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Abstract

The modellmg of physical phenomena usually results to nonlinear problems whose

solutions may have singularities Practically tile locations of tile singularities are

important for many problem" a solution can be Iuwld as a series in powers of one or

~everal independent variable" In this thesis under the title "A New Approach To Partial

Differential ApprOXllnanto" we ha,e analysed series L11p<Jwer~ of lwo independent

variable; hy HLgh-ordeLpartial differelltl1l1approxlInanls We have developed the method

using the concepl or I'mk-Hel"lllJle c1a%, II consists of a high-order linear partial

differenlial equation with polynomi~1 eoen"Lciems that is satlsfied appruxlmalely by the

partial sum of the muhivariable po\\'er serie.1

We have also reviewed the different approximant methods lor the summation or series in

powers of one or more Independent variables Our aml I, to apply the new method to

problems in phy~icailield, patlicularly in fluid dynamics.
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Sh",lo~k Holmes, '!'IreDI>appearaJlee of Lady Fare,,, CarflJXl
Sir ArlhUl Conan Doyle

CHAllTER 1

INTRODUCTION

Wileil you fol/(!\1' IlL" "'1'''''''1,' c/UUII' of Ihoug/rl, i'(I.'IOII, yor, will find W.'''e poi,,' of illler.,ee/io" whieh
shau id "PIli 0.\ "'HII [' Iii" If"! I,

This !hc~is is concerned wllh" new appro~eh 10 Pmtiol Differcnlial Approxinmnts along

witil review 01 some eXI5lmg ~prroximant methods. The approximant mcthods are widely

used to appro)"im;:tc I'ullctions ill many areas \! f apphed mathematics.

The Illathcmalical model of phy,ical phcnomcna usually resuUs in non-linear equalions,

which may b~ ;J1g~bruic,Oldin.II)' dilr~rcntial, partial differential, lIltegral or combination

of thesc. Thc llOll-line,n'GY\lalLUllsmay cOlltJln onc or scvcral independcnt variables. The

solutions of thcse non-linear ~ystems are dOlllinillcd by their singularities (if exist). ,\

value of indepcmkllt \ ~ri"ble (or vafl~ble~) I"r which the function is undefincd is known

as il singularity of llw I'ullction, SingulJrity plilYSan important role in many arcas of

applied scienGc, I'arllcularly in l1uid dyn,llnlCS, the presGllcc of singularities may rdIed

~omc chall~es in th~ nalurc or thc l10w and thcir sludy is of g;reat practical interest.

Somctimeo it is very dlrflculi 10 find out the exact solution of physical problems.

PmlicllI~rly ill sl"listical mechanics, llicre ~rc a large numbcr of problems for whieh the

firSl few terms ol'lhe pow~r SCrLCSIll"y be oblainGd cxaetly while the exact solution is

unohlainable. 'f1.~ lhn'c dimcnsiollal Ising model [18J is a good cxamplc. On thc other

hand, if tlie power ,Gries expansion of a non-linear system is given, bul lheir

corre,polldillg functioll I, nol known, lhcn It bccomcs dinlcult to reproduce the function

from the givcn I'0WCl scrics. llowcwr, one ean study thcir ~inglilarities by some power

seric> ~PPI"OXiIllJlltmdilod" I" order to study these problem, mallY powerflll techniques

havc been uscd to find the power serics codfiGiGlltS, At thc same time a variety of

methods h;lve been lL11L()dll"~<1lor ~etling !h~ rcquired inlonnJtion aboul th~ singu1ariti~s

by usi ng a finil~ Illlll,bn °I',e •.i~s coe flicieL1b,



Brezinski [5] ,l"died hdory of conlinucd IracllOn and Pade a!JProxim~nls. Blanch [('j

evalualed ~()lLlilillCd1,,,,lions 1ll1l11eric~lly'\l~o lile a]J]Jlic~tiolls of continued Iractions

and their gel1crah~al")ll., to problems In ,lp]Jro"ml~tion theory have been studied by

Khovanskii [28J. Kb;L11[24] analyzed sin:;ulari[y bchavlOr by summing powcr series.

Khan [25] abo illirodllc~d Differential ApproXlnlant for ~ingle indcpendcnt variable,

where he (k,doped <L!lew form of ordinar)' differential approximant callcd High-order

Differential Approximalll (HODA), for the summation ofpowcl' scries. The method is a

special typc of l'wh'-/lcrJJlile clJSS ,lIld il is one of the bcst mcthods of singularity

analysis for lhe problems of slIl!;lc indcpeLldcnt v.lriable. l3aker and Graves-Morns [1]

studlcd lTIul1,vari"ble P"de ~pproximJnls ,\11<1stated that thc gcncralization of Fade

approximullts to morc 111<111Qne v~riablc i~ as usual. In this regard multivari<lble algebraic

approximullts [2(,] eire nolable. fisher ,lI1d Slyer [14J introduced partial differential

upproximallb lor Imilli",lri,lblc powcr sel"ICSSlycr [34] also investigated Ihc invariancc

propclties 0 f parlial dIfli::rcnll"I appw"imanl" Fisher and Kerr [ISJ studicd multi-critical

singularilies by )l;IIIFll dirferellilal ~ppro•..imants. Rceenlly Khan et aL [26] described a

method for lhe ,uL11L1l~liollof seric, in powers of scvcral inde-pendent variables and its

appliculion in 11l1iddy",lInies

The r~ll1aillder 0 f this inlroduelory chaptcL.is arganized as fallows:

Since the problelllo tbal w~ :,hall >;tudyin (hi, lhesis'arc nonlincar, wc begill with a brief

review of clclll~nlal'Y bifurC<LliOIltheory III S 1.1, Thcn in ~ 1.2 we also rcview some

e1cmclllary faels abolll power SCIics. In ~ 1,3 we discuss variou:; (ypes of singillarities

with ex"mples. We ptC.'CIll the haOle cOLlceplof coLltinucd Iractions in ~1.4. Finally in

~ 1.5 W~ ,k,cribe a brief out lLlleorthe relll~indcl' Oflhc lhesis.

1.1 Elemcntary hil'urcatiull thcury

In this thcsls wc have Invesligated an ImpQrlanlnonlinear problem, which ariscs in fluid

ll1eehanie~ So lul;on or nOlllinc,H'problcllls 0 nCIl iIlyolvc one or several parumclcl"S. As a

paralllckr \'ul'Jes. su due> the solullo" sd, 1\ bifll"c;llion occurs where [he solutions of a

nonlinear 'y,I~," ~IHlIl[;eIlleiL''lu.llilalivc eh"I'.lClcr as a I'armncler ehangcs. In particular,



bifurcation theory [13.1" "bout how Ihe numbcr of steady solutions 0 r a system depends

on parallldcL's, Thcldo,.e, "hOllt the tlieory of b,furca[lOn concerns with all nonlineilr

syslems' ami tlicHce has a ~lc,lt varlcty of applicatJons. Examples of bifurcations are:

Simple turning points, ill whieh two real solutions becomes complex conjugate solutions

and pltchfork biliLl'calioll, in which the numbcr of real solutions changes discontinuously

from one to [hrc<; ( 01' vice ver,a), Our pmpo,e in this section is to introduce some

elementary concepls of b,fur~ati()n theory. Drazin has des~ribed bifurcation theory in

detaIl in [i31. T" ,11"SlralelllGbi iilrcation ;;oi Ilts, firsl we ~onsidcr the quadratic equation

;;'-Cl>=O (1.1,1)
~

Th~ roots i:.,/a arc I'~al fol' [(> 0 and ,Ir~" complex conjugate pair for 0;< 0. We say

that there is a change in the charader of lii~ ,olutiol1s at 0;= 0, where there is a repeated

root x = O. iJ"\'ic wniinG OUIallGnllOn 10real solulions, then there arc two for 0;> 0, one

for u ~ () ,mel 110LlG10,. (J < O. 'io ilillstratG the real SOllllioll~, we have sketched the

pal'abola inlhe (It, x)-plane, shQ\\'n ill IhE Fig t 1. which is called hifurcation diagram and

(0,0)), ~,liled a b,fllrcalion poill!.

