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Abstract

In this thesis under the title "Critical behavior 0 f the Solution of Hydromagnetie Flows in

Com'ergent.Divcrgent Channels", two problems have been studied namely

Hydromagndic Flows in Comergent-Divergent Challllels and [he Laminar Unsteady

flow of a Viscous Fluid away from a Plane Stagnation Point, which belong to two

different realms. Initially we havc discussed some basic topics in order (0 study the

problems and the appro~imation meth.ods.

Firs(/y, wc have studied thc location and naturc of dominant singularity in the complex

plane for laminar unsteady flow of a viscous fluid at a plane stagnation point_ Thc series

~~pansion with 44 terms in time of the shear stress is inveMigated with High-ordcr

difTerential approximant to determine the poles in thc complex plane using algebraic

programming language MAPLE. The scries-improvement techniqucs are employed to

impro\-e its convergencc propertics_ It is ohserved that lhe performance of High-order

differcntial Jppl'Oximant i~ bettcr than that of Padc' approximant and Drazin-Tourigny

approximant.

"inally, we have studied the two-dimensional, 5leady, nonlinear now or an

lllcompressibJe conducting viscous fluid in Convergent-Divergent Channels under thc

influence of an e"ternaily ~pplicd homogeneous magnetic ficld by means

of Hermi/e - Pade' approximation especially differentwl approximate mcthod. We have

obt~illed the series related to similarity parameter~ by using algebraic programming

language MAPLE. The serie~ is then analy~ed by appro~imate methods to show the

dominatmg singularity behavi()r of the flow and the eritieal relationship among the

parametcrs of (he solution_



Chapter 1

Introduction

Observations of fluid flows in daily life show the various types motions that a fluid may

undertake, When one turns the bath tap On slightly, the column of water that flows out

does so in a smooth manner. However, on opening the tap further the flow becomes

erratic and random. like. In modern times the theory of flow through Convergent-

Divergent Channels have many applications in aerospace, chemical, civil, environmental,

me~hanical and bio-meehanieal engineering as well as in understanding rivers and canals.

Very few nonli~ear problems can be solved exactly but it is sometimes possible to

expand ~olution in powers of some parameter~, When the exact elosed form solution of a

problem is too complicated then o~e should try to ~scertain the appro>-imate nature of the

solution.

Approximation methods [5,6,8.9,11, 17,26J are the techniques for summing power serie~.

A function is said to be approximam for a given series if its Taylor series expansion

reproduces the first few terms of the series, The partial sum of a series is the simplest

approximant. if the function has no singularities. For a rapidly convergent series ~uch

approximJnts can provide good approximation for the solution, In praclice thc presence

of singularitles pre\'ents l'apid convergence of the scries. Therefore it is necessm-y to ~eek

an efficient approximation method,

Khan 119J applied apprOXimalion method~ to several fluid dynamical problems. Our

purpose is to analyse the critical behJvior of!wo standard fluid dynamical problems and

compme the performao~e of ~pproximatiol] mcthod, numerically and graphicalh

The rcmainder of this introductory chapter is as foIlows. Smce we .shall study the cntical

behavior of ~eries by using approximation tec!miqucs, we begin with a hrief review of

series in 9 1.1. Then in gl ,2 and ~I .3, we descl'ibe perturbation ~erie8 and various types of
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singularities_ We describe a hrief review of elementary bifurcution theory ins I .4. Pinally,

ill S1.5, we present a brief outline of tile remaining thesis.

1.1 O"ervicw of Series

COll.,ider a function u(x) which call b~ repre,enlcd by a power series

"[/(x)=:La,x' asx---+O,
,=,

The Nih panial ~LEm is

"UN(x)= La,x'.
,=,

(I ,I)

(1.2)

If w'e can locale a point xo' where the function II( ,) is analytic then it can be found in a

"
power series U(x) =La, (x - x,)' a, x -, -'"",-,
The _,eries is said to be convergent If the sequence of tile partial sums converges When

the series converges, the sum U(x) can be approximated by the parti~j sum UN(x)~lld

the cl'I'or is defined by c y(x) = U(x)- U, (x),

3nd (he absolute error is defined by ~:"(xl = ~:(~)'j pro\'idcd U(x) *- n.

The numbcr ofaccllrate decimals for some p,lf(i~ubr \'aille oL x is given by

p,. =-loglOlc~,1

We ,ay thal Lhe errOr decays exponentially if there exi,t; a pftrticubr cOllstant (Y such

th~t (Y", --> a ft, N --> w, where

Sometimes the prc;cncc of singularity of the solution ~an delay the convergellcy of the

series, So, we need to lil\d the domain of convergence of Lhe series. rile s~l'ies U(x)
coLlvergcs for some x. if It converges absolutely in tile open disc {x: x < x,}
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with centre at the origin. The brgc,t such di,c is called the disc of convergence and tbe

r~dius, say R, oflhe disc is c~lled the radius of convergence oflhe series of U(x). If

u(x) is analytic at x=O then R>O. Irlile series bas a singularity at x. slich th~l

x, = 11, then it divelge., lor x :':::x,. Different methods such as ratio lest, Domb Sykes

plot etc. have been used to compute the radius of convergence by direct lise of the

coctTlcicnts of [he scrie,. We will apply vorioLL'> gcncrali7alLons of the approximation

method, to determine the critical behavior oflhe series,

In "pplied mathcllwlics, series are often obtained by expanding" ,OiUlioll in pO\\icrs of

some perturbation p"ralll€tcr. In the following subsection, we describe lhe basic literature

011perlLlrbation lechniques [24][31].

1. 2 Perturbation Series
Perturbation theory is 3 colleelLon of methods for the systematic analysis of the global

behavior of solutions to nonlinear problems. Sometimes we solve nonline~r problems by

expanding the solution in powers of one or several small perturb~tion par3lncters. The

e~pansion may contalll sm~1Ior large parameters which appear nalurally in the equotiolls,

or which may be artiliciaily introduced. Let us consider a problem "rthe form

.!(u,x,l)=O (1.3)

where.! may be In algebraic function or some non.line~r differential operator, and ,l is 0

I'Jrameler, It is seldom possible to ;o[\,e the problem e.,~ctly, b\l1there may cxi,t some

particular v~lue of x = x. for which the ,olUlion is known. In lhis case, for !xI« 1, one

CJn seek n .,erics 1'01" u in powers of .., such that
o

U(x)= l:>,(?)(-r-x,Y as x-->x"
,.,1

Then by >ub,tilUting tillS into equ~tiol1(13), expanding in powers of x ~l1dcolledill[( the

telln, of O(x"), we Cill1get the req\lired coefficients of the perturbation series.

(
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Example 1.1 Let us take the cubic polynomial

U'-(3H)U+2~=O_ ([A)

The pcrtlll'b"tioll ~eries for (IA) in power, of r. may be taken in the form of

for smJII~. For>: = 0, the polynomial has two distinct roots, namely b, = OJ. \Vhich,

when b, = 0, substituting the exp<lnsion

in (IA) and equating the coefficients of 6 gives

pel1\"balion series for b, = 0 is

2 2, (,)U=0-;--6--8 +O~ .
3 27

. Therefore, the

In a similar process other series is

1. 3 Singularities

U=3+~~+2E' +0(,') <It b, = 3and3 27

Singularity ofa funcllon is a value of the independent variable or variables for which the

function is undefined. Singularilic.\ Ore cruclol po i Ills of a function, because the expansion

0[- a function into a power series depends on the nalme of singularities of the function.

For tile purpose of thi, lhesis, we ~re Interested to allalYL~ those functions, which iJ~v~

several types of singulal'itie>. Practically, (me of these .,ingulmities dominates the

function. Therefore it is important to know about thi, singub,. point to analYLe [he critical

behavior of the funetioll around (Ilis point.

The convergency of the scqucncG of partial slims depends erucin Ily 011thc singu larities of

the lillletion rcprescnted by [he \el'ies. Seve,-ul types ofsingulmitics may arise in phY\lcal

(nonlinenr) problems. Tlte dominating behavior of lhe function u(x) reprcsented by a

series moy he 'Hillcn as

(1,6)
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Where A is a constant and x<is the critical poinl with the critical exponent a. If a is a

negative integer (hen (he sing\i1arity is a pole; olner.l'isc if it is 3 nonnegative rational

number thelllhe singli1~I;ty is il brand, point We can include the correction terms with

the dominating part in (1.6) to estill1~te the degree of accuracy of [he critical points. It call

be a, follows

Where 0 < u, <G, < Ai ,md A, ,A" M are constants. a, + a ~11' for ~ome i, then the

correclion terms are ~allcd confluent. Sometimes (he correction terms call be I(\g~rilhmic.

e.g,

Sometimes the sign of the series coefficients indicate the loc~[iol1 of the singularil y _If the

terms arC of the Some _,igLlthe dominant singular poinl lie on the positive x-~xis. If the

terms lake alternately posLtive and negative sigm then the singular point is on the

negativc x-axis.

Following are few example, with di fferent type; or singu I~Iilie.>,

E~"mple 1.2 (Sillgularitie~for single ,ari"ble functions)

I. Singularities llwt are pole,: u(x) = ~(2 - xr' +sin(2xl.
2

Here "(xl is on algebr~ic fllnction \\,hose sing\ll~rity i2 atx, = 2, thc critical

cxponent u = -I, which makes lhc sillg\ll~rity a pole.

