A New Approach To Partial Differential Approximants

A dissertation submitted in partial fulfilment of the
requirencents for the award of the degree
1
of
Master of Philosophy
in Mathennatics
by

Md. Mustafizur Rahmat

Roll No. L00109005P, Registration No. 0110645
Session: October 2001
Department of Mathematics
Bangladesh University of Engineeringrand Technology
Dhaka-1000

by
1)r. Ma. Abdul Hakim Khan

Associate Professor
Department of Mathematics, BUET

Department of Mathematies
Bangladesh University of Engineering and Technology
Dhaka-1000
December 2004

A New Approach To Partial Differential Approximants

subinitted by
MD.MUSTAFIZUR RAHMAN

Registration No. 0110645 , Roll No. 100109005 P, Scssion: October 2001, a part time student of M. Phil (Mathematics) has been accepted as satisfactory in partial fulfillment for the degree of
Master of Philosophy in Mathematics on 29 December 2004.

Board of Examiners

1. MAHKLan-

Dr. Md. Abdul Hakim Khan
Chairman
Associate Professor
(Supervisor)
Department of Mathematics
BUET, Dhaka-1000
2. NHEMACOL

Dr.Nilufar Farhat Hossain
Professor and Head
Deparment of Mathematics
BUET, Dhaka-1000
3.

Dr. MT. Zakerullah
Member
Professor
Department of Mathematics
BUET, Dhaka-1000
4.

Dr. Amal Krisna Halder
Member
Professor
(External)
Dcparment of Mathematios
University of Dhaka
Dhaka-1000.

Table of Contents

Abstract v
Declaration vi
Acknowledgenernts vii
CHAPTER Page
1 INTRODUCTION 1
11 Elementary bufurcation theory 2
12 Review of Power Scrics 6
[.2.1 Single variable seres 6
12.2 Multivariable serjes 6
1.2.3 Pertubation scrics 7
13 Singularrities 9
1.3.1 Simgularities for single variable function 9
1.3.2 Singularities for multivariable function 10
14 Continued fraction 13
1.5 Overview of the work 16
2 EXISTING APPROXIMANT METHODS 17
2.1 Introduction 17
2.2 Single Variable Approximart Methods 18
221 /cule-Hermite approximants 18
2.2.2 Pade approximatts 19
2.23 Algebraic approximants 21
22.4 Differential approximants 23
23 Multivariable Approximant Mcthods 25
2.3.1 Multivariable P'odé approximants 26
232 Multivariable Algebranc appoximants 27
2.3.3 Firsher's approximants 30
2.4 Conclusion 32
3 A NEW APPROXIMAN'I METHOD 33
3.1 Introduction 33
3.2 Bascic ideas 34
3.3 Description of the method 35
3.4 Some simple applications 38
3.5 Application to symmetric Jeffery-Hanel flows 40
3.6 Results and discussion 43
3.7 Conclusion 44
4 CONCLUSIONS 45
41 Discussion 45
4.2 Future work 46
APPENDIX 47
REFERENCES 50

Abstract

The modelling of physical phenomena usually results to nonlinear problens whose solutions may have singularitics Practically the locations of the singularities are important For many problems, a solution can be found as a series in powers of one or several independent variables In this thesis under the title "A New Approach To Parial Diflerential Approxmants" we have analysed series in powers of two independent variables by H ght-order partial differential approximants We have developed the method using the concept of Pcte-Hermme class. It consists of a high-order linear partial differential equation with polynonial coellicients that is satisfied approximately by the partial sum of the multivariable power series We have also reviewed the different approximant methods for the summation of series in powers of one or more independent variables Our atm is to apply the new method to problems in plysical field, patticularty in fluid dynamics.

Candidate's Declaration

I hereby declare that the work, which is being presented in the thesis entitled "A New Approach To Pariah Differential Approximant", submitted in partial fulfillment of the requirements for the award of the degree of Master of Philosophy in Mathematics, in the department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, is an authentic record of my own work.

The matter presented in this thesis has not been submitted by me for the award of any other degree in this or any oiler University.

Balm
Date December 29, 2004
(Md. Mustafizur Rahman)

Acknowledgements

This thesis is preparcd under the sugervision of my honorable supervisor Dr Md. Abdul Hakim Khan, Associate Prolessor, Department of Mathematics, Bangladesh Dinversity of Engineering \& Technology, Dhaka liss generous help, guidance, constant cncouragement and indefatigable assistance were available to me at all stages of my rescarch work. 1 am thighly grateful to him for his eamest feeling and help in matters concerning my research affairs

I expross my deep regards to my respectable teacher; Dr. Nilufar Farhat Hossain, Professor \& Head, Deparment of Mathematics, BUET for providing me advice and necessary research facilitics

I also express my gratitude to my teachers Dr Md Zakerullah, Dr. Md. Mustafa Kamal Chowdhury, Mr. A K Illazra, Mr Md. lsa, Mr Md. Abdul Quddus Mean, Dr. Md. Elias, Dr Md Abdul Maleque, Mr Md Obaycdullah, Deparment of Mathematics, Bangladesh University of Engineering \& Technology, for their valuable comments and advice during my rescarch work.
I indebted to my parents who have been constant source of encouragement and inspiration from my chaldhood. I am grateful to my wife and kids for their encouragement and moral support thoughout the research work lndeed, they sacrificed a lot for my thesis

List of Tables

21 Convergence of singularity pont by I ade approximant for the 21 function in example 2.21
3.1 Estimates of $x_{c}\left(y_{c}=0\right)$ by the High-arder Parlial Differential 37
Approximants for the function (33.16)
32 Lstimates of $x_{c}\left(y_{c}=-1\right)$ by various Approximant methods for the 39 functions in the example 34.1
33 Lstmates of $x_{c}\left(y_{c}=0\right)$ by various Approximant methods for the 40functions in the exatriple 342
34 Estimates of Re by the ligh-order Parlied Differential 43- Approximauts (H1DDA) and the High-order DifferentialApproximants (HODA) for the Jeffery Hamel problem($\alpha_{4}=0.1$)

List of Figures

INTRODUCTION

 should apponamate the trath

> Shea loch Holmes, The Disuppearance of Lady Farces Carfaxt Sir Arthui Conan Doyle

This thesis is concerned wath a new approach to Partial Differential Approximants along with review of some existing approximant methods. The approximant methods are widely used to approsimate functions in many areas of applied mathematics.
The mathenalical nhodel of physical phenomena usually results in non-linear equations, which may be ilgelmise, ondinary differential, partial differential, integral or combination of these. The non-linear cquiltoms may contan one or scveral independent variables. The solutions of these non-linear systems are dominated by their singularities (if exist), A value of independent surible (or varables) for which the function is undefined is known as a singularity of the function. Singularity plays an important role in many areas of applicd science. P'utheularly in fluid dynames, the presence of singularitics may reflect some changes in the nalure of the flow and their study is of great practical interest. Sometimes it is very diffecull to find out the exact solution of physical problems. Particularly in statistical mectunics, there are a barge number of problems for which the frist few tems of the power serics may be obtained exactly white the exact solution is unobtainable. The three elimensional [sing mode] [18] is a good example. On the other hand, if the power seres expansion of a mon-linear systen is given, but their corresponding function is not hown, when it becomes diflicult to reproduce the runction from the given powe series. Howcver, one can study their singularitics by some power serics approximant methods. In order to study these problems many powerful techniques have been used to find the power sories cocfficients. At the same time a variety of methods have been motoluced for gelting the required information about the singularities by using a funte number of series cocflicicuts.

Brezinski [5] shulicel history of continued Fracton and Podé a!proximants. Blanch [6] evaluated continued factions numerically λ siso the applications of continued fractions and their gencrallailtons to problems in approxmation theory have been studied by Khovanskii [28]. Kban [24] anatyzel singularity behavor by smming power series. Khan [25] abso introducel Differential Approximant for single independent variable, where he developed at new form of ordimary differential approximant called High-order Differential Approximant (HODA), for the summation of power scrics. The method is a special tyse of Patei-/lermite class and it is one of the best methods of singularity analysis for the probtens of suggle independent variable. Baker and Graves-Morris [1] studied multuvariable Pade approximants aud stated that the gencralization of Pade approximants to more than one variable is as usual. In this regard multivariable algebraic approximants [26] are notable. Fisher and Styet [14] introduced partial differential approximats for mativarible power seres Styer [34] also investigated the invariance propertics of partial differcntial approximents. Fisher and Kerr [15] studied multi-critical singularities by pantal differential approvimants. Recently Khan et al. [26] described a method for the summation of series in powers of several independent variables and its applicution in fluid dymamics
The rematinder of this introductory chapten is organized as follows:
Since the problems that we shatl stuty in this thesis are nonlinear, we begin with a bricf review of elementary bifuration theory in §l.1. Then in $\S \$.2$ we also review some elementary facts aboul power sciles. In $\S 1.3$ we discuss varions types of singularities with examples. We prenent the basse concept of continued fractions in §I.A. Finally in §1.5 we describe abriefout dinc of the rentainder of the thesis.

1.1 Etemenary hiluration theory

in this thesss we have investigated an mportant nonlinear problem, which arises in fluid mechanics Solution of nondincar probiems viten involve one or several parameters. As a parameter varises, so ducs the soluthon set. A bifuration occurs where the solutions of a nonlancar bysten change theit' gualitative chatracter as a parameter changes. In particular,
bilurcation theory [13] subout how the number of steady solutions of a system depends on parancters. Theicfore, about the theory of bifurcation concens with all nonlineas systems and thenoc has a geat vartety of applications. Examples of bifurcations are: Simple turning points, in which two real solutions becomes complex conjugate solutions and pitchfork bifurcalion, in which the number of real solutions changes discontinuously from one to three (or vice versa). Our purpose in this scction is to introduce some clementary concepts of bufurcation theory. Drazin has described bifurcation theory in detar in [1.3]. To silustrate the bifurcation points, first we consider the quadratic equation

$$
\begin{equation*}
x^{2}-a=0 \tag{1.1,1}
\end{equation*}
$$

The roots $\pm \sqrt{\alpha}$ are real for $\alpha>0$ and are a complex conjugate pair for $\alpha<0$. We say that there is a change in the character of tie solutions at $\alpha=0$, where there is a repeated root $x=0$. If we condine ous atlention to real solutions, then there are two for $\alpha>0$, one
 parabola in the $(0, x)$-plane, shown in the Fig 1.1 , which is called bifurcation diagram and $(0,0)$ is catied a bifureation point.

Jijuref.1: Bilutcation diagrant for (1.1.1) in the (α, x)-plane In details, let us consider at finctional map $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. we seek solution $x=X(\alpha)$ of

$$
\begin{equation*}
f(x, \lambda)=0 \tag{1.1.2}
\end{equation*}
$$

The solutions can be visualized by means of a bifurcation deagean, in what the solution curves are drawn in the ($(6, x)$-planc.
Consider $\left(\alpha_{0}, x_{0}\right)$ be a solution of (1.1 .2)

$$
\begin{equation*}
\text { i.c. } f\left(a_{0}, x_{0}\right)=0 \tag{1.1.3}
\end{equation*}
$$

Then, we may expand /na Tiyfor serics about $\left(\alpha_{0}, x_{0}\right)$ and so stady the solution set in that neighborhood. We get

$$
\begin{equation*}
0=f(\alpha, x)=f\left(\alpha_{0}, x_{11}\right)+\left(x-\iota_{11}\right) f_{2}\left(\alpha_{13}, r_{0}\right)+\left(\alpha-\alpha_{0}\right) f_{0}\left(\alpha_{0}, x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{2} f_{x x}\left(\alpha_{0}, x_{0}\right)+\cdots \tag{1.1.4}
\end{equation*}
$$

If we take $f_{1}\left(\alpha_{0}, x_{0}\right) \neq 0$, then

$$
\begin{equation*}
x(\alpha)=x_{0}-\left(\alpha-\alpha_{0}\right) \frac{f_{0}\left(\alpha_{0}, x_{0}\right)}{f_{2}\left(\alpha_{0}, x_{0}\right)}+o\left(\alpha-\alpha_{0}\right) \text { as } \alpha \rightarrow \alpha_{0} \tag{1.1.5}
\end{equation*}
$$

and we see that there is only one solution curve in the neighborhood of the pont $\left(\alpha_{0}, x_{0}\right)$ in the bifurcation diagran.
However, if $\left(\alpha_{0}, x_{0}\right)=\left(\alpha_{2}, x_{t}\right)$ where

$$
\begin{equation*}
f\left(\alpha_{c}, x_{\varepsilon}\right)=0 . f_{1}\left(\alpha_{c}, x_{c}\right)=0 \tag{1.1.6}
\end{equation*}
$$

then the exparsion (1.1.4) shows that there are at Ienst two solution curves in the neighlibrhood of $\left(\alpha_{t}, z_{t}\right)$. The point $\left(\alpha_{c}, x_{t}\right)$ is called a bifurcation point.

