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Abstract

The modellimg of physical phenomcna usually resuils to nonlinear problems whose
solutions may have singularities Practically the locations of the singulantics are
imporiant For many problems, a solution can be {ound als a series m powers of one or
several indcpendent variables In this thesis under the title “A New Approach To Partial
Differential Approxmmants” we have analyscd scries in powers of two independent
variables by High-order partial differential approxamants We have developed the method
using the concept ol Fude-Hersnfe class, I consists of a high-order linear partial
differential equation with polynonual coelficients that is satisfied approximately by tlhe
partial sum of the multivariable power series

We have also reviewed the different approximant mcthods for the summation of series in
powers of onc o more independent variables Our amm s to apply the new method to

problems m physicat field, paticularly in fluid dynamics,
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CHAPTER 1

INTRODUCTION

Wirerr pout follone e soparate chume af thougit, Wanew, yor will find sune point of fnteraection which
shaude wpp cmnte the et

Sherloch Halmes, The Doappearance of Ludy Farews Carfuxt

Sir Arthw Conan Doyle

This thesis is concerncd with o new approach 1o Partial Differential Approximants along
with review of some cxishoyg approximant metbods. The approximant methods are widely
used 1o approximate functions in many arcas of appled mathematics.

The mathemalical mode] of physical phenomena usually results in non-lincar equations,
which may be alucbraic, ordinary differential, partial differential, integral or combination
of these. The non-lincar ¢gualions may conlain one or several independent variables. The
solulions of these non-lincar sysiems are domiinated by their singularitics (if exist). A
value of independent s ariable {or variables) for which the funclion is undefined 1s known
as a singularily of the funclion. Singularily plays an important mle in many areas of
applicd science. Particudacly in {luid dynamies, the presence of singularitics may reflect
some changes in the nalure of the Mow and their study is of greut practical interest.
Sometimes j¢ is very difficult o find out the exact solution of physical problems.
Parliculatly in sintistical mechanics, there are a large number of problems for which the
Grst fow lorms ol the power series may be obtained exuctly while the exact solution is
uncbiainable. The three dimensional [sing mode]l [18] is 2 good example. On the other
hand, if the power scries cxpansion of o non-linear syslem is givem, but their
corresponding function 15 nol hknown, then 1t becomes diflicult to reproduce the funclion
from the miven powe series. However, one can study their singularitics by soimne power
serics approximant methods. Tn order 1o study these problems many powerful techniques
have been used (o find the power scries coefficienis. At the same time a variely of
mcihods have been wntisduced [or setting the required information about the sinpularitics

by using a finite nuniber ol serics cocfficicnts.



Brezinski [3] stucicd history of continued Muchion and Padé approximants. Blanch [6)
evaluuled continued lactions numerically Also the applications of continued [ractions
and their sencrabsabions o problems in approsunation theory have been studied by
Khovanskii [28]. Khan [24] anabyzed singularity behavior by summing power scries.
Khan [25] also introduced Differential Approximant for single indcpendent vanable,
where he developed o new form of ordinary diflferential approximant called High-order
Differential Approximant (HODA), for the summation ol power scrics. The method 15 a
special Lype of Padé-flenmife class and it is one of the best methods of singularity
analysis for the problems ol single independent variable, Raker and Graves-Meorris [1]
studied multvarisble Pafe spproximants and stated thal the pencralization of Padé
approximants (o mare than one variable is as usual. In this regard imultivariable algebraic
approximants [26] arc notable. Fisher and Styer [14] intreduced partial differential
approximants for nuiltivariable power series Styer [34] also investigated the invariance
propertics of partial diflcrential approximants, Fisher and Kerr {15] studied multi-critical
singularitics by partial dufferential approvimants. Recently Khan ct al. [26] described a
method for the summation of series 10 powers of several independent variables and its
application in {Tuid dynamics

The reminder of this introduciory chaptelas oraamzed as follows:

Since Lhe problems {hat we shall stwdy in this hesis are nonlinear, we begin with a bricf
review ol clemenlary bilurcation iheory in §1.1. Then in §1.2 we also review some
clementary facts aboul power scics. In §1.3 we discuss varous types of singelaolies
with examples. We present Lhe basic concept of continued fractions in §1.4. Finally in

§1.5 we desenbe a bricl out Iine of the remamder of the thesis.

1.1 Elementary hilurcation theory

in this thesis we have investigated an important nonlinear problem, which arises in fluid
mechanies Soludion ol nonlincar probiems ofien invelve one or several paramelers, As a
paramctler vares, so docs the solutlon sel. A bilication occurs where the solutions of a

nonlincar sysient clumee theiv qualilative eharacler as a parameter changes. In particular,

[



bilurcation theory [13] 1s about how lhe number of steady solutions ol a system depends
on paramelers. Therefore, about the theory of bifurcation concems with all nonlinear
sysloms” and thenee has a mieal vanely of applications. Examples of bifurcations are:
Simple urning points, 1o which two real solutions becomes complex conjugate solutions
and pitchfork bilircation, in which the number of real solutions changes discontinuously
from one to three { or vice versi), Our purpose in this scction is to introduce some
clementary concepls of bifurcation theory. Drazin has described ifurcation theory in

detal in [13]. Tosilustrate the bifurcation points, firsl we consider the quadratic equation
s —a =0 (L.L1)
The roots £/ are real for ¢ > 0 and are o complex conjugals pair for a < 0. We say
that there is 4 change in the character of lie solutions at ¢ = (, where there is a repeated
root x = 0. 1[0 we conline our atlenbion Lo rel sululi{}-ns, then there are two for a > 0, one
lor o = 0 and noue Tor o < 0. 'lo illusirate the real solulions, we have sketched the
parabola in the (e, ¥)-pline, shown in the Fig 1.1, which 15 called bifurcation diagram and

(0,015 called i bifurention point.
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Figureb.1: Bilurcation diagram for (1.1.1) in the {a, x}-plane

In details, let us considar i functional map  RxR-+R, we scek solution x = X () of

fle. Xi=0 {1.1 .ﬁ) _

Tl



Tie solutions can be visualized by means of a bilurcation diagrant. in which the selution

curves are eleasen i e (o, od-plane.
Consider ((.'Z'U,,‘L'”) be a solution of (1.1.2)

e flegy,x,)=0 (1.1.3)
Then, we nay cxpand /10 a Taylor serics about (ﬁrﬂ ,ID) and so study the solution sct in

that netghborbood. We got

]
D:f(ﬁ:-x):f{au?-‘fu]’F{-‘f—-‘-u]ﬁ(ﬂ’m"n}""'[.ﬂ’—ﬂfﬂ} .::(ﬂ’u:v’fu}*'“‘Z‘(I"-’;u):fx:(“mrt})*'“‘
(1.1.4)
If we take [ ("xu:xu} =1}, then
ﬁ;(a[?ﬁ-)"t1}+fj
fx(’:‘u:"‘:u)

- - . ' Al
and we see thal there i1s only one solution curve 1 the neighborhoed of the pont (aﬂ Xy )

ay=x, ~la-a,) l—a,) s a e, (1.1.5)

in the bifurcation diagrana.
However, iF (uﬂ, 1‘0) = (aft WX, ) where

Flee,,x.}=0. fle 5. }=0 {1.1.6}
then the cxpausion {1.1.4) shows that there are at Icaslt two solution curves 1o the

neighborhood of (r}:{ W, ] The point (ccmxt} is called a bifureation point.

Example 1.1.1 Tel fhe given by
Sl )=(=2{x-2V +a+1]-¢ (1.1.7)

where gis some teal parameter. By solving the equation (1.1.5), we sce that the
bilurcation point depends on £, For = = 0, the bifurcalion oceurs at (a: f,x¢)= {— 1 2),
wlich terms as the singularity point and there are three solution branches that intersect at
that poiot, henee the “pitchlork bifuwrcation” shown i Figure 1.2.

