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Abstract

Very few monlincar problems can be solved exactly but it is sometimes possible to
expand solution in powcrs of some parameters. In practice the presence of singularities
prevents rapid convergence of the series, so it 13 nccessary 1o scck an eflicient
approximate method. Qur purpese is to analyze the dominating singulanity behavior of a

few problems and the performance of approximate methods.

The aim of this thesis is to analyze the approximate methods by applying them to various
model problems. Firstly, wc have applied them to some standard problems, whose
singularities are known. Secondly we have analyzed numerically the critical behavior of

the solutions of nwo non-linear difTercntial equations.

Finally, we have studied the flow ina porous pipe with decelerating wall for analyzing the
dominant singularity behavior of the flow. The series related to the Reynolds number R
is developed by using algebraic programming language MAPLE. The series is then
analyzed by varions generalizations of the approximate methods. We obscrve that the
convergence of both the series 15 limited by the dominating singulanty located at

R=R, ~30724980042 and surprisingly there is another turmng point at

R, =~ 8.813114939 The result concluded that there is a reversal (low at the wall.
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Chapter 1

Introduction

It is an old maxim of mne thad when yor have excluded the impessible, what ever Fopaina, however
improbable, must be the fruth
-Shertock Holmes, The adventure of the Beryl Corone!

Sir Arthur CopanDoyle.

Very few nonlincar problems can be solved exactly but il is sometimes possible to
expand solunon in powers of some parameters. When the cxact closed form solution of a
problem is too complicated then one should try to ascertain the approximale nature of the
solution. Approximation metheds [1, 8, 11-13, 21-23] are the techniques for SUMNIing
power scries. A function is said to be approximant for a given series if its Taylor scries
expansion reproduces the first few terms of the senes. The partial sum of a series 1s the
simplest approximant, if the function has no singularities. For a rapidly convergent senes
such approximanis can provide good approximation for the solulion. In practice the
prescnce of singularities prevents rapid convergence of the series. Therefore it is

nocessary to scck an efficient approximation method.

Khan [14] applied approximation methods to several flud dynamical problems. Our
purpose is to analyze the dominating singularity behavior of some standard problcms and
comparc the performance of approximation methods numerically.

The remaindsr of (his inroductory chapter is as follows. Since we shall study the
dominating singularity behavior of series by using approximation techniques, we begin
with a brief review of series in §1.1. Then in §1.2 , we deseribe various types of
singularitics, We deseribe & brief review of elementary bifurcation theory in §1.3. We
present the basic concept of continued fractions m §1.4 in order to connect with the
approximation method in Chapter 2. Finally, in §1.5, we present a bricf out Line of the

remaining thesis.

% -




1.1 Overview of serics

Consider a function x{x) which can be represented by a power series
Ulx)=3 ax' as x> 0. (1.1.1)

=t
Ihe Ntk partial sum is

Ule)=Yax. (1.1.2)

IF we can locate a point x,, where the function «(x) is analytic then it can be found in a

[FOWCE SETIES -

Ulx)= En x—x, ) as x> x,.
The seres is said to be convergent i?ulhe sequence of the partial sums converges. When
the series converges, the sum &(x) can be approximated by the pariial sum U, {x)and
the error 1s defined by
e, (x}=1/(x)-U, (x),

and the absolute error is defined by

"( rovided TF(x)#
en(x)= TI provided U(x)=0.

The number of accurate decimals for some particular value of x is given by

Py = —ngm l"?:\.'| .
We say that the error decays exponentially if there exisls a particular constant o such

that o, — @ as N — o, where

1ﬂ|€w |
Tk

Somelimes the presence of singularity of the solulion can delay the convergency of the

a, ==

series. So, we need to find the domain of convergence of (he series. The series U{x)

converges for some x, if it converges absolulely in the open disc

{x:x<x}

™ il



with centre at the origin. The largest such disc is called the disc of convergence and the

radius, say R, ol the disc is called the radius of convergence of the senes ol Ulx). If
w(x) is analytic at x=0 then R >0. If the senes has a singularity at x, such that
x_ =4, thep it diverges for x = x_. Different methods such as matio test, Domb Svkes

plot ele. have been used to compute the radius of convergence by dircet use of the
coefficients of the series. We will apply varicas generalizations of the approxunation

methods to determine the singularity behavior of the series,

In applied malhematics, series are often obtained by expanding a sofution 1n powers of
some perturbation parameter. In {he foliowing subseclion, we describe the basic lilerature

on perturbation techniques {207[26]

1.1.1 Perturbation series

Perturbation theory is a collection of meihods for the systematic analysis of the global
behavior of solutions to nonfincar problems. Sometimes we sofve nonlinear problems by
cxpanding the solution in powers of one or several small perturbation parameters. The
expansion may conlain small or large parameters which appear naturally in the cgualions,

or which may be atificially introduced Let us consider a problem of the form

Sl x,A)=0 (1.1.3)
where fmay be an algebraic function or some non-linear differential operator, and Aisa
parameler. Tt is seldom possible to solve the problem exactly, but there may exist some

partieular value of x = x, for which the solution is known. In this case, for |x| << 1, one

can seck a series for u in powers of x such thal
Uix)= ia‘ (A (x—x,) as x > x,,.
I=0

Then by substituting this into equation (1.1.3), expanding fn powers of x and collecting

the terms of O(x” ] we can get the required coefficients of the perturbation senes.

Example-1.1.1. Let us take the cubic polynomial



1.!3—{4+x]w +2x=10 {1.1.4}

The perturbation serics for (1.1.4) in powers of x may be taken in the form of
Hx)=d ax {1.1.5)
1=
for small x. For x=0, the polynomial has three distinet roots, namely a, =-2,0,2.
Which, when a, = -2, subsliluting the expansion
Ulx)=-2+ax+a,x" +..
i . . i 1 1
in (1.1.4) and equating the coefficients of x gives &, =—§,a3 =3 Therefore, the

perturbation series for o, = -2 is

== -%x+%x1 L ﬂ(f).

In a similar process other series are L/ =0+ %x—éxg + 0(13) al a, =0and

U=2+0x+0x -1~{](x1') at w, =2,

Example-1.1.2. Consider the differential equation
2
i = with u(0}=1. (1.1.6)
1
Let us consider the senes
Ulx}=Y ax' asx—0 (1.1.7)
o=l
of the solulion of the above nonlinear inital value probiem (1.1.0).

Equating the coefficients of x° , wc obtain @, = 4] . Equating the coefficients of x and
- . 3 3 1 8 .
x* elc, we obtain a, = 5 oth = Eag and a, = 5(4.::,:,5;1 +2a? )= Ea,: respectively. These

values of .4, and &, lead us to the recurrence relation

(i + l)am - i(‘ - .f']a;al_J = Zﬂjﬂ;_j :

4=t 4=

which implies,



a

_ i + I]i"”

i+1
— for 1=1,2,3,. ..
f

According to the imtial condition, @, =1. Since the coefficients «, are functions of a,,

the coefficients will vary with the imitial condition.

1.2 Singularities

Singularity of a function is a value of the independent variable or variables for which the
function is undcfined. Singularities are crucial poinis of a function, because the expansion
of a function into a power series depends on the nature of singularities of the function.
For the purpose of this thesis, we are interested to analyze those functions, which have
several types of singularities. Practically, one of (hese singulanties dominates the
funetion. Therefore it is important to know about this singular point to analyze the local

behavior of the function arund this poiot.