Example 1.f.1 I.el /he given by

$$
\begin{equation*}
f(c, x)=(x-2)\left[(x-2)^{2}+\alpha+1\right]-\varepsilon \tag{1.1.7}
\end{equation*}
$$

where ε is some teal parameter, By solving the equation (1.1.6), we see that the bifurcation point depends on ε. For $\varepsilon=0$, the bifurcation ocetrs at $\left(\alpha_{c}, x_{c}\right)=(-1,2)$, which terms as the singularidy point and there are three solution branches that intersect at that point, hence lice "pilelfork bifurcation", shown an Figure 1.2.

Such putehforks often anse as a result of some symmetry inherent in the problem, It is interesting to note that for non-zero values of ε. no matter how small, this pitchfork is replaced by a staphe turning point, as showen in Figure L.3. The existence of the parameter a "breaks lise synumetry" in the problem.

Figure 1.2: Pitchfork bufurcation diagram for (1.1.7) in the (a, x)-plane $\varepsilon=0.0$

Figure 13 : Symmetry breaking into the bifurcation diagram for (1,1.7) in the (u, x)-plate when $\varepsilon=0.01$

1.2 Review of Power Sericy

The solution of nonlinear problem can be expressed as a serbes in powers of one or several independent variables The first few tems of the series expansion contan major information of the problcm One can use this information to carry out further research on the problem

1.2.1 Single variable series

Consider a function $f(x)$ which can be represented by a power seres

$$
\begin{equation*}
S(x)=\sum_{t=0}^{4} c_{1} x^{1} \quad \text { as } \quad x \rightarrow 0 \tag{12.8}
\end{equation*}
$$

The Nth partial sum is

$$
\begin{equation*}
S_{N}(x)=\sum_{i=0}^{N-1} c x^{\prime} \tag{1,2.9}
\end{equation*}
$$

The series converges if the sequence of partial sums converges. When the serics converges, the series $S(x)$ can be approximated by the partial sum $S_{N}(x)$ and the error is defined by

$$
\begin{equation*}
e_{N}(x)=S(x)-S_{2 k}(x) \tag{array}
\end{equation*}
$$

When $S(x) \neq 0$, the absolute relative error is defince by

$$
\begin{equation*}
u_{x}(x)=\left|\frac{e_{N}(x)}{S(x)}\right| \tag{1211}
\end{equation*}
$$

1.2.2 Multivariable sertes

Consider a function $f(x, y)$ of two independent variables, which can be represented by a power series

$$
\begin{equation*}
S(x, y)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{i,} x^{\prime} y^{\prime} \quad \text { as } \quad(x, y) \rightarrow(0,0) \tag{1.212}
\end{equation*}
$$

The Nth partial sum is

$$
\begin{equation*}
S_{n}\left(x, y^{\prime}\right)=\sum_{t=0}^{N-1} \sum_{y=0}^{N-1} c_{1} x^{\prime} y^{\prime} \tag{1.2.13}
\end{equation*}
$$

The series converges if the sequence of parial sums converges. When the serics converges, the serics $S(x, y)$ can be appresintated by the partial sum and the crror is define! by

$$
\begin{equation*}
e_{N}(x, y)=S(x, y)-S_{N}(x, y) \tag{1.2.14}
\end{equation*}
$$

When $S\left(x, y^{\prime}\right) \neq 0$, whe alsolute celative crroo is delined by

$$
\begin{equation*}
c_{N}^{\prime}\left(x, v^{\prime}\right)=\left|\frac{c_{N}\left(x, y^{\prime}\right)}{S\left(x, y^{\prime}\right)}\right| \tag{1.2.15}
\end{equation*}
$$

In applicd mallicmatics, power serics are often obtained by expanding a function in powers of some perturbation parameters. In: the following subscction, we describe the basic literature on pertubation Iechniquues. Sce [4] \& [31] for details.

1.2.3 Perturbation serics

Perturbaton theory is a collection of methouls for the systematic analysis of the global behavior of solutions in nomlincar problems. Sometimes we solve nonlinear problems by expanding the solution in powers of one or several surall penurbation parameters. The expansion may comain small or large parameters which appear naturally in the equations, or whel may be urtilicidly juroduced. A perturbative solution is constructed about the perturbation parameter $\varepsilon=0$ as a serics of powers of ε

$$
\begin{equation*}
s(x)=c_{0}(x)+\varepsilon c_{1}(x)+\varepsilon^{2} c_{2}(x)+\cdots \tag{1.2.16}
\end{equation*}
$$

whare lice cocflicients c_{n} are independent of ε. This scries is called a perturbation series. His to note theat the perturbation scrics for $s(x)$ is local in ε but that it 15 global in x. If ε is very small, we expoct that $s(x)$ will be well approximated by only a few terms of the perturbation scries.

Following are cefenentary cxamples to untroduce the ideas of perturbation series.

Example1.2.2 Roots of a cubic polynomial
Consider the algebraic equation

$$
\begin{equation*}
x^{4}-(4+\varepsilon) x+2 z=0 \tag{1217}
\end{equation*}
$$

for small ε.
For $\varepsilon=0$ it have the roots $x=-2,0,2$
Assume a perturbation series in powers of ε

$$
\begin{equation*}
x(\varepsilon)=\sum_{r=0}^{x \prime \prime} c_{1} \varepsilon^{\prime} \tag{1.218}
\end{equation*}
$$

When $x=-2$, by substifuting the expanson

$$
x=-2 \div c_{1} \varepsilon+c_{1} c^{2}+\cdots
$$

into (1.2 18) and equating the cocfficients of ε, we get $c_{1}=-\frac{1}{2}, c_{2}=\frac{1}{8} \ldots$
Therefore, the pertubaton series for $x=-2$ is

$$
x_{1}=-2-\frac{1}{2} \varepsilon+\frac{1}{8} \varepsilon^{2}+\cdots
$$

The same procedure gives

$$
x_{2}=0+\frac{1}{2} \varepsilon-\frac{1}{8} c^{2}+O\left(c^{3}\right), \text { for } x=0 \text { and } x_{3}=2+0, \varepsilon+0, \varepsilon^{2}+O\left(c^{3}\right) \text {, for } x=2
$$

Example1.2.3 Consider the initial value problem

$$
\begin{equation*}
y^{\prime \prime}=f(x) y, y(0)=1, y^{\prime}(0)=1 \tag{1.219}
\end{equation*}
$$

First we introduce an ε in (12.19) such that the unperturbed problem is solvable

$$
\begin{equation*}
y^{\prime \prime}=c f(x) y, y(0)=1, y^{\prime}(0)=1 \tag{1.2.20}
\end{equation*}
$$

Now assume a perturbation expansion for $y(x)$ in the following form

$$
\begin{equation*}
y(x)=\sum_{\mathrm{j}=0}^{\infty} c^{\prime} y_{\mathrm{s}}(x) \tag{1.2.21}
\end{equation*}
$$

where $y(0)=1, y^{\prime}(0)=1$ and $y_{i}(0)=0, y^{\prime}(0)=0 \quad(i \geq 1)$
The zero-th order problen $y^{n}(0)=0$ is obtained by selting $<=0$ and the solution which satisfies the intitial condition is $y_{0}=1+x$

For the the onder problem ($i \geq 1$), substitutug (1221) into (1.220) and equating the coefficient of $\varepsilon^{\prime}(t \geq 1)$ to zero, we get

$$
\begin{equation*}
y_{i}^{\prime \prime}=y_{i-1} f(x), y_{1}(0)=0, y_{1}^{\prime}(0)=0 \tag{1222}
\end{equation*}
$$

The solution of (1222) is

$$
\begin{equation*}
y_{i}=\int_{0}^{1} d t \int_{0}^{1} d s f(s) y_{1-1}(s), t \geq 1 \tag{12.23}
\end{equation*}
$$

Equation (1.2.23) gives a simple iterative procedure for calculating successive terms in the perturbation scries (12.21).

$$
\begin{equation*}
\left.y(x)=1+x+\varepsilon \int_{0}^{x} d \int_{0}^{2} d s(1+\cdot s)\right)(s)+\varepsilon^{2} \int_{0}^{x} d \int_{0}^{x} d s f(s) \int_{n}^{x} d w \int_{n}^{x} d u(1+w) f(u)+\cdots \tag{1.2.24}
\end{equation*}
$$

Putting $a=1$ yields the result.

1.3 Singularitics

Singularity of a function is a walue of the independent variable or variables for which the function is undetired. Singulaities are crucial points of a function, because the expansion of a function jato a power series depends on the nature of singularities of the function For the purpose of this thesis. we are interested to atalyze those functions, which have several types of singularities

1.3.1 Singularities for single variable function

The rate of convergence of the sequence of partial sums depends crucially on the singularitics of the function represented by the series Several types of singularities may arise in physical (non-linear) problems. The dominating behavor of the function $f(x)$ represented by a series may be written as

$$
\begin{equation*}
f(x) \sim M\left(1-\frac{\lambda}{x_{c}}\right)^{\prime \prime} \quad \text { as } x \rightarrow x_{c} \tag{1.3.25}
\end{equation*}
$$

where M is a constan and x_{r} is the critical point with the critical exponent α. If α is a negative integer then the singulanity is a pole, otherwise if it is a monnegative rational
number then the singularity is a branch point. We can include the correction terms with the dominating part in (1.3.25) to estimate the deyree of aecuracy of the critical points. It may be

$$
\begin{equation*}
f(x) \sim M\left(1-\frac{x}{x_{c}}\right)^{\alpha}\left[1+M_{1}\left(1-\frac{x}{x_{c}}\right)^{a_{1}}+M_{2}\left(1-\frac{x}{x_{c}}\right)^{\alpha_{2}}+\cdots\right] \quad \text { as } x \rightarrow x_{c} \tag{1.3.26}
\end{equation*}
$$

where $0<\alpha_{1}<\alpha_{2}<\Lambda$ and M_{1}, M_{2}, Λ are constants. $\alpha_{\mathrm{r}}+\alpha \notin \mathbb{N}$ for some i, then the corroction terms are called confluent. Sonetiones the correction terms can be logarithmic. Such that $f(x) \sim M\left(1-\frac{x}{x_{c}}\right)^{c}-\left\{\left.1+|\ln | 1-\frac{x}{x_{c}} \right\rvert\,\right\} \quad$ as $x \rightarrow x_{c}$
Sonetimes the sign of the series cocfficients may indicate the Iocation of the singularity. If all terms are cither positive or negative then the dominant singularity must be on the positive x-axis. If they alternate in sign then the dominant sugulatity is on the negative x axis

1,3.2 Singularities for multivariable function

Several types of singularities may arise in plysical problems that involve more than one itrdependent variable. It is obvious that such functions might behave as

$$
f(x, y) \sim\left\{\begin{array}{l}
M\left((x, y)-\left(x_{c}, y_{i}\right)\right)^{\prime} \tag{1.3.28}\\
M \ln \left(1+\frac{\left(x_{1}, y\right)}{\left(x_{c}, y_{c}\right)}\right)
\end{array} \quad \text { as }(x, y) \rightarrow\left(x_{c}, y_{c}\right)\right.
$$

near the critical points, whele M is a constant, and $\left(x_{1}, y_{1}\right)$ is the critical point with the critical exponent α. If α is negative integer then the singularity is a pole; otherwise if it is nonnegative rational number then it represents a branch point singularity.