Such pitehforks olten atise as a resull of some symmetry inherent in the problem, it s
interesting to note thal lor non-rere values of £, no malter how small, this pilchfork 1

replaced by o sunple tuming point, as shown wm Figere L3 The cxistence of ths

parameter & Cbrosks the synimetry™ 1 the prablen.
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Frgure] 3: Symmetry breaking into the bifurcation diagram for (1,1.7} in

the (e, a)-plane when £ =0.01



1.2 Review of Power Seriey

The solution of nonlincar prublem can be expressed as a series in powers of one or
several independent variables The first few terms of the series expansion contamn major

information of the problem One can use this information to carry out further research on

the problem
.2.1 Single variable series

Consider & function /{x] wlich can be represented by a power series
Se)=3 e x as  x—0 (12.8)
iz

The Nth partial sum s

) Mol '
Selxl= Y ex | (1.2.9)
1=1l
The series converges 1f the sequence ol partial sums converges. When the serics

converges, the series S{x) can be approximated by the partial sum S, (x) and the error is
defined by

e, ()= $(x)- 5, (x} (1.2 10)
When .S'[x):t (. the absolutle relative error is defined by

oy {I) =

&y (x]

Sx)

(1211)

1.2.2 Muliivariable series

Consider & function f{x, v} ol two independent variables, which can be represented by 2

power seres

S(x, v)= E Ecux’y*' as  (x,y)—(0,0) (1.2 12)
mid =0

The Ath partial sum 13



$o(ei)= 5 ’E’cu.r'yf (1.2.13)
e =0
The scries converges 1f the seguence of purlinl sums converges. When the scrics
converges, the senes .‘a’(.r, ¥} can be uppronimated by the partial sum and the crrer is
defined by

el 1) =S, p)- 8, () (12.14)

When S{x,y) = 0, U absolule relative erron is delined by

ex (3, )

${x, 1)

In applicd malhematics, power serics arc often obtained by expanding a function in

eilx )= (12.15)

powers of some porturhation parameters. In the lollowing subscction, we descnbe the

basic iiterature on pertwibation techniques. Sce [4] & [31] for details.
1.2.3 Perturbation scrics

Perturbation theory s o colleclion of methods for the systemalic analysis of (he global
behuvior of solutions 1o nonlincar problems. Sometines we solve nonlinear problems by
expanding the solution in powcers of one or several small perturbalion parameters. The
expansion may contain small or large parameters which appear naturally i the equations,
or which may be wiliciadly mtroduced. A perturbative solution is constructed about the

perturbation parameter £ = 0 as a seres of powers ol &

slx)=ce () + e (x)+ e, (x) 4 {1.2.16)
where Wie coclficients ¢, are independent of £, This saries is called a perturbation senes.
H is 1o note thal the perturbation scries lor (¢} is local in £ but that it 15 global mn x. If 3

is vory small, we expeet that :.(,1‘} will be well approximated by ouly a few lems of the

periurbation scrics.

Followiny arc clementary examples lo introduce the ideas ol perturbation series.

|



Fanmplel.2.2 Roots of a cubic palynonual
Comnsider the algehraic equation
(g 2e=0 {1217)
for small ¢.
For & =0 it have the rootsxy = 2,0, 2

Assume 4 perturbation series in powers of ¢
xe)=3 ¢ (1.2 18)
r=u

When r=-~2, by substituting the expansion

X=-23eEe,o 4

. . . | 1
inte (1.2 18y and equating the cocfficients of &, we get ¢, = —E,cz =5
Tharcfore, the pertmbation series for x=-2 13
l 1 -
Xy ==le-—gh—gt b
8

The same procedure gives

X, = U+l£'—l{:2 +U(€3), for x=0 and x,=2-40&.-0g° -I-U(L‘]), for x=2
3

Examplel.2.3 Consider the initial value preblem

y=flx)y, y0)=1, y{0)=1 (1.2 19)
First we introduce ang in {1 2,19} such that the unperturbed problem 15 solvable
Y= fiay, po)=1 p{0)=1 {1.2.20)
Now assume a perturbation expansiwon [or y().') i the following lormn
yx)=Y ey (x) (12.21)
1=

where y(0)=1, {0}=1and »,(0)=0, ¥'([0)=0 (=1)
The zero-th order problem y"(0)= 0is obtained by setting & =0 and the solution which

satisfies the initial condition is y, =1+x



For Lhe rth oder problem (3'2 1), substituung (12 21) into (1.2 20) and cquating the

coethicient of" £ (r = 1} W0 Zerg, we get

yi=y S}, y(0)=0y{0)=0 (1222)

The salution of {1 2 22Y1s
v, =Jdi[ds fls}y(s), 02 (12.23)

Equation (1.2.23) mves a simple ilerative procedure for calculating successive terms in

{he periwmbation series {1 2.21).

y(x)=1+x+£jdf
0

ds(148) f3 )¢ jrﬂjm’s I du(l+u}f(zf) -+ {1.2.24}

o

Putling & = | yiclds the result.
1.3 Singularitics

Singulanty of a function 15 & value of the independent vanable or vaniables for which the
function 1s undetined, Singulaiities are crucial points of a function, because the expansion
of a funclion inte a power serics depends an the nature of sinpularities of the function
For the purpose of this thesis. we are interested to analyze those functions, which have

several types of singularities
1.3.1 Singularitics for single variable functipn

The rate of convergence of the sequence of partial sums depends crucially on the
singularitics of the function represented by the series Scveral tvpes of singularities may

arise in physical (non-linear) problems. The dominating behavior of the function f{x)

represented by a series may be written as
i

f'(.x)~M[l—i j s rox, (1.3.29)

where A7 is & constant and x_is the critical paint with the critical exponent @ If ¢ isa

negalive integer then the singulanity is a pole, othenwise if it is a nonnegative rational



nurmber then the singolarity is a branch peint. We can include the correclion terms with
the dominuting part in (1.3.23) to cstimale the degree of accuracy of the critical pomts. it

may be

4 (1] &g
f(x}w M[l—i} 1+M|[I—i] +M{I—i) +-- as x —» x, (1.3.20)
X

X X

4 e -

where 0 <y <@y <A and M M, A areconstants. @, + @ @ M {or some i, Lhen the

cotroction  torms are called confluent.  Somelimes the corroction terms can be

'\II:;’
. X
logarithmic. Such that f(x)ﬂv M[l—-—J_ 14-In
x

c

1~
X

a5 X —+ X, (1.3.27)

c
Sometimes the sion of the scries cocfficients may indicate the Iocalion of the singularity.
If all terms are cither positive or negative then the dominant singularity must be on the
positive x-axis. I they alternaie in sign then the dominant singularity is on the negative x-

ax1s
1,3.2 Singularities for multivariable function

Several types of singularitics may arise in physical problems that involve more than one
independent variable. 1t is obvious that such functions might behave as
M{{e.y)- e )
(x, ) J as (x,y)—>{x.,5.) (1.3.28)

{x,.0.)

ncar the critical poinis, wheie M is o constant. and (x .y }is the critical point with the

flepd=i,, 1r1[l+

critical exponent ¢ . Il @ is negative integer then the singularity is a pole; othcrwise 1l it

is nonnegative rational number then it represents a branch point singularity.

Following is a basic theorem that rclates the asymplotic hehavior of the power series

coefficients 10 the form of the dominant singularity.

10



Theorem 1.3.1 (Darboux's in the case of single singularity)

Let the funclion f{x)be analytic in the closced dise |_1: = cut fora
single alecbraic singulanity at = x_, so thal
flx)= [1 - -i] Plx)+ Q) for gl (1.3.29)
I(

where P{x) and O(x) arc analytic in a disc that includes the dise |x[ = |xr|. Then the

coclTicicnis of the power series {1.2.8) sutis(y the agymptotic relation

L ) e e
' .'c:l} k‘."l( -k

as {— oo, (1.3.30)

for any N and some conslants P“](IJ independent of £

Here are some artificidd examples with differcal types of simpularitics.
Examplel.3.4 Sumygle varighle functions

L Singulantics that arc poles:

Jl)=(=2x)" +sin{l-1]

IL Algebraic singularities with (he same exponent:

flx)= 2(1 "E] ” 4 3[1 "-7:)% " 4[1 -?J% + 5[1--;5]-}5.

