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ABSTRACT

The availability ot digital computers has stipulated the use of digital signal processing in many
diverse fields covering engineering, medicing and economics. The aim of this thesis is to develop
a model for deteclion and tracking pwposes of Air Traffic Control Radar. Neyman-Pearson
criterion has been used for detection problem and Kalman filtering has been used for the

estimation of random signals to extract the pertinent information.

Kalman and Bucy proposed an extremely powerful recursive state estimation technique,
commonly described today as Kalman filtering. This thesis is concerned with the application of
Kalman [iltering technique to radar signal processing. The selection of appropriate states to
configure the algorithm for use in radar sigﬁal processing is also considered. A new praciical

approach is presented to aid the evaluation of radar systems.

Various techniques arc available for the estimation of random signals in the presence of noise and
in doing so the need for solving sets of algebraic equations simultancously arises. This
corresponds to inverting a matrix whose order is that of the number of simultaneous equations
mvolved. Ior the problem of this category, a convenient technique is one in which previously
determined estimates are simply updated as new data come in, rather than solving the problem
all over again. The recursive estimation technique (Kalman filtering) is exactly such a scheme
where simultaneous estimates (filtered or predicted) of a number of signal components by
minimizing the mean-square error of each signal component simultancously are looked for. In
radar tracking problem one wants to estimate the range, range rate, bearing angle and bearing rate
at each time the radar measurement is available. ‘These signal variables will be arranged in a
column to be defined as the signal vector. Actually all practical signal processing problems are

muitidimensional and involve the collection of several signals together.



The other basic materials that covers the nature of radar, the simple radar equation and the
propagation of radar waves and how it is contaminated by the atmosphere and other deleterious
ctfects. The thesis deals with the {iltering of noisy data in order to extract the signal from noise
in an optimunt (minimum mean-square error) sense. Initially the tracking problem is highlighted
and existing structures are discussed. The random signal and purely additive noise components
are assumed Lo be stalistically independent. To show the performance of the proposed algorithm
real data has been used that obtained from the Radars at Zia International Airport, Dhaka.
Before using the real data, the model was tested by known available data and found to be

working well. Graphical representation of complete results are also included.
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INTRODUCTION

General:

Considerable research has been undertaken in the field of optimal estimation theory in relation
to target tracking using noisy radar data. Target tracking is the determination of the present (and
often future) position and velocity (states) of a moving object from noisy measurements of its
present states. This is of interest in both military and civilian applications. Various algorithms,
using the Kalman filter have been derived and by solving the Kalman filter equations, a general
solution can be obfained which minimizes the mean-square error; this method is recursive in
nature {1-3,20]. In radar systems, detection procedures involve the comparison of the received
signal with a certain threshold. But when the background noise power fluctuates, it is difficult

to maintain a constant false-alarm rate with a fixed threshold detection scheme [1,30].

The dynamics of a moving target is usually represented in terms of a state space formulation. The
target states are its position, velocity and acceleration. They can be estimated by using state
estimation procedures based on measurements provided by the radar. When the exact a priori
knowledge of the system model, and the statistics of system noise and measurement error are
available, the Kalman filter provides the minimum mean-square error estimate [1,2]. The

Kaiman filter has been applied successfully in a variety of target tracking problems.
The Nature of Radar:

Radar is a contraction of the words Radio Detection and Ranging. It was first developed as a
detection device to warn of the approach of hostile aircraft and of directing antiaircraft weapons.
Presently radar is widely used in military, navigation, satellite service, air traflic control etc.
Radar is an electromagnetic system for the detection and location of objects. It operates by
transmitting a particular type of wave form and detects the nature of the echo signal. Purpose of
the air traffic control system is the safe and efficient operation of aircraft flying in the vicinity
of airports, aircraft flying enroute from one airport to another, and the aircraft and vehicles on

the ground at airports. In the air traffic control radar systems the basic problems are those of first

1



detecting an aircraft when it appears and the estimating its range, velocities and azimuth, among

other parameters {1,7].

Several different radars are employed for the control of air traffic. The Airport Surveillance Radar
(ASR) provides the information on the location and movement of all aircrafl flying within the
vicinity of airports. The Air Route Surveillance Radar {ARSR) detect and monitor aircraft
enroute. The ASR and ARSR also provide the air traffic controller with the location of hazardous
or uncomfortable weather that aircraft should avoid. The ARSR radars for enroute air traffic
control have a nominal range of 350 km and an altitude coverage of about 18 km. ASR radar
monitors aircraft within 100 km of the airport at which it is located. Both carry out detection and
tracking tunctions. Once the transmitted pulse is ¢mitted by the radar a sufficient length of time
must clapse to allow any echo signals to return and be detected before the next pulse may be
transmitted. Therefore, the rate at which the pulses may be transmitted is determined by the

longest range at which targets are expected [1,7].

Presently radars are classified from another point of view as primary radar and secondary radar.
The original primary radar only revealed its tofal potential when associated with secondary radar
so that now air traffic control systems can rely on the integrity of the information provided by

the primary and secondary radars [8,31].
Secondary Radar:

Secondary radar is radio location system which measures time, but which, in contrast to normal
radar techniques, instead of using the passive echo reflected from a target, uses an active
answering device (called transponder) which is located in the target aircraft. Although a secondary
radar system will obviously give a position in terms of range and bearing, it is usually used in
conjunction with primary radar. The reason for this is obvious that a secondary radar system

requires cooperation, and assumes that a transponder is available.

In comparison with the primary radar system, the introduction of a transponder provides

substantial advantages such that

2



(1) In contrast with the primary radar system where, as the range R, increascs the
power of the echo signal decreases by a factor of 1/(4m)’R’, the power of the
transponder reply only decreases by a factor of 1/4nR2 Consequently, it is

possible to work with a much lower transmiter power.

(2) The interrogation and the response can be transmitted at two different frequencies,
thus avoiding any undesirable echoes such as ground clutter, permanent echoes

{caused by rain clouds and other meteorological phenomena).

3) The transponder equipment is a recciver and transmitter of coded messages. Thus

an exchange of information can be obtained as well as information about location.

The secondary surveillance radar system is so designed that a ground station can monitor a space
having a maximum radius of 370 km and a height of some 15 km above the radar horizon, In
this space only a few aircraft, relative to the size of the area, and separated at a great distances
from one another, will be moving at high speeds. In the radial direction the location of an aircraft
must be accurate to within some 10 m and, in azimuth, must be accurate to within a few degrecs
so that measurements can be correlated with the findings of the primary radar equipment, The
aim ol a secondary radar is 1o receive information from aircraft that allows the ground station to
locate and recognize them. Contrary to pn'maxly radar, secondary radar needs aircraft to participate
in the recognition. For this purpose, aircraft is equipped with a device called a transponder
[8,31].

Simple Radar Tracking System:

The radar continuously emits high frequency bursts (pulses) of electromagnetic energy into space.
A portion of the transmitted signal is intercepted by a reflecting object (target) and ts reradiated
in all directions. The receiving antenna collects the returned energy and delivers it to a recelver,
where it is processed to detect the presence of the target and to extract its location and relative

velocity,



The fig. I shows the set of ideal transmitted and received pulses together with a typical received
pulse. A radar beam is used to determine the range and velocity of an object at a distance x from
the transnutter. The information required is the time interval At representing the time passed for
the radio wave to travel to the object and back. The typical received signal is not of ideal shape
due to various disturbances and noise adding in with the return pulse confuses the decision as to
exactly when the pulse begins, i.c. arrives at the antenna. So, we mcasure At,#AtL The range
estimate x=CAt,/2 (¢ is the velocity of pulse propagation in space) from one measurement can
therefore cause large errors. To reduce the error, a periodic sequence of pulses is transmitted
every ‘T seconds, as indicated in the fig. 1, which produces a sequence of measured values of
range x(0), x(1),..., x(k). The radar energy is directed into space by the radar antenna. The
antenna beam width in these air traffic conirol radars is of the order of 1 to 1.5° in azimuth, ie.,
an angle measured in a plane tangent to the earth’s surface, so that aircraft location in azimuth
is provided by (he direction of the antenna beam when the aircraft intercepts the radar pulse. The
radar antenna normally tums, or scans, at a fixed rate, so that aircrafl can be detected anywhere

in azimuth [2].
Radar Receiver:

Radar receiver accepts the echo signal reflected from the target via the antenna, the rotating joint
and the transmitter-receiver switch., 1t is designed as a heterodyne receiver, in which the oscillator
is automatically controlled by the transmitter frequency. The function of any radar system is to
give information as to the behavior of a target environment. The ability of a radar receiver to
detect a weak echo signal is limited by the noise energy that occupics the same portion of the
frequency spectrum as does the signal energy. The weakest signal the receiver can detect is called
the minimum detectable signal. The spurious undesired signals always present in signalling
systems and their components are usually called noise. Since noise is the chief factor that limits
receiver sensitivity, it is necessary to obtain some means of describing it quantitatively, This noise
reduces the amount of information that can be transmitted with a given signal power. The noise
present in a radar receiving system arises both from intemally onginating sources and from
externally originating sources. This externally originating noise enters the recerving antenna along
with the desired signal. The function of radar receiver is to detect that desired echo signals in the

presence of these noise, clutter, or interference. To do this function if must Separate the wanted
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Transmitter . +

| | R | R
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Fig. I (a) Simplified radar tracking system, (b) ideal transmitted pulses, (¢) ideal received
pulses, (d) typical received pulses



from unwanted signals, and amplify the wanted signals to a level where target information can
be displayed to an automatic data processor. The block diagram of a typical radar recciver is

shown in the Fig. II.

(./ Local

antenna oscillator
RF RF IF
= amplifier B~ converter e~ amplifier
signal
video second
Display = amplifier |<t detector |w

Fig. II  Typical radar receiver

At the microwave frequencies usually used for radar, the external noise which entersl via the
antenna is generally quite low so that the recciver sensitivity is usually set by the internal
noise generated within the receiver. The quantitative measure of receiver noise temperature
and the quantitative measure of externally originating noise is available in Berkowitz [16] and
Skolnik {7, '

An. unavoidable component of noise generated by the thermal motion of the conduction
clectrons in the ohmic portions of the receiver input stages. Since it increases with the
temperature of the source generating it, it is called thermal noise and is directly proportional
fo the temperature of the ohmic portions of the receiver circuit and the receiver bandwidth.
The available thermal noise power is generated by a receiver of bandwidth B, (in hz) at a

temperature T, (in *k) is equal to KT B,

The noise power in practical receivers is often greater than can be accounted for by thérmal

nois¢ alone. The additional noise components are due to mechanisms other than the thermal
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agitation of the conduction electrons. No matter whether the noise is generated by a thermal
mechanism or by some other mechanism, the total noise at the output of the receiver may be
considered to be equal to the thermal noise power obtained from an ideal receiver multiplied by

a factor called the noise figure which is formulated in the first chapter [7).

There are many other forms of radar signal contamination and distortion that can be identified

with the known physical systems [17]. These include:

(H slow phase path variations caused by travelling ionospheric disturbances;
(2) discrete multimode propagation;

(3) high angle rays, with strongly range-dependent Doppler shift;

(4 impulsive noise from distant thunderstorms;

(5)  manmade radio frequency interference;

(6) echoes from meteors, auroras; _

(7) - ground clutter received through side lobes, back lobes.

Detector:

Detector characteristics also play an important role on radar performance. An elaborate
description of detector characteristics are available in Skolnik [7]. The portion of the radar
receiver which extracts the modulation from the carrier is called the detector. It includes that
portion of the radar receiver from the output of the IF amplifier to the input of the indicator or
data processor. One form of detector is the envelope detector, which recognizes the presence of
the signal on the basis of the amplitude of the carmrier envelope where all phase information is
destroyed. Another detector called zero crossing detector which counts the zero crossings of the
received wave form. The coherent detector is an example of one which uses both phase and
amplitude. The coherent detector does not destroy phase information as does the ‘envelope
detector, nor does it destroy amplitude as does the zero crossings detector. Since it utilizes more
information than either the cnvelope.dctector or the zero crossings detector, it is not surprising

that the signal-to-nois¢ ratio from the coherent detector is better than from the other two.



In practice, target fluctuations introduce random phase varations in the high frequency signal
received }back from the target. The high frequency pulses cannot be simply heterodyned down to
the baseband signals and then added. This is the problem always encountered in adding pulses
of the same frequency but different phase. Sometimes the resultant sum adds up, and sometimes
it decreases, because of phase cancellations. The lack of phase coherence pulse to pulse means
that the individual pulses must be envelope detected before processing. Therefore, an integration

loss is a common phenomenon in the detection processes [30].
Importance of the Study:

Target tracking is an important problem with wide applications in both military and non.military
areas such as fire control systems, satellite orbit determination, maritime surveillance and air
traffic control [29]. The need for radar systems evaluation under real conditions has grown
because of the great increase of radar systems used for air traffic control over the last few years
[14]. One of the most interesting features is the radar tracking by prediction-correction fashion
and this thesis is devoted to the random signal processing of radar tracking problem using
Katman filter which is a technique like this. The main advantage of Kalman filter is that it offers
the best estimate of random signals for simultaneous estimation of vector (multidimensional)
signals. Random signal correction is a signal processing techxﬁque to improve signal quality by
removing contamination and distortion. In the processing of signals by using Kalman filter no

matrix inversion is required and many calculations can be done offline [3-6,11,20].

Air traffic control consists mainly of detecting aircraft, identifying them, and estimating their
location and speed. This task is made more and more difficult because of greater aerial traffic.
The range of signal processing algorithms for radar remote sensing is constantly being expanded

as new techniques are dcvelopéd and refined {8,10].
Kalman filter or the extended Katman filter can be applied in a wide varieties of fields such as
(1) For the estimation of attitude?) angles of an orbiting satellite such as weather

satellites, environmental sensing satellites, communication satellites, orbiting

astronomical observatories and many other satellites.



(2)  For the estimation of the position and velocity of a space vehicle on circumlunar
mission.

(3) For the estimation of the number of cars traversing a given section of a highway
and their velocities. This information is needed in developing any automatic traffic
control system.

(4)  In meteorological department for weather forecasting.

We have also presented the feature of secondary radar since the probability that two aircraft fall
in the same radar beam of a civil airport is no longer negligible. Secondary radar is very well
matched to this task because aircraft play an active role in the sense that they themselves emit

the requested information {3,31].
Thesis Organization and Objective:
This thesis comprises eight chapters which is structured as follows:

Chapter one presents the radar equation and the brief description of the sources of noise and

interfering signals.

Chapter two focus on the simple signal processing problem, i.e. detection of the presence of a
signal in noise. The chapter starts with the discussion on detection criteria and finally present the

curves relating the probability of detection and signal-to-noise ratio.

Chapter three begins with a brief discussion of digital filtering theory relevant to estimation
theory and presents the concept of an estimator. In this chapter filters are classified as

nonrecursive and first-order recursive types for the ¢stimation of signals in noisy data,

The theoretical basis of estimation method is presented in chapter four based on the minimization
of mean-square error. Here we motivated a methodology that describes the estimation procedure

to find the best possible linear filter.



In chapter five we have investigated the optimum recursive estimation and we get a set of
equations referred to as the scalar Kalman filter.

Chapter six actually has sought to provide an organized mathematical technique for radar data
processing algorithms. The first-order Kalman filter equations specified in chapter five are
modified in this chapter to take higher-order filters into account. Both filtering and prediction
problems have been introduced in this chapter.

In chapter seven we apply the method of vector signal processing specifically for radar tracking
problem. A computer program has been developed based on the Kalman filtering and prediction
equations for radar tracking. Results of computer calculations have been introduced in this
chapter.

Finally, in chapter eight we make conclusion of our findings and recommend some issues for
further research in this direction. ‘

This thesis is an attempt to process the random signals in an optimum sense, i.e. from a given
set of data samples how to determine whether a signal of known characteristics is present or not.

The estimates that minimize the mean-square error are taken as the ‘best’ or optimum estimates.

The problem of detecting the presence or absence of Jsignal in the continuous presence of noise
is often encountered in the broad area of signal processing. In detection problems occurring in
practice several types of signals may be present simultancously. The problem is then is to see
whether the signal of interest is present in this group. The other signals are then labeled
interfering signals and may be lumped in with the ever present noise. |

There are two specific functions of radar, aircraft detection and tracking. Once the presence of
an aircraft is detected, tracking begins. These two functions of aircraft detection and estimation
of its characteristics, for tracking purposes, involved signal processing problems because of the
unavoidable presence of noise, as well as other possible deleterious effects. This may be useful
in tracking the target to cnsure that it is following an appropriate sky path, to prevent air
collisions, or to help in the approach to an airport. Kalman filter has applied for this pwrpose and
a computer model has been developed based on the equations that constitute the vector Kalman
filter and vector Kalman predictor for radar signal processing. A set of curves have been
produced from computer calculations to show the validity the model.
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CHAPTER 1

THE SIMPLE FORM OF RADAR EQUATION

1.0 Introduction

A simplified form of the radar equation has been derived in this chapter. In section 1.2, we
discussed generally the atmospheric effect on the propagation of radar waves. The noise
introduced by the receiver can be found by calculating the noise figure of it which is also
discussed. Integration of radar pulses which is a technique to improve the performance of radar
system is presented here. The other feature presented in this chapter is the brief description of

the sources ol noise, interfering signals and limitations in detection problem.
1.1 The Simple Form of Radar Equation

The radar equation relates the range of a radar to the char:.icteﬁstics of the transmitier, receiver,
antenna, target, and environment. If the power of the radar transmitter is denoted by P, and an
isotropic antenna is used (one which radiates uniformly in all directions), the power density
(w/m?) at a distance R m from the radar would be P/4mR2. The radar antenna serves to focus the
be¢am in a desired direction, however, this focussing e¢ffect being given by its gain G over the
uniform (or isotropic) power density distribution in space. The power density at the target from

an antenna with a transmitting gain G is thus PG/4nR2 [1,7].

The target intercepts a portion of the incident power and reradiates it in all directions. An ideal
reflecting object of cross scction A, located R m from the transmitter will reflect back to the
transmitter PGA/4nR? w. This power in turn spreads out in space as it moves back to the radar
antenna. The reflected power density in w/m® back at the antenna is thus the power reflected from
the target divided by the surface area 4nR2 encompassed, or just (P,GA/4nR#/4nR? If the

effective area of the receiving antenna 1s denoted by A, the power received by the radar is
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GA, A PGAA
P= oA A AGAA. (1.1)
4mR* 4 R*  (4m)R* :

The maximum radar range R, is the distance beyond which the target cannot be detected. It
ocers when the received echo Signaj power P_ just equals the minimum detectable signal S__ .

Therefore

PGAA,
(417-)2 min

i
- 4
1 ax

This is the fundamental form of the radar equation. Ideally, for an antenna of aperture arca

A, m’, G is given by

g (1.3)

AZ
with A the wavelength of the high frequency energy.

Since radars generally use the same antenna for both transmission and reception, we have
PG*A*A_|;
(411-)3

The radar equation states that if long ranges are desired, the transmitted power must be large,
the radiated energy mwst be concentrated into a narrow beam (high transmitting antenna gain),
the received echo energy must be collected with large antenna aperture (also synonymous with

high gain), and the receiver must be sensitive to weak signals [7].

This simplified form of the radar equation does not adequately describe the performance of a
practical radar. Many important factors that affect range are not explicitly included. In
practice, the observed maximum radar ranges are usually much smaller than what would be
predicted by the above equation. There are many reasons for the failure of the simple radar
equation to correlate with actual performance. A complete and detailed discussion of all the
factors that influence the performance of aA radar 1o predict range and bearing is not the -

subject matter of this thesis. However, the sources of errors and limitations in detection and

12
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tracking of a practical radar system 1o be treated only lightly, More detailed information will be
found in the references listed at the end of this thesis [7,16].