Fullowing is a basic theorem that relates the asymptotic behavior of the power series coefficients to the form of the dominant singularity.

'Iheorem 1.3.1 (Darboux's in the case of' vingle singularity)

Let the funcum $f(x)$ be analyuc in the closed dise $|x| \leq\left|x_{r}\right|$, apath from a bratich eut for a single algebraic singularity at $x=x_{c}$, so that

$$
\begin{equation*}
f(x)=\left(1-\frac{x}{x_{c}}\right)^{\prime x} P(x)+Q(x), \quad \text { for } \alpha \notin \mathbb{N} \tag{1.3.29}
\end{equation*}
$$

where $P(x)$ and $Q(-1)$ ate analytic in a dise that includes the dise $|x| \leq\left|x_{r}\right|$. Then the cocfificients of the power series (1.2.8) satisly the asymptotic relation

$$
\begin{equation*}
c_{1} \sim \sum_{k=0}^{N} \frac{(-1)^{k+1} P^{(k)}\left(x_{c}\right)!(i-\alpha-k) x_{c}^{k-2}}{k!!\Gamma(-\alpha-k)} \quad \text { as } i \rightarrow \infty \text {, } \tag{1.3.30}
\end{equation*}
$$

for any N and some constants $P^{(\alpha)}(x)$ independent of i.

Lere are some artificial examples with different types of singularities.

Example1.3.4 Single variable functions
I. Singularitics that are poles:

$$
f(x)=(1-2 x)^{-1}+\sin (1-x)
$$

Il. Algebraic singularitics with the same exponent:

$$
f(x)=2\left(1-\frac{x}{3}\right)^{-1 / 2}+3\left(1-\frac{x}{4}\right)^{-1 / 2}+4\left(1-\frac{x}{5}\right)^{-1 / 2}+5\left(1-\frac{x}{6}\right)^{-1 / 2} .
$$

III. Algebraic singularities woth different exponents:

$$
f(x)=2\left(1-\frac{x}{3}\right)^{-1 / 2}+3\left(1-\frac{x}{4}\right)^{-1 / 3}+4\left(1-\frac{x}{5}\right)^{-1 / 4}+5\left(1-\frac{x}{6}\right)^{-1 / 5} .
$$

IV, Logarihmic singularsty:

$$
f(x)=\ln (1+x)+\sin (x)
$$

V. Essential singtharity:

$$
f(x)=\operatorname{cxp}\left[2\left(1-\frac{x}{3}\right)^{-1 / 2}\right] \cdot
$$

VI. Algebraic dominant sugulatty with a secondary logarithmic behaviour:

$$
f(x)=\operatorname{enp}(x)\left(1-\frac{x}{3}\right)^{-1 / 2}+\ln \left(1-\frac{x}{4}\right)
$$

VII. Cube rool sungularity:

$$
f(x)=(1-x)^{1 / 3}+\operatorname{cxp}(x)
$$

Example1.3.5 Multivariable functons related to the :
I. Singularities that are poles:

$$
f(x, y)=(1-2 x+y)^{-1}+(1-x+2 y)^{-2}
$$

II. Algebranc singularities with the same exponent.

$$
f(x, y)=2\left(1-\frac{x}{3}+y\right)^{-1 / 2}+3\left(1-\frac{x}{4}\right)^{-1 / 2}+4\left(1-\frac{x}{5}\right)^{-1 / 2}+5\left(1-\frac{x}{6}\right)^{-1 / 2}
$$

III. Algebraic singularities with different exponents:

$$
f(x, y)=2\left(1-\frac{x}{3}+y\right)^{-1 / 2}+3\left(1-\frac{x}{4}\right)^{-1 / 3}+4\left(1-\frac{x}{5}\right)^{-1 / 4}+5\left(1-\frac{x}{6}\right)^{-1 / 5}
$$

IV. Logarithmic sugularity:

$$
f(x, y)=\ln (1+x-y)+\sin (x)
$$

V. Essential singularity:

$$
f(x, y)=\exp \left[2\left(1-\frac{x}{3}+3,\right)^{-1 / 2}\right]
$$

VI. Algebraic dominant singulanty with a seeondary logarinhonic singularity:

$$
f(x, y)=\operatorname{cxp}(x)\left(1-\frac{x}{3}+y^{\prime}\right)^{-1 / 2}+\ln \left(1-\frac{x}{4}+y^{\prime}\right)
$$

VII. Cube root singulartly:

$$
f(x, y)=(1-x y)^{1 / 3} \div \operatorname{cxp}(x+y)
$$

To analyae the singularity behavor, it wery mportant to kuow about the continued fractions.

1.4 Continued fractions

Continued fraction bats a fong bustory. For historical survey one can see [5] and [29]. Continued fraction is very usefult to analyse the dynamical sysiens, wotably in connection with renormalization. 1 cere we present the basic concepts of continued fractions.
Let x be a rational mumber, then the simple continued fraction of x is

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+}} \begin{array}{r}
\quad \tag{1.4.31}\\
\\
\\
\\
\quad+\frac{1}{a_{n-1}+\frac{1}{r_{N}}}
\end{array}
$$

where, for $0 \leq i<N, a_{i}=$ flon $\left(\frac{1}{i_{i}}\right)$ and foor $\left(\frac{1}{r_{i}}\right)$ denotes the integral part of $\left(\frac{1}{r_{i}}\right)$.
In this expression the a_{i} are positwe integers and r_{N} is called the W th remainder.
Examplet,4.6 let r $=\frac{95}{43}$.
Then

$$
\begin{aligned}
\frac{95}{43}= & 2+\frac{1}{4+\frac{1}{1 \cdot 1-\frac{1}{3+\frac{1}{2}}}} \\
& =[2,4,1,3.2]
\end{aligned}
$$

For every rational number, cenentally the remainder must be equal to 0 . On the other hand, if x is mathonal, then ibe remainder can never vanish and we can get the inlinite continued fraction

$$
\begin{equation*}
x=a_{a_{3}}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots}} \tag{1.4.32}
\end{equation*}
$$

$$
=\left[a_{0}, a_{1}, a_{2}, \cdots\right]
$$

Example 1.4.7 L.et $x=\sqrt{3}$. Since $1<x<2$ then 1 is the greatest integer Iess than $\sqrt{3}$.

$$
\sqrt{3}=1+(\sqrt{3}-1)
$$

Thus

$$
\sqrt{3}=1+\frac{1}{1+\frac{1}{2+(\sqrt{3}-1)}}
$$

Hence

$$
\begin{aligned}
\sqrt{3} & =[1,1,2,1,2,1,2, \cdots] \\
& =[1, \overrightarrow{1,2}]
\end{aligned}
$$

By neglectarg the N (la rentainder in (1.431), we obtan a rational ipproximation x_{N} of x

$$
x_{k}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+}} \begin{array}{r}
\ddots \tag{1,4,33}\\
\\
+\frac{1}{a_{k-1}}
\end{array}
$$

x_{N} is called the \hat{t} th convergen of the continued fraction (1.4.32).
A power scrics may be manipulated into a fonn of conlinued fraction. It is just another way of wroting fractons. It has some interesting conncetions with the approximate methods. Continutd fractions cent be simplified by cutting after a finite number of iterations. The result of the tenninated continued fraction will give a true fraction, but it will be and appoximation to the power series.

Consider a function $f(x)$, which represents the power serics

$$
\begin{equation*}
S(x)=\sum_{x-1}^{n} c_{1}, x^{\prime} \quad \text { as } \quad z \rightarrow 0 \tag{1.4.34}
\end{equation*}
$$

Let us now see how, it cats be expresed as a corntinued fraction The A th convergent of the series (14.34) is

$$
\begin{equation*}
S_{j}(x)=\sum_{i=0}^{N-1} c_{1} x^{\prime} . \tag{1.435}
\end{equation*}
$$

In order to convert (1435) into continued fraction, assume that all the inverse that we need exist.

The continued faction of (1435) is

$$
\begin{align*}
S_{N}(x) & \sim c_{11}+\frac{c_{1} x}{1 \cdot 1 \frac{c_{1}^{(1)} x}{1+\frac{c_{1}^{\left({ }^{[j}\right)} x}{1+y^{2}}}} \tag{14.36}\\
& =\frac{c_{11}}{1+} \frac{c_{1} x^{2}}{1+\frac{c_{1}^{(1)} x}{1+}} \frac{c_{1}^{(2)} x}{1+\cdots}
\end{align*}
$$

The convergen of (1.434) is rational function tr the variable x
In general, we catt oblain a rational approximant from (1.436) of the form

$$
\begin{equation*}
\frac{P_{N}(x)}{Q_{N}(x)}=\frac{b_{11}+b_{1} x+b_{2} x^{2}-1 \cdots+b_{2} x^{*}}{d_{1,}+d_{1} x+d_{2} x^{2}+\cdots+d_{k} x^{*}} \tag{1.4.37}
\end{equation*}
$$

which matches certain number of terms of the scries (14.34)
ln particular, the roots of the denominator $Q_{n}(x)$ give the singularity of the serics (1 4.34). When the series (1434) represents a rational function, the remainder of (1437) must eventually reduce to a constant, and the process (1436) terminates after a finite number of iterations Otherwise, it never terminates and we oblain the inflinite continued fraction.

Lxample 1.4.8 Consider the function

$$
\begin{equation*}
f(x)=\frac{1+x}{1-3 x+2 x^{-2}} \tag{1.4.38}
\end{equation*}
$$

The series expansion for the function (1.4.38) is.

$$
S(x)=1+4 x+10 x^{2}+22 x^{-3}+46 x^{-1} \div 94 x^{5}+O\left(x^{6}\right)
$$

and the continucd fraction is

$$
f(x)=\mathbf{I}+\frac{x}{\frac{1}{4}+\frac{x}{\frac{-8}{5}+\frac{x}{-\frac{25}{12} \cdot 1 \frac{5}{3} x}}} .
$$

1.5 Oyerview of the work

This thesis is concerned with the singularity analysis of power series arising in the solution of nonlinear system. For over the last quarter century many powerfil approximaths have been mitroduced for the approximation of function by asing its power series. Among then nost of the methods are described for the power series invoiving single independent variable and a few are derived for the power series involves with two or scveral independent variables. Matly rescarchers hitherto have found remarkably more accurate results by using several approximant methods The remainder of this thesis is as follows.

In Chapler 2, we have reviewed some well-known approximant methods for the series in powers of one or several independent varables with examples. All these approxinant methods are members of the /cade-/Iermite class. The methods for single independent variable have been discussed at some lengith Then in Chapter 3, we have derived a new approach to partial differential approximant for the series in powers of two independent variables using the concept of Pcad-Ifermite class. Finally in Chapter 4 we have summarized our work and give some adeas for future work

CHAPTER 2

EXISTING APPROXIMANT METHODS

2.1 Introduction

Approximant methods are the techniques for summing power seties. A lunction is said to be approximant for a given series if its Taylor scrics expansion reproduces the first few terms of the scrics. The partial sum of a series is the simplest approximant, which is very good approximant, if the function has no singularties. When the series converges rapidly, such approximants can provide good approximations for the scrics. In practice, however, the presence of singularities prevents rapid convergence of the series. t is then necessary to seek an efficient approximant nethod.