NI Algebrate singulanities with dilferenl exponents:

flx)= 2(1 - %J_}/ + 3(1 - ﬂ% + 4(1 - ﬁ)_}g ¥ 5[1 - EJ-%,

i

V. Logarithmic singulanty:

S {1) = Inl[l i _1:}-+ s.m(x}_

V. Essenlial singulavidy:



V1. Alpchraic dominant singulanty with a secondary logarithmic behaviour:

-1
vyl { X
=g l—= +n|1——1|.
S cw(*{ 3] L 4]
VIL Cube root singularity:

flx) =1l — x5 +enplx)

Examplel.3.5 Mullivariable funchions related 1o the

L. Singularities that are poles:

f{x, y} = (l — 21+ _V)_I + f:l —-x+ Ey}': ;

II. Algebrme singulantics with the same exponeit.

. ? Y h
x /2 X x x
X y=2 l-—+y +31-=F +41-—| +51-—] .
f("}[:s}] [4) [5] L ﬁ]
ITL Algebraie singuiarities with dilferent exponents:
% % Y %
X & Xy x| x| 73
p=211-— I l=-= +41-= +51-—— .
Tt) [ 3”] +[ 4] [ SJ [ 5]

IV. Logarithmic singularity:
Sl )= nll+x —y}+ sin{x ).
V. Esscntial singularidy:
-1
A

Jlx,y}=exp E[E—E-F 7|

"

VI Alrehraie domimant singulanty with a sccondary logarithmic singularity:
N
flx,v)= 1:}:])(.1‘{1 2L _}'J + 111[1 I y)_
I\k 3 4
VIL Cube root singularity:

f{_r,y}: (] —,1;1']}; 5 L}.'~.|J|[1:-1- }')

Teo analyse the singularity behavior, 1l 1 very important o Kuow about the continued

fractions.



1.4 Contivued Itactivns

Continued fraction has « fony lustory, For historical survey one can see [5] and [29].
Continued Mraction is very uselul Lo analyse the dynamical sysicms, uotably in conncction
with renormalization. 1lete we present the basic concepls of continued fractions.

Let x be a rational number, then the simple conbinued {raction of x is

X =gy (1.4.31)

& P =+ '—
P

!

1

A
1
where, lor0 £/ < N, o, =ﬂﬂm'[lj and ﬂum'[—] denotes the integral part of L .

' i

-

In this expression the . are posihve integers and 7, is called the Mh remainder.

0%
Examplel 4.6 letl v=—.
43
Then
. 24+ !
43 4t ]
1
1 ——
. ]
34—
2

=[2,4,1,3.2]
For cvery rational number, eventually the remainder must be equal to 0. On the other
hand, if x 15 wrational, then {be remainder can never vanish and we can gel the inlimte

continued [raction

X=dy + (1.4.32)

1

daF o

¢t b



=[’”U= ey, f.l':,"']

Examplel 4.7 Lot x= ¥3. Since 1 <x <2 then 1 is the preatest integer less than JB_
S=1:[3-1)
Thus NEI ]
- Z[ﬁ -1
Hence |
S=LL22,12,00]

=[112]

By neglecting the M renainder in (1.4 31), we obdain a rational upproximation s, of x

{1.4.33)

o
Xy 1 called the M convergent ol the continued fraction (1.4.32).

A powcer serics may be mampulated into o fonn of conhinued fraction. Hs just another
way of writing lractions. It hus somie inleresting conneclions with the approximate
methods, Continued {ractions cun be simphfied by cutting after a finite number of

werations. The resull of the temonated contlinued fraction will give a true fraction, but it

will be an appeximation to the power serics.

Consider a function f{(x}, which represents the power serics
Sxy=>Te 0 as 10, (1.4.34}

Let us 0w e how, O cay be expressed as a continued fraction

The Mh {:mwi:rgcm ol the senesg {1 4.34) s



$.)=TFcx . ' | (1.4 35)

1 14]
In order 1o convert 1 4 35) into continued fraclion, assume that all the imverse that we
need exist.

T'he continued {taction of {1 4 35) 1

cx
S,\.' ('r)h cll'l + t i {1 436}
¢x
[ -1 ! T
145 ,x
1+
_ Gy oox f:|mx e
b+ I 1 14 -

The convergent of (1.4 34) is rational function m the variable x
In general, we can obtain a ratienal approxumant from (1.4 36) of the form
£ LJL) b b t by kb

= < - 1.4.3
O fx) o, +dxidx +o+d, x" ( 7

which matches certain oumber of {erims of the scries {1 4.34})

In particular, the roots of the dcnuminuturgﬁr{x} give the sinpularity of the serics

{1 4.34), When the series (1 4 34) represents a rational function, the remainder of (1 4 37)
must eventually reduce to a constant, and the process {1 4 36) terminates after a finite
number of iterations Otherwise, it nover ternunates and we oblain the inflinite continoed

fraction,

LExamplel.4.8 Consider the {unction

Fl)= —— (1.438)

1= 3x+ 257
The series expansion for the function {1.4.38) 15

S{x)=T+4ax+10x2 #2255 +40¢% + 947 +(3‘(x“)

and the continued fraction 15

ke
=1+
St —
4 -8,
5 —25 5
—— -l —X
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1.5 Overview of the work

This thesis 1» concerned with the singularity analysis of power serics arising in the
solutton of nonlincar system. For over the last quarter century many powerful
approximants have been mtroduced for the approximation of function by using its power
series. Among them most of the methods are described for the power series invoiving
single independent variable and a fow are derived for the power senes involves with two
or scveral mdependent variables, Many rescarchers hitherto have found remarkably more
accurate results by using several approaimant methods The remainder of this thesis 15 as
follows.

In Chapter 2, we have reviewed some well-known approximant methods fur the series in
powers of one or several independent vaniables with examples, All these approximant
methods are members of the Madé-feramte class, The methods for single independent
variable have been discussed at some Jength Then in Chapler 3, we have derived a new
approach to parial differential approximant for the series in powers of two independent
variables using the concept of Padv-Tiermite class. [inally in Chapter 4 wc have

summarized our work and give some weas tor futum ¢ work



CHAPTER 2

EXISTING APPROXIMANT METHODS

2.1 Inérpduction

Approximant methods are the techniques for summing power seties. A [unction is sald to
be approximant for a given series if its Taylor scrics expansion reproduces the first few
terms of the scries. The partial sum of a series {s the simplest approximant, which is very
good approximant, if the function has no singulanues. When Ilhe serigs converges rapidly,
such approximants can provide good approximations for the scrics. In practice, however,
the presence ol singularitics prevents rapid convergence of the series. I is then necessary
io seek un efficient approximant method.

The convergent in the continued iraction cxpansion of a power scries  are rational
approximants. In fact, it is a particular Padé approximants that have the property that the
nuinerator and denominator are of (he same degrea, In general, such approximants arc
more accurate than the partial sum of the power scries. See [1] and [4] {for details.

In this chapler we desecribe some well-known approximant methods for the power series
that have several types of singularitics. The purposc of this chapler is 1o deseribe these
approximant methods lor constructing other often-powerful approximant meihods. The
advantages ol these approximant mcthods arc that they can be used, not only to
approximatc the rate of convergence of power series, but also to compute the location of
its singularitics.

The structure of this chapter is as follows: In §2.2 we review some well-known
approximant methods for the series of single independent vaiable with some cxamples.
In §2.5 we also describe some well-known approximant methods for the serics that have
two or several independent variables with some examples. Finally, we conclude with

soIme remarks in §2.4.
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2.2 Single Yariable Approximant Methods

Tn thus seclion, we deseribe a wide cluss Padd-FHermite approximants along with some
single independent variable approsimant methods. All the single independent variabie

approximants in this thesis belong to the Pade-Hernite class,
221 Padsé-FHermite approximants

In 1893, Paclé and Hermite 1ntroduced Padd-flerniite class. Tlis class is related to the
simultancous approximations of scveral scrics and there 1s some advantage in first

describing the Padé -flerante class from that point of view,

Let f ef and the (d 41 1) power scrics

lc;[u] [,r), Sll](l')- Ty B'Ihf]{.x} he given.