1.2 Propagation of Radar Waves and Atmospheric Effects on it

The radar is an electromagnetic system that operates by transmitting a particular type of
electromagnetic waves. The propagation of radar waves is affected by the earth's surface and its -
atmosphere. The earth is almost a bcrfcct absorber at microwave frequencies and can be treated
as a black body at a physical temperature and noise from the earth will usually enter via the
antenna. Morcover, scattering of electromagnetic energy from the surface of the earth, refraction
causcd by an inhomogeneous atmosphere, and attenuation by the gases constituting the
atmosphere affect on the propagation of radar waves. The regions of the atmosphere which affect
the propagation of electromagnetic waves are the troposphere and the ionosphere. The absorption
of radar waves in the lower atmosphere is the result of the presence of both free molecules and
suspended particles such as dust grains and water drops condensed in fog and rain. In a
noncondensed atmosphere, oxygen and water vapor are the substances which cause absorption.
This kind of absorption is called tropospheric attenuation. In the upper atmosphere, electron
collisions occur due to the presence of neutral particles and heavy ions. The ultimate effect of
collisions is to cause absorption of energy from the electromagnetic waves traversing the ionized
medium. This type of absorption of signal energy is called ionospheric attenuation. Moreover,
because of the nonisotropic characteristics of the troposphere and ionosphere, radar waves on their
passage through the atmosphere experience an angular deviation. The radar is also atfected by
the reflection, or back scatter, of energy from the earth's surface and from rain, snow, birds and
other clutter objects. The radar waves propagating within the atmosphere do not travel in straight
lines but are generally bent or refracted. Bending, or refraction, of radar waves in the atmosphere
is caused by the variation of the index of refraction. One effect of refraction is to extend the.
distance to the horizon, thus increasing the radar coverage, fig.(1.4a). Another effect is the
introduction of errors in the management of elevation angle, fig.(1.1b). In the troposphere, the
index of refraction, which is a function of meteorological variables, such as water vapor, air

temperature, and air pressure, can be represented by
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5
(-1)x10°= N = 118P, 3.73x10°¢ S
A 72

n = refraciive index

T = air temperature (°k)
p

e

[l

where

barometric pressure (mbar)
= Partial pressure of water vapor (mbar)

The parameter N=(n-1)x10° is the “Scaled up” index of refraction and is called refractivity.

Radar :
,é'ﬁtr‘ _~—Roaar ray inthe presence of refroctian
B = Rodor roy in the obsence of refroction

Rador horizon in the
absence of refroction ——

Rogdor horizon in the
presence of refraction

(el
Apporent
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/

/
_//’
Angular e -7 neiracies roy
Lt rye
_—

RDGGr,Q 1arget
= . . position
=

44

Fig. 1.1 (a) Extension of the radar horizon due to refraction of radar waves by the
atmosphere, (b) angular error caused by refraction '
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The prime difference between optical and microwave refraction is that water vapor has negligible
effect on the former, cdnsequently the second term of eqn.(1.5) may be neglected at optical
frequencies. Since the barometric pressure and the water vapor content decrease rapidly with
height, while the temperature T decreases slowly with height, the index of refraction normally
decreases with increasing altitude. A typical value of the index of refraction near the carth surface
is 1.0003. In a standard atmosphere the index decreases at the rate of about 4x10° m of altitude.
The decrease in refractive index with altitude means that the velocity of propagation increases
with altitude, causing radar waves to bend downward. The result is on increase in the effective

radar range as was illustrated in fig.(1.1a) [7,16).

Another mechanism that permits radar coverage to be extended beyond the geometrical horizon
is diffraction. Radar waves are diffracted around the curved carth in same manner that light is
diffracted by a straight edge.

These arc the causes for which time delays or range errors are always inherent in radar target
measurement. Again, when the antenna looks into space and searching for aircraft, it continuously
picks up electromagnetic cnergy from the earth's atmosphere, radiation from the earth itscif and
from the sun if the antenna beam intercepts the sun's range, and the noise like electromagnetic
radiation which arrives from the extraterrestrial sources as our own galaxy, extragalactic sources,
and radio stars which is known as cosmic noise. In general, this cosmic noise level will vary

directly as the square of wavelength [1,7,16].

The chief effect of weather on radar performance is the back scatter or clutter, from precipitation -
w1thm the radar resolution cell. In general radars at the lower frequencies are not bothered by
meteorologlcal or weather effects, but at the higher frequencies, weather echoes may be quite
sirong and mask the desired target signals Jjust as any other unwanted clutter signal, The other
important factors that affect the radar performance and those are mentioned in this section can

be found with mathematical formulation and graphical representation in the references.
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1.3 Noise Kigure

The noise figure of a receiver is a measure of the noise produced by a practical receiver as
compared with the noise of an ideal receiver. The noise figure ¥, of a linear network may be
defined as

SYN; N,

F o= /= e e, (1.6) -
" S/N, KTBG

where S; = input signal power
N; = input noise power (equal to KT B, )
S, = output signal power
N, = outpul noise power
K = Boltzman's constant = 1.38x107 j/°k
G = gain = S /5,
T, = standard temperature
B, = noise¢ bandwidth

The noise figure may also be written as

KTB,GAN AN
=1+

" KTBG KT B G

I -

where AN 1s the additional noise introduced by the network itself, Therefore, the noise figure
F, is essentially a measure of how much additional noise the receiving system introduces over
and above the thermal noise picked up by the antenna, i.c. the noise figure may be interpreted
as a measure of the degradation of signal-to-noisc ratio as the signal passes through the

receiver.

The effective noise temperature, T, is defined as
T~ -1)T,
and the system noise temperature, T, is defined as the effective noise temperature of the
recerver system including the effects of antenna temperature, T, such that
T=TA+T,

or, T=TF, (1.10)
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where F, is the system noise figure including the cifects of antenna temperature. The effective

noise temperature of a receiver consisting of a number of networks in cascade is

T = T+£+ 5 to STCTRUR 1 §

where T, and G; are the effective noise temperature and gain of the ith nerwork.

The effective noise temperature and the noise figure both describe the same characteristics of
a network. In general, the effective noise temperature has been preferred for describing low
noise devices, and the noise figure is preferred for the conventiomal receivers. For radar
receivers the noise figure is the more widely used term. We may now introduce this into the
simple radar equation that derived in section 1.1. Eqn.(1.6) can be written as

KT,B F S

S = TO L e (1.12)
0

If the minimum detectable signal s, is that value of S, corresponding to the minimum ratio

of output signal-to-noise ratio (S/N.),. necessary for detection, then

;

S,
= kT,B F vw:l .................. (1.13)
N

non
0

S

niin

min

Substituting eqn.(1.13) into the simple form of the radar eqm.(1.2), derived in section 1.1, we

have

) PGAA,
R: = -
UmPKT,B F(S/N)_

Therefore, the receiver should be designed to generate as little internal noise as possible,
especially, in the input stages where the desired signals are the weakest. There are some other

losses that occur throughout the radar system and reduce the signal-to-noise ratio at the receiver
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output. The antenna beam-shape loss, collapsing loss, and losses in the microwave plumbing are

example of losses which cannot be ignored in any serious prediction of radar performance [16,7].
1.4 Integration of Radar Pulses

For the signal pulses radiated by the radar arc of finite encrgy and must themselves compete with
the noise after reflection by the aircraft. The radar beam spreads steadily as it propagates into
space, providing an unavoidable 1/(range)® decrease in power in each direction, or 1/(range)’
decrease total. The signal power returned depends on the reﬂectihg properties of the aircraft as
well as its distance, and sometime can be of the order of the noise or even less. In practice, to
reduce the error, the probability of detecting a signal at one particular range and azimuth setting
is enhanced by combining several successive signal-pulse returns from the same target. This is
possible in a single radar scan where each location in space is illununated by several successive
pulses. Actually the radar beam in rotating through space covers a typical target long enough to

have several pulses returned from it [7,16].

If the n number of pulses returned from a point target as the radar antenma scans through its

beamwidth, then

8,f, @0
n = .
i o 6w

§ o

where Oy = antenna beamwidth, deg.

I, = pulse repetition frequency, hz.

-

8, = antenna scanning rate, deg/s

5

W, = antenna scan rate, rpm

The pulse repetition frequency for primary radar 633 hz, beamwidth 1.5° and antenna scan rate
13 rpm. These parameters result in 10.55 hits from a point target on each scan. The process of
summing all the radar ccho pulses for the purpose of improvement in detection is called
integration. Many techniques might be employed for accomplishing integration. All practical

integration techniques employ some sort of storage device.

18



Integration may be accomplished in the radar receiver either before the second detector (in the
IF) or after the sccond detector (in the video). Integration before the detector is called
predetection or coherent integration, while integration after the detector is called postdetection

or incoherent integration.

The pulse repetition frequency (prf) is determined primarily by the maximum range at which
targets are expected. If the prf is made too high, the likelihood of obtaining target echoes from
the wrong pulse transmission is increased. Echo signals received after an interval exceeding the
pulse repetition period can result in confusing range measurements. A high prf is desired to

provide maximum average power on the target.

Predetection integration requires that the phase of the echo signal should be preserved if full
benefit is to be obtained from the summing process. On the other hand phase information is
destroyed by the second detector in postdetection. For this reason, postdelection integration is not

as efficient as predetection integration.

If n pulses, all of the same signal-to-noise ratio, were integrated by an ideal predetection
integrator, the resultant or integrated signal-to-noise (power) ratio would be exactly n times that
of a signal pulse. If the same n pulses were integrated by an ideal postdetection device, the
resultant signal-to-noise ratio would be Iess than n times that of a single pulse. This loss in
integration efficiency is caused by the nonlinear action of the second detector, which converts
some of the signal energy to noise energy in the rectification process. Alflmugh postdetection
integration is not as efficient as predetection integration, it is easier to implement in most
applications. Postdetection integration is therefore preferred, even though. the integrated signal to

noise ratio may not be as great. The integration efficiency may be defined as follows:

(S'N)
(= 22D
n(gN)n
where  n = number of pulses integrated of equal amplitude
(S/N), = value of signal-to-noise ratio of a single pulse required to produce given
probability of detection (for n =1)
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(S/N), = value of signal-to-noise ratio per pulse required o produce same probability of

detection when n pulses are integrated.

The improvement in the signal-to-noise ratio when n pulses are integrated in postdetection is
nE(n) and is the integration improvement factor. The improvement with ideal predetection would

be equal to n.

In practice, an integration loss will be encountered that can be estimated as a function of n and
the type of integrator used. Integration loss in decibels is defined as L,(n)=10log [1/En)]. The
integration improvement factor (or the integration loss) is not a sensitive function of ecither the
probability of detection or the probability of false-alarm. Details about integration type and loss
due to this ar¢ available in Schwartz [1] and Skolnik [7].



CHAPTER 2

DETECTION OF SIGNALS IN NOISE

2.0 Introduction

In first chapter we discussed briefly the nature of radar associated with the air traffic control
system. In this chapter we focus on the detection of the presence of desired signal in the
cbntinuous presence of noise, one of the two signal processing tasks. In section 2.1, detection
theory is presented where the signal is considered to be constant amplitude and the noise is
assumed to be gaussian and independent of the signal. In section 2.2, the Neyman-Pearson
¢riterion is presented and the results obtained were used to assess the performance of the air

traffic control radars at Zia International Airport.
2.1 Detection Theory

The detection of weak signals in the presence of noise is equivalent to deciding whether the
receiver output is due to noisc alone or to signal-plus-noise. Assunung the signal of constant
amplitude A whose presence we are interested in detecting in the continuous presence of noise
v(k), independent of the signal. The composite received waveshape that we must process to

determine the presence of signal is then

_ xkKy=A+vky 2.1)
or, x(k)=v(k)

The signal when it does appear results in a change in the dc level or bias of x(k) as shown in

fig.(2.1). The signal is shown raising the level of x(k) by A units during the T second it is
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present. Assume that we continually sample x(k) m times in T second interval as shown in
fig.(2.2a).

(1)
4 / Noise _Signal + noise
A\
Fig. 2.1 Received analog waveshape
x(¢t)
4 .
Signal?
x1 « 0w X: e v »

Signal? Xy
X x

VAIIRV4 T 7

1234 v

X1

]
&i
R

Fig. 2.2a Sampled form of received signal
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Fig. 2.2b Modulation of a signal by a sequence of impulses

In communications and control systems, the discrete-time sequences x(k) and y(k), or in the
general notation f(k), are samples of a continuous-time waveform. These can bé interpreted as
a form of modulation of the signal f(t) by a sequence of impulses as in fig.(2.2b). A signal (1)
is sampled every T seconds output wave will be

£t = KK

and can be represented as

£(= £(HY B(+kT)

k=0
or, £(6)= Y £kT) 8(+4D)
=0

where the subscript s denotes the sampled signal. We are now interested in processing the m
samples x;, j=1,2,3,...,m, in any T second interval to determine the presence or absence of signal.

We assume that the noise before entering the system is white or at least that its bandwidth is
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much higher than that of the signal with which we have to deal. We also assume that there is
some bandwidth B sufficient to pass the signal essentially undistorted [13]. In most detection
systems x(k) is filtered to bandwidth B prior to the sampling process to reduce the effect of the
noise. For white noise, however, the mcah noise power is proportional to the bandwidth, and so
restricting the noise bandwidth as much as possible can only help in the detection process. We
shall assume that v(k) is bandlimited white noise of bandwidth B.

We know from Nyquist sampling theorem that with the signal f(t) band-limited B hertz, it is then
~ readily shown that sampling the signal does not destroy any information content, provided that
the sampling rate f,>22B. The minimum sampling rate of 2B times per second is called the
Nyquist sampling rate and 1/2B the Nyquist sampling interval. So the' larger the number of
uncorr¢lated samples of noise or signal-plus-noise we can collect, the better our chance of
detecting a signal when it appears. Therefore we may select the sampling internal T exactly 1/2B,

with a comresponding maximum of m=2BT samples in any T second interval.
In detection problem usually two types of error may occur:

(1) the signal may be missed when it is present because of the noise;
or (2) the noise may be detected mistakenly for signal when the signal is absent (often
called a false-alarm).

The overall probability of error is due to both. We denote the. probability of first type of error
by P, and the second by P_. An ideal radar signal detector would be one which maximizes the
probability of detecting the signal when it appears and minimizes the probability of mistaking
noise for signal when it is absent. Unfortunately, both probabilities cannot be optimized
simultancously. The best we can do to keep the noise probability (or false-alarm probability) at
some tolerable level and maximize the corresponding signal probability. This is the performance.
criterion usually adopted for radar systems, The radar case is an example of a detection problem
in which the signal appears relatively infrequently, wﬂh no predetermined (a priori) statistics,

where as the noise is always present [1,30].
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Now both P, and P, are conditional probabilitiés since they are conditioned on the signal's being
present and absent, respectively. Since these errors are due to mutually ¢xclusive events, we can
find the overall probability of error P, by adding the two error probabilities after unconditioning
‘them by multiplying by the appropriate probabilities of occurrence of the two events. So,
P=PP,+1-P)P, (2.2)

where P, is the (assumed known) probability of occurrence of signals,

It is obvious that both P,; and P depend on the respective distributions of X, in the two cases
of signal present or signal absent, so that the minimization of P, depends on these statistics as
well. Considering a typical case as shown in fig.(2.3), where we denote the probability density
function of x, when the signal is absent, f(x, |0) and that when the signal is present, f(x, | s).
We have

fx,|O=fxy (2.3)

if the noise is gaussian lhen we can write

: o - szza‘l
L(v)= ——— (2.4)
217'0?,
c—-xfﬂo:,
So, £f(x [0)= ——— (2.5)
21:'0?, '

Similarly, with signal present x,=A+v, we obtain
e-(xl-.4)2nai
fx|)= T (2.6)
21701

The processor for one sample x,, must have a decision rule which specifies two separate

ranges of the possible values of x,, the range of values X, corresponding to signal present
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hypothesis and the range of values X, corresponding to the signal absent hypothesis. The
probability of error P, depends on the particular choice of these two joint regions, and it is the

object of our analysis to find those ranges which minimize P..

If we assume that the two regions are simply chosen as shown ‘in fig.(2.3), a'decision level d is
picked; all values of x,>d correspond to signal present (X,), and all values of x,<d correspond
to signal absent (X,). In geheral, the two regions X, and X, incorporate all points on the line
corresponding to possible values of x, and may cover several decision regions, as shown in
fig.(2.4). '

Fig. 2.3 Decisionsregion
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Fig. 2.5 Decision regions for different values of P,

It 13 apparent from the definitions that P, corresponds to the probability that x, will fall into
region X, given that only noise is present while P, corresponds to the probability that x, will
fall into region X, given that a signal is present. These probabilities in tum are found by

integrating the appropriate density functions over the respective regions. Specifically, for the
example shown in fig.(2.3), we have ‘

P = fx(mf1 Odx, @7)
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and P

el

= fxaf(xllbjdxl ' ......................‘..(2.8)

From eqn.(2.2), the overall probability of error is given by

P, = Plf%f{ms}dxl + (1—,01)&1?();] 0)dy, e - A2.9)

Since X, and X, cover the entire space of x,, we can eliminate X, using

jm,‘ Ax|9dx =1

8

We have

P =P + fx[(l—Pl)f(,rl|0) - Pf(x]9)]dx, ervernreisnirnnnnn(2.10)

Since P;, 1-P;, and both density functions ar¢ all of necessity positive, it is obvious that for

minimum P, we can choose the inequality
PEx|9) > A-PYAx0) (2.11)
Therefore, in this case the integral over X is as negative as one can make it, and hence P, is

as small as possible. The values of x; satisfying inequality (2.11) thus correspond to region

X,, while those which reverse the inequality correspond to X,

Again, from eqn.(2.11), we can formulate the so-called likelihood ratio as

f(x,]8) N 1-P
finjo) A

Kxy= =205 270 (2.12)

If P, increases, the X, region increases and the X, decreases corresponding to an increased
likelihood that signal will be detected. Similarly, as P, decreases, the X, region is reduced in

size as shown in fig.(2.5).
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Now for m random variables xl,xz,...,xj,....,xm and with geometric properties of them, we may
define an mi-dimensional probability density function f(x,,X,,...,X,) integrable over the entire m-
dimensional space. Once an m-dimensional region X, is chosen, an error will occur with the
signal absent if the composite sample group falls into region X,. The probability of this

happening is given by the appropriate integration over X, such that

i

P, = lele_lI [f(-ﬂ'lo)]d’ﬁ---d*fm e (2..13)

which is just the 'm-dimensional extension of eqn.(2.7). Proceeding exactly as in the one-
dimensional case, it can be shown that the detection procedure appropriate to minimizing the

overall probability of error consists of deciding the signal is present if

(x,]s)
l,;[ x{s.> -

/(Xli""xm) = . (214)
I1 £x)0) !
Fi :
Taking the natural logarithm of both sides of eqn.(2.14), we have
m fxls 1-P
T T 2.15)

1 f(-’fj|0) P

The detection procedure thus consists of operating on each sample, summing the resultant
numbers, and checking to sce whether this sum is greater than a specified threshold. Now if
the noise is gaussian we can use the eqns.(2.5) and (2.6) to find the ratio of density functions
required by eqn.(2.15) and taking the natural logarithm, we get a decision rule which decides
that the signal is present when the values of x, j=1,2,...,m, satisfy the inequality

”’ | . 1-P, |
, Yl -(x-ay ] >200 It s (2.16)

F1 1
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From which we obtain

m mA ai
E,}[.) + —
= 2 A P

The optimum processor that we obtain here consists of a summer which simply adds the

samples and checks to see whether the sum exceeds a specified level d.