The convergency of the sequence of partial sums depends crucially on the singularities of
the function represented by the series. Several types of singularilies may arisc in physical
{nonlinear) problems. The dominating behavior of the function u[x] represented by a

scries may be wrillen as

X

C

U{x)~ z{l = i] as T x, (1.2.1)

Where 4 1s a constant and x, s the critical point wilh the critical exponent . If & isa

negative integer then the singularity 15 a pole; otherwise if it is a nonncgative rational
number then the singularity is a branch point. We can include the correction terms with

the deminating part in (1.2.1) to estimatc the degree of accuracy of the critical pownts. It

can be as follows

- & £ o
U{I]HALl—i] 1+A{1—i} +A{|-i} +..| a5 x >3, (1.2.2)
xI

e x X

[3 [
Where 0 <e, <a, <M and 4,4, M are constants. @ +o & N for some {, (hen the

correction terms are called confluent. Sometimes the correclion terms can be logarithmic.

o,



X

X

x I

'

J(x)~ A[l-i]a «{H In

}as X—>x,. (1.2.3)

Somctimes the sign of the series cocficients indicate the location of the singulanty. Tf the
terms arc of the same sign the dominant singular point lie on the pesitive x-axis. If (he
terms take alternately posilive and negative signs then the singular point is on the
negative X-axis.

Following are few examples wilh dilferent types of singulanties:

Fxample-1.2.1. (Singularities for single variable functions)

1) Singularitics that are poles: u[x) ={3-2xY" +cos(x}.
Here #(x) is an algebraic function whose singularity is at x, :-?21, the critical exponent

. =-1, which makes the singnlarity a pele.

2) Algebraic singularities with different exponents:

w{x)={3-2x)7"% + [2 - %}_m + [l ~£)‘M .

2

Here u(x} has several singular poinis. The singular points are at x, =%,6,2 and the

crifical exponents are a =—%,—%,--§- respectively. In this example the singular points are

branch points. Though there are 2 number of singulaniies for u(x] , ouly one of these
singularities will dominate the local behavior of w(x).

3) Loparithmic singulanty:
ulx)= 111[1 + %) +sinx).

Here u{x) has a logarithmic singulanty at x, =-3 .
4) Essential singularity:
ulx)=exp{3—2x)".

Here «{x) has an essential singularity at x, :—i- with critical cxponent o =-1.

5) Algebraic dominant singularity with a secondary logarithmic behavior:



o) = [1 _é] + ln[l _ %] |

The atgebraic dominant smgularity of #{<) here is at 5 =2 with cntical cxponent

x =—% , which makes it a branch poini. And a logarithnme singulanty at x, =3,
) . ( X =l
G} nth root singularity: u(x}=}1- EW +exp(x]) .
", A

Here u{x) has a branch point with the critical exponent o - x,=2.
"

1.3 Elementary bifurcation theory

In this thesis we havc investigated a nonlinear problem in fluid dynamics. Solutions of
nonlinear problems olten involve one or scveral parameters. As Lhe parameter varies, so
docs the solution set. A bifurcation oceurs where the sotution of a nonlinear system alter
their qualilative behavior while a parameter changes its value. In particular, bifurcation
theory shows how the number of steady solutions of a system depends on parameters.
Gxamples of bifurcation are: Simple turning points, in which two real solutions becorme
complex conjugate solutions and pitchfork bifurcation, in which the number of real
soluliops changes discomtinuously from one to three {or vice versa) We intend to
mntroduce some basic concepts of bifurcation theory. Drazin [10] discussed the

bifurcation theory in detasl.

Consider a functional map F:BxE — E. We seek for lhe solutions
u="U(x) of £x,u)=0. (1.3.1)

Bifurcation diagrams can show the solutions. [n these diagrams solution curves are drawn

in the {x,x) plane. Let {x,,u,) be a solution of equation (1.3.1), i.e.
Flxg,uy)=0 (1.3.2)

then, I can be expanded in a Taylor series about (xu,uﬂ] and we can gindy the solution

set in that neighborhood provided that # is smooth. Thus we obtain



(= F{x,u}

= Flxy,ug 3+ {0 =2, )F, {xu,un}+ (x—x, )F (x,, z-.ru]+ %{u ~u, L F, (:cu,uc,){ﬂ (1.3.3)

If, we assume that, F, (xﬂ,un] = 0, then

u(x}=uG—(x—xn)M+()(x—xﬂ}, 48 X = X, (1.3.4)

Fu (‘xh! ul:l }

This gives only one solution curve in the neighborhood of the point (x,.%) in the

bifurcation diagram. However, if we replace {x,,1,) with (x,, % ), where
Flx,u)=0F (x..u,])=0, {1.3.5)

then the expansion (1.3.3) shows that there are al least two solution curves in the

neighborhood of {x, ,x,). The point {x,,#, } is called a bifurcation point.

Example-1.3.1. Let F be a function defined as

F(x,u,a:]:%ui—%x3+x—§+£‘={} {1.3.6}

Where £ is some real paramstler, When ¢ =0, Figurel.3.1, there arisc  bifurcation point
at {1.0) and a turning point at {(-2,0).

When 0 <e<4/3, there are two separate branches of the bifurcation curve, one an 150la
and the oiher unbounded. When, the value of £ increases, in the considered interval,
these two branches move apart Fom esach other. Figure 1.3.2 and Figure 1.3.3 shows this

behavior of F for diflerent values of #.



1
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Figurel 3 1: Bifurcaton disgram of (I, u, .E'] in (x, u] plane when £ = {1
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Fizure 1.3.2: Bifurcation diagram of & (x._,u,&') m {x,u] plane when £ = 0.01.
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Figure 1.3.3: Bilurcation diagram of F(I,?J,E} in (x,u) plane when £ =0. L.

In Chapter 2, we will have an overview of approximation method. There are several
variations on the Pade’ method of summing power series. One such method censists of
recasting the series into continued fraction instead of rational fraction form. This
procedure closely resembles Pade’ summation because here also only algebraic

eperations are required. In the next section we will discuss about continued fraction.

1.4 Continued Fraction

Continued fraction has a long history. For historical survey one can go through [3] and
[16]. Continued fraction is very uscful to analvze the dynamical systems, notably in
connection with renormalization. We will discuss the basic concepls of continued
fractions.

Let x be a rational or irrational number, then the simple continued fraction of x is

1
x=a, +

= [EID,H,,HI,...,-:I‘._,_“!"N] (1.4.1}

o +

10

o

—

L

|



r]

Where, «, = ﬂ-:mr(lJ( the integral pan of (}-]), for 0=i< X . Here all @ 's are
- .

nonnegative integers and r, 15 the Nth remainder. When xe@ {ralional number),
¥, =0. If x is irrational number then the remuinder can never vupish and we get the

infinite continued fraction. 1e. x = [au.rzl,(x:,...].

74
Example-1.4.1 Let x= pre then

Again, let u{x)=e*, then

¥

g =1+

1+
X

X

~2+
-3+

X
2+2
5
Consider a function %(x), which represents the power series

ﬂﬂ=i¢faax4& (1.4.2)

i=i
Let us now sce how it can be expressed as  continued fraction. The Nt convergent of

the senes (1.4.2) is

Wl

U lx)=>ax . (1.4.3)

In order to convert (1.4.3) into continued fraction, assume that all the inverse that we
need to exist.
The continued fraction of (1.4.3) is

X

U, )~ a,+ (1.4.4)

-
LG

H}E]I

I+——
1+ -

11
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The convergent ol { 1 4.2) is rational function in the vanable x.
In general, we obtain a rational approximant from (1.4.4) of the form
4, [*r:) £, FexF o’ oot
B,(x) B do +dyx+d,x* +..+d "

ﬁ (1.4.5)

which matches with certain number of terms of the serics (1.4.2}.