One can constructs the {of +1)-luple of polynomials

Hu |]( o) o ‘r{f.f]{‘}_J

Suelh that

deg Ay(x)+ deg Ay(x)+---+ deg 4, (x)+ d=N {2.2.1)
wd 3 A8, (0= (") as x> 0 (2.22)
exl)
Here S[uj‘ [x), 9[1]( x), - .S[rf] miuy be wdependent series or different fonn of a unique

scries. However, since 10 Whis work we vic intoresicd o approximate 4 unigue series S(.x),
we shall take powers or derivatives of the partial sum S {x) for other series.
Now attention is given on the problem of (inding pelynonmals ﬁr](x] that satisly the

equations (2.2.1} and {2 2.2). The Polynomiuls are complelcly determined by their

coefficients. So the oial pumber of unknowns m the equation (2.2.2} 1s
of
D degf{x)+d +1=N+1
r=[k

If we expand the lefl-hand side ol the equation (2.2.2) in powors of x, we scc that the

equation {2.2.2) 15 cquivalenl lo equaling the Orst & terms in the cxpansion to zero. This



gives a system of X hinear equations for the unknown coeflicients of the Padé-Hermire
polynormals, In order 1o obiain non zero solutions of that system of lincar equations we
must normalize by sciling

Pl,]([]) =1 [orsome O=i<d (2.2.3)

I'he equation {2.2.3} then simply ensures that the coeffictent mairix associatcd wilth Lthe
system is squarc. Onc way to construct the Pudé-Hermite polynomials is fo solve the
syslem of lincar cquations by any slandard method such as Gaussian elimination or

(Gauss-Jordan climination.
2.2.2 Paidé approximants

Paelé approximant is a technique for sumnung power scrics that is widely used in applied
mathematics [4]. Padé approximant can be described from the Padé-Hermite class in the
following sense.
In the Padé-fiermite cluss, lal

d=1, S,==1, §=35 (2.2.4)
and the polynomials fi el Pl‘! satisfy (2.2.1% and (2.2.2). Onc can define an

approximant 8, (x} of the series § (x) by

RSy =y =0 ~ (2.2.5)
We call the rational relation S, (x) is a Padé approximant of the power series S{x).The

Nth convergent of the continued fraction expansion of (he power serics S(J:)is itself

analogous to Padé approximani. Indeed, the Padd approximants are a particular type of
ratignal fraction of two polynomials so (hat it would tend to a fiuite lunit as N tends 1o
infinity. Hence the Padé upproximanis to a power scries is i sequence of rafional

funetions (a rational function 15 a ratio of two polynomials) of the form

!

o x'

’

_ﬂ':"]_z Il
Fm ihlx'

eIl

2.2.6)
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Without foss of sencrabity we choose & =1, Also we can caleulate the remaining

(£ +mr+ 1} cocflicients ay,ay,-a;, 0.0y, 0, 50 that the first (/ +m +1} terms

!

P
in the Taylor scries expansion of Fl'l matehes the first (1" -+ HH—I} tcrms of the power
I

Ll [Er]
scrics Z ¢,A" . Supposc that ch.x' is 4 power scrics representalion of the function f (.:c) .
=0 =tk

el
1 Lo . - . -
then m—rf{x) as fm—awe, cven f Zcr:r' is a divergeni senies. Sincc Padé
|'r| 1=t
approximanits involved only algelraic operations, they are morc convenient for

computational purposes. Tn fact, the general Padfé approximant can be expressed as

TEme i Jems] -
P xt $ bt = Sapnt = o) 2.2.7)

J=n k=Ib n=dl

In order to evaluate the Padd approximants for a given senes numerically, we have used
symbolic computation language such as MATLE. The Padé approxinmants have been nscd
not only in luckling slowly convergent, divergent and asymptolic scrics but also to obtain

singularity of a function [rom its scrics cocMMicients. The zeroes of the denominator

Fm(.r} pive the singular point such as pole ol the lunction f(r), if exst,

Example2.2.] Consuler ihe function
rx=10 —2,1')': +in(l - x)
Alter ustnyg the nonmabization condition b, =1, we get the followwny numerator and
denominalor [or the Pade approximants of the function,
For deg J"IU]{J.') = dcgﬂ,](x) =2

124 L1470
Hylx)=1+ 7285 7485

91{]? 4(}1::I ¥
249‘1 ]45"?(]

and A (x)=1-

20



For deg Itu](x] = dep Im{x) =3

(=1 7292173 38077254 , 95080207 4
Il L1804610° 29511525 88534575

16858581 50822853 , 47513951 4
and qll(x): - X+ X X
3934870 H337175 39343700

For deg Ay (x}=deg Fm[x} =4

6696433085 41892011919 , 215602875185 ; 1087472177137 ,
I‘[ﬂ](x}=i— — X+ x° - X7+ - x
5846639613 27284318194 122779431873 2455588637460

Q378037222 10G217195343 5 F09l1e2434 , 7564234217 4
and ﬂl][x]=1-r X+ Xt — x + x
1948879871 13042155097 1948879871 16488798710

The following table 2.1 shows the convergence of Lhe singularity point by Padé

approximant:

Tabic 2.1: Convergence of singulatity by Podé approximant for the function in the

cxample 2.2.1.

el X,

2 0.4304862724
i 0.4818596590
4 (L4962878690

2.2.3 Algebraic approximant

Alpebraic appioximants is a special type of Padd-ermite approximants.

In the Padé-flermife class, we ke
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d21, 8§ =15 =8+, =8,
Congider a function f{x)reprsented by the power scries S{x) and S, {x) is thc pamial
sum of that serics.
Using Pudé-Hermite polynomials defined by (2.2.1) and {2.2.2) an algchraic approximant

Syix) of S{x} can be defined as the solution of the equalion

i

Py % By S+t g Sa” =0 (2.2.8)
Since {he equalwon (2.2.8) is a peolynomial of 5 {r) in degrec d, the alpcbraic
approximant.y,, (x) is in gencral a multivalued function with branches. At first this
may appear to be an undesirable feature of the method, in that case we have the problem
ol identifying the particular branch thal approximates S {x). On the other hand, the series
5 {1) is the expunsion of a particular type of function (x} that is itself muliivalued. For

algebraic approximants, onc uses the partial sumsS, (x}) to construct (he {d+1)

polynonuals

Aoy} Ay (), A ) (2.2.9)
such that

i!1,|(x}.‘§h.'{x): ofx) (2.2.10)

d
and  TdegAj+d=N
=0
The totlal number of unknowis in the cquation (2.2.10) is

&
Tdeg B+ d +1=N+1.
r=1l

In order to delermine the coellicients of the polynomials (2.2.10), without loss of

pencrality one can sct ﬂg](ﬂ):l for normalization, The discriminant of the cquation

{2.2.8) Igiw:.s singularity of the funchion.

Example2.2.2 Consider the funclion

F)=(-2x)3



-

and take deg Ay {x)=-+- = deg A, (x) =2

lior & = 2, afier using the normialization cendition £y {{}): 1, we got the polynomials
f’lﬂj(x]= 2x—1
}Tll(x)z 0

and !’M(x] =1.

Here the diseriminant D{x) = f"lﬁ — 4Ry which gives the singularity x, = }4 {or the

above mentioned function.

Example2.2.3 Consider the function

Flxd=(1=2x)7 +sinwx
and luke deg I‘[t,](x) mere= du:gffdl(x): 2

For & = 2, after using the normalization condition P[u](ﬂ}= 1, we get the polynomials

25204 155377 4
47295° 141885

264%  B3168 237764
Pylx)=— + X+ x
1051 47295 141885

_ 1557 5?964I_ 45532 4
1051 47295 141885

ﬁu](x]= =1

and  fiy) [x)

¥

which gives the singularity x, =0.4084607608 for the above mentioned function. It will be

closc to the actual singularity if increase o as well as the degree of Ph]{x].

2.2.4 Differential appreximants

Differential approximants is an imporlant member of the Padé-flermite class. 1t is

ohtained by luking

dz2, §;=1, §,=5,8,=D§,-~8§,=D""'S (2.2.11)
Where 215 the diffcrential operator
p=2
dx



Once the Padé—{ ferrite polynomials have been found, a differential approximant &y {:r:)
of (he series S{x Jean then be defined as the solution of the differential cquation

Hop+ PgSy + AP Sy ++ ) DS =0 (2.2.12)
Equation (2.2.12) 15 non-homogencous lincar dilfercntial equation of order (d-1) with
polynomial coefiicients. There are (d-1) linearly independent solutions, but only onc of
(hem has the same first Tew Taylor coefficients as the given series S (x) When o > 2,

the usual method fur solving such an cquation is to construct a series solution.
Diflercntial approximants are used chiclly for series analysis. They are powerful tools for
locating the singularities of a scries and for identifying their nature [20). 1t is not

necessary 10 solve the differential equation (2.2.12) in order to find the singularitics of

/{x). In practice, one usually finds that its only singularities arc localed at the zeros of

(he leading polynomials Ay (r) Hence, the zeroes of Ay (x} may provide

approximations of the singularitics of the function f{x).

