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Abstract

Very few nonlinear probkms can be solved exactly but it is sometimes possible to

expand solution in powers of some parameters. In practice the presence of singularities

pre~ents rapid convergence of lhe series, so it lS necessary to seck an efficient

approximate method. Our purpose is to analyze the dominating singularity behavior of a

few problems and the performance of approximatemethods.

The aim of this thesis is to analyze the approxImatemethods by applying them to various

model problems, Firstly, we have applied them to some standard problems, whose

singularities are known. Secondly we have analyzed numerically the critical behavior of

the solutions 0r two non-linear ditTercntiaiequations.

Finally, we have studied the fklwina porous pipe with dcce1eratmgwall for analy~ingthe

dominant singularity behavior of the flow. The series related to the Reynolds number R

is developed by using algebraic programming language MAPLE, The series i, then

analyzed by variou, generalizations of the approximate methods. We observe that the

convergence or both the series 1S limited by the dominating singularity located at

R = R, '" 3,0724980042 and surprisingly there IS another turning point at

R, '"8.813114939 .Theresult concluded that there is a reversal now at the walL
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Chapter 1

Introduction

II is (In old maxim nf mme ,ilal "hen }'o!<have exd,,,led Ihe lmpos<1bIe. what ever t"mai"", ho,,",'I'r

,mprobable, niH" be ,he /rulh
_She,'lock Holmes, The advenJure of Ihe Beryi Coro""1

Sir Arlh"r ConanDoyle.

Very few nonlinear problems can be solved exactly but it is sometimes possible to

expand solullon in powers of some parameters, When the exact closed form solution of a

problem is too complicated tben one should try to ascertain the approximate nature of the

solution. Approximation methods [I, 8, 11-13, 21-23] arc the techniques for summing

power series, A fl.lnctionis said to be approximant for a given series if its Taylor series

expansion reproduces (he first few terms of the series. The partial sum of a series is the

simplest approximant, if the function has no singularities. I'or a rapidly convergent series

such approximants can provide good approximation for the soli.llion. In pnletiee the

presence of singularities prevents rap,d convergence of the series. Therefore it is

necessary to seek an efficient approximationmethod.

Khan [14] applied approximation methods to several fluid dynamical problems. Our

purpose is to analyze the dominating singularity behavior of some standard problems and

compare the perfomlanee of approxiffi3tionmethods numerically.

The remainder of this introductory chapter is as follows. Since we shall study the

dominating singularity behavior of series by using approximation techniques, we begin

with a brief review of series in Ii1,1. Then in Ii1.2 , we describe various types of

sillglllaritics, We describe a brief review of elementary bifurcation theory in S1.3. We

present the basic concept of continued fractions in gl.4 in order to eOimeetwith the

approximation method in Chapter 2. Finally, in ~L5, we present it brief out line of the

remaining thesis.

1
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1.1 Oven'iew of series

Consider a function u(x) \vhich can be repre5enkd by a power series

"U(x)=:Z::a,x' asx-l-O,
;~o

['he l,'/h partial S\Ull is

"Ug(x)= L:a,x' .
i=o

(1.1.1)

(1.1.2)

If we can locate a point Xu, where the functIOn u(x) is anal)1ic then it can be found in a

powcr senes"

"U(X) = I>,(x-xQ)' as X-l-Xo',-,
The series is said to be convergent if the s'equencc of the partial sums converges. When

the series converges, the sum U(x) can be approximated by the partial sLIm Uh(x)and
the error is defined by

and the absohde error is defined by

provided U(x) •• O.

The number of accurate decimals for some particular value of x is given by

PN "'-IOglO[e:"I.

We say that the error decays exponentially if there exists a particular constant a- such

thal a-N -l- a as N -l- cj), where

Sometimes the presence of singularity of the solution can delay the convergency of the

senes. So, we need to lind the domain of convergence of the series. The serics U(x)
convergcs for some x, ifit converges absolutely in the open disc

{x:X<XJ

2
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(1.1.3)

with centre at the origin. The l<lIgest such disc is called the dIsc of convergence and the

radius, say R, Ol the disc is called the radius of eon~ergence of the senes or U(x). If

l'(x) is <Ulalytle at x==O then R>O. If the senes has a singularity at x, such that

Xc = 11., then it <.livcrges for X"" x,, Different methods such as ratio test, Dumb Sykes

plot ele. have been used to compute the radius of convergence by direct use of the

coefficIents of the series, We will apply \'ariotls generalizations of !he approximation

methods to determine the singularity behavior of the series,

In applied mathematics, series are often obtained by expanding a solution III powers of

some perturbation parameter. In the following subsection, we descrihe rhe basic literature

on perturbation techniques [20][26]

1.1.1 Perturbation series
Perturbation theory is a collection of methods for the systematic analysis of the global

behavior of solutions to nonlinear problems. Sometimes we solve nonlinear problems by

expanding the solution in powers of one or several small perturbation parameters. The

expansion may contain small or large parameters \vhich appear naturally in thc equations,

or which may be artificially introduced Let us consider a problem of the form

1(I',x,A)=O
where Imay bc an algehraie function or some non.linear differential operator, and 2 is a

parameter. It is seldom possible to solve the problem exactly, but there may exist some

parllcular value of x = Xo for which (he solution is known. In this case, for Ixl« I, one

can seek a series for u in powers of x such that

"
U(x) = L:a.c,l)(x-x,Yas x-Joxo'

[=0

Then by substituting this into equation (1.1,3), expanding in powers of x and collecting

the terms of O(x"), "e can get the requircd coefficients of the perturbation series.

Example-1.t.1. Let us take the cubic polynomial

3



,,'-(4+xlw +2x=()

The perturbation series for (1.1.4) in powers of x maybe taken in the form of

u(x) ••fa,x',~,

(1.1.4)

(l.l.5)

l"or small x _ For x = 0, the polynomial has three du;linet roots, namely ao = -2,0,2.

'Which, when a, = -2, subslliliting the expansion

U(x) = -2 + a,x + a,x' +

in (1.1.4) and equating the coefficients of x gIves

perturbation series for a, = -2 is

. Therefore, the

In a sImilar process other series are u=o+~x-ix'+O(x') at a, = o and

U=2+0"'+O.x"I'O(x') at Uo =2.
Example-1.1.2. Consider the differential equation

,
u' = ~"- with u(O)= I.

1-=

Let us consider the series

u(x)"" fa,x' as x-->O
,=U

(1.I.6)

(1.1.7)

of the solution of the above nonlinear initial value problem (1.1.6).

Equating the coefficients of XO , wc obtain a, = a~. Equaling thc eoefficients of x and

~ b - 3 3 , II ,) 8 , .x.etc, we 0 tam a, =-"oa, = -Qo and a, = - 4aoa,+ la, = -Qo respectively. These
"2 2 3 3

values of a,,a, and a, lead us to the recurrence relation

which implies,

4
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Ac~ording to the lmlial condition, G, :> 1. Since the coefficients ", are functions of au'

the coefficients \\,ill vary with the imtia1 ~ondition.

1.2 Singularities
Singularity of a functIOn is a value of the mdependcnt variable or variables for which the

function is undefined. Singularities arc cmcial points ofa function, because the expansion

of a function into a pmver series depends on the nature of singularities of the function.

For the purpose of this thesis, we are interested to analyze those functions, whIch have

several types of singularities_Practically, one of these singulanties dominates the

function. Therefore it is important to know about this singular point to analyze the local

behavior of the function anlllnd this point.