If we divide through by the constant m, we have an altemate optimum processor where we

decide a signal is present if

1-7, Y e (2.18)

m 2

1 A a,
y == x> =4 ( In
mz;f 2 mA P

Hence we can say that for paussian noise with fixed signal amplitude A the sample mean is
the appropriate number to be calculated in detecting the presence of the signal. An example of
the overall probability of error P, from eqn.(2.2) is shown in Schwartz {1] for the special

case P, =P, such that

p=1a- erfJTnA) ................... (2.19)
2 2‘/50‘,
with the error function of x defined as
erfx = —-. [ e a e, (2.20)
o | -
T

From which we get the performance curve as shown in fig.(2.6). It is apparent that if we
desire a probability of error P, less than 10* we require vmA/o, >7.3. For vmA/o, = 10,
P, = 2.87x10°, for vymA/g = 11, P, = 19107 and for vmA/g, = 12, P, = 1.0x10”. So small
changes in A/o,, the so-called signal to noise ratio result in significant changes in the

probability of error. This is due to the exponentially decreasing tails in the gaussian
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distribution. For this reason, increasing the signal-to-noise ratio are considered so significant in
signal processing systems and one tries to reduce the noise and increase the signal power received
as much as possible. To improve the equivalent sighal-to-noise ratio the number of samples m
may also be increased. Since the samples are spaced a fixed time interval apart to ensure

statistical independence, the time for detection increases with m [1].

1072

P, 104

10-8 | .
22 JmA .
m
-~ (dB)
Ub. ‘
Fig. 1.6 Performance curve of the optimum detector (for P,=0.5)
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2.2 Neyman-Pearson Theory for Radar

In the detection problem an appropriate performance criterion is one that maximizes detection
probability while keeping the false-alarm probability fixed at some tolerable value. This criterion
will be discussed in detail and we shall use the results obtained here to assess the performance
of the air traffic control radars (primary and secondary radar) at Zia International Airport.

" The Neyman-Pearson criterion, after the two statisticians who first explored its properties,
ininimizes the probability of signal loss, P, with the probability of mistaking noise for signal,
P_, held fixed at some tolerable level. In radar case, we would like to maximize the probability
of detection P,= 1-P,, with a false-alarm probability P.= P, specified. For an m-dimensional

space with the m independent samples X;, X,,..., X,, We have, as in eqn.(2.13)

1-£, = P = le.:_fE [f(’\’,"."')] dx,...dx, | (2.21)
and P, = an - j:,(f q[ﬁxj'|0)}d¥1"-dxm ......................... (2.22) _
| A ,

It is apparent that we cannot simultancously adjust the signal region X, to maximize the
detection probability P, and minimize the false-alarm probability P, Therefore, in Neyman-
Pearson test P_ is kept fixed at some tolerable level and then search for the region X, that
maximizes P, We consider a signal of amplitude A appearing in a gaussian noise background.

Then for one sample x, we can show that the signal is declared present if

X, > d=

SRES

2
c Mk (2.23)
A

where k 1s a constant, This is shown in fig.(2.7). Upon normalizing, and using the error

function definition, for gaussian noise we have
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Eqn.(2.24)‘shows the relation between the thrc;v,hold d (or, equivalently, the constant k) to the
false-alarm probability P_. It is apparent from eqn.(2.24) that reducing P, increases d, and vice
versa. Moreover, the threshold level d is independent of the signal amplitude A and; it
depends solely on the noise standard deviation. But eqn.(2.23) indicates the dependency of d
on A. The constant k obviously must adjust itself to make d independent of A. In the case of
m independent samples of a signal of amplitude A appearing in a gaussian noise béckground,

the signal is declared present if

'y = z Xj -] d ................(2.25)
A

Then with signal absent, E(y)=0 and 0 *=mo }? the variance of each of the m noise samples.
The density function of y with signal absent is then given by
e~y’/202r

o) = ' . (2.26)

2
2mo y

using eqn.(2.26), we can express the false-alarm probability by

w w ' ] 2 7 .
P - fd A¥|0ydy = fc e—jﬁﬂ - %(1_.3,-;«0) ............. (2.27)

where ¢ is a parameter which is defined as
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The falsc-alarm probability and its relation to the decision level d is shown in fig.(2.8) whichis 1\
identical to the single-sample case with o, by replacing o, A.lthough the parameter d is 9
proportional to vm, the peak of the f(y|s) curve is proportional to m, as shown. Thus as m U

increases, there is an improvement in detection.

Fig. 2.7

Fig. 2.8 Neyman-Pearson test of signal for m independent samples
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The false-alarm probabilities of practical radars are quite small. The reason for this is that the
false-alarm probability is the probability that noise pulse will cross the threshold during an
interval of time approximately equal to the reciprocal of the bandwidth. Values of P,=10° to 10""°
and even smaller are muéh more realistic choices because radar signal pulses are commonly of
the order of 2/s in width or less. For P =10 a false-alarm would occur on the average of once

every 100 sec. For P.=10" the average false-alarm rate is once every 10° sec.

To solve the eqn.(2.27) for ¢ when P, is very small we have'to proceed integration by parts and
for small P, the integral of eqn.(2.27) can be represented by a so-called asymptotic geries (for c23
and P_<<1)

—c?

P o= L for 83 s (2.28)

" 2\/7_rc

If we take natural logarithm in the above equation and apply trial and error calculations we
can obtain the values of ¢ for the different values of P,. But here eqn.(2.27) is s¢lected to find
the values of ¢ (using known values of P) which is used in eqn.(2.32) to plot the curves

showing the variation of the probability of detection with signal-to-noise ratio, fig.(2.10).

The grobability of detection of signal P, which corresponds to the probability that
y= Exj >d with the signal present. Hence with the signal present E(y)"mA and o0 *=mo 2
as in'the noise onty case. This is indicated in fig.(2.8). Therefore, P, is given by

-yt

Pl s f/— d‘:%l_e}f(&_\/‘;mﬁ) ................... (2.29)
o m. v 1r g 20

v

For vmA/o =v2¢ the probability of detection is 0.5. As vmA/o  increases beyond this value,
P, increases, approaching 1. For a given probability of detection and probability of false-
alarm, one may find the required signal-to-noise ratio A/o_ or its equivalent power ratio
A?'/of: Increasing thc number of samples m used is equivalent to increasing the effective
A'0 2 by m as well. The reason for this is apparent from fig.(2.8). As m increascs, the width

of the curves shown, or the standard deviation o, increases as vm. The decision level d
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increases as vim as well. But the expected value of the variable y with signal increases directly
with m. The overlap of the two density functions decreases, and the probability of detection
increases with m. The physical reason for this is as more signal samples are taken, their
amplitudes add directly, providing the mA expected value of y, whereas the noise samples being
added are random. This is the usual phenomenon in signal-detection problems; adding more and

more independent samples makes the signal rise up out of the noise.

It was mentioned that the maximum number of uncorrelated noise samples available in a time
interval T second is m=2BT, where bandwidth B prior to sampling and samples taken at a
minimum spacing of 1/2B second intervals. For gaussian noise these samples are independent.
Since the mean noise power for bandlimited white noise is proportional to the bandwidth B, so

we can write

2
O'fﬂoB ....................

where ny=white noise spectral density = FKT, (watt/hz). Here F is the noise figure, K=1.38x107
I/ 7K and T, is the room temperature.
So, the effective signal-to-noise ratio,

mA® _ 2BTAY  2F

2
o n B n

where E=the energy in a single pulse=A’T.

Therefore, the detectability of the pulse is a function only of the effective signal-to-noisc
ralio, given by the ratio of its energy E to the noise spectral density n,. This is an important
result in detection theory. The ratio E/n, is used in determining the detectability of a signal in
gaussian noise. It is obvious that the probability of detection can be improved by increasing
the received signal energy E or by reducing the noise spectral density n,. The energy is in
turn given by the product of the signal power and the pulse duration T. Hence the

detectability is increased cither by increasing signal power or by lengthening the duration of
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the signal pulse. From this discussion probability of detection eqn.(2.29) can be reduced to the

form

P [ er 1 1—e;11c~ Eil (2.32)
o/ By Jar 2 \ 2,

This is a normalized form of the probability of defection which is applicable to the case of

varying-amplitude signal pulses as well as the special case of rectangular pulses.

2.3  Application to Air Traffic Control Radar

In order to discuss the signal detection characteristics of the radars using the technique developed
in this chapter, we need the radar equation that was developed in chapter 1, eqn.(1.4). We can
now proceed to discuss both the primary and secondary radar. The pertinent specifications for the
two radars (primary and secondary radar) at Zia International Airport are given in Table 2.1
and typical radar specifications for ASR and ARSR are given in Table 2.2. Relevant calculations
and elaborate description of radar performance curves can be found in Schwartz & Shaw [1]. But
the radar parameters for ASR and ARSR are given here in tabular form so that we can make a

comparalive study with primary and secondary radar specifications at a glance.

Usually the en route radars (ARSR) are designed to cover almost 3.4 times the range of the
airport radars (ASR) and for this reason, they are provided with higher transmitter power. But
since the secondary radar is equipped with the transponder, radar range extensively increase with
lower transmitter power as the transponder acts as a midway receiving transmitting station.

Considering a target having 2m’ reflecting area at the maximum range, the received powers are

7.15x10% watt for primary radar

i

P
2.91x107  watt for secondary radar (at the transponder)
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TABLE 2.1 RADAR (Primary and Secondary RADAR) Parameters

Radar Specifications Primary Radar Secondary Radar
Maximum Range R 160 km 370 km
Output Power P, 3.5 MW 2.5 KW

Frequency Range

.(1250-1350) MHz

(1030-1090) MHz

Pulse repetition freq.

633 Hz

316 Hz

Pulse duration 1.6 psec 3 psec
Pulse period 1.579 msec 3.16 msec
Wavelength 023 m - 0.28 m
Antenna Gain 32dB 20 dB
Antenna rolation 15 pm. 15 r.p.m:;
Antenna type AOH-THD 286 ~AS 809
Intermediate frequency 30 MHz 60 MHz
Range resolution 120 meter

Beamwidth 1.5° 1.35°

TABLE 2.2 RADAR (ASR and ARSR) Parameters

Radar Specification ASR (airport) ARSR (en route)
Maximum Range R 110 km 370 km
Output Power P, 400 KW 4 MW
Frequency Range 2.7 GHz 1.3 GHz
Pulse repetition freq. 1200 Hz 360 Hz
Pulse duration 0.83 ps 2 ps
Pulse period 0.83 ms 2.8 ms
Wavelength 0.11 m 0.23 m
Antenna Gain 34 dB 34 dB
Antenna rolation 15 rpm 6 rpm
Beamwidth 1.5° 1.35°
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From Table 2.1, it is obvious that the primary radar has 1400 times the transmitted power of the
secondary radar. But the secondary radar can cover almost 2.3 times longer distance that of the.
primary radar since the secondary radar is equipped with the transponder. Since E is the energy
ina rcctznigular pﬁ.lse of amplitude A and width T, we therefore have E=2P, T. The pulse widths '1'
fof the two radars are 1.6us for the primary radar and 3ps for the secondary radar respectively.

Therefore we have

2.289x10% J for primary radar

- 1.744x10"2 J for secondary radar (af the transponder)

As the wider pulse used for the secondary radar, target detection capability of it increase
correspondingly since for the wider pulse more energy is received, but the minimum radial
spacing of two targets rcqu.iréd to distinguish them also increase. Fig.(2.9) shows how two
airplanes can appear to be a single plane if the difference in propagation time to and from these

targets is less than the pulse duration.

It can be mentioned here that for any signal, no matter how small its pbwcr, could be detected
since it counts not the signal power or energy received but the ratio of signal-to-noise. The noise
figure for both radar system is specified to be F=4dB or 2.512 means that 151 percent additional

noise is introduced by the radar receiving system.

We may assume the usual room temperature on the ground is 300°K with F=4dB or 2.512
numerically. Then we have n,=1.04x10" watt/hz and the E/n, ratios are

{ 23.43 dB for primary radar
E/n, =
82.24 dB for secondary radar (at the transponder)
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Fig.2.9 Radar resolution vs. pulse duration, (a) Narrow separated pulses, (b) Wide

overlapping pulses

Upto this we have neglected several important effects and losses in this calculation and hence this
result does not represent the whole picture. The power loss that was ignored in this system may
be about 9dB  and reducing the detection probability. But infegration of radar pulses may
consider as a compensating factor. Both the primary and the sccondary radar rotate at a rate of
135 rpmy, completing a 360° scan in 4s. The two radar beams have azimuth bandwidths of 1.5°
and 1.35°, respectively. The number of pulses emitted per second are 633 and 316 pulses per
second, respectively. This corresponds to 10.55 pulses reflected per target in the primary radar
and 4.7 pulses per target in the secondary radar, providing that more samples in the signal
processing or, equivalently, augmenting the received energy by the same amount. Thus the
primary radar emergy received should be 10.55E and the secondary radar energy 4.7E.
Alternately, this results in E/n, improvement, of 10.23dB and 6.76dB, respectively.

Eqn.(2.32) is used to plot a family of curves relating probability of detection to signal-to-noise
ratio. The signal-to-noise ratio needed to achieve a specified probability of detection without
exceeding a specified false-alarm prébability can be calculated from these graphs. A resultant set
of curves describing the performance of the envelope-detector are labeled as noncoherent
detection and the coherent-detection with ¢=4.5 to maintain P,=10"° are given in Schwartz &
Shaw [1].
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2.4 Summary

So far in this chapter we dealt with the detection of the presence of a signal in noise and in doing
so we focused on two criteria primarily; (1) the minimization of the probability of error
appropriate in digital communications, and (2) the Neyman-Pearson criterion appropriate to radar,
sonar, and other systems in which the a priori probability of receiving a signal is not known.
Detection capabilities of both primary and secondary radar are considered here. In the next

chapter we focus on the estimation of random signals to extract the desired signal parameters.
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CHAPTER 3

DIGITAL FILTERING OF NOISY DATA

3.0 Introduction

In this chapter we have discussed digital (i.¢. discrete-time) filtering theory relevant to estimation
theory as developed in the following chapters. Further on in chapter 3, we consider the
nonrecursive and first-order recursive filter structures as estimators of signals in noisy data since
they lead into discrete-time Kalman filter form to be developed in chapter 5. In this chapter and
next, we approach the estimation problem in a step-by-step fashion: The mean-square error is

used as a criterion to assess the degree of noise suppression by the filter estimators.
3.1 Estimation of Random Signals

In all practical problems the signal is present but because of noise, inaccuracies in the data
samples, limited precision of instruments (these are often all modeled as additive noisc), the data
samples scatter about the actual signal values. The signal usually occupies a limited frequency
range, while the noise is spread over a wide band of frequencies. So the signal is random since
its precise value cannot be predicted in advance. Random signals are often called stochastic
signals or stochastic processes. The purely random signal has a constant spectral density over all
frequencies. This kind of signal is called white noise, by analogy to the property of white light
containing all frequencies of visible spectrum. In order to remove at least partly the noise from
the signal we would use some kind of filtering. The process of extracting the useful information
from a signal and discarding the extraneous is called signal processing. There are a vast number
of ways of processing signals. In most of the modern signal processing techniques one works with
so-called discrete-time signal. Discrete-time implics that signals are defined only for discrete
values of time, i.e. time is quantized. The process of picking values of an analog signal at a set

of discrete times is called sampling. Such discrete-time signals often referred to as sampled-data
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signals. The widely-used term digital implies that both time and amplitude are quantized. A
digital system is therefore one in which a signal is represented as a sequence of numbers which
take on only a finite set of values. Sampling and quantization occur in all signal processing work
involving digital compu.tcr. The combined operations are called analog-to-digital (A/D) conversion
{1,2,9].

The filtering of random signals is referred to as estimation, because most estimation filters are
statistical and estimation is a well-defined statistical technique. This text is concerned with the
development of signal processing techniques to extract pertinent signal information from random
signals utilizing any a priori information available. We call these techniques signal estimation,
and the filters that use discrete-time algorithms are called signal estimator or just estimator.
Sometimes estimators are called filters (e.g. Kalman filter) because they perform the same.
function as a deterministic filter except for random signals,i.e. they remove unwanted

disturbances. Noisy measurements are processed by the estimator to produce filtered data [9].

Noisy Measurement Estimate
> Signal Estimator >

Fig. 3.1 Typical signal estimator structure

The amount of information available in the data is related to the precision (variance) of the
particular measurement instrumentation used as well as to any signal processing devices or
algorithms employed to improve(? the estimates. There are many different estimators and
algorithms are available. We must have a reasonable measure to evaluate their performance,
and decide which one is superior.. The two primary statistical measures employed are the
mean (accuracy) and the variance (precision). These measures lead to desirable estimator
properties; i.e. we want estimators that are accurate or unbiased and precise. More formally,
an unbiased estimator is one whose expected value is identical with the parameter being
estimated.
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Estimation can be thought of as a procedure made up of three pnmary parts:

(1) the speciﬁcation_ of a criterion;
() the selection of models from a priori knowledge;
(3) the development and implementation of an algorithm.

Criterion functions are usually selected on the basis of information for which an estimator will
be developed and can be classified as deterministic and probabilistic. For example, mean-square
error criterion, maximum likelihood, minimum (error) variance etc. arc some typical criterion

functions.

Models represent a broad class of information formalizing the a priori knowledge about the
process generating the signal, measurement instrumentation, noise characterization, probabilistic

structure, etc. For example, a standard signal processing model is that of a signal in additive noise

Measurement = signal + noise

where the noise statistics are specified as well as the signal structure.

Finally, the algorithm or technique chosen to minimize (or maximize) the criterion can take many
different forms depending on (1) the models, (2) the criterion, and (3) the choice of solution. The
development of a particular algorithm is an interaction of selecting the appropriate criterion and
models as shown in fig.(3.2). Thus the estimation procedure is a combination of these three major
ingredienrs: criterion, models, and algorithm. Conceptually, This completes the discussion of the
general estimation procedure [1,12,25].

Model -
¥

Algorithm
Criterion T

'Fig. 3.2 Interaction of model and criterion in an estimation algorithm
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3.2  Digital Transfer Function

In linear discrete-time system, the input f(k) and output g(k) sequences are related by lincar
difference equations with constant coefficients. In the theory of digital or discrete-time filters, the.

general equation is usually written in the following way:

(k)b g(k-1)+... +b_g(k-m)= af(k)+aflk-1)yrotafken) oo (3.1)

where b, is taken, by convention, as unity. The interpretation of eqn.(3.1) is that at time
k(=kT), the output value can be computed from the current input and a linear combination of

previous inputs and outputs. Taking the z-transform of egn.(3.1) term-by-term, we obtain

G(z)(hf: b7 - F(z)i T (3.2)
#1 =0
where - F2) = E I(k)z_k
=0
and . G(2-Y ez
k=0

From egn.(3.2) we can now define the discrete-time (or digital) transfér function as

L Xag” |
Hp=22_.. =~ (3.3)

F LN
@y
L

which is a rational polynomial in z*, This transfer function is valid for zero initial conditions.

From eqn.(3.3) we can write for the oulput

G(z)=H(2)X(z) s (3.4)

. and the output sequence y(k) is then obtained using the inverse z-transform.
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~ From this discussion we have the output y(k) for the input x(k) as
n m
HE =Y ax(k-D-Y, by(k-)
=0 A
A hardware implementation of eqn.(3.5) is shown in fig.(3.3)

Present input Past input samples

sample -
x (k) x(k-1) xi{k-2) x(k-N]
o—e 7! z 7!
I Qo KZ‘-H CF KZ“N-! Z’N
Mullipliers

{qains)

y (k)

<
Present
output
sample

Multjpliers (gains)

'z"l

ylk-2)

ylk-1)

z-'l

ylk)

L — — —

Past output samples

_

z7' - unit delay

Fig. 3.3 Hardware implementation of a discrete-time filter
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3.3 The Classification of Digital Filters

For the purpbse of realization, digital filters are classified into nonrecursive and recursive types.
The nonrecursive structure contains only the feed forward paths as shown in fig.(3.4). This is a
special case of eqn.(3.3) in which all b, coefficients are zero, i.c. the output is a sum of linearly -
weighted present and a number of previous samples of the input signal. The input and output
sanlpled—dara signals, denoted by f(k) and g(k) respectively, will be changed later to y and x

where filters are considered as estimators. The output g(k) can be written as

(k)= OHK)+h(1)f(k-1)+.. +h(m-Df(k-m+1)

or

m-1 '
2(k) = Z ADHRk-1) e (3.6)
0

which is the convolution summation in discrete-time. This represents a finite memory

structure of finite number m of input samples.