A less general formy of the method of differeniial approximants was developed by
Gultmann and Joyee |20] and Hunter and Baker [22] for series analysis. However, those
studies considered only low-order differential approximants, where & is not related to N,
When the [unction has countably infinite branches. then the low-order diflerential
approximants may not be uselul. 1t is to note that Sergeyev and Goodson [33] for
algebraic approximants suggests that o e S . Tourigny and Drazin [36] and Khan [25]
had alrcady imptemented this idea for algebraie approsimants and High-order

Dilferential Approximants respectively, Khan |25] established the relation
i
N=§d(a’+3] (2.2.13)

hetween the numbers o and & Tor the High-order Differential Approximant ol S, (x)and

considered

deg A =k . (2.2.14)
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i 1
From (2.2.14), lie deduced that there are Z(ﬁ_ +1)= E(d + 1Ml +2) unknowns by the

L=l1t
Jefinition of the Padé -Hermite class. In order 1o determine those unknowns, hie used the

N lincar equations those satisfy the cquation

Dgj )+ }‘f; Im(x-}ﬂ"t 5, (x)= U(x-‘] (2.2.15)

The nomualizing condition

A(0)=1 (2.2.16)
ensures that there arc as many equations as upknowns. One of the roots, say x,, of (he
coelficient palynomial of the highest derivative

ie, Fid](xt.)-—— 0

gives an approximation of the dominant singularity x_ol the function (x).

Example2.2.4 Consider the function
Sy =101- 21’)_2 +In{l - ¥}

and lakedeg fi;) = k

Ford = 2, N =5 the leading polynomial

15 108 144 ,

00 ) O .
) TRETRAETI

gives the singularity x, = 0.5019319169 approximalcly for the function.
2.3 Multivariablc Approximant Metheds
In s seetion we have reviewed some well-known approximant methods for the series in

powers of two or more independent variables, which have been developed using ihe

concept of Pudé—Hermite class.



2.3.1 Multivariable Padé approximants

Many atlempls have been made lo gencralize e concepl of Padé approximants Tor
multivariable functions. One can see [11], [12] and [40] for details. Here we have
introduced the mullivariable Padé approaimants on the basis of Padé—{fermite class.
Given a function f{x.y} in the form of its Taylor scrics expansion at a certain point in
the real plane is (for simplicity we usc the Taylor serics at the origin)
e o
S(x,y)=3 " e, x"y (x,»}— (0,0) (2.3.17)
im =l
The Mh partial sum ol the scrics

M-l -l

Selx.y)= % e,y (2.3.18)
=l =

For the formation of twe variables rational approximants Sy(x,¥), we consider the

polynomials.
n r .
ogle.y)= 2L p,x v (23.19)
i=lr=
Pylx.v)= 2L, ¥ (2.3.20)
{=ly=
such that
Sy (x,,v)!’h]{x,y)—ﬁu](x:_u]= Fex pl ijeN (2.3.21)
W
where N =deg qU}{x,,y}+ deg I‘[l]{x,y} (2.3.12}
and e, =0 fori+ <N (2.3.23)

The coclficients of (he numcrator ﬁn](x, y} and the denominator Pll](x, y)are determined
From (2.3.23) by using the normalization condition ggy =1, The condition (2.3.23) then

ensures that there are as many equalions as unknowns. One can solve thesc cquations by
using symbaolic propramming Janguape such as MAPLE. The zeros of the denominator

.’tl](x, ) give the singularity of the function f{x,y).

26
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Examp!e2.3.5 Constder the funclion
Sl )= (-5 + )7
and take dey Ayl v} = deg Hjlx,y)=2

Afler using the normalization condition gy, = 1, we get the numerator

Hyjlx.y)=1
and the denominator
Ph](:r,y}= l=2x+2p+x" 4" =2xy

The zcros of the denonunalor P[ll[.n }') aive e singulanty {xc, yJ:(l,ﬂ) of the

function S (,r, ¥},
2.3.2 Multivariabhle Algehraic approximants

Multivariable algehraic approximanis have been developed by Khan [25]. Consider a
function [ (:f, _}J) of two mdependent variables, represented by the power series

S(ry)=>" e, x' y (x,3)> (0,0) {2.3.24)

ruf) p=0

The M partial suny of the senies (2.3.24) is
1 NebNol
Selvy)=Z Te, x'37 (2.3.25)
= =l
By using that partial sum, we are eying 1o construct {r! +1} polynomials

Ao A Hal (2.3.26)

in x and jsuch that

Hop+ Ay dw + -+ Hdisﬂ"! =Ly Ay i,jeN (2.3.27)
L

and ¢, =0 fori+j<N (2.3.28)

Ly

The cquation (2.3.28) gives a lolal

v



N, = % NN 1) | _ (2.3.29)

cquations 1o determing the unknown coclficients of the polynomials Fl,-](x,y], One of

these coefficicnts is specified by the nonnalization condilion

il .
T A 00}, =1 (2.3.30)
1=l

Thus, there remains
f
N, = ZB—({J{:}; A+ hdeg 1y +2]]—1
[

unknown cocllicients that must be found by usc of the N, lincar equalions . The cquaticn

{2.3.28) can be cxpress i1 the natrn {orm as
AN =18 {2.3.31)

where A is a malnix of order N x &, and the nonzero vector J of dimension N, on the

dght hand side comes 1l we impose the condibion (2.3.30).

This syslem will be solvable of

N =N (2.3.32)

tr fr

However, we niust make it clear that, even widh ihis condition, there 15 no guarantee that
a solution will exist In practical cascs, a solulion cxists but 1t 15 nol unique. By using
algebraic- programmnunyg language such as MAPLE, it is straightforward o obtain the
genera! solulion of the systen. Bul the general sclution contains some [roc variables, It 1s,
therefore, 1mportant 1o cheose the value of the [ree variables. In this thesis we choose
value of the free variables 1o zero or one. The diseriminant of the equation

Ao+ Hiy Sy + e A Sy =0 (2.3.33)

will give sinsulantics of the function f(.r,y)

Example2.3.6 Consider the Linetion

J(oy)= (1=2x4 g

and take deg f-’[:,](.t,j') =-- =deg firf;(f:,}‘)= 2
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Far d = 2. the number of unkuowns is N, =17 Therefore, we can tuke N = 5: so that

the number of equations 1s &, =15 The coefTicient polynomials are
Poy=1+(-2+8¢, +48¢, -, + 8¢ )x+(1—cy —8c, —4e )y+(-20¢ ~108¢, 4, +26,)x

+{—e, =5¢, —13¢,)V° +(— ¢, +7¢; +2¢, +20¢, +80c, Jry

Py =16¢, +0dc, +(=24¢ - 11e, ~8egdv+ (12e, +40¢, )y +{de, +32c, +8e5)x’

+e +(—lﬁc,1 -de, —4cl)xv

Hy=—1-16¢ —6dc, +opx+e; v+ 2¢, —de T e,y desxy
The polynomials contains live free variables ¢, ¢;, €3, ¢4 and ¢;.

The particular polynomials can be obtained by setling 1 to the free varlables
Hop=1+61x-12y- 140x? =192 +108xy
] =80-144x + 52y + dax® + y? - 24xy

- F[z] :~—1‘§1+1+y~—|5:,~|:2 J.—yz + Xy

which gives the singufarity (. ) =(0.9934023773,1.0000000000} for the mentioned

fgnetion,

in figure 2.1, we sec how the critical line matches with the approximate critical values by

using multivariable algebraic approxumants.
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3.5

3 * U B Approsineale singularity curve
¥ Original singulacty curve

2.0+
.51
1.0 -
0.5

t 3 1 ] ]
00— 10 2.0 30 . 40 5.