The convergency of the sequence of partial sums depends cmcial1y on the singularities of

Ule function represented by the series. Seven!! types of singularities may arise in physical

(nonlinear) problems_ The dominating behavior of the function u(x) represented by a

series may be \Hillen as

(1.2.1)

Where A is a constant and x, is the critical point with the critical exponent a. If a 1Sa

negative integer then the singularity IS a pole; otherwise if it is a nonnegative rational

number then the singularity is a branch point. We can include the correction terms with

the dominating part ill (1.2.1) 10 estimate the degree of accuracy of the critical points_ It

can be as follows

(1.2.2)

1,','here 0 <G, < a, <Al and A,,A"M are constants. G, +a ~N for some j, then the

correction terms are called eOllflllenl. Sometimes the correction terms can be logarithmic.

e.g,

5



(1.2.3)U(Xl-A(I- ~'J{\+lnl- :, }as X-H,_
Sometimes the sign <if the scrie, cocrticicnt, indicate the location 0r thc singnlaritj'_Tf[h",

lemlS arc of the same sign the dominant singular point lie on the positive x-axis. If the

temlS takc 3ltemately positi'e and neg31ive signs then the singular point is 011the

negative x-axis.

Following are few examples wjth different lypcs of singularities:

FX3mple-1.2.1. (Singularities for single \'ariable functions)

1) Singularitie, that are poles: u(x) = (3 - 2xfL + cos(x).

Here u(x) is an algebraic function whose singLllarityis at

a =-1, which makes the singularity a polc.

2) Algebraic singularitieswith different cxponents:

3.~ .. ,,1
X, = -, we cntlc",- exponcnt

2

Hcrc u(x) has several singular points. The singular points are at and the

critical exponcnts are a =_.!..,_.!..,-~ respectl'fely. In this example-rhe singular points are
2 2 4

branch points. Though thcre arc a number of singularities for u(x), only one of these

singularities will dominate thc local behavior of u( x) .

3) Logarithmic singlilarity:

u(x) = In(1+ ~) + sin(x).

Here u(x) has a logaritlunic singulanty at x, = -3 .

4) Essential singularity:

u(x) = exp(3- 2xt' .
Here u(x) has an essential singularity at x, =~ with critical cxponent ct=-1.

2

5) Algebraic dominant singularity \vith a secondary logarithmic behavior:

6



0)

Thc algebraIc dominant singularity of u(.) here is at ~,~2 with cntieal exponent

(l =_~, whieh makes it a branch pomLAnd a logarithnlle singulanty at x, =3,

nth root singtllarity: U(~)=(I-2.r,'''+exr(x)., 2,

Here u(.<) has a branch point with the critical exponent a =_! at x, = 2.
"

1.3 Elementary bifurcation theof),'
ln this thesis we have investigated a nonlinear problem in fluid d)llamies, Solution~of

nonlinear problems often involve one or scveral parameters. As the parameter varies, so

docs the solution set. A bifurcation occurs where the solution of a nonlinear system alter

their qualitative behavior while a parameter changes its value. In pmticular, bifurcation

theory shows how the number of steady solutions of a system depends on parameters.

Examples of bifurcation are: Simple turning POints,in which two real solutions'become

complex conjllgatc solutions and pitchfork bifurcatlOn, in which the number of real

solutions changes discontinllou~ly from one to three (or vice versa) We intend to

Introduce somc basic concepts of bifurcation theory. Drazin [10] discussed the

bifurcation theory in detail.

Consider a functional map F: RxIR ---)0 IR. We seek for the solutions

u=u(x)or F(x,u)=O. (1.3.1)

Bifurcation diagrams can show the solutions. In these diagrams solution curves are drawn

in Uw (.<,11) plane. Let (xo,u,) be a solution of equalion (1.3.1), i.e,

(1.3.2)

then, F can be expanded in a Taylor series about (x"uo) and we can study the solution

set in that neIghborhood provided that F is smooth. Thus we obtain

7



0= F(x,lI)

(1.3.3)

I( we assume that, F. (x,,,110) '1-0, llien

( ) ( )F,('o,'o) J( I" (134)ux="o-x-x, ()+(x-xoJ,asX-l-Xo' .,
F. x",uQ

Tllis gives only one solution curve in the neighborhood of the point (xo.uo) in the

bilhrcation diagram. However, if we replace (xo>u,) with (x" "ol, whcre

(1.3.5)

then the expansion (1.3.3) shows that there are at least 1\vo solution curves in the

neighborhood of (x, ,110), The point (""u,) is called a bifurcation point.

EXllmple-1.3.1. Let F be a function defined as

(1.3,6)

Where f: is some real pammeter. When r. =0, Figure1.3.1, there arisc a bifurcation point

at (1,0) and atuming point at (-2,0).

When 0 < I': <4/3, there are two separate branches of the bifurcation curve, one Ml Isola

and the other unbounded. When, the value of f: increases, in the considered interval,

these two branches move apart from each other. Figure 1.3.2 and Figure 1.3,3 shows thi8

behavior of F for dirrercnt values of 6.

8
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Figure j ,3.3: Bifurcation diagram of F(x, u, s) in (x, u) plane when E = O. L

In Chapter 2, we will have an overview of approximation method. There are several

variations on the Pade' method of summing power series. One such method consists of

recasting the series into continued fraction instead of rational fraction form. This

procedure closely re~embles Pade' summation because here also only algebraic

operations arc required. In the next section v". will discuss about continued fraction.

1.4 Continued Fraction
Continued fraction has a long history. For historical survey one can go through [5] and

[16]. Continued fraction is very useful to analyze the dynamical systems, notably in

connection "illi rerlOnnalization. We \vill discuss the basic concepts of continued

fractioll'!.

Let x be a rational or irrational number, then the simple continued fraction ofx is

,,

x = ao + 1 ,= [ao,a"a" ...,aN."r¥ 1
", '

a, + ,
1,----

1
a."_L' +-r,.

10

(1.4.1)
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\Vbere, u, = fioor( I~J ( the integral part of (,~ J), for 0 ~ i< l'l'. Here all a, 's are

nonnegative integers and r" )s the Nth remaindcr. \Vhcn XEQ (rational number),

r,. = (). If x is irratlOllal number then the remainder can never vanish and we get the

infinite continneU fraction. Ie. x = [ao.a, ,a" .oj.

Example-1.4.1 Let
74"0 -, then
23

74=3+ 1 -[3,4,1,1,2J
23 4+ 1

1
1+--

1
1+-

2

Again, let u(x) = e', then

,,'=1+
1+

1-2+----

"-3+--

"2+-
5

Consider a function u(x), which represents the power series

-U(x)= La,x' as x --'> O.
'_0

(1.4.2)

Let ns now see how it can be expressed as a continued fraction. The Nth convergent of

the senes (1.4.2) is
"-,

U,,(x)= La,x'.
1=0

(1.4.3)

In order to com-en (1.4.3) into continued fraction, assume that all (he inverse that we

need to exist.

The continued fraction of (1.4.3) is

(1.4.4)

,
11
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iJ) ('1
'10 </,x Q, X a, 'x,----.-
1+1+1+1+

The convergent Or( 1.4.2) is rational function in the variable x.