2. Algcbraic singularities \\,ith differell! eXPOnCl\ts:

Herc ,,(xl h~~se,eral singular point,. The singular points ~rc alx, = 2. 3,2 and

h .. , III 'Ilh. IIl e Crltlca exponents areu = --,--,-- rcspectLvc y. ntis cXQmpc t IC
2 3 4

singu IQrpoints 3rc branch points. Though there arc 3 number of singularities for
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,,(x), only one of these singularities will dominate the local behavior of 1I(x).

3. Lognrithrnic singulArity:

u{x)= 111(1 +%)+C05(X).

Here u(x) has a logarithmic singularily ~lX, = -5.

4. Esscmial singularity:

u(x) = expO - 2x)"' ,

Here ,,(x) ha<; an essential singularity at Ix =-, 2 with critical exponent u. = -2.

5, Algcbmic dominant singularity with a sccond~ry logmilhmic behavior:

The algebraic dominant singularJly of u{x) here is at ~, = 4 with critical

exponent (l = _!.., whid, makes it a branch poinL And a logarithmic singllimity
4

Here ,,(x) has a branch poim with tile critical exponent ct --~ at ", =2.

"

1.4 Elementary Bifurcation Theory

In lhls theSIS we have ill\cstigatcd lwo nOlllincof problem in fluid dynamic,>. Solution, of

nonlinear prnblems olien involve one or se\el'al p~r~melers. As the par~l11etervmies, so

does the ,ollllion set. i\ bifurcmion occurs ",here the solution of a nonlinear "ystem aher

their C[lInlitlliw behavior while a parameter change, its vailic. In parlLcui"r, bifurcation

theory shows how the number of ste~dy solutions of ~ system depends 011parametel'S.

Examples ofbifureatioll are: Simple turning points, ill which two I'cal solutions become

complex conjugatQ solutions and pitchfork bifurcution, in which the number of I'eal

•

()
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solutions changes disconlj~u(Ju$ly Ii-om one (0 three (or vice versa). We intend to

introduce SOme basic concepts of bi furcation theory. Drazin [7] d iscusscJ the bi lin-cation

theory ill detail.

COllsider a functional m~r F 91x 9( ....,.m, We seek lor the ,olutiollS

u=U(x)of F(x,u)=O. (1.9)-

Bifurcation diagrams can show th~ \(lilltioIlS, In these diagrams solutioll curves arc drawn

In (he (x,u) plane. Let (.ro,n,) be a ,olution ofcqu~tion (I .9), i.e.

F(x"Ii,)=O (1.10)

then, F can be expanded in a Taylor series aholll (x, ,1/,) and we can study the Solulion

set in that neighborhood provided that F is smooth. Thus we obtain

O=F(x,u)

If~we aSSume lhat, F. (x, ,lio) "" 0, then

( i ( )F,h''',i ( )ux "",- x-x, ( )+Ox-Xo' as X-l-X,.
F" .t"II,

(1.11)

(Ll2)

This gives only one ,,,iution CurVe in the neighhorhood of the poinl (x"u,) In the

bLflircation diagram. However, if we repl~cc ("" ",) with (x" uJ ' where

thcl\ (he expansion (I, 11) ~hows that there ~re at le3.,t lwo solution eUrVCS in the

neighborhood of (x, ,11,) The point (X",II,) is ealkd a bifurcation point.
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Example 1.3 Let F be a function derin~d ~,

F(x 11 <:)=1-,,' _lx' +x-2+s=0
" 4 3 4

(1,14)

Where G is some re"l parameter. When 1'=0, Figurel, 1, there arise a bifurcation poinl at

(1,0) and a turning point at (-2,0).

When 0<,-<413, there are two separate branches of the bifurcation curve, one an isola

and the other unbounded. When, the vallie of f! increases, in the con,iciered inter\'al,

these 1\\10brandles move ap~rt from each other. Figure 1.2 and figure 1.3 shows this

behavior of F for different values of f:_

<0

'"
"
",

" ,
,
,"
-, 5

'"
" , , ,,

Figure 1.1: BLflircationdi~gram of F(X,II,S) ill (~,1I) plane when Ii =0.
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-2 0 2 4 6,
Figure I. 2: Bifurcation diagram of F(X,II,Ej in (-"II) plane wben £ = 0.01.

,;

"
'"
"
;

" ,
;

.,,
"
"
.,;

,;

"
"
"

"
;

,
;

.W

'"
."
-25

c ':>

figure J. 3: Bifurcation diagram of F(x,u,s) ill (X,II) planewben t: =0.1.
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1.5 Overview of the Work

This thesis is concerned with the study of computer based approximation techniques

which arc of Hermite - Pade' class. Many researchers have studied the application of

these appwximalion techniques in fluid dynamical problems_ For over the Jast quarter

century many powerful approximant, h'lVe been introduced for the approximation oflhe

function by using its power series. Among them most of the methods are described lor

the series involving single independent variable and a few are derived for the power

series involved with two or se\'eral independent variables. Many lesearchcr, hitherto

have found remarkably more accurate results by using several approximation methods.

The remainder of this thesis i<;as follows:

In Chapter 2, we have reviewed the Hermite - Pade' clas<; of approximution techniques

(0 determine the coefficients oflhe approximant. We have discussed several of these kind

of approximants with some examples. Then in Chapter 3, we have discussed the

comparative perfOimance llf these appmximants to thc Laminar Un,tcady Flow of a

Viscous Fluid away from a Plane Stagnation Point.

In chapter 4, "Ie have studied the Critical Behaviour of the Hydromagnetic Flows in

Convergent-Divergent Channcls. Makinde [23] analysed the magnetic effect in the

classical Jeffry-Hamel flow in Convergent-Divergent Channels. We extend the work by

the compari\on of our mcthod with Makinde [23] and the bifurc~tion study for the effect

of magnetic intensity and the critical relation among the parameters Df the flow. Finally

in chapter 5. "Ie have summarized our work and giye some id':as for future \vork.
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Chapter 2

Approximant Methods

Introduction
This thesis is ba,ed on the study of the application of computer based approxim'ltion

techniques to re\'e,,1 the local behavior of a perturbation series around its singular point

and the critical relationship among the perturbation parameters,

The approximation melhods are widely used to approximate functions in ma"y meas of

applied mathematics. Approximant methods are the techniques for summing power

series, A function is said to be approximunt fur a gil'en series if its Taylor senes

expansion reproduce~ the fir,t few terms oflhe series,

Bre%ioski [1] <;tlldicdhistory of continued fractioll and Pade' approximants. Blanch [2]

evaluated continued fraclians numerically. Also the applications of continued fractions

and their generaliialions to problems in approximation theory have been ,tudied by

Khovanskii [20]. Baker and Graves-Morris [5] ;tudied Padc'approximants and its

properties. Algebraic and Differential approximants [4] are some useful generaliralions

of Pude' upproximants. Khan [19J analysed singularity behavior by summing po\\'er

series. Khan [171 also introduced a new modcl of Differential approximant for single

independent variable, called High-order differential approximant (HODA), for the

summation of power series. The method is a special type of Hermile - Fade' ela% and it

is one of the besl methods of singularity analysis for the problems of single mdependenl

variable.

The reminder of this Chapter is organized as follows:

We ~tudy the Hermite - Fade' cla<;sof approximants and then lhe development of some

apPl'Oximants in this class such as Algebraic and Differential Approximant. Dr~zin-

Tourigney is one kind of Algebraic approximant and High-order ddTerential

approXtnlants and High-order partIal differential approxil11ant~ [26J is an extension of

Differential Approximants.
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2.1 Hermijc-Pade' Approximants
I" 1893, HermileandPade' introduced Hernule-Pade' cia,s. The entire ()ne "ariable

approximants that were used or disclissed throughout (his lhesis p~pcr belong to the

Hermite _ Fade' class. In its mOot general form, this class is concerned wilh the

simultaneous approximation of seveml independent series. Firstly we describe the

H~rmile - Fade' class from il~ point of view.

r.e! dEN and let the d + I power serie, U,(x), U, (x), .. ,U J(x)

are given. We say [hal the (d + 1) tuple of polynomials

P,t' I,p;,'i." ,. p;:11

".here deg dol + deg p;,'1+ ...+ degP.!:'] + d = 11',

i, a liermile -l'ade' fnrll1oflhcse series if
,
2: Pt'l(x)U,(x) = 0(:<'") as x -) O.
'"'

(2.1 )

(2.2)

Her~ U,(x),U,(x), ",vAx) may be independent series or diffcrent form of a unique

series. We need to lind the polynomials p};'1 lhat satisfy the equations (2.1) and (2.2).

Thesc polynomials ~re complelely determined by lheir cocftleients. So, the total number

of unknown.' in equation (2.2) is

"Ldegd:l+d+I~N+I.,~, (2.3)

Exp~nding the left hand side of equ~tion (2,2) In powers ill"x and equal Lngthe lirst N

equations of the system equ~1 to zero, we gel a system of linear homogeneous equation"

To calculate lhe eoe n,eienls of lhe Henmle - Pade' polynomial s we regu ire sonle SOli of

p,t'I(O)~1 forsomcO~i~d, (2.4)

It i" impOl'lant 10 emphasizc lilm the only inpul rcquired for the ('alculation of the

IIul'mlle-Pade' polynomials are the first ,v coefficienls of the scrics U,,. ..,UJ• Tile

equation (2.3) simply ensures that the cocft,cient nwtrix ~s>oeiatcd with lile syslem is

sqUQre.One way to co"struct lhe H~rmile-Pade' polynomials is to solve the system of

•
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linear equations by any ,tandard method ,uch as Gau55;an elimination or Gauss-Jordan

elimination.

