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Abstract

In this thesis under the title “Critical behavior ol the Solution of Hydromagnetic Flows in
Convergent-Divergent Channels”, (wo problems have been siudied namely
Hydromagnetic Flows in Convergent-Divergent Channels and the Laminar Unsteady
Flow of a Viscous Fluid away from a Planc Stagnation Point, which belong to 1two
dilfercent realms. Initially we have discussed some basic topics in order Lo study the

problems and the approximation methads.

Firstly, we have studied the location and nature of dominant singularity in the complex
plane for laminar unsteady flow of a viscous fluid at a plane stagnatton point. The series
expansion with 44 ferms in time of the shear stress is investigated with High-order
differential approximant to determine the poles in the complex planc using algebraic
programmung language MAPLE. The series-improvement techniques are crployed to
Improve its convergence propertics. It is observed that the performance of High-order
differential approximant is better than that of Pade’ approximant and Drazin-Tourigny

approximant,

Finally, we have studied the two-dimensional, steady, nonlinear flow ol an
meompressible conducting viseous fluid in Convergent-Divergent Charnnels under the
influence of an  eaternally  applied homogeneous magnetic  ficld by means
of Hermite - Pade' approximation especially differential approximate methad, We have
ohtained the series related to similarity parameters by using algebraic programming
language MAPLE. The scries is then analvsed by approximate methods to show the
dominaung singularity behavior of the fow and the critical relationship among the

parameters of the solution.

b ]



Chapter 1 - JO@O}S'

el

Introdection

Observations of fluid flows in daily life show the various types motions that a Muid -mﬂy
underiake. When one turns the bath tap on slightly, the eolumn ol water that Qows out
does 50 in a smooth manner. However, on opening the tap [urther the low becomes
eratic and random-like. In modemn times the theory of flow through Convergent-
Iivergent Channels have many applications in aerospace, chemical, civil, environmental,

mechanical and bio-mechanical engineering as well as in understanding rivers and canais.

Very fcw nonlinear problems can be solved exacily but it is sometimes possible to
expand solution in powers of some parameters, When the exact closed {orm solution of a

problem is too complicated then one should iry to ascerain the approximate nature of the

solution.

Appmximati-on ntethods [5,6,8.9,11,17,26] are the techniques for summing power series.
A function is said to be approximant for a given series if its Taylor scries expansion
reproduces the first few terms of the series. The partial sum of a serics is the simplest
approximant. if the function has ne singularities. For a rapidly convergent serics such
approximants can provide good approximation for the solution. In practice the presence
of singulanities prevents rapid convergence of the serics. Therefore it is necessary to seek

an efficieni appreximation method.

Khan |19] applied approximation methods to several fluid dynamical problems. Qur
purpose is to analyse the critical behavior of two standard fluid dynamical problems and

compare the performance of approximation methods numerically and graphically

The remainder of this introductory chapter is as follows. Simce we shall stuety the entical
behavior of series by using approximation techniques, we begin with a brief review of

series in §1.1. Then in §1.2 and §1.3, we describe perturbation series and various tyvpes of




sinpularities. We describe a bricf review of elementary bifurcation theory in §1.4. Finally,

in §1.5, we present a brief outline of the remaining thesis.

1.1 Overview of Series

Consider a function u[x) which can be represented by a power scrics

U(x):ia]xr as x — 0. (1.1
1=
The AMh partial suem is
b
Uele)=3 ax'. {1.2)
1=1

If we can locate a point x,, where the function #(x){s analylic then it can be found in a

power series  {/{x)= iar {x—x,) as x = x,.
0

The series is said to be convergent if the sequence of the partial sums converges When

the series converges, the sum /(x) can be approximated by the partal sum U, (x)and

the error is defined by ¢, {x}=U{x)-U, {x),

fu (l)‘ provided U(x)=0.

Ulx)

The tumber of accurale decimals for some particutar value of x is given by

and the absolute error is defined by e, [x):

¥
Py = —lﬁgm|c,_.|
We say that Lhe error decays exponentially il there exists a particular constant & such

that &, = o as ¥ — =0, where

In'e,

S

o o=l
" o

Sometimeas the presence of singularity of the solution can delay the convergency of the

scrics. So, we need (o find the domain of convergence of Lhe serics. Uhe series Ufx)

converges for some x_ i1t converges absolutely in the open disc xix<x}



with centre at the origin. The largest such disc is called the disc of convergence and the

radius, say R, of the disc is called the radius of convergence of the series of Ulx). If
i#{x) is analytic at x=0 then R> 0. If the serics has a singularity at x, such that
x, =R, then it diveiges tor x Zx . Different methods such as ratio test, Domb Svykes

plot etc. have been used to compute the radius of convergence by direct use of the
coefficients of the series. We wilt apply various generalizations of the approximation

methads o determine the eritical behavior of the series.

In applied mathematics, scries are aften obtained by expanding a solution in powers of

some perturbation parameter. In the following subscetion, we describe the basic literature

on perturbation techniques [24]{31].

f. 2 Perturbation Series

Periurbation theory is a collection of methods for the systematic analysis of the global
behavior of sofutions 1o nonlinear problems. Sometimes we solve nenlinear problems by
expanding the selution in powcrs of one or several small perturbation parameters. The
expansion may contan small or large parameters which appear naturally in the equations,

or which may be artilicially introduced. Let us consider a problem of the form
Slx,2)=0 (1.3)

where £ may be an algebraic function or some non-lineur differential operator, and Ais a

parameter. It is seldom pessible to solve the problem exacty, but there may cxist some

purticular value of x = x, for which the solution is knowrt. In this case, for H <=1, one

can seek a serics for u in powers of x such that

Lix)= i“; (A (x—x,) a5 x— x,.

il

Then by substituting this into equation (1.3}, expanding in powers of x and collecting the

terms of O(x"], we can get the required coefTicients of the perturbation sertes.



Example 1.1 Let us take the cubic pelynomial
u {3+ +2s=0. ([.4)

The perturbation series for {1.4) in powers of £ may be taken in the form of

Ul)=3 b.e' . (15)

1=0

for smalle. For & =, the polynomial has two distinct roots, namely b, =03. Which,
when by, =0, substituting the expansion

Ule}=0+be+b,g’ 4.
, . . . 2 2
in {1.4} and equating the coefficients of £ gives b, =—.b, =57 Therefore, the
&
perturbation scrics for by, =0 1s

U=032g-=g +0lg*).
327

- _ . ] 2
In a similar process other series is U=3+-c+ -2—?52 + D[EEJ at b, =3and
-

1. 3 Singularities

Singutarity of a function is a value of the independent variable or variables for which the
function is undefined. Singularities are crucial points of a lunction, because the expansion
of a function into a power scries depends on the nature of singularities of the function,
For the purpose of this thesis, we are interested to analyze those functions, which have
several types of sinpularities. Practically, one of these singulariies dominates the
fitnetion. Therelare it is important to know about this singular point o analyce the criticai

behavior of the function around this paint,

The convergency of the scquence ef partial sums depends crucially on the singularitics of
the function represented by the series. Several types of singularitics may arise in physieal

(nonlinear) problems. The dominating behavior of 1he functien #(x) represented by a

series may be written as

u[x)~ﬁ[i—%) as x —» x, {1.6)

e



Where 4 is a constani and x_is the critical point with the critical exponent . If @ isa
negative integer then the singularity is a pole; otherwise if it is a nonnegative rational
number then the singulmity is a branch point. We can include the correction terms with
the dominating part in (1.6} to estimate the degree of accuracy of the critical points. It can
be as follows

u(x]ruﬁa[l—iJ I+.ﬂ.i[l-i) | -r-Al[]—i] +.. |85 x>, (1.7}

X

[
Where 0 <, <a, <M and 4,4, Mare constants. 2, +a & N for some {, then the
correction terms are called confluent. Sometimes the correction terms can be logarithmic.

c.g,

1~-ﬂ a5 X = X_. (1.8}

x,|

u{x) ~ n[r _%}a 1+n

e
Somctimes the sign of the series coefficients indicate the location of the singularity. If the
terms are of the same sign the deminant singular point lic on the positive x-axis. 1f the

terms take altcrnately positive and nceative signs then the singular point is on the

nogative xy-axis.
Following are few examiples with dilferent types of singufarities:
Faample 1.2 (Singularities for single variable functions)
. - ! N
1. Singularities that are pales: u{x)= 5(2 - x)" +sin(2x).