5,0

4,0

.JO
2,D

I 0
D.()

-l.0
-2.0
-3.0
-4.0

-5,5\ ,0 0.0 1.0 2.0 3.0 4.0 5,0 6.0 7.0 8.0
a

J'iglll'C1.1: l3ililiTalion diagl'am 101'(l, i.1) in the (0;, x)-plane

ill det,liis, leI us co"side,." r\lllclioI)JII1l~p r: IIRxllR~lIR,we seek solution x = X(a) of

/{".X)=(j

J

(1.1.2) .



The solutions C<lllbe v[sLlaliY,ct!by l\1C,ltlSof ,I bifllrc~tioll diagr::lll, in whICh the solution

Cllrvc~ar~ clrm'll in lbe (v..X)-pl:IIlC.

Consider (ao'x,,) be a wlution of(l.1 ,1)

i.c. /(u",xo) = 0 (1.1.3)

Then, wc may expJllll/m a Taylor ,crics about (l1o'xo) and so study the solution sct in

that ncighborilOotl. We gGi

°= I{a,x) = I(a",-,"" 1+ {x - .1111/, (a", \"0)+ (et- 110)fa (uo,"o)+ ~(x _"0)2 f .o:(ao'x~)+'
(1.1.4)

asa~)a~ (1.1.5)

ami we sce thallhcr~ is only one solutioll cmv~ in !h~ neighborhood of the POUlt (ao');o)
in thc bifurcation diagram,

Howcver, if (uu' r~)= (rx,,x,) where

(L1.6)

then lhc ~xl'aLlS[OIl(1.1.4) shows Ih,LI lhere arc at least IWl' solution eunes in the

neighborhood of (IX, ,.\). The point (o"x,) is called a bifurcation point.

E>.ampl~1.1.1 J.d/b~ givenby

f(a,.\) = (x - 2)[ (x - 2)' + a + I]-~. (1,1.7)

where c is some ,e.,1 parameter. By solving lhc cquJtion (1.1.6), wc scc thnt thc

biltire,ltion point d~p~'ld,; on 6'. For L= 0, lhc blfurcation occurs al (a x) = (-I 2)" " "
which tcrms as llw singularily point JLld thCL"~arc thrce solution bmnchcs lhat intersect at

that poiL)t,hCLl~clhc "I'ilchlork bi[lIrc'ltioJ]'>llOwn 1IlFigure 1.2.

Such jll[chforh oltcn alloC as d rcsult of some symmetry inherent in the problem. It is

interesting to II00Cthat lor nOI\-~,~rovaluc, 01' f.". 110mn1tcl' how small, this pitchfork is

replaccd by a ,illlpk lurning poillt, as ,how", LIl Figurc 1.3. Thc existcnce of the

paramcler I: "bre"h ,I,,: SY"llllU,-y"lL1tlw p,ohlcm.

4
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X

2.5

,
,.0

0.5

--- ---------- --"
//

-1.75 ., -0.75 -0,5

FigH'-~1.2: I'itch fork bLrureal;,," diagram Lor(1.1.7) in the «(1, xl-plane 8 =0.0

3.0

2.0

1.5

1.0

0.5

()'!1L.IJ~-_~I-.S~--~I.-, ~--1~.3~---1~.O~"--~O-.S----=O.5

[O'gurcI 3: Syml1lelry br~aking inlo the bifurcation diagram for (1,1.7) in

lh~ (tl, ~)-pJ~[]ewhen C =0,01
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1.2 Review or Power Series

The solutioo of nonlinear prublem can be expres,ed a, a series in powers of one or

several independent variables The first few terms of the s~ries expansion cootam major

information oflhe problem One call use lhis lIlformation to carry out further research on

the problem

1.2,1 Single varillble ~cl'ies

COlls,der" ("nclion j (x) wlLLellcan be '-cpres~nled by a power S~,rLes
,

.,'(x)= L~,x'
,~o

The Nih partial sum i,

a.1 (I 2.8)

(l.2.9)

The series converges If the sequcnce of piirtial sum, converg~s. When the scries

converge;, the <;eriesS(x) can be approximated by the panial sum SN (x) and the error is

defined by

e,I' (x) = S(x)- SN (x)

Wh~o S(x)" 0, lh~ ab,olule relative error i, defined by

,,( )- ""~I,)
<,.,x_ '(I

" x

1.2.2l\1ultivariablc ~('I"ie~

(1.210)

(1211)

Coosid~r a [unction [(x,v) or tWOindcpendeDt variables, which caD be represented by a

power sel'les

" ,S(x,y)= I Ic"x'yJ
,.0,=0

The Nth panial Slim IS

as (x,y)-+ (0,0) (1.2 12)

•



The ~crics convcrgco Ii' the scqucncc of ]J~rlial ,urns converges. When the series

converges, tlw oerics .'l(x,y) Celllbc "ppro,imaled by the partial sum and the error is

defined by

eN (x,y) = S(x, y) - .'>\. (x, )')

When S(,',y) '"n, lh~ absolute l"clutiveerrol is dcrincd by

'(. 'I_c",(x,y)
eN X,.l - S(x,)')

(1.2.14)

(1.2.15)

In applicd malhcmatic>, power >;crics arc olten obtained by expanding a function in

power, 01"somc pcnurbatioll parJll1eters. Ii; the following subscction, we describe the

basic Iitcratul'c Oil peril" bation t~chni'l "Co.S~e (4) & r31] for detJils.

1.2.3 Perturbation series

Perlurballoll theory is a colleclion of lIleHluds for the systcmatlc analysis of the global

behaVIOrof wl\lti{)n" 10 nonlinear prohlems. ~ometimes we solve nonlinear problems by

expanding the solutioll in powers of olle or several small perturbation parameters. The

expansion may eOlllain small or large p~l'ameters which appear naturally ill the equations,

or WhlChmay he arlilici<lliy i[]trouuccu. A perturbalive solution ii' constructed about the

pel1urbation parameter [. = 0 as J SCflesDfpowers of b'

(1.2.16)

whcre the eocfrLciclll~ "" are inuependent of i:. Tilis series is eallcd a pel1urbatioll series.

I! is to llote tilat the pcrtlll'balioll series for s(x) is local in i: but that it ISglobal In x. If I';

is VClYsmall, we expeettil<lt ,(x) will be well approximated by only a few temlS offue

perturbaiion series.

Following ~re ekmenl,II'Y exaillples 10 IlltrodHce thc ideas oLperlur!lation series.

,.'



F.MHllpl~1.2.2 Rool, of a cub ic polynomial

Consider [be algchraic equation

x' - (4 +s)x+ 21."= 0

for ,mall c.

For b' = 0 it bave lbe roOl,X'" -2,0,2

Assumc a perturbdtio~ series in powers of I.'
,

X(,:)= LC,c'

When x =-2, by subslituting Ibe exp",,,,oll

x = -2 +c,c' +C',D' + ...

inlO (1.2 I~) and equaung the coeff,clcnt, of 8 , \'1e get '", = -~, '", = ~ ...