In genera], we obtain a rational approximant lrom (1.4.4) of the fonn

(].4.5)

whieh matches with certain llL1mberofterms of the series (1.4.2),

In partICular, the roots of the dCl1ominator B, (x) gne the singulanty of the series

(1.4.2), When the series (1 4.2) represents a rational function, the remainder of (1.4.5)

must eventually reduce to a constant, and the proeess (1.4.4) terminates after a finite

number of iterations, Otherwise, it never terminates and we obtain the infinite contmued

fraction.

1.5 Overview of the work
Tbis thesis is coneerned with the study of CDmputer hased approximation techniques

which are of Pade'-Hernlite class. Many researchers have studied the applicatIOn of these

approximation techniques in fluid dynamical problems. For over the last quarter century

many powerful approximants have been introduced for the approximation of the function

by using its power series, Among them most of the methods are described for the series

involving single md"'Pendent variable and a few are derived for the power series involved

wIth two or several independent vanables. Many researchers hitherto have found

remarkably more accurate results by using several approximation methods. The

remainder of thIS thesis is as follows:

In Chapter 2, we have reviewed the Pade'-Hermite class of approximation techniques to

determine the coeflicients of the approxImant. We have discussed several of these kind of

approximants with some example, Then in Chapter 3, we have diseussed the performance

or these approximants on some mDdel functions, on two model nonlinear differential

equations and a fluid dynamical problem. Finally in chapter 4, we have summarized our

Ivork and give some ideas for future work.

12
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Chapter-2

Approximation methods

Introduction
This thesis IS concerned with the study of the application of computer based

approximation !echniqLles to reveal the local behavior of a perturbation series arollnd its

singular poinl. The approximation methods are widely used to approximate functions in

many areas of applied mathematics

The mathematical model of physical phenomena usually results in nonlinear equations,

which may be algebraic, ordinal)' differential, partial diITercmial, integral or combination

of these. A value of independent varioble for which the function is undefined is 1rnO"iIl as

a singularity of the function. Singularity plays an important role in many areas of applied

science. ParticlJlarly in fluid dynamics, the presence of singularities may reflect some

ehanges in the nature of the flow and their study is of great practical interest. SometImes

il is very difficult to find out the exact solution of physical problems. Particularly in

statistical mechanics, there are a large number of problems for which the first few terms

of the power series may be obtained exactly "hile the exact solution is unobtainable. The

three dimensional lsmg model is a good example. On the other hand, if the power series

expansion of a nonlinear system is given, but their corresponding function i5 not known,

then it becomes difficult to reproduce the function from the given power series. However,

one can study their singularities by 113ingthe approximation methods. In order to study

these problems many powerful techniques have been used to find the power series

coefficients. At the same time, a variety of methods have been introduced for getting the

required information about the singularities by using a finite number of series

coefficients.

13



(2,1.1)

J3rerinski [5] studied history of continued fraction and Pade' approximants, Blanch [7}

evaluated cominlled fractions numerically, Also the applications of continued fractions

and (heir gencra!lzatwns (0 problems in approximation thoo!)' have been studied by

Khovanskil [15]. Baker and Graves-Mom8[1] studied Pade'approximants and its

properties. Algebraic and differential approximants [2] are some useful generahzations of

Pade' approximanls. Khan [14] analyzed smgularity behavior by summing power series.

Khan [13] also introduced a new model of Differential approximant for single

mdependent variable, called High-order differentIal approximant (BODA), for the

summation of power series. The method is a special type ofPade' -Hennite class and il is

one of the be~t methods of singularity analysis for the problems at' single independ~nt

variable.
The remll1derol'this thesis paper is organized as follows:

\1/e will study the Pado'-Hermite class of approximants and then the development of

some approximants in thISclass sueh as Pade', Algebraic and Differential Approximants,

Drarin-Tourigney is one kind of Algebraic Approximant and High-order differential

approximants is an cxtension ofDifferenlial Approximants.

2.1 Pade'-Hermite approximants

In 1893, Pade' and Hennile inlroduced Pade'-Hermile class. All the one variable

approximant, that were used or discussed throughout !his thesis paper belong 10 thc

Pade' .Hcrmite class, Tn its most general form, this class is concerned with thc

simultaneous approximation of several independenl series. Firstly we describe lhe Padc'-

Hermite class from it's point of view,

Let d EN and let the d + I power series

Va (x \V, (x), ...,U d (x)

are gIven. \Ve say that (he (d +1) tuple of polynomials

p~?l,p,~.'i,,,., pYI

"here dcgP~Dl+degp,~1+ .. +deg p,~dl-7-d '" N,

is a Padc'-Hermite form of these series if

14



fr!:I(x)U,(x)=ok") as X-l-O.
,~(,

(2.1.2)

Here Uo(x}U, (x), ..,U,,(x) may be independent series or different fonn of a nnique

soories.We need to find the pol}110mials p,1'1 that Ratisfy the equations (2.1.1) and (2. 1.2).

These polynomials are completely delenl1il1ed by their coefficienls. So, the total number

ofunknllwns in equation (2.1.2) is

"Ldeg p}'1 +d + I = II' +1.
,~

(2.1.3)

Expanding the left hand sidc of equation (2.1.2) in powers of x and equating the first N

equations of the system equal to zero, we get a system of linear homogeneous equations.

To calculate the coefficients of the Pade'-Hermite polynomials we reqUIre SQmesort of

normalization, such as

p!:I(O)=l for some O:,>i:,>d. (2.1.4)

It is important to emphaslle that the only input required for the calculation of the Pade'"

Hermite polynomials are the first N coefficients of the series Ua,...,Ua. The equation

(2.1.3) simply ensures that Ole coefficient matrix associated with the system is square.

One way to construct the Pade' -Hermite polynomials is to solve the system of linear

equations by any standard method such as Ganssian elimination or Gauss-Jordan

elimination.

2.2 Pade' approximants

Pade' approxImant lS a technique for summing power series that is widely I.lsedin applied

mathematics [2]. Pade' approximant can be described from the Pade'-Hermite elass in the

following sense.

In the Pade'-Hermite class, let d = 1 and the polynomials p,!ol and ~~'l satisfy equations

(2.1.1) aml(2.1.2). One ean define an approximant UN (x) of the series U(x) by

(2.2.1)

where

U, ",UN and Uo =-\.

15



n\en we select the pol>11Omials

p~O)(x)=tb,xi and r/Ij(x) = fe,x'.
1=0 ,_,

(2.2.2)

Such that n +m::; 1,'. Ihe constants h, 's and c,'s are l.1llknmvnsto be detenllincd. So

that,

(2.2.3)

(2.2.4)

Equating the first n +m equations of (2.2.3) equal til zero and the Illlrmalization

condition in equation (2.1.4), we find the values of b,'s and c, 'so Then, the rational

approximant known as Pade' approximant denoted as

l'r1(x)
uJr)= lll()'

P, '

help us to approximate the sum of the power sencs U(x). And the zeroes of the

polyTIomial~~')(x)happells to be idenlical with the singular point (points) ofU(x). In

order to evaluate thc Pade' approximants for a given series numerically, we have used

symbolic computation language such as MAPLE. The Pade' approximants havc been

used not only in tackling slllwly convergent, divergent and asymptotic series but also to

obtain singularity ofa fl.lnctionfrom its series coefficients.The zerocs of the denominator

r:SI give the singular point sl.lchas polc of the function u(x) if it exists.