Here x(x) is an algebraic function whose singularity is atx_ =2, the critical

exponent « =—1, which makes the singularity & pole.

2. Algebraic singularities with different expenents:

domtmrso) ()

Here u(x) has several singular points. The singular points are atx, =2. 3,2 and

H

» 11 1 . .
the critical exponents area = st respectively. Inthis example the

sinpular peints arc branch points. Though there are a number of singularities for



w#({x}, only one of these singularities will dominate the local behavior of u{x] .

3. Logarithmic singularity:
X
u{!c) = ||1[‘1 + TJ + cos{:{].
3

Here «(x) has a logarithmic singularity at x_ = -5.
4. [Cssential singularity:

ufx) = exp(t - 2x)7.

with critical exponciat ¢ = -2,

b | —

Here w(x) has an essential singularity at x_ =

5. Alpebraic dominant singularity with a sccondary logarithmic behavior:

Sy

The algebraic dominant singilanty of #{x) here isat ¥, = 4 with critical

exponent @ = - which makes it a branch point. And a logarithunic singularity

atx, =7,
~ =i
6. nth root singularity. H{I]:(]_gj +exp(x} -

. . . ]
ere u(x) has a branch point with the critical exponent a =—— at x, =2.
"

1.4 Elementary Bifurcation Theory

In this thesis we have investigated two nonlinear problem in [luid dynamies. Solutions of
nonlhinear problems often involve one or several paramelers. As the parameter varics, so
docs the solution sct. A bifurcation occurs where the solution of a nonlinear systen alicr
their qualitative behavior while a parameler changes its value. In particulur, hifurcation
theory shows how the number of steady selutions of a system depends on parameters.
Examples of bilurcation arc: Simple turning points, in which two real solutions become

complex conjugate solutions and pitchfork bifurcation, in which the number of real



solutions changes discontinuously from one (o three {or vice versa). We intend to

introduce some basic concepts of bifurcation theory. Drazin [7] discussed the bifircation

theory in detail.

Consider a functional map F:H x93 — 9. We seek for the solutions

w=U(x) of Flx,u)=0. (1.9}

Bifurcation diagrams can show the solutions. In these diagrams solution curves arc drawn

in the {x,u) plane. Let {x,,, ) be a solution of cquation (1.9), i.e.
Flx,u,)=0 (110

then, / can he expanded in a Taylor series about {x,,1,) and we can study the solution

sct in that neighborhood provided that # is smooth. Thus we obtain

0= F(x,u}
= fr"(xu.uﬂ}+{u —EFD)FU [xu,uu}é-{x—xn]ﬂ (xu,uu]+%{u— My ]2 £, (xﬂ:ut,)+... (1.11)
If, we assume that, £, (x,,1, )= 0, then

zf{x]=u,:,—(I—ID)M+U(J:—ID), as X — X,. {1.12)

F,(xo.1)
This gives only one sotution curve in the neighborhood of the point (x,.,]) in the
bufurcation diagram. However, if we replace {x,,1,) with (.2, ), where
Fle,u,)=0,F{x.,u)=0, {1.13)

then the expansion (1.11) shows that there are at least two solution curves in the

neighborhood of (x 1 ) The point {(x,,» ) is called a bifurcation point,

d



Example 1.3 Let / be a function defined a»

]
F(x,r:,£)=:€::2—%x3+x—%+£={] {1.14)

Where € is some real parameter, When ¢ =0, Figure] 1, there arise a bifurcation point at
(1,0} and & turning point at (-2.0).

When 0« <4/3, there are two separate branches of the bifurcation curve, one an isofa
and the other unbounded. When, the value of £ increases, in the considered interval,
these two branches move apart from each other. Figure 1.2 and Figere 1.3 shows this

behavior of & jor dilferent values of 2.

24
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Figure 1.1: Bifurcation diagram of £{x,n,£) in (x,1) plane when & =10.
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1.5 Overview of the Work

This thesis 1s concerned with the swudy of computer based approxination techniques
which arc of Hermite — Pade’ class. Many rescarchers have studied the application of
these approximation techniques in ftuid dynanneal problems. For over the last quarter
century many powerful approximants have been introduced for the approximation of the
function by using its power scrics. Among themn most of the methods are described lor
the series involving single independent variable and a few are denved for the power
series involved with two or several independent variables. Many iesearchers hitherto
have found remarkably more accurate resubts by using several approximation methods.

The remainder of this thesis 15 as follows:

In Chapter 2, we have reviewed the Hermite — Pade’ class of approximation techniques
to determine the coeflicients of the approximant. We have discussed several of these kind
of approximants with some examples. Then in Chapter 3, we have discussed the
comparative performance of these approximants to the Laminar Unstcady Flow of a
Viscous Fluid away from a Planc Stagnation Point.

In chapter 4, we have studied the Critical Behaviour of the Hydromagnetic Flows in
Convergent-Divergent Channels. Makinde [23] analysed the magnetic effeet in the
classical Jelfry-Hamel flow in Convergent-Divergent Channels. We extend the work by
the comparison of eur method with Makinde [23] and the bifurcation study for the effect
of magnetic intensity and the critical relation among the parameters of the flow. Finalty

in chapter 3, we have summarized our work and give some 1d=as [or future work.
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Chapter 2
Approximant Methods

Introduction

This thesis s based on the study ef the application of computer based approximation
technigues to revesl the local behavior of a perturbation serics around its singular point
and the critical relationship among the periurbation parameters.

The approximation methods are widely used to approximale functions in many areas of
applied mathematics. Approximant methods are the techniques for summing power
series. A function is said to be approximant fur a given scrics if its Tavlor series
expansion reproduces the Nirst few terms of the sertes,

Brezinski [1] studied history of continued fraction and Pade’ approximants. Blanch [2]
evaluated continued fractions numerically. Also the applications of continued fractions
and their generalizations to problems in approximation theory have been studied by
Khovanskii [20]. Baker and Graves-Morris [5] studied Pade’approximants and its
properties. Algebraic and Differential approximants [4] are some useful generalizations
of Pade’ approximants. Khan [19] analysed singulanty bchavior by summing power
scrics. Khan [17] also introduced a new model of Differential approximant for single
independent variable, called High-order differential approximant (HODA), for the
summation of power series. 'The method is a special type of Hermite — Pade’ class and it
is onc of the best methods of singularity analysis for the problems of single independent
variable.

The reminder of this Chapter is organized as follows:

We study the Hermite — Pade’ class of approximants and then the development of some
approximants in this class such as Algebraic and Dafferential Approximantis Drazin-
Tourigney is one kind of Algebraic approximant and lHligh-order dilferential
approximants and High-order partial differential approximants [26] is an extension of

Differential Approximants.



2.1 Hermile-Pade' Approximants

In 1893, Hermiteand Pade' introduced Hermife — Pade’ class. The entire une variable
appreximants that were used or discussed throughout this thesis paper belong to the
Herinite = Pade’ class. In its most general form, this class is concerned with the
simultaneous approximation of several independent series. Firstly we describe the
Hermite — Pade' class from its point of view,

let 7 eNand letthe & +1 power series U, (x), U {x),. ., U7, {x}
are given. We say that the (¢ +1} tuple of polynomials
PP PUL.. Pl
where deg f’jr”] +deg F,[.'i +...+deg P,[.'” +ed = N, (2.1}

is a Hermite — Pade’ form of these series i1

i PE () = D(x”) as x - 0. (2.2)

(]

Here U, (x).U {x)...U/,(¥) may be indepcndent series or different form of a unigue

series. We need to [ind the polynomials R,[,"I that satisfy the equations (2.1} and (2.2).

These palynomials are completely determined by their cocfficients. So, the total number
of unknowis in equation (2.2} is

of
Ydegllted =N+l (2.3)

+=l
Expanding the left hand side of equation (2.2) in powers of x and cquating the first N
equations of the system equal to zero, we get a system of linear homogeneous equations. .
Ta calculate the eoetficients of the Hernnte — Pade’ polynomials we require some sort of
normalization, such as

P0)=1 forsome 0<i<d. (2.4
It is important 1o emphasize that the only input required for the calculation of the

ffermue — Pade’ polynomials are the first & coelficients of the series U,.., 0, . The

cquation {2.3) simply ensures that the cocfficient matrix associated with the system s

square. One way to construct the Hermite — Pade’ polynomials is to solve the system of
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linear equations by any standard method such as Gaussian elimination or Gauss-Jordan

elimination.

