrse fields covering engineeIing, medicine and economics. The aim of this thesis is to develop

a model for detection and tracking pmposes of Air Traffic Control Radar. Neyman-Pearson

criterion has been used for detection problem and Kalman filtering has been used for the

estimation of random signals to extract the pertinent infonnation.

Kalman and Bucy proposed. an extremely powerful recursive state estimation teclmique,

conUllOnly descIibed today as Kalman filtering. Tlus thesis is concerned with the application of

Kalman lilteIing tecluuque to radar signal processing. 'Ole selection of appropriate states to

configure the algorithm for use in radar signal processing is also considered. A new practical

approach is presented 10 aid the evaluation of radar systems.

Various tecluuques arc available for the estimation of random signals in the presence of noise and

in doing so the need for solving sds of algebraic equations simultaneously arises. Dus

conespomts to inverting a matrix whose order is that of the number of simultaneous equations

involved. For the problem of tlus category, a conveluent tecluuque is one in which previously

determined estimates are simply updated as new data come in, rather than solving the problem

all over again. The recursive estimation teclmique (Kalman filtering) is exactly such a scheme

where simultaneous estimates (filtered or predicted) of a number of signal components by

mininuzing the mean-square cnor of each signal component simultaneously are looked for. In

radar tracking problem one wants to estimate the range, range rate, bearing angle and bearing rate

at cach time the radar measurement is available. These signal variables will be arranged in a

colullln to be defined as the signal vector. Actually all practical signal processing problems are

multidimensional and involve the collection of several signals together.



111e other basic materials that covers the nature of radar, the simple radar equation and th(,

propagation of radar waves and how it is contaminated by the atmosphere and other deleteriow;

cffects. The thesis deals with the filtering of noisy data in order to extract the signal from nois(:

in an optimum (minimum mean-square error) sense. Initially the tracking problem is highlighted

and existing stmctllres are discussed. TIle random signal and purely additive noise componenl!:

are assumed to be statistically independent. To show the perfomlance of the proposed algorithm

real d,lta has been l~~ed that obtained from the Radars at Zia International Airport, Dhaka.

Be1,)re using the real data, the model was tested by known available data and fOlmd to be

working well. Graphical representation of complete results are also included.
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INTRODUCTION

General:

Considerable research has been undertaken in the field of optimal estimation theory in relation

to target tracking using noisy radar data. Target tracking is the determination of the present (and

often future) position and velocity (states) of a moving object from noisy measurements of its

present states. This is of interest in both military and civilian applications. Various algorithms,

using the Kalman filter have been derived and by solving the Kalman filter equation~, a general

solution can be obtained which minimizes the mean-square error; this method is recursive in

nature [1-3,20]. In radar systems, detection procedures involve the comparison of the received

signal with a certain threshold. But when the background noise power fluctuates, it is difficult

to maintain a constant false-alarm rate with a fixed threshold detection scheme [1,30].

The dynamics of a moving target is usually represented in terms of a state space formulation. The

target states are its position, velocity and acceleration. They can be estimated by using state

estimation procedures based on measurements provided by the radar. When tlle exact a priori

knowledge of the system model, and the statistics of system noise and measurement error are

available, the Kalman filter provides the minimum mean-square error estimate [1,2]. The

Kalman filter has been applied successfully in a variety of target tracking problems.

The Nature of Radar:

Radar is a contraction of the words Radio Detection and Ranging. It was first developed as a

detection device to wal1l of the approach of hostile aircraft and of directing antiaircraft weapons.

Presently radar is widely tL~edin military, navigation, satellite service, air traffic control etc.

Radar is an electromagnetic system for the detection and location of objects. It operates by

transmitting a particular type of wave form and detects the nature of the echo signal. Purpose of

the air traffic control system is the safe and efficient operation of aircraft flying in the vicinity

of airports, aircraft flying enroute from one airport to another, and the aircraft and vehicles on

tlle ground at airports. In the air traffic control radar systems the basic problems are those offirst
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detecting an aircraft when it appears and the estimating its range, velocities and azimuth, among
other parameters [1,7].

Several different radars are employed for the control of air traffic. The Airport Surveillance Radar

(ASR) provides the information on the location and movement of all aircraft flying within the

vicinity of airports. The Air Route Surveillance Radar (ARSR) detect and monitor aircraft

enroute. TIle,ASR and ARSR also provide the air traffic controller with the location of hazardous

or wlcomfortable weather that aircraft should avoid. The ARSR radars for enroute air traffic

control have a nominal range of 350 km and an altitude coverage of about 18 km. ASR radar

monitors aircraft within 100 km of the airport at which it is located. Both carry out detection and

tracking functions. Once the transmitted pulse is emitted by the radar a sufficient length of time

must elapse to allow any echo signals to return and be detected before the next pulse may be

transmitted. Therefore, the rate at which the pulses may be transmitted is determined by the
longest range at which targets are expected [1,7].

Presently radars are classified from another point of view as primary radar and secondary radar.

The original primary radar only revealed its total potential when associated with secondary radar

so iliat now air trafl:ic control systems can rely on the integrity of the information provided by
the primary and secondary radars [8,31].

Secondary Radar:

Secondary radar is radio location system which measures time, but which, in contrast to normal

radar tec1miques, instead of using the passive echo reflected from a target, uses an' active

answering device (called transponder) which is located in the target aircraft. Although a secondary

radar system will obviously give a position in terms of range and bearing, it is usually used in

conjunction with primary radar. The reason for this is obvious that a secondary radar system

requires cooperation, and assumes that a transponder is available.

In comparison with the pnmary radar system, the introduction of a transponder provides
substantial advantages snch that
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(1) In contrast with the primary radar system where, as the range R, increases the

power of the echo signal decreases by a factor of 1/(4n )'R', the power of the

transponder reply only decreases by ,I factor of 1I4nR2. Consequently, it is

possible [0 work with a much lower transmitter power.

(2) 11le inten'ogation and the response can be transmitted at two different frequencies,

thus avoiding any undesirable echoes such as ground clutter, permanent echoes

(caused by rain clouds and other meteorological phenomena).

(3) TIle transponder equipment is a receiver and transmitter of coded messages. Thus

an exchange of infolmation can be obtained as well as infonllation about location.

The secondary surveillance radar system is so designed that a ground station can monitor a space

having a maximum radius of 370 km and a height of some 15 km above the radar horizon. In

tlus space only a few aircraft, relative to the size of the area, and separated at a great distances

from one another, will be moving at IUgh speeds. In the radial direction tile location of an aircraft

must be accurate to witlun some 10m and, in azimuth, must be accurate to witlun a few degrees

so tilat measurements can be correlated with the findings of the primary radar equipment. TIle

aim of a secondary radar is to receive information from aircnlft that allows the ground station to

locate and recognize them. ContralY to primary radar, secondary radar needs aircraft to participate

in the recognition. For t11ispW'pose, aircraft is equipped with a device called a transponder
[8,31].

Simple Radar Tracking System:

TIle radar continuously emits high frequency bursts (pulses) of electromagnetic energy into space.

A p011ion of the transmitted signal is intercepted by a reflecting object (target) and is reradiated

in all directiolt~. The receiving antetUla collects the retumed energy and delivers it to a receiver,

where it is processed to detect the presence of the target and to extract its location and relative
velocity.
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111efig. I shows the set of ideal transmitted and received pulses together with a typical received

pulse. A radar beam is used to detemune the range and velocity of an object at a distance x from

the transmitter. The infonuation required is the time interval At representing the time passed for

the radio wave to travel to the object and back. The typical received signal is not of ideal shape

due to various disturbances and noise adding in with the return pulse confuses the decision as to

exactly when the pulse begins, i.e. arrives at the antenna. So, we measure At
l
"Al. The range

estimate x=cAt/2 (c is the velocity of pulse propagation in space) from one measurement can

therefore cause large errors. To reduce the error, a periodic sequence of pulses is transmitted

every T seconcls, as indicated in the fig. I, which produces a sequence of measured values of

range x( 0), x(1), ..., x(k). The radar energy is directed into space by the radar anterma. The

antenna beam width in these air traffic control radars is of the order of I to 1.5° in azimuth, i.e.,

au angle measured in a plane tangent to the earth's surface, so that aircraft location in azimuth

is provided by Ihe clircction of the anterUla beam when the aircraft intercepts the radar pulse. 'The

radar antenna normally tums, or scans, at a fixed rate, so thaI aircral1 can be dcteeted anywhere
in azimuth [2].

Radar Receiver:

Rack,r receiver accepts the echo signal retlected from the target via the antenna, the rotating joint

and the transmitter-receiver switch. It is designed as a hetcrodyne receivcr, in which thc oscillator

is automatically controllcd by the transmitter trequcncy. TIle function of any radar system is to

give infonuation ,IS to thc bchavior of a target envirolUllcnL The ability of a radar receiver to

delect a wcak echo signal is limited by thc noisc cnergy that occupics the same portion of the

frcquency spectrum as does the signal encrgy. The weakest signal the receiver can detect is called

the minimum detectable signal. 1ne spurious undesired signals always present in signalling

systems and their components are usually called noise. Since noise is the cluef factor that linlits

receiver sensitivity, it is necessary to obtain some means of describing it quantitatively. This noise

reduces the amount of infomlation that can be transmitted with a given signal power. The noise

present in a radar receiving system arises both from internally originating sources and from

extcrnally originating sources. 1bis externally originating noise enters the receiving antenna along

with the desired signal. The function of radar receiver is to detect that desired echo signals in the

presence of these noise, clutter, or interference. To do Ihis function it must separate the wanted
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from unwanted signals, and anlplifY the wanted signals to a level where target infornlation can

be displayed to an automatic data processor. TIle block diagram of a typical radar receiver is

shown in the Fig. II.

,/ Local
antenna oscillator

~ .

RF RF IF
amplifier converter amplifier -

signal

video second
Display amplifier detector r-

f

Fig. II Typical radar receiver

At the microwave frequencies usually used for radar, the external noise which enters via the

antelma is generally quite low so that the receiver sensitivity is usually set by the intemal

noise generated within the receiver. The quantitative measure of receiver noise temperature

and the quantitative measure of externally originating noise is available in Berkowitz [16] and
Skolnik [7].

An. unavoidable component of noise generated by the themlal motion of the conduction

electrons in the ohmic portions of the receiver input stages. Since it increases with the

temperature of the source generating it, it is called thermal noise and is directly proportional

to the temperature. of the ohmic portions of the receiver circuit and the receiver bandwidth.

llle avaihlble thernlal noise power is generated by a receiver of bandwidth B
n

(in hz) at a

temperature To (in Ok) is equal to KToBn•

The noise power in practical receivers is often greater than can be accowlted for by thermal

noise alone. The additional noise components are due to mechanisms other than the thermal

6



agitation of the conduction electrons. No matter whether the noise is generated by a thermal
mechanism or by some other mechanism, the total noise at the output of the receiver may be

considered to be equal to the thermal noise power obtained from an ideal receiver multiplied by
a factor called the noise figure which is formulated in the fIrst chapter [7].

There are many other forms of radar signal contamination and distortion that can be identified
with the known physical systems [I7). These include:

(I) slow phase path variations caused by travelling ionosphelic disturbances;
(2) discrete multimode propagation;

(3) high angle rays, with strongly range-dependent Doppler shift;
(4) impulsive noise from distant thunderstotn1S;

(5) manmade radio frequency interference;
(6) echoes from meteors, auroras;

(7) ground clutter received through side lobes, back lobes.

Detector:

Detector charactelistics also play an important role on radar performance. An elaborate
description of detector characteristics are available in Skolnik [7]. The portion of the radar
receiver which eXll"actsthe modulation from the Camel' is called the detector. It includes that

portion of the radar receiver from the output of the IF amplifier to the input of the indicator or

data processor. One form of detector is the envelope detector, which recognizes the presence of
the signal on the basis of the amplitude of the Callier envelope where all phase information is
destroyed. Another detector called zero crossing detector which counts the zero crossings of the
received wave form. The coherent detector is an example of one which uses both phase and
amplitude. The coherent detector does not desll'oy phase information as does the "envelope

detector, nor does it destroy amplitude as does the zero crossings detector. Since it utilizes more

information than either the envelope detector or the zero crossings detector, it is not surprising
that the signal-to-noise ratio from the coherent detector is better tllan from the other two.
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In practice, target fluctuations introduce random phase variations in the high frequency signal

received back from the target. The high frequency pulses cannot be simply heterodyned down to

the baseband signals and then added. This is the problem always encolmtered in adding pulses

of the same frequency but different phase. Sometimes the resultant sum adds up, and sometimes

it decreases, because of phase cancellations. The lack of phase coherence pulse to pulse mean~

that the individual pulses must be envelope detected before processing. Therefore, an integration

loss is a conunon phenomenon in the detection processes [3D).

bnportance of the Study:

Target tracking is an important problem with wide applications in both military and nonmilitary

areas such as fire control systems, satellite orbit determination, maritime swveillance and air

traffic control [29]. The need for radar systems evaluation Imder real conditions has grown

because of the great increase of radar systems used for air traffic control over the last few years

[14]. One of the most interesting features is the radar tracking by prediction-correction fashion

and this thesis is devoted to the ral1dom signal processing of rad.tlTtracking problem using

Kalman filter which is a technique like this. The main advantage of Kalman ftlter is that it offers

the best estimate of random signals for simultaneous estimation of vector (multidimensional)

signals. Random signal correction is a signal processing technique to improve signal quality by

removing contamination and distortion. In the processing of signals by using Kalman ftlter no

matrix inversion is required and many calculations can be done offline [3-6,11,20].

Air traffic control consists mainly of detecting aircraft, identifYing them, and estimating their

location and speed. This task is made more and more difficult because of greater aerial traffic.

The range of signal processing algorithms for radar remote sensing is constantly being expanded

as new techniques are developed and refmed [8,10].

Kalman filter or the extended Kalman ftlter can be applied in a wide varieties of fields such as

(1) For the estimation of attitude.) angles of an orbiting satellite such as weather

satellites, environmental sensing satellites, communication satellites, orbiting

astronomical observatories and many other satellites.
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(2) For the estimation of the position and velocity of a space vehicle on circumlWlar

mission.

(3) For the estimation of the nWllber of cars traversing a given section of a highway

and their velocities. This information is needed in developing any automatic traffic

control system.

(4) In meteorological department for weather forecasting.

We have also presented the feature of secondary radar since the probability tllat two aircraft fall

in the same radar beam of a civil airport is no longer negligible. Secondary radar is very well

matched to this task because aircraft play an active role in the sense that they themselves emit

the requested information [3,31].

Thesis Organization and Objective:

This thesis comprises eight chapters which is structured as follows:

Chapter one presents the radar equation and the bri ef description of the sources of noise and

intelfering signals.

Chapter two focus on the simpk signal processing problem, i.e. detection of the presence of a

signal in noise. The chapter stalls with the discussioll on detection criteria and finally present the

cUives relating the probability of detection and signal-to-noise ratio.

Chapter t1u.ee begins with a brief discussion of digital fi1teling theory relevant 10 estimation

theory ami presents the concept of an estimator. In this chapter filters are classified as

nonrecursive and first -order recursive types for the estimation of signals in noisy data.

TIle theoretical basis of estimation method is presented in chapter four based Oil the minimization

of mean-square error. Here we motivated a methodology that describes the estimation procedure

to find the best possible linear filter.
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In chapter five we have investigated the optimum recursive estimation and we get a set of
equations referred to as the scalar Kalman filter.

Chapter six actually has sought to provide an organized mathematical technique for radar data
processing algorithms. The first-order Kalman filter equations specified in chapter five are
modified in this chapter to take higher-order filters into account. Both filtering and prediction
problems have been introduced in this chapter.

In chapter seven we apply the method of vector signal processing specifically for radar tracking
problem. A computer program has been developed based on the Kalman filtering and prediction
equations for radar tracking. Results of computer calculations have been introduced in this
chapter.

Finally, in chapter eight we make conclusion of our findings and recommend some issues for
further research in this direction.

This thesis is an attempt to process the random signals in an optimum sense, i.e. from a given
set of data samples how to determine whetIler a signal of known characteristics is present or not.
The estimates that minimize the mean-square error are taken as the 'best' or optimum estimates.

The problem of detecting the presence or absence of ;~ignalin the continuoll~presence of noise
is often encountered in the broad area of signal processing. In detection problems occurring in
practice several types of signals may be present simultaneously. 'The problem is then is to see
whether tIle signal of interest is present in this group. The other signals are then labeled
interfering signals and may be lumped in with the ever present noise.

There are two specific fWICtiOnsof radar, aircraft detection and tracking. Once the presence of
an aircraft is detected, tracking begins. These two functions of aircraft detection and estimation
of its characteristics, for tracking purposes, involved signal processing problems because of the
W'iavoidablepresence of noise, as well as other possible deleterious effects. This may be useful
in tracking the target to ensure that it is following an appropriate sky path, to prevent air
collisions, or to help in the approach to an airport. Kalman filter has appliedfot this purpose and
a computer model has been developed based on the equations that constitute the vector Kalman
filter and vector Kalman predictor for radar signal processing. A set of cwves have been
produced from computer calculations to show the validity the model.
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CHAPTER 1

THE SIMPLE FORM OF RADAR EQUATION

1.0 Introduction

A simplified form of the radar equation has been delived in tlus chapter. In section 1.2, we

discussed generally the atmosphelic effeet on the propagation of radar waves. The noise

introduced by the receiver can be found by calculating the noise figure of it which is also

discussed. Integration of radar pulses which is a tecluuque to improve the pelformance of radar

systcm is presented here. The other feature presented in this chapter is the brief description of

tlle sources of noise, interfcIing signals and limitations in detection problem.

1.1 The Simple FOl'm of Radar Equation

TIle radar equ,llion relates the range of a radar to the characteristics of the transmitter, receiver,

antelUla, target, and environment, If the power of the radar trans nutter is denoted by PI' and an

isotropic antelUla is used (one wluch radiates lllufomlly in all directions), tile power density

(w/m') at a distance R m from the radar would be P/41lR2, TIle radar antelma serves to focus the

beam in a desired direction, however, tlus focussing effect being given by its gain G over the

unifoml (or isotropic) power density distribution in space. The power density at the target from

an antenna with a transmitting gain G is thus P,G/41lR2 [1,7].

TIle target intercepts a portion of the incident power and reradiates it in all directions. An ideal

reflecting object of cross seclion A" located R m ii'om the translnitter will reflect back to the

transmitter P,GA,I41lR2 w. Tlus power in tum spreads out in space as it moves back to tile radar

antemla. The reflected power density in wlm' back at the antelma is thus the power reflected from

tlle target divided by the surface area 41lR2 encompassed, or just (P,GA/41lR2)/41lR2, If tlle

effective area of the receiving antenna is denoted by A" the power received by tile radar is
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P=r
PpAf Ac PfGAfAe

41TR2 41TR2 (41T)2R4
................... (1.1)

The maximlml radar range R",.. is the distance beyond which the target cannot be detected. It

OCClll"Swhen the received echo signal power P, just equals the minimlID1 detectable signal Smm'
Therefore

...................... (1.2)

.................. (1.3)

TIJis is the fundamental form of the radar equation. Ideally, for an antenna of aperture area
A, ml, G is given by

, 41TAeG=--
A2

with A the wavelength of the high frequency energy.

Since radars generally use the same anterula for both transmission and reception, we have

....................... (1.4)

The radar equation states that if long ranges are desired, the transmitted power must be large,

tlle radiated energy must be concentrated into a nalTow beam (high transmitting antenna gain),

the received echo energy must be collected with large antenna aperture (also synonymous with

high gain), and the receiver must be sensitive to weak signals [7].

TIus simplified fornl of the radar equation does not adequately describe the performance of a

practical radar. Many important factors that affect range are not explicitly included. In

practice, the observed maximum radar ranges are usually much smaller than what would be

predicted by the above equation. There are many reasons for the failure of the simple radar

equation to correlate with actual perfornlance. A complete and detailed discussion of all the

factors that influence the performance of a radar to predict range and bearing is not. the .

subject matter of this thesis. However, the SOlU"cesof errors and limitations in detection and
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tracking of a practical radar system to be treated only lightly. More detailed information will be

found in the references listed at the end of this thesis [7,16].