Example-2.2.1. Consider u(x) = _1_ + e', a function with a simple pole. After
1-2x

applying the norma1l7.ationcondition Co '" I, we obtain the polynomial coefficienls

and r,llj [ordegP,i'l =nanddegP,!ll =m, When m=n=2,

pial = 2- 40 x-~x' and pill = 1- 91x+791 x'.
, 17 18 ' 34 612

VI'hen m=n=3,

pial,

pJOI= 2 _ 27704 x
, 13639

54457 2 2072 ," ---,
68195 13639

pJ'i = 1- 68621 x + 153323x' _ 303409 x'.
, 27278 136390 1636680

16



The table below wll! show the convergence to the singular point 01' II(X) on application of

P~dc' approximant.

T.ble2.2.1: Th. approxirmnon of x. by Pad.' fnT lhe func\ion m exampie 2.2.1

m,' "
2,2 .4891882678

3,3 .5000370775

2.3 Algebraic approximants
Algebraic approximant is a special type of Padc'-Hermite approximams. In the Pade'-

Hennite class we take

d z I,Uo =l,U, = U,.. ,U. = Ud
•

Let U(x) represent power series of a limetion and u.,,(x) is the partial sum of that series.

An algebraic approximant UN (x) of U(x) can be defined as the solution of the equation:

(2.3.1 )

Where drepresenl the degree of the partial sum U,.(x). The algebraic approximanl

u,' (x), is in general a multivalueU function with d branches.

The solution of the equati'Jn (2.3.) with d2:! gives us the coefficients of the

polynomials p,!.l(x). The discnminant of this equation approximates the singlilarity of

Here,

A" "LdegPtl+d=N.
,o0

(2.3.2)

(2.3.3)

And the total number of unknowns in (2.3.2) are
,
LdegpJ'l(x)+d +1 = 1'1+1.
'_0

17
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In order to determine the coefticlents 01 the polynomials p~:] one can set d'](o) = 1 for

n(Jmlalization. Through (JILtthis thesis wc will indicate Algebraic approximants as AA.

Example-2.3.1 Consider

u{;<)= (1-2x)'" +cos.\.

Let d = 2 and deg 1',10
]= deg p,I'] = <kg PHI'I = 2 to apply the algcbraic approximation

method on !he powcr series of the given function. After we set the nonnalization

condition r}'I(o) = 1, we get the polynomials

~\Ol(xl = J + 711842... 0.0.73.0.4.63_7a.3.45.8.2.7522287.8 ..75.9_1x' ,
, 477528552413468 51573083660654544

p.li] (x) = _ 3248460155432041 + 22334398779627 x + 1555136999112437 x2
, 955057104826936 477528552413468 128932709J5163636 '

pl'l = 2770931603018573 + 994609833893 x + 2429343756212869 x'.
, 1910114209653872 238764276206734 12893270915163636

Hcre the discriminant glve8 us the singularity at x, = 0.4825548636 , Jf we increasc thc

degree of/he polynomial coefficients it may give us a belter approximation. So, again let

deg ~\o]= deg r,\LI= deg r,\'l = 3 and d = 2, following the same procedure we get the

singularity at x, = 0.5039567121.

Again taking d = 2 and deg p,I'] = deg?,111= dcgP,llj = 4 the singularity is calculated at

x, = 0.4989742074. Thc table below will show the comparative results of the

convergence of the algebraic approximation method to the singular point.

Tabld.3. t: Th< appm,imation uf x, by AA for the fim<tion Ulexample 2,3.1

degP~, d ",
2 2 0.4825548636

3 2 0.5039567121

4 2 0.4989742074

Note that d = 3 may be more accurate for this problem.

18
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2.4 Drazin-Tourigne)' Approximallts

Drw,;n and Toungney in (SJ implementeJ the idea d == 0(,/N ,J as II' --+ '" .Thcir method

is simply a particular kind of algebraic approximant, satisfYing the equmion (2.3,1), In

this method they considered

degpi'l=d_i,

l'y'= ~(d' + 3d - 2).
2

(2.4.1)

(2,4.2)

Through OLltthis thesis we will mention Drazin~Tollfigney approximant as D-T method.

2.5 Differential approximants

d?: 2,U, = 1,U, = V,U, = DUandBy taking D""'~<ix'

differential approximant u" (x) of the series U(x) can be defined as the solution of the

differential equmion

~i?l+ r~~IUN+pl'lJ)u", + ,..+~i~IDd-'u.,=O. (2.5.\)

Here (2.5,1) is homogeneous linear differential equatIon of order (d -1) with pol)'l1omial
coefficients. The singularities of U(x) are located at the zeroes of the leading

polynomiaIP,~~I(x). Hence, the z~roes of pld1(x) may provide approximations of thc

singularities of the Junction u(x). Through out this thesis Differential appoximants are

represented by DA.

Example 2.5.1 Consider

u(x)==ln(I-2x).
Taking d=2 for (2.5.1) and applying (2.1.1) and (2.1.2), we obtain

p,I'I(x) '"~+35;; - 60x' and the singular point at x, = 0.5972, In a similar procedure
2
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taking d '" 3 gives us more accurate result, Ie Xc == 0.5000. The table below shows a

comparative result.

T.blel.S.l , The approxlmallOn of x, by Dii'feIentLa! '\PPT",im,nr for the funcl10n In example 2 5.1

l'ld "
5 2 0.5972

9 3 0.5000 ,
14 4 0.5000 I

2.6 High-order differential approximants
Khan [13] introduced an extension of differential approximant, which he mentioned as

High-order differential approximant, When the fundion has a countable itlfinity of
,

branches, then the fixed low-order differential approximallts may not be L15eful.So, for

these cases he considered d increase with N. Illead to a particular kind of differential

approximant u",(x), satisfying equation (2.4.2). Here

(2.6.1 )

From (2.1.3) he deduced lhal there are

unknown parameters in the definition of the Pade'-Hermite foml, In order to determine

those parameters, we use the N equations
,

~~'l(x)+L:ptl(x)ni•L[/" (x) '" ok") as x --t O.
,,'

In addition one can normalize by setting 1'~?1(0)'" 1, Then there remaill5 as many

eqllation5 as unknowns. One of the rools, say X,.N' of the coefficient of the highest

derivative, i.e, pl~l(x"J",O, gives an approximation of the dominant singularity x, of

the series U. If the singularity is of algebraIC type, then the exponent a may be

approximated by

20



ah =d-2 (2,G.2)

Through out this thesls High-order differential approxinlants are represented by HODA.

2.7 Discussion
Pade'-Hemlite class is constructed over the technique of truncated contlilUedfraction. It

was dlscllssed in equatlOn (1.4.5) and (he polynomial coefficients of Pade' were

construeted by taking suceessive truncated continued fractions. In this chapter we had an

overall study about the Pade'-Hennite class of approximation methods. Examples show

the performance oIPade', AA and DA explicitly. We must mention that D-T method is

an improved algebraic approximation teclmique, HODA is modified differential

approximant. \Ve notice that the performance of D-T method is belter than that of Pade'

when the singular point is a branch point. But perfonnance orHODA is almost in every

case convmcmg,
In the next chapter "'e will study some nonlinear differential equations with the

applicatIOn of Pade', D-T and HODA. And a flLliddynamical problem to reveal the

behavior ofthe unknown solution with the resliltsof the applicatIOnorthese techniq\les.
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Chapter-3

Approximate Solution of Non-linear Systems

One cannot hope \0 obtain exaet solutions to most nonlinear differential equations. There

are only a limited nllmber of systematic procedures for solving them, and these apply to a

very restricted class of equations. Moreover, even when a closed-form solution is known,

it may bc so complicated that its qualitative properties are obscured. Thus for most

nonlinear equations it is necessary to have reliable techniques to determine the

approximate hehavior of the soilltions,

The solutions of di ffcrential equations encountered in practice are reglliar at almost every

poim; in the neighborhood of ordinary points Taylor series provide an adequate

description of (he solution. However, the distinguishing fcarnres of the solution are its

singularities. Determining the location and nature of these singularities, without solving

the differential equation, requires the techniques oflocal analysis.