2.2 Pade’ Approximants
Pade’ approximant is a technique for summing power series that is widely used in applied
mathematies [4]. Pade’ approximant can be described from the Pade’-Hermite class in the
folluwing sense.
in the Pade'-Iermite class, let d =1 and the polynomials R,[f]] and P..E'] salisfy equations
(2.1) and{2.2}. One can define an approximant u, (x) of the series U(x) by

Py, - ril =0, (2.5)
where

Uy=U,and ) ==-1.

T'hen we select the polynomials
P ()= 3 b, and PI(x)= Y e v (2.6)
=l =0

Such that s+ <A, the constants b,’s and ¢ 's are unknowns to be determined 5o

that,
U, (1B () PP(x) = ol ). @7
Equating the first «# + # equations of {2.7) equal to zero and the normalization condition

in equation (2.4), we find the values of & ’s and ¢ "s. I'ken, the rational approximant

known as Pade’ approximant denoted as

[a)f
yﬁﬂ=%%£.

PR

(2.2)

help us to approximate the sum of the power series U(x). And the zeroes of the
palvnamial P,[.'](x] happens to be identical with the singular point (paints) UFU(I), In

order 1o evaluate the Pade’ approaimants for a given sernics numecrically, we have used
symbolic computation Janguage such as MAPLE, The Pade’ approximants have been

used not only in tackling slowly convergent, diveigent and asymptotic series but alse to
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obtain singularity of a function from iis series coeflicients. The verocs of the denominator

P give the singular point such as pole of the function u{x) if it enists.

+ 2", a function with a simple pole
(1-3x)° PP

Example 2.1 Consider singularities #(x) =

After applying the normalization condition ¢, =1, we obtain the polynomial coelTicients
P aad £V for deg P = nand deg P = ;. When m=n=2,

pi g 939710307 L 31asen2 5
25638130 25638139

Qi _ 138234690 940857449 vt 3127666779 5
’ 25638139 23638139 51276278 1

When m=n0=3
SN 345326?322]??' ] 1360051 7808274 e G627 5040000450 .
! 1923?554?6569? I923?354?6569? 19237554765697
and
I’M ID739J35806?20 A3455409551560 ot 1364 74582726500 E
k 19237554765697  19237554765697 19237354765607
_ ?58665{]368?612I3
1923755476567

The tuble below shows the convergence 1o the singular point of u[x} on application of

Pade’ approximant.

Tahle 2.1: The approximation of x. by Pade’ for the function in Example 2.1

P17 v
L

(1]
[B%}

3466054085
2906511358 — I1x107'%)

Lea
iy
La
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2.3 Algebraic Approximants
Algebraic approximant is a special type of Hermife — Pade’ approximants. In (he
Hermite — Pade" class we take
dz= LU, =L =0, 0, =07

Let &/{x) represent power series of a function and ¢/, (x) is the partial sum of that serics.
An Algehraic approximant «, (x) of U(x) can be delincd as the solution of the equation:

2P+ PP () + PRE () + ok PG ()= 0 (2.9)
Where o represent the degree of the partial sum U, (x). The Algebraic approximant
u, (x}, is in gencral a multivalued function with & branches.

The solutien of the equation (2.9) with & 21 gives us the coefficients of the polynomials

E,!."'(x}. The discriminant of this equation approximales the singulanity of U(x},

Vere, i PUC ()= olx™ ) (2.10)

1=l

o
And > degPll +d = . (2113

1=l

And the total number of unknowns in {2.10) are

o
> deg P x)ed +1=N+1. (2.12)

=0

In order to determine the cocfficients of the polynomials .’{E’] one can set !’I,[.D](ﬂ)zl for

normalization,

Example 2.2 Consider

rf(.t)=(l—3x}1"4+binr.
Let ¢ =2 and deg B = deg P = deg PV =2 10 apply the Algebraic approximation
method on the power series of the given function, After wo sct the nonmalization

condition !}[u](ﬂ'}: 1, we get the polynomials

40505101 121768145013567842933 2U57331978564362862005277394

AN x)=1+

+ x
22826806G1031195]16800305790263 * 228268061031 19516800305790263

2



_ 666327426223641455451  86497643139157177584 c

p['] b
i (I) 228368061031195168003  120141084753260061473
Q3700986920493964296

+ h
2282680610311951680

A 371472358962442535320 4 1(2929046962042066735

X
P 228268061031195168003  228268061031195168003
_496752609063763819700 ,

228268061031195168003°

Here the discriminant gives us Lhe singularity atx, = 04742842500 1f we increase the

deerce of the polynomial coefficients it may give us a better approximation. So, again let
dcgfﬂﬂ] =deg P,L'] = deg Pl[f] =3 andd = 2, following the same procedure wo get the
singularity at x, = 02906496342,

Again taking o = 2 and deg PLLD] =dcg P}EI = dcgﬁ;[f] =4 the singularity is calculated at

x =0 3126797065 . The table below shows the comparative results of the convergence

of the Algebraic approximation method to the singular point.

Table 2.2: The approximation ofx_ by Algebraic approximants for the function in

Example 2 2
deg P, | & X,
2 2 | 0.4742842500
3 2 | 029061496342
i 2 | 03126797065

Mote that « =3 may be more accuerate for this problem.



2.4 Drazin -Tourigney Approximants
Drazin and Tourigney in [6] implemented the idea & = G[ﬁ) as & — o Their meihod

is simply a particular kind of Algebraic approximant, satisfying the equation (2.9). in this

method they considered

deg Pt = o - (2.13)

and y =%(ﬂ’1 +3d-2), (2.14)

2.5 Differential Approximants
Differential approximants is an important member of the Hermite — Pade’ clags. Tt is

obtained by taking
d22, Uy=LU,=UU,=DUand U, =D"'U,

where = jr—;, a differential approximant #, (x} of the serics U(x) can be defined as the
o

solution of the ditfferential eguation

PR Py v Pl 4.4 PEIDTD, =0, (2.15)
Here {215} iz hamopeneous linear diffcrennal cquation of order {ff— ]) with polynomial
coefficients. There are (¢ — 1) lincarty independent solutions, but only one of them has the
same [irst few Taylor coefficients as the given series U(x). When « > 2. the usual

methed for salving such an equation is to construct a series solution
Differential approaimants are uscd chiefly for series analysis. They are powerful tools for

locating the singularties of a scries and for identifying their nature.

The singularities of U{x) arc located at the zeroes of the leading polynomial R,E.“'](x].
Henee, the zcrocs of Rl.‘"][x) may provide approximations of the singularities ol the

function u(x).
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e" (1 +sinx}

Example 2.3 Consideru{x) = :
1||] -—X
3

Taking d=4 for (2.11) and applying (2.1} and (2.2), wc obtain the singular point

atx_ = 3.000563091. In a similar procedure taking d =3 gives us more accurate result,
ie.x, =2.999999734 . The table below shows a comparative result.
Table2.3: The approximation of x,_ by Differcntial Approximant for the function in

Example 2.3

N |d x,
15 | 3 2.551301923
7| 4 3.000563091
28| 5 2999999734

2.6 High-Order Differential Approximants

Khan [17] introduced an extension of differential approximant, which he mentioned as
High-order differential approximant. When the fumction has a countable infinity of
branches, then the fined low-order differential approximants may not be useful. So, for
these cases he considered o increase with N, It lead to a particudar kind of differential

approximant u,, (x}, satisfying equation (2.14). Here
N:%d(d+3j and deg Pl = . (2.16)
From {(2.3) he deduced that ihere are
%(ff +3d +2)

unknenen parameters in the definition of the fermire = Pade’ form. [n order 1o determine

those parameters, we use the N equations

o
PP+ 3 P07, ()= 0l ) s x> 0.