1.2 Propagation of Radar Waves and Atmospheric Effects on it

The radar is an electromagnetic system that operates by trausnuttlllg a particular type of

electromagnetic waves. TIle propagation of radar waves is affected by the earth's surface and its'

atmosphere. The earth is almost a perfect absorber at microwave frequencies and can be treated

as a black body at a physical temperature and noise from tile earth will usually enter via tile

antenna. Moreover, scattering of electromagnetic energy from the surface of tile earth, refraction

caused by an inllOmogeneous atmosphere, and attenuation by the gases constituting tile

atmosphere affect on the propagation of radar waves. The regions of tile atmosphere which affect

the propagation of electromagnetic waves are tile troposphere and tile ionosphere. The absorption

of radar waves in tile lower atmosphere is the result of tile presence of botil free molecules and

suspended particles such as dust grains and water drops condensed in fog and rain. In a

noncondensed atmosphere, oxygen and water vapor are tile substances which- cause absorption.

This kind of absorption is called tropospheric attenuation. In tile upper atmosphere, electron

collisions occur due to the presence of neutral particles and heavy ions. The ultimate effect of

collisions is to cause absorption of energy from the electromagnetic waves traversing tile ionized

medium. This type of absorption of signal energy is called ionospheric attenuation. Moreover,

because of the nonisotropic characteristics of tile troposphere and ionosphere, radar waves on tileir'

passage through the atmosphere experience an angular deviation. The radar is also affected by

tile reflection, or back scatter, of energy from tile earth's surface and from rain, snow, birds and

other cIutter objects. The radar waves propagating within the atmosphere do not travel in straight

lines but are generally bent or refracted. Bending, or refraction, of radar waves in tile atmosphere

is caused by the variation of tile index of refraction. One effect of refraction is to extend tile

distance to the horizon, tilus increasing tile radar coverage, fig.(1.1a). Another effect is tile

introduction of errors in tile management of elevation angle, fig.(Li b). In the troposphere, tile

index of refraction, which is a f\ll1ction of meteorological variables, such as water vapor, air

temperature, and air pressure, can be represented by
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(n-l)x106 ~ N ~ 77.6p +
T

............................ ( 1.5)

where n = refractive index
T = air temperature Ck)
p = barometric pressure (mbar)
e = Partial pressure of water vapor (mbar)

TIle parameter N=(n-l)xI06 is the "Scaled up" index of refraction and is called refractivity.

Rodar E .
x:, ~~. .~.r<RooOdaarrroy in the ~re.sence of refraction .

~~ROd.or roy In the obsence of refraction

Rodor horizon in th~ .' ~
absence of refroction_- .

Rodar horizon in the
presence of refroct'ion

(a)

Apparent
torget
position--------~-

I .--- ..•-Fieirocled ro','..4n9uior ---

e (ror _- ---=====_-----=~ True
Rooor ~~_==r------- • laraet

S pos'ifian. k':

Fig. 1.1 (a) Extension of the radar horizon due to refraction of radar waves by the

atmosphere, (b) angular error caused by refraction
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The prime difference between optical and microwave refi"action is that water vapor has negligible

effect on the former; consequently the second term of eqn.(1.5) may be neglected at optical

frequencies. Since tlle barometric pressure and tlle water vapor content decrease rapidly wit1l

height, while the temperature T decreases slowly wit1l height, the index of refraction normally

decreases witll increasing altitude. A typical value of t1Ieindex of refraction near t1Ieearth surface

is 1.0003. In a standard atmosphere the index decreases at t1Ierate of about 4xlO-8m of altitude.

The decrease in refi"active index with altitude means that the velocity of propagation increases

with altitude, causing radar waves to bend downward. The result is on increase in the effective
radar range as was illustrated in fig.(1.la) [7,16].

Another mechanism that permits radar coverage to be extended beyond the geometrical horizon

is diffraction. Radar waves are diffracted arowld the curved eartll in same manner that light is
diffracted by a straight edge.

TIlese are the causes for which time delays or range elTors are always inherent in radar target

measurement. Again, when the antenna looks into space and searching for aircraft, it continuously

:{)'picksup electromagnetic energy from the earth's atmosphere, radiation from the earth itself and

from tlle snn if the antenna beanl intercepts tlle snn's range, and tlle noise like electromagnetic

radiation which arrives from the extraterrestrial sources as our own galaxy, extragalactic sources,

and radio stars which is known as cosmic noise. In general, tltis cosmic noise level will vary
directly as the square of wavelengt1l [1,7,16].

TIle chief effect of weatller on radar performance is the back scatter or clutter, from precipitation'

wi tltin the radar resol ution ceIl. In general radars at tlle lower frequencies are not bothered by

meteorological or weather effects, but at the higher frequencies, weat1ler e.choes may be quite

strong and mask the desired target signals just as any other unwanted clutter signal. The other

important factors that affect the radar perfolmance and tllOse are mentioned in tins section can

be found with mathematical formulation and graphical representation in the references.
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1.3 Noise Figure

TIle noise figure of a receiver is a measure of the noise produced by a practical receiver as

compared with the noise of an ideal receiver. The noise figure Fn of a linear network may be

defined as

....................... (1.6)

where Si = input signal power
N; = input noise power (equal to KT ,Bn)

S, = output signal power
N, = output noise power
K = Boltzman's constant = 1.38xIO.LJ VI<
G = gain = SIS, ,
1', = standard temperature
Bn = noise bandwidth

TIle noise figure may also be written as

F =n

KT B G+tlNo n

KTBGo n

..: ( 1.7)

where tl.N is the additional noise introduced by the network itself. 1berefore, the noise figure

Fn is essentially a measure of how much additional noise the receiving system introduces over

and above the thermal noise picked up by the anteIUla, i.e. the noise figure may be interpreted

as a measure of the degradation of signal-to-noise ratio as the signal passes through the
receiver.

The effective noise temperature, 1', is defmed as .

T,=(Fn-I)T, ..................... (1.8)

and the system noise temperature, T. is defined as the effective noise temperature of the

receiver system including the effects of antenna temperature, T. such that

1',=1',+T. . (1.9)

or, 1',=1',1",
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where F, is the system noise figure including the e1fects of antenna temperature. The effectiv(:

noise temperature of a receiver consisting of a number of networks in cascade is

T =c ..................... (1.11)

where T; and Gi are the e1Ieclive noise temperature and gain of the ith network.

TIle effective noise temperature and the noise tigure both describe the same characteristics of

a network. In .general, the effective noise temperature has been preferred for describing low

noise devices, and the noise tigure is preferred for the conventional receivers. For radar

receivers the noise figure is the more widely used teml. We may now introduce this into the

simple radar equation that derived in section 1.1. Eqn.(1.6) can be written as

S =
I

....................... (1.12)

If the minimum detectable signal sminis that value of Si corresponding to the minimum ratio

of output signal-to-noise ratio (S/N,)min necessalY for detection, then

.................. (1.13)

Substituting eqn.(I.13) into the simple form of the radar eqn.(1.2), derived in section 1.1, we
have

R 4 =
max

PpAeA,

(411"/KTaBfn(S/~) mm
.................... (1.14)

'nlerefore, the receiver should be designed to generate as little intemal nOise as possible,

especially, in the input stages where the desired signals are the weakest. TIlere are some other

losses that occur throughout the radar system and reduce the signal-Io-noise ratio at the receiver

17



output. 'Dle antelUla beam-shape loss, collapsing loss, and losses in the microwave plumbing are

example of losses which cannot be ignored in any serious prediction of radar performance [16,n

1.4 Integration Of Radar Pulses

For the signal pulses radiated by the radar are of Jinite energy and must themselves compete with

the noise after reflection by the aircraft, The radar beam spreads steadily as it propagates into

space, providing an unavoidable 1/(range)2 decrease in power in each direction, or lI(range)'

decrease total. The signal power retumed depends on the reflecting properties of the aircraft as

well as its distance, and sometime can be of the order of the noise or even less, In practice, to

reduce the error, the probability of detecting a signal at one particular range and azimuth setting

is enhanced by combining several successive signal-pulse retums from the same target 1bis is

possible in a single radar scan where each location in space is illuminated by several successive

pulses, Actually the radar beam in rotating through space covers a typical target long enough to

have several pulses retumed fi'om it [7,16].

If the n numbcr of pulses retumed from a point target as the radar antenna scans through its
beamwidth, then

n =B
6wm

'"""'"""'"""'"""'""'.(1.15)

where 6B = antenna beamwidth, deg.

fp = pulse repetition frequency, hz.

e, = antenna scanning rate, deg/s

wm = antenna scan rate, rpm

111epulse repetition frequency for primary radar 633 hz, beamwidth 1.50 and antenna scan rate

15 rpm. These parameters result in 10.55 hits from a point target on each scan. The process of

summing all the radar echo pulses for the purpose of improvement in detection is called

integration. Many techniques might be employed for accomplishing integration. All practical

integration techniques employ some sort of storage device.
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Integration may be accomplished in the radar receiver either before the second detector (in the

IF) or after the second detector (in the video). Integration before the detector is called

predetection or coherent integration, while integration after the detector is called postdetection

or incoherent integration.

111epulse repetition frequency (prf) is detemlined primarily by the maximum range at which

targets are expected. If the prf is made too high, the likelihood of obtaining target echoes from

the wrong pulse transmission is increased. Echo signals received after an interval exceeding the

pulse repetition period can result in confusing range measurements. A high prf is desired to

provide maximum average power on the target.

Predetection integration requires that the phase of the echo signal should be preserved if full

benefit is to be obtained from the summing process. On the other hand phase information is

destroyed by the second detector in postdetection. For this reason, postdetection integration is not

as efficient as predetection integration.

If n pulses, all of the same signal-to-noise ratio, were integrated by an ideal predetection

integrator, the resultant or integrated signal-to-noise (power) ratio would be exactly n times that

of a signal pulse. If the same n pulses were integrated by an ideal postdetection device, the

resultant signal-to-noise ratio would be less than n limes that of a single pulse. This loss in

integration efficiency is caused by the nonlinear action of the second detector, which converts

some of the signal energy to noise energy in the rectitication process. Although postdetection

integration is not as efficient as predetection integration, it is easier to implement in most

applications. Postdetection integration is therefore preferred, even though the integrated signal to

noise ratio may not be as great. The integration efficiency may be defined as follows:

.................... (1.16)

where n = number of pulses integrated of equal amplitude

(SIN)! = value of signal-to-noise ratio of a single pulse required to produce given

probability of detection (for n =1)
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(SIN)" ~ value of signal-to-noise ratio per pulse required to produce same probability of

detection when n pulses are integrated.

The improvement in the signal-to-noise ratio when n pulses are integrated in postdetection is

nE,(n) and is the integration improvement factor. The improvement with ideal predetection would

be equal to n.

In practice, an integration loss will be encountered that can be estimated as a fimction of n and

the type of integrator used. Integration loss in decibels is defined as L;(n)~lOlog [IIE/n)]' The

integration inlprovement factor (or the integration loss) is not a sensitive fimction of either the

probability of detection or the probability of false-alarm. Details about integration type and loss

due to tllis are available in Schwartz [1] and Skolllik [7].

20



CHAPTER 2

DETECTION OF SIGNALS IN NOISE

2.0 Introduction

In frrst chapter we discussed briefly the nature of radar associated with the air traffic control

system. In this chapter we focus on the detection of the presence of desired signal in the

continuous presence of noise, one of the two signal processing tasks. In section 2.1, detection
theory is presented where the signal is considered to be constant amplitude and the noise is

assumed to be gaussian and independent of the signal. In section 2.2, the Neyman-Pearson
criterion is presented and the results obtained were used to assess the performance of the air
traffic control radars at Zia International Airport.

2.1 Detection Theory

TIle detection of weak signals in the presence of noise is equivalent to deciding whether the
receiver output is due to uoisc alone or to signal-pIus-noise. Assuming the signal of constant
amplitude A whose presence we are interested in detecting in the continuous presence of noise
v(k), independent of the signal. The composite 'received waveshape that we must process to
determine the presence of signal is then

or,
x(k)~A+v(k)
x(k)~(k)

.................. (2.1)

The signal when it does appear results ill a change in the dc level or bias of x(k) as shown ill
fig.(2.1). TIle signal is shown raising the level of x(k) by A units dllllng the T second it is
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present. Assume that we continually sample x(k) m times in T second inteIVal as shown in
fig.(2.2a).

x(1)

(NOiSe Signal + noise

-----T

A

.1

/ Noise

Fig. 2.1

x(t)

Received analog waveshape

Signal?

1234"'/ m

Fig. 2.2a Sampled form of received signal
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Fig. 2.2b Modulation of a signal by a sequence of impulses

In communications and control systems, the discrete-time sequences x(k) and y(k), or in the

general notation f(k), are samples of a continuous-time waveform. These can be interpreted as
a form of modulation of the signal f(t) by a sequence of impulses as in fig.(2.2b). A signal f(t)

is sampled evelY T seconds output wave will be
tit) = t~t)fl(t)

and can be represented as .

f,(t) ~ J~t)L 8(t-k1)
,,",0

or, flt)~ L f(k1) 8(t-k1)
,,",0

where the subscript s denotes the sampled signal. We are now interested in processing the m

samples xj, j=1,2,3, ...,m, in any T second interval to determine the presence or absence of signal.

We assume that the noise before entering the system is white or at least that its bandwidth is
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much higher than that of the signal with which we have to deal. We also assume that there is

some bandwidth B sufficient to pass the signal essentially undistorted [13). In most detection

systems x(k) is filtered to bandwidth B prior to the sampling process to reduce the effect of the

noise. For white noise, however, the mean noise power is proportional to the bandwidth, and so

restricting the noise bandwidth as much as possible can only help in the detection process. We

shall assume that v(k) is bandlirnited white noise of bandwidth B.

We know from Nyquist sampling theorem that with the signal f(t) band-limited B hertz, it is then

readily shown that sampling the signal does not destroy any information content, provided that

the sampling rate f,;,:2B. 1be minimum sampling rate of 2B times per second is called the

Nyquist sampling rate and 1/2B the Nyquist sampling interval. So the' larger the number of

uncorrelated samples of noise or signal-pluscnoise we can collect, the better our chance of

detecting a signal when it appears. Therefore we may select the sampling internal T exactly 1/2B,

with a corresponding maximum of m=2BT samples in any T second interval.

In detection problem usually two types of error may occur:

or

(1)

(2)

the signal may be missed when it is present because of the noise;

the noise may be detected mistakenly for signal when the signal is absent (often

called a false-alarm).

TIle overall probability of error is due to both. We denote the. probability of first type of error

by Pol and the second by P.o' An ideal radar signal detector would be one which maximizes the
probability of detecting the signal when it appears and minimizes the probability of mistaking

noise for signal when it is absent. Unfortunately, both probabilities cannot be optimized

simultaneously. The best we can do to keep the noise probability (or false-alarm probability) at

some tolerable level and maximize the corresponding signal probability. This is the performance.

criterion usually adopted for radar systems. The radar case is an example of a detection problem

in which the signal appears relatively infrequently, with no predetermined (a priori) statistics,

where as the noise is always present [1,30).
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Now both P,l and P", are conditional probabilities since they are conditioned on the signal's being
present and absent, respectively. Since these errors are due to mutually exclusive events, we can
find the overall probability of error P, by adding the two error probabilities after unconditioning
. them by multiplying by the appropriate probabilities of occurrence of the two events. So,

P, = PI Po[ + (I-P1)P '" (2.2)

where PI is the (assumed known) probability of occurrence of signals.

It is obvious that both Pd and P", depend on the respective distributions of Xl in the two cases
of signal present or signal absent, so that the minimization of P, depends on these statistics as .
well. Considering a typical case as shown in fig.(2.3), where we denote the probability density

function of Xl when the signal is absent, f(xi 10) and that when the signal is present, f(xi Is).
We have

................ (2.3)

if the noise is gaussian then we can write

So,

...................... (2.4)

....................... (2. 5)

Similarly, with signal present xl=A+v, we obtain

2 2-(x,-A) 120,e

Vz7Ta~
........................ (2.6)

The processor for one sample XI' must have a decision rule which specifies two separate

ranges of the possible values of XI' the range of values XI corresponding to signal present
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hypothesis and the range of values Xo corresponding to the signal absent hypothesis. The

probability of error P, depends on the particular choice of these two joint regions, and it is the
object of our analysis to find those ranges which minimize P,.

If we assume that the two regions are simply chosen as showu.in fig.(2.3), a' decision level d is

picked; all values of xl>d correspond to signal present (XI)' and all values of x,<d correspond

to signal absent (Xo). In general, the two regions X, and Xo incorporate all points on the line
corresponding to possible values of x, and may cover several decision regions, as shown in
fig.(2.4).

-------xo-----.I ....----X ,---~~

Fig. 2.3 Decisioll$region
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Fig. 2.4 More general decision regions

x,
I

0 dz .• Xl

t t t
I> 0.5. 1, 2

Pl=t,Os,t

Fig. 2.5 Decision regions for different values of PI

It is apparent from the definitions that P", corresponds to the probability that Xl will fall into

region Xl given that only noise is present while p•• corresponds to the probability that Xl will
fall into region x., given that a signal is present. These probabilities in tum are found by

integrating the appropriate density functions over the respective regions. Specifically, for the
example shown in fig.(2.3), we have

........................ (2. 7)
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and ......................... (2.8)

From eqn.(2.2), the overall probability of error is given by

Since Xc and X, cover the entire space of x" we can eliminate Xc IL~ing

We have

....................... (2.9)

........................ (2.1 0)

Since PI' I-PI' and both density fWlctions are all of necessity positive, it is obvious that for

minimwn P" we can choose the inequality

........................... (2.11 )

Therefore, in this case the integral over X, is as negative as one can make it, and hence P, is

as small as possible. The values of x, satisfying inequality (2.11) thus correspond to region

Xl> while those which reverse the inequality correspond to Xo.

Again, from eqn.(2.11), we can formulate the so-called likelihood ratio as

f(X1Is)

f(xllo)

I-P> __ ,
P..

.......................... (2.12)

If PI increases, the X, region increases and the Xv decreases corresponding to an increased

likelihood that signal will be detected. Similarly, as PI decreases, the Xl region is reduced in

size as shown in fig.(2.5).
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Nowfor m random variables X1,X2"",xj"",xm and with geometric properties of them, we may

define an m-dimensional probability density function f(XI,X1,...,Xni) integrable over the entire m-

dimensional space. Once an m-dimensional region Xl is chosen, an error will occur with the

signal absent if the composite sample group falls into region Xl' The probability of this

happening is given by the appropriate integration over Xl such that

..................... (2.13)

which is just the m-dimensional extension of eqn.(2.7). Proceeding exactly as in the one-

dimensional case, it can be shown that the detection procedure appropriate to minimizing the

overall probability of error consists of deciding the signal is present if

m

IIf(x;ls),.1
m

IIf(x;l0),.1

......................... (2.14)

Taking the natural logarithm of both sides of eqn.(2.14), we have

;,.. f(xls)
In1 == L..-1n j

j>1 f(x)O)

I-P> In __ 1

PI
....................... (2.15)

lae detection procedure thus consists of operating on each sample, summing the resultant

mmlbers, and checking to see whether this sum is greater than a specified threshold. Now if

the noise is gaussian we can use the eqns.(2.5) and (2.6) to fmd the ratio of density functions

required by eqn.(2.15) and taking the natural logarithm, we get a decision rule which decides

that the signal is present when the values of xp j=I,2, ...,rn, satisfY the inequality

m. I-PL [x] -(y Af ] > 2a~ In-_I,.1 PI
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From which we obtain

m mAI: x. > - +
jol J 2

............... _...;...(2.17)

The optimlIDlprocessor that we obtain here consists of a summer which simply adds the
samples and checks to see whether the sum exceeds a specified level d.