A solution of a linear equ.ation can only be singular at points where the coefficient

functions are singular, and at no olher points. But the solutions of nonlinear differential

equations possess a richer spectrum of singular behaviors. Solutions of nonlinear

equations, in addition to having fixed singularities, may also exhibit new kinds of

singularities, which mOve around in the complex plane as the initial or boundary

conditions vary. Such singularities are caned Spontaneous or movable singularities.

Example 3.t Consider the linear differential eqLlation
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1\ has a singular point at x= 1, so does the solution u(x)=_I_. For the differential
1-,

equation it is a regular singular point, for the solution il is a pole. If "e replace 1/(0) = I

with u(O) = 2, the new ~t)llllion u(x) = _2_ sfill has a pole at x = I.,-,

Example 3.2 Let us consIder the nonlinear differential equation

u'(x)=u', u(O)=L

The solution is ,,(x) = -' -. Even though the equation is not singular at x = 1, a pole,-,
spontaneously appeared. If we change the initial condition as u(O) = 2, the solmion will

()
2 , ... 1

be changed to "x '" --, the po e has changed Its POSItionto x = -.
\-2x 2

Bend~r and Orszag [2] discussed a number of examples with local analysis. Without

solving the equation they tried to locate the dominating singular points of this kind of

nonlinear differential equations by the application of approximation method. And try to

locate the dominating singular point with critical exponent which analyses the form of the

singularity of this kind.

In this chapter we have examined few problems where approximation methods were

applied to reveal the singularities and have compared our result with others.

Now we will see some test functions with different types of singularities, where we

compare the performance of approxImation methods descnbed in Chapter 2.

3,1 Some Test Functions
Consider five test functions with di fferent types of singularities:

L Additive algebraic singularitIes with the same exponent:

() ( 12)-''"' ( ,)-'" 3(1 1')-'" ( 15)-'"ux = I-x +21-xI3 + -x +41-x .

2. Addifive algebraic singularities with different exponents:
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3. Coofluent <II gchraicllogaTithrnic singularity:

u(x) = ~xp(xXl- x!2 )-'" + In(l- x n),

4. Algebraic dominant singularity wIth a second,ny logarithmic singulanty:

U(x)", cxp(xXl- x nt" + In(l - x 13),

5, Essential smgularity:

,,("1' ",ill -" I2t'" I
Th~ number,PN of correct decimal figures in the approximatlOll of x, by "anous

methods for the functions of the above examples is shown in the tablc below.

Here

Tabl.-3.1.1 :The number P,v of corrcCI deem",l figures ill the 'ppro,imalion

ofx, by varwu' methods for the functions i,-5.

Example N Pade' 0-1' HODA
L 26 2.42 2.13 Exact

2. 36 2.71 2.63 17.55

3. 20 2.10 2.08 4.31

4. 20 2.09 1.94 Exact ,

S. 10 Exact 0.52 2,24

The resuUs of approximatmg the dominating singularity x. in each case by various

methods of series analysis are shovm in Table 3,1.1 wh.re we have shown the number of

correct decimal places. Here the value of N is rather small, and so one :;hould be careful

not to infer 100 much from the evidence. Nevertheless, it is interesting to note how badly

the D-T method compares with the others.ln most of the cases, wc see that by using a

small number of series coefficients, the High-order differential approximant produces the

exact results The same is true for the critical cxponent.
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3.2 Spontaneous singularities in the complex plane

Con8ider the Riceati equation with the initial condition

(3,2.1)

The SOIL/lionl)fthc Riccati equation becomes singular at a fillitenegative value of x. The

presence of this smgularity can be understood from the graph o[the tangent field given in

Fignre 3.2.1 The tangent field indicate that the solution which satisfies the initial

~ondition 11(0) = 1 becomes large and negative for negatIve x. When u is snfflciently

large and negative, I becomes negligible compared with -xu'. The resulting

approximate differential eqnation is

u'--xu' , u ----)----a;;.

The solntions to u' = -xu', U (x) = (x; +C)-' that are negative somewhere have

c < 0, so they become infinite for some linite negative x.

To find the location of this singularity numerically, let w( x ) = II u (x), w( x) satisfies the

differential eqnation w' = x - w' [w(O) = I]. Numerical integratIOnof this differential

equation gi,es a zcro of)'f' near x = -2.12. Thus, u becomes singnlar at x'" -2.12.

From this result one might expect the Taylor sencs solution about

x =O,u( x) = L:'~obkX', to have a radius of convergence of 2,12. However, a numerical

evaluation of the Taylor coefficients b, indicates thaI the true radins of convergence R is

close to 1.228:

R = lim !2.-;: 1 228.
k ----)a:; bk+'

(3.2.2)

R has this much smaller value because u( x) also has complex spontaneous singularities.

Further nnmerical integration shows that w(x) has a zero in the complex plane at

x, :;0.313 +1.188i. This is the zero of w(x) which is nearest to the origin in the

complex-x plane. liS distance to the origin is IxoI:;1.228. Therefore, it is this singularity tl
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anu not the one at x ~ -2,12 thai ueLemlines lhe radius of convergence or the Taylor

series for u(x).

'I "bb3.2 t '[snm"", nIthe "ilie,l point x, '" ,nd dIe correspomling ".'ponent aN byuSLng "nou>

approximatiun Intlhods for the d,fferentlat eqUatlOn U' '" 1- X1I2,u( 0) = I

P.de' HODA HODA "'
N m,"

X"N
, d X,.N a~ N " :Xc,""

W " -2,t44200~29 '" ; .2.1122530506 _.9nI950250 D , -2,t03723308

U M .2,117890610 n 6 _2.1127172633 -,9959445675 " 6 -2.110655435

" 7,7 .2 111567345 " , .2.1127172633 _,9959445675 " 9 ---------------

W 6,6 _'.112916314 " 6 _2,1128179244 _1000003854 0; W _2.08]670213

, 6 99 _2.1IU26475 " 9 -2,lt28178#74 _.9999999979

'" HI, I () _2.112826475 " '" _2,1128178874 _1.000000000

We analyse the location and nature ofllie smgularitics by using various generalizations of

the approximation methods. From the above analysis Bender and Orszag [2] inuicates

that the real singularities lies at Xc =-2,112, but using the ratio test the dominating

singulanlies occurs in the complex plane at x, '"0.313 +1.188;.

On the other hand, the results in Table 3.2.2 indicate thaI it is possible, by using the High-

order differential appmximants (HODA), to obtain lhe radIUS of convergcnce- and lhe

critical exponent a - to 18 digits of accuracy with d = 10 (N = 65). For comparison, the

table also shows the results by wing thc Pade' and the Drazm-Toungny (D-T)

approximants, 1t is clear that the High-order differenlial approximants converges much

Jaster.