=1
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In addition one cam normalize by settingPFI({}):I. Then there remaing as many
equations as unknowns. Onc of the roots, sayx, ., of the coefficient of the highest
derivative, i.c. !‘L‘f](xhﬁ.)= f), gives an approximation of the domipant singularity x_ af
the series [/, If the singularity is of-algcbraic type, then the exponent @ may be

approximated by

P -

&, =d-2~ .
) UP,H,[“’] i-r.:.,w l

2.7 High-Order Partial Differential Approximants

Consider the function f(x, yyol two independent variables, represented by its power

scrics

U, py=> 2. ¢,xp  (xp)— (0,0) (2.18}

1= gar]

and the partial sum

Lo o |
ZMESIED IS (219)
sl pmid
By using that partial sum, we try to construct the following (24 + 1) polynomials
Foops Loy Fagy e f D],P[.ﬂld.] (2.20)
in xand ysuch that
L e, &', '
P, +8. Y +P Y+, e p K e x y! (2.2]
1o~ tror s £0 1] ay C [21] 5}; ;; yx ¥ { )
Where ¢, =0 fori+j<N=3d-1 (2.22)
By cquating the coefficients of the variables and their powers from (2.22), one can obtain
atotal of
3ed(3d ~1
N, = ﬁz——) R eRE)

cquations to determing the unknown coelficients of the polynomials in (221}, we impose

the normalization condition

Pogy=h orFy =1 orf =1 for (x3)=(00). (2.24)
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Thus the remaining unknowns
N, = tdgat v6d+ 1)
a2

must be found by the use of ¥, cqualions.

It would be helpful to write the system of linear equations ¢, , =0 into the matrix form

with the N, x ] unknown matnx x.
Thus the non-homogeneous system of N linear equations with &, unknowns can be

writlen (n mateix form as

Ax=15

where A is N, x ¥, marix and & is the non-zero column matrix of order ¥, »1. Thus

system will be solvable of
NN, (2.25)
However, the system may be consistent or inconsistent. If the system is consistent , then

the system can be solved by converting the augmented matix [A| 6]to row echelon or

reduced row cchelon form by using the Gaussian elimination or Gauss-Jordan
elimination T is to note that, there will exist some frec variables. Naturally the values of
the free variables in the multivariable approximant methods can be chosen at random. For
alt the calculation reported in the remainder of (his chapter, we have in fact sct all the frec
variables to either zero or one. Theie is no paricelar teason to pick up these particular
nurmbers. We might for instance seck a solution such that the polynomials in (2.20) have
as few high-order terms as possible. Qur expericnce suggests that the accuracy of the
methol does not depend critically on the particular choice made.

Once the polynomiais (2.20) have been found, it 15 more practical to find the singular
points by solving cither of the polynamials coeflicients of the highest derivatives

Paay =0 or By, (x,y}=0 or both simullanecusly

e Wy
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2.8 Discussion

Hermite — Pade’ class is constructed over the technigue of truncated continued fraction.
The polynomial cocfficients were construcied by faling suecessive truncated continucd
frachons. Tn this chapter we had an overall study about the HMermite — Pade’ class of
approximation methods Examptes show the performance of Alpebraic approximant and
Differential zpproximant explicitly. We must mention that Drazin -Touripney method is
an improved Algebraic approximation technique. High-order differential approaimants is
medified Dilferential approximant whose performance is almost in cvery case
convincing. High-order pantial differential approximants [9] is a mnultivariable diflferential
approximants method is applicd to determine critical relation between the solution
parametcr.

In Chapter 3 we study a nonlinear differential equation with the application of Drazin-
Tourigney and High-order differenttal approximants and then the dominating singularity
behaviaur of the Laminar Unsteady Flow of a Viscous Fluid away from a Plane
Slagnation Point as the application of these lechmiques. Finally in Chapier 4 we analyse
the Critical Behaviour of the Hydromagnetic Flows in Convergent-Divergent Channcls

and the Critical relationship among the flow parameters.
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Chapter 3

Application of Approximation Methods on Model Problems

3.1 Background

The solutions of differcntial equations encountered in practice are regular at almost every
point; in the neighborhood of ordinary peints. Taylor series provide an adequate
description of the solution. However, the distinguishing features of the solution are its
singuiaritics. Determining the location and nalure of these singularities, without solving
the diffcrential equation, requires the techniques of local analysis.

Bender and Orszag [4] discussed a number of examples with local analysis. Without
solving the cquation they tned to locate the dominating singular points of this kind of
nonlincar differential equations by the application of approximation method. And try io
locate the dominating singular point with cnitical exponent which analyses the form of (he
singularity of this kind.

In this chapter, we havc studied the location and nature of dominant singularity in the
complex plane for laminar unsteady flow ol a viscous [luid at a plane stagnation point,
The series expansion with 44 terms in time of the shear stress 15 investipated with High -
order Differential Approximant 1o determine the poles in the complex plane using
algebraic programming language MAPLE. The scrics-improvement techniques arc
employed to'impmvc its convergence properties. It is observed that the performance of
High-order differcntial approximant is better than that of Pade’ approximant and Drazin-
Tourigny approximant. We have also examined a problem where approximation methods

were applied to reveal the singularities and have compared our result with others,
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3.2 Behaviour of the first Painlev'e Transcendent as x — +o
Consider the nonlinear differential cquation

w=u’+x (3.13
This diffcrential equation is the first of a set of six equations whose selutions are calied
the Painleve transcendent . These equations were discovered by Painlev'e in the course
of classifying noulinear diflerenuial equations, He considered all equations of the form

w" = Rz, wi{w)’ +S(z. wiw' + T(z,w)
having the propertics (a) that R. 5. and T. are rational functions of w, but have arbitrary
dependence on z and (b} that the solutions may have various kinds of lixed singularities
{poles, branch points, essential singularities). but may not have any movable singularities
expect for poles. There are 50 distinet types of equations having propertics. OFf course, 44
types are soluble in terms of elementary transcendent (sine, cosine, exponential),
functions delined by linear second-order equations (Bessel functions, Legendre functions
and so onjn , or elliptic functions. The remaining six equations defline the six Painlev'e
transcendent, one of which is (3.1},
Let us now return to the behaviour of the differential equation (3.1). This differental
equation is similar in form to the first-order cquation in [4] and its asymptotic properiies
are also similar in some respecis [see equation (4.2.1}, pp.150, Bender & Orszag [4]].
However, becavse this is a second-order cquation, a more sophisticated analysis is
requered.
We begin by arguing that u(x} exhibits movable singularities. Since the curvature of
u(x) is positive (u” > x > 0}, it is likely that an arbitrary sct of initial conditions will give
rise 1o a solution which becomes singular at a finite value of x. To discover the leading
behaviour ol such a singularity, we substitute
u(x) - Lb, X —a.
(x~a)

into the differential equation (3.1). Comparing powers of x > agives A=6 and b=2.

This suggests that u(x) has movable second —order poles.
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However, this does not prove that the movable singularities are poles. To verify such a

conjecture it is necessary to establish that a Laurent series solution of the (orm

u{x) = ¢ +ian(x—a)“ {3.2)

{x~ 5’«)2 na-]
exists in the neighborhood of x =a.
Actually u(x) has an infinite number of second-order poles along the positive real axis
and nat just cnc! The differential equation (3.1} has solved numenically, taking as initial
conditions u(0) = u'(0) = 0, and have plotted the result in Figure 3.1. Obscrve that there
is a sequence of poles along the positive real axis,
The presence of the infinite number of second-order poles on the positive real axis can be

understood from the graph of the tangent fteld given in Figure 3.1.

L ]

Figure 3.1: Computer plot of the solution te the initial-value problem
u” = u? +x [u{0) = u'(0) = 0] has an infinite number of second-order
poles on the positive real axis, Bender and Qrszag [4]
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Table 3.1: Estimates of the critical point x, ,, and the corresponding exponent a, by

using High-order differential approximants[17] (HODA) and Drazin and Touri gney
[6] {D-T) method for the differcntial equation v = u® + x [u(0) = u'{0) = 0].