If we divide through by the constant m, we have an alternate optimum processor where we
decide a signal is present if

1 m Ay=-I:x>-
III jol j 2

2
0y I-P)

+ (- In--)
mA .~

.............. _ (2.18)

Hence we can say that for gaussian noise with fixed signal amplitude A the sample mean is
the appropriate number to be calculated in detecting the presence of the signal. An example of
the overall probability of error P" from eqn.(2.2) is shown in Schwartz [1] for the special
case Pro=Pd such that

I'niAP
e
= - (1 - erf~V-IIJ_)
2 2fioy

with the error function of x defined as

2 J x ,erfx;: .;:; 0 e-Y dy

................... (2.19)

....................... (2. 20)

From which we get the performance curve as shown in fig.(2.6) .. It is apparent that if we

desire a probability of error P, less than 10-4we require -!mA/uv >7.3. For -!mA/uv = 10,

p. = 2.87xlO"', for -!mA/uv = 11, P, = l.9x1O.7 and for -!mA/uv = 12, P, = l.OxIO'•. So small

changes in A/uv' the so-called signal to noise ratio result in significant changes in the

probability of error. nus is due to the exponentially decreasing tails in the gaussian
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distribution. For this reason, increasing the signal-to-noise ratio are considered so significant in

signal processing systems and one tries to reduce the noise and increase the signal power received

as much as possible. To improve the equivalent signal-to-noise ratio the nwnber of samples m

may also be increased. Since the samples are spaced a fixed time interval apart to ensure

statistical independence, the time for detection increases with m [1].

1

10-2

10-6

10-8
6 10 14 18 22

oil

Fig. 2.6 Performance curve of ihe optimwn detector (for P,=9.5)
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2.2 Neyman-Pearson Theory for Radar

In the detection problem an appropriate petformance criterion is one that maximizes detection

probability while keeping the false-alarm probability fixed at some tolerable value, This criterion

will be discussed in detail and we shall use the resul Is obtained here to assess the petformance

of the air traffic control radars (primary and secondary radar) at Zia International Airport.

TIle Neyman-Pearson criterion, after the two statisticians who first explored its properties,

minimizes the probability of signal loss, Pol with the probability of mistaking noise for signal,

P <0' held fixed at some tolerable level. In radar case, we would like to maximize the probability

of detection Pd= I-Pol with a false-alarm probability Pn= P OJ specified. For an m-dimensional

space with the m independent samples Xl' x~,..., Xm, we have, as in eqn.(2.13)

and
m

P.o = Pn = J' ...f II[f(x;l0)] dx1 ••• dxm
. )(, ~l

.................... (2.21)

..... , (2.22)

It is apparent that we camlot simultaneously adjust the signal region Xl to maximize the

detection probability Pd and mininlize the false-alarm probability Pn' Therefore, in Neyman-

Pearson test Pn is kept fixed at some tolerable level and then search for the region Xl that

maximizes Pd' We consider a signal of amplitude A appearing in a gaussian noise background.

TIlen for one sample Xl we can show that the signal is declared present if

...... , , (2. 23)

where k is a constant. This is shown in fig.(2.7). Upon normalizing, and using the error
'.

fimction definition, for gaussian noise we have
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,
f'" e-x 1 d= - dx = -(l-er.t=--)
d.,j2o. r;. 2 /2a v

... , (2.24)

Eqn.(2.24) shows the relation between the threshold d (or, equivalently, the constant k) to the

false-alarm probability Po, It is apparent from eqn.(2.24) that reducing Po increases d, and vice

versa. Moreover, the tlrreshold level d is independent of the signal amplitude A and it .

depends solely on the noise standard deviation. But eqn.(2.23) indicates the dependency of d

on A. The constant k obviously must adjust itself to make d independent of A. In the case of

m independent samples of a signal of anlplitude A appearing in a gaussian noise background,

tile signal is declared present if

m

v="x.>d. L, j

1'1

................ (2.25)

Then with signal absent, E(y)=O and o/=mo; the variance of each of the m noise samples.

The density function of y with signal absent is then given by

-rr,,;'e rf(ylo) = .

J27Ta~

using eqn.(2.26), we can express the false-alarm probability by

f'" f'" '. x2 1Pn = f(yIO) dy = e - dx = -(I-eIf c)de";:;;' 2 ..

where c is a parameter which is defined as

. (2.26)

............. (2.27)

if.=: =
d

V2/lTJ v
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The false-alarm probability and its relation to the decision level d is shown in fig.(2.8) which is

identical to the single-sample case with uy by replacing uv' Although the parameter d is

proportional to .Jm, the peak of the fry Is) curve is proportional to In, as shown. Thus as m

increases, there is an improvement in detection.

o d

I.
A

Fig. 2.7

Fig. 2.8

Neyman-Pearson test of signal for one sample

rnA

Neyman-Pearson test of signal for m independent samples

34

y



The false-alarm probabilities of practical radars are quite small. The reason for this is that the

false-alarm probability is the probability that noise pulse will cross the threshold during an
interval of time approximately equal to the reciprocal of the bandwidth. Values ofP.=IO" to 10.10

and even smaller are much more realistic choices because radar signal pulses are commonly of
the order of 2ff-LSin width or less. For P.=IO" a false-alarm would occur on the average of once
every 100 sec. For p.=IO'1Othe average false-alarm rate is once every 104 sec.

To solve the eqn.(2.27) for c when p. is very small we have to proceed integration by parts and
for small p. the integral of eqn.(2.27) can be represented by a so-called asymptotic series (for c,,3

and P.«l)

p ""n

-c'e
2,f;c

kr e<'>3 ....................... (2.28)

If we take natural logarithm in the above equation and apply trial and error calculations. we
can obtain the values of c for the different values of p•. But here eqn.(2.27) is selected to find

the values of c (using known values of P.) which is used in eqn.(2.32) to plot the curves
showing the variation of the probability of detection with signal-to-noise ratio, fig.(2.10).

The grobability of detection of signal P4 which corresponds to the probability that
y = LX} >d with the signal present Hence with the signal present E(y)=mA and o/=mo/,
as in.Fthenoise only case. 'This is indicated in fig.(2.8). Therefore, Pd is given by

................... (2.29)

For ImA/o,=/2c the probability of detection is 0.5. As lrnA/o, increases beyond this value,
Pd increases, approaching 1. For a given probability of detection and probability of false-
alarm, one may find the required signal-to-noise ratio Nov or its equivalent power ratio
A210;' Increasing the number of samples m used is equivalent to increasing. the effective

A2/0/ by m as well. The reason for this is apparent from fig.(2.8). As m increases, the width

of the curves shown, or the standard deviation 0 y' increases as 1m. The decision level d
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incre;lses as FIn as well. But the expected value of the variable y with signal increases directly

with Ill. '111eoverlap of Ille two density functions decreases, and the probability of detection

iucreases with nl. The physical reason for tltis is as more signal samples are taken, their

amplitudes add directly, providing the mA expected value of y, whereas the noise samples bdng

added are random. l1tis is the usnal phenomenon in signal-detection problems; adding more and

more indepcndent samples makes the signal rise up oul of the noise.

It was mentioned that the maximum number of UIlC-OITelatednoise samples available in a time

interval T second is m=2BT, where bandwidth B prior to sampling and samples taken at a

ntinimum spacing of 1/2B second intervals, For gaussian noise these samples are independent.

Since Ille mean noise power for bandlintited white noise is proportional to the bandwidth B, so

we can wllte

.................... (2.30)

where lIo=wltite noise spectral density = FKTo (watt/hz). Here F is the noise figure, K=1.38x10'23

J/ 0 K and To is the rool11temperature.

So, the efTective signal-to-noise ratio,

2BTA~ = 2iT
floB no

............. " .... ,..... (2.31)

where E=the energy in a single pulse=A2T.

Therefore, the detect ability of the pulse is a function only of the effective signal-to-noise

ratio, given by the ratio of its energy E to the noise spectral density 110.This is an important

result in detection theory. The ratio E/110is used in deterntining the deteetability of a signal in

gaussian noise. It is obvious that the probability of detection can be improved by increasing

the received signal energy E or by reducing the noise spectral density 110.The energy is in

tum given by the product of the signal power and the pulse duration T. Hence the

detectability is increased either by increasing signal power or by lengthening the duration of
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the signal pulse. From tltis discussion probability of detection eqn.(2.29) can be reduced to the
fOim

.................. (2.32)

TItis is a nonnalized foml of the probability of detection wltich is applicable to the case of

varying-amplitude signal pulses as well as the special case of rectangular pulses.

2.3 Application to Ail' Traffic Control Radar

In order to discuss the signal detection characteristics of the radars using the technique developed

in tltis chapter, we need the radar equation that was developed in chapter 1, eqn.(1.4). We can

now proceed to discuss both the primary and secondary radar. TIle pertinent specifications for the

two radars (primary and secondary radar) at Zia International Airport are given in Table 2.1

and typical radar specificatiolL~ for ASR and ARSR are given in Table 2.2. Relevant calculations

and elaborate description of radar perfomlance curves can be found in Schwartz & Shaw [1]. But

the radar parameters for ASR and ARSR are given here in tabular form so that we can make a

comparative study with primary and secondary radar specifications at a glance.

Usually the en route radars (ARSR) are designed to cover almost 3.4 times the range of the

airport radars (ASR) and for tltis reason, they are provided with higher transmitter power. But

since the secondary radar is equipped with the transponder, radar range extensively increase with

lower transntitter power as the transponder acts as a ntidway receiving transmitting station.

Considering a target having 2m2 reflecting area at the maximum range, tile received powers are

J 7.15xl0.13

P = \,
2.91xlO"7

watt

watt

for primaIY radar

for secondary radar (at the transponder)
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TABLE 2.1 RADAR (Primary and Secondary RADAR) Parameters

Radar Specifications Primary Radar Secondary Radar

Maximum Range R 160 km 370 km

Output Power P, 3.5 MW 2.5KW

Frequency Range (1250-1350) MHz (1030-1090) MHz

Pulse repetition freq. .633 Hz 316 Hz,
Pulse duration 1.6 IJsec 3 IJsec

Pulse period 1.579 msec
.

3.16 msec

Wavelength 0.23 m 0.28 m

AntelUla Gain 32 dB 20 dB
.

Antenna rotation 15 r,pm. ~ 15 r,p.m.:)

Antenna type AOH-lHI) 286 AS 809

Intermediate frequency 30 MHz 60 MHz

Range resolution 120 meter

Beamwidth IS 1.35°

TABLE 2.2 RADAR (ASR and ARSR) Parameters

Radar Specification ASR (airport) ARSR (en route)

Maximum Range R 110 km 370 km

Output Power p. 400 KW 4MW

Frequency Range 2.7 GHz 1.3 GHz

Pulse repetition freq. 1200 Hz 360 Hz

Pulse duration 0.83 IJs 2 IJs

Pulse peri od 0.83 ms 2.8 ms

Wavelength 0.11 m 0.23m
.

Antenna Gain 34 dB 34 dB

AntelUla rotation 15 rpm 6 rpm

Beamwidth . IS 1.35°
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From Table 2.1, it is obvious that the primary radar has 1400 times the transmitted power of the

secondary radar. But the secondary radar can cover almost 2.3 .times longer distance that of the.

primary radar since the secondary radar is equipped with the transponder. Since E is the energy

in a rectangular pulse of amplitude A and width T, we therefore have E=2P,T. The pulse widths

for the two radars are 1.6,us for the primary radar and 3IJs for the secondary radar respectively.

Therefore we have

2.289xl0.1S J

1.744xl0.1Z J

for primary radar

for secondary radar (at the transponder)

As the wider pulse used for the secondary radar, target detection capability of it increase

correspondingly since for the wider pulse more energy is received, but the minimum radial

spacing of two targets required to distinguish them also increase. Fig.(2.9) shows how two

airplanes can appear to be a single plane if the difference in propagation time to and from these

targets is less than the pulse duration.

It can be mentioned here that for any signal, no matter how small its power, could be detected

since it counts not the signal power or energy received but the ratio of signal-to-noise. The noise

figure for both radar system is specified to be F=4dB or 2.512 means that 151 percent additional

noise is introduced by the radar receiving system.

We may asslUne the usual room temperature on the ground is 3000K with F=4dB or 2.512

numerically. Then we have llo=l.04xl0.20 watt/hz and the E/Ilo ratios are

{
23.43 dB

E/Ilo =
82.24 dB

for primary radar

for secondary radar (at the transponder)
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Demodulated signal plus noise

t t
•2

(a) (b)

Fig.2.9 Radar resolution vs. pulse duration, (a) Narrow separated pulses, (b) Wide

overlapping pulses

Upto tlus we have neglected several impoliant effects and losses in this calculation and hence this

result does not represent the whole picture. TIle power loss that was ignored in tlus system may

be about 9dB and reducing the detection probability. But integration of radar pulses may

consider as a compensating factor. Both the primary and the secondary radar rotate at a rate of

15 rpm, completing a 360" scan in 4s. The two radar beams have azimuth bandwidths of 1.5"

and 1.350, respectively. TIle mUllber of pulses emitted per second are 633 and 316 pulses per

second, respectively. TIus cOlTesponds to 10.55 pulses reflected per target in the primary radar

and 4.7 pulses pel' target in the secondary radar, providing that more samples in the signal

processing or, equivalently, augmenting tlle received energy by tlle same amount. Thus tlle

primalY radar energy received should be 10.55E and the secondaty radar energy 4.7£.

Alternately, tlus results in EIt\! improvement, of 10.23dB and 6.76dB, respectively.

Eqn.(2.32) is used to plot a fanuly of curves relating probability of detection to signal-to-noise

ratio. TIle signal-to-noise ratio needed to achieve a specified probability of detection without

exceeding a specified false-alarnl probability can be calculated from these graphs. A resultmt set

of curves desclibing tlle performmce of the envelope-detector are labeled as noncoherent

detection and the coherent-detection with c=4.5 to maintain Pn=IO.lo are given in Schwartz &

Shaw [I].
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Probability of detection vs. SNR
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Fig. 2.10 TIle variation of probability of detection with signal-to-noise ratio
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2.4 Summary

So far in this chapter we dealt with the detection of the presence of a signal in noise and in doing

so we focused on two criteria primarily; (I) the minimization of the probability of error

appropriate in digital conmllmications, and (2) the Neyman-Pearson criterion appropriate to radar,

sonar, and other systems in which the a priori probability of receiving a signal is not known.

Detection capabilities of both primary and secondary radar are considered here. In the next

chapter we focus on the estimation of random signals to extract the desired signal parameters.

"
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CHAPTER 3

DIGITAL FILTERING OF NOISY DATA

3.0 Introduction

In this chapter we have discussed digital (i.e. discrete-time) filtering theory relevant to estimation

theory as developed in the following chapters. Further on in chapter 3, we consider the

nonrecursive and first-order recursive filter structures as estimators of signals in noisy data since

they lead into discrete-time Kalman filter form to be developed in chapter S. In this chapter and

next, we approach the estimation problem in a step-by-step fashion: The mean-square error is

used as a criterion to assess the degree of noise suppression by the filter estimators.

3.1 Estimation of Random Signals

In all practical problems the signal is present but because of noise, inaccuracies in the data

samples, limited precision of instruments (these are often all modeled as additive noise), the data

samples scatter about the actual signal values. The signal usually occupies a limited frequency

range, willie the noise is spread over a wide band of frequencies. So the signal is random since

its precise value call1lot be predicted in advance. Random signals are often called stochastic

signals or stochastic processes. The purely random signal has a constant spectral density over all

frequencies. This kind of signal is called white noise, by analogy to the property of white light

containing all frequencies of visible spectrum. In order to remove at least partly the noise from

the signal we would use some kind of filtering. The process of extracting the useful information

from a signal and discarding the extraneous is called signal processing. TIlere are a vast number

of ways of processing signals. In most of the modem signal processing techniques one works with

so-called discrete-time signal. Discrete-time implies that signals are defined only for discrete

values of time, i.e. time is quantized. The process of picking values of an analog signal at a set

of discrete times is called sampling. Such discrete-time signals often referred to as sampled-data
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signals. The widely-used term digital implies that both time and amplitude are quantized. A

digital system is therefore' one in which a signal is represented as a sequence of numbers which

take on only a finite set of values. Sampling and quantization occur in all signal processing work.
involving digital computer. The combined operations are called analog-to-digital (AID) conversion

[1,2,9].

The filtering of random signals is referred to as estimation, because most estimation filters are

statistical and estimation is a well-defined statistical technique. This text is concerned with the

development of signal processing techniques to extract pertinent signal information from random

signals utilizing any a priori information available. We call these techniques signal estimation,

and the filters that use discrete-time algorithms are called signal estimator or just estimator.

Sometimes estimators are called filters (e.g. Kalman filter) because they perform the same

function as a deterministic filter except for random signals,i.e. they remove unwanted

disturbances. Noisy measurements are processed by the estimator to produce filtered data [9].

Noisy Measurement
) I signal Estimator I Estimate.,

Fig. 3.1 Typical signal estimator structure

The amount of information available in the data is related to the precision (variance) of the

particular measurement instrumentation used as well as to any signal processing devices or

algoritluns employed to improve:). the estimates. There are many different estimators and

algorithms are available. We must have a reasonable measure to evaluate their performance,

and decide which one is superior. The two primary statistical measures employed are the

mean (accuracy) and the variance (precision). These measures lead to desirable estimator

properties; i.e. we want estimators that are accurate or unbiased and precise. More formally,

an wlbiased estimator is on~ whose expected value is identical with the parameter being

estimated.
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Estimation can be thought of as a procedure made up of three primary parts:

(1) the specification of a criterion;

(2) the selection of models from a priori knowledge;

(3) the development and implementation of an algorithm.

Criterion functiOlL~are \t~ually selected on the basis of information for which an estimator will

be developed and can be classified as deterministic and probabilistic. For example, mean-square

error criterion, maximum likelihood, minimum (error) variance etc. are some typical criterion

functions.

Models represent a broad class of information formalizing the a priori knowledge about the,
process generating the signal, measurement instrumentation, noise characterization, probabilistic

structure, etc. For example, a standard signal processing model is that of a signal in additive noise

Measurement = signal + noise

where the noise statistics are specified as well as the signal stmcture.

Finally, the algorithm or technique chosen to minimize (or maximize) the criterion can take many

different forms depending on (1) the models, (2) the criterion, and (3) the choice of solution. The

development of a particular algorithm is an interaction of selecting the appropriate criterion and

models as shown in fig.(3.2). Thus the estimation procedure is a combination of these three major

ingredients: criterion, models, and algorithm. Conceptually, this completes the discussion of the

general estimation procedure [1,12,25].

Model
Algorithm

Criterion

. Fig. 3.2 Interaction of model and criterion in an estimation algorithm
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3.2 Digital Transfer Function

In linear discrete-time system, the input f(k) and output g(k) sequences are related by linear

difference equations with constant coefficients. In the theory of digital or discrete.time filters, the.
general equation is usually written in the following way:

g(k)+bJg(k.l)+ ....+b."g(k-m)= aJ'(k)+a,f(k-1 )+....+a.,f(k.n) ................... (3.1)

where bo is taken, by convention, as unity. The interpretation of eqn.(3..1) is that at time
k(t=kT), the output value can be computed from the current input and a linear combination of
previous inputs and outputs. Taking the z-transform of eqn.(3.1) term.by.term, we obtain

where

and

"
F(i) = ~ $..k)z-Jr

1'0

"
G(i)= ~ g(k)z-Jr

Ir-O

.................... (3.2)

From eqn.(3.2) we can now define the discrete.time (or digital) transfer function as
n

H(z) = G(z) =
F(i) m

...................... (3.3)

which is a rational polynomial in zJ. This transfer function is valid for zero initial conditions.
From eqn.(3.3) we can write for the output

G(z)=H(z)X(z)

and the oulput sequence y(k) is then obtained using the inverse z.transform.
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From this discussion we have the output y(k) for the input x(k) as

y(k) = L a;X(k-])- L bjy(k-j)
p,O j=1

n m
....................... (3. 5)

A hardware implementation of eqn.(3.5) is shown in fig.(3.3)

Prcs~nt
output
sample

y lk)

x(k - N)
r1

02

x I k- 21

ylk-2 )

Past input samples

00

x Ik)

r

ylk-M)

(gain.)