In recursive filter structures the output depends both on the input and on the previous outputs,
as shown in the general hardware realization of fig.(3.3), where we have both feed forward
and feedback paths.

A simple first-order recursive filter structure is shown in fig.( 3.5). Here the output consists of

the present input and a weighted previous output, where the weight is denoted by a. The

output-input relationship can be written directly, by inspection of fig.(3.5) as

gky=fk)y+agk-1y (3.7)
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Past (m-1) inputsamples

Present input
sample

S .
! il
t
t(k) ik-1) t{k-2) tlk-{m-11)
Crmmim T T —————————— T T = One time unit
delay
hio} hil) h{2) him-2) him-t) -« Weights{or gains)
glk!
-0
Present output sampic
Fig. 3.4 Nonrecursive filter
f(k) +hJ/“\ g(k)
Present + Present
input output
sample g({k=~1) sample
a \ T
T T=Cne time unit
delay
Previous
output
Fig. 3.5 Recursive (first-order) filter
£(k) + 9 (k)
B._
- +

Fig. 3.6

g(k-1)

An alternative form for fig. 3.5
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Since the recursive tilter is a feedback connection, so for stability we need a<l. An alternative

form of the recursive filter is shown in fig.(3.6), for whicl_iwe have

gik)=g(k-1)+H f(k)-(1-a)gtk-1)] e (3.8)
We shall come across this type of recursive structure in chapters 4,5 and 6.

These tilters, nonrecursive and first-order recursive, are the structures on which estimation
{heory is based. They arc often referred to both as filters and as batch and sequential
proceséors. The first area, nonrecursive or batch processing, is also known as classical
estimation theory, while the second area, recursive or sequential processing, can be called

modem estimation theory.

The recursive structure has theoretically an infinite memory and hence it is referred to as an
infinite impulse response (1IR) filter design. It is not unconditionally stable unless restrictions

are placed on the values of the b coefficients,

Nonrecursive filter has only a limited memory, which is controlled by the number of delay
stages and it results in the finite impulse response (FIR) filter design. It has only feedforward
paths and is unconditionally stable. The input signal is'dclaycd by a number of delay
clements. The outputs of these time-delay .clements are subsequently multiplied by a sct of
stored weights and the products summed to form the output signal. This implies that the
output is given by the convolution of the input signal with the stored weights [2].

3.4 Nonrecursive Estimator

We use the notation x for a constant signal, and x(k) for the time-varying signal
Measurement of this signal is denoted by y(k), is lincarly related to the signal x and an
additive nois¢ component v(k), introduced by random ecrrors in measurements or any other
causes. Thercfore, we have

y(ky=x+v(k) : _ e {3.9)
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The signal x is a random variable with some expected value E(x)=x, and variance 0 2. The noise

samples are assumed to be of zero-mean with identical variances 0 2, and uncorrelated.

It is assumed that m data samples, as specified by eqn.(3.9), are to be processed using the
nonrecursive filter structure of fig.(3.4), with all m weights ¢qual to 1/m. The input f(k) is then
y(k), and the output ‘g(k) is taken as an estimate of parameter x, denoted by X, as shown in
fig.(3.7). Here data y(i), 1=1,2,...,m, arc available as a batch. They are stored, multiplied by equal

weights, and the resulf is summed to produce the output

o= L Y ) e (3.10)
m g

In general, the nonrecursive filter processor with different weights can be wriften as

m
R = E Oy e (3.11)
A1

It is more common to use the square of the error (X-x)* as a measure of the deviation between
the signal and its estimate and the mean-square error E(e’)=E(X-x)’ as the measure of
goodness of the estimate. If we define the error between this estimate % and actual value x as

| e=%-x, then the mean-square error is given by
p, = E[e’] = E®-x)* = E[x+v(k)-x]*

or = ENVK)] = 0

Now for the estimate over m data samples, as expressed by eqn.(3.10), we have the mean-
square error as given by

m

' 2
o, = E(e?) = B(x-x) = E{J— INES V(k)]w,x}

1 gy

or 1 - :

Ex + E V(A’)Lx '
=1

k=1 ]

1
p=E—
m

51



where f)ij represents the Kronecker delta, 1.e. 5;,'21 for i=j, and 5;;:0 for i#]. Therefore, we have

m

>y 8, = Z[‘Sfﬁa/z*---*‘sm]

A1l A1

&5, t 8, .+ 9,
+ 0, + 8, +..+ 0,

8 ,+0,,+. 0

In the above only 9§ for i=j are equal to 1, all the others are zero. There are m such terms,

therefore the result is then
p=0¢Xm e (3.13)
which is an important relationship showing that as the number of samples m increases, the

mean-square error p, decreases. The sample mean is thus a good estimate of X in this sense.

The sample mean has another interesting property in estimating x. If we take the cxpeciation
of X in eqn.(3.10), which gives

E(%)= {—I—EW y(m} = Ex) = x, s (3.14)
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Since, as stated carlier in this section, E(x)=xX,, and E[v(i}]=0.

Therefore, we have found that the estimate of x, on average, is the same as the average of the

estimate. An estimator with this property is called an unbiased estimator, which, on average,

produces the desired result.

Batch of m data

h(1l)

y(1)

Y(3)

h(2)

h(3)

h(m)

>

il
J|=
-Ms

h(1)=h(2)....=h(m)=1/m Y

-
(]

Fig. 3.7 Sample mean estimator

3.5 Recursive Estimator

We consider the simple first-order recussive filter shown in fig.(3.8), where y(k) and g(k) are the
input and output sequences respectively. The input signal y(k) represents the measurements as
expressed by eqn.(3.9), and the filter output is given by

gk)=y(k)tag(k-1)  ja|<l S ) £ )
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1

This filter continually updates the output, adding a new data sample, y(k) to a fraction of the
previous output ag(k-1). To find the result of such a process we consider sequentially input
samples y(1), y(2),..., y(m), assuming g(k)=0 for k<1. From eqn.(3.15), we have ‘
g(o) = y(o)+ag(-1) =0
g(1) = y(1)+ag(o) = y(1)

g(2) = y(2)+ag(l) = y(2)+ay(1)

g(3) = y(3)+ag(2) = y(3)+ay(2)+a’y(l)

g(m) = y(m)+ag(m-1) = y(m)+ay(m-1)+a’y(m-2)+...+a™y(2)+a™'y(1) ..............(3.16)
Substituting for y(k)=x+v(k), and separating the signal and noise terms, we have

g(m) = (1+a+a*+...+a™)x-+{v(m)+av(m-1)+...+a™v(1)]

m

or, g(m) = 1-2
-d

P 0 S (3.17)
£l

where the first term 1s the sum of the geometric series associated with x. For large m,

laj®<<1, the signal part of g(m) approaches xf1-a), while the variance due to the noise
approaches ¢ */(1-a’). This indicate that a good estimate of x is given by %=(1-a)g(m) which
leads to the important result

P= (1_3M)‘¥+(1_3)2 a™iv(y e (3.18)
1

This means that the outpus (1-a)g(m) is taken as an estimate of signal x, after the mth input

sample has been processed as shown in fig.(3.9).
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- Y(k) "’h/\ | | gé_’k)
+
W\?r/ | :

Fig. 3.8 Recursive filter as noisy data processor

y(k) — g(x) %=(1-a)g (k)
- Fig. 2.2b —»— 1-a -

X=(1-a)g(m)
k=1,2,...,m S ' (after m-th sample)

Fig. 3.9 Recursive filter as estimator

So by making the effective time constant a of the filter longer, we can reduce the mean-
square error in the e¢stimation of x. But this recursive device, although simple, is not the best

estimate of x.
3.6 Summary

Two types of filters are discussed in this chapter. The nonrecursive filter has a finite memory
and can have excellent linear phase characteristics, but it requires a large number of terms to
obtain a relatively sharp cutoff frequency response. The recursive filter has an infinite
memory and tends to have fewer terms, but its phase characteristics are not as lincar as the
nonrecursive ones. 'Nonrecursive filters have no feedback paths and hence no stability
problem. Since the recursive filter is a feedback structuré, the problem of stability must be
considered. Moreover, both kind of filters associated with the error results from the
quantization of the input data to a specified number of bits, and also due to the round-off in
the multiplication and addition operations of the digital filters. To determine their effects on a

digital filter, these sources of error are treated as random noise sources.
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CHAPTER 4

OPTIMUM ESTIMATION OF SCALAR SIGNALS

4.0 Introduction

In the previous chapter we talked about the estimation of random signals. We have seen in
sections 3.4 and 3.5 that the mean-square error is a useful criterion showing how good an

estimation process is. In this chapter, the mean-square error is taken as the fundamental criterion.

The optimum nonrecursive estimator derived in section 4.1 is the scalar Wicner filter.
Disadvantages of this batch type processor are summarized in section 4.2, where a recursive type
(or sequential) processbr is developed from the optimum nonrecursive type. The signal we
consider in this chapter is a constant signal parameter with a random distribution of its values.
In the next chapter we extend this tcclmiqlie to random time-varying single signal which is named

as scalar signal {1-3].
4.1 Optimum Nonrecursive Estimator (Scalar Wiener Filter)

In this section we deal with the nonrecursive filter whose output is to be the signal estimate, i.c.

m
=Y Ay (O (4.1)
Al . _

where y(1), ¥(2),....y(m) aré¢ m data signals which is a linear batch processor. Now we choose
the m coefficients, h(i), i=1,2,...,m, that minimizes the mean-square error, i.c. p,=E(¢’)= E(x-X)’

is minimized. Here x is desired signal and % is its estimate. To set up the problem we write

s

n. = E{x - Zf](}))’(l)
~1
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We ditferentiate p, with respect to each of the m parameters, setting each partial derivative equal
to zero to obtain the required m equations from which to find the values of h(i) that minimizes

the mican-square error. Thus we have

;ﬁ) gl gb(:)_y(l) ) = o oo (4.3)

or, i’? B E Dy, = E [xy0)) S (4.4)
where j=1,2,....m. From eqn.(4.3) we can also write

Efey()]=0 for i=1,2,..m (4.5)

where e=x-X is the error. This is called the orthogonality principle. It means that the product
of the error e=x-X with each of the measured samples y(i) is equal to zero in an expected-

value sense.

Probabilistic relationship which might exist between two random variables like y, and vy, is
called correlation. The correlation between pairs of signal samples may describe by the
autocorrelation function defined as the expectation of the product of any two signal samples
scparated in time by k samples. For example, the estimator output y(i) has the autocorrelation
furiction R (k) such that

R)=E[y(®)y(i+k)]

if R(k)=0, i.e. zero autocorrclation function value, the variables are uncorrelated; while the

larger the autocorrelation function values, the more correlated the variables are.

Therefore, returning to eqn.(4.4), we may introduce

Ely(y()] = Ry —— (4.6)
which is the data autocorrelation between y(1) and y(j). Similarly, we introduce
Efxy(i)] = g ' ereenen(.T)
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which is the cross correlation between the random variables x and y(i). Using eqns.(4.6) and

(4.7), we write eqn.(4.4) as
Y bR, = g | e (4.8)
#1

which is an important resuit. In expanded form this set of equations correspbnds to

Ryh(1)+R,h(2)+... 4R h(m) = g,
R, h(1)+R,h(2)+. AR ) =g, (4.9)

...............

Ry W(1)+R oh(2)+.. +R h(m) = g

More compactly, if we define the mxm cormrelation matrix R with elements R;1,=1,2,...,m, a
column vector h with elements h(1),k(2),...,h(m), and a column vector gwithelements g.g,.....g

we have as the set of equations in matrix-vector from,

Rh=g e (4.10)
The formal solution of eqn.(4.10) is ' _

h =R'g (41D
with R the inverse matrix of R. The estimate eqn.(4.1) can be written as

R=hTy S (4.12)

(4.12) we obtain for the estimate

=gy e (4.13)
and similarly for the least mean-square error
p. = E(x*)-g'R''g : e (4.14)

A filter of this type is often called a scalar Wiener filter, and eqn.(4.8) is known as the

scalar Wiener-Hopf equation.

The solution vector h represents the optimum linear filter through which the data samples are
to be passed. It should be noted that the relationship y(K)=x+v(k), eqn.(3.8), has not been used
in the above derivations. Therefore, the result is more general than it appears. It states that if

the data samples y(i), i=1,2,...m, somehow contain the unknown random variable x, the
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signal, the best linear-filter operation carried out on the samples in order to estimate X is given
by the Wicner filter {1].

If we consider the measured data and signal be related linearly by y(k)= x+v(k) where v(k) is
additive noise, and the noise samples are zero-mean, with variance 0 2 uncorrelated with each

other and with the signal x, then we have

{ 0 j*k
E[vgv()]=

ol J=

v

and | E[xv(j)]=0.

Again, for the purpose of simplification, we assume E(x)=0, and hence E@Ex)=02.
To solve this problem, we calculate first
R; = Ely()y()]
= E{[x+v(i)}{x+v()]} e (4.15)

= 2 2
o2+ 0 6;,'

where O, is the Kronecker delta, i.e.

0 j?k
5, =
1 =k .
and &= Exy(@®} =E[x’}=02 (4.16)

Substituting eqns.(4.15) and (4.16) into the set of eqns.(4. 9) and summmg both sides we have
finally

(a;:', +m ai)E My =
£1
from which We have

Efl(l) =

2
maoa, +0’
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and hence we can write

2
o

KD)=K2)=.= Km) = — % | rereeeneeteeenen(4.17)

-2+ 2
mao,+ o,

The least mean-squared cstimate is thus given by

Bo
I

LY (4.18)

m=~ Y g

here Y = o *0 * The corresponding least mean-square error value from eqns.(4.14) and (4.17)
1§ given by

, .
o, i (4.19)
m+y

;’C =

The conclusion can be drawn is that for large signal-lo-noise ratio (Y<<m) the two errors are

about the same and decreases as 1/m.
4.2 Recursive Estimator from the Optimum Nonrecursive Estimator

In the previous section we have derived the scalar Wiener filter equation. The difficulties with

the Wiener filter are as follows:

(1) it requires previous knowledge (or stored estimates) of the autocorrelation
matrix R ;

2) the number of data samples m to be in the processing must specified beforchand;

3 if m is changed for any reason (for example, more data may become available),
the calculations must be done all over again;

(4) it requires the inversion of the (mxm) matrix R. If m is large, this can take
substantial computer time.
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To allow updating of the estimate as more information becomes available, and to save on digital
processing cost, another processing scheme has been developed known as the recursive (or
sequential) processor that continually gencrates a new estimate from the previous stored one plus
the next data sample as it comes in. This will be the main theme of the following chapters, but
first we derive a recursive algorithm from the nonrecursive solution obtained in the previous

section.

For the recursive estimation of a signal parameter we can use the same problem specified as

before defining the successive sampled as y(k)=x+v(k) which provide a linear estimator

k
EEDI 0370
~1

such that the mean-square error p =E(x-%)?, is as small as possible. In section 4,1, we have the

nonrecursive solution to this problem, and the results for k samples may be given as

k.
F j(j() = 2 b(l)}’(l), where b(l) - p 1 AL TUT TP IR (420)
=} +Y o

with the corresponding mean-square error

P = o) = Ex-ihyP = 22 e (4.21)
) k+y

where y=0 %0 2 and R(K) represents to the kth estimate of the parameter x, i.¢. the estimate

after a batch of k samples have been processed.

For (k+1) samples the estimate and the corresponding mean-square error would be

kel

k(4+1) = E 0320 where  Ki) = l RN (4.22)
A1 (k+1)+ y .
o
and, pk1) = (k,,l): . : v, (4.23)
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From eqns.(4.20) and (4.21), we have
h(iy=p(k)/o ? for k samples
and similarly from eqns.(4.22) and (4.23)
h(i)=p(k+1)/ 0%, for k+1 samples
From the above two equations we can form the ratio

plktly  kvy 1
(k) k+1+y 1+1/(k+v)

from which we can write .
plk+l) 1
k) 1+ ;r(k)/ai

This 1s a difference equation. Using this equation from the known value of p(k), we can find
p(k+1), then, p(k+2), etc. Therefore this is a simple algorithm for finding the variation of

mean-square error with sample size.

For the signal estimate X(k+1), after processing (k+1) samples, we may write from eqn.(4.22).

£
. 1 1
X(k+1) = )+ ' k+1
o) = 2o 200 PRTEANR

from which using eqn.(4.20), we obtain

X(k+1) =

Y ik —r k1)
k+l+y k+1+7y

Using eqn.(4.24), we have

£(k+1) = Eﬁill (k) + ﬂ&ztﬂ HEHD) (4.25)

(k) o

v

62



98129

This is a recursive estimating equation which together with eqn.(4.24) forms the required
recursive algorithm. We use eqn.(4.24) to find p(k+1) in terms of p(k). Then, from the stored
previous value ?c(k) and the new data sample y(k+1), we can calculate ?{(kﬂ). This procedure has
the property that it continually géncrates the best linear mean-square estimator of x, and at the
same time it provides the corresponding mean-square error, p(k+1). From the error relation of

equ.(4.24), we have, p(k)—0 for k very large.

To start this recursive process we must calculate the first estimate X(1), based on a single

observation, by nonrecursive methods.

If we now compare the recursive relationship of eqn.(4.25) with the recursive filter of eqn.(3.15)
in section 3.5, we find that it is of the same form, but with time-varying coetficients. Denoting

these coefficients by

Cakely = 2D gy s AKD (4.26)
plk) o
eqn.(4.25) becomes
k+D) = a(k+DRE)+DEK+DYK+D e, (4.27)

Using eqns.(4.26) and (4.24), we can show that the parameters a(k+1) and b(k+1) are related

in the following way:

ak+1) = I-b(k+l) (4.28)
Therefore,eqn.(4.27) can be written as

?(kﬂ) =Rk + blk+Diy(k+1)-Xck)} (4.29)
The interpretation of this result is quite interesting. It shows that the (k+1)th estimate is the

same as the previous kth estimate plus a correction term involving the difference between the

new sample value y(k+1) and the previous estimate. This correction term is multiplied by
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time-varying gain factor b(k+1) which contiﬁually decreases with k. So ultimately, the estimate
stabilizes at some value depending on the data sample, and will be modified only if a new sample
y(k-+1) differs considerably from the previous estimate. The two forms of recursive estimator for

. equs.(4.27) and (4.29) are shown in figs.(4.1) and (4.1) respectively.

This recursive filter has been derived from the nonrecursive filter solution for a particular case.
It can be shown that the same result is obtained by starting with a recursive filter structure having
two parameters a(k+1) and b(k+1!) and using them to minimize the mean-square error of the

estimate. This is the approach used in chapter 5 [2,3,25].

y(k+1) + R (k+1)
——— b(k+1) - —f—-—

a(k+1l) et T

Fig. 4.1 Recursive filter

y(k+1) + o ' X(k+1)
b(k+1) ) -

Fig. 4.2 An equivalent form of fig. 4.1
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4.3 Summary

In this chapter estimation theory is presented in terms of both opfimum nonrecursive and first-
~ order recursive estimators based on minimization of the mean-square error. The scalar Wiener
filter considered in section 4.1 is csscntiallj'a block process ¢stimate which is best suited to the
situation-where only a finite block of data is available and they are typically applied in areas such
as seismic surveying and image processing. In dealing with an infinite time series the Weiner
filter would require a complete recalculation of all auto- and cross-correlation terms for each new
input sample. The optimum redursivc (or Kalman) estimator us¢s this new knowledge to update
a recursive estimate [Kalman, Bozic, Kailath 1981). Recursive means that we do not have to store
the entire data vector which continues to grow as it advances, and entirely recompute the estimate
at each stage. In a recursive filter, the estimate itself serves as a summary of all the past data. It
15 only necessary to modify the estimate if the new data is arrives. The recursive estimation
1cclmiqﬁc that introduced in section 4.2 will be discussed in detail in the next chapter where the
optimum scalar kalman filter will be derived and this will be extended in chapter 6 to cover the

vector kalman formulation.
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CHAPTER 5

KALMAN FILTERING

5.0 Introduction

The recursive estimation techniques were developed around 1960, most notably by Rudolph E.
Kalman. For this reason, the processors devised at that time (as well as wide variety of
generalizations and extensions to time-varying statistics, continuous-time signals, nonlinear
dvnamics, etc.) are referred to as Kalman filters. This chapter describes the Kalman filter in
detail and we discuss recursive approach to the filtering and prediction of random processes. For
simplicity we assume the processes to be stationary with time. The random signal and purely

additive noise components are also assumed to-bc statistically independent [1-4,12,22}.
5.1 Scalar Kalman Filter}

In this section we generalize the analysis in the following ways:
(1)  We deal with randomly time-varying signals or random processes;

(2)  The observation (data) equation is changed by a factor ¢ multiplying the signal.