The convergent in the continned fraction expansion of a power series are rational approximants. In fact, it is a particular Pode approximants that have the property that the numerator and denominator are of the same degree. In general, such approximants are more accurate than the partial sum of the power scries. See [i] and [4] for details.
In this chapler we describe some well-known approximant methods for the power series that have several types of singularities. The purpose of this chapter is to describe these approximant nethods lor constructing other often-powerfut approximant methods. The advantages of these approximant methods are that they can be used, nol only to approximate the rate of convergence of power series, but also to compute the location of its singularitics.
The structure of this chapter is as follows: In $\$ 2.2$ we review some well-known approximant incthods for the sctics of single independent vaiable with some cxamples. In $\S 2.3$ we also describe some well-known approximant methods for the serics that have two of scveral independent variables with some examples. Finally, we conclude with some remarks in §2.4.

2.2 Single Variable Approximant Methods

In thes section, we describe a wide class Padé-Hermite approximants along with some single andependent variable approximunt methods. All the single independent variable approximants in this thesis belong to the Fate-FICmite class.

2.2.1 /'ade-Hermite approximants

In 1893, Pate and Hermite introlucal Pade-/fermite chass. This class is related to the simultancous approximations of several secies and there is some advantage in first describing the Pade -flemate class from that point of view.

Let $d \in \mathbb{N}$ and the $(d, 1)$ prowet series

$$
S_{[0]}(x), S_{[1]}(x), \cdots, S_{[f]}(x) \text { be given. }
$$

One can constructs the $(d+1)$-luple of polynomials

$$
\left[H_{111}(. l), H_{11}(x), \cdots, H_{[f]}(1)\right]
$$

Such that

$$
\begin{equation*}
\operatorname{deg} A_{[1]}(x)+\operatorname{dcg}{P_{1]}}(x)+\cdots+\operatorname{deg} P_{\left.w^{\prime}\right]}(x)+d=\mathrm{N} \tag{2.2.1}
\end{equation*}
$$

and $\quad \sum_{i=0}^{u} P_{i d}(x) S_{i}(x)=O\left(x^{N}\right) \quad$ as $x \rightarrow 0$
Here $S_{[0]}(x), S_{[1]}(x), \cdots, S_{[d]}(x)$ may he mencpendent series or different form of a unique scrics. However, since in this work we me metested to approximate a unique series $S(x)$, we shall take powers or derivatives of the partial sum $S_{N}(x)$ for other series.

Now attention is given on the problem of finding polynomials $P_{1,}(x)$ that satisfy the equations (2.2.1) and (22.2). The Potynomials are comptetely determined by their coefficients. So the total number of unknowns in the equation (2.2.2) is

$$
\sum_{r=0}^{\prime} \operatorname{deg} H_{1}(x)+d+1=N+1
$$

If we expiond the lefthand side of the equation (2.2.2) in powers of x, we sec that the equation (2.2.2) is equivalent to equatian the lirst N tems in the expansion to zero. This
gives a system of N linear equations for the unknown coeflicients of the Padé-Hermite polynombals. In order to obtain non zero solutions of that system of litecar equations we must normalize by setting

$$
\begin{equation*}
P_{n}(0)=1 \quad \text { for some } 0 \leq i \leq d \tag{2.2.3}
\end{equation*}
$$

The equation (2.2.3) then simply ensures that the coefficient matrix associated with the system is square. Onc way to construct the Pade-Hermite polynonials is to solve the system of linear cquations by any standard method such as Gaussian elimination or Gauss-jordan climination.

2.2.2 Padé approximants

Pade approximant is a technique for summing power scries that is widely used in applied mathematics [4]. Padé approximant can be described from the Pade-Hermite class in the following sense.

In the Padé-Hermite class, let

$$
\begin{equation*}
d=1, \quad S_{0}=-1, \quad S_{1}=S \tag{2.2.4}
\end{equation*}
$$

and the polynomiats $P_{0 \mid}$ and $P_{[1]}$ satisly (2.2.1) and (2.2.2). One can define an approximant $S_{H}(x)$ of the series $S(x)$ by

$$
\begin{equation*}
A_{[j} S_{N}-f_{[u]}=0 \tag{2.2.5}
\end{equation*}
$$

We call the rational relation $S_{N}(x)$ is a $P_{a d e}$ approximant of the power series $S(x)$. The Nth convergent of the contibued fraction expansion of the power serics $S(x)$ is itself analogous to Pade approximant. Indeed, the Pade approximants are a particular type of rational fraction of two polynomials so that it would tend to a finite limit as N tends to infinity. Hence the Pade approximants to a power scries is a sequence of rational functions (a rational function is a ratio of two polynomials) of the form

$$
\begin{equation*}
\frac{P_{|c|}}{P_{1+1}}=\frac{\sum_{i=1}^{1} a_{1} x^{\prime}}{\sum_{i=1}^{m_{1}^{\prime}} b_{1} x^{\prime}} \tag{2.2.6}
\end{equation*}
$$

Without loss of generatity we choose $b_{1}=1$. Also we can calculate the remaining $(l+m+1)$ cocfficients $a_{0}, a_{1}, \cdots a_{j}, b_{1}, b_{2}, \cdots b_{m}$, so that the firsi $(l+m+1)$ terms in the laylor series expansion of $\frac{P_{[m \mid}}{P_{\mathrm{i}: \mid}}$ anatehcs the first $(t+m+1)$ terms of the power scries $\sum_{t=0}^{\infty} c_{1} x^{\prime}$. Suppose that $\sum_{i=0}^{\infty} c_{i} x^{\prime}$ is a power scrics representation of the function $f(x)$, then $\frac{P_{[p]}}{P_{|t|}} \rightarrow f(x)$ as $t, m \rightarrow \infty$, even if $\sum_{J=6}^{n} c_{t} x^{i}$ is a divergent series. Since Padé approximants involved only algebraic operations, they are more convenient for computational purposes. In fact, the gencral Fafe approvimant can be expressed as

$$
\begin{equation*}
\sum_{j=1}^{t+m^{\prime}} c_{j} x^{j} \sum_{k=1}^{\prime \prime \prime} b_{k} x^{k}-\sum_{n=1]}^{t} a_{n} x^{n}=O\left(x^{r+n+1}\right) . \tag{2.2.7}
\end{equation*}
$$

In order to evaluate the Pade approximants for a given series numorically, we have used symbolic computation language such as MAPLE. The Pade approximants have been used not only in teckling slowly convergent, divergent and asymptotic scrics but also to obtain singularity of a function from its series cocflicients. The zeroes of the denominator $P_{11}(x)$ give the singular pont such as pole of the futhetion $f(x)$, if exist.

Example2.2.1 Consider the function

$$
f(x)=(1-2 x)^{-2}+\ln (1-x)
$$

After using the mormalization condtion $b_{0}=1$, we get the followng numerator and demominator for the Pate approximants of the function,
For $\operatorname{deg} P_{01}(x)=\operatorname{deg} P_{11}(x)=2$

$$
P_{00}(x)=1+\frac{124}{7485} x+\frac{11471}{7485} x^{2}
$$

and $\quad A_{11}(x)=1-\frac{9107}{2495} x+\frac{46151}{14970} x^{2}$

For $\operatorname{deg} / p_{01}(x)=\operatorname{dcg} / l_{1!}(x)=3$

$$
\Gamma_{0]}(x)=1-\frac{7292173}{11804610} x+\frac{38077294}{29511525} x^{2}-\frac{95080207}{88534575} x^{3}
$$

and $\quad \eta_{11}(x)=1-\frac{16858581}{3934870} x+\frac{50822853}{9837175} x^{2}-\frac{47513951}{39348700} x^{3}$.

For $\operatorname{deg} P_{[0]}(x)=\operatorname{deg} f_{[1]}(x)=4$
$I \eta_{00}(x)=1-\frac{6696433085}{5846639613} x+\frac{41892911919}{27284318194} x^{2}-\frac{215602875185}{122779431873} x^{3}+\frac{1087472177237}{2455588637460} x^{4}$
and $F_{11}(x)=1-\frac{9378037222}{1948879871} x+\frac{100217195343}{13642159097} x^{2}-\frac{7091162434}{1948879871} x^{3}+\frac{7564234217}{19488798710} x^{4}$

The following table 2.1 shows the convergence of the singularity point by Pade approximant:

Tabic 2.1: Convergence of singulatity by Pode approximant for the function in the example 2.2.1.

d	x_{c}
2	0.4304862724
3	0.4818596590
4	0.4962878690

2.2.3 Algebraic approximant

Algebraic approximatrts is a special type of Pade-Hermite approximants. In the Pate-Hfermife class, we talu

$$
d \geq 1, S_{0}=1, S_{1}=S_{,} \cdots S_{d}=S^{d}
$$

Consider a futction $f(x)$ represented by the power series $S(x)$ and $S_{N}(x)$ is the parial sumb of that serics.
Using Padk-Hermite polynomials delined by (2.2.1) and (2.2.2) an alycbraic approximant $S_{N}(x)$ of $S(x)$ can be defined as the solution of the equation

$$
\begin{equation*}
I_{0]} \div r_{[1]} S_{N}+\cdots+\eta_{[d]} S_{N}^{d}=0 \tag{2.2.8}
\end{equation*}
$$

Since the equation (2.2.8) is a polynomial of $S_{N}(x)$ in degree d, the algebraic approximant. $S_{N}(x)$ is in general a multivalued function with d branches. At first this may appear to be an undesirable feature of the nocthod, in that case we have the problern of identifying the particular branch that approximates $S(x)$. On the other hand, the series $S(x)$ is the expansion of a particular type of function $f(x)$ that is itself multivalued. For algebraic approximants, one uses the partial $\operatorname{sum} S_{N}(x)$ to construct the $(d+1)$ polynomials

$$
\begin{equation*}
I_{[01}(x), P_{11]}(x), \cdots, P_{d t}(x) \tag{2.2.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{i=0}^{U} f_{l_{1}}(x) S_{N^{\prime}}(x)=O\left(x^{n}\right) \tag{2.2.10}
\end{equation*}
$$

and $\sum_{i=0}^{d} \operatorname{dcg} P_{2 \mathrm{j}}+d=\mathrm{N}$
The total mumber of unknowns in the equation (2.2.10) is

$$
\sum_{\mathrm{t}=1}^{k} \operatorname{deg} A_{\mathrm{t}}+d+1=\mathrm{N}+1
$$

In order to deternine the coeflicients of the polynomials (2.2.10), without loss of genctality one can set $P_{00}(0)=1$ for normelization. The disctiminant of the equation (2.2.8) gives singularity of the function.

Example2.2.2 Consider the function

$$
f(x)=(1-2 x)^{\frac{1}{2}}
$$

and take $\operatorname{deg} P_{[0]}(x)=\cdots=\operatorname{deg} P_{|d|}(x)=2$
l'or $d=2$, afler using the normalization condition $P_{[0]}(0)=1$, we get the polynomials

$$
\begin{aligned}
& P_{[0]}(x)=2 x-1 \\
& P_{[1]}(x)=0
\end{aligned}
$$

and $\quad P_{[21}(x)=1$.
Here the discriminant $D(x)=/ \frac{2}{\| \|}-4 P_{p 0]} P_{[2]}$, which gives the singularity $x_{c}=1 / 2$ for the above mentioned function.

Example2.2.3 Consider the function

$$
f(x)=(1-2 x)^{\prime} ; \sin x
$$

and take $\operatorname{deg} f_{[0]}(x)=\cdots=\operatorname{deg} / f_{[d]}(x)=2$
For $d=2$, after using the normalization condition $P_{[0]}(0)=1$, we get the polynomials

$$
\begin{aligned}
& P_{01}(x)=-1-\frac{25204}{47295} x-\frac{155377}{141885} x^{2} \\
& P_{10}(x)=-\frac{2648}{1051}+\frac{83168}{47295} x+\frac{237764}{141885} x^{2}
\end{aligned}
$$

and $\quad P_{2]}(x)=\frac{1597}{1051}-\frac{57964}{47295} x-\frac{45532}{141885} x^{2}$,
which gives the singularity $x_{t}=0.4084607608$ for the above mentioned function. It will be close to the actual singularity if increase d as well as the degree of $P_{f}(x)$.