Therefore the dominating smgularity behavior of the solution is

u(x) - A(x - xJ" as x ----t x,,

where x, '"J 13409267155988995:t 1.1875279690275096i and

a", -1.000000000 + 0.879250 10-";.
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Figure 3.2.1 : Tho tangent field llldi<atcthe wlution U (xl of u' = 1- xu2 which ,all,fi.,

the in;!,.l condJtlOn 1-1(0) = 1 [Bender & Orszag [1], pp.149]

Figure 3.2.2: Approximate solutlon V,v (x) for the R,ocati oqualion u' = 1_x1-I2

u (0) = 1 with ,he Drazm-Tourigney approximant with d~12
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Table 3,2.1 "hows the critical point and the corresponding cn(j~al expon~nt of the

solutIOn behavior in the rew field, The <lpproximate solution is also shown in Figure

3.2.2, wluch is comparable to Bender and Orszag [2] as in Figure 3.2.1.

3.3 Infinite number of spontaneous singularities

Consider

u'=u'+x. (3.3.1)

Bender and Orsng [2J stlldied the leading behavior of the solution to the Riccati equation

as x ----Jo +-co. The previous example shows that thc solution to a nonlinear differential

equation may exhibit several spontaneous singularities. We will see that the solution to

the above nonlinear equation has an infinite number of singularities along (he positive

real axis' The Figure 3.4.\ given by Bender <mdOrszag [2J is a computer plot 01" solution

to the equatlon satisfymg the initial condition 1/(0)=0. Note that the graph of

II(x) resembles that of the fllnetion tan x .

•
,

.J
0

. • '"• • ,
•

•

o .

•

.,

.,.
Fignr. 3.3.1: Comput<:rplot of u(x) to 1/' = u" + x, satisfymg the initi.l condition

U (0) = 0 . [Bender &. O"ng [2J, pp,iSOJ

Th. ultimate goal of our <malysis is to construct a function which closely approximates

u (x) as .• -l- O. Ho,,'ever, we begin wilh a more modest investigation: let us try to

determine the nature of the singularities of u (x). •
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COllthe singularities of u( x) be poles~ We know that III the neighhorhood of a pole the

leading behavior is given by lI(X) - A" (x --> (1), where (1 is the locotion and a i,
(.,-a)

the order of the pole. Sub,tituting this as)mptotic relation into the diITerctltial equation

and comparing leading terms gives A = -l,a = 1. Thus, solutions of the differential

equation probably have simple poles. But (0 prove this conjecture we must show that in

some neighborhood of x = a there is <lsolution in the form of a (convergent) Laurent

sencs

(3.3.2)

It is left as an exercise to eompute (he coerf1eicnts h, directly from the differential

equation and to ~'crify that the series converges in a neighborhood of x = a.

UnfortlUlately, this series expansion is only valid in a disk which does not contain any

other singularity of u.It would be much more de~irable to have a uniform description

valid for large x which exhibits (he mLlltiplc singularity ,tructure of u{x).
To obtain slich an expression it is necessary to approximate the differential equation by

one that ha, an analytical solution. However, in 11mcaoe an approximation which reveals

the tlature of the nonhnear difTerential equation is not easy to find! It would certainly be

nice if one could neglect x in favor of u' or u' in favor of x in the differential equation.

Unfortunate! y. a glance at the figure 3.3_1 shows that as x --lo -too, sometimes u' > x and

sometimes x> u'; we need a more sllbtlc approximation which is uniformly valid as

x~-too.

An ingenious trick is to substitute

u(x) = xLl'v(x).

The equation for v(x) is then

30
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}.Imv the ternl -.2::... is uniformly negligible ror large x because v ~ I +y' for all v and

'"x-' «x"',x -+ +G<,).

The resulting asymptotic differential equallon v',-(1+v'~"',x -+ +'0 is easily solved

because it is separable:

'INhere

() '''()'' ()IIX=X yx=x-tom~x.

,() 2 "i/'x--x'-,x-++'O.
3

(3.3.5)

This result suggests thai for large x the solution of the Riccati equation has an infinile

sequence of first order poles having an accumulation point at x = '0,

The accuracy of thIS res\Lh may be tested in several ways, We could plot the function

--Ixtan(~x'''2 J for large x and compare the result with the figure in Bender and

Orwag[2J (see Figure: 3.3.1), However, a bellcr test of this result is to computc u(x}

numeneally and to plot and venfy thalthis ratio approaches I as x -+ +'0.

We analyse the location and nature of the smgularities by using vanous generalizations of

the approximation methods. From the above aualysis Bender and Orszag [2] indicates

that the real singulanties lies at x, = 1.98035, 3.82534, 5.29562 etc.

On the other hand, the results in Table 3.3.1 indicate that It is possible, by using the High-

order differential approximants (HODA), to obtain the radius of convergence- and the

critIcal exponcnt a _to 18 digits of accuracy with d = lO(N = 65), For comparison, the

table also shows thc results by using the Drazin-Toungny (D-n approximants. It is clear

that the High-order differential approximants converges much faster,

Therefore the dominating singularity behavior of the solution is

lI(x)- A, (x - X',If' + A, (x - x"J'" + .. , as x -+ 0,
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where x., ",1.986352707 and x", '"3.825339191 with a,=a,"'-h'
Hlc tablc shows two consecutive singular points of the solution calculated by High-order

IhlTerential approximant (HODA). Drazin Tourigney method (0.1') gives us the

approximate vallJe of the first singular point where the performance of Fade' was not

satisfactory. Column five shows the critical exponents calculated as in equation (2.6.2).

According to these values It confirms that the singularities arc branch poims with critical

cxponcnt a, '"a, '"-h.
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Table- 3.3.1: E'!lmatos of the enlieal point x,..•and thecorrespondmg exponent a,\'hy u,mg two approxunalion methods fm the differonlial eqLIaEIOll

u'=u' +x with u(O)=O.

Bender-Orszag d N HODA ad.¥ d N DT

1.98635 3 , 1.9863527074551836589581741443 -0.33333333370031518 4 12 ],988851254

4 14 1.9863527074304728141430784896 -033333333333333335 5 18 1.986350399

5 20 1.9863527074304728134718183900 -0.33333333333333333 6 25 1.975527722

6 27 1.98635270743047281347 J 8183899 -0.33333333333333333 7 33 1.986377301

7 35 1.9863527074304728134718183899 0.33333333333333333 8 42 1.986352]45

8 44 J .9863527074304728134718183899 -.033333333333333333

3.82534 3 9 3,8127999524726231235206077488 -0.28137697134512616 - --- -----
4 14 3.8253554401122866541502681962 -0.33349723033033788 --------- -- ,
5 '" 3.8253391905355145769483591171 .0.33333332165213668 ---------_.-
6 27 3,8253391911604671135914070386 _0.33333333333382770 -_.----

7 35 3.8253391911604526481822632051 -0.33333333333333333 --"----------
8 44 3.82533919116045264818155988863 0.33333333333333333 ~~~ - -"---

5.29562 ----_. - - - - --" --------- -- -- - -- --_..
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3.4 How in a porous pipe with decelerating wall
The flow in a pip~ driven by suction or injection wai, lirst considered approximately liriy

years ago. Bennan [3] first considered the steady Navier-Stokes equations to a fourth

order ordinary differential equarion. Since then Brady [0], Zaturska and Banks r27] have

conSIdered various aspects of the flow, both steady and unsteady. Brady and Aerivos f4]

analysed the flow in a pipe with accelerating wall.