We need it to enable the generalization of results to vector signals;
(3)  We derive the optimum estimate for a gencralized first-order recursive filter.

Results are arranged in so-called scalar Kalman filter form, suitable for a direct

transformation into vector Kalm:m filter.
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We assume that the random signal to be estimated can be modelled as a first-order recursive

process driven by zero-mean white noise and can be expressed by the dynamical equation
" ox(k) = ax(k-1)+w(k-1) [ 5.1)

Fig.(5.1) is a block-diagram representation of ¢qn.(5.1). If we assume the initial sample values
to be zero, i.e. x(k)=0 and w(k)=0 for k<0. The random drive is specified by

E[w(k)]=0

0 k#j
E[w(k)w()] = o (5.2)
o k=i

w

It 0 ,2=0, the white noise process will disappear.

w(k-1) | x(k)-l 4 k
Y(K)

, | C
white-+
noise , | Measurement
(observation) v(k)
| parameter
Additive
‘ wh :‘Lt a
noise
X ( k-1 ) I
a [——=——- T
System Unit delay |
parameter |
|
Fig. 5.1 Signal model . Fig.5.2 Measurement model
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A random process detined by eqn.(5.1) is said to be an autoregressive process of the first order

and the statistical parameter of x(k) are

E[x(k)} = 0
Elxi(k)= o2
Ex(k)x(k+0] = R() = alllg 2 e (5.3)

Here R (0) is the autocorrelation of two samples of x(k) and { represents the spacing between
samples, o ? is the signal variance. The parameter ‘a’ plays the role of a time constant of the
process. The larger a is (approaching 1), the more sluggish the process is, requiring a longer time

interval (in terms of units of sample spacing T) to change significantly from its current value [1].

The widely used observation model for additive noise as shown in fig.(5.2), described by the
equation
y(k) = ex(k)+v(k) T (5.4)

where x(k) is the time-varying signal and the factor ¢ represents an observation or

measurement parameter. It will be seen later that this factor is useful for the transformation of

results to vector signals. Here v(k) represents an independent additive white noise with zero-mean

-

and variance 0 2.
5.2. Optimum Filter Derivation
We assume 1'116 recursive eslimator is to be of the form
R(K) = a(k)R(k-D+b(k)y (k) i (5.5)
where the firsl term represents the weighted previous estimate and the second term is

- weighted current data sample. We want to determined the 'best’ estimate using eqn.(5.5). By

S : :
‘best’ we mean the estimate which minimizes the mean-square error. In this case we have two
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parameters, a(k) and b(k), which are to be determined from minimization of the mean-square

eITor ‘
ply=E['®)) (5.6)

where e(k)=x(k)-x(k) is the error.
Substituting egn.(5.5) for x(k), we have
p(k) = E[a(k)x(k-1)y+bR)yk)x®pP (5.7

Differentiating with respect to a(k) and b(k) and the results are equated to zero, we have

W 2Bl D) MR RED =0 (5.8).
oa( k)

and
M:ZE D 2k-1 DD -2 =0 e, (5.9)
S~ 2 AR IUD KR -2k

" or altemately
Efe(®)X(k-1)] = 0 | R—h )}

and Ele(y®]=0 (5.11)

which arc orthogonality equations. A relationship between a(k) and b(k) may be derived using
€qns.(5.10) and (5.5) such that \

E{[a@0R(k-1)+b(k)y(k)-x(K)Jx(k-1)} = 0
Adding and subtracting a(k)x(k~1), rh.e above becomes
E{[a()[R(k-1)x(k-1)] + a(kyx(k-DR(K-1)} = E{[x(k)-b(k)y(k)JR(k-1)}
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Substituting the value for y(k) trom eqn.(5.4) gives us

a(E[e(k- DR(K-1) + x(k-DR(k-1)] = E{x(0[1-eb(0)-bRVOIR -1}

For the optimum estimator the orthogonality principle must hold and if we apply this we get the

following relationships:
E[e(k-DR(c-1)] = 0
and,  E[v(k)X(k-1)] = 0
Therefore, the abov; equation reduces to
| a(k)E[x(k-1)X(k-1)] = [1-cb(K)JE[x(K)R(k-1)]

From our signal generation model, x(k) = ax(k-1)+w(k-1), and substituting this in above cquaﬁon

we obtain
a(k)E[x(k-1)X(k-1)] = [1-cb(K)]E[ax(k-1)R(k-1)+w(k-1)X(k-1)]
Using the eqns.(5.5), (5.4) and (5.1) we can write
X(k-1) = a(k-1)x(k-2)+acb(k-1)x(k-2)+cb(k-1)w(k-2) +b(k-1)v(k-1)

Since all terms are uncorrelated with w(k-1), averages of all the products of the above with w(k-

1) are zero, so we are now left with
a(K)E[x(k-D)R(k-1)] = a[1-cb(K)E[x(k-DR(K-1)]
This leads to the final relationship between a(k) and b(k) giving

akk) = afl-cb(k)) (5.12)
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Substituting this into the eqn.(5.5), we have
X(k) = af(k-1)+b{k)[y(k)-acX(k-1)] . (5.13)

Eqn.(5.13) is the definition of the optimum first-order recursive estimator or scalar Kalman
filter. The first term, aX(k-1), is a prediction of the current sample based on past observations.
The second term is a comection term depending on the difference between the new data
sample and the observation estimate, ?(k)=ac>?(k-l), modified by the variable gain factor b(k),
called the Kalman gain. The form of this filter is clearly iltustrated in fig.(5.3). The aim of
the optimum estimator in fig.(5.3) is to det'ennine an optimum estimate X from the received

signal x by using a priori knowledge.

Correction

y(ky + + S X(k)
bk} ~——
Present = Present
measurement Time-varying estimate
(observation gain
of data)
X(k-1)

~ ~ C = a |[—=-a— T
y(k)=acx(k~1) ax(k-1) :

Measurement System Unit

parameter parameter delay

Fig. 5.3 Optimum recursive estimator (filter)
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5.3 Derivation of the Kalman Gain

Having define the form of the Kalman filter the factor that remains to be 'derived_is the time-
varying Kalman gain term b(k).

From eqn.(5.6) we have

p(k) = E[¢*(k)] = E{e(k)[R(k)-x(k)]}
Substituting for x(k) from eqn.(5.5), and using the orthogonality eqns.(5.10) and (5.11) we
obtain

pk) = -Efe(k)x(k)]
From eqns.(5.11) and (5.4) we have

cE[e(k)x(k)] = -E[e(k)v(k)
Hence the mean-square error is given by .

Pk) = ZE ek k)
Substituting for e(k)=%X(k)-x(k), and using eqn.(5.5), we have

Pk = lc £ [a(k) x(&-1) + HK) (k) - x(4)] v(k)

But E{X(k-1)v(k)] and Ex(k)v(k)], average to zero. So we are left with

k) = 1 A .]_'_b(;k)or‘i .............. (5.19)

c c

80 bk) = cp(kyo 2 e (5.15)

Now substituting eqn.(5.13) into the mean-square error equation, we have

(9 = E{aR(k 10y ()-ac (k- DIxC)}
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and using eqn.(5.4) and (5.13), we have
p(k) = E{a[1-cb(k)]e(k-1)-{1-ch(k)Iw(k-1)+b(k)v(k)}’

Siuce e(k-1), w(k-1) and v(k) are independent of each other, the cross products in the above

expression average to zero. So, we have
pk) = a*[ 1-cb(k) Pplik-1)+[1-cb(k) 2o _2+b (K)o 2
where p(k-1) = E[e’(k-1)]
0, = E[wi(k-1)]
and o= E[\F(k)]

From the above quadratic equation of b(k) we have the solution for b(k) such that

b(k){ Ui + o2 [azp(k—l)+ Ui] } : c[az Mhk~1)+ Uf,,] , where we use p(k)=b(k)o .

From which we have

ejatptl) + o | | R (5.16)

b(k) = A
o, + ¢t o, + ctal pk-1)

The other solution of the quadratic equation for b(k) is b(k)=1/c. This solution is neglected
because it is time-invariant as ¢ is constant, while the first solution is time-varying through

p(k-1). It is apparent that b(k) must be calculated first from a knowledge of p(k-1) and then

p(k) 1s calculated tfrom

Pk = L ot bk e, 3

c
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i.e., p(k) and b(k) are directly rclated. Three equations given as 5.13, 5.16 and 5.17 constitute a
complete computational algorithm. For the purpose of extending these results to vector signals

in the next chapter, we arrange these equations and write them below as equations 5.18 to 5.21.

In this arrangement eqns.(5.16) and (5.17) are now written as three equations, 5.19 to 5.21,
because we have introduced a new quantity, p,(k) as it has an important role and will be

discussed later.

Recursive filter estimator:

R(k)=aR(k-1)+b(k) [y (k)~acR(k-1)] ' (5.18)

Filter gain:

b(k)=cp; (k) {c’py (k)+o,’]"] (5.19)
where [:)1(}{)———a2{:>(k—1)+ch2 (5.20)

Mean~-square error:

P(k)=p(k)-cb(k)p (k) (3.21)

The above set of equations constitute the scalar Kalman filter for the signal model given by

eqn.(5.1) and the measurement model given by eqn.(5.4).

5.4 . Scalar Kalman Predictor

In the previous section we were concerned with the estimation of the current value of a random
signal in additive white noise. But in many real life situations, it is ofen required, particularly
in control systems, to predict ahead, if possible. Depending on how many steps of unit time ahead
we want to predict, we distinguish one-step, two-step, or m-step prediction. Obviously the further
in the future we want to predict, the larger the prediction error will be. We deal here only with

one-step prediction, with the signal model as described by the eqn. (5.1) and the observation
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{or measurement) model as described by the eqn.(5.4). We would like to know the ‘best’ linear
estimate of x(k+1), i.e. the signal at time k+1, given the data and previous estimate at time k. We
denote this one-step prediction estimate as R(k+1 k). By ‘best’ we mean the predictor thal

minimizes the mean-square prediction error j
p(k+1[k) = E[e*(kc+1 KD

= Elx(k+1-X(k+1 K)F

This is comparable to the mean-square error p(k)=E[x(k)-X(k)}* in the filtering problem. By

- extension of the previous discussion on filteringiit is apparent that the one-step linear predictor

will be of the form

kLK) = a(h) Rk BUOVK) B (5.23)
The parameter a(k) and {3(k) are determinecii from the minimization of the mean-square
prediction error given by eqn.(5.22) by using th:e ‘appropriate orthogonality relations similar to
those derived in the previous section

Elek+1|KX(k|k-1DI=0 (5.24)

Efe(k+1{k)y(k) = 0 R (5.25)

The relationship between a(k) and f(k) is determined using a similar way to the relationShjp
between a(k) and b(k) derived for the filtering case such that

alk) = a- CB(k) .............. (5:,:26)

Substituting this result into the prediction equation, we have

R(k+1)k) = 2 X(kAk-1) + BK) (MK - ¢ k(k|&-D)] e (5.27)
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The variable gain term P(k) is determined, together with p(k+1 k) from eqns.(5. 25) and (5.22),

using a similar method as in the filtenng case and we obtain
pl |y =2 Bw o, (5.28)
c : .
acp(k|lk-1)

and” B = 2 i (5.29)
ct p(kik-1) + o),

From eqn.(5.29) it is obvious that we can calculate B(k) from the previous mean-square

prediction error and then eqn.((5.28) gives us the mean-square prediction error for p(k+1 |k).

Again, the optimum processor consists of simply multiplying the previous estimate by a, and

then adding a weighted correction term. This correction term consists of the difference

between the new data sample y(k) and the previous prediction estimate ¢X(k ik-1) dircctly.. In
the filtering problem considered in section 5.3, the correciion term involved y(k) minus a

times the previous estimate.

If we assume that the random driving force in eqn.(5.1) is zero, the signal evolves according
to the equation x(k)=ax(k-1). Therefore, given an estimate X(k) at time k, it seems reasonable
to predict the estimate at time k+1 as

R+ k) = aR(k) - | i (5.30)

Using the equations 5.13 and 5.30 we can established the following relationship

B = ab(k) s (531)

1.e. the two gain factors b(k) and (k) are actually related by the -paramcter a[2].

The optimum one-step predictor is shown in fig.(5.4), and optimum filtering and prediction

simultaneously are shown in fig.(5.5).
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=a%(k~1 |k-1) at time k+1
Fig. 5.5 Filtering and prediction simultaneously
3.5 Summary

In this chapter we have developed the scalar Kalman filter. The Kalman filter can be thought
of as an estimator that produces three types of outputs given a noisy measurement sequence

and the associated models:

(1) as a state estimator or reconstructor; i.¢. it reconstructs estimates of the state x(k)
from noisy measurements y(k);

(2)  as a measurement filter that on input accepts the noisy sequence y(k), and on the
_output produces a filtered measurement sequence X(k); ‘

3) as a whitening filter that accepts noisy correlated measurements y(k) and produces
uncorrelated or white equivalent measurements.

This chapter completes the various derivations of the Kalman filter, We summarized the filtering
and prediction equations for the purpose of direct transformation into vector equations. In the next
chépter we shall readily extend this results to include the estimation of time-varying random
signals by using vector notation, that will enable us to constder simultancous recursive estimation

of several signals.
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CHAPTER 6

OPTIMUM ESTIMATION OF VECTOR SIGNALS

6.0 Introduction

We have dealt so far with scalar random signals generated by a first-order autoregressive process.
In chapler 5 we have optimized the first-order recursive filter and have got a set of equations
referred to as the scalar Kalman filter. But the signal processing problems require simultancous
processing of several different signals and this chapter concern with such vector or
multidimensional signals. It is shown in section 6.1 how vector equations are formulated in the
case of simultaneous estimation of a number of signals. In section 6.2, the estimation problem
for multidimensional systems is formulated in terms of vectors and matrices. Since there is an
equivalence between scalar and matrix operations, all results in chapter 5 for scalar signals are

transformed into vector and matrix equafions in sections 6.3 and 6.4 (1-4,10,14,20,22].

6.1 Signal Vector

o
With the extension of the signal model to vector signals to include simultaneous_estimation of
several signals, we are now in a position to e¢xtend the scalar Kalman filter for the estimation of
multidimensional signals. It is shown below that these multidimensional signals are conveniently
represented by vector notation. In place of simple gain pafameters we then have matrix operations

on vector {1-3].
To demonstrate the formation of vector equations we consider that we have q independent signals

to be estimated or predicted simultancously. We denote samples of these signals at time k, as

X, (K),xy(K),... X (k). Again we assume that each one is generated by its own first-order
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autoregressive process. The jth signal is then formed according to the equation

x(k) = ax(k-1) + wik-1) e (6.1)

where j=1,2,....q

Here cach of the w; processes is assumed fo be white, zero-mean and independent of all
others. We can define q-dimensional vectors made up of the q signals and q white noise

driving processes as .

Xy(k) wy (k)
x(k) = . and wW(k) = . e eeaveaas (6.2)

The q eqns.(6.1) can be written as the first-order vector equation (larget state equation) in terms

- of these defined vectors such that
wk) = Ax(k-)+wk- L (6.3)

where x(k), x(k-1) and w(k-1) are (qx1) column vectors and A is the state transition (qxq)

matnx. [n this case A matrix is diagonal and given by

a; o . 0
a9 0
A = . i e s (6.4)
_0 aq i
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6.2 Data Vector

The Kalman filter, we consider to discuss require a model for the measurement process of the
vector signal in addition to the model for the generation of the signal which is mentioned in the
previous section. Assuming that in estimating the signal vector x(k) we made r simultaneous
noisy measurements at time k. These measurement samples are labelied y,(k),y,(k),....y (k). So

we have the following set of data.

yo(k) = ¢ xy(k) + vy(k)
vo(k) = ¢, x,(K) + v, (k)

y (k) = cx (k) + v(k)

~where vj(k) terms 'represent additive noise and ¢,,...,c, are some measurement parameters which
are similar to ¢ introduced in eqn.(5.4). This set of equations can be put into vector form by
defining r-component vectors y(k) and v(k). In terms of the previously defined ¢-component

signal vector x(k), we then have the data vector (measurement equation):
yvky=Cxg)+vwk (6.6)

where y(k), x(k) and v(k) are (rx1) column vectors, and C is an (rxq) observation matrix. In

this case C is (for r<q) given by

The block diagram for the system and measurements in vector forms is the same as for the scalar
case, figs.(5.1) and (5.2) respectively. Bur only the notation changes to vectors, and the syslem

and observation parameters become matrices as represented in the, figs.(6.1) and (6.2).

81
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Fig. 6.1 System model Fig. 6.2 Measurement model

- 6,3 Vector Problem Formulation

Here we look for the simultaneous estimates (filtered or predicted) of g-signal components. We
* have from the discussion in section 6.1, a signal vector x(k) obeying a known first-order vector

dynamical equation -.

skk+D)=Axk)+wk) (6.8)
~ which is to be extracted from a noisy measurement vector y(k)
yk=Cx(k)+viey (6.9)

- The problem is how to formX(k), the ‘best’ linear estimate (filtered value) of x(k) and its ‘best’

predicted value X(k [k-1). By ‘best’ we now mean estimators that minimize the mean-square error

of each signal component simultaneously. In the filtering operation each mean-square error
Efx,(k)X,(K)]*  where j=1,2,...,q
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is to be minimized. For the multidimensional signal, it is required to reformulate all the scalar
Kalman equations into vector form and apply a matrix minimization procedure to obtain the
optimum solutions. Here we shall not carry out the derivations of the optimum estimators. Since
we already have the solutions for the one-dimensional (scalar) cases we can extend them to the
multidimensional systems, using the equivalence of scalar and matrix operations given in Table

6.1'in which the subscript T stands for transpose of a matrix, and -1 for the inverse of a matrix.

"Table 6.1 Transformation of scalar to matrix

Scalar —  Matrix
a+b A+B
ab _ AB
1/(a+b) (A+B)’
. a’b ABAT

We have already seen that in transition from the single signal to vector signal, the system
parameter a changed into the system matsix A, and the data coefficient ¢ changed into the

observation matrix C. We now consider the transition of other relevant quantities.

The transition from the observation noise variance to the observation noise covariance matnx

(contmon variance of a number of signals) 1s writien as

62 =0, 2= EvXK)] - REK) = E[v&WV(K)] | (6.11)

Y

Similarly, for the system noise, we have

620 2, = E[wak)] — Qk) = E[wkw!(k)] - (6.12)

‘where Q(k) represents the system noise covariance matrix. If there is no correlation between noise

processes, the off-diagonal terms are zero.
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The transition from the mean-square error for the single signal to the error covariance matrix is

wrnitten as
p(k) = p,,(K) = E[e2(K)]-P(X) = [e(k)e"(K)] - | ~(6.13)

The diagonal terms of the error covariance matrix are the individual mean-square errors as
formulated by eqn.(6.10).