2.2.4 Differential approximants

Differential approximants is an inportant member of the Pade-flermite class. It is obtained by taking

$$
\begin{equation*}
d \geq 2, \quad S_{0}=1, \quad S_{1}=S, S_{2}=D S, \cdots S_{d}=D^{d-1} S \tag{2.2.11}
\end{equation*}
$$

Where D is the differential operator

$$
D=\frac{d}{d x}
$$

Once the Pade-Hermite polynomials have been found, a differential approximant $S_{N}(x)$ of the series $S(x)$ can then be defined as the solution of the differential equation

$$
\begin{equation*}
H_{[0]}+P_{[1]} S_{N}+P_{[2]} D S_{s}+\cdots+P_{[d]} D^{d-t} S_{i 4}=0 \tag{2.2.12}
\end{equation*}
$$

Fquation (2.2.12) is non-homogencous fincar dillerential equation of order (d - 1) with polynomial coefincients. There arc ($d-1$) linearly independent solutions, but only one of them has the same first few Taylor cocfficients as the given serics $S(x)$. When $d>2$, the usual method for solving such an cquation is to construct a series solution.
Differential approximants are used chicfly for series analysis. They are powerful tools for locating the singularities of a scries and for identifying their nature [20]. It is not necessary to solve the diflerential equation (2.2.12) in order to find the singularitics of $f(r)$. In practice, one usually finds that its only singularitics are located at the zeros of the leading polynomials $P_{[d]}(x)$. Hence, the zeroes of $P_{[t]}(x)$ may provide approximations of the singularities of the function $f(x)$.
A less general form of the method of differential approximants was developed by Guttmann and Joyce $\mid 20]$ and Junter and Baker [22] for series analysis. However, these studies considered only low-order differential approximants, where d is not related to N. When the function has countably infinite branches, then the low-order diferential approximants may not be uselul. It is to note that Scrgeyev and Goodson [33] for algebraic approximants suggests that $d \propto \sqrt{N}$. 'ourigny and Drazin [36] and Khan [25] had already implemented this idea for algebraic approximants and ligh-order Differential Approximiants respectively. Khari |25] established the relation

$$
\begin{equation*}
\mathrm{N}=\frac{1}{2} d(d+3) \tag{2.2.13}
\end{equation*}
$$

befween the numbers d and N for the High-order Differential A pproximant or $S_{S}(x)$ and considered

$$
\begin{equation*}
\operatorname{deg} P_{[k]}=k \tag{2.2.14}
\end{equation*}
$$

From (2.2.14), he deduced that thene are $\sum_{k=1}^{d}(k+1)=\frac{1}{2}(d+1)(d+2)$ unknowns by the Wefmition of the Pade-Hermite class. In order to determine those unknowns, he used the N lincar equations those satisfy the equation

$$
\begin{equation*}
\eta_{00}(x)+\sum_{t=1}^{d} \eta_{2}(x) D^{r-t} S_{w}(x)=O\left(x^{*}\right) \tag{2.2.15}
\end{equation*}
$$

The nomalizing condition

$$
\begin{equation*}
P_{0]}(0)=1 \tag{2.2.16}
\end{equation*}
$$

ensures that there arc as many equations as unknowns. One of the roots, say x_{c}, of the coefficient polynomial of the highest derivative

$$
\text { i.e. } P_{[d]}\left(x_{i}\right)=0
$$

gives an approximation of the doninant singularity x_{c} of the function $f(x)$.

Example2.2.4 Consider the function

$$
f(x)=(1-2 x)^{-2}+\ln (1-x)
$$

and takedeg $P_{k]}=k$
For $d=2, N=5$ the leading polynomial

$$
P_{[2]}(x)=\frac{15}{11}-\frac{108}{11} x+\frac{144}{11} x^{2}
$$

gives the singularity $x_{\mathrm{c}}=0.5019319169$ approximately for the lunction.

2.3 Multivariabic Approximant Methods

In thes section we have teviewed some well-known approximant methods for the series in powers of two or more independent variaties, which have been developed using the concept of Padé-Hermite class.

2.3.1 Multivariable Pade approximants

Many attempts have been made to gencialize the concept of Pade approximants for multivariable functons. One can see [11], [12] and $\mid 40]$ for details. Here we have introduced the multivariable Padé approximants on the basis of Padé-/Iermite class. Given a function $f(x, y)$ in the fom of its Taylor serics expansion at a certain point in the real plane is (for simplicity we uso the Caylor serics at the origin)

$$
\begin{equation*}
S(x, y)=\sum_{i=1}^{10} \sum_{j=0}^{\infty} c_{i j} x^{\prime} y^{\prime} \quad(x, y) \rightarrow(0,0) \tag{2.3.17}
\end{equation*}
$$

The N lin partial sum of the scries

$$
\begin{equation*}
S_{N}(x, y)=\sum_{j=0}^{N-1} \sum_{j=j}^{1+1} c_{i J} x^{\prime} y^{j} \tag{2.3.18}
\end{equation*}
$$

For the formation of two variables rational approximants $S_{N}(x, y)$, we consider the polynomials.

$$
\begin{align*}
& F_{0]}(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{n} p_{i j} x^{\prime} y^{\prime} \tag{2.3.19}\\
& I_{[1]}(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n} q_{i} x^{r} y^{j} \tag{2.3.20}
\end{align*}
$$

such that

$$
\begin{equation*}
S_{N}(x, y) P_{[1}(x, y)-P_{0]}(x, y)=\sum_{i, j} e_{i j} x^{i} y^{j} \quad i, j \in \mathbb{N} \tag{2.3.21}
\end{equation*}
$$

where $\mathrm{N}=\operatorname{deg} \eta_{01}(x, y)+\operatorname{dey} \int_{1]}(x, y)$
and $\quad e_{1 j}=0 \quad$ for $i+j<\mathrm{N}$
The coefficients of the numerator $A_{[0]}(x, y)$ and the denominator $A_{[1]}(x, y)$ are determined from (2.3.23) by using the nomalization condition $q_{00}=1$. The condition (2.3.23) then ensures that there are as many equalions as unkmowns. Onc can solve these equations by using symbolic programming language such as MAPLE. The zeros of the denominator $I_{11}(x, y)$ give the singularity of the function $f(x, y)$.

Example2.3.5 Consider the function

$$
f(x, y)=(1-x+y)^{-2}
$$

and takc $\operatorname{deg} P_{01}(x, y)=\operatorname{deg} H_{1 j}\left(x, y^{\prime}\right)=2$
After using the normalization condition $q_{00}=1$, we get the numerator

$$
P_{[f]}(x, y)=1
$$

and the demominator

$$
P_{[!]}(x, y)=1-2 x+2 y^{\prime}+x^{2}+y^{2}-2 x y
$$

The zeros of the denommator $P_{11}(x, y)$ gite the singularity $\left.f_{c}, y_{c}\right)=(1,0)$ of the function $f(x, y)$.

2.3.2 Multivartable Algebraic approximants

Multivanable algeloraic approximants have been developed by Khan [25]. Consider a function $f(x, y)$ of two mendependent variables, represented by the power series

$$
\begin{equation*}
S(x, y)=\sum_{x=0}^{\infty} \sum_{j=0}^{\infty} c_{i j} x^{4} y^{j} \quad(x, y) \rightarrow(0,0) \tag{2.3.24}
\end{equation*}
$$

The Nil partial sum of the serics (2.3.24) is

$$
\begin{equation*}
S_{N}(x, y)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} c_{i j} x^{4} y^{j} \tag{2.3.25}
\end{equation*}
$$

By using that partial stim, we are trying to construct $(d+1)$ polynomials

$$
\begin{equation*}
P_{\mid u]}, P_{\mid 1]}, \cdot, P_{d|l|} \tag{2.3.26}
\end{equation*}
$$

in x and y such that

$$
\begin{equation*}
H_{[0]}+H_{[]} s_{N}+\cdots+H_{[d]} S_{N}{ }^{d}=\sum_{i, j} e_{i j} x^{\prime} y^{\prime} \quad i, j \in \mathbb{N} \tag{2.3.27}
\end{equation*}
$$

and $\quad c_{i j}=0$ for $i+j<\mathrm{N}$
The cquation (2.3.28) gives a total

$$
\begin{equation*}
N_{r}=\frac{1}{2} N(N+1) \tag{2.3.29}
\end{equation*}
$$

equations of dectemine the unknown cocticicitsts of the polynomials $F_{i j}(x, y)$. One of these coefficicints is specified by the nomnalization condition

$$
\begin{equation*}
\sum_{i=1}^{d} p_{1}(0,0) S_{N^{\prime}}=1 \tag{2.3.30}
\end{equation*}
$$

Thus, there remains

$$
N_{u}=\sum_{i=0}^{\pi}\left[\frac{1}{2}\left(\operatorname{deg} f_{t]} \div 1\right)\left(\operatorname{deg} f_{i]}+2\right)\right]-1
$$

unknown cocfficients that must be found by use of the N_{e} linear cquations. The equation (2.3.28) can be express in the matrix form as

$$
\begin{equation*}
A X=B \tag{2.3.31}
\end{equation*}
$$

where A is a matrix of order $N_{e} \times N_{s}$ and the nonzero vector B of dimension N_{e} on the right hand side comes if we inpose the condilion (2.3.30).

This system will he solvable if

$$
\begin{equation*}
N_{c} \leq N_{t} \tag{2.3.32}
\end{equation*}
$$

However, we must make it clear that, even with this condition, there is no guarantee that a solution will exist [n practical cases, a solution exists but it is not unique. By using algebraic programming language such as MAPLE, it is straightfonward to obtain the gencral solulion of the system. But the general solution contains some frec variables. It is, therefore, וnportant to choose the value of the free variables. In this thesis we choose value of the free variables to zclo or one. The discriminant of the equation

$$
\begin{equation*}
P_{[0]}+A_{[1]} S_{N}+\cdots+R_{[r]} S_{N}{ }^{d}=0 \tag{2.3.33}
\end{equation*}
$$

will give sugulartics of the functon $f(x ; y)$.

Example2.3.6 Consider the finction

$$
f(x, y)=(1-2 x+y)^{\frac{1}{2}}
$$

and take des $P_{[t]}(x, y)=\cdot \cdot=\operatorname{deg} P_{d f}(x, y)=2$

For $d=2$, the mumber of unkwowns is $N_{n}=17$. Therefore, we can take $N=5$; so that the number of equations is $N_{e^{\prime}}=15$ The coefficient polynomials are
$P_{[0]}=1+\left(-2+8 c_{1}+48 c_{1}-c_{2}+8 c_{5}\right) x \div\left(1-c_{3}-8 c_{4}-4 c_{1}\right) y+\left(-20 c_{1}-108 c_{4}-14 c_{5}+2 c_{2}\right) x$ $+\left(-c_{3}-5 c_{1}-13 c_{1}\right) v^{2}+\left(-c_{2}+7 c_{5}+2 c_{3}+20 c_{1}+80 c_{4}\right) x y$
$P_{\text {价 }}=16 c_{1}+64 c_{4}+\left(-24 c_{1}-112 c_{4}-8 c_{5}\right) x+\left(12 c_{1}+40 c_{4}\right) y+\left(4 c_{1}+32 c_{4}+8 c_{5}\right) x^{2}$
$+c_{1} y^{2}+\left(-16 c_{1}-4 c_{5}-4 c_{1}\right) x v$
$H_{21}=-1-16 c_{1}-64 c_{4}+c_{2} x+c_{3} y+\left(-2 c_{4}-4 c_{4}\right) x^{2}+c_{4} y^{2}+c_{5} x y$

The polynomials contains five free variables $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5}.