In particular, the roots of the denominator B, {x) gve the singulanty of the series

(1.4.2). When the series {1 4.2) represents a rational function, the remainder of {1.4.5)
must eventually reduce Lo a constant, and the process (1.4.4) lerminates alter a finite
npumber of iteralions. Otherwise, il never terminates and we obtain the infinite conbmued

fraction.

1.5 Overview of the work

This thesis is concerned with the study of computer hased approximation techmques
which are of Pade'-Hermite class. Many researchers have studied the application of these
approximation technigues in fluid dynamical problems. For over the last quartcr century
many powerful approximants have been introduced for the approximation of the funclion
by using its power serics. Among them most of the methods are described for the series
involving single independent variable and a few are derived for the power senies involved
with two or several independent vanables. Many researchers hitherto have found
remarkably more accuratc results by using several approximation methods. The

remainder of this thesis is as follows:

In Chapter 2, we have reviewcd the Pade’-Hermitc class of approximation techniques to
determine the coefticicnts of the approximant. We have discussed several of these kind of
approximants with some cxample. Then in Chapter 3, we have discussed the performance
of these approximants on some model functions, on two model nonlinear differential
equations and a fluid dynamical problem. Finally in chapter 4, we have summarized our

work and give some ideas for future work.

12



Chapter-2

Approximation methods

Introduction

This thesis 15 concorned with the study of the application of computer based
approximation techniques to reveal the local behavior of a perturbation scries eround its
singular point. The approximation methods are widely used to approximate functions
many areas of applied mathematics

The mathematical model of physical phenomena usually results in nonlinear equations,
which may be algebraic, ordinary differential, partial diTercntial, integral or combination
of these. A value of independent varigble for which the function is undefined is knowm as
a singularity of the function. Singularity plays an important role in many areas of applied
scicnce. Particularly in fuid dynamics, the presence of singularties may reflect some
chanpes in the nature of the flow and their study is of great practical interest. Sometimes
il is very difficult to find out the exact solution of physical problems. Particularly in
statistical mechanics, there are a large number of problems for which the first few terms
of the power scrics may be oblained cxactly while the exact selulion is uncblainahle. The
three dimensional Ismg model is a good example. On the other hand, if the power series
expansion of a nonlinear systen is given, but their corresponding funclion 13 not known,
then it becomes difficuit to reproduce the function from the given power series. However,
one can study (heir singularities by using the approximation mcthods. In order to study
these problems many powerful techniques have beem used to find the power series
coefficients. Al the same time, a variety of methods have becn introduced for getting the
required information about the singularities by using a finite number of series

coefficients,

13



Rrezinski [5] studied history of continued fraction and Pade’ approximants. Blanch [7}
evaluated continued fractions numerically. Also the applicalions of continued fractions
and their generalizations io problems in approximation theory have been studied by
Khovanskii [15]. Baker and Graves-Mormis[1] studied Pade'approximants and its
properties. Algebraie and differential approximants {2] are some uscful generahizations of
Pade’ approximanls. Khan [14] analyzed singulanty behavior by summing power senes.
Khan [13] also inlroduced a new model of Differential approximant for sigle
mdependent variable, called High-order differenhial approximant (HODA), for the
summation of power series. The methed is a special type of Pade'-Hermite class and il 1
one of the best methods of singularity analysis for the problems of single independent
variable.

The retminder of this thesis paper is orgamzed as follows:

We will study the Pade’-Hermite class of approximants and then the development of
sorne approximants in this ¢lass such as Pade’, Algebraic and Differcntial Approximants,
Drazin-Tourigney is one kind of Algcbraic Approximant and High-order differential

approximants is an cxtension of Diflerenbial Approximants.

2.1 Pade'-Hermite approximants

In 1893, Pade’ and Hermite iniraduced Pade’-Hermite class. All the one venable
approximants (hat wete used or discussed throughout this thesis paper belong lo the
Pade'-Hermite class. Tn ils most general form, this class is concermed with the
simultaneous approximation of several independenl senes. Firstly we describe the Pade’-
Hermite class from it’s point of view,

Let €N and Ict the & +1 power senes
U (x)U (e UL {x)
are giver. We say that the {7 +1) tuple of polynomials

pil pll  pll
where deg PV 4 deg PU 4+ _+deg PV - d = N, (2.1.1)

15 a Pade’-Hemmnite form of these serics if

14



i PR (%)= Ofx¥ ) us x>0, (2.1.2)

Here U/ {x).U7,(x}....,ti,(x) may be independent series or different form of a anique

semes. We need to find the polynommals Pj’] that satisfy the equattons (2.1.1) and {2.1.2).

These polynomials are completely delenmined by their coefficients. So, the total number

of unknowns it cquation (2.1.2) is

a
Y deg P+ d+t=N+1, (2.1.3)

<D
Expanding the left hand side of equation (2.1.2) in powers of x and equating the hrst N
equations of the system cqual to zero, we get a system of linear homogeneous equalions,
To calculate the coefficicnts of the Pade’-Hermile polynomials we require some sort of
normalization, such as

R.Efl(ﬂ}=1 forsome 05isd. (2.1.4)
Tt is imporiant to emphasize that the only input rcquired for the calculation of the Pade’-
Hermitc polynomials are the first N coelhicients of the series Uy,....U, . The equation
(2.1.3) simply ensures that the coefficlent matrix associated with the system is square.
One way Lo construct the Pade’-Hermite polynomials is to solve the system of linear

equations by any standard method such as Ganssian climination or Gauss-Jordan

elimination.

2.2 Pade’ approximants

Pade’ approximant 1s a technique for summing power series that is widely used in applicd

mathematics [2]. Pade' approximant can be described from the Pade’-Hermite class in the

following sensc.
In the Pade'-liermite class, let @ =1 and the polynomials Rl”l and P.-E‘] satisfy equations
{2.1.1) and(2.1.2}. One can defline an approximant uﬁ(x) of Lhe series U{x} by

Py, - =0, (2.2.1)
where

o=, and U7, =-1.
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Then we select the palynomnials
=352 and P} =S ex (2.2.2)
=il =
Such that #+sm = . the constants b 's and ¢,’s are unknowns to be determined. So
that,
U (x)PI(x) - PEI() = ofxmm ). (2.2.3)
Equating the sl n+m cquations of (2.2.3) equal to zero and the normalization

condition in cquation (2.1.4), we find the values of 4, ’s and c;’s. Then, the rational

approximant known as Pade’ approximant deneted as

uh,{)c)—?ﬁ% (2.2.4

M

help us to approximate the sum of the power serics U{x]. And the zerocs of the
polynomial P_,.EI] (x) happens to be identical with the singular point (points} of (x). In
order to evaluate the Pade’ approximanis for a given series numencally, we have used
symbolic compulation language such as MAPLE. The Pade’ approximants have been

used not only in tackling slowly convergent, divergent and asymptotic serics but also to

obtain singularity of a function from its scries coefficients. The zevoes of the denominator

[1] give the singular point such as pole of the function ufx) if it exists.