ThclcfOlC, th~ pCrllllballlln ,eric, for x=-2 15

1 1,
~-=-2--I"i'-S" +

'28
The same procedure gives

(I 2 17)

(1.2 1~)

1 1, (, )x, =O+-o'--D +00" ,
2 "

for-,=() and x,=2+0,1':,'.O,b"+O(D]),for-,=2

Ii:X3mple 1.2.3 (o~sidcr Ihc initial value problcm

y"of(,,)y, y(O)0 1,y'(0)01
Fir,t we introduce anE 10(I 2.19) such tllal the unperturbed problem is solvable

Now aB'>Umea perturballOJl expa"SLun I(),' y(x) Lnthe Iollowlllg limn

y(,) 0 I/y,i,)
,="

where y(O) = 1,/(0)=1 and y,(O)=O,Y;(O)=O (,<:1)

(1.2 19)

(1,2,20)

(1,2.21)

The zero-til ordcr problem )'"(0)= Ois oblained by selling D=O and the ,olution which

satisfies Ihe initial cundition i, Yo = I+x

8



For the Ilh Older problem (I :?l), substitlillng (l 221) into (1.220) and equating the

CoeffiClent of c' (t 2:1) to zero, we geL

The solution of (I 2 22) is
, ,

y, = fJtfJs/(s)v,_,(s), /2:1

" "

(l 2 22)

(l 2.23)

EquatIOn (1.2,23) gives a simple ite,ative procedure for calculating successivc terms in

the penUibation series (I 2.21).
x , x, v

y(x) = 1+x+t. f dl f J.I'(1 +.1)/(0 )+<:' f dl f d.l'j'(.l) f dvJ dll(l+u)f(u)+ ... (L2.24)
ou 00 nn

Putting 6'= I yields the result.

1.3 Singularities

~itlgularity ofa Ii-metlon is a value of the lndepeodeot v~riable or variables for which the

function lS llncielined, Singllial ities are cruci al points of a function, because the expansion

of a JuncLioll into a power series depends on the nature of singularities of the function

For the pllrpG.\e 01' thi, Ihesis. "e are interested [0' analvze those funeLion" which have

se,,~ral typ~s of ,i ngularities

1.3.1 Singularilies for single Vll,i:lble fUllrtion

The rate of convergence of the sequence of partial slims depends crucially on the

singularities of the fllnc! ion represented by the series Several types of singularitie, may

arise in phYS1~ill(non-lineilr) prublell1~, The dominutmg behavlOr of the function f(x)

represented by a series may be wrmen as

(1.3,25)

where M is a wnstarll and x), the critical point with the critical exponent a.If a is a

negaLive integer thcn the singulality is ~ pole. othcrwise if it is a nonnegative rational



numher then the singularity is il hranch point. We ~an inelude the eorre~tion terms with

the dominating part ill (1.3.25) to estimate the d~gree of accuracy of the critical points. It

may be

as x -'';::, (1.3.26)

where 0 < 111 < C!l </\ ~lld M],M 1'/\ are constants, C!,+ a (t N for some i, thell the

correction terms are called confluent. Sometime, the correction terms can he

(1.3.27)logarithmic. Such lhat f(x) - M( 1- ~:r{I + In 1~ ~ }

Sometimes the sign 0 r'the scrie, ~ocfficienh may indicatc the location of the singulari ty.

lf ~II tcrms are cither po,itivc or negativc [hen the dominant singularity must he on the

positive x-axis. If thcy a!terna!c in sign lhcn the dominant 51ngularity is on the negative x-

aXIs

1.3.2 SinJ:ularities for multivariablc runction

Severa! types or singulilrities may urise in physical problems that involve more than one

indeJlend~nt variable. ]( is obvious that ,ueh functions might behave as

(1.3.28)

near the critical points, whe,e ,011 is a con,tant. and (x, ,y,) i~ [he critical point wjth the

critical exponent (L _ II' a i, negative inlegcl"then the singularity is a pole; otherwise irit

i, nonnegalivc rationul nom ber then it repr~sents a branch point singularity.

Following i~ a hasic theorem that relates the a,ymptolie behavior of the power senes

coefficient> to the form oftbe dominant singularity,

10



Thcorcm 1.3.1 (])arbuux's ill thc ca,c ul' ,inglc .Iinglllnrity)

Let the fUlleLLonf(x l bc analytic ill the dosed disc Ixl:o;Ix,l, "pM1 from a branch cut for a

single algebraic ~lllgularl!y at x = x" so !iJ,lt

(1.3.29)

where p(x l ami Q(x) arc allalytic in a disc that indudes Lhe disc Ixl:o;Ix,l. Then the

eoeflieients of the pO\ver scncs (I .2.8) oatisiy the asymptotic rclation

for allY N anti ;OI11~conslants p(' I(x) indcpemle;lt of i.

as i ---> co, (1.3.30)

Herc are somc JrLificial cxamples WIth tIiffer~nt types of singularities.

Example1.3.4 Single variable fUllclions

1. Singl,laritico Lh;,!arc polc~:

lI. Algebraic sillguiarilic, wi!il !ile ,alllC exponent

liT. Algebraic ~Ingllla,,!ie~ With (hffercilt exponents;

IV. Log~rilhmlC singllbrlly:

j (xl = In(l.;. x ).+ >L"(-, l.
v. Esscntial singularily:



VI. Algebmie clominant sLngula,Ily wi til a secondury logarithmic behaviour:

{ 'J-y, l' 'Jj(x)=e~p(~,\]-~ +In l-j,

VII. Cube rool singularily:

Exmnple1.3.5 Multivariablc fUllcllOnsrelated to the:

I. Singularities lhat arc poles:

f(x,y)= (1- 2.\ +Yt' + (1-.\"+ 2y)"'.

II, Algebraic singularities with the samc cxponent.

III. Algcbl'uic "ingularilies \\iith diffcrcnl exponent,:

-1/ -II -1/ -1/( - J" ( 'J'- ( "J" ( "J"f(x,y)=21-~+y +31-j +41-5 +51-'6 .

TV.Logarithmic "ngularily:

j(x,y) = In(1 +.1' - ,1')+ 8in(x),

V. Essential sillgularily:

VI. AIgcbrai~ uOlllin:lIlt singllla, Llywith u ,cwudary logarithmic singillarity:

-"f ' J" ( " Jf(,\"Y)= CX]J(X I1--;;-+)' +In I--+y.
\ .' 4

VII. Cube rool sillgul~t'lly:

j(x,y) = (I - .\y),Y; + c'\Il(' + ,1')

To analy/.c the singlll~rity bch~\'IOr, il " v~ry Hnporlant 10 know abont the continued

fracllOllS.

12



1.4 Continned fr<lcliulI,

Continued fraction ha, <Llong 11lStory,For historical survey one ean see [5] and [29].

Continued fL"<lcli'JILis vcry lIscltd 10alwlysG tile dyn,llllical system:;, 'llolably in conncetion

\\iith renormali/,alion, J ICIc \\,Cp,-csl'Ill Ihe basic concepts 0 r conlinncd fractions.

Let x be a rational 1ll1111hcr,(hen lile simplc eonllnucd fraelioll of x is

x=oo+
°1+------

a, +

.[_._--
1

11,,'-1 +-
rN

(1.4.31)

wherc, lorO S;i < i';' , (/, = j/()()I{ /; J ,ltld fluor( I~) denotcs thc itltcgraJ part of (~, J.
In thi, cxprc.\Sioll the (Ii arc posi IIvc inkgcrs and rN is ealled Ihe Nth remainder.