Mulliplicrs

Prutnt input
\omplt

Multipli<r. (gain.)

l",
Past output sample's

Z-l = unit do lay

Fig. 3.3 Hardware implementation of a discrete-time filter

47



3.3 The Classification of Digital Filters

For the purpose of realization, digital filters are classified into nonrecursive and recursive types.

111enonrecursive structure contains only the feed fOIWard paths as shown in fig.(3.4). TIUs is a

special case of eqn.(3.3) in which all bm coefficients are zero, i.e. the output is a swn of linearly'

weighted present and a nwnber of previous samples of the input signal. The input and output

sampled-data signals, denoted by f(k) and g(k) respectively, will be changed latcr to y and x

where tilters are considcred as estimators. The output g(k) can be written as

g(k)=h(O)f(k)+h(l )f(k-l )+ ...+h(m-l )f(k-m+ 1)

or

m-l

g(k) = L h(J)f{k-J)
FO

.... ; (3.6)

which is the convolution summation in discrete-time. This represents a finite memory

structure of finite nwnber m of input samples.

In recursive tilter structures the output depends both on the input and on the previous outputs,

as shown in the general hardware realization of fig.(3.3), where we have both feed fOIWard

and feedback paths.

A simple first-order recursive filter structure is shown in fig.(3.5). Here the output consists of

the present input and a weighted previous output, where the weight is denoted by a. The

output-input relationship can be written directly, by inspection of fig.(3.5) as

g(k)=f(k)+ag(k-l)
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Present input
$omplt

Post (m-I J input samples
~
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T = One time unit
delay
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Present output sam pit

Fig. 3.4 Nonrecursivefilter

g(k)
Present

input
sample

+

g(k-I)
Present
output
sample

f(k) +

T=One time unit
delay

Previous
output

Fig. 3.5 Recursive(first-order)filter

+ g(k)

+

I-a
g(k-I)

Fig.3.6 An alternative form for fig. 3.5
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Since the recursive 11lter is a feedback cOIUlection, so for stability we need a<1. An alternative

fornl of the recursive tilter is shown in tig.(3.6), for which we have

g(k)~g(k-l)+lf(k)-( l-a)g(k-l)]

We shall come across this type of recursive structure in chapters 4;5 and 6.

............ (3.8)

TIlese tilters, nonrecursive and first-order recursIve, are the structures on which es.timation

theory is based. TIley are often referred to both as ftlters and as batch and sequential

processors. The tirst area, nonrecursive or batch processing, is also known as classical

estimation theory, wlnle the second area, recursive or sequential processing, can be called

modem estimation theory.

'The recursive structme has theoretically an infirJite memory and hence it is referred to as an

infirJite impulse response (UR) tillet. design. It is not wlconclitionally stable unless restrictions

are placed on the values of the b coefficients.

Nonrecursive tilter has only a limited memory, winch is controlled by the number of delay

stages and it results in the tilnte impulse response (FIR) filter design. It has only feedforward

paths and is unconditionally stable. The input signal is delayed by a nwuber of delay

elements. The outputs of these time-delay .c1ements are subsequently multiplied by a set of

stored weights and the products sWlUned to form the output signal. This implies that the

output is given by the convolution of the input signal with the stored weights [2].

3.4 Nonrecursive Estimator

We use the notation x for a constant signal, and x(k) for the time-varying signal.

Measurement of tins signal is denoted by y(k), is linearly related to the signal x and an

additive noise component v(k), introduced by random errors in measuremenl~ or any other

causes. Therefore, we have

y(k)~x+v(k)
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'The siglial x is a random variable with some expected value E(x)=Xo and variance 0/ The noise

samples are assumed to be of zero-mean with identical variances 0,2, and uncorrelated,

It is assumed that m data samples, as specified by eqn,(3.9), are to be processed using the

nOlU'ecursive filter structure of fig.(3.4), with all m weights equal to 11m. 'file input f(k) is then

y(k), and the output g(k) is taken as an estimate of parameter x, denoted by X, as shown in

fig.(3.7). Here clatay(i), i=1,2, ...,m, are available as a batch. They are stored, multiplied by equal

weights, and the rcsu1t is smumed to produce the output

1 m- 2>(1)
nl i=l

........................ (3, 10)

In general, .the nonrecursive filter processor with different weights can be written as

m

"i = L h(i)Y(l)
;'1

........................ (3.11)

It is more common to use the square of the error (X_X)2 as a measure of the deviation between

the signal and its estimate and the mean-square error E(e2)=E(x-x)" as the measure of

goodness of the estimate. If we define the error between this estimate x and actual value x as

e=~-x, then the mean-square error is given by

p, = E[e2
] = E(x-x)" = E[x+v(k)-x]'

or p, = E[v'(k)] = Oy2 ..•..•......• (3.12)

Now for the estimate over m data samples, as expressed by eqn.(3.10), we have the mean-

square error as given by

{ }

2
1 m

Pc = E(e2) = E(x-x)' = E - L[x+v(k)]-x
m .1=1

or
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or. Pc ~ J1-f V(k>j2""lm .<=1

1 m. m

_.-L LE[v(i)v(i)]
m z ;"'1 j"'l

1 In m 2~-" "a 8 ..2 Li. L....i v lj
In ;"'1 j"'l

where 0ij represents the Kronecker delta, i.e. 0ir1 for i=j, and 0irO for i;,j. Therefore, we have

m m m

L L 81;~ L[8,/+8'2+ ...+8'in]
""I jol pi

= 0ll + 012 + + 0lm

+ 021 + 022 + + 02m

+ 0ml + 0m2 + + 0mm

................. (3.13)

In the above only 0ij for i=j are equal to 1, all the others are zero. There are m such terms,

therefore the result is then

P = (J 21m, v

which is an important relationship showing that as the number of samples m increases, the

mean-square error p, decreases. The sample mean is thus a good estimate of x in this sense.

TIle sample mean has another interesting property in estimating x. If we take the expectation

of x in eqn.(3.10), which gives

E(:i)~ J1-f [x+ V(J)J} ~ E(x) ~ Xvtm 1"1
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Since, as stated earlier in this section, E(x)=xo, and E[v(i)]=O.

111erefore, we have found that the estimate of x, on average, is the same as the average of the

estimate. An estimator with this property is called an unbiased estimator, which, on average,

produces the desired result.

Batch of m dat"a

y(3)

h (1 ) h(2) h(3) h (m)

h(1)=h(2) •••• =h(m)=1/m

Fig. 3.7 Santple mean estimator

3.5 Recursive Estimator

=.1.
rn

We consider the simple first-order recursive filter shown in fig.(3.8), where y(k) and g(k) are the

input and output sequences respectively. The input signal y(k) represents the measurements as

expressed by eqn.(3.9), and the filter output is given by

g(k)=y(k)+ag(k-l)
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'This filter continually updates the output, adding a new data sample, y(k) to a fraction of the

previous output ag(k-1). To find the result of such a process we consider sequentially input

samples y(1), y(Z),..., y(m), assuming g(k)=O for k<1. From eqn.(3.15), we have

g(o) = y(o)+ag(-l) = 0

g(l) = y(l)+ag(o) = y(l)

g(2) = y(2)+ag(1) = y(2)+ay(1)

g(3) = y(3)+ag(2) = y(3)+ay(2)+a'y(1)

gem) = y(m)+ag(m-1) = y(m)+ay(m-1)+a'y(m-Z)+ +am-'y(2)+am
.'y(1) : (3.16)

Substituting for y(k)=x+v(k), and separating the signal and noise terms, we have

gem) = (1+a+a'+ ...+am.1)x+[v(m)+av(m-1)+ ...+am•1v(1)]

or, I-a m m .
gem) ~ -- x+L a"r' Vel)

I-a ,,1

. (3.17)

where the first term is the slIm of the geometric senes associated with x. For large m,

laIm«l, the signal part of gem) approaches xA:1-a), while the variance due to the noise

approaches 0.'/(1-a2). 'This indicate that a good estimate of x is given by 'X=(l-a)g(m) which
leads to the important result

m
X ~ (l-am)x+(I-a) L am-iv(l)

r-l
.................... (3.18)

'This means that the output (l-a)g(m) is taken as an estimate of signal x, after the mth input

sanlple has been processed as shown in fig.(3.9).
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y(k) ':n --
L a I~--__T_~---

Fig. 3.8 Recursive filter as noisy data processor

g(k)
E»

r (k) '1---~~--~. Fig.

k=1,2, .•• ,m

I I-a I
"x=(I-a)g(k)
••"x=(I-a)g(m)
(after m-th sample)

Fig. 3.9 Recursive filter as estimator

So by making the effective time constant a of the filter longer, we can reduce the mean-

square elTor in the estimation of x. But tins recursive device, although simple, is not the best

estimate of x.

3.6 Summary

Two types of tllters are discussed in this chapter, The nonrecursive filter has a finite memory
and can have excellent linear phase characteristics, but it requires a large number of terms to

obtain a relatively sharp culoff frequency response. The recursive filter has an infmite

memory and tends to have fewer temls, but its phase characteristics are not as linear as the

nonrecursive ones. 'Nonrecursive fillers have no feedback paths and hence no stability

problem. Since the recursive f1lter is a feedback structure, the problem of stability must be
considered.. Moreover, both kind of filters associated with the error results from the

quantization of the input data to a specified number of bits, and also due to the round-off in
the multiplication and addition operations of the digital filters. To detemrlne their effects on a

digital filter, these sources of error are treated as random noise sources.

55



CHAPTER 4

OPTIMUM ESTIMATION OF SCALAR SIGNALS

4.0 Introduction

In the previous chapter we talked about the estimation of random signals. We have seen in
sections 3.4 and 3.S that the mean-square error is a useful criterion showing how good an
estimation process is. In tins chapter, tile mean-square error is taken as the tlmdan1entalcriterion.

The optimum nonrecufSlve estimator derived in section 4.1 is the scalar Wiener tilter.

Disadvantages of this batch type processor are summarized in section 4.2, where a recursive type
(or sequential) processor is developed from the optimum nonrecursive type. The signal we
consider in this chapter is a constant signal parameter with a random distribution of its values.
In the next chapter we extend tins teclmique to random time-varying single signal which is named
as scalar signal [1-3].

4.1 Optimum Nonrecursive Estimator (Scalar Wiener Filter)

In tins section we deal witll the nonrecursive filter whose output is to be the signal estimate, i.e.
m

-r = Lh(J)y(J)
Fl

............... (4.1)

where y(l), y(2), ...,y(m) are m data signals which is a linear batch processor. Now we choose

the m coefficients, h(i), i=1,2,...,m, tIlat minimizes tile meanCsquareerror, i.e. p,=E(e2)= E(X~~)2
is minimized. Here x is desired signal and 'X is its estimate. To set up the problem we write

Pc = E fx - f h(J)y(J) 2

l "1

S6

...................... (4.2)



We ditferentiate p, with respect to each of the m parameters, setting each partial derivative equal

to zero to obtain the required m equations from which to find the values of h(i) that minimizes

the mean-square error. Thus we have

or,
m

L h(l) E [y(l)YCJ)] = E [xyU)]
i=1

...................... (4.3)

.................. (4.4)

where j=I,2, ...,m. From eqn.(4.3) we can also write

E[ey(i)]=O for i=I,2, ... ,m .............. (4. 5)

where e=x-x is the error. TItis is called the orthogonality principle. It means that the product

of the error e=x-x with each of the measured samples y(i) is equal to zero in an expected-

value sense.

Probabilistic relationship which might exist between two random variables like yn and yn+1 is

called correlation. The correlation between pairs of signal samples may describe by the

autocorrelation function defined as the expectation of the product of any two signal samples

separated in time by k samples. For example, the estimator output y(i) has the autocorrelation

flmction ~(k) such that

~(k)=E[y(i)y(i+k)]

if ~(k)=O, i.e. zero autocorrelation flmction value, the variables are uncorrelated; while the

larger the autocorrelation function values, the more correlated the variables are.

Therefore, returning to eqn.(4.4), we may introduce

E[y(i)y(j») = R;j

which is the data aUtocorrelation between y(i) and y(j). Similarly, we introduce

E[xy(i)] = &
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which is the cross correlation between the random variables x and y(i). Using eqns.(4.6) and
(4.7), we write eqn.(4.4) as

m

:E h(;)Rij = gi
,..1

................ (4.8)

which is an important result. In expanded form this set of equations corresponds to

Ruh(I)+R12h(2)+ +Rlmh(m)= gl

Rzlh(I)+R22h(2)+ +R,mh(m)= g2

~lh(I)+~h(2)+ ...+~h(m) = ~

....... (4.9)

More compactly, if we define the mxm correlation matrix R with elements R;.ij=I,2, ,m, a
columnvector h with elements h(l),h(2), ...,h(m), and a column vector g willI elements gl,gl, ,g""
we have as the set of equations in matrix-vector from,

Rh = g (4.10)
The formal solution of eqn.(4.IO) is

h = Rig (4.11)
with R1 the inverse matrix of R The estimate eqn.(4.1) can be written as

~ = hTy (4.12)
where hand yare (nlXI) colunm vectorS, and hT is a row vector. Substituting eqn.(4.11) into
(4.12) we obtain for the estimate

x = gTR1y (4.13)
and similarly tor the least mean-square error

p, = E(x1)_gTRlg (4.14)

A .filter of tlus type is often called a scalar Wiener filter, and eqn.(4.8) is known as the
scalar Wiener-Hopf equation.

The solution vector h represents the optimum linear filter through which the data samples are

to be passed. It should be noted that the relationship y(k)=x+v(k), eqn.(3.8), has not been used

in the above derivations. Therefore, the result is more general than it appears. It states that if

the data samples y(i), i=I,2, ...,m, somehow contain the unknown random variable x, the
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signal, the best linear-filter operation carned out on the samples in order to estimate x is given

by the Wiener filter [1].

If we consider the measured data and signal be related linearly by y(k)=x+v(k), where v(k) is

additive noise, and the noise samples are zero-mean, with variance 0,2, uncorrelated with each

other and with the signal x, then we have

E[v(j)v(k)]= {

and E[xv(j)]=O.

o

0; j=k

Again, for the purpose of simplification, we assume E(x)=O, and hence E(x2)=0/.

To solve this problem, we calculate first

R;j = E[y(i)y(j)]

= E{[x+v(i)][x+v(j)]}

= 0 2 + 02& ..
x v I)

where &ijis the Kronecker delta, i.e.

_ {O j;/ok
&ij-

1 j=k
and gi = E[xy(i)] = E[x2] = 0/

......... (4.15)

......... (4.16)

Substituting eqns.(4.15) and (4.16) into the set of eqns.(4.9) and summing both sides we have
finally

m

(a~+ m a:)I:h(l) = m a:
;'1

from which we have

mI:h(l) =
;'1
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and hence we can write

M,I)= li.)= ...= M.m) = ............ , (4.17)

The least mean-squared estimate is thus given by

1 m
X= --LY(l)

m + y ,.\
................ (4.18)

here y = 0/10/. The corresponding least mean-square error value from eqns.(4.14) and (4.17)
is given by

2
UvPc = ---

m+ y
.................... (4.19)

.Dle conchl~ion can be drawn is that for large signal-to-noise ralio (y«m) the two errors are

about the same and decreases as 11m.

4.2 Recursive Estimator from the Optimum Nonrecursive Estimator

In the previous section we have derived the scalar Wiener filter eql41tion. The difficulties with
the Wiener filter are as follows:

(1) it requires previous knowledge (or stored estimates) of the autocorrelation
matrix R ;

(2) the number of data samples m to be in the processing must specified beforehand;

(3) if m is changed for any reason (for example, more data may become available),
the calculations must be done allover again;

(4) it requires the inversion of the (rnxm) matrix R. If m is large, this can take
substantial computer time.
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To allow updating of the estimate as more information becomes available, and to save on digital

processing cost, another processing scheme has been developed known as the recursive (or

sequential) processor that continually generates a new estimate from the previous stored one plus

the next data sample as it comes ill. Tlus will be I1lemain theme of the following chapters, but

first we derive a recursive algorithm from the nonrecursive solution obtained in the previous
section.

For the recursive estimation of a signal parameter we can use the same problem specified as

before defilung the successive sampled as y(k)=x+v(k) wruch provide a linear estimator

k

X = L h(J)Y(J)
pI

such that the mean-square error p,=E(x-x)Z, is as small as possible. In section 4.1, we have I1le

nonrecursive solution to trus problem, and the results for k samples may be given as
k.

X = X(1') = L h(J)Y(J),
r-l

with the corresponding mean-square error

where h(J) = 1
l' + y

..................... (4.20)

2
GvPc = p(1') = E [x-X(.k)f = --

l' + y
.................... (4.21)

where y=o}lo/ and x(k) represents to the kth estimate of I1le parameter x, i.e. tlle estimate
after a batch of k samples have been processed.

For (k+ 1) samples the estimate and the corresponding mean-square error would be

and,

k'l

x(1'+ 1) = L li..J)Y(J),
;'1

p(1'+l) =
(1'+ 1)+ y

where h(J) = 1
(1'+ 1)+ y
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From eqns.(4.20) and (4.21), we have

h(i)=p(k)/ (J.' for k samples

and similarly from eqns.(4.22) and (4.23)

h(i)=p(k+ 1)! (J~j) for k+ 1 samples

From the above two equations we can form the ratio

p(k+l) =

p(k)

from which we can wl1te

k+ Y
k+ 1 + Y

=
1

1 + 1/(k+ y)

21 + p(k)/oy

p(k+1) = __ 1__

p(k)
.................... (4.24)

This is a difference equation. Using this equation from the known value of p(k), we can find

p(k+ 1), then, p(k+2), etc. Therefore this is a simple algorithm for findi.ng the variation of

mean-square en'or with sample size.

For the signal estimate ~(k+l), after processing (k+1) samples, we may write from eqn.(4.22).

1 k
x(k+1) = ---LJ(J) +

k+ 1 + Y ,01
1 y(k+ 1)

k+ 1 + Y

from which using eqn.(4.20), we obtai.n

x(k+ 1) = k+ Yx(k)+ 1 y(k+ 1)
k+l+y k+l+y

Using eqn.(4.24), we have

x(k+1) = p(k+1) x(k) +
p(k)

p(k+ 1) y(k+ 1)
2

0y
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nus is a recursive estimating equation which together with eqn.( 4.24) forms the required

recursive algorithm. We use eqn.(4.24) to fmd p(k+ 1) in terms of p(k). 111en, trom the stored

previous value'1(k) and the new data sample y(k+ 1), we can calculate x(k+ 1). nus procedure has

the property that it continually generates the best linear mean-square estimator of x, and at the

same time it provides the corresponding mean-square error, p(k+ 1). From the error relation of

eqn.(4.24), we have, p(k) ....•Q for k very large.

To start this recursive process we must calculate the first estimate x(l), based on a single

observation, by nonrecursive methods.

Ifwe now compare the recursive relationship of eqn.( 4.25) with the recursive filter of eqn.(3.15)

in section 3.5, we find that it is of the same form, but with time-varying coefficients. Denoting

these coefficients by

eqn,( 4.25) becomes

p(.k+ !2
p(.k)

b(.k+l) ~ p(.k+12
2

a"
'''''''' ". " .... ".(4.26)

x(k+l) = a(k+l)x(k)+b(k+l)y(k+l) .,,"'''''' " ..... ,,(4.27)

Using eqns.(4.26) and (4.24), we can show that the parameters a(k+1) and b(k+ 1) are related

in the following way:

a(k+ 1) = l-b(k+ 1)

'TIlerefore,eqn,(4.27) can be written as

x(k+l) = x(k) + b(k+l)[Y(k+l)-x(k»)

............. , (4:28)

...... " ..... ,' ..... (4,29)

'TIle interpretation of this result is quite interesting. It shows that the (k+ I )th estimate is the

same as the previous kth estimate plus a correction term involving the difference between the

new sample value y(k+ 1) and the previous estimate. nus correction term is multiplied by

63



time-varying gain factor b(k+l) which continually decreases with k. So ultimately, the estimate

stabilizes at some value depending on the data sample, and will be modified only if a new sample

y(k+ 1) differs considerably from the previous estimate. The two forms of recursive estimator for

eqns.(4.27) and (4.29) are shown in figs.(4.1) and (4.1.) respectively.