N|d HODA HODA N ]d o=

X iy xow

1213 | 3.7428014612217258443 | -1.990996754691065]
18 | 4 | 3.7428015307707560902 | -2.0000000000013112]
23105 | 3.M2B00530770741877 | -2.000000000 00000000

33| 6 | 37428015307707418775 | ~1.99999904950590090 | 23 6 | 374216730018154 14712
421 T 13 TA280153077074 18775 | -1 99999999000994009 | 33 T | 3 MA2626TH0401 5566872

52 [ B | AT42B015307707418778 | -2 00QQGGO00000000G2 | 472 B | 3 740444704435823450| 4
63 | 9 1 3.74280153¢7752701044 | -2.00000000015497759 | 52 9 | 3 F07T439R382066125523
Ti[I0 | 3428005307494 16336 | -] 9999999053793838 |

We have analysed the location and nawre of the singularities by using various
generalizations of the approximation methods. From the above analysis Bender and
Orszag [4] tudicates that u(x)} has an inlinite number of second-order poles along the
posttive real axis and the nearest pole fo the origin isx,  =3.7428.

On the other hand, the results in Table 3.1 indicate that it {s possible, by using the High-
order differential approximants (HODA) to calculate the above pole and the eritical
cxponent & 1o 19 and 15 digits of accuracy withd = 7{N = 42). For comparison, the
table also shows the results by the Drazin-Tourigny (D-T) approximants Tt is clear that
the High-order differential approximants converges much faster and the value ofa

confirm that x_is a pole. Therefore the dominating singularity behavior of the solation is

w(x)~ Alx—x ) as x> x,

whele x, = 3.7428015307707418775 and a = -2.

We now study the laminar unsteady flow of a viscous fluid at a plane stagnation poiny,
where the singularity, for which the converpence of the series is limited, lie in the
complex planc and is a pole. Various approximation techniques are apphed to determine

this singuiarity in the complex plane and its critical cxponent.
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3.3 The Laminar Unsteady Flow of a Yiscous Fluid away from a Plane

Stagnation Point

To model the laminar Now of an incompressible Nuid with small viscosity away from a -

slagnation point, Hommel [13] tock the approach to formulate a serics expansion in time
for the shear stress at the stagnation peint. And then apply senes improvement techniques
with the hope of extrapolating to large times.

But in the present problem it was found that the singularity for which the convergence of
the serics is limited, lie in the complex plane and is 2 pole. This pole in the complex plane
for the physical variable ¢ can not be attached with a physical meaning. Hence, a finite
number of terms for the series is used to determine the radius of convergence to banish
the offending pole {or, more generally, singularity) to infiruty with a hinear fractional
transformation, such as an Euler transformation.

The non-dimcnsional coordinates are defined as,

] 2/ 12 '
x=Z y=,v’[ L“] \ r=2L“{, {3.3)
) v o

Where x' 13 the dimensional coordinate tangential to the flow boundary measured away

from the stagnation point, »is the dimensional coordinate normal to -the flow
beundary. £, 15 the speed of the stream at infinity, @ is the characteristic length, v is the

kinematic viscosity and ¢ is the time.
In a small region near the stagnation point, the polential flow comesponding to an

unpulsive stan is deseribed by the sireamn function,

W= —-(EvaUn ]”: Xy
Following Proudman & Johnson [25], this sclution is enforced as the outer boundary

condition for all time. Then the Navier-Stokes equations are solved exactly by setling,
W' = ~(2mUD}”2 xF(y.0)
To obtain the differential equation with imitial and boundary conditions
Fust,, =(_1+ Ff - FF, )’

F{0t)=F (0,/)=0,F, (0.} =1, (3.4)

#,(3.0}=1(y = 0).
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To solve this diflerential equation Hommel set,

F=2 £ )+t )+ f(m) + ). (3.5)
Where, 5= p/2¢'"%. Substituting (3.4} the equations {3.5) are solved by employing the
finite difference scheme. The main result for the dimensional shear stress at the boundary

is

vy . .
o' (x,y)= pv'" [?‘}] x‘%iﬂ’{ﬂ]t”'1 , where pis Lhe fluid density.

3.3.1 Results and Discussion

Van Dyke |29] considers the sign pattern to obtain the location of the dominating
singularity. For cocfficients numbercd 4,.... 44 the sign pattern 15

(+++———++=-—=+++-—) with the exceptions of coefficients nunbers 33 and 41.
Examiming the sign pattern, there exists a coraplex conjugate pair of sinpularities forming

angle with the real axis in the complex plane & = £67.5°,
Cauchy Root Test shows that the dominant singularity pair is located al a radius 3

approximately from the origin and at angles of %[ in the complex plane by

choosingp = 67.57.
. . 22 . . . .
Caleuiations  of  Pade > [4] propose that the dominant singularity §s  at

£, =1.201375433 £ 2.9320276111 with radius r, =3.168609923 and makng angle
B =+ §7.61° with the positive | axis.

We have anlysed the coefficients of the serics of shear stress T by algebraic and
differential approximation method and represent the results of comparison by tabular and

eraphically.



Table 3.2: Coefficients of the seres /(0] calculated by Hommel,

SL No £7(0) SL No £10)
1 1.1283791671 23 —0.1976x 107"
2 -1.60727816 24 09133x 107"
3 —0L.2480917 25 -0.1530x107"
4 0.14290 %10 26 0 8296x10°"
5 0.28692x10™ 27 0.1985x10™"
6 0.63774 %107 28 ~0.3284x 107"
7 -0.15147x10™ 29 ~-0.2569x107"
B - 0.10750x107 30 —0.2811%10™™
9 ~ 097361107 31 0.1717x107™"
10 0.89268 %10~ 32 0.6626x107"
11 0.30662x 107 33 ~0.262x107"
12 ~-0.18844 107 34 — 06351107
13 —0.34650x 107 35 —0.1522x107"
14 ~0.61583%107° 36 0.2526x107"
15 0.19425x10" 37 0.2129x107"
16 0.10522x10° 38 0.2511 %] 07"
17 0.58123% 107" 39 ~0.1575x107"
18 ~0.8889 107 40 ~0.6075x107"
19 - 0.26564%107°F 41 0.2687 x 107"
20 0.24906 %107 42 0.6591x 107
21 0.3176x107° 43 01050107
22 0.4865x107" 44 ~0.42835x10™

28
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Table 3.3; Calculated valucs of singularity 1, radius of the convergence v, angle with the

positive real axis €, and the critical exponent @ using Drazin-Tourigny method [6]

and High-order differential approximants[17

D-T

d, N t, I3 0

520 | BIT0YSDI2A30+ 30883573518 319822944 | +74.93

6,27 293037916321 + 341790041 172141 450212897 | +49.38

T35 | 1230500898999 - 2 T1915401 060161 290205441 | -45 30

HODA

'd: N IE‘ IF“I:' HC “

523 | L098R0T417 £ 2 395072768 263513739 | 26547 | -39.962218+22.1007012,
§,33 | LATTTA0001 £ 3.01734226% 331700952 L6557 | 10 2145653+ 62871 593]
742 1L ITa206370 % 2 730056686 2990309125 | £67.04 | 2070123085 461066524157

The Table 3.3 shows the singularities calculated by Drazin-Tourigny method [6] and

High-order differential approximants [17] by taking different number of coefficients from

the Table 3.2. It is clear that Drazin-Tourigny methad [6] can determine the dominating

singularity but taking 42 termns High-order differential approximants [17] caleutated the

singularity more accurately and it is at ¢ = 1,176206370+ 2.755056686i and gencrating

an angle € =+ 67.04° and alse detennine the type of the singularity which is a pole. The

pole caleulated by High-order differential approximants [17] agrees with the Cauchy

Root test and Van Diyke sign pattern examination.
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Figure 3.2: Approximate solution diagram (curve I3 in the { t, 1" ) plane obtained by
Drazin-Tourigny method [8] for d = 6. The other curves are spurious.

Figures 3.2 and 3.3 show that the shear stress ' is negative which confirms the

conjecture of Hommel [13]. Also numerically we have established that the singularities

lie in the complex plane for which there is no physical change in figure in the real plane.

: 4
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Figure 3.3: Approximate solution diagram (curve I3 in the ( &, t° ) plane obiained by
Drazin-Tourigny method [6] for o = 7. The other curves are spurious.

3.3.2 Conclusion

Table 3.3 shows the comparative study of the Drazin-Tourigny method [6]) and High-
erder differential approximants [17] to approximate the dominating singularity using 44
terms and the figures show the physical location of the singularity of shear stress in the
real plane for different values of d But High-order differential approximants [t7] is able
o caleulate the dominating singular point using even lesser torms. And also it shows not
anly the singular points but also the critical exponent. But the ondy pole that it calculated
by taking 42 terms agrees with the result of the Cauchy Root Test, and the assumption of

¥an Dyke according to the sign pattern. If more terms could be calculated and the value
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ol & could be increased then we hope that the result will converge more accurately to the

dominating singularity.