EX<lmpJel.4.6

Then

Let
95,=-.
43

')5
-"'~+-----43 - I

4, 1
1'1---

• 1,"-"
=[2,4,1.3.2]

For every ratiollal Illllnbcr, e\'cnlually thc rcmaindcr most he equal 10 O. On the other

hand, if x 1, lrratlon;Li, lilcn thc rClllailluer ean never vanish and we can gel the inJlnite

continucd fractloll

x == ill> + -----
(/,+---

(/,+

(1.4.32)



Examplcl.4.7 I.e( x = 13. Since I < x < 2 then I is the greatest inl.eger less than ,J3.

Thus

I-knce

J3 = [I, 1,2, 1,2, 1,2,." ]

= [1,1,2]

Dy ncgketlllg thc Ntll I"Clliailidei'ill (1.4 31), we oiltam a rational approximation xN of x

X,\' = ",. + -------.
a, +

a, +

" ,\'-'
X II i~called tb~ Nth cOl1v~rg~nt0 C the conti 11ucd fraction (1.4.32).

(1.4.33)

A powcr scries IlldYbe maniplliJted into a fonn of eontmueu fraction. It is just another

way of wntillg fractlol1s. !l has wnw inln~sting connections with the approximate

melhous. Continueu f",ction, CaLIbe simpllfLcd by cuUing after a finite number of

iterallon~. The rc,uit Mtlle tenninateu contillued fraction will givc a true fraction, but it

will be all applOximatlonlo the power series,

Consider a function f(.>.), whieb represenb the powcr series

,
S(x)= Lr,.r',_.,

\ -) o. (1.4.34)

Let U~nOW>C~hoI\', it C,L1)b~ ~xp•.~s,ed as a e'liltinLLcdfraction

The Nth COllv~rg~1llol.tile ,er,c>; (t 4.3") "



(1.435)

In order to convert (I 435) into continued Ii-action, as,ume that all the invcr5e that we

need exis\.

rhe eontinued I,action oft] 4 35) i;

S,,' (x)- e" +-
Cox
c,!'lx

C ('ix'
1.1.-'-I .L • ,

(14,36)

~ciJ (',X ci'!x
," 1+ , ,

The conv~rgerll 01'(1.4 34) is l'atlol1ali\mctlon Llithe variable x

In general, "e Lan obtain a r~tlOnal approxllnant frOlll (1.4 36) of the form

(1.4.37)

which matche, certain number oftenn.\ oftbe serie, (14.34)

111particular, the roots of the denomillator{1",(x) give the singularity of the ,cries

(14.34), When lhe.\el'ies (1434) repre,ents a rational function, the remainder 01'(14 37)

must eventually reduce to a con;tant, and the process (I 436) tenninate, after a finite

number of it~ration, Otherwise, it never t~rmmat~s and we obtain the infinite continued

ti-action,

l:xa mplc 1,4.8 Consider the function

(1.4,38)

The ~erie, expansion for the iilllctlOll (1.4.38) L\

.\'(x)= ] +- '1x .,. tox' "t" 22 2 -I-46 x< ":'94x-' +- O(r')
and the continued fraction ,s

j(x) = 1 + -,---'-,---
-+------
4 -8 X--+----

5 -25 ~x
12 3
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1.5 Ovcniiew of the work

This thesis L, concerned with the ,illgularity analysl, uf power series arising in the

solutLon of nonlinear syst~l1l, For over the lij~t quarter century many powerliJl

approximants have been mtroduced for the approximation of functIOn by using its power

series. Among them mo,t of the method, are described for the power series involviflg

,ingle independent variable and a few are derived for the power series involves with two

or several mdependent variable" Many researchers hitherto have found remarkably more

accurate re,ult~ by using several approximant methods The r~mail\der of this thesis 1; as

follow;,

In Chapler 2, we have reviewed some well-known approximant methods fur [he series in

powers of one or ,everal independent vanable, with examples, All these approximant

method,; are member, of tlie j'ml<!.J1emIJI,' da%, The methods for single independent

vanable have been discussed at some lenglh Then in Chapt~r 3, we have derived a new

approach to pal1iai differential approximant for the seri~~ in powers of two independent

variables using the concept of f'"dJ-f{ermile class. finally in Chapter 4 we have

summarized our \Vork and give some ,deas rot' fulUIC work



CHAPTER 2

EXISTING APPROXIMANT METHODS

2.1 introduc(iun

Approximant lTIdhod~ are the techniques for summing power ~eries_A function is said to

be approximanl lor u given series if its.:raylOl' series expansion reproduces th~ first few

terms oflhe series. The parlial MLlTI <)1'a series is the simplest approximant, which is very

good approximant, if the function hasllo singl1lanlie~_When the series converges rapidly,

such approximanlS can pruvide good approximations for the series, In practice, howev~r,

the pr~,ence 0 ["singularities prevents rapid convergence of the series. It i~!hell necessary

(0 seek an efficient approximant method.

The convergent in the continued fraction expansion of a power series are rational

approximants. In fact, it is a particular l'ade approximun(s that have the property that the

numerator and denominator arc of the .',Umedegree. In general, such approximants arc

more accuwte than the pmtial sum of the power series. See [I] and [4] for details.

In this chapter we describe somc well-kno\vn approximant me(hud~ for the power serics

that have several type~ of singularities. The purpose of this ehapier b to describe these

approximant methods lor ~onstru~ting other often-powcrful approximant methods. The

advilflklges of these approximant methods arc that tlley carl be used, not only 10

approximate the rate of eonvcrgenc~ 01'power ~eries, but also to compute the location of

its singularities,

Th~ struclure of this chapter is as follows: In S2,2 We review some well-known

approximant methods for the serie>; or single independent vlIIiable with some examples_

In S2.3 we also describe some well-known approximant methods for the series that have

two or several independent variables with some examples. Finally, we conclude with

some remarks in S2.4.

I 7
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2,2 Single \':ll'illbJc AIJProxi"""11 Mdhod~

In tillS section, wc describc a Ivide cl,ls~ Pade-Hermite approximants along with some

singlc lIldcpcndcllt v,lriablc appro,im.lIlt mcthods, All the singlc indcpcndent variable

approximant, in this thesis belong (0 lhe Parie-ftCl'mile c1a;s,

2,2.1 /'"dc-Hermite apPl'oximal1 t~

In 1893, Farld alld HeJ'luile l[]tL"()(illcedPadc-flamile class, This e1ass is related to thc

simultaneous appruxil)]ati()n~ ()f !,ever~1 scrics and there is some advantage in first

describing (ile Padd -flam/Ie el,,>s li'om that p()int ()fview.

Let d EON ,md the (d'i I) P()WC' ,cric~

One can ~oll,truC1S!h~ (d + I)'ILlplc <)1'polynomials

Sueh lhat

(2.2,1)

"L1],,(1)S,(,) = 0(.,' I
,~"

aSX--70 (2.2.2)

Here S[oJ(x), S[1](X), ''", S[dl(-') lllay b~ lllucpc[](1cnt saie, or differenl fonn ofa lUlique

series. Howcver, sinee in lilis w<)rkwe ,IIe Inlci estell 10approximate a unique series S(x ),

wc shall l~ke p<)wcrs<)["derlvatil'cs <)ftl1cpunial ,lim SN(X) for0ther series.