TItis recursive filter has been derived from the nonrecursive filter solution for a particular case.

It can be shown that the same result is obtai.ned by starting with a recursive filter structure having

two parameters a(k+ 1) and b(k+ 1) and using them to minimize tlle mean-square error of the

estimate. This is the approach used in chapter 5 [2,3,25).

y(k+l)
b(k+l)

"x(k)
a (k+ 1 )

Fig. 4.1 Recursive fIlter

~(k+l)

y (k+ 1) +
b(k+l)

'"x(k+l)

Fig. 4.2 An equivalent form of fig. 4.1
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4.3 Summary

In this chapter estimation theory is presented in terms of both optimum nonrecursive and first-

order recursive estimators based on minimization of the mean-square error. The scalar Wiener

filter considered in section 4.1 is essentially a block process estimate which is best suited to the

situation where only a finite block of data is available and they are typically applied in areas such

as seismic surveying and image processing. In dealing with an infinite time series the Weiner

filter would require a complete recalculation of all auto- and cross-correlation terms for each new

input sample. The optimum recursive (or Kalman) estimator uses this new knowledge to update

a recursive estimate [Kalman, Bozic, Kailath 1981]. Recursive means that we do not have to store

thc cntire data vector which continucs to grow as it advanccs, and entirely recompute the estimate

at each stage. In a recursive filter, the estimate itself serves as a summary of all the past data. It

is only necessalY to modify the estimate if the new data is amves. The recursive estimation

teclmique that introduced in section 4.2 will be discussed in detail in the next chapter whcre the

optimum scalar kalman tilter will be derived and this will be extended in chapter 6 to cover the

vector kalman formulation.
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CHAPTERS

KALMAN FILTERING

5.0 Introduction

TIle recllrsive estimation teclUliques were developed around 1960, most notably by Rudolph E.

Kalman. For tins reason, the processors devised at that time (as well as wide variety of

generalizations and extensions to time-varying statistics, continllous-time signals, nonlinear

dynamics, etc.) are referred to as Kalman filters. 1lUs chapter describes the Kalman filter in

detail and we discuss recursive approach to the filtering and prediction of random processes. For

simplicity we assume the processes to be stationary with time. The random signal and purely

additive noise components are also assumed to be statistically independent [1-4,12,22].

5.1 Scalar Kalman Filter\<l
'J

In this section we generalize the analysis in the following ways:

(1) We deal with randomly time-varying signals or random processes;

(2) The observation (data) equation is changed by a factor c multiplying the signal.

We need it to enable the generalization of results to vector signals;

(3) We derive the optimum estimate for a generalized first-order recursive filter.

Results are arranged in so-called scalar Kalman filter form, suitable for a direct

transformation into vector Kalman filter.
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We assume that the random signal to be estimated can be modelled as a first-order recursive

process driven by zero-mean white noise and can be expressed by the dynamical equation

. x(k) = ax(k-1)+w(k-1) .......... (5.1)

Fig.(5.1) isa block-diagram representation of eqn.(5.1). If we assume the initial sample values

to be zero, i.e. x(k)=O and w(k)=O for k<O. The random drive is specified by

E[w(k»)=O

bj
E[w(k)w(j») = { 0

ow' k=j

If °w2=O, the white noise process will disappear.

.......... (5.2)

. +w(k-l)

white+
noise

System
parameter

x(k-l)

unit delay

X( k) I c
Measurement
(observation)
parameter

y(k)

v(k)

Additive
white
noise

Fig. 5.1 Signal model
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A random process detined by eqn.(5.1) is said to be an autoregressive process of the first order

and the statistical parameter of x(k) are

E[x(k)J = 0

E[x2(k)}= 0/
E[x(k)x(k+OJ = RiO = al'lo/ .......... (5.3)

Here R,W is the autocorrelation of two samples of x(k) and e represents the spacing between

samples, 0/ is the signal variance. The parameter 'a' plays the role of a time constant of the

process. The larger a is (approaching I), the more sluggish the process is, requiring a longer time

interval (in terms of units of sample spacing T) to change significantly from its current value [I].

The widely used observation model for additive noise as shown in fig.(5.2), described by the

equation

y(k) = cx(k)+v(k) .......... (5.4)

where x(k) is the time-varying signal and the factor c represents an observation or

measurement parameter. It will be seen later that this factor is useful for the transformation Of

results to vector signals. Here v(k) represents an independent additive white noise with zero-mean

and variance 0,.".

5.2 Optimum Filter Derivation

We assume the recursive estimator is to be of the form

" Ax(k) = a(k)x(k-I)+b(k)y(k) .......... (5.5)

where the first term represents the weighted prevIOus estimate and the second term is

weighted current data sample. We want to detennine," the 'best' estimate using eqn.(5.5). By
\

'best' we mean the estimate which minimizes the mean-square error. In tlus case we have two
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parameters, a(k) and b(k), which are to be determined from minimization of the mean-square

error

p(k) ~ E[e'(k)]

where e(k)=x(k)-x(k) is the error.

Substituting eqn.(5.5) for x(k), we have

p(k) ~ E[a(k)x(k-1)+b(k)y(k)-x(k)]'

.......... (5.6)

.......... (5.7)

Differentiating with respect to a(k) and b(k) and the results are equated to zero, we have

~p(~{ ~ 2£ [;(k)x(k-1)+ ~k)}(k)-x(k)J ,r(k-I) ~ 0
Ua(A)

and

dp(k) ~ 2£ [a(k)x(k-1)+ ~k)y(k)-x(k)Jy(k) ~ 0
db(k)

. or alternately

E[e(k)x(k-1)] ~ 0

.............. ( 5. 8)

.............. (5.9)

.......... (5.10) .

and E[e(k)y(k)] ~ 0 .......... (5.11)

which are orthogonality equations. A relationship between a(k) and b(k) may be derived using

eqns.(5.1O) and (5.5) such that

A '"E{[a(k)x(k-1)+b(k)y(k)-x(k)]x(k-1)} ~ 0

Adding and subtracting a(k)x(k-1), the above becomes

E{[a(k)[x(k-1)-x(k-l)] + a(k)x(k-1)]x(k-1)} ~ E{[x(k)-b(k)y(k)]~(k-1)}
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Substituting the value for y(k) from eqn.(5.4) gives us

a(k)E[e(k-l)x(k-l) + x(k-l)x(k-l») = E{[x(k)[l-cb(k»)-b(k)v(k»)x(k-l)}

For the optimum estimator the orthogonality principle must hold and if we apply this we get the

following relationships:

AE[e(k-l)x(k-l») = 0

and, E[v(k)x(k-l») = 0

Therefore, the above equation reduces to

,., "a(k)E[x(k-l)x(k-l») = [l-cb(k»)E[x(k)x(k-l»)

From our signal generation model, x(k) = ax(k-l)+w(k-l), and substituting this in above equation

we obtain

k
~ ,., A

a(k)E[x( -l)x(k-l») = [l-cb(k»)E[ax(k-l)x(k-l)+w(k-l)x(k-l»)

Using the eqns.(5.5), (5.4) and (5.1) we can write

,., "
x(k-l) = a(k-l)x(k-2)+acb(k-l )x(k-2)+cb(k-l)w(k-2)+b(k-l )v(k-l)

Since all terms are uncorrelated with w(k-l), averages of all the products of the above with w(k-

1) are zero, so we are now left with

a(k)E[x(k-l)~(k-l») = a[l-cb(k»)E[x(k-l)x(k-l»)

TIus leads to the tinal relationship between a(k) and b(k) giving

a(k) = a[l-cb(k»)
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Substituting this into the eqn.(5.5), we have

~, ~ Ax(k) = ax(k-l)+b(k)[y(k)-acx(k-l)] .........(5.13)

Eqn.(5.13) is the definition of the optimum first-order recursive estimator or scalar Kalman
filter. The first term, ax(k-l), is a prediction of the current sample based on past observations.

TIle second term is a correction term depending on the difference between the new data

sample and the observation estimate, y(k)=ac2(k-l), modified by the variable gain factor b(k),
called the Kalman gain. The form of tins filter is clearly illustrated in fig.(5.3). The aim of

the optimum estimator in fig.(5.3) is to determine an optimum estimate ~ from the received
signal x by \Ising a priori knowledge.

""x(k)
Present
estimate

Correction
+

Time-varying
gain

+y(k)
Present
measurement
(observati~n
of data)

"" ""y(k)=acx(k-l)
Measurement
parameter

"ax(k-l)
system
parameter

Unit
delay

Fig. 5.3 Optimum recursive estimator (filter)
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5.3 Derivation of the Kalman Gain

Having defme the form of the Kalman filter the factor that remains to be derived is the time-

varying Kalman gain term b(k).

From eqn.(5.6) we have

p(k) = E[e2(k)] = E{e(k)[x(k)-x(k)]}

Substituting for x(k) from eqn.(5.5), and using the orthogonality eqns.(5.10) and (5.11) we

obtain

p(k) = -E[e(k)x(k)]

From eqns.(5.11) and (5.4) we have

cE[e(k)x(k)] = -E[e(k)v(k)

Hence the mean-square error is given by .

Ip(k) = - E [e(k) v(k) ]
c

Substituting for e(k)=x(k)-x(k), and using eqn.(5.5), we have

p(k) = ! E [a(k)x(k-l) + li..k)y(k) - x(k)] v(k)
c

But E[x(k-l)v(k)] and Ex(k)v(k)], average to zero. So we are left with

p(k) = ! b(k)E [y(k) v(k)] = ! b(k)a~
c c

.............. (5.14)

so b(k) = cp(k)/o/ ......... (5.15)

Now substituting eqn.(5.13) into the mean-square error equation, we have

p(k) = E{a~(k-l)+b(k)[y(k)-ac~(k-l)]-x(k)}2
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and using eqn.(5.4) and (5.13), we have

p(k) = E{ a[ l-cb(k)]e(k-I)-[1-cb(k)]w(k-I)+b(k)v(k)}'

Since e(k-l), w(k-l) and v(k) are independent of each other, the cross products in the above

expression average to zero. So, we have

where p(k-l) = E[e'(k-l)]

ow' = E[w'(k-l)]

and 0,' = E[v\k)]

From the above quadratic equation of b(k) we have the solution for b(k) such that

b(k){ a~ + c2 [a' p(k-l)+ a~]} = c[a' Ak-l)+ a~] ,

From which we have

.c r a2 p(k-1) + a2
]

b(k) = ---.'::.1 U'

a~ + c2 a~ + c2a2 p(k-1)

where we use p(k)=b(k)o ,'/c.

.............. (5.16)

'Dle other solution of the quadratic equation for b(k) is b(k)=l/c. 1bis solution is neglected

because it is time-invariant as c is constant, while the first solution is time-varying through

p(k-1). It is apparent that b(k) must be calculated first from a knowledge of p(k-1) and then

p(k) is calculated from

1 2p(k) = - a v b(k)
c
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i.e., P(k) and b(k) are directly related. Three equations given as 5.13, 5.16 and 5.17 constitute a

complete computational algorithm. For the purpose of extending these results to vector signals

in Ihe next chapter, we arrange Ihese equations and write Ihem below as equations 5.18 to 5.21.

In this arrangement eqns.(5.16) and (5.17) are now written as three equations, 5.19 to 5.21,

because we have introduced a new quantity, p,Ck) as it has an important role and will be

discussed later.

Recursive filter estimator:
x(lC)=aX(k-1)+b(k) [y(k)-acX(k-1) I

Filter gain:
b (k) =cPI (k) [C2pl (k) +ov2]-1

where PI(k)=a2p (k-1 )+ow2

Mean-square error:

(5.18)

(5.19)
(5.20)

(5.21)

TIle above set of equations constitute the scalar Kalman filter for the signal model given by

eqn.(5.1) and the measurement model given by eqn.(5.4).

5.4. Scalar Kalman Predictor

In the previous section we were concerned with Ihe estimation of Ihe current value of a random

signal in additive white noise. But in many real life situations, it is often required, particularly

in control systems, to predict ahead, if possible. Depending on how many steps of unit time ahead

we want to predict, we distinguish one-step, two-step, 01' m-step prediction. Obviously Ihe further

in the future we want to predict, the larger ihe prediction errorwill be. We deal here only wilh

one-step prediction, with the signal model as described by the eqn. (5.1) and the observation
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(or measurement) model as described by the eqn.(5.4). We would like to know the 'best' linear

estimate ofx(k+l), i.e. the signal at time k+ 1, given the data and previO\L~estimate at time k. We

denote tlus one-step prediction estimate as ~(k+ 11k). By 'best' we mean the predictor thai

nUlumizes the mean-square prediction error

p(k+ 11k) = E[e"(k+ Ilk))

......... ( 5. 22)

= E[x(k+I..x(k+llk»)"

'Ilus is comparable to the mean-square error p(k)=E[x(k)..x(k))" in the filtering problem. By

extension of the previous discussion on filtering I it is apparent that the one-step linear predictor

will be of the form

. ,r(k+llk) = ,x(k) i(klk-I)+ (3(k)y(k) .............. (5.23)

The parameter a(k) and P(k) are detemlined 'from the nUlumization of the mean-square
I

prediction error given by eqn.(5.22) by using t1teappropriate orthogonality relations similar to
I

those derived in the previous section

E[e(k+ Ilk)x(k Ik-I») = 0

E[e(k+llk)y(k~ = 0

......... (5.24)

......... (5.25)

The relationslup between a(k) and P(k) is detemUned using a similar way to the relationship

between a(k) and b(k) derived for the filtering case such that

a(k) = a - c (3(k)

Substituting this result into the prediction equation, we have

.r(k+Ilk) = a ,r(klk-I) + /3(k) [y(k) - ci(llk-I)]
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~I

The variable gain term l3(k) is detemlined, together with p(k+ Ilk) from eqns.(5.25) and (5.22),

using a similar method as in the filtering case and we obtain

a 2 2p(k+llk) = - avf3(k) + aO'c
.............. ( 5. 28)

and, f3(k) =
acp(klk-I)

c2 p(klk-l) + a~
.............. (5.29)

From eqn.(5.29) it is obvious that we can calculate l3(k) from the previous mean-square

prediction error and then eqn.«5.28) gives us the mean-square prediction error for p(k+ Ilk).

Again, the optimlUn processor consists of simply multiplying the previous estimate by a, and

then adding a weighted correction term. This correction term consists of the difference

between the new data sample y(k) and the previou~ prediction estimate c~(k Ik-l) directly. In

the filtering problem considered in section 5.3, the cOITection term involved y(k) minus a

times the previous estimate.

If we assume that the random driving force in eqn.(5.1) is zero, the signal evolves according

to the equation x(k)=ax(k-l). Therefore, given an estimate ~(k) at tinle k, it seems reasonable

to predict the estimate at time k+ I as

'X(k+11k) = aX(k)

Using the equations 5.13 and 5.30 we can established the following relationship

......... ( 5. 30)

f3(k) = al:<.k) .............. (5.31)

i.e. the two gain factors b(k) and l3(k) are actually related by the parameter a [2].

Tlie optimlUll one-step predictor is shown in fig.(5.4), and optimum filtering and prediction

simultaneously are shown in fig.(5.5).
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+

"x(k+llk)
=a~(k-l Ik-l)

Current estimate
at time k

"x(k+ljk)
Predicted value
at time k+l

Fig. 5.5

5.5 Summary

Filtering and prediction simultaneously

In this chapter we have developed the scalar Kalman filter. The Kalman filter can be thought

of as an estimator that produces three types of outputs given a noisy measurement sequence

and the associated models:

(1) as a state estimator or reconstructor; i.e. it reconstructs estimates of the state x(k)
from noisy measurements y(k);

(2) as a measurement filter that on input accepts the noisy sequence y(k), and on the
. output produces a filtered measurement sequence x(k);

(3) as a whitening filter that accepts noisy correlated measurements y(k) and produces
uncorrelated or white equivalent measurements.

TIus chapter completes the various derivations of the Kalman filter. We surnmatized the filtering

and prediction equations for the purpose of direct transfolmation into vector equations. In the next

chapter we shall readily extend this results to include the estimation of time-varying random

signals by using vector notation, that will enable us to consider simultaneous recursive estimation

of several signals.
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CHAPTER 6

OPTIMUM ESTIMATION OF VECTOR SIGNALS

6.0 Introduction

We have dealt so far with scalar random signals generated by a first-order autoregressive process.

In chapter 5 we have optimized the first-order recursive filter and have got a set of equations

referred to as the scalar Kalman filter. But the signal processing problems require simultaneous

processing of several different signals and this chapter concern with such vector or

multidimensional signals. It is shown in section 6.1 how vector equations are formulated in the

case of simultaneous estimation of a nwnber of sig,nals. In section 6.2, the estimation proi;lcm

for multidimensional systems is fornlulated in temls of vectors and matrices. Since there is an

equivalence between scalar and matrix operations, all results in chapter 5 for scalar signals are

transfomled into vector and matrix equations in sections 6.3 and 6.4 [1-4,10,14,20,22].

6.1 Signal Vector

With the extension of the signal model to vector signals to include simultaneous estimation of

several signals, we are now in a position to extend the scalar Kalman filter for the estimation of

multidimensional signals. It is shown below that these multidimensional signals are conveniently

represented by vector notation. In place of simple gain parameters we then have matrix operations

on vector [1-3].

To demonstrate the formation of vector equations we consider that we have q independent signals

to be estimated or predicted simultaneously. We denote samples of these signals at time k, as

X1(k),x2(k), ...,xq(k). Again we a~sume that each one is generated by its own first-order
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autoregressive process. The jth signal is then fOlmed according to the equation

.......... (6.1)

where j=I,2, ...,q

Here each of the wj processes is assumed to be white, zero-mean and independent of all

others. We can define q-dimensional vectors made up of the q signals and q white noise

driving processes as .

x(k) = and w(k) =
WI (k)
Wz (k)

•••••.••• (6.2)

The q eqns.(6.1) can be written as the first-order vector equation (target state equation) in terms

. of these defined vectors such that

x(k) = Ax(k-l) + w(k-l) .......... (6.3)

where x(k), x(k-l) and w(k-l) are (qxl) column vectors and A is the state transition (qxq)

matrix. In tlus case A matrix is diagonal and given by

at 0 0
0 aZ 0

A = . • . • • • • • • • (6 .4)

0 aq
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6.2 Duta Vector

"nle Kalman lilter, we consider to discuss require a model for the measurement process of the

vector signal in addition to the model for the generation of the signal which is mentioned in the

previous section. Assuming that in estimating the signal vector x(k) we made r simultaneous

noisy measurements at time k. These measurement samples are labelled y,(k)'Y2(k), ...,y,(k). So

we have the following set of data.