2.2 Pade' ApproximaJits

Pade' approximant is a technique fOI"summing power series [hat is widely tloed in JpplieJ

mathematics [41. Pade' approximant can be described from the Pade'-Hcrmite class in the

following <;ense,

In the Pade'.Henllite class, let d = I and the polynomials p,!~l and pSI s~tisfy equiltions

(2.1) and(2.2). One can defme an upproximant UN (X) of the series U(x) by

(2.5)

where

UJ ",UN ~ndUo =-1.

Then \\'e selecllhc polynQllli~ls

p.~OI(x)=Ib,x! andp;~J(x)= ::tc,x'-,~" ,-,
(2.6)

Such lhal n+IJI:S:N, the con;lan!, b,'s and c, 's arc unknowns to be determined So

th~t,

(2.7)

(2.8)

Equaling (he lirst ,,+ IJJ equations of(2.7) equal to zero "nd thc normal;zation condition

;11equot;on (2.4), we find the values of b, 's and c, 's. rhell, the rational approximant

Imo\\n a, Pade' appro~il11an[denoted as

p!:'l(x)
uJ,)= '[ll( r

PI' x

help uS to approximate the sum of the power series U(x). And thc zerocs of the

polynom;al p;,II(x) happells to be identical with tile singular point (poinll) ofU(x). In

ordcr to cvaluQtc the PaM' appro"imall1s for a given series numcrieally, wc have used

symbolic computation I"ngu"ge such as MAPLE. Th~ Parle' approximants have been

used not only in tackling slowly eonvergel11,divelg~nt and 3symptotie series but also to
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obtain singularity of a function from ils series coefficients. The ,emes of the clcnom;ml!(lr

P.!,') give the si~gular point such as pole of the fundion u(x) if it e;.,i~ls_

Example 2.J Consider singularities u(x).. I, +e', a function with a sllTIple pole
(1-3x)

After applying the normalization condition Co = I, we obwin the polynomial coerJIciellls

p}ol and p,l'J for deg p,I'] oO" and dcg l',i'l '" Ill, When m = n = 2,

r.[O] = 1- 939710307 x+ 317480122 x' and
, 25638139 25638139

\Vhcn m=n=3

1'[11 = 138234690
s 25638139

940857499 3127666779,----x + x
25638139 51276278

pi'] = 1- 8453267322177 x + 113609517808274 x' 66275640000650 1

, 19237554765697 19237554765697 + 19237554765697 x

and

1;1'1= 10239385806720 _ 68485409551560 x+ 136474582726500 x'
, 19237554765697 19237554765697 19237554765697

75866508687612 ,
"19237554765697

Th~ l"ble below silo\\" [he cOllvngencc to lhe singubr point of ,,(x) on applicalion of

Pade' appro);.im~1l1.

Tuhle 2.1: The approximation of x, by I'ade' for the function in Example 2.1

m,il .,,
2,2 .3466054085

3) .2906911358 - .IxIO-"i I
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2.3 Algebraic Approximants
Algebraic approximant is a spcci~1 type of Hermite - Pade' approximal11s. In the

Herin/ie - Pode' class we take

d ~ I,Uo = I,U, = U,...,UJ = U",

Let U(x) represent power series of a function and U,. (x) is lhe partial slim of lila! series.

An Algebraic approximant u,Ax) Qf U(x) call be defined as the solution orthe equation:

\Vhere d represent the degree of the ranial S\llll U ,.(.r). The Algehraic approximant

u" (x), is ill general a multivalued function with d branches.

The solution of the equation (2.9) with d 2:I gives us the coenLcients ortlle rolynomi~1s

r},'I(x). The discriminant Mlhis equation approximates the singularity of U(x).

lItre,

And

'_0

o
I:degp!:I+d=N.
,=,

(2.10)

(2.1 I)

And the lolal number of unknowns in (2.1 0) an::

o
LdcgP,tl{x)+d + 1=.V + I.
,~o

In order to determine (he eoertieients of Lhepolynomials

1l01'm~1iz~ti On.

E.'ample 2.2 C,,"~ider

(2,11)

Let d = 2 ~nd dcg p,I'1= dcg p}'1 = deg I'rl = 2 to ~ppty the Aigehraic approximation

method 011 (he power ,erie, of Ihe given funclioll. Alier we set thQ nonnali/~[illn

,onditioll f~['I(O)= I, we get the polynomial,

101 ( ) 40505 J0 119J768145013567842933 2957331978564362862005277394 2f' X =J+-------------H-------------,'
" 22826806103119516800305790263 22826806103 I J9516800305790263



pl') (x) '" 666327426223641455451
s 228268061 03l J 95 168003

86497643139157177984 x12014108475326061473
9370098090993964296 1+---------.,
228268061031195 J 680

16

pl'l = _ 371472358962442535320 + 102929046962042066735 x
• 228268061031 j 95168003 228268061031195168003

496752609063763819700 2-

228268061031195168003 x

Here the discriminant gives us Lhesi~gul~ri(y atx, = 0,4742842500. If we increase the

degree of the polynomial coefficienl, il may give us a better approximaliQll. So, again let

dcgf',1,']= deg p,I,']'" deg ~[,'l = 3 and d = 2, following the s~me procedure we get Ihc

singularity at x, = 0.2906496342.

Agai 11taking d = 2 and deg r,\'j = deg J;~)= deg p'\'J = 4 the \illgularity is C~leu I~ted ~t

x, = 0 3126797065, The table below sho"'s th~ eomparati,,~ results of the con\'ergenc~

of the Algebraic approximation m~thod (0 the singular point

Tahle 2.2: The approxim~tion ofx,by Algehraic ~pproximants for the function in

Example 2 2

deg p,I;1 d "
2 2 0.4742842500

3 2 o 290M'!G342, 2 0,]126797065

Note (hm d ~ J may b~ marc accurate forthis pr<;>blenl.
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2.4 Drazin -Tourigney Approximnnts

Dmz;n and Tourigncy in [6] implemented the idea d '" o{ffi) as N -l-(f) ,Their method

is simply a particular kind of Algebraic approximant, satisfying (he equation (2.9). In this

method they considered

degP~"l=d_1 (2.13)

and il=~(d2+3d-2),
2

(2.14)

2.5 Differential Approximants

Differentia! approximants is an imp011ant member of the Hermile - Pade' class. Tt IS

obtained by taking

del, Uo=i,U,=U,U,=DUandUd=D"-'U,

where j),,!!..., a differential approximant u,.(x) oflile series U(x) can be defined as the
,h

Soiulion orille dilkrcntial eq\lutioll

p'<' p"'V p"'nu' pio'iD"'V - 0"+,,, ,"+," .,.+.,,+,,' ",-. (2.15)

Here (2.15) is homogeneous linear differential cqll~tionof order (d -I) ,,[til polynomial

coefficient~_ There me Cd - I) Iinc3r1y independenl solutions, but on Iy one of thcm has the

S~IllC first few Taylor coefficients "S the gi\'en series V(x) , When d > 2, the usual

method for solving such an equation is to construct a scries sol\,tioll

Differential "ppro"imants are uscd chien} for ,erie, analysis, Thcy are powcrfull"oL, for

locati Ilg lh~ ,i ngularLtl es of a serics and for ide"ti fying their nature.

The singul~rilics of U(x) arc located at tile zcroes of the le<lding pol}l1olllial pi,dJ(.,).

Hcnce, tb~ zeroes of F}:'I(x) may provide approximations of the singularities oj" the

fUlietionu(x).

,
<;7
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. e'(I+sinx)
Example 2.3 Conslderu(x) - ~l-~X .

)

Taking d~4 for (2.11) and ~pplyillg (2.1) and (2.2), we obtain [he singular point

atx, '" 3.000563091. In a similar procedure 13king d ",5 gives us more accurate result,

i,e, x, = 2.999999734, The table below ,hows a comparative result.