Now attenlion is given on Ihc probleln of fill(l1ng p()lyn()miab l(.j(X) that sutisfy the

equ;lliol1" (2.2,1) and (22.2). The !'(}IY"()lllials are completely determined by their

coefficient" So the lo(aI I1llmbc, of ILnk110\\'110111the equalJOI1(2,2.2) is

"
Ldegfilr)+ <! + I = N + 1
'"~

If we cxp:lIld the len-hand >;idcor thc cqtl~tL<)n(2,2.2) in P<)WCI'Sof x, we sce that the

equalion (2.2,2) is equil'alenl 10cqualing Ihe [irs! N tenllS in lhe c;:pansion to zero. This

IS



gives a system of N Im~ar ~quation~ for the unknown coeffici~nts of the 1'"di-Humile

poiynOlmab, In ordcr to onlain non zero s[)llIlions uf that sy~lcm of linear equations we

must 1l0rlllallz~ by ~eUing

for SOniC OS:iS:u (2.2.3)

rhe equation (2.2.3) th~n simply ensures that the eoeffi~ienl malrix asso~iatcd with thc

sysl~m is sqlmre. One way to construct the Pade-HerrnilC polynomials is to solve the

sysl~m of linear equations by any slandard method such as Gaussian elimilliltion ur

Gau.ss-Jordan eliminalion.

2.2.2 Parle approxima"ts

1'ade appro"imant is a technique for summing power series that is widely used in applied

malhematies [4]'1'adi "ppruximanl Can be dcscribcd from the 1'ade-Hermile class in the

following sense.

In thc l'adJ-ffermile elu~s, kl

d;1, So=-I, 81=8 (2.2.4)

and lhe polynomials !jQl and 1[IJ satdy (2.2.1) and (2.2.2). One can define an

approximant SN(x) of the series S(x) by

We eall the mtional relation S" (x) is a Pade approximallt of the powel' s~ries S(x ).The

Nth eonverg~nl of thc continucd fraction expansion of lh~ power scrics S(x)is itself

analogous to l'ade approxinliJnL !nde~d, lbc PaJe appl'Oximants are a particular lype of

rational fraction of two po!ynomi"ls so lhal it would tcnd to a finite limit as N lends to

infinity. Hence the 1'aJ'; upproximants to a power scries is a sequen~e of rational

fnnetions (a rational function i~ a ralio of two polynomials) of the fom]
,

111,1
Ia,x'
,-" (2.2.6)

11'1 ":2),x'
,.f!
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Without los., of gCllcl',llily we ch()os~ I"~,'" I. Abo wc can calculatG thc rcmaining

In thc T~ylor ~eries cxp.Jnsion
H,,,,

of - malclics (ilc
li'l

flrsl (t + III+ 1) tClms of the power

"SCflesLC,~',StLpposeth~t
,=0

I:c,x' is" power series represenlation "rthe function f(x) ,
M

lhen
"

1,111--+00, even If Le,x' is ~ divergent senes. Since Fade
'""

approximant, involved only algebraic operations, they are more convenient for

eompllt~tion~l purpo~es_ In fact, the gener~l rade appro'\imant can be expressed as
(2.2.7)

and

In order tll evaluate the Fade .Jpproximallis for ~ glven serics numcrieally, we have used

symbolic eomput~tion language such as MAPLE, The Pade approximal1ts have been used

nllt only in laekling slowly convcrgcnt, divergenl Jnd asymplotie scries but also to obtain

singulamy of a funellon Ii-ol11its "cries coefficients. The zer0CS of the dcnominator

f[iJ(X) give thc singular PllJl]tsll~h a, pole oJ'thc function f(x) , if exist.

Examplc2.2.1 COIlSlder (he fUIl~tion

f(x)= (1- 2.1')"' + In(l-x)

Ailer using the 11Orllla!Jzationcondition b" = 1, we get lbe foll()wlllg nllll1eralor and

denominator lor the FlUle approximants ofthc function,

For dcg l-joj(x)= degJ111(x)= 2

R {x)",l+~X+~A~
'lO] 7485 7485

1(,)=1_9107.\"+46151,,1
111 2495 14970
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7292173 38077294 2 95080207 J

Jj~I(x)= 1- 11X04610 x + 29511525 x - 88534575 x.

10858581 50g22853 z 47513951 jA,,(x)=I----H---' -----,
.1 3934870 9837175 39348700'

1t (x)= 1- 6696433085 x+ 41892911919 x'
0] 5840039613 27284318194

215602875185 J 1087472177237 4

122779431873 x + 2455588637460 x

d
A ( ) 9378037222 100217195343 2 7091162434 J 7564234217 ~

Ull "[II X=1-----H-----X - X + x
194887n71 13642159097 1948879871' 19488798710

The following table 2.1 show~ the eonvcrgence 01" Lhe ~inglliarity point by Pade

approximant:

Table 2.1: Convergence of singulality by "ode approximant for the function in th~

exumple 2.2.1.

d "
2 0.4304862724

3 0.4818596590

4 0.4%2878690

2.2.3 Algebraic approximant

Algebraic apPloximaL1I' is a special type of l'ade-I!ermile approximanl~.

In lh~ l'",fe-I!amile elaso, \\,~ [ake

21



d 2'.I, So '" I,SL ",S, .. ,Sd",Sd,

Consider a function j(X) l'epr<:sented by the pawer scrie, S(x) and SN (x) is thc partial

sum of that series.

Using P"dl.IJCl'In;le palyn01l1ials del'Lrlcdby (2.2, 1) and (2.2.2) an algchraie approximant

S,\,(x) of S(x) can he derined as the ~olution vflhc equalion

(2.2.8)

Sinc~ the eqllallOn (2.2.8) i, n polynomial of sAx) in 'degree d, the algebrak

approximantS~ (x) is in g~ncral a IllUltivalued functioll with d branches. At first this

may appear to be an \il1desirabk feature 01" thc mcthod, in that case we have the problem

of identifying the purticular brunch thut approximatcsS(x). On the other hand, the series

S(x) is the expill1~ion of a purlicular typ~ of function j(x) thal is itself multivalucd. for

algebraic approxim3nts, one uses th~ partial ,\LmSN(X) to construct the (d+1)

polynomials
(2.2,9)

such that

(2.2.10)

The total number ofunkn{)WIlS in lh~ ~qllation (2.2.10) is
,
Id~g f)'1+ d + 1=N + I.
t=ll

In order to detemline thc coeilieicnls of the polynomi31s (2.2.10), without loss of

gcncrality on~ ean set f)O)(O)= 1 lor normalization, The discriminant of the equation

(2.2,8) give" ~ingularil)' of the f\lndiorl,

Examplc2.2.2 Consider lhe flillClion
,

f(.)=(l-~x};:



and take uegP[oJ(X) =.. - = dcg ![dl(X) = 2

j'ord= 2, aHerusing the normaliz"tion condition l[oJ(O)= I, we get the polynomials

r[Oj(x)=2x-1

'111(x)= 0

and 1'[11(X) = I.

Here the discriminant V(x) = j'I~I- 411"jr[lj' which gives the singularity x" = y, for the

above menlioned I'unction.

E:umpld.2.3 Consider the i"llndion
,

f(x)=(1-2x)'.' +sinx

Jlld lake deg {jol(x)=..• = dcgfjdl(x) = 2

For d = 2, after using the normalization condition '1ul(O)= 1, we gel the polynomials

and

( ) 25204 155377 2
'101x =-1- 47295x-14t885x

I] (~)=_ 2648 + 83168x+237764 x1
IJ 1051 47295 141885

()
1597 57964 45532 1

!il] x = 1051- 47295x-141885x ,

whieh gives th~ singularity x, =0.4084607608 for the above mentioned function. 11will be

dose to the lIclu<l1~ingularity ifincrease rIa, well as the degree of fI,](xl.