X

Figure 2.1. Approximate localion of singularities of Lhe example 2.3.6 oblained by using Multivariable

Algebraic Approximants. The curve marked with squarc is the approximate singularity curve and the curve

marked with diamond is the oripinal singularity curve,

2.3.3 Fisher's approximants
Fisher [15] has suggested a ncw approaimant method, derived from a [irst order
homogencous lincar partial differential equation. For this he considered the function

Flx, v}, which represent the power series

S(x, y)= chu x'y’ (x.)) - (0.0) (2.3.34)

i=l) f=11

The partial sum of this series is
N-T -1

Su(ry)=3% T, 2"y (2.3.35)

=01 y={l



a5, (x.y) and Y (X, ¥}

exist. Me considered the polynomials
gr v

where its derivatives

i 1,;,1D](x, }'), # I“](x, y) and I}y ,][x, y} which satisfy

S Ly ,}’ .
P[[h[,](x,}:-)SH {x.y)= f‘[m](x,}) > { }+ Ao {x. y y ) + high-order lerms.
{2.3.36}
Using the partiaf sum S5 (x, ). one can construct the polynomials
fogp Aoy ond  Fogm x anel p such that
Y g &5 ..

A u]{x J’}“—""r]:]l (l J"]"é—" Aol {x, ;]5‘.\, E‘?UI ¥ i,jeN (2.3.37)
where N =dog [y o) + deg 7 o +deg Ao
and ¢, =0 foriy <N {2.3.38)

The equation {2.3.38) defines & homogeneous linear system of equations for the
cocfTicients of the polynomials qm]("? »). iy (x, y), and ﬁm][x, ¥). One can evaluale

the coeflicients of these polynomials using any standard methed such as Gaussian
glimination or Gauss-Juedan climination. Using these polypomials, the lisher

approximant of f (x. y)u; delined to be a solution of the partial differential equation

( %) M (2.3.39)

;[ﬂ“] £ })S (3" J') P[w][l .}’) +‘p[u|!(x .}’}

The polynomials qm][x, v} and P[ﬂ‘l](x, y} will give singularitics of the function f (x,¥).

Example2. 3.7 Consider the funcuen

flx,y)= ]n(‘i—2x+y)

and lake deg /gy =deg £ 41 = dey Py =1

After using normalization condition, we get the following polynomials
Fil.[l] =l+e,x+c, ¥

and Ay =242 x02¢;
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The polynomials coniain two free variables ¢ amd ¢y .

‘The particular polynomials are obtained by taking 1 to the free variables.
IILG] = 1 - X +_]J

and  fly =2+2x+2y

which gives the singularity (¥, y.)=(0,-1) for the above mentioned function.
2.4 Conclusion

In this chapter, we have reviewed different approximant methods for the series of power
one ur several independent variables. There are some drawbacks in using to approximale
singularities. Their success depends on the availability of a sufficient number of

cocfficicnts of the serics § (x] There are many possible sourccs of dillerent crrors. For

example, the series coelfficients may be known only approximately. Or accuracy may he
lost in compuling the Padé-Hermite polynomials and in solving the system of linear
equations for the approximant. Particularly, in multivariable case the solulion is not
unique. There cxist some free variables. It is, therefore, imporfan! to choose the value of
the frce variables, Py using alpebraic programeming language such as MAPLE, one can

alsa conirol the effect of round-olT errors.

When the existing approximant methods are unable to give satisfactory answer, onc can
look for now, betler approximant methods. Particularly, for a function which contains
complicated term the existing methods fail to give satisfactory answer. The error analysis
of approximant methods is certainly not casy. So the development of new methods, for
which there is much scope, must be puided by numerical experimentation. In Chapter 3,
we develop a new approximant method that is the dilferential analogue of the Padé—
Hermite class. We nlso compare cfficicncy of the method numerically with the methods
such as Multivariable Pedé approximants (MPA), Multivariable Algebraic approximants

{MAA). Fisher’s approaimants (I'A) and High-order Differential approximants (HODA).



CHAPTER 3

A NEW APPROXIMANT METHOD

3.1 Introduction

Numerical approximation by power series expansion of a function is frequently used in
many arcas of science. Hitherto, we have studied several serics in powers of a single
independent variable. But many problems in applicd mathematics may be related to the
serics in powers of two or more independent vartables. So it is desirable 1o derive a new
method to approximate such mubtivariable series efficiently. Generalizations of the Padé
method 10 power series of several independent variables have heen proposed by Cuyt
[t1], [12] and Guillaume [19]. Cuyt [11] studied multivariable Padé approximants by
using absiract polynomials und she showed that the classica) Pudé approximant is a
speciat case of the multivariate theory and many inleresting propertics of classical Pade
approximants remain valid such as covariance propertics of the Padé-table. Cuyt |12}
compared and discussed many ol the results to make it clear that simple propertics or
requirements, such as the uniqueness of the Padé approximant and consequently its
comsistency can play a crucial role in the development of the mullivarate theory.
Guillaume [19] introduced a new class of multivariable Padd approximants called nested
Padé method, when dealing with two independent variables x and y his approach consists
in applying the Padé approximation with respeet to y to the coellicients of the Padé
appraximation with respeci to x.

An efficient approximant methed for a power serics with two or several independent
variables is a new approach to partial differential approximant, which we call the High-
order Partial Diffcrentinl Approximant (HPDA). We present in this chapter the new
approximant method in somc sense a “diflerential analogue™ ol the me’.:lz'-Hcrrmr'fe class.
Even though the method can be described notationally as dth order partial differential

equations with # independeni variables, bul in this chapter we deseribe the method for



two independent variables, Our anm 15 10 construct polynomials in x and y that can be
used as coclMicients in a partiat diflerential cquation for the approximant methad.

The chiapter 15 oruanized as follows: In § 3.2 we describe same basic ideas i order lo
clanfy our new method and ihen we give a precise description of our method i §3.3.
Some simple applications are given in §3.4. An application to a problem of fluid

dynantics: is discussed in §3.5. Finally, the results and discussion wilh conclusion are

given in §3.0 and §3.7 respectively.

3.2 Basic idens

Although our new approach, in this chapter involve only two independent variabies ( for
simplicity), we sce that it is in fuct notationally simpler 1o describe the method in the
context of an arbitrary number, say a. of variables, In order to describe the method for

scrics i powers of o variables, we introdvee the following notation. We shall use x and &

{0 denolc points in n-dimensional coordinates system. Thus, for instance, xe{" and
el denele the poinis ,1'=(I|.A:,-”,J.'”)£!I1d fc:(ﬁcl,kz;--,ﬁ:"] respectively, with

x,eCand k; eM for 1< j<n. Then we shall write

Where €0 und M0 denole the Luchdean s-space and & denotes the st of natytal number

{including vere). Further, since & € NN, we can consider

=|4]
i e A A & A
i " and A% =x" oy -x,

- A L ks il
(:"'.!‘.'i ""al” il -

Now cousider h’( 1;] =¥ c;x', { &N be a senes in powers of the # independent variables

i’
Xpy gyt X

"

The partial sum of length ¥

.‘fﬁ_.(,r)= Y oot
C S e T
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is obtained rom the serics by excluding all the terms ol order & and higher.

A dth owder parlial differential approximant for S{x) can be constructed as follows: First

we seek polynomials ﬂﬂ] and fh] in x such that

P+ lzfmﬂ Lelx)= zejx-, JEN® (3.2.1)

where ¢, =0 if 1 i| <N (3.2.2)

Then, if such pelynomials can be found, we define a partial dilferential approximant

Sy t{:J as a solution of the dth order partial dilferential cquation

Moy + |&|E;=f Jh]nisﬂ (J_c] =0 {3.2.3)
When n =1, we recover the differcntial approximant of §2.2.4. For n = 2, ¢=! and
fiy =0, the equation (3.2.3) reducces to the first order homogenecus lincar partial

ditferential equation

as
Avo)Sn + o) oy Mo, I Y= (3.2.4)

considered by I'isher,

Forn=2 d=2 and Buy = constant, the equation {3.2.1} becomes higher order non-
homogeneous linear partial differential cquation. In this chapter we have considered

new {orm of the partial differential cquation (3.2.3), where the mixed derivative terms

have been ignored.
3.3 Deseription of the method

Consider the function f(x,y) of two independent variables, represented by its power
series
S(x, )= Z:}Euc’ Xy )= (00) (3.3.5)
=0

and the partial sum

W=l =]

Syl y)= ZZ.:- (3.3.6)

=il fetl
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However, the system may he consistent or inconsistent. If the sysiem is consistent, then

the system can be solved by converting the augmented matrix [A‘ hJ to row echelon or

reduced row cchelon form by using the Gaussian climination or Gauss-Jordan
climination. It 14 to note (that, there will exist some free variables, Naturally the values of
the free vartables in the multivariubie approximant methods can be chosen at random. For
all the caleulations reported in the remainder of this chapter, we have in fact set all the
frec varables 1o either zero or one. There is no parlicular reason to pick up these
particular numbers. We might for insfance seek a solution such that the polynomials in
(3.3.7) have a:el. lew high-order terms as possible. Our expericnce suggests (hat the
accuracy of the method docs not depend critically on the particular choice made.