TabId.]: The approximation of x, by Dilrer~nti~lApproximant for (he fundion in

E:-ample 2.3

N d ",
15 ] 2.991301923

21 4 3.00056309\

28 5 2.999999734

2.6 High-Order Diffcrclltial Appro:o.:imants

Khan [17] introduced an extension of differential ~pproximanl, which he mentioned as

High-order differenlial approximant. When the funClion has a countable infinity of

brandlC\ then the fi:-.ed low-order diflerential approxim~n[-" may nOl be Iisefui. So, for

these cases he con,iJereJ d increase with N, It le"d to a particular kind of differellti~1

appmxLmanl "N (x), satLsf}'Lngequation (2.14). H~re

IN=-d(d+3) and degp!:1 =i.
2

From (2,3) he deduceJ lhatlhere ~re

(2,16)

Ullkm)\\'l1paramctcrs in the defin ilion of the f ferlnile - Pade' form. In order to delerm ine

those parOllleter" we use the l'J equations

"p,\oi(x)+ I p!:I(x )v'u" (x) = O(x"') a; x -7 0,
1='

•

-
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In addition one can normalize by setting l'},O](O) = I. Then there remains a<; many

equations as unknowns. One of the roOlS, s~yx""" or the cocffi,ienl of the highc;l

derivative, i,e. f'J,d1k""J",o, gives ~n approximation Orlne dominant singularily x, of

the series U. If the ,ingularily is of_algebraic type, [hen the exponent a may be

approximated by

(2.17l

2.7 High-Order Partial Differential Approxilllants

Consider the function f(x,yJol'two independent variables, represented by its power

SCIICS

< <

U(x,y)= LLc"x'yJ
,_, 10'J

and (he partial sLIm

(x,y) ---+ (0,0) (2. I 8)

,'-' ,'-]
V,,(x,y) = LIe;,,')"

,_0 1_'

By using that p~l'tial SULll.we try to conSlrllCllhc following (2d + I) polynomials

fI"ol' 1['.('1' 1'[O.ll' , "" IIJ 'I' ![,,"I

in X "nd y such thaI

au au a"u, f)"U. ~ ~P. I': P. "p. " + P. __ " + P. __ N - "" "", .' }le"1 \ + I") aX + lOll ;;,; + ,,'-.. [,1,'1 d 1'.,11, J - L.,L.,e,x yv, ax oy ,_, ,_0

(2.19)

(2,20)

(2.21 )

Where e,,"'O fori+j<N"'3d-1 (2,22)

By ~~lI~tingthe ~ocffici~nb oj' the ,mi"ble, "nd the i1'po" ~I'Sfrom (2.22), olle call obtain

~ total of

/1,' '" 3"(3" -I)
. " 2 (2.23)

c~lImions to dctennille the unknown ~oemeienls oftl1~ polynomials in (2.21), we impose

lhe normalization cond ilion

~a"1 ",I, VI" PIJ01 '" I or ~a"l"'] for (x,y) '" (0,0). (2.24)
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Thus the remaining unknowns

No =~d(d' +6d+ll),
must be found by the use of N, equalions.

It would he helpful to write the system of linear equations ",./ = 0 into the malrix form

with the N. x I unknown matrix",.

Thus [he non-homogeneous system of N, linear equations with ll/. unknowns Can be

wrilten in matrix form as

AI=!;>.

",.here A is N, x N. mntrix and b is the non-zero column matrix of ord~r N. x I. Thus

system will be salvable Lf

(2.25)

However, the system may be con,istcn! or incollsislenl. If the system i~consistent, thell

the system can be soh'ed by converting the augmcll1ed matrix [AI~ltorow echelon or

reduced row echelon form by using Ibe Gaussian eti'11lnatiol\ or Gauss-Jordan

elimination It i, to note thaI, there will exist some fi-ec variables. Nalurally the values of

Ihe free vari"bles in the Il\ultivariable approxim~llt methods can be cho~en at random. For

all thG calculation reported ill the L-cmai~der oflhis chapter, we have in faet ,et all the frce

\'ariables (0 either zero or one. Thele is no particubr r~asotl to pick up (ile,e particular

numbers, We mighl ror instance scck a solution such (hat Ihe polynomials in (2,20) have

as few high-order terms as possible. Our exp€riGncc suggests Ihat the accuracy of Ihe

mClhotl docs not dcpend cril;~ally on the P"rl;culm choice made.

Once Ihe polynomials (2.20) have been fO\lnt!, i( IS more practical to find Ihe singular

points by wi" Ing either 0 f the pQI}'l1ol1lioIs coefficients of Ihe Iligllest deri \'"Ii, es

1{d"I(x,y) = 0 or ~"dl(x,y} = 0 or bOlh simullaneously

•••
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2.8 Discussion
Hcrmire - Fade' class is constructed over the technique of truncated continued fraction.

The polynomial coefficients were constructed by taking successive lnlncated continued

fractions. In this chapter we had an overall study about the Hermite - Pade' class of

approximation me(hod~ Examples show the performance of Algebraic 3pproximanr and

Differential approximant explicitly_ We must mention that Drazin -Tourigney method is

an improved Algehraic approximation teclmique. High-order differential approAimallts is

modified Differential approximant whose performance is almost in e\'ery case

convincing. High-order partial differential approxirnants [9] is a multivariablc differential

approximants method is applied to determine critical relation between the Sollllion

parameter.

In Chapter 3 we study a nonlinear differential equation with lhe applic<ltion of Drazin-

Tourigney and High-order differential appTOximants and lhen the dominating singularity

behaviour of the Laminar Unsteady Flow of a Viscous Fluid away from a Plane

Slagnation Point as the application of these techniques_ Finally in Chapler 4 we analyse

the Critical Behaviour of the Hydromagnctie Flows ill Convergent-Divergent Channels

and (he Critical relationship among the flow parameters_
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Chapter 3

Application of Approximation Methods on Model Problems

3.1 Background

The solutions of differential equations encountered in practice arC regular at almost every

point; in the neighborhood of ordinary points. Taylor series provide an adequate

description of the solution. However, the distingui<;hing features of the solution are its

singularities. Determining the location and nature of these singularities, wilhout solving

the differential equation, requires the techniques afloeal analysis.

Bender and Orszag [4J discl1ssed a number of examples "vith local analysis. Without

solving the equation they tried to locate lhe dominating singular points ol' Ihis kind of

nonlinear differential equations by the applkation of approximation method. And try 10

locate the dominating singular point with critical exponent which analyses the form oflhe

singularity of this kind.

In Ihis chapter, we have studied the location and nalure of dominant singularity in th~

complex plane for laminar un~teady flow of a viscous fluid at a plane stagnation point.

The series expansion ".ith 44 terms in time of the shcar stress l~ imesligated ".ith High"

order Differential Approximant 10 detcmline !h~ poles in the complex plane u,ing

algebraic programming language MAPLE. The series-improvement techniques arc

~mployed to improve its COl1\'~rgenceproperties. It is observed that Ihe performance of

Hlgh-order differential approximant is beuer than that ofPadc' approximant and Dl'azill-

Tourigny approximant. We have also examined a pl'Oblem where approximation melhods

were applied to revenl the singularities and have compared our result with olhers.
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3.2 Behaviour of the first Painlev'e Transcendent as x --+ +a:J
Consider the nonlinear differential equation

u"=u'+x (3.1 )
This differential equation is the first of a set of six equations whose solutions are called

the Painlev'e transcendent. These equations were discovered by Painlev'c in the course

of classifying nonlinear differential equation.~. He considered all equations of the form

w" = R(z, w)(w')' + S(z, \\i)w' +T(z, w)

having the properties (a) that R. S.and T. are rational functions of w, but have arbitrary

dependence on z and (b) that the solutions may have various kinds of fixed singularities

(poles, branch points, essential singularities). but may not have any movable singularities

expect for poles. There are 50 distinct types of equations having properties. ai' course, 44

types "re soluble in terms of element"ry transcendent (sine, cosine, exponential),

funclions defined by linear second-oruer equations (Bessel functions, Legendre functions

and so on)n , or elliptic functions. The remaining six equations definc the six Painlev'e

transcendent, one of which is (3.1),

Let us now return to the behaviour of the differential equation (3. l). This differential

equation is similar in form to the lirst-order equation in [4) and its as"mptotie propertie~

are also similar in some respects [see equation (4.2.1), pp.150, Bender & Orszag [4]].

Howe\'er, because this is a second-order equation, a more sophisticated analY~lS is

required.

We begin by arguing that u(x) exhibits movable singularities. Sinec th~ curvature of

u(x) is positive(u" >:< > 0), it is likely that an arbitrary sct of initial conditions will glve

rise 10 a solution \vhich becomes singular at a finite value of~. To discovcr [he le"ding

behaviour of such a singularity, we oubstitutc

Au(x)- ,x-ta.
(x-a)"

into the di l'ierential equation (3.1). Comparing powers of :< -t a gives A '" 6 and b '" 2 .

This sllggests that !lex) has movable second -order poles.
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However, this does not prove that the movable singularities are poles_ To verify such a

conjecture it is neces,ary to establish thut a Laurent series ~oJution of the form

6 •
u(x)= 2 + 2:>,(x-a)"

(x-a) ".-J
(3.2)

exists m the neighborhood of x = a_

Acluallyu(x) has an infinite number of second-order poles along the positive real axis

and not just one! The differential equation (3. \) has solved numerically, taking as initial

condilionsu(O) = 1.1'(0)= 0, and have plotted the result in Figure 3.1. Observe that there

is a sequence of poles along the positive rcal axis,

TIle presence of the infinite number of second.order poles on the positive real axis can be

understaod from the gr~ph of tile tangent field given in Figure 3.1 .

• !

,

•

, -
I<'igure 3.1: Computer plot of the solution to (he initial-value problem
u. '" u' + x [ufO) = ll'(O) '" 0] has an intin;le number of~econd-order
poles on the positive real "xis, Bender and Or.wag [41
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Table 3.1: Estimates of the critical point ""N and tile corresponding exponent aN by

using High-order differential approximants[17] (HODA) and Drazin and Tourigney

[6] (D-T) methorl for the differentia! equation u" = u' + X [\1(0) = u'(O) = 01.
N " HODA IIODA N " D-T

x"'o ", X"N

" ; 3.7428014612217258443 .1.999996754691065 J

'" , J,74280 15307707560902 -2.00000000000131121

" , 3.742801530770741877 .2, 00000 000 000000000

;; " 37428015307707418775 .1 _99~9999999999999 " " 37421673901&15414712

" , 37428015307707418775 -I 99999999999999999 ;; , 3.7421i26790,1015566872

" " 3.74280153D7707418778 -200000000000000002 " " 37404447944582245913

" , 3,74280 1530775270 1046 -2.00000000015497759 n , 3.7074398382066125923

" '" 3.7428015307494165916 -199999999532936381

\Ve have analysed the location and nature of the singularities by u<;ing various

generalizations of the approximation mClhods. From the above amlysis Rendcr and

Or,zag [4J indicates that u(x) ha, an infinite number of second-ordcr pole, along the

positive real axi, and lhe nearest pole (0 the origin isx, N ",3.7428.