I

+¢e”, a funclion with a simple pole. Alter

Example-2.2.1. Consider u[x):l 5
-2x

applying the normalization condition ¢, =1, we obtain the polynomial coefficients PJ“I

and P! for deg PP = nand deg 2 = m. When m=n=2,

PE[UIZE——I——I dP{]]=I—E;¢+?91 xs
170 18 34 612

When m=n=3,

Pl g 2??n4x_ 54457 k 200712 K
! 13639 6R195 13639

T T o7s 136390 1636680

16



The table below will show the convergence to the singular poinl ol 1{x) on application of

Pade’ approximant.

Tabie2.2.1; The approximation of x_by Pade’ fur tle function 1 example 2.2.1

m,f T

4

27 | 4891882678
33 | .S000370775

2.3 Algebraic approximants

Algebraic approximant is a special type of Padc’-Hermite approximants. In the Pade’-

Hermite class we take
dz1LU, =1U, =U,...U, =U".
Let [/{x} represcnt power series of a function and U {x} is the partial sum of that scries.
An algebraic approximant u,,(x) of Ulx} can be defined as the solution of the cquation:
PO+ UGN (x) 4 PR 5) + o P (x) = 0 (2.3.1)
Where d represent the degree of the pariial sum U, (x]. The algebraic approximant
i, (x), is in general a multivalued fanction wilh & branches.

The solution of the equation (2.3.1) with 421 gives us the coefficients of the

polynomials P_,E][x). The discominant of this cquation approximates the singularity of

Uix}.

Here,
u ' T
3 PG ()= 0fx ") (232
=1t
o
And Y deghll+d =N (2.3.3)
=0

And the total number of unknowns in {2.3.2) are

d
Y deg Pl(x}+d +1= N +1. (23.4)

i=0

17



In order to determine the coefficients of the polynomials R.[,'] one ¢an sct P,Ef]]{ﬂ] =1 for

normalization. Through oul this thesis we will indicate Algsbraic approximants as AA.

Example-2.3.1 Consider

:{{x) = (i - Ex)l ? feosx.
let 4 =2 and dep f‘,,[“] =deg I—;;['] =deg PP =2 to apply (he algchbraic approximation
method on he power series of the given function. After we set lhe normalization
condition P"{(0)=1, we get lhe polynomials

711842007304637 it 34582752228737591 o
477528552413468  51573083660654544

f(x)=1+

1)) - 32484601SS432041 | 22334398779627 1555136999112437
" §55057104826936 ~ 477528552413468 12893270515163636

pll = 27709316030318573 N 994609833893 2429343?56212859 7
d 19101 14209653872 238?642?62{}6?'34 128932?{}!915153636 1

Here the discriminant wives us the singularity at x, = 0.4825548636 . If we increasc the
degree of the polynomial coefficients it may give us a belter approximation. So, again let
deg P = deg P = deg P =3 and o =2, following the samc procedure we get the
singularity at x, = 0.5039567121.

Again taking d =2 and deg P! = deg P! = deg P = 4 the singularity is calculated at
z, =0.4989742074. The table below will show the comparative results of the

convergence of the algebraic approximation melhod to the singular point.

Table2.3.1: The approximation of x_by AA for lhe funcrion 1n example 2.3.1

degP, | 4 X,

2 7 | 04825548636
3 2 [0.5039567121
4 2 0.4989742074

Note that d =3 may be more accurate for this problem.
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2.4 Drazin -Tourigney Approximants

Drazin and Toungney in [8] implemented the idca o = D(JFJ as & — o= Their method
is simply 4 particular kind of algebraic approximant, satisfying the equation (2.3.1). In

this methed they considered

deg Pl =d (2.4.1)
17,2
and N:E(d +3d -2). (2.4.2)

Through oul this thesis we will mention Drazin-Tourigney approximant as D-T method.

2.5 Differential approximants
By taking d22,U,=1U,=U,U,=DUand U,=D*"U, where DE%, a

differential approximant u, (x} of the series £/{x)} can be defined as the solution of the
differential equation

plly Pl 4 PADU, +..+ PYIDYT, =0 2.5.1)
Here {2.5.1) is homogeneous lingar differential equation of order (d —1) wilh polynomial
coefficients. The singularities of {i(x) are located at the zeroes of the leading
polynomial £K1(x}. Hence, the zeroes of PY(x) may provide approximations of the

singularities of the function w#{x). Through out this thesis Differential appoximants are

represented by DA,

Example 2.5.1 Consider
u(x) = In(l —2x).
Teking d=2 for (251) and applying (2.1.1) and (2.1.2), we obtan

PPl(x)= %+ 35x - 60x® and the singular point at x, =0.5972, In a similar procedure

1%



taking =3 gives us more accurale result, ic x, =0.5000. The lable below shows a
comparatve result.

Table2.5.1: The approximaton of X, by Dilferential Approvimant for the function in example 2 3.1

N | d x

£

3 2| 05972
9 30 05000
14 |4 10.5000

2.6 High-order differential approximants

Khan [13] introduced an extension of dilterential approximant, which he mentioned as
High-order differential approximant. When the funciion has a countable infinity of
bftlﬂ(}]:lltlS, then the fixed low-order differential approximants may not be useful. So, for
these cases he considered o increase with N. It lead 1o a particular kind of differential

approximant u, {(x), satisfying equalion (2.4.2). Here

N = %d{d +3) and deg PV =i 2.6.1)
From (2.1.3) he daduf;ed ihal therc are
%[a“ +3d +2)

unknown parameters in the defimition of the Pade’-Hermite form. In ordet to determine

those patrameters, we use the N equations

o
PIG)+ Y PG, (x)= 0" ) as x> 0.

r=1
In addition one can normalize by sctting Pj?l{ﬂ)zl. Then there remains as many
equations as unknowns. One of the roots, say x_,, of the coeflicient of the highest
denivative, i.c. iji][xcl,,.)zﬂj gives an approximation of the dominant singulanty x, of

the seres U/ . If the singularity is of algebraic type, then the expement a may be

approximated by
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[4-1]
a, =d-2- P M) (2.6.2)
y S pPHlx Y h

Through out this thesis High-order differential approximants are represented by HODA,

2.7 Discussion

Pade’-Hermite class is constructed over the iechnigue of tuncated continued fraction. It
was discussed in equation (1.4.5) and the polynomial coefficienls of Pade’ were
constructed by taking successive truncaled continued fractions. In this chapter we had an
overall study about the Pade’-Hermite class of approximation methods. Examplcs show
the performance of Pade’, AA and DA explicilly. We must mention that D-T meihod is
an improved algebraic approximation tcchnigue. HODA is modified differential
approximant. We nolice (hat the performance of D-T method is better than that of Pade’
when the singular point is & branch point. But perfonmance of HODA 1s almost in every
cage convincing.

In the next chapter we will study some nonlincar differential equations with the
application of Pade’, D-T and HODA. And 4 fuid dynamical problem to reveal the

behavior of the unknown solution with the results of the application of these techniques.

21
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Chapter-3

Approximate Solution of Non-linear Systems

One cannot hope 10 obtain exact solutions to most nonlincar differential cquations. There
are only a limited number of systematic proccdures for solving them, and these apply to a
very restricted class of equations. Moreover, cven when a closed-form selution is known,
it may be so complicated that its qualitative properties are obscured. Thus for most
nonlinear cquations il is nccessary to have reliable techniques to determine the
approximate behavior of the solutions,

The solutions of dilfercntial equalions encountered in practice are regular at almost every
poini; in the neighborhood of ordinary poinis Taylor series provide an adequale
description of the solution. However, the distinguishing feamres of the solution are its
singularities. Detormining the location and nature of these singulanties, without solving
the differential equatinn, requires the iechniques of local analysis.