2.2.4 Differential appro:-imants

Dii"fer~nlial iLpproxilllunts IS all imporumt member of the I'"de-I/ermile class, 11 i~

ohtained by tiLking

Wher~ D i~ the dilfer~ntiill operalor

23
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Once the !'ade-f{ermile polynomials have been (!lUnd,a differentia! approximant S",(x)

of (be series S(x )ean thcn be defmed uo the solution of (he differential equation

(2.2.12)

Equation (2.2. 12) lS nOL1.llOl1logCL1Cou>linear dilTerential equ;ltion of order (d-)) with

polynomial eoe!Ticients. Thcre arc (d-l) linearly independent solutions, but only one of

them has the same fil's( fe'" Taylor coefficients as the given series S(x). When d> 2,

the usual mcthod for ,olving such an ~quation is to construct a series solution.

Differential appl'Oximan(s arc used chieny fol' serie~ analysis. They are powerful toob for

locating the singubri[ie~ of a series and lill' identifying their nature [20]' It is not

necessary to ~ojve the dill'el'en!ial equation (2.2.12) in order to find the singularities of

j(x). In practice, one usually finds thai its only singularities arc loealed at the zcros of

(he leading polynomials lid] (x). Hence, the ZCI'OCSof 1[<tj(x) may provide

approximations of tile singubri(i~s of (ile fundion .f(x).

A less general form of the mdhod of differentia! approximunts was developed by

GuUmarUl and Joyee 1201 and l.hlllter and Baker [22 J for series analysis. However, these
st\ldie~ consid~red only low-order differe~.lia! approxilll<lnts, where d is not related to N.

When the function has countubly illfllli(c brnnehe,. then the low-order differential

approximan(~ may not be lIseful. I( is to note (hat Sergeyev and Goodson [33] for

algebraic appl'Oxim,mh ',Ugg~sts that Ii ,,,,IN. fourigny and Druzin [36] and Khan [25]

had already impl~mented this idea for Jlgebraic appro;.,imanls and High-order

Differen[iu! Approxilllant~ r~spectivdy. Khan 1251 cst<lbli~hedthe relation

I
N=-d(d+3)

2
(2.2.13)

between the I1l1111b~r, d and N 101' the I-ligh-ord~r DiITerenlial Appl"Oximant of SN(x) and

eOllsidel'cd

(2.2.14)

24



" 1
From (2,2.14), he deduced Ibn! [helt mc ~)k+l)",-(d+l)("+2) unknowns by lhe

':If 2

<.!cflllilion vf the l'adJ -liermite cbss. In Qn.kr to determine those unknowns, he used the

II' Iincar equations tho~c satisfy the equation

fjo{d+ f lj,j(x)J),-1 S\, (x)= ok')
.=1

The nomml i,jng condition

(2.2.15)

(2.2.16)

em;ures that ther~ arc as many equations as unknowns. One of the roots, say xc' of the

coefficient polynomial ofth~ hi~hcst derivative

gives an approximation" f the dominaot 5;nglliarity Xc0 r the function j(x) .

Bxamplc2.2.4 Consider (he function

j(x)=(1-2xt2 +In(l-x)

and \akcdcgI[IJ = k

for d = 2, N =5 the kading polynomiul

gives lhe singub, ill' x,_ = 0,5019319169 approximately fOl' the function.

2.3 Multivariablc Apprmim'ltIt Mcthod~

In lIlIS ,edioll \\iC have reviewed some weiI-known approximant methods for the ~eries in

pO\\icrs of two or more independent variilbles, whieh have been developed using the

cOllcept of Pade-Hermite eiass,
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2.3.1 Multivariahlc P(/{M appro~ilnants

Muny attempls have been made lO gencl'ali,.;", lhe concept of J'adJ. approxim~nts for

multivariable fUllctlOM. One can ,ce [11J. [12] and 140] for details. Here we have

introdlleed the muilivariablt' fadJ approximants on lhe basis of l'ade-llermile class.

(livcn a fllnction f(x.y) in the fall11of its Taylor ,cries expansion at a certain point in

the real plane is (for ,implicit)' we u~c the Taylor ~crics at the origin)

o 0

S(x,y)== LL>'jX' yl
,. j"~

The Nlh partial sum o['thc series

(X,y)----l'-(O,O) (2.3.17)

(2.3,18)

For the lormation 01' two variables rational approximants SN(X,y), we consider the

polynomial"

such that

S,' (x,y )f(,j(x,y)- fl'I](x,y) = 'Leij Xi y i i, J EN
'0

(2.3,19)

(23.20)

(2.3.21)

and . e = 0, 0 rori+j<N

(2.3.22)

(2.3,23)

The coefficient, or lhe numerator flo j (x, y) and the denominator 1(1](x,y)are determined

from (2.3.23) by usi ng the normalization conditioll q~o== 1, Thc condition (23.23) thcn

ensures that thcre <lrcas many equ<llions as unknowns. One can solv", these equations by

using symbolic programming language ~ll~h as MAPLE, Th", zcros of the d",nominator

lll](x. y) givc the singularity or the i"llndLOl\j(x, y ).
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Exnllll'le2.3.5 Consider lhe I'unction

j(x,y)'" (l-x+ yr'
and take <leg Itol(x, y) '" ,kg f-j Ij(x, )') = 2

Aller using lile nonnalinlion condilion 'Iuu'" 1, we gel the numerator

i[u](X,y)'" 1

and the denominator

1j1](x,y)=t-2x+2y+x' oj y' -2-,.1'

The zero, 01' (he denolllLllalor I[IJ(.\"')') g,"e lhc ,ingl.liarity (xoyJ"'(I,O) of the

function f(x,y).

2.3.2I\1uW\'ariablc AlgcIJnlic ajJpn>.~illmnls

Multivan.lblc ~lgehraic apprOXilllJllts havc been devcloped by l(han [25]' Consider a

function f(x,y) of [wo mdcpclldent variables, represented by the power series

o 0

S(x,y)= LLCijX')J
,.(, j,0

(,,,)~ (0,0) (2.3.24)

The Nth par[ial sum of the ,Cl"leS (2.3,N) is

By using thal partial 'lilli, we ar~ lryin:; to COllstruct (£I + I) polynomiJls

in x Jnd )' such thai

(2.3.25)

(2.3.20)

li\.d_,~ iJ'+ dl.'" _,-elj,\ Y
'.j

i,jE N (2.3.27)

C'j"'O I'Jri+j<N

The cl]lLlLlioll(2.3.28) gives a lolal
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(2.3.29)

equations 10 determinc (hc unknown eodl"Lciellts (}f the pOI}~lOmiab Fji](X,y). One of

these eoefJicicn[s is specd] ~d by thc nOllnali I,alion condition

(2.3.30)

Thus, therc rcmains

UnknOWIlcoerriclents tlial must be found by llSGof lhe N, linear equations ,The equation

(2.3.28) can bc exprcs> in the Il1Jtnx f,-,rmm,

AX=/) (2.3.31)

wherc A i, a lllatriX of ,-,rdel"Nc x /1/"and (he nollZcro vect,-,r [] of dimcnsion N, on thc

right hand ,ide comcs ,fwc imposc thc condillon (2.3.30).