6.4 Yector Kalman Filter

We now transform the scalar Kalman filter algorithm, given by ¢quations 5.18 to 5.21, into the
corresponding vector Kalman filter. With reference to these equations and the discussions in

previous sections we can write directly the vectoriyand matrix equations in the following

tabulated form:

Estimator:

X(k) = AR(k-1) + K(k)[Y(kK)-CAX(k-1)] |  «.... (6.14)

Filter gain:

K(k) = P (k)c [cP (k)cT + R(k)] PO (6.15)
where P (k) = AP(k-1)Al + Q(k-1) .. (6.16)

Error covariance matrix:

P(k) = P{(k) - K(k)CP(k) o i (6.17)

The above set of equations constitute the vector Kalman filter for the model described by
the state eqn.(6.8) and measurement eq11.(6‘.9). Here we have used K(k) in place of b(k),
because this is a commonly usg:d notation for the gain malrix in the Kalman filter. Other
quantitics have been arranged, within the rules of the scalar-matrix equivalence Table 6.1, to
oblain the standard form of Kalman equations used. In egn.(6.16), we have used Q(k-1) since
0,2 in fact represents E[w’(k-1)]. For time-varying systems and timc-varying observations,

matrices A and C are obviously functions of time.
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One of the most significant features of the Kalman filter is its recursive form property that makes
it extremely useful in processing measurements to obtain the optimum estimate, utilizing a digital
computer. The processing of signal by using Kalman filter, it is not necessary to store any
measurement data. The measurement will be processed automatically as the new data is available.
But it 1s necessary to store ?c(k-l) in proceeding from time (k-1) to time k. Moreover, the physical
model must be defined (A,C), and the statistics of the random processes must be known (Q,R).

The block diagram, fig.(6.3), is the representation of eqn.(6.14). The information flow in the filter
can be explained by this figure. If we assume that 'ﬁ(k-l) is known for some k and we want to

determine X(k), given y(k). The computational cycle would proceed as follows:

(1)  the estimate (k-1) is premulnphcd by the system matrix A and propagated forward
denoted as X(k); :

(2)  X(k) is premuliiplied by the observation matrix C giving (k) which is s subtracted from
the actual measurement y(k) to obtain the error e(k);

(3)  e(k) is premultiplied by the gain matrix K(k) and the result is added to X(k) to give x(k);

(4) R(K) is stored until the time of the next measurement, when the cycle is repeated.

The filter operates in a ‘predict-correct’ fashion, i.¢. the correction term K(K)e(k) is added to the
predicted estimate X(k) to determine the filtered estimate. The coirection term involves the

Kalman gain matrix K(k).

It is apparent that the filter shown in fig.(6.3) consists of the model of the dynamic process,
which performs the function of prediction, and a feedback correction scheme in which the product
of Kalman gain and the error term is applied to the model as a forcing function that brings the
estimate to the steady state condition after some iteration. Since the gain matnix K(k) do¢s not
.depend at all on the measurements, it can be calculated before the estimation is carried out. This
approach requires storing the calculated vectors for each recursion and feeding them out as
needed. Equations 6.15 to 6.17 define the algorithm for the recursive computation of the filter
gain matrix K(k). At the same time, we obtain values for P, (k) and P(k), i.e. the variances of the
components of the prcdiclidn and filtering errors respectively. It is obvious that the gain term is
updated recursively as the estimation proceeds and hence there is no need to store all gain values,

i.e. the previous value is the only one required.
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Fig. 6.3 Compuiational steps in Kalman filter
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Fig.(6.4) represents the subroutine computational diagram and the computational cycle would

proceed as follows:

(1

(2)

3)

P,(k) is computed from the given value P(k-1), Q(k-1), A using eqn.(6.16);

K(k) is oblained by substituting P,(k), R(k) and C into eqn.(6.15) which is used in step

three of the filter computation;

P(k) is determined by substituting P,(k), K(k) and C into eqn.(6.17) which is stored until

the time of the next measurement, when the cycle is repeated.

For better understanding we can arrange the Kalman filter equations 6.14 to 6.17 as

(1) Prediction

Kk k-1) = AX(k-1[k-1) o o (6.18)

P(kk-1) = AP(k-1 [k-DAT + Q(k-1) A (6.19)

(2) Updating (or correclion)

Uk 1K) = Kk |k-1) + KK)[y(k)-CR(k [k-1)] — (6.20)
Pk k) = P k1) - K()CPkik-) . 6.21)
Kk) = P(kjk-D)CT[CPk k-)CT + R L (6.22)

where P(k}k-1) and P(k|k) correspond to P,(k) and P(k) respectively in the Kalman filter
equations 6.15 to 6.17. The first stage is prediction based on the state eqn.(6.8), and the

second stage is the updating or correction based on the measurement eqn.(6.9). Both stages

are illustrated in fig.(6.5).
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6.S Vector Kalman'Predictor

We are now in a position to transform the scatar Kalman predictor algorithm, given by equations
5.32 to 5.34, info the corresponding vector Kalman predicior. With reference 1o these equations
and the discussions in sections 6.1 to 6.4 we obtain the following vector and matrix set of

equations.

Predictor equation:
X (k+1]k) = A%(k|k-1) + G(k)[y(k)-CX(k|k-1)] Y oe...(6.23)
Predictor gain: |
G(k) = Ap(k[k-l)cT[cp(k}k-l)cT + R(k)}'t eeee(6.24)

Prediction mean-sguare error:

P(k+1 |k) = [A-G(k)C]P(k|k-1)AT + Q(Kk) «ves(6.25)

These equations constitute the vector Kalman predictor for the model described carlier by the
state equations 6.8 and 6.9. We have introduced here G(k) as the predictor gain matrix in place
of the previous time-varying scalar gain (k) in eqn.(5.32). Other quantities are the same as used

in the previous section.

A relationship correspond to the scalar relationship [}(k)=ab(k) mentioned in section 5.4,

eqn.(5.31) can be used directly as

Gy =AKWE& e (6.26)

We would calculate predictor gain matrix G(k) from egn.(6.26), since we have found P(k |k-1)
and hence K(k) from vector Kalman filter equations 6.19, 6.21 and 6.22 without using eqn.(6.24).
Because it is more straight forward and less iterations are required in this case and hence, in

developing computer program, it was actually done.
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6.6

Summatry

Here the first-order Kalman filter equations specified in chapter 5, are modified to take higher-

order filters into account by replacing the scalars by vectors. Filtering, prediction and smoothing

problems have been introduced in this chapter in the framework of estimation theory as applied

to time-varying random variables. The theory developed in chapters 5 and 6 are of the same form

and will be extensively applied in the next chapter, where the tracking functions are presented.

The main results pertaining to the Kalman filter are :

(1

2

3)

(4)

(%)

the filter has a feedback recursive structure that embedding the state model of the process,

a ceniral role is played by the Kalman gain, whose value depends on the model

parameters and the prediction covariance,

both the filter error covariance and the Kalman gain can be computed independently of

the measurements,
the uupredictable component of the measurements is a zero-mean white process,

the convergence of the filter to a steady state solution is conditioned to the structural

properties of the model (controllability, observability).
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CHAPTER 7

KALMAN FILTER FORMULATION FOR RADAR
TRACKING

7.0 Introduction

In the previous cliapters we have developed the Kalman filter, a signal estimation technique. Now
we show how one might apply the recursive techniques to the tracking function of an air traffic
control radar. In chapter 2 we discussed the detection function of radars and in general discussion
we point out that as the radars rotate, they continuously send out high-frequency pulses of
¢lectromagnctic énergy into space. Pulses intercepting an aircraft in space are reflected back to-
the radar, The return pulses with noise mixed in must then be processed to show the presence of
the aircraft. The time delay between transmission and reception of the pulses provides an estimate
of aircraft range, while the location of the antenna beam at the time of detection provides the
aircraft bearing (azimuth). A short range radar rotates typically at a scan rate of 15 rpm, while
longer range radars rotate at 6 rpm. Therefore, we have for these cases new range and bearing
estimates every 4 sec and every 10 sec respectively. This means that tracking filters are updated

at such an interval denoted by T.
7.1  Radar Signal Processing

We consider a radar tracking problem that a vehicle being tracked is at range R+p(k) at time K,
and at range R+p(k+]) at time k+1, T seconds later. We use T to represent the spacing between
samples made one scan apart. The average range is denoted by R, and p(k), p(k+1) i'epresent
deviations from the average. We are interested in estimating these deviations, which are assumed
to be statistically independent. To a first approximation, if the vehicle is travelling at a radial

velocity p(k) and T is not too large,
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pU+I)= p(k) + T pk e (7.1)

which is the range equation.

Similarly, if we consider the acceleration u(k) we have

Tubye bl - pd) (7.2)

which is the acceleration equation. Assuming that w(k) is zero-mean and uncorrelated from
interval to interval, i.¢. E[u(k+1)u(k)] = 0, but it has known variance E[u*(k)] = o 2. Such
accelerations might be caused by sudden wind gusts or short-term irregularities in engine thrust.
The quantity u (k) = Tu(k) is also a white noise process, and we have in place of eqn.(7.2) the
following one

plD)= D+ w) e (7.3)

For the radar tracking problem, the signals to be cstimated are the range p(k), the radial
velocity p(k), the bearing (azimuth) 0(k), and the angular velocity é(k). So x(k) in a two-

dimensional plane is the four component vegtor

i
@ 7
-
—

x(k)

however, measurenients of only range and bearing are made in the presence of additive noise
v,(k) and v,(k) respectively. Here for the matrix C of eqn.(6.7), we have g=4 and r=2, and using

eqn.(7.1), the velocities are found in terms of these quantities. The matrix C 1s given here by

Now we have a four component signal vector x(k) with states x,(k)=p(k) for the range,
x,(k)=p(k) for the radial velocity, x,(k)=0(k) for the bearing, and xd(k):é(k) for the bearing

rate (or angular velocity). The noise terms u (k) and uy(k) represent the change in radial
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velocity and bearing rate respectively over interval T. Again, u,(k) and u,(k) are random with
zero-mean and uncorrelated both with cach other and individually from one interval to other.

Therefore, we have the following system equation:

Xy (K+1) 1 T 0 O x| (K) 0

Xy(k+1) 6 1 0o 0 xz(k) u (k)

xj(k+1) = lo 0o 1 7T x3(k) |+ b .(7.6)
Xy (k+1) 0 0 0 1 X4 (k) us (k) ’

k__vr—J w ~ ) v 2 ;—\K—‘J
x(k+1) A x(k) w(k)

Since the radar sensors provide the noisy estimates of the range p(k)=x,(k), and bearing

B(k)=x,(k) at time intervals T. At time K, the two sensor outputs are
¥, (k) = x,(k)tvi(k)
¥a(k) = xy(K)+vy(k)

Therefore, the data vector can be written as

X (k)
yi(k) 1 0 0 0 X9 (k) vy (k)
|:yq(k)] [o 0 1 0 ] x3(k) "“(:vg(k):l ceee(7.7)
L > I — ' ; Xy (k) —
¥ (k) c v

According to our assumption the additive noise, v(k), is to be gaussian with zero-mean and
variances 0 ,2(k) and o:2(k). Upto this we have established vector equations for the system mode!
given by eqn.(7.6), and data model given by eqn.(7.7). Now we have to formulate noisc
covariance matrices Q for the system, and R for the measurement model. For the system noise

covariance matrix, Q defined in ¢gqn.(6.12), we have
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0o 0, 0 ©
Q(k) = E[w(k)w (k)] = 0 0 0 O (7.8)
) 0 0 0 02" .

where 0,2 = E(u,?) and 0,? = E(u?) are the variances of T times the radial and ahgular
acceleration respeclively.

And for the observalion noise covariance matrix, R using eqn.(6.11), we have

T opz(k) 0
R(k) = E{v(k)v (K)] = | T R (7.9)

Specific values must be substituted for the variances o2 and 0.2, and also for o?;.(k) and

o&(k) in order to define the Kalman filter numercally. To simplify, we assume that the
probability density function (p.d.f.) of the acceleration in either direction (p or 8) to be of the
form of fig.(7.1).

Fig.7.1" Typical probability distributioh of u(k)
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Three impulse functions representing discrete probabilities at +M and 0 acceleration have been
superimposed to represent:that there is a probability P, that the aircraft will proceed at constant
‘radial and angular velocities, while there is a probability P, that its acceleration (deceleration) in
either direction is at the maximum value M. Now we can express the height of the uniform

distribution as P(u) = (1-2P,-P,)/2M and the variance of the random variable u is given by

P
a, = %— I+ 4P-P) e (7.10)

U

The variances in eqn.(7.8) are then given by

gf =Tlg e (7.11)
z

and N o en(7.12)
2 R?

The parameter o, represents the linear acceleration. Therefore, o, is related to the change in
linear velocity and o, is related to the change in angular velocity [1,2,10}.

7.2 Initialization of Kalman Filter

To start Kalman processing we have to initialize the gain matrix K(k). To do this the error
covariance matrix P(k) has to be specified in some way. A reasonable initialization can be
cstablished using two measurements, range and bearing, at times k=1 and k=2. The first set of
these two measurements, x(1) (k=1), can be used to ¢stimate range and bearing but not range
rate or beanng rate (unless we arbitrarily take these zero). The second pair of measurements
x(2) (k=2) provide’'the additional two numbers required to make independent estimates of the
four parameters of eqn.(7.4). Thercefore the filter start only after obtaining the first two
measurements x(1) and x(2). Using these, we can produce the following four-component

signal vector estimates X(2):

X((2) = B(2) = y;(2)

Xp(2) = 5(2) = 1/T{y;(2)=y(1)]

X(2) = | . R (7.13)
X3(2) = 8(2) = yp(2)
FaY

il

Xy(2) = 8(2) = 1/T[yy(2)-yo(1)] |
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We can use the general expression for P(k), eqn.(6.13) to calculate P(2) (for k=2), and therefore

PQ) = E{[x@)X@))xQ3@T" |
We obta.in?c(Z) from eqn.(7.13), and using equations 7.6 and 7.7 for x(2), we have the following

results:

X(2)-%X(2) =

-

-vi(2)

(1) =(v(2)-v{(1))/T

-Va(2)

Uy(l) —(Vy(2)-vy(1))/T

which is a (4x1) colwmn vector.

Specifically, in this case P(2) is a (4x4) matrix given by

P[]

P
P3

P(2) =

P41

P2 Pp
Pp Py
PR Py
Py Py

Py
Py

Py
Py

Taking into account the independence of noise sources u and v, and also the independence

between individual noise samples, we obtain the following simplified form of P(2)

P

P(2) =
0

0

%)

Pp O
Pp O
© Py
0 Py

0

o

Py
Py
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where Py T 02
P = Pu = 0T
P,y = 20,2 TH+0 2
Py = Oal
Pyy = Py = Oa/T
Pag = 2092/'1‘l+022

We now present. a numerical example that explain clearly how to initialize the Kalman filter. We

take for range R=160 km, scan time T=15 s, and maximum acceleration M=3.27 mv/s*. The two

parameters P, and P,, the probabilities of maximum and zero acceleration are 0.1 and 0.3

respectively. Let the r.mes, noise g, in the range sensor be cquivalent to 10° m and the r.m.s.

noise oo in the bearing sensor be 0.017 rad. These two figures define numerically the noise

covariance matrix R. From these numerical values we can calculate noise variances in the Q
matrix, eqn.(7.8), as o,2= §82.1643 and o= 3.446x10° Therefore the initial value of the

estimation covariance matrix P(2), or in the alternative notation P(2|2), can be obtained from

eqn.(7.17) as

100 6.67x1 0%
6.67x10% 9.0x10°
P(2[2) =
0 0
0 0

0
0
2.890x10™

1 .9272‘(10h5

0
0
1 .927}{10'5

2.603x107°

(7.19)

Since it is error matrix at k=2 , we could try to use it to calculate the predictor gain G(3) at k=3,

which is given by

G(3) = AP(3|2)CT[CP(3 |2)C™+R]"

where all quantities (A,C,R) are known except P(3|2). We might try to calculate P(3 12) using

eqn.(6.25) as

P(3|2) = [A-G(2)CIP(2 | I)AT—i—Q_
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but G(2) and P(2{1) ar¢ not known. Since eqn.(6.25) has been derived from eqns.(6.16) and

(6.17), we can use eqn.(6.16) instead of eqn.(6.25) as
P(k [k-1) = AP(k-1 [k-DAT™+Q
For k=3 the above eéuation becomes

P(3|2) = APQ2|2)A™+Q

where P(2(2) is known from eqn.(7.19). Using the given numerical values we obtain

5.2x106 2.13}(105 0

2.13x105 1.065x104 0
PG32) = 0 0 1.453]-(10_3

0 0 5.832}(10'5

0
0
5.832}(10_5

2.638x10

6

e (7.23)

The diagonal elements represent the prediction errors. The first and third diagonal elements are

mean-square range and bearing prediction errors respectively for k=3.

Using eqn.(7.23) in eqn.(7.20) we can calculate the predictor gain G(3) and the result is

- 1.355 o
| 3.44x1Q'2 0
s = 0 1.336
0 3.35x107

Now we have 1o determine P(3|3) using eqn.(6.17) which gives (for k=3)

P(3|3) = PG [2)-KGB)CP(|2)
where K(3)=A'G(3)

The process is now repeated by finding P(413), G(4) etc. [1-4].