A solution of & linear equation can only be singular at points where the coefficient
functions are singular, and at no other points. But the solutions of nonlinear differential
equations possess a richer specirum of singular behaviors. Solulions of nonlinear
equations, in addition to having fixed singularities, may also exhibit new kinds of
singularities, which move around in the complex plane as the initial or boundary

conditions vary. Such singularities are called Spontaneous or movable singularities.

Example 3.1 Consider ihe linear difforential equation

W+ e =0, u(0) =1.
x-1
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Il has a singular poinl at x =1, so does the selution wx)= . For the differential
—x

equation il is a regidar singular point, for the solulion il is a pole. If we replace w0y =1

with u(D} = 2, the new solution u(x) = !i siill has a pole at x=1.
- X

Example 3.2 Let us consiler the nonlinear differential equation

w(xy=w?, 4(0)=1.

.. i . .
The solution is u(x}=——. Even though the equation is not singular at x=1, a pole
- X

spontanecusly appeared. 1f we change the initial condition as u[ﬂ) = 2, the solution will
2 i . 1
be changed to u(x}= T the pole has changed iis position to x = I
—2x

Bender and Orszag {2] discussed a nnmber of examples with local analysis. Withowt
solving the cquation (hey tried to focate the dominating singular points of this kind of
nonlinear differcntial equalions by the application ol approximalion method. And ry to
locate the dominating singular poini with critical exponent which analyses the form of the

singuianty of this kind.

In this chapter we have cxamined few probicms where approximation methods werc

applied to reveal the singulanties and have compared our result with others.

Now we will see some test funciions with different tvpes of singularities, where we

compare the performance of approxamation methods desenbed in Chapter 2.

3.1 Some Test Functions
Consider five test functions with differcnt types of singulanities:

1. Additive algebraic singulanties wilh the saine exponent:
wlx)=(1—x/2)" 4200 -2/ 3" 43~ xr )"+ a(l-x/5)7.

2. Additive algebraic singulanties with different exponents:
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ulx)= (0 -2/ 2)" 7 4 20— 23+ 30— x Ay + 4= x5
3. Confluent algebraic! logarithmic singulanty:
ufx) = exp(x )i /27" Inll -/ 2},
4. Algebraic dominant singudarity with 2 secondary logarithmic singulanty:

alx)= expl(xXl - x/2)"% +1nfl - x/3),

5. Essential singularity:
wlx)=expl - /2.

The number, 2, of comect Jecimal figures in the approximation of x, by various

methods for the functions of the above examples is shown in the table below.

x —x

r o,

Here 2. =—log,,

<

I'able-3.1.1:The number £, of corrzet decumal figures in the approximation

of x, by vanious methods for the functiens 1.-3.

Example | N | Padc’ D-T HODA

1. 20 | 2.42 2.13 Exact

2. 36 | 2.9 2.63 17.55

3. 20 | 2.10 2.08 4.31

4, 20 ] 2.09 1.94 Exact .
i 5. 14 | Exact Q.52 2.24

The resulls of approximating the dominating singularily x_ in each case by various
methods of series analysis arc shown in Table 3.1.1 where we have shown the number of
correct decimal places. Here the value of N is rather small, and so one shonld be careful
not to infer too much from the evidence. Nevertheless, it is inleresting to note how badly
the D-T method compares with the others. In most of the cases, we see that by using a
small number of series coefficients, the High-order differential approximant preduces the

exact results The same is true (or the critical cxponent.
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1.2 Spontaneous singularitics in the complex plane
Consider the Riceati equation with the initial condition

1;’:1—ru2,u(ﬂ}=l, (3.2.1)
The solwion of the Riccati equation becomes singular at a finite negative value of x. The

presence of this singularity can be understood from the graph of the tangent field given in

Figure 3.2.1 The tangent field indicate that the solution which satisfies the imitial

condition u[[}) =1 hecomes large and negative for negative x. When u is sufficiently

largc and negative. 1 becomes negligible compared with —xu*. The resulting

approximate differential equation is

w——xu® | u— -,
2 -1
. x .
The solutions to u' = —xu’, H[I]=[?+C} , that are pegative somewhere have

< 6, so they become infinite for some finite negalive x.

To find the localion of this singularity numerically, jct w(x)=1/u(x}, w{x) satishes the

differential equation w’=x~1»vz[1rv({])=1]. Numernical integration of Lhis differenual

equation gives a zoro of w near x = ~2.12. Thus, # becomes singular at x = -2.12.

From (his result one might expeet the Taylor serics selution  about

) . -
x=0,u(x)= ZH b.x', lo have a radius of convergence of 2.72. However, a numerical

evaluation of the Taylor coefficients b, indicates thal the true radius of convergence R is
close to 1.228:

im | A,

=1 228, (32.2)
f:I.l'+i

:k—Mx:

R has this much smaller value because u(x) also has complex sponianeous singularities.
Further numerical integration shows that w{x) has a zero in the complcx plane at
x, =0.313+1.188. This is the zero of w(x} which is nearest to the origin in the

complex-x plane. Iis distance to the origin is |x,|=1.228. Therefore, it is this singularity
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and not the onc at x=-2,12 thal delermines the radius of convetgence of the Taylor
series for #(x).
Tzble-3.2 1 Tstumaces of the crilical point &, and the correspending eaponent €, by using various

approximation methods for the diferental equahon =l xuz ,H(D) =1

Pade’ HODA HODA b-T
N m-u H -rrIH :‘] d x(g,".-' R‘N N f! xc,."q.’
I | 5.5 -2 144200829 120 | 5 -2 1122530506 | - 9781950250 | 33 | 7 -2 103723308
12 166 2117800610 | 27 | & 21127172633 | 0039445675 (42 |8 -2 110655433
4 |77 S RLLE6T3S | 35 | Y 21127173633 - D050445675 [ 52 | 9 | e
le | &8 2112916314 | 44 | B S2 1128179244 § -1 ODOOO3BS4 | 63 § 10 | -2083670213
18 199 2112826475 | 34 | @ SELUIZRITERTS | - 99uhosnaT
20 | W0 | -2.112826475 | 65 | 10 | -2 128178874 | -L.O00000000

We analyse the location and nature of the singularitics by using various generalizations of
the approximation methods. From the above analysis Bender and Orszag [2] indicates
that the real singularities lics at x_=-2.112, bul using the ratic test the dominating
singulanlies oceurs in the complex plane at x, = 3.313 +1.188L

On the other hand, the results in Table 3.2.2 indicate that it is possible, by using the High-
order differential approximants {(HODA), to obtain the radius of convergence- and the

critical exponent e - to 18 digits of accuracy with 4 =10 [N = 65]. For comparison, the

table also shows the resulls by using the Pade’ and the Drazin-Toungny (D-T)

approximants, It is clear that the High-order differential approximants converges much

Fastar.