This syslem will he solvablc If

N :;'N,- " (2.3.32)

However, wc mu,t make il c1eJI' that, evcn wl(h (his condition, there is no guarantee that

a solution Will exi,l 111pl'ae(ic,ll eascs, a solution exists but it i~;not unique. By using

algebraic. pl'Ogl'amnlJng i<Lng"agc such as MAPLE, it is straightforward to obtain the

gcneral solullOn 0 f (hc system, Bu( (be gcner,d ,o[ution eon(ains some free variables, It is,

therefore, IIllporlan1 10 choose the vahLc of the free variables. In thi, thesis we choose

value of lhc frcc variables to ZCIOor onc. Thc diserimillant ofthc equation

110] +fjl] S,v +"'+1[d]SN
d

=0

Examplc2.J.(, Con,iucl' tile fUllc(ion
,

}(1:,y)= (1-2x+ y)~

andtake dq;11,lt,y)= .. =dcglj"l(x,y)=2

(2.3.33)
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For d = 2, the number of unkllowns is N" = 17 _Therefor~, we eim lake N = 5; so that

the nl1mber of e'-jlLatiol1sLSN, = 15 The coefficient polynomials are

/[01 = 1+(-2+81'1 +48c, -c2 +Se,)x+(I-cJ - 8c~-4cl)y+ (- 20c, -108c4 -14c, +2c))x

+(_ c] -5cl -13c.)v) +(- c) +7cj -1- 2c] +20c, +80'4 )xy

I'IIj= 16c
I
+ 64 c, + (- 24"" -112c, - 8e, )x+ (12cl + 40c,)y + (4c, + 320', + 8r, lx'

+c, .1" + (- 16c'l - 4c, -4c.);" v

The polynomials cOllt~in~ fivc free variahles 1'1' c2' c3, c~ and cj,

The particular polynomial~ can be oblained hy ,dting 1 to (he free variables

l-jn]= I + 61x _12y_14IJx1 -lQ/ + 108xy

It,] = 80-144x+ 52.1'+44x1 + / - 24xy

Ibl = -81 +.>- + y_6x1 .L / + xy

which gives the ~ingubrity (x,,_ y,.) =(0.9934023773,1.0000000000) for the mentioned

Junction,

In figure 2, 1,w~,~e 110\'1the critical lioe malehes wilh the approximate critical values by

usiog m\llli~ariablc algcbrUlc appi OXllnants,



4.U

3.5

3.0
y
2.5

2.0

1.5

1.0

0.5

App"",n,ate ,ing"I,,;') "",,'0
O,i~ill,l.ingul",'; cu"'c

1.0 2.0 3.0 x 4.0 5 .1

figure 2.1. AppJ'Ox,"lOte looal;wn of _,ingulari!,., of II,e "xample 2,3.6 oblained by using Mullivariablc

Algebraic Approximant" D,e <"Tye marked wLthsq''''''' i, (he approximale ,ingularity curve ond (he curve

marked with diamond j, the origl""l ,;ngH1arily curve,

2.3.3 Fisher's appr(lximants

Fisher [15J has suggested a new appro:\illlunt method, derived from a first order

homogeneous JincJr partial diITcrcnliul equation. For \hi~ he considered the fllnction

j(x,y), which represent the power ,enCS

" "
S(x,y}= LL:>'} x'yJ

'co j=U

The partial sum of this ~erks is
N-] ';_1

SN(X,Y)= I I c"x' y'
.=(l J=U '
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. ,. usAx.y)
where Its derivatives ' atld", OS I' (x,y) ~xisL He consldcred the polynomials

<N

high-order terms.

(2-3.36)
Using the partial sum S N (x,y). one con construct the polynomials

IjD.O]' Ij',oj and 1[0I] lTI X and y such that

( )0.\"", ()GS,v () , "1[1.0] x,y -,-+1[0.1] ,',y -,-- 1[o,oJ x,y.'iN = L.e'Jx Y
m ry _.J

where N = deg lh~] + (kg 't',OI + deg ItO,I]

allli C'I = 0 for i+) < N

i,jE N (2.3.37)

(2.3.38)

(2.3.39)

111e eqU<llion (2J.3R) delineo a homogcneous linear system of equations for the

eocfficients of the polynomials Ito,o](x,y). Ij',~1(x, y). and It~,I](x, y ). One can eval\lllte

the coef1i~ients of these polynomials using any ,tambrd method such as GaLlssian

elimination or Gaus,;-.Ioruan climinJtioll. Using thcsc polynOl1lial~, the Fisher

<Ipproximant of f(x. y)u; dclined to be a solution of the partial differentiul equation

, ( ,) (, ,)_ (. )88,("y) ()88,("y)'(0,01X,y Sw .\,y - "1'01 x,y -~-~+P[",IIx,y -~-~ax ay
The polynomials It,,4x, y) and Ito,ll(x, y) will give singltlarities of the function j(x, y ).

E:mmple2.3.7 Consider the function

j(x,y)= In(l- 2x+ y)

and \;Ike deg 11"'''1 '" deg It"O] = del' 1[11,,],,1

Aftcl' USlllgnormalization condition, we gctlhc following polynomials

IjI,o]=I+c,x+C2Y

and 'ill,lj",2+2c,x+2c,y

31



The polynomials contain two free \ariables (', and "2 .

.[ he particular polynomials are obtained by taking I (0 the free vari<lbles.

11,.o]=I+x+y

and flu.II =2+2x+2y

which gives the ~ingularity (x,.y,) ~(O,-I) for the <lbovementioned Junction.

2.4 Conclusi •.•n

In this ch<lpter, we have reviewed differenl approximant methods for the serie~ of power

one or severJI indep~ndent variables_ There arc some drawbacks in using to approximate

singularities. "I heir succes., ucpends on Lhe availability of a ~ufficicnt number of

eoefficicnts of the ~eries S(x). Th~re are many pos~ible sourees of dilrerent errors. for

example, lhe scries coel1ieien(s may be known only approximately. Or accuracy may hc

lost in computing lhe Padl-Hermile polynomial~ and in solving the system of linear

equations for the approximant. Particularly, in mullivariable case the solution is not

unique_ There exist some free variables. It is, therefore, imp0l1ani to choose the value of

the hee variables. fly using algebraic programming language such as MAPLE, one can

also conlrol thc effect or roumt-oil CtTOl'S_

When the exisLlllg approximantmeth"d" are umble to give satisfactory a11>"er, one can

look for ncw, better approximant me!hod~_ Particularly, [or a function which contains

complicated lenn the existing method, fail to give s<llisfaetory answer. The error analysis

of approxim<lnt methods is ecr(;jjnly not easy. So the development of !leWmethods, for

which there is mueh scope, must be guided by numericat experimentation. In Chapter 3,

wc develop a neW approximant method that is the diiTerential analogue "I" the Pade-

Her",il~cia,s. Wc nlso compare efflcicney of Lh~method numerically with the methods

such as MultivmiJble Pude approximanl~ (MI'A), Mu!tiv<lri<lblcAlgcbraic appfOximants

(MAA). Fisher's apprm,;man!s (FA) and High-ordcr Differential approximants (HODA).
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CHAPTER3

A NEW APPROXIMANT METHOD

3.1 hltroduction

Numerical approxill1iltion hy power series exp,)llsion of a function is frequently lL~edin

many areas of scienc~. Hitherto, we have studied ~cH,ral ,cries in pow~rs of a single

independent variable. Rut many problems in npplicd mathematics may be related to the

series in powers of two or more illdepend~nt variahles. So it is desirable to derive a new

method to approximate slich m\lltivariable series eflkiently. Generalizations of the Parle

method \0 power series of sevcrul independent vnriables have heen proposed hy Cuyt

[Ill, [12] mId Guillaume [19]. Cuyt [11] studie<J multival'iable Pade approximants by

using abstract polynomials and she showcd that the cl,ls,lcal Pude approximant i3 u

speciul euse of the m\lltivariilt~ (heory nnd many int~r~sling propcrties of classical Pude

approximants remain v"lid such as covarianc~ propeflic~ of the l'ade-table. Cuyt 1121

compared and discussed milny or thc results to milke il clear that simple properties or

requirements, such as the uniquene<;s of the Pade approximant and consequently its

consistency can play il ~rueial role in the devdopmcnt of the multivariate theory.