Nore: Thrs problenr fas been presented in the Bose Cenference on Confempordary
Physics organized by Physics Department, University af Dhaka wid The 4bdus Salam
International Centre for Theoretical Physics, Trieste, Naly on 19 - 21 March, 2008,
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Chapter 4
Critical Behaviour of the Hydromagnetic Flows in Convergent-

Divergent Channels

In this chapter we have studied the two-dimensional, steady, nonlinear [low of an
imcompressible conducting viscous fluid in Convergent-Divergent Channeis under the
influgnce  of an externally applied homogeneous magnetic field by means
of flermite — Pade” approximation especially Differential approximate method. We have
obtaincd the serics related to similarity parameters by using algebraic programming
language MAPLE. The scries iz then analysed by approximate mcthods to show the
dominating singularity behavior of the flow and the critical relationship among the

parameters of the solution.

4.1 Background

In modern times the theory of [low throuph Cenvergent-Divergent Channels have many
applications in aerospace, chemical, civil, environmental, mechanical and big-mechanical
engineering as well as in understanding rivers and canals. The study of conducting
viscous fluid flow through Convergent-Divergent Channels under the influence of an
external magnenic held is not only fascinating theoretically, but it also finds application in
mathematical modehng of several industrial and biological systems. The mathematicai
investigations of this type of problem were pioneered by Jeffery [16] and Hamel [14].
which was the classical flow of ordinary fuid dynamics. Jeffery-Hamel flows arc
interesting models of boundary layers in Divergent Channel Fraenkel {10], Sobey and
Drazin [28]. Banks et al. [3] have studied extensively the problem in different ways.
Makinde [23] investigated the Magneto Hydrodynamic (MHD) flows in Convergeni-
Dhvergent Channels. He cxtended the classical Jeffery-Hamel fows of ordinary fluid
dynamics 1o MHD. Makinde [23] studied that in the MHD solution an external magnetic
field acts as a control parameter for both Convergent and Divergent Channels flows
Hence, beside the flow Reynolds number and the Channel angular width, at least an

additional dimensionless parameter appears such as the Hariman number Ha. He
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pblained a perturbation serics of twenty-four terms in powers of perturbation

paramcters Re, @ and Heand showed how the flows evolve and bifurcate as the flow

parameters vary by using Algebraic approximate methad {i8].

4.2 Mathecmatical Formulation of the Problem

Consider the steady two-dimensional Mow of an incompressible eonducting viscous fluid
from a source or sink at the intersection between lwo rigid plane walls under the
influence ol an externally applied homogencous magnetic field as shown in Figurel. Tt is
assumcd that the (und has small electrical conductivity and the electromagnetic force

produced is very small. Let (#,8} be polar coordinate with » =0 as the sink or source.
Let o be the scmi-angle and the domain of the fow be—|a] < @ < |a|. Denote the velocity

gomponents in the radizl and tamgential direction by uw and v respectively. The

poverning equations in terms of the vorticity (@) and stream-function () can be written

as [23]
I (Magnetic ficld}
Figure 4.1: Convergent-Divergent Channels
Bl S S N (4 1)
r 8(8,r) me
X 2
whers Vi= g + 2 + ¢ . with the boundary conditions

ér®  rir rlog?

v=2 Y_5 o o-ta (4.2)
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Here (= fum’ﬁ' is the volumeire ilow rate, B, = (g f) the clectromagnetic

induction. g, the magnetic permeability, A, the intensily of magnetic field, o, the
conductivity of the Muid, p the [Nuid density and o is the kincmatic viscosity

coalficient..

For Jeffery-Hamel flow of condireting Nuid, we asswme a purely symmetric radial flow as

described in 3], so that the tangential velocity v=0and as a consequence of the mass

censervation, we have the stream-function given by = @ [T we require O 2 Othen
for e < 0 the flow is converging 1o a sink aty =0
The dimensionless form of equations (1)-(2} s
4 dG d* d*
?+2Rerz—r ?+[4—1’M}cx3 ?:ﬂ 4.3)
dn dn dn dn
G
with G=1,%L=0, at p=1l (4.4}
dry

2
i,

&
where p=— and Ha= X 1~1r.:=g are the Hartmann number and  the Mlow
a ol 2u

Reynolds number respectively.
The probiem defined by equation {4.3) is non-linear, for small Channel anpular width,

one can obtain a series of the Torm

=3 Ga' (4.5)

1=l

We then find that &{x) has a singularity at & = e, of the form
Gy~ Cler, —a
with the critical exponent 3, .

Substituting the above expressions {4.5) into (4.3} and collecting the coefficients ol like
powers of @ and with the help of MATLE, we have computed the first 18 terms for

stream-function (¢ interms of e, Re, Ha . [See Appendix []



The first few terms of the expansion of (7 arc

I K] 3 1 2 2
Gima, Re, Ha) = =n(3—n°) - — —5im=1(n+D*aRe—
(T, Re, Ha) 211( n) 23{}”{” n=1"(m+)*aRe 231900

98N — 950n*

+2472n7 = 28791 (n+ e’ Rcﬁ%n[n— %+ 107 (4 - Hayee™ +
(4.6}
Although the computational caimplexity increases rapidly, we managed to compute the
first 75 terms for & in terms of single parameterer for Re =20 and Ha =0,1,2,3,4.5. We
also computed the {irst 75 ters for Gin terms of single parameter Reat @ =01 for
Ha = 4. These scries are then analvzed by Differential approximate methods [17, 26] to
determine the crilical behaviour of the fow and uscd the Alrchraic approximate method

f18] to show the bifurcation diagrams and the critical relationship amaong the parameters.

4.3 Results and Discussion
For the analysis, we make use of the series in powers of o, Reand He for the following
tunctional form:

(5 = G, Re, Ha) .
I'his quantity is proportional to the velocity of the [low along the centre line. By
analyzing the series, we have calculated the lecation of the singulurity with the critical
e¢xponents for different parameters. The rosults arc obtained in terms of the critical

Channel angular width e, and critical Reynolds number Re, for dilferent values of

magnetic parameter Ha and these are shown in tabular and graphically in figure.

“-
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Table 4.1: Estimates of critical angles &, and corresponding exponent f_at Re = 20and

Ha = 0using High-order differential approximants [17].

£z, {zingle serics) X, (multi-variable series) ﬁc

2 T ZTURRIIWEALSITEGIA00138 | 27409809 95 1R52TAG G010 | ((IETRGES FETAR0TG4254

] 12 260206399707 52087005452 %16 | 2002050 TOTIA0RTR05452H 6 [ 1 6302008201 545T731T]

4 [ 18 [ 267973661035420T2R1 067502 [ 24707366 1055420720 0067802 | 4953033231401 112K55
5 | 23 | 2ETOAMTSLS453470037213470 NAMRIEL0EAO5EIGITY
6 | 33 | Z67980R3002 1607170540707 FOMINZI253492143561
T | 42 | 267R0083108284999 10588531 ADINRONOOIERTH5E9
| 32 | 267000B3103284580900001 103 ADOIDAGGGROA0RY NI GE
| &3 [ 26796033 1HE28466800444514 SR0000GCO00000 (G2
1| 75 | 2eT90UET105284GeP00444332 SO00000 OO0 2

Table 4.2: Estimates of critical angles o and curresponding exponent 8 at Re = 20 and

He =T using [ligh-order differential approximants [17].

d N £, isingle series) €1~ {mudti-vaziable se)ies) ﬁ".

7 2THAITIZEA018803263016330% | 276651 | 25E01BANS2A50163369E [ 7 429197N21826671452
|2 27170YR06132642T060300020 | 271 T6080a 050264 27005604299 | - 2617857 13430618567
16 | 26025 [48848373837234505044 [ ZoDRIT4881R5TREITII43053443 | A56190633203439565]

2

3

3

5 25 | 2091624 199088580028 | 6004 SOUZATIRYTANIA54T6
b 33 | 29062459771 14393877256165 ANNGGGGO0GE T AE1027
7 42 | 20M 62459706318 174443 150470 ARNG5RGR9I57 302 934
5 51| 266 ETES1380TT48]1 30293 49000GEQIULGEIR Y
g 6] 16916 ATAYEAOGTTIN 10092 S00MHIBCO0000 o000 S
10 il 261024597621 SAUT39346096 400000000000DTHIHE0 1




Table 4.3; Estimates of crilical angles e and corresponding exponent g at Re = 20and

Ha =2 using High-order differential approximants [17].