98

ceena(7.24)



7.3  Results of Comp.uter Calculations

Results of computer calculations for the data obtained from the radar of Zia International
Airport have been introduced in the following pages. In additioh, a set of curves have been
produced for different values of the parameters used in the model as the characteristics of the
processor, The resulting performance figures, that are presented here, are the mean-square range

prediction error, mean-square bearing prediction error and gain $etting of Kalman filter.
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T o= 4,000 sec, Moo= 3.270 m/s
Pl = 0.100 , Pé = 0.300
R = 160.000 Ekm , a. = 1000.000 m
o = 0.017 rad P .
Kalman Mean-square range Mean square bearing
gain prediction errror prediction error
K“(k) P“(kl"’llk) P3J(k+1lk)
0.833361 2334783.057548 0.000674
0.700130 1502257.761495 0.000434
0.600361 1103420.073580 0.000318
0.52456H84 871645.459881 0.000251
0.465711 721267.772347 0.000207
0.419033 616619.282450 0.000176
0.381425 540281.207764 0.000153
0.350768 482763.4316717 0.000136
0.325584 438461.296653 0.000122
0.304813 403849.063034 0.000110
0.287673 376689.344683 0.000101
0.273567 355059.346466 0.000094
0.262025 338083.377154 0.000087
0.252662 0 324774.862234 0,000082
0.245155 314440,106693 0.000077
0.239220 306518.722382 0.000073
0.234607 300546.699869 0.000069
0.231093 296133.755819 0.000066
0.228475 292949.616994 0.000063
0.226575 290715.651157 0.000061
0.225236 289199.384648 0.000059
0.224325 288210.270751 0.000057
0.223729 287595,721492 0.000056
0.223359 287236,924260 0.000054
0.223142 287044.334651 0.000053
0.223026 286952.968656 0.000052
0.222971 286917.7253417 0.000052
0.222950 286908.,983994 0.000051
0.222944 . 2868908.672264 0.000050
0.222944 286906.927607 0.000050
0.222943 286899.,397291 0.000049
0.222938 286885,158896 0.000049
0.222930 286865.198823 0.000049
0.222918 286841.361794 0.000048
0.222903 286815.675952 0.000048
0.222888 286789.961572 0.000048
0.222872 286765.641906 0,000048
0.222858 286743.688716 0,000048
0.222844 286724.649843 0.000048
0.222833 "286708.719978 0.000048
0.222823 286695.827788 0.000048
0.222816 286685.722185 0.000048
0.222809 286678.047934
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Given, T = 4,000 sec, M = 3.270 m/s
P = 0.100 , P, = 0.300
R = 370.000 "km ., o) = 1200.000 m
0 = 0.017 rad
Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error
Ky (k) Py, (k+1|k) Py, (k+1|k)
3 0.833353 3361449.747010 0.,000674
4 0.700091 2162257,938346 0.000434
5 0.600251 1587420.857255 0.000318
6 0.524348 1252981.390462 0.000251
7 0.465277 1035560.615671 0.000206 .
8 0.418314 883779.226951 0.000176
9 0, 38032 772540.351712 0.000153
10 0.349164 688170.202824 0.000135
11 0.323362 622597.712344 0.000121
12 0.301851 - 570754.856727 0.000110
13 0.283851 529295,650584 0.000100
14 0.2687174 495914,698435 0.000092
15 0.256166 468961.839168 0,000086
16 0.245663 447213.284383 0.000080
17 0.236970 429730,386082 0.000075
18 0.229835 415770.101811 0.000070
19 0.224042 404727.122310 0.000067
20 0.219397 396096.531088 0.000063
21 0.215728 389449.633746 0.000060
22 0.212878 384418.633912 0.000057
23 0,210707 380686.994291 0.000055
24 0.209090 377983.305061 0.0000563
25 0.207914 376077.100833 0.000050
26 0.207082 374775.56562309 0.000049
27 0.206513 373920,354370 0.000047
28 0.206139 373384.453008 0.000045
29 0.205905 " 373068.497917 0.000044
30 0.205766 372897.073406 0.000043
31 0.205691 372814.852189 0.000042
32 0.2056565H 372782.847001 0,000040
33 0.2056641 372774,921156 0.000039
34 0.205638 372774.679680 0.000039
35 0.205638 372772.813233 0.000038
36 0.205637 372764,9195605 0.000037
37 0.205633 372749,787709 0.000036
38 0.2056627 372728.104278 0.000036
39 0.205617 372701.521583 0.000035
40 0.205606 372672.024912 0.000035
41 0.205593 372641.533556 0.000034
42 0.205579 372611.677263 0.000034
43 0.205566 372583.697429 0.000033
44 0.205554 372558.,431537 0.000033
45 0.205543 372536.348494 0.000033
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Given, T = 4.000 sec, M = 30.000 m/s
' P = 0.100 , P2= 0,300
R = 160.000 km , o. = 1000,000 m
o = 0.017 rad P
Step no. Kalman Mean-sgquare range Mean-square bearing
gain prediction error prediction error
k K;; (k) Py (k+1]k) Py (k+1]k)
3 0.835647 2454838.683076 0.000679
4 0.710551 1686139,746469 0.000441
5 0.627719 1371531.455742 0.000329
6 0.578332 1236391.391102 0.000267
7 0.552851 1183744.982860 0.000229
8 0.542071 1167342.522005 0,0002056
9 0.538605 1163997.844967 0.000190
10 0.537892 1163795.,0505676 0.000181
11 0.537849 1163719.361654 0.000176
12 0.537833 1163410.287183 0.000173
13 0.537767 1163078.734395 0.000172
14 0.537696 1162856.716082 0,000171
15 0.537649 1162748.001667 0.000171
16 0.5637625 1162708.337924 0.000171
17 0.537617 1162698.451156 0,000171
18 0.537615 1162697.317494 0.,000171
19 0.537614 1162697.305987 0.000171
20 0.537614 1162696.911622 0.000171
21 0.537614 1162696.357132 0.000171
22 0.537614 1162695.932799 0.000171
23 0.537614 1162695,702828 0,000171
24 0.537614 1162695.609613 0.000171
25 0.537614 1162695,582586 0.000171
26 0.5637614 1162695.578130 0.000171
217 0.537614 1162695.578059 0.000171
28 0.537614 1162695.577650 0.000171
29 0.537614 1162695.576781 0.000171
30 0.537614 1162695.576001 0.000171
31 0.5637614 1162695.575531 - 0.000171
32 0.537614 1162695.575320 0.000171
33 0.537614 1162695.575251 0.000171
34 0.537614 1162695.575236 0,000171
35 0.537614 1162695,575235 0.000171
36 0.537614 1162695.575235 0.000171
37 0.537614 1162695.575234 0.000171
38 0.537614 1162695.575232 0.000171
39 0.537614 1162695.575231 0.000171
40 0.537614 1162695.575231 0.000171
41 0.537614 1162695.575231 0.000171
42 0.537614 1162695.575231 0.000171
43 0.537614 1162695.575231 0.000171
44 0.537614 1162695,575231 0.000171
45 0.537614 1162695,575231 0.000171
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30.000 m/s

Given, T = 4,000 sec, M =
P1 = 0.100 , ‘ Py = 0.300
R = 370,000 km , , Ob = 1000.000 m
o = 0.017 rad
Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error
k K| (k) P (k+1|k) Py (k+1|k)
3 0.835647 2454838.683076 0.000675
4 0.710551 1686139.746469 0.000435
5 0.6277198 1371531.455742 0.000320
6 0.578332 1236391.391102 0.000254
7 0.5528561 1183744.982860 0.000211
8 0.542071 1167342.,522005 0.000181
9 0.538605 1163997.844967 0.000160
10 0.537892 1163795,050576 0.000145
11 0.537849 1163719,361654 0.000133
12 0.537833 1163410,287183 0.000124
13 0.537767 1163078.734395 0.000118
14 0.537696 1162856.716082 0.000113
15 0.537649 1162748.001667 0.000110
16 0.537625 1162708,337924 0.000107
17 0.537617 1162698.451156 0.000106
18 0.537615 1162697.317494 0.000105
19 0.537614 1162697.305987 0.000104
20 0.537614 1162696,911622 0.000103
21 0.5637614 1162696.357132 0.000103
22 0.537614 1162695,932799 0.000103
23 0.537614 1162695.702828 0.000103
24 0.537614 1162695.609613 0.000103
25 0.537614 1162695.582586 0.000103
26 0.537614 1162695,578130 0.000103
27 0.537614 1162695.5678059 0.000103
28 0.537614 1162695.577650 0.000103
29 0.537614 1162695.576781 0.000103
30 0.537614 1162695.576001 0.000103
31 0.537614 1162695.575531 0.000103
32 0.537614 1162695.575320 0.000103
33 0.537614 1162695.5752561 0.000103
34 0.537614 1162695.575236 0.000103
35 0.537614 1162695.575235 0.000103
36 0.537614 11626935,575235 0.000103
37 0.537614 1162695,575234 0.000103
38 0.537614 1162695.575232 0,000103
39 0.537614 1162695.575231 0.000103
40 0.537614 1162695,575231 0.000103
41 0.537614 11626385,5756231 0.000103
42 0.537614 1162695.575231 0.000103
43 0.537614 1162695,575231 0.000103
44 0.537614 1162695.676231 0.000103
45 0.537614 0.000103

1162695.575231
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Given, T = 4,000 sec, M = 7.500 m/s
P, = 0.100 , S Py o= 0.300
R = 160.000 km , g. = 1000.000 m
o = 0.020 rad P
Step no, Kalman Mean-square range Mean—-square beaing
gain prediction error prediction error
k K (k) P (k+1]k) Py (k+1]k)
3 0.833480 2340957.936749 0.000934
4 0.700685 1511864.011394 0.000600
5 0.601889 1117934.126381 0.000441
6 0.527842 892669.234060 0.000348
7 0.471646 750502.687012 0.000287
8 0.428736 655783.683887 0.000245
9 0.396056 590991.038013 0.000214
10 0.371461 546389.627915 0.000190
11 0.353332 515984 .738053 0.000171
12 0.340363 495740.970762 0.000157
13 0.331435 482745.404955 0.000145
14 0.325575 474806.314889 0.000135
15 0.321945 470259.450453 0.000127
16 0.319848 467866.345550 0.000121
17 0.318739 466744,580362 0.000115
18 0.318218 466303.175838 0.000111
19 0.318013 466176.650788 0,000107
20 0.317954 466161.300111 0.000105
21 0.317947 466159.566295 ~0.000102
22 0.317946 466136.449753 0.000100
23 0.317935 466088.835917 0.000099
24 0.317913 466026.221632 0.000098
25 0.317884 465960.1483563 0.000097
26 0.317853 465899.499182 0.000096
27 0.317825 465849,260003 0.000096
28 0.317802 465811.002366 0.0000986
29 0.317784 465783.979704 0.000096
30 0.317771 465766,229504 0.000095
31 0.317763 465755.417748 0.000095
32 0.317758 4656749.367394 0.000095
33 0.3177565 4656746.315477 0.000095
34 0.317754 465744.979508 0.000095
35 0,317753 465744.512783 0.000095
36 0.317753 465744.,410580 0.000095
37 0.317753 465744,407821 0.000095
38 0.317753 465744 ,390157 0.000095
39 0.317753 465744,326936 0.000095
40 0.317753 465744,226312 0.000095
41 0.317753 465744.,108628 0.000095
42 0.317753 465743.992967 0.000095
43 0.317753 4656743.892062 0.000095
44 0.317753 465743.811811 0.000095
45 0.317753 465743.752842 0.000095
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Given, T = 4,000 sec, M = 7.500 m/s
p, = 0.100 , Py = 0.300
R = 370,000 km , o = 1000.,000 m
o = 0,020 rad
Step no. Kalman . Mean-square range Mean—square bearing
gain prediction error prediction error
K (k) Pll(k+1|k) P33(k+1|k)
3 0.833480 2340957.936749 0.000933
4 0.700685 1511864.011394 0.000600
5 0.601889 1117934.126381 0.000440
6 0.527842 892669.234060 0.000347
7 0.471646 750502.687012 0.000286
B 0.428736 655783.683887 0.000243
9 0.396056 590991.038013 0.000212
10 0.371461 546389.627915 0.000187
11 0.353332 515984.738053 0.000168
12 0.340363 495740.970762 0.000153
13 0.331435 482745.404955 0.000140
14 0.325575 474806.314889 0.000129
15 0.321945 470259.450453 0.000120
16 0.319848 467866.345550 0.000112
17 0.318739 466744.580362 0.000105
18 0.318218 466303.175838 0.000100
19 0.318013 466176.650788 0.000095
20 0.317954 466161.300111 0.000090
21 0.317947 466159.566295 0.000086
22 0.317946 466136.449753 0.000083
23 0.317935 466088.835917 0.000080
24 0.317913 466026.221632 0.000077
25 0.317884 465960.148353 -0.,000075
26 0.317853 465899,499182 0.000073
27 0.317825 465849.260003 - 0.000071
28 0.317802 465811.002366 0.000069
29 0.317784 465783.979704 0.000068
30 0.317771 465766.229504 0.000067
31 0.317763 465755.417748 0.000066
32 0.317758 465749,367394 0.000065
33 0.3177565 465746.315477 0.000064
34 0,317754 465744 ,979508 0.000063
35 0.3177563 465744.512783 0.000063
36 0.317753 465744,410580 0.000062
37 0.3177563 465744.407821 0.000062
38 0.317753 465744.390157 0.000061
39 0.317753 465744.326936 0.000061
40 0.3177563 465744.226312 0.000061
41 0.317763 465744.108628 0.000061
42 0.317753 465743.992967 0.000061
43 0.317753 465743.892062 0.000061
44 0.317753 465743,811811 0.000060
45 0.317753 4165743.752842 0.000060
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Given, T = 4,000 sec, M = 2.100 m/s
PI = 0,000 , Py, = 0.000
R = 160,000 km , o. = 1000.000 m
oy = 0.020 rad P
Step no. Kalman Mean—-square range Mean—square bearing
gain prediction error prediction error
k K (k) P (k+1]k) Py (k+1{k)
3 0.833344 2333876.896177 0.000933
4 0.700049 1500846.638585 0.000600
5 0.600135 1101282.890097 0.000440
6 0.524100 868535.360135 0.000347
7 0.464821 716908.974513 0.000286
8 0.417558 610708.993819 0.000243
9 0.379155 532494.124017 0.000211
10 0.347469 472758.502497 0.000187
11 0.321002 425890,777713 0.000168
12 0.298684 388369.811262 0.000152
13 0.279731 357876.089790 0.000139
14 0.263556 332819.358720 0.000128
15 0.249711 312071.605086 0.000119
16 0.237846 294808.303509 0.000111
17 6.227685 280409.982152 0.000104
18 0,.218000 268399.023457 0.000058
19 0.211605 258397.920500 0.000092
20 0.205339 250101.096516 0.000088
21 0.200065 243255.,594163 0.000084
22 0.195660 237647.741415 0.000080
23 0.192016 233093.943387 6.000076
24 0.189032 '229434,367619 0.000073
25 0.186618 226528.666169 0.000071
26 0.184691 224253.114424 0.000068
27 0.183175 222498.703648 0.000066
28 0.182003 221169.83714¢6 0.000064
29 0.181113 220183.368183 0.000062
30 0.180451 219467.791523 0,000060
31 0.179970 218962.463593 0.,000059
32 0.179630 218616.773586 0.000058
33 0.179397 218389.278588 0.000056
34 0.179244 218246.679389 0.000055
35 0.179148 218162,870157 0.000054
36 0.,179092 218117.885746 0.000053
37 0.179061 218096.508758 0.000052
38 0.179047 218089.327118 0.000052
-39 0.179042 218087.873862 0.000051
40 0.179041 218087.866377 0.000050
41 0,179041 218086.553754 0.000050
42 0.179040 218082.573441 0.000049
43 0,179038 218075.512405 0.000049
44 0.179033 218065.563843 0.000049
45 0.179026 218053.267866 0.000048



2

Given, T = 4.000 sec, M = 2.100 m/s
Pl= 0.000 , P2= 0.000
R = 370.000 km , g. = 1000.000 m
oy = 0.020 rad P
Step no. Kalman Mean-square range Mean-square bearing
' gain prediction error prediction error
k K (k) P (k+1jk) Py (k+1 k)
3 0.833344 2333876.896177 0.000933
4 0.700049 1500846.,638585 0.000600
5 0.600135 1101282,890097 0.000440
6 0.524100 868535.360135 0.000347
7 0.464821 716908.974513 0.0002886
8 0.417558 610708.993819 0.000243
9 0.379155 532494.124017 0.000211
10 0.347469 472758.502497 0.000187
11 0.321002 425890.,777713 0.000167
12 0.298684 388369.811262 0.000152 -
13 0.279731 3567876.089790 - 0.000139
14 0.263556 332819.358720 0.000128
15 0.249711 312071.6050886 0.000118
16 0.237846 294808.303509 0.000110
17 0.227685 280409.982152 0.000103
18 0.219000 268399.023457 0.000097
19 0.211605 258397.920500 0.000091
20 0.205339 250101.096516 0.000087
21 0.200065 243255.594163 0.000082
22 0,195660 237647.741415 0.000078
23 0.192016 233093.943387 0.000075
24 0.189032 229434,367619 0.000071
25 0,186618 226528.666169 0.000069
26 0.184691 224253.114424 0.0000686
27 0.183175 222498.703648 0.000063
28 0.182003 221169.837146 0.000061
29 0.181113 220183.368183 0.000059
30 .0.180451 219467.791523 0.000057
31 0.179970 218962.463593 0.000055
32 0.179630 218616.,779586 0.000053
33 0.179397 218389.278588 0.000052
34 0.179244 218246.679389 0.000050
35 0.179148 218162.870157 0.000049
36 0.179092 218117.885746 0.000048
37 0.179061 218096.908758 0.000047
38 0.179047 218089.327118 0.000045
39 0.179042 218087.873862 0.000044
4Q 0.179041 218087.866377 0.000043
41 0.179041 218086.553754 0.000042
42 0.179040 218082.573441 0.000042
43 0.179038 218075.512405 0.000041
44 0.179033 218065.563843 0.000040
45 0.1790286 218B053.267866 0.000039
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Given,

Step no.

Kalman
gain

Ky (k)

0.835375
0.709338
0.624677
0.572793
0.544792
0.532112
0.527590
0.5626467

0.526340

0.526338
0.526288
0.526216
0.526159
0.526126
0.526112
0.526108
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.5626107
0.626107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107
0.526107

15.000

sec,
0.000 ,

160.000 km ,

0.017 rad

Mean—-square range
prediction error

P (k+1]k)

2440421.875813
1664370.019028
1340788.109305
1196798.104161
1137263.0186525
1116804.078032
1111786.227676
1111219.830121
1111211.386237
1110986.,172784
1110665.085340
1110411.231257
1110267.223461
1110205.067344
1110185.238596
1110181.274970
1110181.072229
1110180.939459
1110180.474331
1110179.978085

1110179.638437

1110179.465633
1110179.398838
1110179.380508
1110179.377840
1110179.,377835
1110179.377370
1110179.376540
1110179.375820
1110179.375385
1110179.375186
1110179.375118
1110179.375103
1110179.375101
1110179.375101
1110179.375100
1110179.375099
1110179.375098
1110179.375097
1110179.375097
1110179.375097
1110179.375097
1110179.375097

108

HoE

2.100
0.000
1000.000 m

m/s

Py (k+1[k)

0.000679
0.000440
0.000328
0.0002865
0.000226
0.000202
0.000186
0.0001786
0.000170
0.000167
0.000165
0.000165
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0,000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164
0.000164

2

Mean—-square bearing
prediction error



Given, T = 15.000 sec, Moo= 2.100 m/s
P, = 0.000 , P2= 0.000
R = 370.000 km , o. .= 1200,000 m
oy = 0.020 rad e
Step no. Kalman Mean-square range Mean-square bearing
gain prediction error prediction error
k K (k) Py (k+1]k) Py (k+1|k)
3 0.834757 3467211,298556 0.000934
4 0.706554 2325285.512761 0.000601
5 0.617559 1828524.,941993 0.000442
6 0.559434 1588879.,782922 0.000349
7 0.524577 1475408.139004 0.000289
8 0.506073 1427015.,090931 0.000248
9 0.497735 1409960.290613 0.000218
10 0.494730 1405642,417137 0.000195
11 0.493963 1405135.171843 0.000178
12 0.493873 1405126.452445 0.000165
13 0.493871 1404890,301099 0.000155
14 0.493829 1404523.091110 0.000147
15 0.493764 1404199.689532 0.000141
16 0.493706 1403990.086058 0.000138
17 0.493669 1403882.,728000 0.000133
18 0.493650 1403839.149940 0.000130
19 0,493642 1403825.974994 0.000128
20 0.493640 1403823.609922 0.000127
21 0.493639 1403823.557079 0.000126
22 0.493639 1403823.336525 0.000126
23 0.493639 1403822.777224 0.000125
24 0.493639 1403822.187753 0.000125
25 0.493639 1403821.760495 0.000125
26 0.493639 1403821.520273 0.000125
27 0.493639 1403821.412665 0.000125
28 0.493639 1403821.375457 0.000125
29 0.493639 1403821.366759 0.000125
30 0.493639 1403821.365991 0.000125
31 0.493639 1403821.,365892 0.000125
32 0.493639 1403821.365140 0.000125
33 0.493639 1403821.364128 0.000125
34 0.493639 1403821.363292 0.000125
35 0.493639 1403821.362774 0.000125
36 0.493639 1403821.362519 0.000125
37 0.493639 1403821.362421 0.000125
38 0.493639 1403821.362393 0,000125
39 0.493639 1403821.362389 0.000125
40 0.493639 1403821.362389 0.000125
41 0.493639 1403821.362388 0.000125
42 0.493639 1403821.362386 0.000125
43 0.493639 1403821.362385 0.000125
44 0.493639 1403821.362383 0.000125
45 0.493639 1403821.,362383 0.000125
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110