Therefore the dominating singularity behavior of the solution is
wlx)~ Alx—x. ) as x> x,,
where x_~.3134092607155988995+£1.18752796902750961 and

@ =~ -1.000000000 + 0.879250 107%i.
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Figure 3.2.1 ; The langent field indicate the solution # (I] of w'=1- xuz which sahisfics

the initial condibon #(0) =1 [Bender & Orszag (2], pp-149]

2:-/
1_
o
s -
1.
o X
ak
L |
af /
4 [
c
i 1 ] 1 R | [
s z i B 0 2
=

Figure 3.2.2: Approximae soluton £/ (x] for the Riceati cquation #' =1— IHE with

I (ﬂ'} = | with the Diazin-Tourigney approximant with o =12
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Table 2.2.1 shows the critical point and the corresponding crlical cxponent of the
solution behavior in the read fcld. The approximate solution is also shown m Figure

3.2.2, wluch is comparahle to Bender and Orszag [2] as in Figure 3.2.1.

3.3 Infinite number of spontaneous singularities

Consider

r I

w=utkx. (3.3.1)
Bender and Orsrag [2] studied the leading behavior of the solution to the Riccatl equation
as ¥ — +oo. The previous cxamiple shows that the solubon to a nonlinear differential
cqualion may exhibit several spontaneous singularities. We wil] sce that the solution to
the above nonlinear equation has an infinite number of singularities along ihe posilive

teal axis! The Figure 3.4.1 given by Bender and Orszag [2] is a computer plot of solution

to the equabion satisfymng the initia! condition #{0)=0. Note hat the graph of

U (r} rescmbles that of the function lanx.

ISI-

oy
T

F T s 5 10

e 4

-1

sk

Figure 3.3.1: Computer plot of # (x) to 1’ =u™ + X, satisfying Lhe initial condition

u(ﬂ] = (). [Bender & Orsrag [2], pp.150]

The ultimate goal of our analysis is to construct a function which closely approximates

u{x) as x—»0. However, we begin with a more modest investigation: let us fry to

determine the nature of the singularities of «(x).
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Can the singularities of #{x) be poles? We know that n the neighberhood of a pole the

A
(1 —a)

the order of the pale. Substituting this asymptotic relation into the differcntial equation

leading behavior is given by u(x}~ (x—}- a), where @ 15 the location and « is

and comparing leading terms gives A=-1,&=1. Thus, solutions of the differential
cquation probably have simple poles. But o prove this conjecture we must show that in
some neighhorhood of x=a there is a solution in the form of a {convergent) Laurent

SBTICS

u{r):—xlTa+ibk(xma)t. (3.2)

=l
Tt is left as an cxercise o compute the coefficicnts b, directly ffom the differential
equalion and to verify that the series converges in a neighborhood of x=a.

Unforiunately, this series expansion is only valid in a disk which does not contain any
other singulanity of x.It would be much mnare desirable to have a uniform description
valid for large x which exhibits (he maltiple sinpularity structure of u{x).

To obtain such an expression it is necessary o approximate the differential equation by

one that has an analytical solution. However, in tlus case an approximation which reveals

the nature of the nonlinear differential equation is not easy to find! Il would certainly be
nice if one could negleet x in favor of #* or »° in favor of x in the differential equation.
Unforlunalely, a glance at the figore 3.3.1 shows thal as x — 4o, somctimes #° > x and

sometimes x > #°; we need a mere subtle approximation which is uniformly valid as
X - o,

An ingenions trick is to substitute
ulx)= x"v(x). (3.3.3)
The equation for w{x) is then

V= {402 i —% . (33.4)
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Now the term —;— is uniformly negligible for large x becausc v <1+v’ for all v and
X

a7 e X x> e
The resulting asymplolic differential equation v~ (t +v2)1”2,x — +to is easily solved

because it is scparable:

ulx)= 2" v{x) = ' tan d(x). (3.3.5)
Wherc ;é[x]w%xz"l L X =k,

This result suggests that for large x the solation of the Riccaii equation has an infinite
sequence of [irst order poles having an accumulation pomt af x =0,

The accuracy of this result may be tested in several ways. We could plot the function

2 sz . .

Jx tan(gx”J for large x and comparc the resull with the figure in Bender and
Orszag{?] (see Figure: 3.3.1). However, a better test of this result is to compute u{x}
o™ [i]
___\x)

2

—_x]”ll

3

numencally and to plot and verify that this ralio approaches 1 ag x — +o0.

We analyse the location and nature of the singularities by using various generalizabions of
the approximation methods. From the above analysis Bender and Orszag [2] indicales

that the rcal singulanties lies at x, = 1.98635,3.82534, 5.29562 ete.

On the other hand, the results in Table 3.3.1 indicate that 1t is possible, by using the High-
order dilferential approximants (HODA), 0 obtain the radius of convergence- and the
critical exponent « - to 18 digils of accuracy with & = 10(N = 65). For comparison, the

table also shows the results by using the Drazin-Tourigny {D-T) approximants. It is clear

that the High-order difTercatial approximants converges much faster.

Therefore the dominating singularity behavior of the solution is

ulx)~ Ai{,r—xfll ' +A2(x—xh2)a’ +.oas x>0,
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where x , ~1.986352707 and x,, = 3.825339191 with @, =@, =~ 4.

The table shows two consecutive singular points of the solution calculated by High-order
differential approximant (HODA). Drazin Tourigney method (D-T) gives us the
approximate value of the first singular peint where the performance of Pade” was not
satisfactory. Column five shows the eritical exponcnts calculated as in equation (2.6.2).

According to these values 1t conlirms (hal the singulantics arc branch points with critical

cxponcnt e, = o, = —%.
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Tahle-3.3.1: Estimates of the critical point X, and the corresponding exponent «, by using two approximation methods for the differenlial equation

w =u’ +x wih H{U}=U_

Bender-Orszag | & | N HODA Xy o d N D-T

1.98635 3 O 1.9863527074551836589581741443 | -0.33333333370031518 4 12 1988851254
4 14 | 1.9863527074304728141430784896 | -0 33333333333333335 5 18 1.936350309
5 20 | 1.9863527074304728134718183900 | -0.33333333333333333 o 25 1.975527722
] 27 | 1.9863527074304728134718183899 | -0.33333333333333333 7 33 1986377301
7 35 | L.9863527074304728134718183899 | -0.33333333333333333 B 42 1986352145
g | 44 | 1.9863527074304728134718183899 | -.033333333333333333

3.82534 3 9 | 3.8127999524726231235200077488 | -0.28137697134512616 s
4 14 | 3.82535544011228665415026R81962 | -0.33349723033033788 | | | =e=eeeeee-
5 {20 | 3.8253391905355145769483591171 | -0.33333332165213668
6 | 27 | 3.8253301911604671135914070386 | -0.33333333333382770| | | =
7 | 35 | 3.8253301911604526481822632051 | -0.33333333333333333 | | | coememmemeee-
8 | 44 | 3.82533519116045264818155988863 | -0.33333333333333333| | [ -

529562 | | | ememmeeeeeee———— | mememmmmeeee ] T
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3.4 Flow in a porous pipe with decelerating wall

The flow in a pipe driven by suction or injection was first considered approximately fifty
years ago. Berman [3] first considered the steady Navier-Stokes equations to a fourth
order ordinary differential equation. Since then Brady [6], Zaturska and Banks [27] have
considered various aspects of the flow, both stcady and unsteady. Brady and Acrivos [4]

analysed the flow in a pipe with accelerating wall,

The flow in a porous pipe with decelerating wall is important in physical point of view.
Practically it is found that ihere is a range of Reynolds numbers for which there is no real
solution to the steady similarity equation; this absence of solutions and the determination
of any bifurcation has becn the motivation for this study.