38

d N Cf - {pingle series) - (mulii-variable scrics) ﬂf

2 T ATELIISIN0O0INZZAFIGFA0TIOE [ ATE2IIOTR00 9224493407708 S919848362542434934
i 12 [ FTA7O5EIAEG1 033775109571 | 2737936304391 3033775199571 44 B2 0007092 0RE0T
q 18 [ 27037006305 782002 300650470 | 2037600545 78200230%656470 0530153083955 4%)
3 23 | TP0GE6HA263130R646000289 ] | SO00E55I2399T002RA
f il I RO I064 694 TROTTOI02TE A90G009902{(57 514659
T A2 | ZTOZEEI50A6]06046059542] AR9UNLLOOR9 TR 003 2
] 32| 2703BA559056]10320425004368 ST L DR
9 63 | 2705845500561 0320424824441 ALGOD R RRODIA50 G
0| TF | L2TOIEESSU0IGI 932024824455 SOOI RROOOG00 2 %

Tahle 4.4: Estimates of critical angles &, and correspending exponent 2 at Re = 20and

Ha = 3using High-order diflerential approsimants [17].

d ™ CF - {single serics) &, (rmmli-sirable series) -'8.:

2 T 27TA20367621 1426356355005 | 2TRTE036T62]1 142635 15350054 [ 332221729027 340814]
k! (2| 2602129599 11381062053064856 | 2692130990 1438 1062033064886 | 4% 473475097241 1047
4 18 | 27163028141 2358%31953860327 | 27163028 11565805 1935360527 | 501 1909303497291434
3 23 | 2TTRIFMERS E0T 17960053773 JRGG0324 74312720814
f 13 AHI6IS03A [R2IFAGTIRINIILD] 130 AMGGHRATIIF12T4I5T
7 d2 | 2716339318043 405 77199555 INOMIO0ANI38244847
4 320 [ AT16EAI0G4IE0197600EESTAZI0N SOOI HODOO0 BRHG2
9 63 | 2716 B GTA00EE 506790 AR099005ega9auang T
10 15 ZTLOI5930180EHTR00EEI 5047 74 A0RRNN0GGR09990 ] 5
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Table 4.5: Estimates of critical angles @, and corresponding exponent /4 at Re = 20 and

Ha = 4 using [ligh-order difterential approximants | 17].

€ - {fanple seres) €& - {muli-variable scrics) ﬁc

7 2RT2SHFT1 3263 3420 E080GEG | ZHI23051T3263543208 108069639 333349 18325105500
12| 27220274 7TNSITISNEAIQN00 | I72262740T7853037 | 596 10 04467 AUNZ285405424052 86
18 | 272902835740997 I03AF184308 | 272902835740997 0565 B13 G660 S00R4768164 7703434

2

3

1

5 33 27200544292 9R4T4ETEA 2001 70 FUP991428 | 6E502024

6 33 | 27Z0034345058H 72571 596591 SUNGEO0G 972260338

7 42 7 2TIF054343055595019052159 161 A0ON00000000T 31310

t 3| Z72RNA43AE035I0ENT 10476103 4909999 9055099990°7

4 63 | ATIN05{ 343055509505 193335098 SODOOOOOMINHIGO0] 15
2720054343055 59595 195533594 o5 OO DRG0 N H G

—_
=
==
h

Table 4.6: Estimates of critical anples . and corresponding exponent /i.at Re =20and

fa = Susing High-order differential approximants [ 17].

d N X (single srics) Cr, (multi-varahle series) .-Hc

2 7 JEITCASSATOS LZEOIT62TTIRTT | 24ITA04554T0H2I062TT | A3 IG265043364719954
K] 12| 273920407202368 J22BA3375T92 | 27A02066796236582281237 [ 4597345430254 745736
4 18 | 2TN9RS0IBIRE0RIIIG FA1Y | 2TH1993078485052386417 ¢ | S00TY L SUSHUGI6 1200
23 | ZT2019368428 525613803893 78 APVGDQIAYIH3AI 0555
fi 13 TR0 I9EFR3I0651 3T4Jd937075] S000G0001420329573]
7 43 ZR2IGE5E5 1975233791 395193 49000 0GG00EAS IS0
& 52 ITAIN D558 075 [T729554T8ER SOOLCOODD 0 GO0 H)
9| 61 | 233201933811973]1TTI01086707 ARRGRGRYYRANDRGEG
0 75 | 2T H55851973177203084712 495090 HHG9000 45
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Table 4.7: Estimates of critical Reynolds numbers Re,. and correspanding exponent

B.al « =0.1and Ha = 4 using [igh-order differential approximants [17].

d N r{er ﬁc

2 7 3R.2519022G5TTORAS3ED 16139279 T209F 1885807217077
3 12 | 54 4323441557060 743152202071 34 ATADARIGITIGL LA 7
4 18 | 34580367 (4819942 1153R3686132] AFGIHIRITNAR07AE62]
5 25 | 54 SRI0BRSRAUTATTISORI 2035270 A9G0034 8166086302467
i) 33| MARINEGRAUTANIIS 451951 R097 IGO0 9722 603390
T 42 | S SHIIEAGEGLIIID03E 183432271 SONCCOOID000 1361302
g 52 | SAENIDMGRGLII TS R63R952207 16 RELRPEEEL L b
] A3 | S4.EBL0EAE6TLEIMIA6IRGAT 19641 A99000049U SO9aLLDOOE
L 75 3 ERTORARGT L LITTRGIRGGT | DGk 09000000 I0G0 005805

Table 4.8: Comparisons of critical angles @, and corresponding critical expenent f, at

Re = 20 using High-order ditfferential approximants [17]. The result is comparable with

the result of Makinde [23].

HODA e i 1 7 3 F 3
d=4 a,. ZBTIT 306 26U23148 | 270376400 | 2763028 | 27200285 | 27410950
N=IE8

ﬁ 9539533 ASB19063 § 30330053 | A0119097 | S00E4T769 | S0079159
hakinde Ha 0 [ 2 3 4 3

”3 0.267%40 0209063 | 0272906 [ 0279878 0290451 0207406

Fii 0,500 0.500800 30004 050000 0 50400 30000
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Table 4.9: Comparisons of critical Reynolds number Re,. and corresponding exponent

2. at @ = 0.1 using High-order differentiat approximants [17) and Makinde [23].

BODA [ fig 0 1 2 3 rl 5
o =4 RB[" 5444407930 [ 5447803874 | 54,51340970 | 54 54702585 | 539 58135150 | 54 61676356
N=13
JI,E' A9 155356 | 4991135356 [ 4991155356 | 4997089458 | S001231984 { ADE5544495
[
wakinde | Hy { t 2 3 4 5
REL 54,4389 447170 54, 58047 i4.603110 5222071 3551927
}5‘ G 50000 050000 0 500010 830000 0.50000 0. 50000
]

Figure 4.2(a) and 4.2(b) displays the results that as the imagnetic parameter He increascs,

then the bifurcation point & changes form 26797366{ ffa = 0) to 27419920 (ffa = 5).

Figure 4.3(a) and 4.3(b) shows that as the magnetic parameler fia increases. the

bifurcation point Re, changes form 54.4440703% (Ha =03 1o 3461676356 ( Ha=5).

Therefore it is obscrved that the eflect of magnetic intensity changes the solution

behaviour of the problem.
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Figure 4.2: Approximate bifurcation diagram (curve 1) of @, i the{a, G(0)) Plane (2)
with Ha = 0and {(b) with {f& =5 obtained by Drazin-Tourigny method [6] for £ =8, The
other curves are spurious.



43

=
!

Ha=1, =01
Re, = 54.44407910

o
B RRERN ERREN

G0

Zu
I

1II-I1|I1

l"Ill"Il|||IIJJ'I""IJ'II'III"IIJ"r
A a5 40 43 53 S5 G0 G5 7

[2= ]
!