On the other hand, the rcsuIt~ m Table 3.1 indicatc that it is possible, by u,ing the High-

order diffcrential approximants (BODA) to calculate the above pole and thc critical

exp()nent a to 19 and 15 digits of accuracy withd ",7(N ",42). For c()mparison, the

(ahle also shows the results by the Drazin-Tourigny (D-T) approximants It is clear that

(he High-order differential approximanls convergcs much faster and the valUe ofa

confirm th;lt x, is a pole. Therefore the dominating singularity bchavior of the solution i~

lI(,)-A(x-xJa as x-+x"

whe'e x, '" 3.74280 I5307707418775 and ct '" -2.

We nov>!study the laminar nn,teady tlow of a \'iscllus lluid at a plane stagnation poinl,

where the singularity, for which the convergence of the series is limited, lie in the

complex plano and is a pole. Various approximation techniques are applled to determinc

this singularity in the complex plane and its critical cxponent.



26

3.3 The Laminar Unsteady Flow ofa Viscous Fluid away from a Plane

Stagnation Point

To model the laminar flow of an incomprcs_,ible fluid with small viscosity away from a

~!agnalion point, Hommel [13] took the approach to formulate a series expansion in lime

for the ,hear stress at the stagnation point. And then apply series improvement techniques

with the hope of extrapolating to large times.

But in the prescnt problem it was found that the singularity for which the convergence of

the series is limited, lie in the complex plane und is a pole. This pole in the complex plane

for the physical variable I can not be attached with a physical meaning. Hence, a finite

number of terms for the series is used to determllle the radius of convergence to banish

the offending pole (or, more generally, singularity) to infinity with a linear fractional

transformation, such as an Eulcr transfomlation.

The non-dimensional coordinates are defined as,

"X=-,
"

,[2U J"y=y --',"
2U I',~--'-,
"

(3.3)

Where x' is [he dimensional coordinate tangential to the flow boundary mcasured away

from the stagnation point, y'is the dimensional coordinate normal to. the flow

boundary.U.is the speed of the 5lream at infinity, a is the characteristic length, v is the

kinematic visco,ity and I' is the time.

In a small region ncar the stagnation point, the potential flow conesponding to an

impulsive start is dcscribcd by the stream function,

'fI = -(2vaU, )'" xy

Following Proudman & Johnson [25], this solution is enforced as the outer boundary

condition for all time. Then the Navier-Stokes equations are solved exactly by selling,

vI' = -(2vaU,)''' xF(y,r)

To obtain [he differelJ\ial equation with initial and boundary condition~

F,.,-F,!> =(-1+ F,' - FF,,),

F(O,I) = F, (0,/) =O,F, (oo.t) = I,

F~(y,O)=l(y"O).

(3.4)



To solve this differential equation Hommel set,

F = 2/'12 (f, (1/)+1/, (1])+1' f,(,])+ ..j,

27

(3.5)

Where, TJ'" y!2111'. Substituting (3.4) the equations (3.5) are solved by employing the

finite difference scheme. The main result for the dimensional shear stress allhe boundal)'

where p is the fluid density.

3.3.1 Results and Discussion

Van Dyke l29] considers the sign pattern 10 obtain the location of the dominating

singulari!y. For coefficients numbered 4,. ",44 the 8ign pallem is

(+++---++---+++--j with the exceptions of coefficients numbers 33 and 41.

Examining [he <;;gnpattern, there exists a complex conjugate pair of sjnguJaritie~ forming

angle with the real axis in the compIe>: plane (j = :t67S ,

Cauchy Root Test shows that the dominant singularity paIr is located at a radius 3

~pproximatcly from the origin and at angles of :l:P in the complex plane by

choosing;~ = 67.5""

CalculatIOns of padc'(~~}4] propose that the dominant singularity IS ~t

I,"=1.201375433:l: 2.932027611i with radius r, ~3.168609923 and makmg angle

B, =:l: 67.61 0 with Ihe positive I axis.

We have anlysGd the coefficients of the sencs of shear stress t' by algebraic and

differential approximation method and represent the rGsults of comparison by tabular and

gl'aphically.



Table 3.2: Coefficients of the series /.,"(0) calculated by Hommel.

SLNo f:(O) SLNo f;(O)

1 1.1283791671 23 -0,!976xl0 10

2 -1.60727816 24 -0.9133xl0'11

3 0.2480917 25 -O.1530xI0"

4 O.14290xI0" 26 08296x1W"

5 0.28692x I0 1 27 0.1985x 10-"

6 0.63774xlO" 28 _ 0.3284x 10 IJ

7 -0.15147xl0-' 29 -0.2569x10-B

8 -0.10750xl0 l 30 -0,2811xl0'"

9 - 0.97361x 10-' 31 0.1717x1O "

10 0.89268x 10-< 32 0.6626xlO"

11 0.30662x 10.4 J3 -0.262xlO-17

12 -0.18844x10' 34 - 0,6351x 10'"

13 -O,34650x1O ' 35 -0.1522xlO"

14 -0.61S83xl0--6 36 0.2526x10-"

15 0.19425xlO" ]7 0.2129xI0"

16 0.10522xlO" 38 0.2511xlW"

17 0.58123xl0-' 39 -0,1575xl0-"

18 -0.8889xlO' 40 -O.6075xlO-IO

19 - 0.26564 x 10-' 41 0,2687xl0->n

20 0,24906x 10 ' 42 0.6591x 10'"

21 O.3176x1O-' 43 0.1050xlO-20

22 0.4865xlO 10 44 -0.4285x10"

28
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Table 3.3: Calculated values of singularity I" radius of the convergence f, ' angle with the

positive real axis e,and the critical exponent a using Drazin-Tourigny method [6]

and High.order differential approximants[17

0,
',N

" " 0,
5.20 ,831095912630 + 3,088357351 8j 3,19322944 + 74,93

6,27 2.93037916321 + 3.4 I 79004117214; 4.50212&97 + 49.38

7..15 I ,250590&91999 • 2 7191540 J 06916i 2.99295441 -6530

HODA
d,N " '. e, a

5, 25 1.098897417+ 2.395072768i 2.63513739 + 65.47 -39,762218+22. I0070 12,

0,33 j ,377750991 + 3.0 173422691 3.31100952 :J: 65.57 102145653+162881593i
7,42 1,176206370+ 2 759056686; 2,999309125 +67.04 .2,070 12JOB5 -t 6.106652415i

The Table 3.3 shows the singularities calculaled by Drazin-Tourigny method [6] and

High-order differenti~1 approximants [I 7J by taking different number of coefficients from

the Table 3,2. It is clear that Drazin-Tourigny method [6] can determine the dominating

singularity but taking 42 terms High-order differential approximants [17] calculated the

singularity more accurately and it is at 1<= 1.176206370:t2.759056686i and generating

an angle B, = :t67,04° and also delennine the type of the singlilarity which is u pole. The

pole calculated by High-order differential approximallls [!7] agrees with the Cauchy

Root test ami Van Dyke sign pattern examination,
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'0
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.,"
-50 0 ,

I

t

Figure 3.2: Approximate solution diagram (curve I) in the ( t,,') plane obtalned by
Drazin-Tourigny method [6] for d = 6. The other cun-es are spurious.

Figure~ 3.2 and 3.3 show that the shear stress " is negative which confirms [he

conjecture of Hommel [13]. Also numerically we have establi,hed that the singularitIes

lie in [he complex plane for which there is no physical change in figure in the real plane.
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FigureJ.J: Approximate oOiUlioll diagram (curve I) in tbe ( t, t') plane obtained by
f)r~lin-Tourigny method [6J for d = 7. The o(ber curves are spurious.

3.3.2 Conclusion

Table 3.3 show\ the comp~rativc study of the Drazin-Tollrigny method [6J and High-

""Jer differential apPl'oximants [171\0 oPPl'ox;mme [he dominating sing\llar;ly ",ing 44

terms and the figures show the physicol location of the singularity of shear SlreoS in the

re~1 plane for di fferent values of d But Hi gil -order di ffcl'cl11 ial approx imanl, r 17] is able
1(\C~lcllla[e the dorninallllg sillgulJr point u,ing even lesser terms. And al,o it shows llot

only the singular poinl, but ~Iso the cri!ic~l expOIlCIlt.13Ulthe only pole thaI it calculaled

by taking 41 terms agree, with the result "fthe Cauchy Root Test, and [he assumption of

Van Dyke Jccording (0 the sign pattern, Jfmore terms could be calculnted and (he value
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of d could be increased then we hope thai the result will converge more accurately to tile

dam inating singularity_

NOle: This problem Iras be"" presented jn (h~ How CO"ference "" COlllemporill}'

Physics ()IKoni:x" by Physics Depur/lJ1cnl, Unilwsily of Dhaka (illd The AbdJis Salam

lnfernalionai Cenl,.c for Theordical Physic,f, Tties/e, Iluly on 19 - 21 March, 20015.
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Chapter 4

Critical Behaviour of the Hydromagnetic Flows in Convergcnt-

Divergent Channels

In this chapter we have studied the two-dimensional, steady, nonlinear flow of an

incompressible conducting viscous fll1id in Convergent-Divergent Channels under the

inf111ence of an externally applied homogene01l5 magnetic field by means

ofHerrnire - Fade' approximation especially Differential approximate method. We have

obtained the sencs relatcd to similarity parameters by using algebraic programming

language MAPLE. "Inc scries is then analysed by approximate methods to show the

dominating singularity behavior of the flow and the critical rclation,hip among the

parameters of the solution.