The particular polynomials can be oblained by setting 1 to the free variables

$$
\begin{aligned}
& {f_{[1]}}=1+61 x-12 y-140 x^{2}-19 y^{2}+108 x y \\
& t_{[1]}=80-144 x+52 y+44 x^{2}+y^{2}-24 x y \\
& f_{[2]}=-81+x+y-6 x^{2}+y^{2}+x y
\end{aligned}
$$

which gives the singularity $\left(x_{c}, y_{c}\right)=(0.2934023773,1.0000000000)$ for the mentioned lunction.
in figure 2.1, we see how the critical line matches with the approximate critical values by using inultivariable algebrate appoximants.

Tigure 2.6. Approxumate location of singularites of lac example 2.3 .6 oblained by using Multivatiable Aigebraic Approximants. The curve anarked with squarc in the approximate singularity curve and the eurve marked with diamond is the original simgurity curve.

2.3.3 Fishcr's approximants

Fisher [15] has suggested a now approsimant method, derived from a lirst order hornogencous lincar partial differential equation. For this he considered the function $f(x, y)$, which represent the power serics

$$
\begin{equation*}
S(x, y)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_{i j} x^{\prime} y^{\prime} \quad(x, y) \rightarrow(0,0) \tag{2.3.34}
\end{equation*}
$$

The parial sum of this series is

$$
\begin{equation*}
S_{N}(x . y)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} c_{1, j} x^{\prime} y^{\prime} \tag{2.3.35}
\end{equation*}
$$

where its derivatives $\frac{\partial S_{N}(x . y)}{\partial x}$ and $\frac{\partial S_{N}(x, y)}{\partial v}$ exist. He considered the polynomials

$$
\left[H_{0,0]}(x, y), P_{11,0]}(x, y) \text { and } \quad I_{[1,1]}(x, y)\right. \text { which satisfy }
$$

$\eta_{[0,1,1]}(x, y) S_{N}(x, y)=\dagger_{1,0\}}(x, y) \frac{\partial S_{N}(x, y)}{\partial x}+P_{[0,1]}(x, y) \frac{\partial S_{N}(x, y)}{\partial y}+$ high-order terms.

Using the partial sum $S_{N}(x, y)$, one can construct the polynomials
$\eta_{0,0]}, P_{1,0]}$ and $\quad P_{001]}$ in x and y such that

$$
\begin{equation*}
\Gamma_{[10]}(x, y) \frac{\partial S_{N}}{\partial x}+\Gamma_{[0,1]}\left(x^{\prime}, y\right) \frac{\partial S_{N}}{\partial y}-H_{[0,1]}(x, y) S_{N}=\sum_{1, j} e_{1, j} x^{\prime} y^{\prime} \quad i, j \in \mathbb{N} \tag{2.3.37}
\end{equation*}
$$

where $N=\operatorname{dcg} n_{[0,0]}+\operatorname{deg} P_{1,0]}+\operatorname{dcg} P_{0,1]}$
and $e_{1,}=0$ for $i+j<\mathrm{N}$
The equation (2.3.38) delines a homogeneous linear system of equations for the cocflicients of the polynomials $P_{0,0]}(x, y), P_{[1,0]}(x, y)$, and $P_{[0,6]}(x, y)$. One can evaluate the coefticients of these polynomials using any standard method such as Gaussian elimination or Gauss-Jordan elimination. Using these polynomials, the lisher approximant of $f(x, y)$ is delined to be a solution of the partial differential equation

$$
\begin{equation*}
P_{[0, v]}(x, y) S_{w}(x, y)=P_{[1, y]}(x, y) \frac{\partial S_{N}(x, y)}{\partial x}+P_{[0,1]}(x, y) \frac{\partial S_{N}(x, y)}{\partial y} \tag{2.3.39}
\end{equation*}
$$

The polynomials $A_{[1,0]}(x, y)$ and $f_{[0,1]}(x, y)$ will give singularitics of the function $f(x, y)$.

Example2.3.7 Consider the function

$$
f(x, y)=\ln (1-2 x+y)
$$

and take deg $f_{0,0 \mid}=\operatorname{deg} P_{1,0]}=\operatorname{deg} P_{[1,6]}=1$

After usung nommalization condition, we get the following polynomials

$$
\begin{gathered}
P_{[1,0]}=1+c_{1} x+c_{2} y \\
\text { and } \quad P_{[1,1]}=2+2 c_{1} x+2 c_{2} y
\end{gathered}
$$

The polynomials contain two five variables c_{1} and c_{2}.
The particular polynomials are oblained by taking 1 to the free variables.

$$
I_{1,0]}=1+x+y
$$

and $P_{[0,1]}=2+2 x+2 y$
which gives the singularity $\left(x_{c}, y_{c}\right)=(0,-1)$ for the above mentioned function.

2.4 Conclusion

In this chapter, we have reviewed different approximant methods for the series of power one or several independent variables. There are some drawbacks in using to approximate singularitics. Their success depends on the availability of a sufficient number of cocfficients of the series $S(x)$. There are many possible sourees of diflerent errors. For exanple, the series coelficients may be known only approximately. Or accuracy may be lost in computing the Pade-Hermite polynomials and in solving the system of linear equations for the approximant. Particularly, in multivariable case the solution is not unique. There exist some free variables. It is, therefore, important to choose the value of the free variables. By using algebraic programming languge such as MAPLE, one can also control the effect of round-off errors.

When the existug approximant methods are unable to give satisfactory answer, one can look for new, better approximant methods. Particularly, for a function which contains complicated term the existing methods fail to give satisfactory answer. The error analysis of approximant metlods is certainly not casy. So the development of new methods, for which there is much scope, inust be guided by mumerical experimentation. In Chapter 3, we develop a new approximant method that is the differential analogue of the PadeHermite class. We also conpare efficiency of the mothod numerically with the methods such as Multivaíable Pudé approximants (MPA), Multivariable Algebraic approximatrts (MAA). Fisher's approximants (li Λ) and Iigh-order Differential approximants (HODA).

CHAPTER 3

A NEW APPROXIMANT METHOD

3.1 Introduction

Numerical approximation by power series expansion of a function is frequently used in many areas of science. Hitherto, we have studied several serics in powers of a single independent variable. But many problems in applied mathematics may be related to the serics in powers of two or more independent variables. So it is desirable to derive a new method to approximate such multivariable series efficiently. Generalizations of the Padé method to power scries of several independent variables have been proposed by Cuyt [11], [12] and Guillaume [19]. Cuyt [11] studied multivariable Pade approximants by using abstract polynomials and she showed that the classcal Pade approximant is a special case of the multivariate theory and many interesting propertics of classical Pade approximants remain valid such as covariance propertics of the Pade-table. Cuyt $|12|$ compared and discussed many ol the results to make it clear that simple propertics or requirements, such as the uniqueness of the Pade approximant and consequently its consistency can play a crucial role in the development of the multivariate theory. Guillaume [19] iniroduced a new class of multivariable Pade approximants called nested Padé method, when dealing with two independent variables x and y his approach consists in applying the Pade approximation with respect to y to the coeflicients of the Pade approximation with respect to x.
An efficient approximant method for a power scrics with two or several independent variables is a new approach to partial differential approximant, which we call the Highorder Partial Differential Approximant (IPDA). We present in this chapter the new approximant method in some sense a "diflerential analogue" of the Pade-Hermite class. Even though the method can be described notationally as d th order partial differential equations with n independent variables, but in this chapter we describe the method for
two independent varrables. Our am is to construct polynomals in x and y that can be used as coefficients in a partial duflerential equation for the approximant method.
'Jhe elapter is orgatrized as follows: In \& 3.2 we describe some basic idens in order to clanty our new method and then we glve a precise description of our method in $\$ 3.3$. Sonc simple applications are grven in \$3.4. An application to a problem of nuid dymamics is discussed in $\$ 3.5$. Fimally, the results and discussion with conclusion are given in $\$ 3.6$ ard $\$ 3.7$ respectively.

3.2 Basic ideas

Although our new approteh, in thes chapter involve only two independent variables (for simplicity), we see that it is in fact motationally smpler to deseribe the method in the context of an arbitrary number, say n. of variables. In order to describe the method for series in powers of n vartables, we introdiee the following notation. We shall use \underline{x} and \underline{k} to denote points in H-dimensional coordmates system. Thus, for instance, $x \in \mathbb{C}$ and $\underset{\sim}{k} \in \mathbb{N}^{n}$ denote the points $\underset{\underline{x}}{ }=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $\underset{\underline{x}}{ }=\left(k_{1}, k_{2}, \cdots, k_{n}\right)$ respectively, with $x_{j} \in \mathbb{C}$ and $k_{j} \in \mathbb{N}$ for $1 \leq j \leq n$. Then we shall write

$$
|k|=k_{1}+k_{1}+\cdots+k_{n}
$$

Where \mathbb{C}^{n} ind $\mathbb{N a}^{n}$ denote the Lachdean n-space and \mathbb{N} denotes the set of natural number (ineluding 7ero). lurther, since $k \in \mathbb{N} n$, we can consider

Now consider $S(\underset{Y}{t})=\sum_{i} c_{i} \underline{x}^{\frac{1}{2}}, i \in \mathbb{N}$ be a series in powers of the n independent variables $x_{1}, x_{2}, \cdots, x_{n}$.
The partial sum of length N

$$
S_{N}(x)=\sum_{| |<N} c_{1} \underline{x}^{!}
$$

is obtained from the serics by excluding all the terms of order N and higher.
A d th order partial differential approximant for $S(\underline{x})$ can be constriteted as follows: First we seek polynomials $H_{e]}$ and $I[k]$ in \underline{x} such that
where $\varepsilon_{\underline{j}}=0$ if $|\underline{j}|<\mathrm{N}$
Then, if such polynomials can be found, we define a partial differential approximant $S_{n}(x)$ as a solution of the d th order partial dilferential cquation

$$
\begin{equation*}
I_{\underline{0}]}+\sum_{|\underline{k}|^{\prime}=d} A_{\underline{k}} D^{\underline{k}} S_{N}(x)=0 \tag{3.2.3}
\end{equation*}
$$

When $n=1$, we recover the differential approximant of $\S 2.2 .4$. For $n=2, d=1$ and $A_{[\underline{0}]}=0$, the equation $(3.2 .3)$ reduces to the first order homogeneous lincar partial differential equation

$$
\begin{equation*}
P_{[0,0]} S_{N}+P_{[.0]} \frac{\partial S_{N}}{\partial x}+P_{[0,1]} \frac{\partial S_{N}}{\partial y}=0 \tag{3.2.4}
\end{equation*}
$$

considered by I'isher.
For $n=2, d \geq 2$ and $中_{[0]}=$ constant , the equation (3.2.1) becomes higher order nonhomogeneous linear partial differential equation. In this chapter we have considered new form of the partial differential equation (3.2.3), where the mixed derivative terms have been ignored.

3.3 Description of the method

Consider the function $f(x, y)$ of two independent variables, represented by its power series

$$
\begin{equation*}
S(x, y)=\sum_{t=0}^{\infty} \sum_{j=0}^{\infty} c_{i j} x^{\prime} y^{j} \quad(x, y) \rightarrow(0,0) \tag{3.3.5}
\end{equation*}
$$

and the partial sum

$$
\begin{equation*}
S_{N}(x, y)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} c_{r j} x^{\prime} y^{j} \tag{3,3,6}
\end{equation*}
$$

($1 \cdot \varepsilon \cdot \varepsilon$)

$\cdot{ }^{\prime N} S^{3} N$
jr oclpajos oq [1]m ubpsis
 $(\varepsilon I \cdot \varepsilon \cdot \varepsilon)$

$$
\bar{q}=\bar{x} \bar{V}
$$

SE (usoj xinetulu uoluim

 "sumpabs" N jo osn ani Kq puno oq 1 sntu
($\check{\varepsilon} \varepsilon \varepsilon)$

$$
\left(\left[1+p 9+{ }_{z} p\right) p \frac{\varepsilon}{5}={ }^{n} N\right.
$$

stmonytun funturuol oup simid.