YI(k) = clxl(k) + vl(k)

Y2(k)= c2x,(k) + v,(k)
......... (6.5)

Y,(k) = c,x,(k) + v,(k)

where vj(k) terms represent additive noise and C" ... ,C, are some measurement parameters which

are similar to c introduced in eqn.(5.4). This set of equations can be put into vector form by

delining r-component vectors y(k) and v(k). In tenus of the previously defined q-component

signal vee tor x(k), we then have the data vector (measurement equation):

••

y(k) = Cx(k) + v(k)

where y(k), x(k) and v(k) are (rxl) colll1lUlvectors,

this case C is (for r<q) given by
q,

.......... (6.6)

and C is an (rxq) observation matrix. In

Cl 0 0 0

c= r~
0 Cz

.••••••••• (6.7)

0 0cr

"nle block diagram for the system and measurements in vector forms is the same as for the scalar

case, figs.(5.l) and (5.2) respectively. But only the notation changes to vectors, and the system

and obselvation parameters become matrices as represented in the, figs.(6.l) and (6.2).
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Fig. 6.1 System model

6.3 Vector Problem Formul ation

Fig. 6.2 Measurement model

.......... (6.8)

Here we look for the simultaneous estimates (filtered or predicted) of q-signal components. We

have from the discussion in section 6.1, a signal vector x(k) obeying a known first-order vector

dynamical equation .

x(k+1) = Ax(k) + w(k)

which is to be extracted from a noisy measurement vector y(k)

y(k) = Cx(k) + v(k) (6.9)

TIle problem is how to form'i(k), the 'best' linear estimate (filtered value) of x(k) and its 'best'

predicted value x(k Ik-1). By 'best' we now mean estimators that minimize the mean-square error

of each signal component simultaneously. In the fiJiering operation each mean-square error

........(6.10)
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is to be minimized. For the multidimensional signal, it is required to reformulate all the scalar

Kalman equations into vector fOlTIl and apply a matrix minimization procedure to obtain the

optimum solutions. Here we shall not carry out the derivations of the optimum estimators. Since

we already have the solutions for the one-dimensional (scalar) cases we can extend them to the

multidimensional systems, using the equivalence of scalar and matrix operations given in Table

6.1 in which the subscript T stands for transpose of a matrix, and -1 for the inverse of a matrix.

Table 6.1 Transformation of scalar to matrix

Scalar ~ Matrix

a+b A+B

ab AB

lI(a+b) (A+Br'

a2b ABAT

We have already seen that in transition from the single signal to vector signal, the system

parameter a changed into the system mal1ix A, and the data codlicient c changed into the

observation matlix C. \Ve now con~ider the transition of other relevant quantities.

TIle transition from the observation noise variance to the obselvation noise covariance matrix

(conilllOn variance of a number of signals) is wlilten as

....(6.11)

Similarly, for the system noise, we have

.... (6.12)

'where Q(k) represents the system noise covariance matrix. If there is no correlation between noise

processes, the off-diagonal telTI1Sare zero.
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The transition from the mean-square error for the single signal to the error covariance matrix is

written as

p(k) = pl,1(k) = E[e/(k»)-.P(k) = [e(k)eT(k») ....(6.13)

TIle diagonal tenns of the error covariance matrix are the individual mean-square errors as

formulated by eqn.(6.10).

6.4 Vector Kalman Filter

We now transform the scalar Kalman filter algoritlun, given by equations 5.18 to 5.21, into tile

corresponding vector Kalman filter. With reference to these equations and the discussions in

previous sections we can write directly tile vector.3'and matrix equations in the following

tabulated foml:

Estimator:
~ A "Ax(k) = AX(k-l) + K(k)[y(k)-CAx(k-1)]

Filter gain:

K(k) = P[(k)CT[CP[(k)CT + R(k) r[
where PI(k) = AP(k-1)AT + Q(k-1)

Error covariance matrix:

• • • • • ( 6 • 14)

••••• (6.15)

• • • • • ( 6 • 16)

••••• (6.17)

11le above set of equatiolL~ constitute the vector Kalman filter for the model described by

the state eqn.(6.8) and measurement eqn.(6.9). Here we have used K(k) in place of b(k),

because tllis is a commonly us~d notation for the gain matrix in tile Kalman filter. Other

quantities have been arranged, witlun the rules of the scalar-matrix equivalence Table 6.1, to

obtain the standard toml of Kalman equations used. In eqn.(6.16), we have used Q(k-1) since

ow' in fact represents E[w\k-1»). For time-varying systems and time-varying observations,

matrices A and C are obviously nmctions of time.
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One of the most significant feaiures of the Kalman filter is its recursive form property that makes

it extremely useful in processing measurements to obtain the optimum estimate, utilizing a digital

computer. The processing of signal by using Kalman filter, it is not necessary to store any

measurement data. The measurement will be processed automatically as the new data is available.

But it is necessary to store 'X(k-l) in proceeding from time (k-l) to time k. Moreover, the physical

model must be defined (A,C), and the statistics of the random processes must be known (Q,R).

TIle block diagram, fig.(6.3), is the representation of eqn.(6.14). The information flow in the fJlter

can be explained by this figure. If we assume that 'X(k-I) is known for some k and we want to

determine x(k), given y(k). The computational cycle would proceed as follows:

(I) the estimate x(k-I) is premultiplied by the system matrix A and propagated forward,

denoted as 'X(k);
(2) Ax'(k)is premultiplied by the observation matrix C giving y(k) which is subtracted from

the actual measurement y(k) to obtain the error e(k);

(3) e(k) is premultiplied by the gain matrix K(k) and the result is added to'X(k) to givex(k);

(4) ~(k) is stored until the time of the next measurement, when the cycle is repeated.

111efilter operates in a 'predict-correct' fashion, i.e. the correction teml K(k)e(k) is added to the

predicted estimate ~k) to determine the ftItered estimate. The correction term involves the

Kalman gain matrix K(k).

It is apparent that the ftIter shown in fig.(6.3) consists of the model of the dynamic process,

which performs the function of prediction, and a feedback correction scheme in which the product

of Kalman gain and the error term is applied to the model as a forcing fimction that brings the

estimate to the steady state condition after some iteration. Since the gain matrix K(k) does not

-depend at all on the measurements, it can be calculated before the estimation is carried out. This

approach requires storing the calculated vectors for each recursion and feeding them out as

needed. Equations 6.15 to 6.17 define the algoritlilll for the recursive computation of the filter

gain matrix K(k). At the same time, we obtain values for PI(k) and P(k), i.e. the variances of the

components of the prediction and filtering errors respectively. It is obvious that the gain teml is

updated recursively as the estimation proceeds and hence there is no need to store all gain values,

i.e. the previous value is the only one required.
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Fig. 6.3 Computational steps in Kalman filter
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Fig.(6.4) represents the subroutine computational diagram and the computational cycle would

proceed as follows:

(I) PI(k) is computed from the given value P(k-l), Q(k-l), A using eqn.(6.16);

(2) K(k) is obtained by substituting P,(k), R(k) alld C into eqn.(6.15) which is used in step

three of the filter computation;

(3) P(k) is determined by substituting P,(k), K(k) and C into eqn.(6.17) which is stored until

the time of the next measurement, when the cycle is repeated.

For better understanding we can arrange the Kalman filter equations 6.14 to 6.17 as

(1) Prediction

~(klk-I) ~ Ax(k-ljk-l)

P(k Ik-l) ~ AP(k-1Ik-I)AT + Q(k-l)

(2) Updating (or correction)

x(k Ik) ~ x(k Ik-l) + K(k)[y(k)-cX(k Ik-l)]

P(k Ik) ~ P(k Ik-l) - K(k)CP(k Ik-l)

K(k) ~ P(k Ik-l)CT[CP(k jk-l)CT + R(k)r'

...... (6.18)

...... (6.19)

...... (6.20)

......(6.21)

...... (6.22)

where P(k Ik-l) and P(k Ik) correspond to P,(k) and P(k) respectively in the Kalman filter

equations 6.15 to 6.17. The first stage is prediction based on the state eqn.(6.8), and the

second stage is the updating or correction based on the measurement eqn.(6.9). Bolll stages

are illustrated in fig.(6.5).
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6,5 Vector Kalman Pl'edictor

We are now in a position to transfoml the scalar Kalman predictor algorithm, given by equations

5.32 to 5.34, into the corresponding vector Kalman predictor. With reference to these equation~

and the discussions in sections 6.1 to 6.4 we obtain the following vector and matrix set of

equations.

Predictor equation:

x(k+llk) = AX(klk-l) + G(k)[y(k)-Cx(klk-l)] " ••.. (6.23)

Predictor gain:

G(k) = AP(k Ik-l )CT[CP(k Ik-l )CT + R(k) rl

Prediction mean-square error:

P(k+l jk) = [A-G(k)C]P(klk-l)AT + Q(k)

•••• (6.24)

•••• (6.25)

1hese equations constitute the vector Kalman prt'dictor for the model described earlier by the

state equations 6.8 and 6,9. We have introduced here G(k) as the predictor gain matrix in place

of the prcvious timc-valying scalar gain P (k) in eqn.( 5.32). Othcr quantities are the same as used

in the previous section.

A relationship cOITespond. to the scalar relationship p(k)=ab(k) mentioned III section 5.4,

eqn.(S.3l) can be used directly as

G (xl = A K(k) (6.26)

We would calculate predictor gain matrix G(k) from eqn.(6.26). since we have fOlmd P(k Ik-l)

and hence K(k) from veclor Kalman filter equations 6.19, 6.21 and 6.22 without using eqn.(6.24).

Becall~e it is more straight fOlward and less iterations are required in tills ease and hence, in

developing computer program, it was actually done.
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6.6 Summary

Here the 1irst-order Kalman filter equations specified in chapter 5, are modified to take higher-

order filters into account by replacing the scalars by vectors. Filtering, prediction and smoothing

problems have been introduced in tlus chapter in the framework of estimation theory as applied

to time-varying random variabks. The theOlY developed in chapters 5 and 6 are of the same form

and will bc extcnsively applied in the next chapter, where the tracking functions are presented.

The main results pertailung to the Kalman tilter are :

(1) the filter has a feedback recursive structure that embedding the state model of the process,

(2) a central role is played by the Kalman gain, whose value depends on the model

parameters and the prediction covariance,

(3) both the filter error covariance and the Kalman gain can be computed independently of

the measurements,

(4) the unpredictable component of tile measurements is a zero-mean wlute process,

(5) tlle convergence of the filter to a steady state solution is conditioned to the structural

properties of the model (controllability, observability).
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CHAPTER 7

KALMAN FILTER FORMULATION FOR RADAR
TRACKING

7.0 Introduction

In the previous chapters we have developed the Kalman filter, a signal estimation technique. Now

we show how one might apply the recursive teclmiques to the tracking fmlction of an air traffic

control radar. In chapter 2 we discussed the detection fUllction of radars and in general discussion

we point out that as the radars rotate, they continnously send out high-frequency pulses of

electromagnetic energy into space. Pulses intercepting an aircraft in space are reflected back to'

the radar. The rehml pulses with noise mixed in must then be processed to show the presence of

the aircraft. The time delay between transmission and reception of the pulses provides an estimate

of aircraft range, while the location of the antelUla beam at the time of detection provides the

aircraft bearing (a7imuth). A short range radar rotates typically at a scan rate of 15 rpm, while

longer range radars rotate at 6 rpm. Therefore, we have for these cases new range and bearing

estimates every 4 sec and every 10 sec respectively. TlJis means Illat tracking filters are updated

at such an interval denoted by T.

7.1 Radar Signal Processing

We cOI1~idera radar tracking problem that a velJicle being tracked is at range R+p(k) at time k,

and at range R+p(k+ 1) at time k+ 1, T seconds later. We use l' to represent the spacing between

samples made one scan apalt. l1ui average range is denoted by R, and p(k), p(k+l) represent

deviations from the avcrage. We are interested in estimating Illese deviations, which are asswned

to be statistically independcnt. To a first approximation, if the vehicle is travelling at a radial

velocily p(k) and T is not too large,
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p(l+l)~ p(k) + T p(k)

which is the range equation.

Similarly, if we consider the acceleration u(k) we have

T u(k)~ p(kl1)- p(k)

.................... (7.1)

.................... (7.2)

which is the acceleration equation. Assuming that u(k) is zero-mean and uncorrelated from

interval to interval, i.e. E(u(k+ l)u(k)] = 0, but it has known variance E(u\k)] = o}. Such

accelerations might be caused by sudden wind gusts or short-telm irregularities in engine thrust.

TIle quantity uJ(k) = Tu(k) is also a white noise process, and we have in place of eqn.(7.2) the

following one

.................... (7.3)

For the radar tracking problem, the signals to be estimated are the range p(k), the radial

velocity p(k), the bearing (azimuth) 6(k), and the angular velocity 6(k). So x(k) in a two-

dimensional plane is the four component vector

[

~(k) ]p(k)
x(k) = ~(k)

8(k)

•••••••••• (7.4)

however, measurements of only range and bearing are made in the presence of additive noise

vJ(k) and v2(k) respectively. Here for the matrix C of eqn.(6.7), we have q=4 and r=2, and using

eqn.(7.l), the velocities are found in terms of these quantities. The matrix C is given here by

o

o

o

1
•••••••••• (7.5)

Now we have a four component signal vector x(k) with states x/k)=p(k) for the range,

x,(k)=p(k) for the radial velocity, x,(k)=6(k) for the bearing, and xik)=G(k) for the bearing

rate (or angular velocity). The noise terms uJ(k) and u,(k) represent the change in radial

92



velocity and bearing rate respectively over interval T. Again, ul(k) and u,(k) are random with
zero-mean and uncorrelated both with each other and individually from one interval to other.

11lerefore, we have the following system equation:

[Xllk"l
J [l T 0 f] ['Ilk) ] [ U~lk)]xZ(k+l ) 1 0 Xz (k)

X3(k+l ) = 0 1 X3(k) + ••• (7.6)
X4(k+ 1 ) 0 0 x4 (k) Uo (k)•

'------v---.-! '-------y ___ J
)

V v

x(k+l) A x(k) w(k)

Since the radar sensors provide the nOIsy estimates of the range p(k)=x[(k), and bearing

e(k)~,(k) at time intervals T. At time k, the two sensor outputs are

y,(k) = xJ(k)+v2(k)

111erefore,the data vector can be written as

o 0
o 1[ Hi~i] = [ ;

"----v----J l~-_-V

y(k) C

••••(7 .7)

According to our assumption the additive noise, v(k), is to be gaussian with zero-mean and

variances 0 p2(k)and 0 62(k).Upto this we have established vector equations for the system model

given by eqn.(7.6), and data model given by eqn.(7.7). Now we have to formulate noise

covariance matrices Q for the system, and R for the measurement model. For the system noise

covaria.ncematrix, Q defined in eqn.(6.12), we have
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o
o
o
o ~?10"2

......I7 .8)

where 0/ = E(uJ') and 0/ = E(u/') are the variances of T times the radial and angular

acceleration respectively.

And for the observation noise covariance matrix, R using eqn.(6.11), we have

•••••• •(7 .9)

Specific values must be substituted for the variances 0J2 and 0/, and also for o~(k) and
oGi(k) in order to define the Kalman filter numerically. To simplifY, we assume that the
probability density function (p.d.f.) of the acceleration in either direction (p or 6) to be of the

form of fig.(7.1).

flU)

-M o M
U

Fig~7.1 Typical probability distribution of ulk)
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.,

,
Three impulse functiQns representing discreteprQbabilities at rM and 0 acceleratiQn have been
superimpQsed to' represent,)hat there is a prQbability P2 that the aircraft will prQceed at CQnstant
. radial and angular velQcities, while there is a probability PI that its acceleratiQn (deceleratiQn) in

either directiQn is at the maximum value M, NQWwe can express the height Qf the unifQrm
distributiQn as P(u) = (1-2PcP,)/2M and the variance Qf the randQm variable uis given by

""""" """" ,,(7, 10)

TIle variances in eqn,(7,8) are then given by

and

"""""'" """,(7, 11)

"'" "'" """'" .(7.12)

TIle parameter O'u represents the linear acceleratiQn, TherefQre, 0'[ is related to' the change in
lineal velQcity and 02 is related to the change in angulal velQcity [1,2,10].

7.2 InitialiZation of Kalman Filter

TO' stalt Kalman prQcessing we have to' initialize the gain matrix K(k). TO' dO' this the errQr
cQvariance matrix P(k) has to' be specified in SQme way. A reasQnable initializatiQn can be

established using twO'measurements, range and bearing, at times k=1 and k=2. The first set Qf
these twO'measurements, x(l) (k=I), can be used to' estimate range and bearing but nQt range
rate Qr bearing rate (unless we arbitrarily take these zerQ). The secQnd pair Qf measurements

x(2) (k=2) prQvideD the additiQnal twO'numbers required to' make independent estimates Qf the
fQur parameters Qf eqn.(7.4). TherefQre the filter start Qnly after Qbtaining the first twO'
measurements x(l) and x(2). Using these, we can prQduce the fQllQwing fQur-cQmpQnent

signal vectQr estimates ~(2):

"- "Xl (2 ) = P( 2) = Yl (2 )

" ~ (2) I/T[Yl(2)-Yl(1)]XZ( 2) = =
"x(2) = ••••.(7.13)" "x3 (2 ) = 9 (2) = YZ(2 ),., '-' I/T[YZ(2)-YZ(1))x4 (2 ) = 9(2) =
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We can use the general expression for P(k), eqn.(6.13) to calculate P(2) (for k=2), and therefore

P(2) = E{[x(2)-x(2)1[x(2)-~(2)lT} (7.14)

We obtain~(2) from eqn.(7.13), and using equations 7.6 and 7.7 for x(2),we have the following

results:

"x(2 )-x(2) =

-VI (2 )

ul (l) -(VI (2)-VI (1) )/T

-v2(2 )

U2(l) -(V2(2)-V2(1»/T

• • • • • • ( 7 • 1 5 )

which is a (4xl) colunUl vector.

Specifically, in tIris case P(2) is a (4x4) matrix given by

P(2) =

PI4

•••••• (7.16)

Taking into account the independence of noise sources u and v, and also the independence

between individual noise samples, we obtain the following simplified form of P(2)

PH PI2 0 0

P21 Pll 0 0
P(2) = ••••••• (7.17)

0 0 P33 P34

0 0 P43 P44
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where Pll = 0 p2

Pl2 = P21 = 0 p2/T

P22 = 20 p2/'[2+0 ,2

P33 = 002

P34 = P43 = Oel/T

P" = 2062/1'2+0/

....... (7.18)

We now present. a numerical example that explain clearly how to initialize the Kalman filter. We

take for range R=160 km, scan time 1'=15 s, and maximum acceleration M=3.27 mls2• The two

parameters P, and P2, the probabilities of maximum and zero acceleration are 0.1 and 0.3

respectively. Let the r.m.s. noise Op in the range sensor be equivalent to 103 m and the r.m.s.

uoise 0 e in the bearing sensor be 0.017 rad. 111ese two figures define numerically the noise

covariance matrix R. From these numerical values we can calculate noise variances in the Q

matrix, eqn.(7.8), as 0/= 882.1643 and 0/= 3.446xlO.8• Therefore the initial value of the

estimation covariance mahix P(2), or in t.he altemative notation P(212), can be obtained from

eqn.(7.17) as

106 6.67Xl04 0 0

6.67xl04 9.0xl03 0 0
p(2f2) = (7.19)

0 0 2.89 Oxl 0-4 1.927XI0-5

0 0 1.927xl0-5 2. 603xl 0-6

Since it.is error matIix at k=2 , we could t.ry to use it to calculate the predictor gain G(3) at k=3,

whi ch is given by

G(3) = AP(312)CT[CP(312)CT+R]"! ........ (7.20)

where all quantities (A,C,R) are known except P(312). We might try to calculate P(312) using
eqn.(6.25) as

P(312) = [A-G(2)C]P(211)AT+Q
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but G(2) and P(2ll) are lIot known. Since eqn.(6.25) has been derived from eqns.(6.l6) and

(6.17), we can use eqn.(6.l6) instead of eqn.(6.25) as

P(klk-l) = AP(k-llk-l)AT+Q

For k=3 the above equation becomes

........ (7.21)

........ (7.22)

where P(2t2) is known from eqn.(7.l9). Using the given numerical values we obtain

5. 2x1 06 2.13X105 0 0

2.13X105 1. 065x1 04 0 0
p(312) = ••• (7.23)

0 0 1.453X10-3 5.832X10-5

0 0 5. 832x1 0-5 2. 638x1 0-6

111ediagonal elements represent the prediction errors. The first and third diagonal elenlents are

mean-square range and bearing prediction errors respectively for k=3.