4.1 Background

In modern times the theory of Dow through Convergent-Divergent Channels havc many

applications in aerospace, chcmical, civil, environmental, meehanical and bio-mechanical

engineering as well as in understanding rivers and canals. Thc study of conducting

viscous fluid flow through Convergent-Divergent Channels under the influence of an

external magnetic field is not only fascinating theoretically, but it also finds application in

mathematical modeiJng 01' several industrial and biological systems. The mathematical

in\'e,tigations of this type ofprohlem WCre pioneered by JefTery [16] and Hamel [14].

which was the classical flow of ordinary fluid dynJmic5, Jeffery-Hamel flows arC

inl~re~ting models of boundMY layers in Divergent Channel Fmenkel [IOJ, Sabey and

Drazin (28J, Banh et al. [3] have studied extensively the problem in different ""Y5,

M"kinde fn] investigated the Magneto Hydrodynamic (MHO) flow,'. in Convergent-

Dl\'ergent Channels. He extended the ela.'.sical Jeffery-Hamel flows of ordinJry fluid

dynamics to MHO, Makinde [23J studied that in the "lHD solution an external magnetic

field ~ets as a eon[rol parameter for both Convergent and Divergent Charmcls 11mV';

Hence, beside the flow Reynolds number and the Channel angular \vidth, at least an

additional dimensionles~ pawmeter appears such as the I.hrtman number Ha, He
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obtained a perturbation series of twenty-four terms in powers of pClturbaliol1

paramctcrsRc,a and Hoand showed how lhe flows evolve lind bifurcate as the flow

parameters vary by using Algebraic approximate method [181.

4.2 Mathematical Formulation oCtbe Problem

Consider the steady two-dimensional flo" 01 an incompressible conducting viscous fluid

from a source or sink at the intersection between two rigid plane wall, under the

in fluence 0 r an externally applied homogeneous magnetic field as shown in Figu re I. It is

assumed that the f1uld has small electrical CClllciuClivity and the electromagnetic force

produced is very small. Let (r,e) be polar coordinate \vith r = 0 as the sink or source.

Let C(be Ihe semi-angle and the domain of the flow be-Ial < e < lal. Deno[e the velocity
components in the rudj~1 and tangential directi!\11 hy u and v re~pecljvely_ The

governing cqu~tiow. in terms of the vorticity ((v) and stre~m. fund ion (\,,) ean be written

as [23]
Ba (Magne!ie field)

J J J
J

1 1 1 1
Figure 4. t: COIl\'Crgent-t) ivergent Chan nels

I 0('" OJ) rY B '_ ~, =uv'(,;--'-'-w
r 8(8,,) pr' ' '" = -'V'\", (4 I)

a'o 3'V'=-,--,-- \\,jlh Ihe bound~rycondiliolls
0,' ,or ,-'ali"

O'f = 0ao . at e=-r.a (4.2)



Here Q = (urd{J
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is (he volumetric Ilow rate, So= (".flo) the electromagnetic

inductioll, #,the magnetic permeabijity,H, the inlensily of magnetic field, 0, the

conciudivily of the !lulu, p [he !luiu density ~nd u is the kinemalic viscosity

coefficient..

For Jeffery-Hamel flow of conducting Iluid. \\,e a'.\ume a purely symmetric radial now as

described in [3], so that the tangential velocity v = Oand as a consequence or the m<l5S

conservation, \\iC have the stream-function given by\" = QG(O) , jfwc require Q;:: Otllen
2

for 0: < 0 the flow is converging to a sink aIr = 0_

The dimensionless form of equ~tiOlls (l)-{2) is

d'G dG d'C d'C
--, +2Rea---+(4-lfa)a'--.O
d'l d'i dry' drl'

(4.3)

wnh
dG

G=1 -=0 ~ln=:tl, d'i ' 'I
(4.4)

wncre e
'7=-<lnd
a

oRc =-=-20 are the H~l'tmalln number and the flo"

Reynold,> Ilumber respectively.

The problem defined by equation (4.3) i~ non-line~r, For ~mull Chanllel angular width,

one can obtain a series oFlhe form

(4.5)

We then find tlwt G(q) has a singularity ~t a'" 0<,of the form

\,"itb the critieul e."ponenl 13,.
Su bstitu!lng the above ex pressiOIlS (4.5) inln (4.3) and collectill ~ lhe coefflc icnu ()r Iike

power.,>(,f a ~nd with the help of MAP I.E, \\e have computed the first IS 1Crm~for

strcam-illlldioll G in terms of 0<,Re, Ha. [See Appendix IJ
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The first few (erms of the expansion of G arc

G(11;O:,Re, Hal = .!.1l(3 -I]' ) - -J-11(11' - 5)(11-1)' (1]+ lJ'a. Rc - 1 1](9811' - 9591]'2 280 431200
+ 24721]' - 2875)(11-1)' (l] + 1)'0;' Ke' + 4

1011(1]- I)' (11+ I)' (4 - J-Ja)u;' +

(4.6)

Although the compllt~tional complexity increases mpidly, we Illunaged to compute the

first 75 terms lor G in terms of single paramelera for Re = 20 and Ha = 0,1,2),4,5. \Vc

also complllcd the first 75 terms for G in terms of single pftmmeter Real a = 0,1 for

Ha = 4. These series ~rc then al1~lyzcd by Differential appn:>ximate melhod.' [17, 26] t"

determine the crilic~l behaviour of lhe flow and used the Algebraic approximate method

[18] to show the bifurcation diagr~ms and the critical relnlionship among the parameters,

4.3 Results and Discussion
For (he analysis, we make lise of the scries in powers of a, Rc and 110 for the following

flillctional form:

G'('I '" ();a, Re, Ha),

rhis guamity is proportional to the velocity of the now along the centre lin". By

analyzing the sel';es, \\e ha\'e calculated the location of [he ,ingoiarity with (he critical

exponcnts for different parameters. The results m~ obtained in terms of the critical

Channel ",1gulm width a, and critical Reynolds number Re, for different v~lues oj"

magnetic p~rameter Ha and the~e ~I'CshoWI];1ltabllbr ,,,d graphicallY;ll figure.
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Table 4.1: Estimates of cl'itic~l angles a(, and corre;ponding exponent fJ, at Rc = 20 and

Ha = 0 using Higb-order differential approximant> [17].

" " a( (,ingle 5cr,os) a,' (mlll"-v,,i.,bl, >cr;es) I',
I 7 .27499EMI95485275615961 Jg 1749980919518127561596138 _[nR7~6S4)~?2J07M9l4

I ,' 2(,020j9979J520&7905,1l2~16 .26G2G599797,20&790l,1,2~16 I "5nOIlS2~ldj4,7517J

, " 267973661 m5.J29Jl91 ~678n .26 797)661 OJ542~Jl9ID6 7in 495]~]J3J 14{;1112~55

I " _2r;79WJ92565J47~~mI)j70 lOIIU1JSZO,40,SJ6J79

" n .16796083092 1M) 1706497074 jOQIWiI222,J4n 14)6)

7 " I 267960831082849991058853 I ..19999~~?999}S8 7 93 89, 52 267%08310328460960601169 .499999 ~99999999 9565

I "' 267960&31082346696044131-1 ,50000000GOOOOOOGG 12

co n .26796UiJ 1082S4669GOHjJj2 ,OOOO~DGGOOOOO~GG02

Tahle 4.2: Esti mates of critical ullgl es (1c and corre.\pond ing exponent P, at Rc = 20 and
flu = I using II igh-order differentia I approximant, [17].