 ($01{ }^{\prime} \varepsilon \cdot \varepsilon$)

$$
\frac{\tau}{(1-p \varepsilon) p \varepsilon}={ }^{3} N
$$

jo [elo er aretqo
 $(6 \varepsilon \varepsilon)$

$$
I-p q=N>f+I d 0_{j} \quad 0={ }^{3} \cdot \mathrm{~d}
$$

$\left(L^{\prime} \varepsilon \cdot \xi\right)$

However, the system may be consistent or inconsistent. If the system is consistent, then the system can be solved by convertimg the augmented matrix $[A \mid \underset{-}{h}]$ to row echelon or reduced row cheton form by using the Gaussian elimination or Gauss-Jordan climination. It is to mote that, there will exist some Iree variables. Naturally the values of the free variables in the multivariable approximant nethods can be chosen at random. For all the calculations reported in the remainder of this chapter, we have in fact set all the free variables to either zero or one. There is no particular reason to pick up these particular numbers. We might for instance seek a solution such that the polynomials in (3.3.7) have as lew high-order terms as possible. Our experience suggests that the accuracy of the method docs not depend critically on the particular choice made.
Once the polynomials (3.3.7) have been fould, it is more practical to find the singulat points by solving either of the polynomials cocfficients of the highest derivalives

$$
\begin{equation*}
f_{d, 0]}(x, y)=0 \text { or } f[0, t](x, y)=0 \text { or both simulaneously. } \tag{3.3.15}
\end{equation*}
$$

Note that Programming MAPLE codes are in appendix.
As an cxample, let us consider the following function

$$
\begin{equation*}
f(x, y)=(1-2 x+y)^{\frac{1}{2}}+\ln (1+x-2 y)+\sin x y \tag{3.3.16}
\end{equation*}
$$

Here the actual singularities for the dominating part of $f(x, y)$ lying on the line $]-2 x+y=0$. [lowever, the High-order Partial Differential Approximants approach the actual singularitics quite smoothly as shown in Table 3.1 and Figure 3.1.

Table3.I: Estimates of $x_{i}\left(y_{t}=0\right)$ by the High-order Partial Differential Approxımants for the

Cunclion (3.3.16)				
d	N	N_{c}	N_{u}	x_{c}
2	5	15	18	0.6201633594
3	8	36	38	0.4879182224
4	11	66	68	0.4962775196
5	14	105	110	0.4815743527
6	17	153	166	0.5033611125

Figure 3.I. Approximate location of singularitios of the funclion (3.3.16) by using High-order Parrial Differential Approximants. The curve marked with square is the approximate singularity curve and the curve marked with damond is the original singolarity curve.

3.4 Some simple applications

The asymptotic error analysis for the new approximate method is very complicated. lnstead, parallel to other existing methods, we apply it to some examples for which we can gain some insight into the effectiveness of the method.

Example3.4.1 We consider some test functions that have scveral types of singularitics withoul secondary behavior.
I. Singularities are poles.

$$
f(x, y)=(1-2 x+y)^{-2}
$$

II. Cube root branch point singularitics

$$
f(x, y)=(1-2 x+y)^{\frac{1}{3}}
$$

III. Logarithmic singularities

$$
f(x, y)=\ln (1-2 x+y)
$$

IV. Lissential singularities

$$
f(x, y)=e^{\frac{1}{1-2+1, y}}
$$

The results of approximating the singularity in each case by various methods of scrics analysis are shown in table 3.2. where we considered fixed $y_{6}=-1$. Here the values of N is ralher sinall but approximately same for all cases. It is interesting to note that the Highlorder Parial Differential Approximant produces sometimes the exact results.

Table 3.2:Estimates of $x_{1}\left(y_{1}=-1\right)$ by various approximant methods for the functions in the example 3.4.]

Functions	HPDA	IIODA	MPA	FA	MAA
I	exact	0.06666667	exact	exact	exact
II	exact	0.02994012	0.30892924	exact	-0.02122462
IIt	exact	0.01673453	0.25000000	exact	-
IV	exact	0.02133610	-016031689	exact	0.11470842

Example3.4.2 We consider here some test functions that have several types singularities with several types of secondary behavior.
I. Dominand singularities are poles and the remainder term has logatithmic singularities

$$
f(x, y)=(1-2 x+y)^{-2}+\ln (1-x+2 y)+\sin x y
$$

Il. Dominant singularities are cubic and the remainder term has logarithmic singularitics

$$
f(x, y)=(1-2 x+y)^{\frac{1}{3}}+\ln (1-x+2 y)+e^{x+y}
$$

III. Dominant singularities are logarithuic and the renainder term has no singularity

$$
f(x, y)=\ln (1-2 x+y)+\sin x y+e^{x+y}
$$

1V. Dominant singularities are essential and the remainder term has logariblamic singularity

$$
f(x, y)=e^{\frac{1}{1-2 x \mid y}}+\sin (x+y)+\ln (1-x+2 y)
$$

Table 3 3:Estimates of $x_{2}\left(y_{2}=0\right)$ by various approximant methods for the functions in the example 3.4.2

Functio ns	HPDA	HODA	MPA	FA	MAA
I	0.49273522	0.50000000	0.17786075	0.202764977	0.10811102
II	0.60000000	0.50610591	0.67289720	1.618272003	0.35331233
III	0.50515411	0.50000000	0.63245553	1.683060109	0.80127134
IV	0.56512441	0.49481271	0.37500564	0.096310587	0.26242321

Comparable results of approximating the donninating x_{r} with $y_{c}=0$ in each case by various rethods of scrics analysis are shown in Table 3.3. For relatively same sizes of N, it is interesting to note how badly the Fisher's approximants and Multivariable algebraic approximants compares with the others. Most of the cases IHigh-order Partial Differential Approximant produces very good results.

3.5 Application 10 symmetric Jeffery IIamel fows

We consider here the well-known problem named after Jeffery (1915) and Hamcl (1916) for the steady two-dimensional flow of an incompressible viscous lluid from a source or sink at the intersection between two rigid plane walls. Jeffery-liamel solutions are particular similarity solutions of the Navier-Stokes equations and are found by solving an ordinary differential equation. Fraenkel [16] described all these solutions in terms of clliptic functions. Sobcy and Drazin [35] studied their bifurcations theoretically and experimentally. They showed that the symmetric solution, which is stabte for low Reynolds numbers, undergoes pitchfork and Hopf bifurcations as the Reynolds number increases.
I.et (r, θ) be polar coordinates, with $r=0$ as the sink or source. Let α be the semi-angle and let the domain of the flow be $-|\alpha|<0<|\alpha|$, u and v be the velocity components in
the radial and tangential directions respectively, v be the kincmatic viscosity and p be the pressure. The fow behavior can be expressed in terms of Nivier-Stohes equations [16,35].
Further, we assume a symunetric radial fow, so that $v=0$. Then the volumetric flow rate through the channel is

$$
\begin{equation*}
Q=\int_{-a}^{a} a r d \theta \tag{3.5.17}
\end{equation*}
$$

If we require $Q \geq 0$ then for $\alpha<0$ the fow is converging to a sink at $r=0$.
Let $w=\psi(r, O)$ be the stream function. Then

$$
\frac{\partial \psi}{\partial \theta}=H r, \quad \frac{\partial \psi}{\partial r}=0
$$

A Reynoteds number $R e$ for the flow can be derined by

$$
R e=\frac{Q}{v}
$$

Expressing in tenms of the dimensionless variables

$$
y=\frac{\theta}{\alpha} \text { and } G(y ; R c, c z)=\frac{\psi(\theta)}{Q}
$$

the corresponding Navier-Stokes equations $[16,35]$ can be reduced to the ordinary diflerential equation

$$
\begin{equation*}
G^{m \prime \prime}+4 a^{2} G^{\prime \prime}+2 a R c G^{\prime} G^{\prime \prime}=0 \tag{3.5.18}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
G= \pm 1, \quad G^{\prime}=0 \text { al } y= \pm 1 \tag{3.5.19}
\end{equation*}
$$

The coefficients of the serics for G in powers of Re and α can be computed by using MAPLE. The finst few cocficients are

$$
\begin{align*}
& G(y ; a, R e)=\frac{1}{2} r\left(3-y^{2}\right)-\frac{3}{280} y\left(y^{2}-5\right)(y-1)^{2}(y+1)^{2} R c a+\frac{1}{10} y(y-1)^{2}(y+1)^{2} a^{2} \\
& +\frac{1}{1400} y \cdot\left(5 y^{4}-22 y^{2}+33\right)(y-1)^{2}(y+1)^{2} a^{3} R e+\cdots \tag{3.5.20}
\end{align*}
$$

To unestigate this deffery-Hancl dow by appoximant methods, we take

$$
(x, y)=(\alpha, R e)
$$

and, the series

$$
S(\alpha, R e)=G^{\prime}(0, \alpha, R e)
$$

We have used two approxinkate methods to compare the results with Fraenkel's asymptotic behavior 'I be High-order Differential Λ pproximation and the High-Order Patial Differential Approximation are applied to the expression $S(\alpha, R e)$ in order to determine the critical behavior of α_{c} and $R c_{c}$. Sonte estimates are shown in Table 3.4. Since the flow really depends on the two parameters α and $R e$, we apply the High-order Parlial Diflerential Approximants to the series $S(\alpha, R e)$ to calculate the critical a_{c} and Re relationship by considering the highest derivative polynomial cocflicients of Highorder Partial Differential Approximants. From Figure 3.2 we see that the result by our method agrees very well with the Fraenkel's asymptotic result, namely

$$
\begin{equation*}
R e_{c} \sim \frac{5.461}{\alpha_{c}} \text { as } \alpha_{c} \rightarrow 0 \tag{3.5.21}
\end{equation*}
$$

Figure3.2: The critical Renf relationship (curve marked with square) for a symmeric flow by using High-order Partial Differential Approximants with $d=6$. The curve marked with diamond is the Fraenkel's asymptotic result. The other curve (x) is spurious.

Table 3.4:[stimates of Re by the 1 [igh-onder Partial Dilicrential Approximants (HPDA) and the High-order Differential Approximant (11ODA) for the Jeffery-Hamel problem ($a_{4}=0.1$)

HPDA			HODA	
d	N	R.ce	N	$R c_{c}$
3	8	65.420143407049822707	9	54.580567148199421138
4	l 1	54.101790119138738101	14	54.580567148199421138
5	14	54.575430270369712868	20	54.581088584976777508
6	17	54.619749160234696701	27	54.581086860760345143

3.6 Results and discussion

For analysis, we make use of the series in powers of two independent variables. By analyzing the series, we have calculated the value of the singularities into the real field. Table 3.1 shows the results obkined by using the High-order partial differential approximant method. From these, we deduce that the method is well for the higher values of d, when the function comain complicated remainder terms. Also in the Figure 3.1 we see that sometimes the approxinate singularity curve obtained by using the High-order parial differential approximant method coincides with the original singularity curve. The Table 3.2 and 3.3 show the results obtained by using the High-order partial differential approximant method and the other methods such as Figh-order Differential approximants (HODA), Multivariable Padé approximant (MPA) lisher's approximants (FA) and Multivariable Algebraic approximants (MAA). The accuracy of the results obtained by using our method is very satisfactory in many cases. Figure 3.2 and Table 3.4 show singularity curve and singular points respectively for symmetric Jeffery-lifamel flow. The curve obtained by our new method matches very closely with tbat of Fraenkel's asymplotic result.