Given, T = 10,000 sec, M = 2.100 wm/s
Piz 0.000 , P, = 0.000
R = 160,000 km , g = 1000.000 m
oy = 0.017 rad P
Step no. . Kalman Mean-square range Mean-square bearing
gain prediction error prediction error
k K (k) P (k+1]k) Py (k+1 | k)
3 0.833741 2354550.699120 0.000675
4 0.701897 15632951.639093 0.000435
5 0.605204 11495685.232138 0.000320
6 0.534794 937942.6539565 0.000253
7 0.483989 812161.344124 0.000210
B 0.448173 735859.106094 0.000181
9 0.423916 690349.949047. 0.000160
10 0.408407 664471.087025 0.000144
11 0.399209 650843.827015 0.000132
12 0.394249 644417.990291 0.000123
13 0.391882 641836,678893 0,000117
14 0.390926 641037.686494 0.000112
15 0.390629 640896.156729 0.000108
16 0.390577 640895.530934 0.000108
17 0.390577 640858.940321 0.000104
18 0.390563 640765,928399 0.000103
19 0.390529 640646.643519 0.000102
20 0.390484 640632.874896 0.000101
21 0.390442 640442,608164 0.000101
22 0.390408 640380.334876 0.000101
23 0.390385 640342,348220 0.000101
24 0.390371 640321.858382 0.000101
25 0.390364 640312.246535 0.000101
26 0.390360 640308.,493329 0.000101
27 0.390359 640307.401453 0.000101
28 0.390358 640307.239871 0.000101
29 0,.390358 640307.239084 0.000101
30 0.390358 640307.156393 0.000101
31 0.390358 640306.981214 0.000101
32 0.390358 640306.770740 0.000101
33 0.390358 640306,577254 0.000101
34 0.350358 640306.427713 0.000101
35 0.390358 640306.326790 0.000101
36 0.390358 640306.266503 0.000101
37 0.390358 640306.234711 0.000101
38 0.390358 640306,220206 0.000101
39 0.390358 640306.2141766 - 0.000101
40 0.390358 640306.213298 0.000101
41 0.390358 640306.213126 0.000101
42 0.390358 640306.213114 0.000101
43 0.390358 640306.212936 0.000101
44 0.390358 640306.212610 0.000101
45 0.390358 640306.212241 0.000101



l

Given, T = 10.000 sec, M = 2,100 m/s
Pl = 0.000 , P2 = 0.000
R = 370.000 km , g, = 1200.000 m
gy = 0.020 rad P
Step no. Kalman . Mean-square range Mean-square bearing
gain prediction error prediction error
k Ky (k) P“(k+1|k) Py (k+1]k)
3 0.833616 3381222.236473 0.000933
4 0.701321 2192989.144631 0.000600
5 0.603632 1633748,785831 0.000440
6 0.531517 1319802.516358 0.000347
7 0.478224 1127825,942192 0.000286
8 0.439214 1006084.242147 0.000244
9 0.411304 928619.542959 0.000212
10 0.392051 B80412.691293 0.000188
11 0.379421 . 8561720,368428 0.000169
12 0.371651 8B35740.484936 0.000154
13 0.367239 827620.272288 0.000142
14 0.364973 823988.836575 0.000132
15 0.363954 822650.501226 0.000123
16 0.363578 822304.133144 0.000116
17 0.363481 822271.880777 0.000110
18 0.363472 822262.822195 0.000104
19 0.363469 B22193.974178 0.000100
20 0.363450 B22073.113666 0.000096
21 0.363416 B21933.327477 0.000093
22 0.363376 821803.416924 0.000091
23 0.363340 821699.207604 0.000088
24 0.363311 821624.762462 0.000087
25 0.363290 B21576.783841 0.000085
26 0.363276 821548,852928 0.000084
27 0.363268 821534,309059 0.000083
28 0.363264 821527.707433 0.000082
29 0.363262 821525.242700 0.000081
30 0.363262 821524.591434 0.000081
31 0.363261 821524.525818 0.000080
32 0.363261 821524.512537 0.,000080
33 0.363261 821524.395271 0.000080
34 0.363261 821524,184135 0.000080
35 0.363261 821523.937143 0.000080
36 0.363261 821523.705990 0.000080
37 0.363261 821523.519618 0.000080
38 0.363261 821523.,385915 0.000080
39 0.363261 821523.,299412 0.000080
40 0.363261 821523.,248854 0.000080
41 0.363261 821523.222409 " 0,000080
42 0.363261 821523.210335 0.000080
43 0.363261 821523.205786 0.000080
44 0.363261 821523.204562 0.000080
45 0.363261 0.000080

821523.204430
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Step no.

F

—t
OWR-1ma o w

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

C’O(DCDOCDC)OCDC)O(DC)O(DC)OCDC)O<3C>O<3C)o(DC)O(DC)oCDc>O<DC)o<D

Kalman
galn

K, (k)

.833453
. 700558
.601542
.527104
.470311
. 426574
.392841
. 366996
.347483
.333079
.322763
.315650
.310965
.308044
.306342
.305430
.304993
.304816
.304763
304756
.304755
.304747
.304728
.304702
.304674
.304647
.304623
.304605
.304691
.304581
.304575
.304571
.304569
.304568
.304567
304567
.304567
.304567
.304567
0.304567
0.304567
0.304567
0.304567

5.000 sec,

0.100 ,
160.000 km ,

0.019 rad

Mean-square range
prediction error

P {k+1]|k)

2830854.822021
1826705.886398
1348703.517870
1074358.344898
900124.643679
782888.908689
701519,907463
644356.898507
604307.212190
576671.178922
558099.838940
546078.043750
538667.304091
534375,950266
532084.725264
530989,784900

530546.872909 .

530413.892524
530395,501030
530394,537078
530373.448964
530326.516481
530261.780484
530190.607217
530122.604725
530063.881791
530017.118826
529982.417318
529958.,312535
529942.640375
529933.147788
529927.,848553
529925.177520
529924.009841
529923.604856
529923,519212
529923.517799
529923.497681
©029923.430673
529923.324348
529923.198335
529923.071840
529922.958490

112

5.000 m/st
0.400
1100.000 m

Mean-square bearing
prediction error

Pn(k+1|k)

0.000843
0.000542
0.000398
0.000314
0.000259
0.000221
0.000193
0.000172
0.000155
0.000142

0.000131

0.000123
0.000116
0.000110
0.000105
0.000101
0.000098
0.000096
0.000094
0.000092
0.000091
0.000090
0.000089
0.000089
0.000089
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088
0.000088

-0.000088

0.000088
0.000088
0.000088



R el oYl o R e NN ol NN o R e N o NN ol ol ool e Re ke el Re Rl e ReRe R Re ot e e ke RN el R e Ra R

Kalman
gain

Ky (k)

.8334563
. 700558
.601542

.470311
. 426574
392841
366996
.347483
. 333079
. 322763
.315650
310965
.308041
.306342
.305430
.304993
. 304816
. 304763
.304756
. 304755
.304747
.304728
.304702
.304674
. 304647
. 304623
.304605
304591
.304581
.304575
. 304571
. 304569
.304568
. 304567
. 304567
.304567
.304567
.304567
.304567
304567
» 304567
.3045867

-

.

527104 -

5.000
0,100 ,

sec,

370.000 km ,

0.019 rad

Mean—-square range
prediction error

P“(k+1|k)

2830854.822021
1826705,886398
1348703.517870
1074358.344898
900124.643679
782888.908689
701519.907463
644356,898507
604307.212190
576671.178922
558099.838940
546078.043750
538667.304091
534375.950266
532084.725264
530989.784900
6530546.872909
530413.892524
530385.501030
530394.537078
530373.448964
530326.516481
530261.,780484
530190.607217
530122.604725
530063.881791
530017.118826
529982.417318
5299568.312535
529942,640375
529933.147788
529927.848553
529925.177520
529924.009841
5299823.604856
529923.5619212
529923.517799
529923.497681
529923.430673
529923.324348
529923.198335
528923.071840
5298922,958490

113

65.000
0.400
1100.000 m

m/s

Py (k+1{k)

0.000842
0.000542
0.000397
0.000313
0.000258
0.000220
0.000191
0.000169
0.000152
0.000138
0.000126
0.000116
0.000108
0.000101
0.000095
0.000090
0.000086
0.000082
0.000078
0.000075
0.000072
0.000070
0.000068
0.000066
0.000065
0.000063
0.000062
0.000061
0.000060
0.000059
0.000059
0.000058
0.000058
0.000057
0.000057
0.000057
0.000056
0.000056
0.000056
0.000056
0.000056
0.000056
0.000056

2

Mean-square bearing
prediction error



(for R=160 km)

Kya(k)

1.00

0.80

Q.60

0.40

0.20

0.00

te g v ety v el a st et ig bty

3

JliIllllI|JIIIII]II|J|IITEI1I]!I

13 23 33
lteration number

Fig.{7.2) Gain setting of Kalman filter
(for the same scan time)
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(for R=160 km)

- Kiy(k)

1.00

0.80

(.60

0.40

0.20

0.00

1

. T=15 s, M=2.1 m/s®

E S =10 5, M=2.1 m/s’
] . T=5 ¢, M=5.0 m/s’

] T=4 s, M=3.27 Jm{sf .
—‘llllllflljll!llllll|llITII‘IIIIII
3 13 23 33

[teration number

Fig.(7.3) Gain setting of Kalman filter
, (for different scan time)
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(for R=370 km)

Kii(k)

C.80

0.60

0.40

0.20

0.00

3

]
]
3
1
3
]
.
E
] T=4 g, M=30 m/s’
N T=4 s, M=7.5 m/s
. M=2.1 m/s?
]
L L L L [ AL L A I AL [T T T T T T 17711 [

13 23 33

lteration number

Fig.(7.4)  Gain setting of Kalman filter
(for the same scan time)
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=370 km)

(for R

Kyi(k)

1.00

0.80

o
@
O

0.40

v vl vr v e by g g b g gy i

5

AN N N A A It B At e s e i s

13 23 33
lteration number’

Fig.(7.5)  Gain setting of Kalman filter

(for different scan time)
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(for R=160 km)

Py (k)

SE+0086

2E+Q06
] L T=4s M=30m/s’
TE+008 1
OE+000 lJIlIT‘I'II|lIllllllllflllll!ll[ll‘
3 13 23 23

lteration number

Fig.(7.6) Mean—square range prediction error
(for the same scan time)
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160 km)

(for R

Pa1(k)

SE+006

]

]
2840061

i T=15 5, M=2.1 m/s*
TE+006 '

. T=4 5, M=3.27 m/s*
OE+ODO flf?IlIIIII_IFIJlfll[ll!l!’lll-l[li

3 13 23 , 33

lteration number

Fig.(7.7) Meon—sduore range prediction error
(for different scan time)
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370 km)

Pu(k) (for R

SE4-006

28400

(o3}

PR U T OO N NN U TR S VRS NN SO0 NN TN NN TN SN TN G WY SN SN PN SV SN S G A

1E+006

O£ +000

T=4 5, M=30 m/s®

i et e e e L e e o e S e St e e et s e e L

e T=4 s, M=7.5 m/s?
ittt ettt
T=4 s, M=2.1 m/s?

Wt s -

3

rr-rUrorrrrr T r T T [T
13 23 33
lteration number

Fig.(7.8) Mean—square range prediction error

(for the same scan time)
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3E+006
& §
X _
S 2E+006-
P[_lj —
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5 i T=15 5, M=2.1 m/¢"
< 1E4006
o i
OE+OOO | T T T T T T T T T [ T T H T T T 71 T T ] T T T I T T7 T T | T ll
3 13 23 33

lteration number

Fig.(7.9) Mean—-square range prediction error
(for different scen time)
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- BE--004

Pss(k) (for R=160 km)

1E-003

6E~--004

4E-004

2E—004 T=4 s, M=30 m/s’

T=4 s, M=7.5 m/s*

T=4 s, M=2.1 m/s

OE+OOO|ilIi]IIII|IIIIIIIII{IIII.IIIIIIII
5 13 253 33

lteration number

Fig.(7.10) Mean—square bearing prediction error
(for the same scan time)
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Fig.(7.11) Mean—square bearing prediction error

(for different scan time)
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or R=370 km)

(f

P3s(k;

m
[
)
(-
C

8E-004

6E—004

4£-004

2E-004

OE+000

]

]

-

.

.

N T=4 5, M=30 m/s?

N LTI=4 & M=75 m/sz

7 T=4 s, M=2.1 m/s" ~
IIII[IIII{I?IIII’IIF[lIITIfIII[f—I

3 13 23 33

feration number

Fig.(7.12) Mean~—square bearing predictién error

(for the same scan time)
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(for R=370 km)

P33(k)

1E~003

8E-004

6E~004
4004
2E—-004
T=15 5, M=2.1 m/s*
g 1210 8 M=221 m/8?
T=4 5, M=3.2
OE+OOO[JIFIIIIII]TIIIIllIl|IIFI?IlIlr‘TSI

3 13 23 33
Reration number

Fig.(7.13) Mean—square bearing prediction error
(for different scan time)
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In chapter 2 we focus on the detection of the presence of a signal in noise and in doing so we
used the Neyman-Pearson criterion to assess the performance of air traffic control radar where
a priori probability of receiving a signal is not known. From the performance curve as shown in
fig.(2.6), we have found that for the probability of error P, less than 10, we need vinA/o_ >7.3.
For vmA/o, = 10, P, = 2.87x10%, for vinA/e, = 11, P, = 1.9x107 and for vinA/o, = 12,
P, = 1.0x10”. So small changes in A/ o, the signal-to-noise ratio, result in significant changes
in the probability of error. For this reason, increasing the signal-to-noise ratio are so important
in signal processing systems, i.e. for the improvement of detection capability we should maxe
A/o, as large as possible. To do this the number of samples m may also be increased. Since the
samples are spaced a fixed time interval apart to ensure statistical independence, the time for

detection increases with m.,

The signal detection characteristics of the primary and secondary radars of Zia International
Airport are also described. From the results given in chapter 2, it is seen that since the secondary
radar 1s equipped with the transponder, radar range extensively increase with lower transmitter
power as the transponder acts as a midway receiving transmitting station. We have found that
though the primary radar has 1400 times the transmitted power of the secondary radar, the
secondary radar can cover almost 2.3 times longer distance that of the primary radar as the
secondary radar is equipped with the transponder. As the wider pulse used for the secondary
radar, target detection capability of it increase corres;iondingly since for the wider pulse more
energy is received. At the same time minimum radial spacing of two -targetsArequired to’

distinguish them also increase. The signal-to-noise ratio, E/n, as calculated for the two radars are
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23.43dB for primary radar and 82.24dB for secondary radar (at the transponder) for maximum

radial distances. . .

Both the primary and the sccondary radar rotate at a rate of 15 rpm, conklplcting a 360° scanin
4s. The two radar beams have azimuth bandwidths of 1.5° and 1.35°, respectively, while the
number of pulses emitted are 633 and 316 pulses per second, respectively. This corresponds to
10.55 pulses reflected per target in the primary radar and 4.7 pulses per target in the secondary
radar, providing ‘that many more samples in the signal processing or, equivalently, augmenting
the received energy by the same amount. Thus the primary radar energy received should be
10.5SE and the secondary radar energy 4.7E. Alternately, this results in E/n, improvement, of
10.23dB and 6.72dB, respectively.

Fig.(2.10) represents a family of graphs relating probability of detection with signal-lo-noise ratio
for different values of probability of false-alarm. The signal-to-noise ratio needed to achieve a
specified probability of detection without exceeding a specified false-alarm probability ca.n be
calculated from these graphs. It is found that for small values of false-alarm probability we need
large signal-fo-noise ratio to achieve a specific probability of detection, i.e. to maintain a certain
probability of detection, the required value of signal-to-noise ratio increases correspondingly with
deccase of false-alarm probability. From the graphs we have seen that to attain maximum
probability of detection, P, for specified values of P, (the probability of false-alarm) the required

signal-to-noise ratios are as follows:

For the maximum P,
P, E/m, E/n, (in dB)
107 14 11.46
10™ 21 13.22
10° 28 14.47
10° 35 15.44
101 40 16.02
101 : 65 18.13




We have also established a frame work for the analysis of random signals using Kalman filter
which is applied in radar tracking problem in chapter 7. We have found that the Kalman filter
provides the best linear estimates of radar tracking. The resulting performance figures are
presented, these being the mean-square range prediction error, mean-square bearing prediction
error and gain setting of Kalman filter. In figs. 7.2 tb 7.13 we have plotted the results of
computer calculations of the appropriate matrices for the set of data obtained from the radars at
Zia International Airport and for other relevant sets of data that explain the characteristics of
the processor elaborately. We have also presented an ¢xample for the range R=160 km, scan time
T=15 sec, maximum acceleration M=3.27 m/sec® and the probabilities of maximum and zero
acceleration PP, and P, to be ¢qual to 0.1 and 0.3 respectively which explain the computational
procedures of the filter. We have plotted only the first diagonal element, K (k), of the gain
matrix and the first and third diagonal elements of the one-step prediction covariance matrix

P(k+1 k) which coirespond to the mean-square errors in the prediction of range and bearing.

The mean-square bearing prediction error converges to its steady-state value in 8 to 12 iterations,
while the range prediction error converges in S to 12 iterations. The gain settings of the Kalman
filter reach to its steady state value after 5 o 10 iterations. The variation of Kalman filter gain
setting, the mean-square range prediction error and the mean-square bearing prediction error {or
different values of the parameters of the model are presented both in graphical and numerical

form so that we can compare the results,

Graphs 7.2-7.5 show the gain settings of the Kalman filter, the first diagonal element of the gain
matrix K(k) and we have found that the gain setting drops quickly to a final steady slate value.
It can be seen that gain setting decreases with the decrease of scan time. But this value increases
with the increase of maximum acceleration. The results are very similar for primary and

secondary radar.

Graphs 7.6-7.9 show the complete results of the mean-square range prediction error and we have
found that mean-square range prediction error increases correspondingly with the increase of
maximum acceleration M for the same scan time (here T=4s). For higher value of scan time

(keeping 0% constant), the error also increases. Both the cases are shown in graphs.
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Graphs 7.10-7.13 show the variation of the mean-square bearing prediction error for those sets
~of data. It is apparent from these graphs that it follow trend that is quite reasonable since the

error decreases with the decrease of T for constant o, and increases with M.

Irom these results we can say that this algorithin (i.¢. Kalman filter) is stutable for radar tracking
problem. We have seen that as the scan time T is decreased from 15 to 4 s, for the same o 2, the
gain setting and the mean-square errors decrease. Since the time between filter iterations has been
decreased, the varation in range and bearing estimates decreases as well. Therefore, new
cstimatcs carry less information and can be weighted less. If the maximum acceleration M is
increased (increasing o,%) for the same scan time T, the mean-square errors and gain go up again,

since then range and bearing estimates will vary more from iteration to iteration.

Finally, as a general conclusion, the Kalman filter provides the minimum variance éstimate of
the process even in a noisy observation case, and provides the best balance between the a priori
information and measurements, and hence it is an efficient estimator for the state of estimation
problem. The Kalman filter is best suited to analysis of continuous time series and it is thercfore
can be applied in areas such as radar tracking, navigation systems, weather forecasting, satellite

communications, aulomatic traffic control system efc,

8.2 Suggestions for Further Study

So far we discussed the application of Kalman filtering to air tratfic control. Also, throughout
this thesis we have restricted our study to simple radar tracking problenmy, ie. we have used a
simple and moderate tracking meithod. We have found that in the linear target tracking system,
the Kalman filter can be employed directly. But in the nonlinear tracking problem, some
information about the target is lost because of the linearisation and approximation procedures
required to make the problem trackable. When the measurement frequency is much lower than
the error bandwidth, the successive errors are essentially uncorretated and can be treated as white
noise. This method assumes that the measurement noise is white. But in practice, the

measurement noise may be sequentiallv correlated. and this is often referred to as colored noise,



For sequentially correlated mcasurement noise, the parameters can not be estimated with sufficient
accuracy to obtain the desired tracking performance. By reformulating the measurement equation,
the noise may be decorrelated so that the Kalman [ilter can be directly applied. By considering
the effcct of noise correlation, one can undertake a task of designing a modified computationally

efficient method.
Many important publications are available in the references. The reader is invited to consult

references [1-3], [7-101 and [16] for complementary information on radar tracking problem, and

references {2,9,25] for random signal processing.
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