Once the polynomials (3.3.7) have been found, it is more practical to find the singular

points by solving either of the polynomials coefficients of the highest derivatives
}’[m](r.y): (h or P[M](x,y) =1 or both simultaneously. 3.3.15)
Note that Programming MAPLE codes are in appendix.
Asg an cxample, let us consider the following function
Sxy)={1- 2x+y]% +1n(l+x—2y}+sinxy (3.3.16)
Here the actual sinpularities for the dominating parl of j'{x,y} lying on the line
1-2x+y=0. [lowever, the High-order Partial Differential Approximants approach the

actual singularitics quite smoothly as siown in Table 3.1 and Figure 3.1.

Tabled.|: Gstimates of x. { v, = 0) by the High-order Partial 13ifferential Approximants for the
funclion (3.3.16)

d N N, My Xe

2 5 15 18 0.62016335%4
3 8 36 38 (4879182224
4 11 66 68 (.4962775196
5 14 105 116 (4815743527
6 17 153 66 (3033611125
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. Creginal singoalanty cure
Approimate singularily cueve

l:J'ﬂl]l 0 20 4.1 6.1 £ 1.1

X

Figure 3.1. Approximate location of singularitics of the funclion (3.3.16) by using High-order
Partial Differcntial Approximants. The curve marked with squarc is the approximate singularity
curve and the curve marked with diamond is the original singularity curve,

3.4 Some simple applications

The asymptotic crror analysis for ihe new approximale method is very complicated.
Instead, parallel to other existing methods, we apply it to some examples for which we

can gain some insight into the effectiveness of the method.

Example3.d.1 We consider some test functions that have scveral types of singularitics
withoul secondary behavior,

[. Singularities are poles. .

Fey)=1-2xy)”
II. Cube root branch point singuiaritics

Pl y)=(1- 25 + y)7



[11. Logarithmic singularities
Six,y)=In{1-2x+5)

1V, Lissential singularities

|
flry)=e

The results of approximating the sitgularity in each case by various methods of scrics

analysis are shown in table 3.2, where we considered fixed y, = -1. Here the values of ¥

is rather small but approximaltely same for all cases. It is interesting to note that the High-

order Partial Differential Approximant produces sometimes the exact results,

Table 3.2:Estimates of x, (), = -1} by various approximant methods for the functions in the

example 3.4.]

Funchons  HIPDA 1ODA MEA FA MAA
I cxact  (LOOBHO6LT exact exact cxact
II exact  (LO29G4012  (.30892024 | exact -ﬁ.ﬂ2122462
11 exact 001073453 0.25000000 gxart _
v cxact 002133610 -0 16031480 exact 0.11470842

Example3.4.2 Wc consider here some test functions that have scveral types singularities

with several types of secondary behavior.

I. Dominant sinpularities are poles and the remainder term hag logarithmic singularities
Sl yy=(1-2x+ )" + ol — 2+ 2 )+ sin xv

[I. Dominant singularitics are cubic and the remainder term has logarithmic singularitics
Slxyi=(1-2x+ })ET +lnfl —x +2p)+ ™

III. Dominant singutaritics are logarithmic and the remainder term has no singularity
floyt=In{l - 2x + p)+sinxy + 0t

V. Dominanl singularities arc cssential and the remainder term has logarithmic

singularily



1

HHrep)=e"" wsin{z+ y}+ln(l—x+ 2y}

Tahle 3 3:Fatimates of x {31 = 03 by various appreximant methods for the functions in the

cxample 3,42

Functio HPDA HOQDA MIPA FA MAA
ns
1 049273522 0.50000000 037786075 0.202764977 010811102
II 0.60000000 050610591 067289720 1618272003 035331233
11 0.50515411  0.50000000  0.63245553  L.6R3060109 080127134
IV 056512441 040481271 037500564 0096310587 026242321

Comparable results of approximating the dominating x..

with p, = 0 in each case by

various methods of scrics analysis are shown in Table 3.3, Tor relatively same sizes of N,
it is interesting to note how badly the Tisher’s approximams and Multivariable algebraic
approximants comparcs with the others. Most of the cases High-order 'artial Dilferential

Approximant produces very good results,

3.5 Application 1o symmetric Jeffery ITamel flows

We consider here the well-known problem named after Jeffery (19135) and Hamel (1916)
for the steady two-dimensional flow of an incompressible viscous [luid {rom a source or
sink at the interscetion between two rigid plane walls. Jeffery-llamel solutions are
particular similanty solulions of the Navier-Stokes cquations and are found by selving an
ordinary differential cquation. Iracnkel [16} described all these solutions in lerms of
clliptic funections. Sobey and Drazin [35] studied their bifurcations theoretically and
cxperimentally. They showed that the symmetric solution, which is stable for low
Reynolds numbers, undergoes piichlork and Hopf bifurcations as the Reynolds number

increascs.

let (r,ﬁ) be polar eoordinates, with » = 0 as the sink or source. Let ¢ be ihe semi-angle

and let the domain of the {low be —|(zi < <|a|, # and v be the velocity components in
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(he radial and tangential direclions respectively, v be the kinematic viscosity and p be
the pressurce. The Mow behavior can be cxpressed in terms of Nawvier-Slohes cquations
|16,35].

Further, we assume a symmetric radial flow, so that v = 0. Then the volumetric flow rate

threugh the channel 15

(2= GJHHH? (3.5.17)

-

If we require 2 0 then [or @ < the Now is converging to a sink at» = 0.
Let w = (r,0) be the stream function. Then

ai:u- EE__

2

A Reynolds number Xe Tor (e flow can be defincd by
()

R ==~
v

Expressing in terms of the dimensioiless variables

= i Glete,a) = 2,
“ Q

(e corresponding Nuvicr-Stokes equations [16, 35] can be  roduced to the ordinary
differential cquation

G 4t G +2aRe G GT =0 (3.5.18)
with the boundary conditions

G=+x], G =0a y=+1 (3.5.19)
The coclficients of the scries for & n powers ol Re anda can be computed by using

MAPLE. The flist fow coclficients arc

G(_w;a,Re]= %_‘»‘(3 - y? ]-—%&v()lz -5 },_1}9(y+ 1)'2 Rca+%y{y— ])2{y+1}I a’

+ \'(Sy't—22}12+33k)1—-l}1’{y+1}2a1’Re+--~

1400~
(3.5.20)

To wvesligate this Jelfery-Humnel Now by approximant muihods, we lake

(,r, y) = (. Re)
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and, the series

Sla, Re)=G'(0, @, Re)
We have used two approimaie methods 1o compare the results with Fraenkel's
asymptotic behavior. The l-l-igh-urdcr‘ Difterential Approximation and the High-Order

Pariial Differeniial Approximation are applicd to the expression S{a, Re) in order to
determine {he eritical behavior of @ and Re . Some estimates are shown in Table 3.4,
Since the flow really depends on the two parameters ¢ and Re . we apply the High-order
Partial DifTercntial Approximants to the scries S{e, Be) 1o caleulate the critical &, and
Re, relationship by considering the highest derivative polvnomial coefficients of High-

order Partial Diflereniial Approximants. From Figure 3.2 we sce that the result by our

method agrees very well with the Fraenkel’s asymptotic result, namely

5.461
Re, ~ as &, = (} {3.5.21)
oF
S -
o
25 -
E 'x_
EA LY "
SR
1.0 b= "l‘ ' Sinpudarity curve by hpde
‘% ® Sinpubonly cueve Lo Erpenkel’ s relation
.
A o \\-'t.\%hﬁ
MMW—*
o | ] 1 1 1
[i].ﬂ Ll 201 LN 40 14 =04