Hu=5 a=01
Re, =34.61676336

G(0)

o
=T |[.I|| T
]

Ia
|

|

=)
-

45 a5 [14] 737 ¥

L5
L]
LA
m
I
=]
wn
L)

I
o

(b)

Figure 4.3: Approximate bifurcation diagram (curve [y of Re,_in the(Re. €'((0 )} Plane
(a) with Ha = 0and (b) with Ho =3 obtained by Drazin-Tourigny method (6] for o = 4.
The other curves are spurious.
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Figure 4.6: Ciitical ffo— Re relationship {curve P using High-order partial
Difterential approximants [26] with o = 6. The other curves are spurious.

The MHigh-order Partial Differential Approximant [26] is applicd to the series

G'(0,, Re, Hayin order 1o determine the critical relationship of e, Re , Ha . In Figure
4.4, it is observe that as Re, increases then @, decreases. Figure 4.5 and 4. & shows that

e, and Re, changes signiftcantly with the changes of magnetic parameter Ao .

4.4 }scussion

laa this Chapter, we have studied the Critcal Behaviour of the solution of Hydromagnetic
flows in Convergent-Divergent Channcls. A number of interesting features have been
brought to attention, the foremost of which are different including the critical relationship
amemy the parameters of the flow.

From the present investigation the following conclusions can be drawn:

» . and Re,. increases uniformly as flg increases which are comparable with

the results of Makinde.

-
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+ Agthe magnetic parameter Ha increases, then the bifurcation point @, changes
form 26797366( Ha =0} to 27419950 ( ffa = 53} Also if the magnetic
parameter Ha increases, the bilurcation point KRe, changes form 54.44407339
{Ha =010 54616763560 { Ha = 3). Theretore it is observed that the effect of
magnetic intensily changes the solution behaviour of the preblem.

» From the critical relationship it is observe that as Re, increases then o,
decreases and a, and Re, changes significanily with the chanpes of magnetic

parameter £/a.

4.5 Conclusion

We have used power series to study the singulanity behaviour of the nonlincar problem of
Hydromagnetic Jeffery-Ilamel flow by using series summation technique. Qur results
confirm the conjecture of Makinde [23] with a little difference. Remarkably, we have

shown the eritical relationship among the parameters of the flow.

Note: This problem has been presented in the £ BSME-ASME huernational
Conference an Thermal Engineerinng on 27-29 December 2008 keld in LGED FIQ,
Agurgaon, Dhaka and 1UY, Gazipur

”
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Chapter 5

Conclusion

5.1 Conclusion

We have deseribed the Approximants methed which is applied t© analyse two (luid
dynamical problems. The Critical Behaviour of the Laminar Unsteady Flow of a Viscous
Iluid away [rom a Plane Stagnation Point and the Mydromagnretic Flows in Convergenl —
Divergent Channels have been studied using various types of Approximants methods.
The eritical relationships among the flow parameters have also been analysed.

By analysing the critical behaviour of the first Painlev'e transcendent we observed that
High-order Differential approximant is able to determine more significantly that

%, =3.7428015307707418775 is a pole of order 2, which is the nearest pole to the origin.

The conmparative study of the Drazin-Touripny method [6] and High-order dillerential
approximants [17] to approximate the dominating singularity behaviour of Laminar
Unsteady Ftow of a Viscous Fluid away from a Plane Stagnation Point using 44 terms is
presented, High-order differential approximants [17] is able to caleulate the dominating
singular point using even lesser terms and agrees with the results of the Cauchy Root test
and the assumption of Yan Dyke [29].

Anulysis of the Hydromagnetic Flows in Convergent — Divergent Channels show that the
critical Channel angular width and Critical Reynolds number changes uniformly due to
the cffect of magnetic parameler Hartmann number, Critical relationships represent the
sienificant variation due 1o the ettect of magnetic intensity,

We try to provide a basis for puidance about what method of summing power series
should be chosen for many problems in fluid dynamics to show the critical behaviour of

the flow,
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5.2 Future Work

There are some ideas to form the basis of future work:

% Critical Behaviour of the solution of Hydromagnetic Flows in Convergent-Divergent
Channels has-been analysed using High-order differential approximant and Drazin-
Tourigny approximant mcthod. Therefore, further research in this regard could be
carried out (i} by deriving series in more lerms (1) by using the series in terms of
paramelerHa .

s+ Application of Approximation methods in other fields that include perurbation series.
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Appendix 1

Program to cempute the coefficients of multi-variable series {in Chapter 4)

(980" — 950"

| 3 -
Gl a,Re, Fia) =§=:r(3—rﬁ—mnw’ -8 -1+ 1P aRe—

+24725% —2875)(n - 1¥ (7 + 1) ne’;diﬂq{r; _1(+ 1Y - Ha)a® +

#the parameter A= alpha*R and B= (4-H}*alpha’2:
intcrface(quic=true):

N:=25:

Adigits:=150:

Go=array(0..N,0. N}

he=array{0.N,0_N}:

p.=array((J.N,0.N):

for m from 0 to N do

for n from 0 to N do

if {im=0 and n=0} then
Gl0,0]:=(1/2)*eta*(3-eta™2}:
h[0,0):=dif[{G[0,0],eta):

p[0.0]:=dift{G[ 0,0, cta,eta):

else

L=t

#e.(m+ny=array(l..(4¥(m+n)+ 7))

c=amray(!_ (4 *(m+n)+7))
Gm,nl:=sum{c[i}*eta(i-1},i= | (4 (mtn+7)):
RO[mt,n]:=sum{c.{m+a)[i]*eta™(i-1),i=1. (4*(m+)+7):
g =diff{G[m,n],cta):

be[1]:=subs(eta=] G[m,n])=0:

bef{ 2 J:=subs(eta=-1,G[m,n]}=0:
be[3]=subs{eta=1,gg)=0:
be[4]):=subs(eta=-1,gg)=0:
11:=diff{G[m,n],etaeta,eta eta);

=y



N

11:=diff (G[m,n),eta,cta,etaeta):
j;:=:i'.'

[2:=0:

#for | from 0 to n do

#for k from 0 to m-1 do
#12:=12+h]k, 1] *p[m-k-1 n-1 I:

#od:

#od:

#12:=2%]2;
12:=2*sumn{sum(hfk,1]*p[m-k-1 N-1L1=0.n) k=0, m-1):
if (n=0) then

13:=10);

elsc

#3:=p[m,n-1));

13=p[m,n-1):

fi:

FF=expand(i [+12+]3);
#prin{[m,n],FEy;

for i from O to (4*(m+n}+2) do
beq[i):=coeff(FF,cta,i)=0:

od:

aa= array (1 .,(4*(m+11}+'?),l..(4*(111+n)+?) ¥
for i fromt 1 to 4 do

for j from ] to 4*(m+n)+7 do
salif]:=ceeff(lhs(be[i]),cli]):
#aa[i,j]:=cue[’f(lhs(bc[i]),a[m+n)[j]]:
od:

od:

for i from 5 to P (m+)+7 do

for j from 1 to 4%(m+n)+7 do
aa[ij]:qﬂefﬁlhs{baq[i-S]},cﬁ]J:

23



34

#aali jl:=coeff{Ths{beq[i-3]).c.(m+m)fj]):
od:

od:

b=array(l..(4*{m+n)}+7)}:

{for i from 1 to 4 do

B[iT:=0:

for i fromt S to 4*(m+n)+7 do
b[i]:=-(Ihs(beg[i-3])-(sum{aa[i,j]*c[iLi=1. 4*(m+n)}+ 7))
#b[i]:=(Ihs(beqli-SD)-(sum(aafi j1*c.(m+n)(j) =1 4* (o o)+ 7)):
od:

with{linalg):

c=array(1..(4*(m+n)+7)):

c:=linsolve(aa,b):

de.{mtn)=array(l. {(4¥(m+n)}+7)):
#e.{m+n):=linsolve{aa,b):

h[m,n]:=diff{G[m,n],eta):

p[m,n]:=hi[{G[in.n],eta,cta):

G[mn):=factor({G[m 1))}

print{{m,n]};

save G, "Co/Sirfjef_sar25.m";

h:

od:

od:

#done
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