" , (1, (s;Il~lesor;«j (lc ("',i';_"";1H, ."J ;os) Ii,
, 7 , 1665 112j~OI &8032651116JJ(,9 2766, 1I15S~ 1ssn)l{i5~ i oJJ691 J 429197Gl182667H32

I I " 2J 176~S061%2642/00115699'9 lJ 1769306 1,{i,{i-l17060,Wn'J'! -'017$,71),130618,67

i " .26925 14884E5'58JJl5j505J-I-I '6n5 14~~-Ig,75E372;-I,05J44J .-I561906J)lG3'1J9%51, " 26916241 929088,8DG281%064 .,mI1l2472E9JJO 16,-176, r 2691tl24Sn II 14395~;;1,626l .-1999999906 89755-102J~,
7 " .2U9162j597~J 1~ 17448l1lGjJ~ .-I'!999999995739219l1

i " I .269162-15976) 15907745 13~293 499GGW999"~~99E3S', 01 ]69162-15976.1159G1739).16091 ,l 00G~OOOOOOUGOOOU50

co " 26916245916, I ,9G7'393-160'!6 49999 9999999 9999923

t
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Tahle 4.3; Es\illl~(e~of critical angle~ Uc ilnd corresponding exponent P, at Rc = 20 and

Ha = 2 us; ng: High-nrder Jj ffci elltial approximants [17],

" " ac (,,"~lo"";"l a,.. (mlll,l-vori,bk series) Pc, , ,VSZJ 197900 In'40 193407708 .27813197900 1922-lD1934D71DS 59198483625424J493-l, " ,n) 79,6394)91 JO" 775199171 273795639439130517 15199571 54482690 ..092U11I166117, " 2J 0.176~6S9, n20013096 56-]7D ,1701 760G5 95 7i 20023 096 5 64 70 5~DO 153G&,9S-lG44Kl, " 27~JS6-l4263JJ9%460092&91 I _5D~0555m39979('(, ,~", H 2701i6S;;9Q64696J~"770J0278 A99~999902D52j 14669, " .270386159G561946Dj6D9951~1 4 9999 ~9'!'N97 5 4, 0022, " .2JOJS65l9056193204153D4318 4WN~99999?9999320, 6) ,27033655905619320424&24461 .4999999 99999999 9990

W H ,l70J86559Q5619)2~'12~82~~ll .SIJ~lIlIlIlInnOOOOOOV02~

Table 4.4: Estimates of Ctilical angle, Gc and COlresponding e~pOllent 13, at Re = 20 and

1fa = 3 using I-JigIJ-otder d iITerenlial appro.\illlants [17J.

, ,
Gc (lingic series) G( (m"I[H ",'dOl< "",,) Pc

~ , .279762~}67621142655IS."m54 ,2797620)oJ621 14265515"~954 532221729U27J4I1g161, " ,2W21399991 lJS 10620530Mg86 'M21 3999914381 G-620;3064886 ..1914J847J09n41111~7, " ,2716302814 15858~5 19358('(lj27 .2716)0281 115858~51935860527 .5~ 119V9J(,j497291-l31, " .271633911 351507 17~%O~5JnJ .19~99524 745 127S0~1-1, B 2716]]9]4 [RlI4928JOQ969113~ 4999999973UJ 1214]57, " 271G3J93~ IgOI~549)771995551 5110~~00OOOO3824484,, B ,2716J3~341801976M8811 fl210,1 5OIlUUImliOOOOQ~~~~61

" " 27163.1934 I~VI9760088"V679G .49999~~999999~9~9J I
CO " ,271G33931180 1~J61111&gJ506774 .49999~9999999999913

"
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Tuble 4.5: Estimnles of crilicul 'Ingles ae and corresponding exponent fi, ill Rc ,,20 and

Ha = 4 using I ligb-order differential ~pproximants [17 J.

"
,

Gte !.''"gl, ''''',) Gte (mulll-"".blc ser;es) p,, , 2~ 115~, II )26Jl4J2681~806% 2~ 1259511 J2635l32G81 ~806%J9 S]]]4~118~9510l50(,, " .2 722"274(J77~53fJl715961 0 1M .2722627407785)03715961 GI0067 A9~11~l40,U1G52i6, " 2129112n]j74099710;69184J06 21291128)5710997105691813GGW jOa~4 J091 M nm434, " 2J29Uj4~192~~SJ~~7S426Gl J6 4~99'!-l4l8166%JOZ6, ;; _27290,-l.14:;0J~1I1n\71596,91 .5UUliOOOOi9722@JJ8, " l7290j434!05S5?5 19D591916[ jOODMG000001.ioIJ I 0, " 2J'~lIj~)4)Ujjl9,9J 191761Gl -1999999999999999')7

9 " 2729051)j )Qjj59l931913339~ .IMOOOOOOfm~GOOOI 15
W " 2J290j4J430555?j931933J59~ ,50~~~OOOOIlIlIlOO~~1~~

Table 4.6: Estimales of critical ~nglcs (Ic and corresponding exponenl fJ, at Re = 20 and

Jia = 5using HIgh-order diftcrelll;al approximants [17 J.

" " ac ("ngl, ,,,ic,) D, (m"lt;."",j,I,,,,,o;l p,, ; 2827,10,1551705 1219-1%2772877 28, ..40j55-17~5-l2191%277 .531626E~-I)~M7199j4, " ., 7392~1,67~62)6SS228-'3379792 .!7 .'92VM7%J)"~~niJ!37 A997J~54Jmj"7~S736, " 174199.;OJS 18608333641 7-1-1611 .114199jlmj86~8JJ8M 17 I ,jO~79159j~~9;6J2061, " .n~,u1~j6S,lS52061 )8~389J7S ,.199~~91 16YJ6J61 0355, B 27420 19S5S.10"~117j"9J7GJ) 1 .SOOO~OOOl,2~."~1131, " .nI2~1 ~55E3 197:;233791395193 49 9999 ~~~99989 53') ~

• " 27,20 19558319iJ 1772955~1&S8 jOO~OIJIIOOOVO~OOOUlll, " 2J4J019jjS319J3 17729398{; '117 A9999 999'199~~9~994 3
W 75 .27'12~1~jj3J 19731712?J936712 4999?~~99999999~86-'

•
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Table 4.7: Estimates of critical Re}llolds numbers Re,' and corre'pollding exponent

p, al a = 0.1and Ha = 4 using High-order differential approximant, [17].

4 , R" fi,
4 , 56_2519022(;l27~86536216119279 J2119~IS&580721797n

4 " 5~ 4)254~ Ij57I1WJ4J I~1211211114 .,184)O"~]61 J 161141DJ

4 " 54.'~1I)67 [4~1994211)~16~61]11 .49992%570680748621, " 54 5S11l3~5~H767775~i51~]jlJO "j9999-l-l,~16"S6]0167

4 33 ,4.5~ llli6~('IJJ(,II]-lS I-lJ 193I~99J .5MIIIIOIHlI9722(,03190, "' S.l.>~I[1~6~6111190_'g11gJ~)2271 .lODQljOIlIHlOOOIJ(, I1m, " l4_S~IU~(,~611119186]~9S2211716 .1999~"99~~999~999]9, 0; 5-l.'<SI~~(,~61III ~l R6J%6719641 A 999999~999999~~9'!K

'" " 5.1,gl OR"~61111~l ~6J~667196~') A 9999 9999 99~9 9WI 1J

T3 ble 4.8: Comparisons of critical angles a, and correspond Lngcritical exponent P, at

Re = 20 LL.'i Ilg High-order differential approximams [17]. The resu It is comparable with

the result of Makillde [23J.
BOD.'\. II, 0 , 4 4 4 ;

d=4 ", ,26797366 .26n5148 ,27037606 .27[6}OZ~ ,27Z90H3 .27.119950

}/ = 18

fi, ..195}9333 ,,15619063 .50330153 ,50119097 .500g~769 50079159

Maklnd, Ho 0 , 4 4 , ,
", 0,261960 0,269162 0.272906 o 27937~ 0290431 0307406

p, 0,50000 0,50000 0.50000 0,50000 050000 0.50000

•
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Table 4.9: Comparisons of critical Reynolds number Rec and corre'ronding exponent

p, at a '"0.1 using High-ord~L"differenlial approximants [17J ~Ild 1-.1akindc [23].

HODA IIa " I , , 4 ,
d=4 Rcc 54,44407939 54.47805874 54,51340970 5454702585 5~ 5~135150 54.61676356

.1,' = 13

fie .4991155356 .4991155356 ,4991155.156 _499706~45g ,5001231984 .49S5~44495

~I,killd< HI " I , , 4 ,
R, 54,13g~ 54.17179 SOBOn ;4.66510 55.22071 55 52727,
fie 050000 0.50000 050000 0.50000 0,50000 0,50000

Figure 4.2(a) and 4.2(h) displays (he resLLhslhat as the m~gnctic p~ramctcr Ha increases,

then lhe bifurcation point Gc changes form .26797366( IIa = 0) 10 .27419950 (!Ia = 5).

Figure 4.3(a) ond 43(b) shows tlwt u, the m~gllelic parall1cler IIr; increases. the

bifurcation point Re, changes form 54.44407939 (fin ~ 0) to 54.61676356 (Ha ~ 5 l.

Therefore it is observed that the efTeCl of magnetic intensity changes the solution

behaviour 0 I-the pro blcm.
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lIa~O,Rc~20

a, ~.2679n66

"G'(O)

,

'"

"C;'(O)

0' 0.0

a
(0'

Ha=5,Re=10
G, ",,27419950

("

Figure -1.2: ApproxI<nule bifulcarioll diagr~m (curve I) of a, ILltheta, 0'(0)) Plane (a)

with Ha = 0 and (b) \\,ilh !fa = 5 obtained by rJra7ill-Tourigny method [6] for d ~ H, The
olher curves arc spurious.

•
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0 Ha=O, a =0,1

" Ro, = 54.44407939

,
G'(O) 0

, I
,
,
,

'" " " " o'J " 00 '0 "Ro
(,)

'" .

" Ha~5, a =0 I, Re, = 54,61676356,
C'(O) ",

,
,
,

;0
R, '"
(b)

Figure 4.3: Arr",,,illl"te bi furcat i011d iagram (curve I) of Rc, in the (Re. 0'(O)} I'lane

CaJwilh fin ~ Oand (b) with Ha = 5 ob[ail1~d by Drazin-Tourigny method [6] for d = 4,
The other curves ore SPliriOlIS.
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Figure 4.4: Critical a .Re relationship (curve l) u;i~g High-order partial
Dilferenlial approximants [26J with d = 6 The other curve is spurious,
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"
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0., .
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",
Figure 4.6: CI itical !fa - Rc relationship (curve I) using High-order partial
Differential approximants 126] with d = 6. The other curves 3re ,pmiou,>.