Tn this present problem we have considered the flow in a porous pipe wilh decelerating
wall. We have shudied the temporal stahility of the Mow by using the vanous

peneralization of approximation methods.

The steady axisymmetric flow of a viscous incompressible fluid driven along a pipe by
the combined effect of the wail deccleration and suclion is considered. This lype of
problem was first investigated by Berman [3] and subsequently by many authors, for

gxample, Terrill and Thomas [24], Zaturska and Banks {27], Makinde [18].

Formulation of the problem:

We consider the steady axisymmetric [ow of a viscous incompressible [Inid driven along
a porous pipe with decelerating wall. Let £ be a parameter such that the axial velocity of

the wall is £z. It is assumed that ¢E/V =0O{1) and ¥ = 0(¥ >0 represents suction

velocity and V' < O represents the injection velocily).
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v=V,u=0 0 kz.

Figure 3.4.1: Schematic diagram of the problen.

By assuming a similarity form for the solution of the Navier-Stokes equation it is found,

afler non-dimentionalization, that the velocity components (V) increasing 10 the

directions of (z,r), respectively, and vorlicity @ of the fow may be expressed as

(Makinde [19])
u:-z—ﬁ,v:——F and @ =—z(F.
rodr r
And hence
4 lj'r_(r{,] =R Eﬁ_ri[g] ,G__-Er_ lEF_)! (3.4.1)
drir dr rodr dri r de\ ¥ dr
F=D,i[—l-£F—J=ﬂ, an r=1,
dr\r dr

F=-1,£=—l, on ¥=1.
dr

Equations (3.4.1) with the boundary conditions govern the motion of an incompressible
fluid through the porous pipe with decelerating wall An exact solution to this
compticated nonlinear system of equations for £+ 0 is not available, and so we reson to
series analysis by approximation methods. When R =0, the equations (3.4 1) can be
solved easily. The solution is & parabolic Poiseulli flow It ig therefore natural to seek a

power series in ascending powers series of R

Fr)= F,()+ F R+ F ()R + B+ (3.4.2)
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F,=-1F, =0.F =-LF, =0, on r=Ln=012,..

Where the prime symbol denotes differentiation with respect to ».

In order to compute the series coefficients, let

1i+2

Flr)= 2tz

Jal
and hence
m Airl
F{r.R)= Z[Zaw ”]R'
-1

By substituting this to the equation (3.4.3), the recurrence relation lor F{¥} becomes

lﬁj(j+1]1(;'+2)ﬂq,+d!‘”']
i} k—j+3) .
_ZB(J 1)' k .f+1)"‘1;+2a2t 2;4"” _Zgﬁfﬁjazk z,+ﬁr1“

11

We expand F(r,R), 8= (E) at r=1 and F"{0) (that is, stream function, skin friction
r

and centerling axial velocity parameter) in powers of the Reynolds number, to obtain

F{r)=—%r3(3-—r1)—ljl—4r1{?—r2Il—rz):R+...,

1, 2 17
—d-LR-S R g 3.4.4
g 37 27 1008 (344

and

'.‘;
F"(ﬂ)=—3—i R0 pr_ _TES8 ps a5 R0, (3.4.5)
72 4800 152409600

These cxpansion yield a single solution of the equation (3.4.1), by taking
x=Rand U= F'(0) or

1n the notation of Chapter 2.
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Using a symbolic algebra package such as Maple, the first 54 coefficicnts (see Appendix
1 for the coefficients of Lhe series F*(0)) of the solution serics were oblained. We

observed thal the sign of the coefficients are same and are menotomcally decreasing in
magnitude.
The convergence of the series may be limited by a singularity on the positive real axis

(Van Dyke [25]). The graphical form of the D’ Alembert’s ratio test (Domb and Sykes
[9]) togeiher wilth Neville’s cxtrapolation at 1. 0 (that is, # > o) reveal the radius of
#

convergence R = 3.07249. Following the High-order differential approximant technique,
we compute the first and second turning points R and #, as & — Oon the sccondary

branch {Brady and Acnivos [41}. Cur results show
that 8, = 3.0724980042 , R, =~ 8.813114939 .

We used the partial sums of the series to reconstruct the other sofutions of the problem.
The series has a real singularty at R = R, and this singularity corresponds to 2 turning
point ie. a value of B where lhe number of solutions changes abruptly. It Seems 1o s

that Rf*ﬂ approximates R, very well as d increases. We computed a farther urning point

at ® = R,. The bifurcalion diagrams for the approximate solutions are shown n Figures

3.4.2-3.4.5. As can be seen in the figures, the method of Drazin & Tourigny succeeds in
continuing the secondary singulanty behavior heyond the circle of convergence of the

series. The dominating singularity have the form
Bor F{0)~AR-RY a R—EK
with o = ¥ . It is interesting Lo notice the abscnce of real solutions forR < R < R,, and

that # — 0 as R — 2.82R847..., that is, reversal of the flow at the wall will oceur.
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Table-3.4.1: Fstimates &, of R}“:" Hl‘? and the critical exponent &, of the corresponidmy

expenznt by HODA ot centerling axial velecity. The last row shows the

estimates obtamed by wang the -1 method {17]

d | Rff_:' e Ridﬁf an
|7 1.1743622903786000 | 0734460546 TETIRSRGEE | oo | e
30112 | 3.0768041205315210 | G.51T490960893766008 | e | seememre
4 118 | 36725166917148683 ) 0499719619856099405 | ———emmereeem | smmmemememer s
5 |25 | 30724980065120133 | 0.499900902120348536 | B.5164063517596022 | (L4954596938484847068
6 | 33 | 2.0724950042445946 | 0 S00G00000098284071 | 3.8127995287711051 | 0.4991471015647478523
7 142 ) 30724080042455199 | 0.4999000999909926717 | 8.8131460358460523 | 0.4997633746760795187
% |52 | 20724980042458197 | 0.500000000000000001 | 8.8131097616625635 | 0.4999334119252680143
9 |53 | 3.0724980042458197 8.813114939
Table-3.4,2: Bstimates x, | of R, ,, R, , and Lhe eritical exponent X, of the corresponding exponent by
HODA of sk frichion, The last row shows the estimates eblamed by using the D-T method [17].

AENFS 2o @ @

2 |7 3.169913601171531 $.1i79(60833837583 | ——- | —e—e——ee

3 |12 ] 3078390933009397 0.43280711881880%4 | -—r—mes ] e

4 [ 18 | 2072350686810273049 0.4907 190813662425 | 8.942239101069277 | ¢.4060409189553581854

5 | 25 | 3.072495003441932 0.5000000089906489 | £.441094619T19760 | 2.7332819731928280414

6 | 33 | 30T2495004254962 0.4993999990682636 | B.810061064410313 | 0.50760206168535T13(0

7 142 | 3.072498004245820 0,4999990009087227 | RB13126I005742537 | 0.4991927215086543 195

B |52 | 3.072493004245819 (1, 499999999000999% | 8.81308381 1310784 | 0.5003197469645002604

9 | 53 | 20724930042458197 2.813114939

Table 3.4.1-3.4.2 shows Lhat the accuracy of the approximations Rﬁr} and Rgd.:,', increases

very rapidly with the increase of . Tt is remarkable that the secondary singularity also
recovered from the information of a single series at the point of expansion.
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Fo)

Figure 3,4.2: The hifurcation diagram iz the (& " (ﬂ), R) plane near the first and second mrning points K,

and Rz {ur the probdem using the Drazin-Tourigny method with d = 8. Oiher curves are spurious,

0]

Figure 3.4 3 The bifurcation diagram in the {F ) (ﬂ], R} plane near the first and second turing points &, and

R, for the problem using the Drazin-Tourigny method with d =9, Other curves are spurious.
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Figure 3.4.4: The bifurcatiun diagramin the {f, R) plane near the fiese and second rurning points R

and R, for the problem wsing Lhe Drazin-Tourgny method with d = 7. Other curves are spurious,

Figure 3.4..5: The bafurcation diagram in the {7, R) plane near the first and second rurning powes R, and

R, for the problem using the Drazin-Tourigny tnethod with e = 8. Other curves are spurions.
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3.5 Discussion

In this chapter, we have applied Pade’ approximants, Drazin-Toungny approximants and
IHigh-order differential approximants to some modei problems as well as a Fluid
Dynamical problem. We have analyzed the approximale solution behavior of the

problems by observing the deminating singularity of the problems.