The flow in a porous pipe with decelerating wall is Important in phYSIcal point of view.

Practically it is found thal there is a range of Reynolds numbers for which there is no real

solution to the steady similarity equation; this absence of solutions and the determinution

of any bifurcation hus been the motivation for this study.

In this present problem ""e have considered Ule flow in a porous pipe with decelerating

wall. We have studied the temporal stahility of the flow by using the various

generalization of approximation methods.

The steady axisymmetric flow of a viscous incompressible fluid driven along a pipe by

the eombined effect of the wall deceleration and suction is eonsidered. This type of

problem was first investigaied by Berman [3] and subsequently by many authors, for

example, Terrill and Thomas [24], Zaturska and Banks [27], Makinde [\8].

Formulation of the problem:
We consider the steady axisymmetric flow of a viscous incompressible fluid driven along

a porous pipe with decelerating wall. Let E hc a parameter such that the axial velocity of

the wall is Ez. It is assumed that aEIV = 0(1) and V;< OeV > 0 represents suetion

velocity and V < 0 represents the injeetion velocity).
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v=V,u=oorEz.

"• ,~0- - - - - -- - - - - - - - -- - - - - - - --- - - - - - - - - - - - -

,- a

z

Figur~ 3.4.1: Schematic diagrnm of the problem.

By assuming a similarity form for the solution of the Navier-Stokes equation it is found,

after non_dimentionalization, thai the velocity components (1/, v) increasing in the

directions of (z,r), respectively, and vorticity (iI of the flow may be expressed as

(Makinde [19])

zdF 1u=- -,v=--F and wO"~zG.
r dr r

And hence

"-[' "-(,-G)l e R[G Jj. _F "-[G)],o e "-[' dF),
drrdr 'J rdr drr drrdr

d['dF) .FO"O'dr;dr O"O,onrO"O,

dFFO"-l,-O"-I, on r=1.

'"

(3.4.1)

Equations (3.4.1) with the boundary conditions govern the motion of an incompressible

fluid through the porous pipe with decelerating wall An exact solution to this

complicated nonlinear system of equations for R * 0 is not available, and so we resort to

series analysis by approximation methods. When RO"O, the equations (3.4 1) can be

solved easily. The solution is a parabolic Poiseulli flow It is therefore natural to seek a

power series in ascending powers series of R:

F(r)= FJr)+ F, (r)R +Fo(r)R' +F,(r)R' + ....
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F,,=o,I-F,:J =0 on r=O.
l'

Fo = -J.F.H = O,F;= -loF:+1 = 0, on roO I, 11= 0,1,2,...

Wher~ the prime symbDI denDtes differentiatiDu with respect to r.

In Dyderto compute the series coefficients, let
11+2

F(,)oo'a r".. L,. 0.',
,'l

and hence

(3.4.3)

By substituting this to the equatIOn (3.4.3), the recurrence relation for F(r) becomes

16jU +1)'U +2)a,,+<r'H

~ U+l)!( , ) 2>_1 *' (k-i+3)! ""
=L,.8('_1)1 k-j+l a,!+,a"_'J_,r -L,.8 (k-)' "'Ja"_l;.,r
r1j. J=' j.

,
We expand F(r,R1 p=(:') at r=l and F"(O) (that is, stream function, skin friction

and centerline axial velocity parameter) in powers of the Reynolds munber, to obtain

p =4-~R-2.R'-~R'-
3 27 1008

F'(O)=-3--.2.-R- 103 R'- 760589 R'- ... as R-j.O.
72 4800 152409600

These expansion yield a single solution of the equation (3.4.1), by taking

x:=R andU:=F"(O) Or fJ

m the notation of Chapter 2.

36

(3.4.4)

(3.4.5)



Using a ~ymho1iealgebra package such as Maple, the first 54 eoefJicicnts (see Appendix

J] Jar the coefficients of the seriesF'(O)) of thc solutIOn series were obtained. We

observed that the sign of the coefficients are slime and are monotomcally decreasing in

magnitude.
The cotwergence of the series may bc limited by a singLllarityon the positive real axis

(Van Dyke [25]). The graphical forrn of the D'Alcmbeli's ratio test (Domb and Sykes

r9]) together with Neville's extrapolation at .!. = 0 (that is, I! -+ rrJ) reveal the radins of,
convergence R = 3.07249. Following the High-order differential approximant technique,

we compute the first and second turning points R, and 11, as R -+ Don the secondary

branch (Brady and Acriyos [4]). Our results show

thatR, = 3.0724980042 ,R, ""8.813114939 .

We used the partial SlUllS of the series to reconstruct the other solutions of the problem.

The series has a real singularity at R = R, and this singularity corresponds to a turning

point i.e. a value of R ""here the number of solutions changes abruptly. It ;eems to us

that R!.~ approximates R, very ",'ell as d increases. We computed a farther mrning point

at R = R" The bifurcation diagrams for the approximate soilitions are shown in Figures

3.4.2-3.4.5, As can be seen in the fig\Lres,the method of Drazin & Tourigny succeeds in

continLlingthe secondary singulanty behavior beyond the circle of convergence of the

senes. The dominating singularity have the forrn

porF"(O)-A(R-R,Y as R--7~

with a"" y,. It is interesting to notIce the absence of real solutions forR, < R < R" and

that fJ --70 as R -+ 2.828847...., that is, reversal of the flow at the wall will occur.
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-, pld) R''') -'Iab1c-3.4.1: !"I,m,!", x,," of "~,'" ,.,. and til. on"eal e~ponent a." oflhe corre'pon"mg

exponent by HODA at c<nttTlinc axial ,dod!}'. The la,t row shows the

estimate' obtunod by u"ng the D.l' method II7J, N R(") a: '--" Rjd~ U 2,N1.,', , 3.17486229037860]9 O,73446~546787185~66 .._------------ .- ----- ------_ .._.__.
, " 3.07686419053152 II 10.511490960893766009 ---_ .......------- .......... --- --- --, " 30725166917148683 o 499719619856999405 -----_._ ..._.- -_..........-- ----

; " 307249800,,5120133 O,4999999()2120348536 g,8164063517596622 0.49545 96938484 847968

; " 3_0724 98004 244 5946 o SOOOOOOOOO98284071 S,8127995287711051 0.4991471015647478523, " 3 07249800424581~9 0.499999999999926717 8.gj 31460358460523 0.4997653746760795187

" " 30724980042458197 0.500000000000000001 8.~ 131097616625635 0.4999534119259680143, " 3.072498D042458197 8.813114939

TalJle-3.4.2: E,timates x,," of R',d ' R',d and the oritical exponent a,\' of the corresponding exponenl by

BODA of skU! fncllOo, Tho 1•.,1 roW ,hows !be eslimates obtained by using the D-T IIlI;(hod [17].