Using eqn.(7.23) in eqn.(7.20) we can calculate the predictor gain G(3) and the result is

G(3) =

1.355

3.44x10-2

o
o

o
o

1.336

3. 35x1 0-2

••••• (7.24)

Now we have to determine P(313) using eqn.(6.l7) which gives (for k=3)

P(313) = P(3 12)-K(3)CP(3 12)

where K(3)=K'G(3)

'Dle process is now repeated by finding P(413), G(4) etc. [1-4].
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7.3 Results of Computer Calculations

Results of computer calculations for the data obtained from the radar of Zia International

Airport have been introduced in the following pages. In addition, a set of curves have been

produced for different values of the parameters used in the model as the characteristics of the

processor. The resulting performance figures, that are presented here, are the mean-square range
prediction error, mean-square bearing prediction error and gain setting of Kalinan filter.
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Given, T = 4.000 sec, M = 3.270 m/s2

Pj = 0.100 , pi = 0.300
R = 160.000 km , 0p = 1000.000 m
°e = 0.017 rad

Step no. Kalman Mean-square range Mean square bearing
gain prediction errror pred ict.ion error

k Kll(k) Pll(k+1Ik) P33 (k+ll k)

3 0.833361 2334783.057548 0.000674
4 0.700130 1502257.761495 0,000434
5 0.600361 1103420.073580 0.000318
6 0.524584 871645.459881 0.000251
7 0.465711 721267.772347 0.000207
8 0.4]9033 616619.282450 0.000176 '.9 0.381425 540281.207764 0.000153

10 0.350768 482763.431677 0.000136
11 0.325584 438461.296653 0.000122
12 0.304813 403849.063034 0.000110
13 0.287673 376589.344683 0.000101
14 0.273567 355059.346466 0.000094
15 0.262025 338083.377154 0.000087
16 0.252662 324774.862234 0,000082
17 0.245155 314440.106693 0.000077
18 0.239220 306518.722382 0.000073
19 0.234607 300546.699869 0.000069
20 0.231093 296133.755819 0.000066
21 0.228475 292949.616994 0.0000.63
22 0.226575 290715.651157 0.000061
23 0.225236 289199.384648 0.000059
24 0.224325 288210.270751 0.000057
25 0.223729 287595.721492 0.000056
26 0.223359 287236.924260 0.000054
27 0.223142 287044.334651 0.000053
28 0.223026 286952.968656 0.000052
29 0.222971 286917.725347 0.000052
30 0.222950 286908.983994 0.000051
31 0.222944 .286908.672264 0.000050
32 0.222944 286906.927607 0.000050
33 0.222943 286899.397291 0.000049
34 0.222938 286885.158896 0.000049
35 0.222930 286865.198823 0.000049
36 0.222918 286841.361794 0.000048
37 0.222903 286815.675952 0.000048
38 0.222888 286789.961572 0.000048
39 0.222872 286765.641906 0.000048
40 0.222858 286743.688716 0.000048
41 0.222844 286724.649843 0.000048
42 0.222833 .286708.719978 0.000048
43 0.222823 286695.827788 0.000048
44 0.222816 286685.722185 0.000048
45 0.222809 286678.047934 0.000048
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Given, T = 4.000 sec, M = 3.270 m/s2
PI = 0.100 , P2 = 0.300
R = 370.000 .km ., 0p = 1200.000 m
°e = 0.017 rad

Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error

Kll(k) Pll(k+1Ik) P33 (k+11 k)

3 0.833353 3361449.747010 0.000674
4 0.700091 2162257.938~46 0.000434
5 0.600251 1587420.857255 0.000318
6 0.524348 1252981.390462 0.000251
7 0.465277 1035560.615671 0.000206.
8 0.418314 883779.226951 0.000176
9 O. 38032 772540.351712 0.000153

10 0.349164 688170.202824 0.000135
11 0.323362 622597.712344 0.000121
12 0.301851 570754.856727 0.000110
13 0.283851 529295.650584 0.000100
14 0.268774 495914.698435 0.000092
15 0.256166 468961.839168 0.000086
16 0.245663 447213.284383 0.000080
17 0.236970 429730.396082 0.000075
18 0.229835 415770.101811 0.000070
19 0.224042 404727.122310 0.000067
20 0.219397 396096.531088 0.000063
21 0.215728 389449.633746 0.000060
22 0.212878 384418.633912 0.000057
23 0.210707 380686.994291 0.000055
24 0.209090 377983.305061 0.000053
25 0.207914 376077.100833 0.000050
26 0.207082 374775.552309 0.000049
27 0.206513 373920.354370 0.000047
28 0.206139 373384.453008 0.000045
29 0.205905 373068.497917 0.000044
30 0.205766 372897.073406 0.000043
31 0.205691 372814.852189 0.000042
32 0.205655 372782.847001 0.000040
33 0.205641 372774.921156 0.000039
34 0.205638 372774.679680 0.000039
35 0.205638 372772.813233 0;000038
36 0.205637 372764.919505 0.000037
37 0.205633 372749.787709 0.000036
38 0.205627 372728.104278 0.000036
39 0.205617 372701.521583 0.000035
40 0.205606 372672.024912 0.000035
41 0.205593 372641.533556 0.000034
42 0.205579 372611.677263 0.000034
43 0.205566 372583.697429 0.000033
44 0.205554 372558.431537 0.000033
45 0.205543 372536.348494 0.000033
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Given, T = 4.000 sec, M = 30.000 m/sZ

PI = 0.100 , Pz = 0.300
R = 160.000 km • 0p = 1000.000 m
°6 = 0.017 rad

Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error

k Kll(k) Pll(k+llk) .P33(k+ 1 Ik)
3 0.835647 2454838.683076 0.000679
4 0.710551 1686139.746469 0.000441
5 0.627719 1371531.455742 0.000329
6 0.578332 1236391.391102 0.000267
7 0.552851 1183744.982860 0.000229
8 0.542071 1167342.522005 0.000205
9 0.538605 1163997.844967 0.000190

10 0.537892 1163795.050576 0.000181
11 0.537849 1163719.361654 0.000176
12 0.537833 1163410.287183 0.000173
13 0.537767 1163078.734395 0.000172
14 0.537696 1162856.716082 0.000171
15 0.537649 1162748.001667 .0.000171
16 0.537625 1162708.337924 0.000171
17 0.537617 1162698.451156 0.000171
18 0.537615 1162697.317494 0.000171
19 0.537614 1162697.305987 0.000171
20 0.537614 1162696.911622 0.000171
21 0.537614 1162696.357132 0.000171
22 0.537614 1162695.932799 0.000171
23 0.537614 1162695.702828 0.000171
24 0.537614 1162695.609613 0.000171
25 0.537614 1162695.582586 0.000171
26 0.537614 1162695.578130 0.000171
27 0.537614 1162695.578059 0.000171
28 0.537614 1162695.577650 0.000171
29 0.537614 1162695.576781 0.000171
30 0.537614 1162695.576001 0.000171
31 0.-537614 1162695.575531 - 0.000171
32 0.537614 1162695.575320 0.000171
33 0.537614 1162695.575251 0.000171
34 0.537614 1162695.575236 0.000171
35 0.537614 1162695.575235 0.000171
36 0.537614 1162695.575235 0.000171
37 0.537614 1162695.575234 0.000171
38 0.537614 1162695.575232 0.000171
39 0.537614 1162695.575231 0.000171
40 0.537614 1162695.575231 0.000171
41 0.537614 1162695.575231 0.000171
42 0.537614 1162695.575231 0.000171
43 0.537614 1162695.575231 0.000171
44 0.537614 1162695.575231 0.000171
45 0.537614 1162695.575231 0.000171
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Given, T = 4.000 sec, M = 30.000 m/s2
PI = 0.100 , P2 = 0.300
R = 370.000 km , 0p = 1000.000 m
°e = 0.017 rad

Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error

k KI1(k) Pll(k+llk) P33(k+ll k)

3 0.835647 2454838.683076 0.000675
4 0.710551 1686139.746469 0.000435
5 0.627719 1371531.45.5742 0.000320
6 0.578332 1236391.391102 0.000254
7 0.552851 1183744.982860 0.000211
8 0.542071 1167342.522005 0.000181
9 0.538605 1163997.844967 0.000160

10 0.537892 1163795.050576 0.000145
11 0.537849 1163719.361654 0.000133
12 0.537833 1163410.287183 0.000124
13 0.537767 1163078.734395 0.000118
14 0.537696 1162856.716082 0.000113
15 0.537649 1162748.001667 0.000110
16 0.537625 1162708.337924 0.000107
17 0.537617 1162698.451156 0.000106
18 0.537615 1162697.317494 0.000105
19 0.537614 1162697.305987 0.000104
20 0.537614 1162696.911622 0.000103
21 0.537614 1162696.357132 0.000103
22 0.537614 1162695.932799 0.000103
23 0.537614 1162695.702828 0.000103
24 0.537614 1162695.609613 0.000103
25 0.537614 1162695.582586 0.000103
26 0.537614 1162695.578130 0.000103
27 0.537614 1162695.578059 0.000103
28 0.537614 1162695.577650 0.000103
29 0.537614 1162695.576781 0.000103
30 0.537614 1162695.576001 0.000103
31 0.537614 1162695.575531 0.000103
32 0.537614 1162695.575320 0.000103
33 0.537614 1162695.575251 0.000103
34 0.537614 1162695.575236 0.000103
35 0.537614 1162695.575235 0.000103
36 0.537614 1162695.575235 0.000103
37 0.537614 1162695.575234 0.000103
38 0.537614 1162695.575232 0.000103
39 0.537614 1162695.575231 0.000103
40 0.537614 1162695.575231 0.000103
41 0.537614 1162695.575231 0.000103
42 0.537614 1162695.575231 0.000103
43 0.537614 1162695.575231 0.000103
44 0.537614 1162695.575231 0.000103
45 0.537614 1162695.575231 0.000103
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Given, T = 4.000 sec, M = 7.500 m/s2
PI = 0.100 , P2 = 0.300
R = 160.000 km , G = 1000.000 m

= 0.020 rad p
GO

Step no. Kalman Mean-square range Mean-square beainggain prediction error prediction error
k Kll(k) Pll(k+1Ik) P33(k+11k)
3 0.833480 2340957.936749 0.000934
4 0.700685 1511864.011394 0.000600
5 0.601889 1117934.126381 0.000441
6 0.527842 892669.234060. 0.000348
7 0.471646 750502.687012 0.000287
8 0.428736 655783.683887 0.000245
9 0.396056 590991.038013 0.000214

10 0.371461 546389.627915 0.000190
11 0.353332 515984.738053 0;000171
12 0.340363 495740.970762 0.000157
13 0.331435 482745.404955 0.000145
14 0.325575 474806.314889 0.000135
15 0.321945 470259.450453 0.000127
16 0.319848 467866.345550 0.000121
17 0.318739 466744.580362 0.000115
18 0.318218 466303.175838 0.000111
19 0.318013 466176.650788 0.000107
20 0.317954 466161.300111 0.000105
21 0.317947 466159.566295 0.000102
22 0.317946 466136.449753 0.000100
23 0.317935 466088.835917 0.000099
24 0.317913 466026.2216:32 0.000098
25 0.317884 465960.148353 0.000097
26 0.317853 465899.499182 0.000096
27 0.317825 465849.260003 0.000096
28 0.317802 465811 .002366 0.000096
29 0.317784 465783.979704 0.000096
30 0.317771 465766.229504 0.000095
31 0.317763 465755.417748 0.000095
32 0.317758 465749.367394 0.000095
33 0.317755 465746.315477 0.000095
34 0.317754 465744.979508 0.000095
35 0.317753 465744.512783 0.00009536 0.317753 465744.410580 0.000095
37 0.317753 465744.407821 0.000095
38 0.317753 465744.390157 0.000095
39 0.317753 465744.326936 0.000095
40 0.317753 465744.226312 0.000095
41 0.317753 465744.108628 0.000095
42 0.317753 465743.992967 0.000095
43 0.317753 465743.892062 0.000095
44 0.317753 465743.811811 0.000095
45 0.317753 465743.752842 0.000095
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Given, T = 4.000 sec, M = 7.500 m/sa

PI = 0.100 , Pa = 0.300
R = 370.000 km , 0p = 1000.000 m
°e = 0.020 rad

,-
Step no. Kalman Mean-square range Mean-square bearing

gain prediction error prediction error

k KII ( k) PlI(k+llk) P33(k+1Ik)

3 0.833480 2340957.936749 0.000933
4 0.700685 1511864.011394 0.000600
5 0.601889 1117934.126381 0.000440
6 0.527842 892669.234060 0.000347
7 0.471646 750502.687012 0.000286
8 0.428736 655783.683887 0.000243
9 0.396056 590991.038013 0.000212

10 0.371461 546389.627915 0.000187
11 0.353332 515984.738053 0.000168
12 0.340363 495740.970762 0.000153
13 0.331435 482745.404955 0.000140
14 0.325575 474806.314889 0.000129
15 0.321945 470259.450453 0.000120
16 0.319848 467866.345550 0.000112
17 0.318739 466744.580362 0.000105
18 0.318218 466303.175838 0.000100
19 0.318013 466176.650788 0.000095
20 0.317954 466161.300111 0.000090
21 0.317947 466159.566295 0.000086
22 0.317946 466136.449753 0.000083
23 0.317935 466088.835917 0.000080
24 0.317913 466026.221632 0.000077
25 0.317884 465960.148353 -0.000075
26 0.317853 465899.499182 0.000073
27 0.317825 465849.260003 0.000071
28 0.317802 465811.002366 0.000069
29 0.317784 465783.979704 0.000068
30 0.317771 465766.229504 0.000067
31 0.317763 465755.417748 0.000066
32 0.317758 465749.367394 0.000065
33 0.317755 . 465746.315477 0.000064
34 0.317754 465744.979508 0.000063
35 0.317753 465744.512783 0.000063
36 0.317753 465744.410580 0.000062
37 0.317753 465744.407821 0.000062
38 0.317753 465744.390157 0.000061
39 0.317753 465744.326936 0.000061
40 0.317753 465744.226:312 0.000061
41 0.317753 465744.108628 0.000061
42 0.317753 465743.992967 0.000061
43 0.317753 465743.892062 0.000061
44 0.317753 465743.811811 0.000060
45 0.317753 465743.752842 0.000060
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Given, T = 4,000 sec, M = 2,100 rn/ s2
PI = 0,000 , P2 = 0,000
R = 160,000 krn , 0p = 1000.000 rn

°0 = 0,020 rad

Step no, Kalman Mean-square range Mean-square be~ring
gain predicti.on error prediction error

k Kl1(k) Pl1(k+llk) P33(k+llk)

3 0,833344 2333876,896177 0,000933
4 0.700049 1500846,638585 0,000600
5 0,600135 1101282,890097 0.000440
6 0.524100 868535,360135 0,000347
7 0.464821 716908,974513 0,000286
8 0.417558 610708,993819 0,000243
9 0.379155 532494.124017 0,000211

10 0.347469 472758,502497 0,000187
11 0.321002 425890,777713 0.000168
12 0.298684 3883.69,811262 0,000152
13 0,279731 357876,089790 0,000139
14 0,263556 332819.358720 0,000128
15 0,249711 312071,605086 0.000119
16 0.237846 294808,303509 0.000111
17 Q,227685 280409,982152 0.000104
18 0.219000 268399,023457 0.000098
19 0.211605 258397,920500 0,000092
20 0.205339 250101,096516 0.000088
21 0.200065 243255.594163 0,000084
22 0.195660 237647,741415 0,000080
23 0.192016 233093.943387 0.000076
24 0.189032 229434.367619 0,000073
25 0.186618 226528,666169 0.000071
26 0.184691 224253,114424 0,000068
27 0.183175 222498,703648 0.000066
28 0,182003 221169,837146 0,000064
29 0.181113 220183,368183 0,000062
30 0.180451 219467,791523 0.000060
31 0.179970 218962,463593 0,000059
32 0,179630 218616,779586 0.000058
33 0.179397 218389,278588 0.000056
34 0.179244 218246,679389 0,000055
35 0,179148 218162.870157 0.000054
36 0.179092 218117,885746 0.000053
37 0,179061 218096,908758 0.000052
38 0,179047 218089,327118 0,000052
39 0,179042 218087.873862 0.000051
4 O' 0,179041 218087.866377 0.000050
41 0,179041 218086,553754 0,000050
42 0.179040 218082.573441 0.000049
43 0.179038 218075,512405 0.000049
44 0.179033 218065,563843 0,000049
45 0.179026 218053,267866 0.000048
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Given, T = 4.000 sec, M = 2.100 m/s2

PI = 0.000 P2 = 0.000
R = 370.000 km , 0p = 1000.000 m

°e = 0.020 rad

Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error

k Kll(k) Pll(k+lIk) P33(k+ll k)
3 0.833344 2333876.896177 0.000933
4 0.700049 1500846.638585 0 ..000600
5 0.600135 11(1l282.890097 0.000440
6 0.524100 868535.360135 0.000347
7 0.464821 716908.974513 0.000286
8 0.417558 610708.993819 0.000243
9 0.379155 532494.124017 0.000211

10 0.347469 472758.502497 0.000187
11 0.321002 425890.777713 0.000167
12 0.298684 388369.811262 0.000152
13 0.279731 357876.089790 0.000139
14 0.263556 332819.358720 0.000128
15 0.249711 312071.605086 0.000118
16 0.237846 294808.303509 0.000110
17 0.227685 280409.982152 0.000103
18 0.219000 268399.023457 0.000097
19 0.211605 258397.920500 0.000091

-, 20 0.205339 250101.096516 0.000087
21 0.200065 243255.594163 0.000082
22 0.195660 237647.741415 0.000078
23 0.192016 233093.943387 0.000075
24 0.189032 229434.367619 0.000071
25 0.186618 226528.666169 0.000069
26 0.184691 224253.114424 0.000066
27 0.183175 222498.703648 0.000063
28 0.182003 221169.837146 0.000061
29 0.181113 220183.368183 0.000059
30 .0.180451 219467.791523 0.000057
31 0.179970 218962.463593 0.000055
32 0.179630 218616.779586 0.000053
33 0.179397 218389.278588 0.000052
34 0.179244 218246.679389 0.000050
35 0.179148 218162.870157 0.000049
36 0.179092 218117.885746 0.000048
37 0.179061 218096.908758 0.000047
38 0.179047 218089.327118 0.000045
39 0.179042 218087.873862 0.000044
40 0.179041 218087.866377 0.000043
41 0.179041 218086.553754 0.000042
42 0.179040 218082.573441 0.000042
43 0.179038 218075.512405 0.000041
44 0.179033 218065.563843 0.000040
45 0.179026 218053.267866 0.000039
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Given, T = 15.000 sec, M = 2.100 m/s2

Pi = 0.000 , P2 = 0.000
R = 160.000 km , 0p = 1000.000 m
°e = 0.017 rad

Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error

k K11(k) PI1(k+1Ik) P33 (k+ 11 k)
3 0.835375 2440421.875813 0.000679
4 0.709338 1664370.019028 0.000440
5 0.624677 1340788.109305 0.000328
6 0.572793 1196798.104161 0.000265
7 0.544792 1137263.016525 0.000226
8 0.532112 1116804.078032 0.000202
9 0.527590 1111786.227676 0.000186