We applied the approximation metheds to series where the form of the singulanly is not
known with certainity such as the nonlinear differential equations with sponianeous
singularity in the complex plane and inLinite number of branch points. Gencrally, we
have found thai the High-order differential approximant method is very competitive, but

for the approximate bifurcation diagram the Drazin-Tourigny approximant method 1s

gasential.

We have applicd the High-order differential approximant to the series (3.4.3-3.4.4). The
method produces very accurale approximations of the first bifurcation point R, and
surprisiugly a good eslimate of the sccond turning point R,. Not only the bifurcation

point but alse the critical exponent as shown in Table 3.4.1 and 3.4.2. The results are
comparable with the results of Makinde [17] nsing the D-T method.
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Chapter 4

Conclusion

In this finat chapter, we discussed about the summary of the whole ihesis. Finally, we

sketch some ways in which this work may be exploited further.

4.1 Summary of the work

In this thesis, we studied by means of senes sumhmation technigues, the formation of
singularities in the solutions of nonlinear problems. By expanding particular solutions in
powers of some paricular parameter, we obtained accurate numerical approximalions of

the singularity parameters.

In Chapter 2, we presented a general framework for the description of the Pade-Hermite

approximants with examples.

In Chapler 3, we investigated the dominating singularity behavior of somc model
problems as well as two nonlinear differential equations from Bender and Crszag’s {2]
analysis. We havc determined spontaneous singularity in the complex planc very
accurately in Section 3.2., but did not have enough scrics coefficients to find more branch

points in Seclion 3.3.

4,2 Future work

In this section, we give some 1deas to form the basis of future work:

1. Emor analysis of High-order difTerenhial approximant.

2. Apylication of Approximation meihod to more physical medels.

3. Application of Approximation method in other fields which include perurbation

senies and their performance in these fields,
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Appendix [

Program to compute the series coeflicients of

Fley=F(r)+ AR+ F (AR +...

interface{quiet=true) :

N=N;

F:=arrayil.N);

Flojr=expand{-{1/2)*(r “2*(3-r* 2%

G 8] =expand (Aif{{{L/r)*dilfF[01,1)),030;

farairom 1t M do
as=array(l..2%n+2}
Finl:=add{a[i]*r"(2*i)i=1l..2%n+2);
b[3]:=add{a[i],i=1..2*n+2)=0;
b|df:=add{2*i*a[i].i=1..2%n+2}=0;
Thi=add (16%i*((i+1) ZP{iH2) ali+2 [ *r~{2¥i-1),1=1..2% n);
rl:=0;
r2:=1k

for i from O to n-1 do
glil=—expand(GIi]);
Tor mm frem 1 to nops{u[i]) da
aa[mm]:=op(mm:,gli}}
ad;
(Jn-i-1]:=expand{dif{Fn-i-1] e 41}
lor nn from 1 to nops{Nn-i-11) do
hbinn|:=pp{an.[n-i-i]}
od;
Thl:=(;
if {i=0] then
for | fireem 1 to nops((n-i-£]) do
ril:=rhk1+g[i|*bh(]|

and;
else
for k from 1 to nops(g|i]) do
for 1 frem 1 te nops{i[n-i-1]) da
thl:=rhil+aa[k]*bb[l}
od;
od;
ﬁ-

]
ris=rl+rhl:
od;

rhh1:=expand(r1);#print(i,rhh1);

p— ] |

=" mm="mm";nn:="no"; k:="k";1:="1";

for i trom 4 to n-1 do
g[o-i-1j:=cxpand{diff{G n-i-1]/r,r)}
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for mm from T to nops{i|n-i-1]) da
aafmmb:=op{mnt,gin-i-1]);#prinl{23,aa[mm]);
il ;
fli|==expand{b]i]}
for an from 1 to nops{l[i]} do
bbfom]:=op{nr  [i]};#print(25.5b|nn|};
od;
ri2:=0;
if {n-i-1=0) then
for Ul from t fo nops{(i]} do
thZ:=chZ+0*bbill}

od;
else
for kk from 1 to pops(gin-i-11) da
fur 11 trom 1 to neps{{[i]} do
rh2:=rh2+aajkk] *bhb[L]
ad;
ad;
fis
rl:=r24rh2;
od;

rhh2:=eapand{r2):#print2,rhh2)

L=y mm:="mm;nn:="no";kk:="kk"; L :="1";
rh:=simplify{rhhl-rhh2);
leqn:=lh-rh;#print(n.leqn);3:="j'";

for j fremn T Ao 240 do
cqljl=eoel(leqn,r,2* j-1)=0;
od:

mil:=solve( fseq(eqfilj=l.2*a)h[3],6[4]}, {seqf{a]i].i=1..2*n+2}} %
assipnisol}:

FIn]:=F[n|:
Glnl:=expand (add(4 (i 1Fafi+1] FrA(2*i-13,i=1..2%0+1});

unassign{a);

save F, "makiod.m";
print(n);

od;
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Appendix T1

The coefficients of the series F*(0)= 3 aR":

=1
Tahle A-? contains Lhe coefficients of £ ”(D).

{ a,’ Ii a; { a, ! a,
1|3 115 |-3310 107" 29 | -1850107" 43 |- 1535107
2 1722 107 |16 -9785 107 30 | -5723 107 44 | -4827 1077
312145100 | 17]-2909 107 3| -1773 107 45 | -1519 107"
4 1499010 | 18] -8695 107" 32 | -5504 1077 46 | -4783 107
5 |-1216107° | }9|-2610 107" 33 a7 47 | -1507 107
6 | -3082 107 |20]-7870 107" 34 |- 53251071 48 | -4754 107
7 -8062 107 |21 | -2381 107" 35 1-.1659 107" 49 | -1500 1077
B |-2164 107° |22 -7230 107" 36 |.5178 107" S0 |-4737107*
9 | -5931 107 | 23| -2201 1078 37 | -1617 107" 51 11496 107
10 | -1653 10 |24 ] .-6724 100" 38 | -5058 107 52 |-47311077
11| -4675 107 | 25]-2058 107" 39 1-1583107™ 53 | -14%6 1077
12| -1337 107° {26 | -6319 107" 40 | - 4962 107 54 | -476 107
13 | 3866 1077 |27 | -1943 107" 41 | -.1556 107 33 -.1499 107
14 |- 1126 107 | 28] -5991 1p7" 42 | _ 4885 107
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