" N R,(~! a,,,,, Rj~1 a,,'1

, , 3.169913601171531 0,1179160833837563 ----------- ~~~ ._._---- --- ---

; " 30783909]]009397 0.43n071188188094 --------- ---_. ._- --- - -------, " 3072506610273949 0.4997190g 13662425 8.942239101069277 0.4060409189553583854, " 3,072498003441932 O.50000000899064 89 8.441094619719760 2.7332819731928286414

; ;; 3.0724 98IX14254 962 0,49 99999990682 636 g.gl 006106441 0313 05076020616853571302, " 3.0724 98011424 5820 0.4999 9999999g72 27 8,813263038742537 0.4991927215986543 196, " 3.072498004245819 0.49999999 99999999 8,8130838113 10784 0,500319746964500261l4, " 3,0724980042458197 8.813114939

Table ],4.1-].4.2 shows that Ihe accuracy of the approximations R,{.~and Rt~ increases

very rapidly wilh the increase of d. Tt is remarkable that the secondary singularity also
recovered from the infonnation or a single series at the point of expansion.
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3.5 Discussion

In thIs chapter, we have applied Pade' approximants, Drazin"Toungny approximants and

High"order differential approximants to some model problems as well as a Fluid

Dynamical problem. \Ve have analyzed thc approximate sollllion behavior of the

probkms by observing the dominatmg smgularity of the problems.

We applied the approximation methods to series where the form of the singularity is not

known with celtainity such as the nonlinear differential equations with spontaneous

singularity in the complex plane and infinite numher of branch points. Generally, we

have found that the High-order differential approximant method is very competitive, hut

for the approximate bifurcation diagram the Drazin-Tourigny approximant method is

essential.

We have applied the High-order dIfferential approximant to the series (3.4.3-3.4.4). The

method produces very accurate approximations of the first bifurcation point R, and

surprisingly a good estimate of the second turning pointR,. Not only the bifurcation

point but also the critical exponent as shown in Table 3.4.1 and 3.4.2. The results are

comparable with the results of Makinde (17) using the D-T method.
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Chapter 4

Conclusion
In thiS final chapter, we discussed about the sllmmary of the whole thesis. Finally, we

sketch some ways in which this work may be exploited further,

4.1 Summary of the work
In this thesis, we studied hy means of senes summation techniques, the formation of

singularities in the solutions of nonlinear problems, By expandi ng panicular sol I.ltions in

powers of some panicular parameter, we obtained accurate numerieal approximations of

the singularity parameters.

In Chapter 2, we presented a general framework for the deseription of the Pade' -Hermite

approximants with examples.

In Chapter 3, we investigated the dominating singtllarity behavior of some model

problems as well as two nonlinear differential equations from Bender and Orszag's [2]

analysis, We have determined spontaneous singularity in the complex plane very

accurately in Section 3,2., but did not ha~e enough series coefficients to find more branch

points in Section 3.3.

4,2 Future work

In this section, we gi~e some ideas to form the basis of future work:

1. Error analysis of High-order differentia] approximant.

2, Application of Approximation method to more physical models.

3. Application of Approximation method in other fields which include perturbation

series and their performance in these fields.
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Appendix I

Program to compute the series coefficients of

F(r)= F,(r)+ f'~(r jR + F, (rjR' + ..

inl<rface(quiet~{rue) :
N:~N:
F:-array(U ..l'i):
FJUI:~cxpand(_(If2)*(r'2)*(3_rA2»;
G [nI:"'exp~nd(difl( «11r) *dilf(F In],r) ),]')):

fur n frum 1 (n N do
a:~arr ay(1..2*n+2);
F Jn] :-add (ali] *rA(2*i),i-l.. 2*n+2):
b[31:-add(aril,i-I ..2*n+2)~O;
bJ41:~add(2'i*a[il.i~I ..2'n+2)-o;
lb:~.dd(16*i*({i+ 1)A2)*(i+2)*aJi+2J'rA(2'i_l),I~t ..2*n);

]'1:-0;
r2:=U;

fo]' I from n to n_l do
gJj]:~expand(G[iJ);
for mm from 1 to nop'(~lin du

a~Jmml :-op(mm,gJlI)
ad;
f]n. i_11:~expand( difr(F!n_l_l),rl/r);
for on from 1 to nap.(tln-!-l)) do
bblnoJ:~up(nn,f(n-i-l ])

od:
rh1:-0;

If (i-D) tb."
for I from 1 (o nop,(f(n-i-l]) do

rhl :~Thl+~liJ'hhIIJ
ud;

fur k from I tu nup'(gJI]) du
for 1frnm I to nGp,(fln-I-lll du

rh1 :-rhl +ao Ik]*bblll
Gd;

od;
fi;
rl:-r1+rh1;

od;

rhh I:"'expand( rl ):#pdnl(l ,rhht);
i:~'i': mm:~'mm':"n:~'nn';k:~'k':I:~'I':

for i !"rumOto n_l do
gr11-1-11:-expand( diff(C In-i-1]1r ,r»);
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for mm from lin nnp,(gin-i-11J do
aa[mml:~op{mm,gI0-;-11);~pdlll(13,"a[ m"'I):

"d:
f[il:~e'pa"d{~ IiI);
for nn from I to nops(f[il) do

bb[nnl :wop(nn,f1ij);#print(25.bhlnol):
od;

rhl:~O:
if(l1_i_l~O) lhen

fnr II from 1 to nop,(flil) do
rhl:~rh2+0*bbIJlI

od;
else

for kk from 110 nop'(g!n-i-I]) dOl
f"r 11Im",l 10 nops{f[il) do

rh2'~rh2+o.alkkl *bb[llj
od;

od;
fi;
rl:~r2+rh2;

od;

rb III ,=oe~pnnd( r1): #p rlm(l ,rbbl);
i:~'i';mm:_'mm';no:~'nn';kk:~'kk';ll:~'ll';
r h:"'Simplif}'( r1111 I-r hh 2);
leq n: ~lh _rb: #p rint( n.leq n);j:~'j';

for j frum 1 to 2*0 do
cq Iij :~cu.ff(l.q o,r ,1' j_1)><0:

od:

",I:~.0Iv.([seq(.qljj,j~1..1'n),bI31,bI411,{,"q{alil,i~1 •.l'u+l)});
."'ign(.ol);

F[oj:~Floj:
Glnj:=oe.p.nd( .dd(4'j*(1+ I)*a[i+ll *rA{l*i_I),i~1 ..2'n+l)):

save F, "mnkind.m":
print(n);

od:
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Appendix TJ

"The coefficients ofthc scriesF'(O)", La,R':
'=1

Tahlc A.2 cun!ains Lhecoefficients of F'( 0),

; ',' I ; " ; "
,

"
1 ,3 115 ~.331010' 29 _,185010-]5 43 .153510 '-'
'2 -9722 10-1 16 -,9785 10--' 30 -.5723 10-16 44 -.482710 "

-'- -2145 10-' 17 -,290910 ' 31 -.177310-" 45 -.151910 "

~
-499010-' 18 -,8695 10 lD 32 -.550410 " 46 -.4783 10 "

5 1216 10-' 19 -.261010 lD J3 -.171010-" 47 -.150710 "
6 -3082 10' 20 -,787010 " 34 -.5325 10 L3 48 -.475410 "
7 -8062 10" 21 -.2381 10-" 35 -.165910 " 49 -.150010"
8 -2164 10-' 22 -.723010 1> 36 -.517810-" SO -.473710 "
9 ,5931 10 ' 23 -.2201 10-1' 37 -.161710-" 51 .149610."
10 -.1653 10.' 24 -.6724 Hr" 38 -.505810 " 52 ,4731 10-"
1I -.4675 10-' 2S -.2058 10 " 39 -.15831020 53 -.149610-"
12 -.1337 10-' 26 -.631910" 40 -.496210 '1 54 -.473610 "
13 -.3866 10-' 27 .194310 " 41 .155610" 55 -.149910 "
14 -.112610-' 28 -.5991 10 " 42 .4885 10 "
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