10 0.526467 1111219.830121 0.000176
11 0.526340 1111211.386237 0.000170
12 0.526338 1110986.172784 0.000167
13 0.526288 1110665.085340 0.000165
14 0.526216 1110411.231257 0.000165
15 0.526159 1110267.223461 0.000164
16 0.526126 1110205.067344 0.000164
17 0.526112 1110185.238596 0.000164
18 0.526108 1110181.274970 0.000164
19 0.526107 1110181.072229 0.000164
20 0.526107 1110180.939459 0.000164
21 0.526107 1110180.474331 0.000164
22 0.526107 1110179.978085 0.000164
23 0.526107 1110179.638437 0.000164
24 0.526107 1110179.465633 0.000164
25 0.526107 1110179.398838 0.000164
26 0.526107 1110179.380508 0.000164
27 0.526107 1110179.377840 0.000164
28 0.526107 1110179.377835 0.000164
29 0.526107 1110179.377370 0.000164
30 0.526107 1110179.376540 0.000164
31 0.526107 1110179.375820 0.000164
32 0.526107 1110179.375385 0.000164
33 0.526107 1110179.375186 0.000164
34 0.526107 1110179.375118 0.000164
35 0.526107 1110179.375103 0.000164
36 0 ..926107 1110179.375101 0.000164
37 0.526107 1110179.375101 0.000164
38 0.526107 1110179.375100 0.000164
39 0.526107 1110179.375099 0.000164
40 0.526107 1110179.375098 0.000164
41 0.526107 1110179.375097 0.000164
42 0.526107 1110179.375097 0.000164
43 0.526107 1110179.375097 0.000164
44 0.526107 1110179.375097 0.000164
45 0.526107 1110179.375097 0.000164
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Given, T = 15.000 sec, M = 2.100 m/s2

Pj = 0.000 , P2 = 0.000
R = 370.000 km , ° = 1200.000 m

= .0.020 rad p°6
Step no. Kalman Mean-square range Mean-square bearing

gain prediction error prediction error

k Kll(k) PIl(k+1Ik) P33(k+llk)
3 0.834757 3467211.298556 0.000934
4 0.706554 2325285.512761 0.000601
5 0.617559 1828524.941993 0.000442
6 0.559434 1588879.782922 0.000349
7 0.524577 1475408.139004 0.000289
8 0.506073 1427015.090931 0.000248
9 0.497735 1409960.290613 0.000218

10 0.494730 1405642.417137 0.000195
11 0.493963 1405135.171843 0.000178
12 0.493873 1405126.452445 0.000165
13 0.493871 1404890.301099 0.000155
14 0.493829 1404523.091110 0.000147
15 0.493764 1404199.689532 0.000141
16 0.493706 1403990.086058 0.000136
17 0.493669 1403882.728000 0.000133
18 0.493650 1403839.149940 0.000130
19 0.493642 1403825.974994 0.000128
20 0.493640 1403823.609922 0.000127
21 0.493639 1403823.557079 0.000126
22 0.493639 1403823.336525 0.000126
23 0.493639 1403822.777224 0.000125
24 0.493639 1403822.187753 0.000125
25 0.493639 1403821.760495 0.000125
26 0.493639 1403821.520273 0.000125
27 0.493639 1403821.412665 0.000125
28 0.493639 1403821.375457 0.000125
29 0.493639 1403821.366759 0.000125
30 0,493639 1403821.365991 0.000125
31 0.493639 1403821.365892 0.000125
32 0.493639 1403821.365140 0.000125
33 0.493639 1403821.364128 0.000125
34 0.493639 1403821.363292 0.000125
35 0.493639 1403821.362774 0.000125
36 0.493639 1403821.362519 0.000125
37 0.493639 1403821.362421 0.000125
38 0.493639 1403821.362393 0.000125
39 0.493639 1403821.362389 0.000125
40 0.493639 1403821.362389 0.000125
41 0.493639 1403821.362388 0.000125
42 0.493639 1403821.362386 0.000125
43 0.493639 1403821.362385 0.000125
44 0.493639 1403821.362383 0.000125
45 0,493639 1403821.362383 0.000125
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Given, T = 10.000 M = 2.100 I 2sec, m s
PI = 0,000 , P2 = 0.000
R = 160,000 km , 0p = 1000,000 m
De = 0.017 rad

Step no. Kalman Mean-square range Mean-square bearinggain prediction error prediction error
k Kll(k) Pll(k+1Ik) P33 (k+11 k)
3 0,833741 2354550,699120 0.0006754 0.701897 1532951,639093 0,0004355 0,605204 1149585.232138 0,0003206 0,534794 937942.653955 0.0002537 0.483989 812161.344124 0.0002108 0,448173 735859.106094 0.0001819 0.423916 690349.949047 0,00016010 0,408407 664471,087025 0,00014411 0.399209 650843.827015 0.00013212 0.394249 644417.990291 0,000123.13 0,39.1882 641836.678893 0.00011714 0,390926 641037,586494 0,00011215 0,390629 640896.156729 0.00010816 0.390577 640895.530934 0.00010617 0,390577 640858,940321 0,00010418 0.390563 640765.928399 0.00010319 0,390529 640646.643519 0.00010220 0,390484 640532,874896 0,00010121 0.390442 640442.608164 0,00010122 0,390408 640380,334876 0.00010123 0.390385 640342,348220 0.00010124 0.390371 640321.858382 0,00010125 0.390364 640312.246535 0.00010126 0.390360 640308.493329 0.00010127 0,390359 640307.401453 0.00010128 0',.390358 640307.239871 0.00010129 0,390358 640307.239084 0.00010130 0,390358 640307.156393 0.00010131 0,390358 640306.981214 0.00010132 0.390358 640306.770740 0,00010133 0,390358 640306.577254 0,00010134 0.390358 640306,427713 0.00010135 0.390358 640306.326790 0.00010136 0,390358 640306.266503 0.00010137 0,390358 640306.234711 0.00010138 0.390358 640306,220206 0.00010139 0.390358 640306.214766 0,00010140 0.390358 640306.213298 0.00010141 0,390358 640306,213126 0.00010142 0,390358 640306.213114 0.00010143 0,390358 640306.212936 0.00010144 0.390358 640306.212610 0,00010145 0,390358 640306.212241 0,000101
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Gi.ven, T = 10.000 sec, M = 2.100 m/52
Pj = 0.000 , P2 = 0.000
R = 370.000 km , 0p = 1200.000 ill

°e = 0.020 rad
Step no. Kalman Mean-square range Mean-square bearing

gain prediction error prediction error
k Kl1(k) Pl1(k+1Ik) PJJ ( k+ll k)
3 0.833616 3381222.236473 0.000933
4 0.701321 2192989.144631 0.000600
5 0.603632 1633748.785831 0.000440
6 0.531517 1319802.516358 0.000347
7 0.478224 1127825.942192 0.000286
8 0.439214 1006084.242147 0.000244
9 0.411304 928619.542959 0.000212

10 0.392051 880412.691293 0.000188
11 0.379421 851720.368428 0.000169
12 0.371651 835740.484936 0.000154
13 0.367239 827620.272288 0.000142
14 0.364973 823988.836575 0.000132
15 0.363954 822650.501226 0.000123
16 0.363578 822304.133144 0.000116
17 0.363481 822271.880777 0.000110
18 0.363472 822262.822195 0.000104
19 0.363469 822193.974178 0.000100
20 0.363450 822073.113666 0.000096
21 0.363416 821933.327477 0.000093
22 0.363376 821803.416924 0.000091
23 0.363340 821699.207604 0.00008824 0.363311 821624.762462 0.000087
25 0.363290 821576.783841 0.00008526 0.363276 821548.852928 0.000084
27 0.363268 821534.309059 0.00008328 0.363264 821527.707433 0.000082
29 0.363262 821525.242700 0.00008130 0.363262 821524.591434 0.00008131 0.363261 821524.525818 0.00008032 0.363261 821524.512537 0.00008033 0.363261 821524.395271 0.00008034 0.363261 821524.184135 0.000080
35 0.363261 821523.937143 0.00008036 0.363261 82152.3.705990 0.00008037 0.363261 821523.519618 0 ..000080
38 0.363261 821523.385915 0.00008039 0.363261 821523.299412 0.00008040 0.363261 821523.248854 0.000080
41 0.363261 821523.222409 0.00008042 0.363261 821523.210335 0.000080
43 0.363261 821523.205786 0.00008044 0.363261 821523.204562 0.00008045 0.363261 821523.204430 0.000080
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Given, 5.000 sec,
0.100 ,

160.000 km,
0.019 rad

M =
P2 =
a =p

5.000 m/s2

0.400
1100.000 m

Step no.

k

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Kalman
gain

Kl1(k)

0.833453
0,700558
0,501542
0,527104
0,470311
0,426574
0,392841
0,366996
0,347483
0,333079
0,322763
0,315650
0,310965
0,308044
0.306342
0.305430
0,304993
0,304816
0,304763
0",304756
0,304755
0.304747
0.304728
0.304702
0,304674
0,304647
0,304623
0,304605
0.304591
0.304581
0,304575
0,304571
0,304569
0,304568
0,304567
0,304567
0,304567
0.304567
0.304567
0.304567
0.304567
0,304567
0,304567

Mean-square range
prediction error

Pl1(k+1Ik)

2830854.822021
1826705,886398
1348703.517870
1074358.344898
900124,643679
782888.908689
701519,907463
644356.898507
604307,212190
576671.178922
558099.838940
546078,043750
538667.304091
534375,950266
532084.725264
530989.784900
530546,872909
530413.892524
530395.501030
530394.537078
530373,448964
530326.516481
530261.780484
530190.607217
530122.604725
530063,881791
530017.118826
529982.417318
529958.312535
529942,640375
529933.147788
529927.848553
529925.177520
529924.009841
529923.604856
529923.519212
529923.517799
529923.497681
529923.430673
529923.324348
529923,198335
529923.071840
529922,958490
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Mean-square bearing
prediction error

P33(k+1Ik)

0.000843
0,000542
0.000398
0.000314
0.000259
0.000221
0,000193
0.000172
0.000155
0,000142
0.000131
0.000123
0.000116
0.000110
0.000105
0.000101
0,000098
0.000096
0.000094
0.000092
0,000091
0.000090
0,000089
0,000089
O,00008!!
0.000088
0,000088
0.000088
0,000088
0.000088
0,000088
0.000088
0.000088
0,000088
0.000088
0.000088
0.000088
0,000088
0,000088
0,000088
0,000088
0.000088
0.000088



Given, T = 5.000 sec, N = 5.000 m/s2

PI = 0.100 , P2 = 0.400
R = 370.000 km , 0p = 1100.000 m
°e = 0.019 rad

Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error

k Kl1(k) Pl1(k+1Ik) P33 (k+ 1 Ik)
3 0.833453 2830854.822021 0.000842
4 0.700558 1826705.8,86398 0.000542
5 0.601542 1348703.517870 0.000397
6 0.527104 ' 1074358.344898 0.000313
7 0.470311 900124.643679 0.000258
8 0.426574 782888.908689 0.000220
9 0.392841 701519.907463 0.000191

10 0.366996 644356.898507 0.000169
11 0.347483 604307.212190 0.000152
12 0.333079 576671.178922 0.000138
13 0.322763 558099.838940 0.000126
14 0.315650 546078.043750 0.000116
15 0.310965 538667.304091 0.000108
16 0.30,8044 534375.950266 0.000101
17 0.306342 532084.725264 0.000095
18 0.305430 530989.784900 0.000090
19 0.304993 530546.872909 0.000086
20 0.304816 530413.892524 0.000082
21 0.304763 530395.501030 0.0.00078
22 0.304756 530394.537078 0.000075
23 0.304755 530373.448964 0.000072
24 0.304747 530326.516481 0.000070
25 0.304728 530261.780484 0.000068
26 0.304702 530190.607217 0.000066
27 0.304674 530122.604725 0.000065
28 0.304647 530063.881791 0.000063
29 0.304623 530017.118826 0.000062
30 0.304605 529982.417318 0.000061
3] 0.304591 529958.312535 0.000060
32 '0.304581 529942.640375 0.000059
33 0.304575 529933.147788 0.000059
34 0.304571 529927.848553 0.000058
35 0.304569 529925.177520 0.000058
36 0.304568 529924.009841 0.000057
37 0.304567 529923.604856 0.000057
38 0.304567 529923.519212 0.000057
39 0.304567 529923.517799 0.000056
40 0.304567 529923.497681 0.000056
41 0.304567 529923.430673 0.000056
42 0.304567 529923.324348 0.000056
43 0.304567 529923.198335 0.000056
44 0.304567 529923.071840 0.000056
45 0.304567 529922.958490 0.000056
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.] Conclusions

In chapter 2 we focus on the detection of the presence of a signal in noise and in doing so we

used the Neyman-Pearson criterion to assess the performance of air traffic control radar where
a priori probability of receiving a signal is not known. From the performance curve as shown in
fig.(2.6), we have found that for the probability of error P, less than 10-4,we need rmNo, >7.3.
For rmA/o, = 10, P, = 2.87xI0", for rmNo, = II, P, = 1.9x10-7 and for v'ffiAJo, = 12,

P, = 1.0xI0-Y• So small changes in No" the signal-to-noise ratio, result in significant changes
in the probability of error. For this reason, increasing the signal-to-noise ratio are so important
in signal processing systems, i.e. for the improvement of detection capability we should maKe

Novas large as possible. To do this the number of samples m may also be increased. Since the
samples are spaced a fixed time interval apart to ensure statistical independence, the time for
detection increases with m.

The signal detection characteristics of the primary and secondary radars of Zia In ternational

Airport are also described. From the results given in chapter 2, it is seen that since the secondary

radar is equipped with the transponder, radar range:extensively increase with lower transmitter

power as the transponder acts as a midway receiving transmitting station. We have found that
though the primary radar has 1400 times the transmitted power of the secondary radar, the

secondary radar can cover almost 2.3 times longer distance that of the primary radar as the

secondary radar is equipped with the transponder. As the wider pulse used for the secondary

radar, target detection capability of it increase correspondingly since for the wider pulse more

energy is received. At the same time minimum radial spacing of two targets required to

distinguish them also increase. The signal-to-noise ratio, BIll,) as calculated for the two radars are
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23.43dB for primary radar and 82.24dB for secondary radar (at the transponder) for maximum

radial distances. '

Both the primary and the sccondary radar rotatc at a rate of 15 rpm, completing a 3600 scan in

4s. TIle two radar beams have azimuth bandwidths of l.so and 1.350, respectively, while the

number of pulses emitted are 633 and 316 pulses pel' second, respectively. This corresponds to

10.55 pulses retlected pCI'targct in the primary radar and 4.7 pulses pel' target in thc secondary

radar, providing that many more samples in the signal processing or, equivalently, augmenting

th~ received energy by the same amount. Thus the primary radar energy reccived should be

10.55E and tile secondmy radar encrgy 4.7E. Alternately, this results in E/1lo improvement, of

IO.23dB and 6.72dB, respectively.

Fig.(2.10) reprcsents a family of graphs relating probability of detection with signal-to-noise ratio

for ditfercnt values of probability of false-alarm. The signal-to-noise ratio needed to achieve a

specified probability of detection without excccding a specified false-alarnl probability can be

calculated from these graphs. It is found that for small values of false-alarm probability wc need

large signal-to-noise ratio to achieve a specific probability of detection, i.e. to maintain a certain

probability of detection, thc rcquired valuc of signal-to-noise ratio increases correspondingly with

deceasc of false-alarm probability. From thc graphs we have seen that to attain maximum

probability of detection, Pd for specified values ofP" (the probability of false-alarm) the requircd

signal-to-noise ratios are as follows:

For the maxinlUm Pd

P" E/1lo E/1lo (in dB)
10-2 14 11.46
10-4 21 13.22
10-6 28 14.47
10-' 35 15.44
10-10 40 16.02
10-12 65 18.13 .
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We have also established a trame work for the analysis of random signals using Kalman ftIter

which is applied in radar tracking problem in chapter 7. We have found that the Kalman ftIter

provides the best linear estimates of radar tracking. TIle resulting perfoffilanee figures are

presented, these being the mean-square range prediction enor, mean-square bealing prediction

erTor and gain setting of Kalman filter. In figs. 7.2 to 7.13 we have plotted the results of

computer calculations of the appropriate matrices for the sel of data obtained trom the radars at

Zia Intel'llational Airport and for other relevant sets of data that explain the characteristics of

the processor elaborately. We have also presented an example for the range R=160 km, scan time

T=15 sec, m<lximum <lcceleration M=3.27 m/sec' and the probabilities of m<lximum and zero

acceleration P, and P, to be equal to 0.1 and 0.3 respectively which explain the (;amputational

procedures of the filter. We have plotted only the first diagonal element, Kll (k), of the gain

matrix and the first and third diagonal elements of the one-step prediction covariance matrix .

P(k+ Ilk) which cOlTespond to the mean-square errors in the prediction of range and bearing.

The mean-square bearing prediction error converges to its steady-state value in 8 to 12 iterations,

while Ole range prediction error converges in 5 to 12 iterations. The g<lin settings of the Kalman

filter reach to its steady state value after 5 to 10 iler<ltiOIlS.'[lle variation of Kalman tilter gain

selting, the me<ln-square rauge prediclion error and the mean-square bearing prediction error for

different values of the parameters of the model are presented both in graphical and numerical

tC)lm so that we can compare the results.

Graphs 7.2-7.5 show the g<linsettings of the Kalman tilter, the tirst diagonal element of the gain

matrix K(k) and we have found that the gain setting drops quickly to a tinal steady state value.

It can be seen that gain setting decreases with the decrease of scan time. But tllis value increases

with the increase of maximum acceleration. The results are very similar for primary and

secondaty r<ldar.

Gr<lphs7.6-7.9 show the complete results of the mean-squ<lre range prediction error and we have

fCllmd that mean-square range prediction error increases correspondingly with the increase of

maximum aeceler<ltion M for the same scan time (here T=4s). For higher value of scan time

(keeping a l' con~tant), the error also increases. Both the cases are shown in graphs.
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Graphs 7.10-7.13 show the variation of the mean-square bearing prediction error for those sets

of data. It is apparent from these graphs that it follow trend that is quite reasonable since the

en'or decreases with the decrease of T for constant 0,' and increases with M.

From these results we can say that tlus algoritluu (i.e. Kalman tilter) is suitable for radar tracking

problem. We have seen that as the scan time T is decreased from 15 to 4 s, for tile same 0,', the
gain setting and the mean-squarc elTors dccrease. Since the lime between tilter iterations has been

dccreased, the variation in rangc and bearing estimates deereases as well. TIlt,refore, ncw

estimatcs carry Icss infomlation and can be wcightcd less. If the maximum acceleration M is

increased (increasing 0,') for the same scan timeT, thc mean-square ClTorsand gain go up again,

since thcn range and bcaring cstimates will vary more from iteration to iteration.

Finally, as a gcncral conclusion, thc Kalman tilter provides the milumum variance estimate of

the process even in a noisy observation case, and provides the best balance between the a priori

infomlation and measurements, and hence it is an efficicnt estimator for the state of estimation

problem. The Kalman tilter is best suited to analysis of continuous time series and it is therefore

can be applied in areas such as rad,lr tracking, navigation systems, weather forecasting, satellite

comnuuucations, automatic traffic control system etc.

8.2 Suggl.'stiolls for Furthl.'r Study

So tilr we discussed the application of Kalman filtering to air traftic control. Also, throughout

this thcsis we have restricted our study to simple radar tracking problem, i.e. we have ILsed a

simple and moderate tracking melhod. \Ve have found thai in the linear target tracking system,

the Kalman tilter can be employed dircctly. But in thc nonlinear tracking problem, some

infonnalion about thc target is lost because of the lincarisation and ,lpproximation proccdurcs

required to make the problcm trackable. When the measurement Jrequency is much lower than

the en'or bandwidth, the successive errors are essentially uncolTelated and can be trcated as wlute

noise. Tlus method assumes that the measurement noise is white. But in practice, the

measurement noise may be sequentially con'elated. and this is otten refelTed to as colored noise.
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For sequentially con'elated measurement noise, the parameters can not be estimated with sufiicient

accuracy to obtain thc desired tracking performance. By refoffilUlating the measurement equation,

the noise may be decorre!ated so that the Kalman tilter can be directly applied. By considering

the effect of noise con-elation, one can undertake a task of designing a modified computationally

eJlicient method.

!vIany imp0l1ant publications are available in the references. The reader is invited to consult

references [1-3], [7-IOJ and [16] for complementary infoffilation on radar tracking problem, and

references [2,9,25J for random signal processing .
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