3.7 Concilusion

In this chapter, we have proposed a now form of parial differential approximants to series in powers of two independent variables, which we name as High-order Partial Differential Approximants. This High-order Partial Differential Approximant is such that the order of the partial differential equation increases with N. lirom first order partial differential equation with two independent variables one can reproduces the Fisher's approximants. The method can be extended to three or more independent variables. One of the highest derivatives polynontial coelficients is a powerful tool to reveal the critical relationship between the independent variables,
We have applied this method and the multivariable approximant methods to a number of interesting test functions that contain different types of singularities. Our method gives better results than those oblained by other methods.
We have applied the new method to series where the form of the singularity is not known with cerraitty, such as the problen of Jeffery-Hamet Jow. We have compared the results with the High-order Differential Approxintant in tabular form and with the Fracnkels asymptotic result graphically. We have fourd that the new method is very efficient. However, we have not yet developed a theory that would explain its strengths and limitations. So we may rely on intelligeát numerical investigations.

CHAPTER 4

CONCLUSIONS

4.1 Discussion

In this thesis, we bate studied scweral tecluiques for summation of series and introduced a new approach to partial differential approximants. The aim of this work was to approximate singułarity behavior of nonlinear problems. The solution of nonlinear problems may be cxpanded into scries in powers of one or more independent variables. Numerical approximation by power serics expansion is frequently used, but the question of chliciency of such approximations are crucial

In Chapterl we have presented elementary bifureation theory, power series of one or several independent variables, singularitics of one and multivariable power serics and continued fraction of a function involved single independent variable.

In Chapter2, we have revicwed Pude-Hermite class as well as the several approximant melhods. These methods would be helpful in describing a new method.

In Chapler3, we have developed a new method, which we call "Agh-order Partial Differential Approxinants The novel feature of this method is that the order of the partial differential equation increases infintely with the number of scrics cocfficients used. In many cases this method is more powerful to approximate singularity behavior than the other existing methods discussed in Chapler 2. For example, our new method gives more accurate results for the functions that contain complicated tenms than those obtained by other fnethods. We also apphed our new nethod to symmetric Jeffery-Hamel flows. We have shown this melhod math very nicely with the Fracnkel's asymptotic result and very much compelitive with tise High-order Differential Approximant.

4.2 Future work

In this thesis we have developed High-order Partial Differential Approximant where we considered the general form of homogeneous tincar partial differential equation excluding the terms related to mixed derivalive. Further rescarch can be carriced out on this field by takng the general fom of partial differential approximants (3.2.3) as well as the asymptotic betavior of the error of proposed method.

Appendix

```
    #program for the d-th order Homogeneous PDE,
    fiScries must be of v=v(lambde,mu)=()rder (M+1).
    d:=d:
    N=3*d-1. if lighest order of lambder and mu.
    Ne:=add(rl|,r=0.N-1);
    M:=( T/3 *)
    c:-array(1..M):
    \lambda:=array(1..Ne);
```



```
    p:=0:
    I:-0:
    form from 1 to d do
        ulp].=diff(v,lambda\mathbb{S}(m))
#print(p,u|p]),
        p}=\textrm{p}+1
        u[p]= = dif(v,mu$(m)).
        l:=1+1:
#print(p,u[p]);
        p:=p+J:
od:
```



```
p:=0;
l:=1:
for in from : to d do
for Imfrom 1 to 2 du
    A[p]=0:
    forn from 0 10 m do
    fork lrom0 to n do
        A[p]:= A[p]+c[l] *lambda` (m-n)* mu`(n-k):
        l:=1+1.
    od
    od:
Mprint(p,^[p]);
        p:=p+1.
od
od
```



```
f:=v`add(A[1]*u[1].i=0 .2*d-1):
#print(f),
f:=expand(f):
```



```
1=1,'1.
for i fromn 0 to N-1 do
    q[i]:=coem(flambda,i):
```

```
    Fprint(q[i]);
    od
```



```
    1:-'1':
    j.='j
    For: from 0 to N-1 do
        forj from0 to (N-1-i) do
            eq[⿺, i]:= coenl(q[i],su,i):
#print([i, i],eq[i,j]);
        od:
od:
```



```
k:=1:
i:='i':
j:-'j':
for i from0 to N-I do
    for j from0 to (N-1-j) do
        x[k]= eq[[j,j]:
        #x[k]:= eq[i,j]+eq[j,i]:
#print(x[k]).
#print(k, s[k]):
        k.=k+l:
        od.
od:
aa:=armay(1..Nt.1.,M),
i=='i':
j}==\mp@code{j'
lori from! to Ne do
    for j from}[\mathrm{ to M do
        aa[i,j]:= coeff(x[j],c[i]):
    od:
od:
```



```
i:='i':
j}=1'j'
b:=aray(1.Ne):
forifrom 1 to Ne do
    b[i]:=-(x[i]add(aalti,**cjil,j=1.,M)r
od:
```



```
with(linalg):
c:=linsolve(aa,b)
g.mf:
#print(g);
HOptional Chock the method
forifrom 1 to 500 do
```

```
        t[i] =1 .'
    od:
    print(AA[2*d-2]=A[2*d-2]);
    print(AA| 2*d-1]=A[2*d-1]),
```



```
    F1=F(lambda,mu):
p:-0
I=0.
form from 1 to d do
    u[p]=diff(F\Gamma,lambda$(m))
#frint(p,u[p]);
    p:=p+1
    u|p]:=d!ff(fi|mu$(m)):
    1:=|-1.
#print(p,u[p))
    p.-p+I
od:
```



```
hpde:=Ff+add(A }
#print(hpde);
##########################
crpt:=fnormal(fsolve ({A[2*d-2], \[2* d-I]}, {lambdn,mu},complex)),
```


REFERENCES

1]! Baker, G A. It and Grave-Morrs. P.. Pade Approximants, Second Edition, Unıversity F'гезs, 402-414, 1996.
[2] Beardon, $A 5$ On the locatom of poles of $/$ thete approximants, J. Math. Anal. Appl. 21. 469-74, 1968
[3] Brak, B. and Gutimann. A. J. Algebrac approximants a new method of series analysis. I Phy's A Math. Gen . 23. LI 331 LL1337,1990.

14] Bender, C. and Orsrag, S. A.: Advanced Mathematical Methods for Scientist and Engmeers. McGraw-Hill, New York, 1978
[5] 13reanski, C' Hıstory of Continued fraction and Padé Apptoximants. Springer, Berlin, 1990.
[6] Blanch, G.: The nutnerical evaluation of contmued fractons, SIAM Rev, 6, 383421,1964.
[7] Cheney, F. W.: Introducton to approximation Theory, McGraw-Hill, New York, 1966.
|8| Chisholm, J. S R.: Ratuonal approximants defined from double power series. Math. Compule, 27: 841-848, 1973
[9] Common, $\wedge . K$ and (iraves-Morris, $P:$ Some properties of Chisholm approximants I. Inst. Math. Appl.. 13.229-232, 1974.
[10] Cuyt, A. Driver, K. Tan, J and Verdonk. B.: Exploring multivariate Padé approximants for multupie byper-gegmetric series. Adv. Computc. Math, 10:29-49, 1999.
[11] Cuyt, A. M Annic: Mubivarite Padé-Approximants. Journal of Mathematical Analysis and Applications 96, 283-293, 1983.
[12] Cuyt. Anme. How well can the concept of Pade approximan be generalized to the multivariate case? Jourtral of Computational and Apphed Mathematics, 105, 25-50, 1909
[13] Drazn, P. G. Non-hnear Systems. Cambridge University Press. 1992.
[14| Fisher, M.E and Styer, D F. Parfal Diflerential Approximants for Multivariable power series !, Delinition and laitfulness, Iroc. Roy Soc. A 384, 259-287,1982.
[15] Fisher, M. E. and Kerr, R. M. Partied differential approximants for inulti-critical singularitics. Phys. Rev. Iett., 39. 667.70, 1997.
[16] Pracnkel, L E. Laminar flow in symmetrical channeis with slighty curved walls I: on the deflery-lamel solutions for the llow between plane walls, Proc. Roy. Soc. London A 267, 119-138, 1962.

177] Gutmann, A. I.. Asymptotic amalysis of power sernes expansions. Acadernic Press, 1989.
[18] Gratenhaus, S. McCutlough, W. S.. Higher order corrections for the quadratic ising lattice susceptiblity. Phys. Rev 1, 38: 11689-11703, 1988.
[19] Guillaunve, P. Nested multivariate Padé approximants. J. Comp. Appl. Math, 82 : 149-158, 1997.
[20] Guttmann A. J. and Joyce (i. S.: On a new method of saries analysis in lattice statistics. J Phys. A Gen Phys., 5: L81-1,84, 1972.
[21] Harrer, E. and Wanner Ci. Analysis by its History, Springer, New York, 1995.
[22] Hunter, D. L. and Baker G. A. Methods of sentes analysis IIL: Integral approximont methods. Phys. Rev. 13, 19: 3808-3821, 1979.
[23] Hunter, C. and Guerrieri, B.: Deducing the properties of singulanties of functions from their Taylor serics cocificients SIAM J. Appl Math., 39:248-263, 1980.
[24] Khan, M. A. H : Singularity analysis by summing power series. Ph.D. Thesis, University of Bristol, 200 I.
[25] Khan M. A. H: High-order differential approxamants, lournal of Computational and Applied Mathematucs 149, 4,57-468, 2002.
[26] Khan, M A H., Drazm, P. © and Tourgny, Y: The summation of series in several vartabies and its application in duid dymames. Fluid Dynamics Research, 33,191205. 2003.
[27] Khan. M. A H., Tourgny, Y and Drazin, P G: A case study of methods of scrics summation Kelvin-Helmholtr instability of finite amplitude. Journat of computational Physics 187, 212-229. 2003.
[28| Khovanska, A. N. The Application of Continued Fractions and their Gencralizations to Problems in Approximation Theory. P. Noordhoff N. V., Groningen, 1963.
[29] Lotentren. L., and Waadeland. H. Continued Fractions with Applications, NorHolland, Amsterdam, 1992.
[30] McCabe, J.H.: A continued fraction expansion, with a truncation estimate, for Dawson's integral, Math. Comp 28, 811-16, 1974.
[31] Neyleh A. H: Perturbation Mcthods. John Wiley \& sous, Inc., 2000.
[32] Sergeyev, A V.: A recursive algonthm for Pade-Henmite approximations. U.S.S.R. Computc Math. Math. Phys., 26.17-22, 1986.
[33] Sergeyev A V and Goodson, D. Z: Summation of asymptotic expansions of midtiple valued functions using algebraic approximants: Application to anharmonic oscillators. I. Phys. A Math. Gen., 31-4301-4317, 1998.
[34] Styer, D.F. Partial Differential Approximants for Multivariable power series IIr; Enumeration of Invarance Propertes, Proc. Roy. Soc. Lond. A 390, 321-39, 1983.
[35] Sobey, I.J., Drazin, P.G.. Bifurcation of two dimensional channel flows. J. Fiuid Месh. 171, 263-287,1986.
[36] Tourigny, Y. and Drazin, P. G.. J'he asy mptotic behavior of algebraic approximant, Proc. Roy. Soc. London A 456,1117-1137,2000.
[37] Tourigny, Y. and Drazin. P. G. The dynamics of Pade approximation, Nonlinearity, 15(3), 787-806, 2002.
[38] Tourigny, Y, and Drazin, P G: Numerical study of bifurcation by analylic contmution of a linction defined by a power series. SIAM J. Appl. Math, 56: i18,1996.
[39] Van Dyke, M. Perurbation Methods Flund Mechanics Parabolic Press, 2nd edition 1975.
[40] Watson, P.] S. Two varable rational approximants-a new method, J. Plys. A 7, L 167-70, 1974.