Figured.2: The critical Re-r relationship {curve marked with sguare) for a symmetric Tow by
using High-order Partial Differential Approximants with = 6, The curve marked with diamond
is the Fraenkel’s asymplotic result. The other cerve (1) is spurious.
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Table 3 4:Tstunates of Re,. by the Lligh-order Partial Diilerential Approaimants (HELA) and the
High-urder DilTerential Approximant (HODA)Y lor the JefTery-Hamel problem fa, = Q.13

HPDA HODA

o A e, N He,

8 65.420143407049822707 9 54.580567]148199421138
t 2 1917901 19138758101 14 54.580567148199421 138
14 34.5754302703697 1 2868 20 34.581088584976777508
17 54 619749100234696701 27 54.581086860760345143

[ R A

3.6 Results and discussion

For analysis, we make use of the scries in powcers of {wo independent variables. By
analyzing the series, we have caleulated the value of the singularities into the real field.
Table 3.1 shows the resulls obtained by using the High-order parial differential
approximant methed. Trom these, we deduee that the method is well for the higher values
of &, when the function contain complicated remainder terims. Also in the Figure 3.1 we
see that sometimes the approximate singularily curve obtained by using the High-order
partial differential approximant method coincides with the original singularity curve, The
Table 3.2 and 3.3 show the results obtaincd by using the High-order partial differential
approximant method and the other methods such as Figh-order Differential approximanis
{HODA)Y, Mullivariable Padé approximant {MPA) Ligher's approximunts (FA) and
Multivanable Algebraic approximants (MAA). The accuracy ol the results obtained by
using our method is very satisfactory in many cases. Fipure 3.2 and Table 3.4 show
singubarity curve and singular points respeclvely lor symmetric Jelfery-liamel flow, The
curve oblained by our new method matches very closely wilth that of Fraenkel’s

asymplotic result,
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3.7 Conclusion

In this chapler, we have proposed a new {orm of partial differential approximants to
series in powers of fwo independent variables, which we name as IHigh-order Partial
Differcntial Approximanis. This High-order Partial Differential Approximant is such that
the order of the partial differential equation increases with N, From [irst order partial
differential equation with 1wo independent variables onc can reproduces the Fisher's
approximtants. The method can be cxtended to three or more independent variables. One
ol the Lighest derivatives polynomial coelficients ts a powerful too! to reveal the eritical
relationship between the independent variables,

We have applied this method and the multivanable approxtmant methods to a number of
interesting test functions that contain different types of singularities. Our method gives
better results than those obtained by olher methods.

We have applied the new method o series where the [onn of the singularity is not known
with eertatnty, such as the problem of Jeffery-Hamcel Now, We have compared the results
with the High-order Differential Approximant in tabular form and with the Fracnkel’s
asymptotic result graphically. We have found thut the new method is very efficient.
Howcver, we have not yet developed a theory that would explain its strengths and

limitations. S0 we may rely on intelligeat numerical investigutions.
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CHAPTLR 4

CONCLUSIONS

4.1 Driscussion

In this thesis, we bave studied several (echniques for summation of series and introduced
a new approach to parttal differential approximanis. The aim of this work was to
approximate singulanty behavior of nonlinear problems. The solution of nonlincar
problems may be cxpanded into scrics in powers of one or more independent variables,
Numerical approximation by power scrics expansion is frequently used, but the question

of elhcieney of sueh approximations are crueial

In Chapter]l we have presented clementary bifurcation theory, power serics of one or
several independent variables, singularitics ol one and multivariable power scrics and

contineed [faction ol o function involved single independent variable.

In Chapter2, we have reviewed Pude-Hermite class as well ag the scveral approximant

methods. These methods would be helpful in deseribing a new method.

In Chapter3, we have developed a new method, which we call Qigh-order  Partial
Differcntial Approximants The novel feature of this methed is that the order of the
partial differential equation increases infinutely with the number of scrics cocfficicnts
used. In many cases this method is mere powerful lo approximate singularity behavior
than the other cxisting methods discussed in Chapler 2. For example, our new method
gives mmore accurate resulls for the funclions that contain complicaied terms than those
cbtained b:;r other mcthods, We also applicd our new method o0 symmetnie Jelfory-Hamel
flows. We have shown this mcthod match very nicely with the Fracnkel’s asymptotic

resuft and very much conmpetitive with the High-order Bifferential Approaimant.
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4.2 Futare work

In this ihesis we have developed High-order Partial Differential Approximant where we
considered the general form of homogeneous Hinear partial differential equalion excluding

the torms related W ninxed derivative. Further rescarch can be carricd out on this ficld by
taking the general form of partial differential approximants (3.2.3} as well as the

asyniptotic behavior of the error of proposcd method.
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Appendix

#program for the d-th order Homogeneous PDL,
fiScries must be of v=v{laimbda, ma ) =Order { Mt 1)
d:=¢;
N'=3*d-1, ff Highest order af lambda and mu,
Ne=add{r -] /=0 N-t},
M=TOFIN(E2)+6*d+11, # Total number of unknown {Nu=M)
cmarray( ..M}
so=array{ 1. Me);
R R A S S KT R B L R it s
=t
=0
form from | 1o d do
ulpl.=diftiv lambdafim}y
#print{p.ul p},
p=ptl.
ulp].=difiv.mu$(m}) .
E=l+1:
fprint{pufpl);
r=pti:
ocl: —-
R AR R I B R 1 A R G B R R R B
p=:
I=1:
form fram | to d do
for Im from 1 to 2 do
Alpl=0:
for n from ¢ 1o m do
for k Ivom O to n do
Alp]= Alp] + ¢[1] Flambda “(m-ny*mu(n-k}:
=+1.

od-
o
tprint{p. Alp{);
p=p+l
od
ﬂ'd'

AHE R T R RS B B T R A B AR s i R b it
F=vradd{ AD}*u[1].i=0 2*d-1}:
fprint(f),
T=¢xpand({):
S S R RN A E MR R I A G i
1=
for i from 0 to N-1 do
q[i]:==coef{Liambda,i):
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fprini(qi]);
od
W B LR B R G RHEE Fi R R e kgt
;="
i
for 1 from 0 to N-1 do
for 1 from 0 to (N-14) do
eqlnil= coefMgli]amu,j):
#print{[i,jl.eqiii);
od:
od:
REBR R SRR B G R RL BELR e s G HB HH T T R S B
k=I:
="
[ i
for i from 0 ta N-1 dos
for ; from 010 (N-1-i} do
x|k].= egfij]:
#x[k]= eglijl+eq[iif:
#print x| k).
#print(k x[k]):
k=k+1:
od.
od:
aa=array{ 1 _Ne. 1. M),
="
="
for 1 from 1 to Ne do
forj from 1 to M do
aalij)= coeff{x[i|.cli]):
od:
od: -
SRR B O HTER T R T e 0 S T 0 0 i e e
="
i=i
b:=array{1..Nck
for i ifrom 1 to Me do
Bli}=(x[i]-add{aalt, ) *c)li=1. . MI¥
od:
AR R R R R T 0 R R L RS B SRR i
with{linalg):
c=tinsolve(aa,b)
- g=f
#print{g);
#0ptional Check the methed
for 1 from 1 to 500 do
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tij=1 .-
ad; .
print{AAF2*d-2]=A[2%d-2{);
print{AA| 2*d-T)=A[2%d-1]3,
#########ﬂﬁﬂ#ﬁ#####ﬁ#Hﬂ#####ﬂH##Hﬁﬁﬂ”Hﬂﬁ#ﬂ#ﬂﬁﬂﬂﬁﬁﬁﬁﬂﬁﬁ
Fi=Fi{tambda mu¥
pi=t
1=}
formfrom 1 to d do

ufp] =diffi Fr lambda$imy) -

Hprint{p.ulpl};
p=p+i-
u| p|=de I mudim -
=i+
fiprim{p,ufp));
p.p+l
od:

PR R I R B R B B ST R B HaHe i s
R R R R T B L T L P R R R G R i i i HERAH AT
hpde: =Ff+add{A[1]*u[i],i=0..2*d-1}

#print(hpde);

BURER TR B G R

cript=fnormal{fsolve ({A[2*d-2| A[2*d-1]!, {lambda,mu} complex),
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