The High-order pJltiai Differential Approximant [26] is applied to !he series

G'(O;a,Re,Ha)in order 10 determine the critical relationship ofa"Re"Ha,. In l'igurc

4.4, it is observe lhat as Rc, increa,e~ then u, decreases. Figure 4,5 and 4. 6 shows thm

i>, ~nd Rc, change, significantly with the changes ofmagllctic parameter Ii".

4.4 Discussion

In thi, Chopter, we have sllld ied the Critical Beh~v jour of the wi uti,," of II)drom~gllctic

flow, in Convergent-Di\'Cl'gent Ch~nllcl,. A numb~r of interesting features ha\'c been

h,-ought to mIen! lOll, the iorcmo'l of \Vhiell are different inc ludi ng the critical rCInliollship

amollg the paramewrs of the now.

From tile present invesligation the lollowillg conclusions can be dru\\'n:

• ac and Rec increases uniforl1lly as IJo inercuses whieh are eOl1lpar~ble with

the results of Makin de.

,
•

-
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• As l~e magnetic parameter Ha increases, tben the bifurcation point Clc changes

form .26797366( Ha = 0) to 27419950 (If a = 5). AlsD if the magnelic

pammeter Ha increases, [he biJurcalion point i{c, changes form 54.44407939

(Ha '" 0) III 54.61676356 (fJa '" 5), Tilerd'orc it is observed that the effect of

magnetic ioleos;l)' changes (he solution behaviour of tile problem,

• From the crilical relali(llTI;l1ipil is observe tbat as Re, increa,es then Cl,

<.kcreuses anu a, and Re, changes ;igil; lican!l}' with IhG changes of magnetic

parameter l!a.

4.5 Conclusion

We have u"eu po\\'er 0erie~ [0 study the ,ingularily behaviour oflile nonlinear problem of

Hydromagnctic Jeffery-!Jamel flow by using sClies ;ummu(ion technique. Our re.lullS

confirm the coni~cturc of Makindc [23J with a little diff~l"CIlCC.j,cm~rkably, we have

\hnWlllhe crilical reblionship among the p"rameter.\ of the Oow.

iVote: This l'rohlelll has heen pres<'lIled ill Ihe (" BSM £-ASM E IlI/emotion,,1

COl1fermce nil Thermal Engineerillg 01127-29 December 2008 held in LGED JlQ.

"l:;argaon, Dhaka and lUi; Gazip"r
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Chapier 5

Conclusion

5.1 Conclusion
We have ue,cL"ibcd the r\pproxim~n(s method which i, applied to an~ly;e (WO nuid

dynamical problems. The Critic~j Behaviour of the Laminar Un>leady Flow of a Viscous

j'luid away from a Plane Stagnation Point and the Hydromagll€lic Flows in Convergent-

Divergent Channels have been studied using various types 01' Approximants method,_

The critical rclalionship~ among the flow parameter, have also been analysed.

13yanalysing the critical beha\'iour of lhe first Painlev'e uaLlsccndcnt we observed lhat

High-order Differential approximant is able to delellnine more significantly that

~,'<3,7428015307707418775 is a pole oforder2, which is the neare,l pole (0 the origin.

The comparative study of the Drazin-Tourigny melhod [6] and High-order dilTerential

approximant> [17] to approximnte the dominating singularity behaviour of Laminar

UllSteady Flow of a Viscous Fluid away from a Plane Siagnalion Point using 44 term" il

prcsented, High-order diffcrential approximants [171 is able to ~alculate the dominating

singular point using evcn lcsser terms Jnd ~gree\ with tilc results of the Cauchy Root test

and the as,umptioll ofV,m Dyke (29),

AlUlIysisof the Hydl'omagnetic Flow\ in Convcrgent - Di\'ergent Channcls show that the

critlc~1 Channel angular width and Critical Reynold., number changcs \Jtliformty due to

the crfect of m~gl1elic parameler Hmtmann numbcr. Critical relationships represent the

signIficnnt voriatinn due to the ctfeet of m~gnetic intell.,ily,

We try to pl"Ovidea b~sis for guidance ~hollt ",hm method of summing PO\"er serie.'

should be cho,en for many problem> in nuid d)numies to show tile critical beh~vi()ur of

the now.
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5.2 Futurr Work
There are some ideas to furm the basis orrulurc work:

.;. Critical Behaviour of the solution of Hydromagnetic Flows in Convergcn!- Divergent

Channels has_been analy,ed using High-order differential appwximont and Drnin-

Tourigny approximant method. Therefore, further research in [his regard could be

carried out (i) by deriving _,eries in more terms (Ii) by using the series in terms of

paramelerHa .

•:. Application of Appwximalion methods in other fiElds lhat include perturbation series.



Eergeyev, A.V., (1986), "IIennite approximations. U.S,S.R, Compute:: A recur~l\'e

algorithm for Pade~ Math.", Phys., v. 26: pp. I7-22,
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Appendix I

Program to compute the coefficients of multi-variable series (in Chapter 4)

1,3", I,.
G{'7;a, Rc,Jhr) ~ "2 '](3 - 'I ) - -n-o '7('1 - 5)('1- 1)"('7 + I) aRe - -'-"-'-0-0 '1(98" - 959'1

+ 2472'1' - 2875)('1-1)'(1) + l)'a' Re,+_l '1('1-1)'('1 + 1)'(4 - HaJa' +_.

"#lhe parameter A~ alpha*R and B- (4-H)*alphaI\2:

intcrfacc( qllieFtrue):

N:=25:
#digits:=150:

G :=array(O ..N,O ..N):

h :=Urra y(O..N ,G..N):

p. =<array(O ..N,O ..N),

for m from 0 10 N do

for n from 0 to N do

if(m=O and n=O) thell

G[O,OJ:~(112)*ela*(J-ela"'2):

h[O,O]:=di ff(G[O,Oj,eta):

p[O.O]:=d ift{G[ O,Oj,cta,cta):

else

i:='j':

IIc.(m+n):=array( 1..(4 *(m+n)+ 7)):

c:~an-ay( 1._(4*(m+n)+ 7)):

G[m,n]:=5um(c[Weta"(i-l),i=1 .(4~(m+n)+7»):

#G[m,n] :~sllm( c.(m+n )[i]*eta"( i-I ),i= 1 ,(4*( m+n)+ 7)):

gg:=diff(GI m,n j,eta):

be[ I J:=subs( eta= 1,G [m,n ])=0:

bel2 j:=subs( eta=-l ,G[ m,n ])=0:

bel3] :=sub,( eta= I ,gg)=O:

beI4J:"'subs( eta=- J ,gg)=O:

II :=di If(G[ m,n j,eta,eta,eta,eta):

j:=J':



J I :"'diff(G[ m,n ],eta,eta,eta,eta):

12;=0;

#for J from 0 to n do

#forkfromOlom_l do

#!2:=ll+h[k,1] 'p[fl]-k -I ,n-I];
#od:

#od:

#12:=2*12:

12:"'2' sum(sum(h[k,I].p[ ffi-k-I ,n.J],I"'O ..n),k=O. ,ffi-]):
if(n"'O) lhen

13:=0:

else

#13 :=p[ill,n-! J):

13:=p[m,n_l]:

fi:

FF:"'cxpand(II+I2+13):

#prinl([ m,n ],FF);

for i from 0 to (4*(m+n)+2) do

beg [I]:"'coeff(FF ,cla,i)=O:

ad:

aa:'" array (I .(4.(m+n)+ 7),1 .(4'(m+n)+7»:

for i from 1 to 4 do

for j from 1 to 4*(m+n)+7 do

~a[ijJ:"'coeff(lhs(bc[i ]),o[j]):

#aa[ i,j]:=cocff(lhs(bc[iJ),c.(m+n)[jJ):

od:

od:

for i from 5 to 4*(m+n)+7 do

for j from I to 4.(m+n)+7 do

aa[ jj1:9;oeff{lhs{beq [i-5]), c [j]):

5]

o



#aa[i J):""coeff(lhs(beq(i-5J),c.(m+n)D]):

od:

od:

b:""array(l ..(4*(m+n)+ 7»:

lorifrom 1to4do

b[iJ;'-O:

od:

i:='j ':

54

j:=J':

for i from 5 to 4*(m+n)+ 7 do

b[i] ;=-(lhs(beq[i-5])-( sum(au[ij]*c[j]J= 1,.4*( m+n)+ 7»)):

#b[i] ;=-(ihs(beqfi-5])-( sum(aa[ijj*c.( m+n)[j]J=l . .4*(rn+n)+ 7»)):

ode

with(lioalg):

c:=array(1 ..(4*(m+n)+ 7)):

c:=Jinsolve( aa,b):

#c,( m+n):=array( 1..(4*(m+n)+ 7»:

#c.(m+n ):=Iinsolve( aa,b):

h[ ill,n1;=diff(G[ m,n J,eta):

p[m,n ]:"'diff(G[m,n J ,eta,eta):
G[m,n ]:=factor( (G[ m,n J)):

print([m,n]);

save G, "C://Sir/jef sar2S.m";

fi:

od:

od:

#donc'
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