Guillaume 1"19]introduced ,I n~w cla~s of tl1ultivllriable l'"dJ approximan(s culled ncstcd

Pude method, whclI dealing \\,i(h two indepcndenl variahle,>x aad y his approach consists

in applying the PI/de approximation with respect to y to the c(}~J1i~jents of the Pade

approximation with respect to x.

All efficient approximant method for ,) power series with two or sevcral independent

variabl~s is a new approach to partial differcntial approximant, which we call the High-

ord~r Partial Differential Approximant (HPDA). We prescnt in thi, chuptcr thc new

approximant melhod in some scnse ~ '\lirlcrcntial analogue" or the !'ade-liermile cla~",

Even though the method can be dcseribed no(atiooally as dlh order partial differential

eqllation~ with n indep~ndcnt variables. but in this chapter w~ de~eribe the method fi'f
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two indcpcl1ucll[ v,mables. OUt' alill is to construct polynomials in x and y thai can be

\l~~Uas coeffiei~L1(; in a p,11'[i,1IdLllcrcntial e'lu~tion lor [he ~pproximullt method.

The dmptcr 15organiLcu ~S foliows: ill \1 3.2 we dcscribe some basic ide,u; in ordcr 10

elJnfy Ollt ncw melhod and then we glVCU preeisc description of Ollr mcthod in S3.3.

SOl1l~ simple "]Jplic~lio1l5 arc gwcn in 33.4, An applie~tion to ~ problcm of fluid

dymllnics'i5 t1iscus,cd ill 33.5, I'inally, lhc rcsulls and disCUSSlOllwith conclusion are

givell in 33,6 and ~3,7 respectively.

3.2 Basic idcas

Althollgh our ncw ~ppro,lch, in lllLSchapter invol\'c only two indepcnden[ variables (for

simplicity), we "C~ that it is in r~et notalion<ll1y sLmpler to d~seribe the method in the

conlcxt of <Inurbitrary number, say". of variable~, In ordcr 10 describe thc melhod for

sel'lcs in powcr<.of" vJrlables, wc introd\'~c the following notatlOll. We shall USC! and Is.

to denote points in II-dimcn,ional coordlnales systcm. Thus, for instance, x ECo and

k E Nn denote tilc points x = (x,.~,,"" xJand k = (k"k,,. .,k.) rcspedively, with

X
J

EC ~nd kj EN for I ~ i~".Then we ,h~lI wrilc

bl=k,+k,+,,,+k,,.

Where C" ;111<1N" dCIlOlCthe l:\lchuc'lIl ,,-spacc alld h' dcnotcs lhc sel ofnntural nl,ll1lbcr

(indudiJl~ ~GI'O),Furlher, sincc k EN", we can COllsidcr

and ,~ = , ". , ." I, .,

Now considcr s(J = 7c{!!, i <=. Nn be a sencs in powcrs of the II independenl variables

Thc paltial sum of length N



is llbtuin~d from the series by excluding all Ih~ t~rm~ of order N and higher.

A dth ord~r parlial dlffcreatial approximaat for s(i) can he constructed as folJo\'v's:First

we seek polyn()mi"l~ I"kl nnd IVI in if such thnl

(3.2.1)

(3.2.4)

where~~=O iflil<N (3.2.2)

T11en, if such polynomial~ can he found, we denne 11pilrtial Jirf",rentiai approximant

S," GJ a~ n solution of the dlh order p~rli~1di ff~rential equation

Ifu]+ ~: Jt.]/)~SN("l=o (3,2.3)
11JOd -

When n =1, W~ recov~r th~ diflhenl;nl approximant of .s2,2.4. For n ~ 2, d=1 and

IjQ] = 0, the eqll~(ion (3.2.3) reduces to thc first order homogeneous linear partial

differential equation

, OSN as!!
ljo,ol'~N+lj,.oJ-a +/[0,11-0-=0x oy

considered by Joishcr.

For n ~ 2, d;O: 2 and 'WI = constant, the equation (3.2.1) b",~omes higher order non-

homogcneous linear partial dilT~renlial equation. In this chapter we h~v~ considered

new form of the partinl differential equation (3,2.3). where the mixed derivative terms

hnve bcen ignorcd.

3.3 Dcscription ofthc method

Consider the function I(x,y) of two indepcndent variables, represented by its power

series

0"
S(x,y)= L LC,/yJ

r=Oj=D

and thc partial sum

0'_' N_'
S,,(x,y)= LLc,/yJ

,,0 j""

(x.y)----Jo (0,0)
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However, the system may he consistent or inconsistent. If the sy~tem i~ consistent, then

the system ean be ~olveLlby converting the augmented matrix [A I~Jto row echelon Or

reduced row eeheloo form by using the Gaussian eliminalion or Gauss-Jordan

elimination. !l i" \0 nole Ihllt, Ihere will exisl some Ir~e variable,>, Naturally the values of

the frcc variahlc~ in the mu1tivJri~ble approximant mcthods can he cho~en Jt raodom. for

all the calculations reported in the rcmainder of this chapter, we have in fact set all the

free variables to either zero 01' onc. Therc is no purlicular rca,on to pick up these

parlicular !lumbers. We might for in~tunee ~eek a solulion such thut Ihe polynomials in

(3.3.7) have u~ few high-order lerms a, possible, Our cxperience sugge~1s lhut the

accuracy of the mcthod docs not depend eriticJlly on the particular choicc made.

Once the polynomials (3.3.7) have been rO\lnd, il is more pl'aetieal to find the ~ing\llar

poi nts by solving either of the polynomials coefficients of the highest derivatives

1[d4x.y) = 0 or lto.4x,y) = 0 or both simultaneously.

Note that Programming MAPLE code, are in appendix.

As an exumple, let \l~ consider Ihe follo\ving function
,

f(x,y)= (1- 2x+ y)2:+ In(1+ x-2y)+sinxy

(3.3,15)

(3.3.16)

Here the actual singularities for the dominating purl of f(x,y) lying on the line

]- 2x + y;; O. llowevcl'. the. High-order Partial Di rferenti,11Approximants approach the

actual singlllarilic~ qllit~ "TIoolhly as shown in Table 3.1 and Figuw 3, I.

Table3.I: Estimates of X.' (y, = 0) by ihe High-order I'artiail)ifferenli~l Arrroxlm~llls tor the

r"nelioll (3.3,16)

d N N., N" "
2 5 IS 18 0,6201633594'

3 8 36 38 0.4879182224

4 II 66 6R 0.4962775196

5 14 lOS II 0 0.4815743527

6 17 153 166 0.5033611125
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2,j

O"g""tl ,;ng"t",,) ,urv<
Approxi""te ,ing"I,,;t), CuM

4.11 '"x
I~,(

Figure 3, I. Approximate location of ,ingularilies of Ihe funclion (3.3, IG) by ",ing High-order
Parli~l Differenlial Approximanls, The curve marked with square i, the approximate singularily
curve and the ctll've 1l1~,.kedwtth d I~molld is llie origirw I sing"larily curve,

3.4 Some simple applications

The asymptotic error ~nalysis for the new approximate melhuu i~very complkaled.

!note,ld, pawllel to other existing methods. we apply it to some examples for which we

Cangain some insight into the effectiveness of the method.

Example3.4.1 We consider some test functions that have several types of singularities

withollt secondUl); beh,lVior.

r. Singularities are poles,

j(x,y) = (I -1x + yr'

II. Cube root bl'3llch point singularitics
,

j(x,y)=(1-2x+y)i
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Ill. LDgarithmie singularities

f(x,y) = In(1- 2x + y)

IV, Essential singlllarilie~
,

f(x.y)=el-2'iT

The reslliis of approximating the siltgularily in each case by various methods of series

analysis are shown in tnnle 3.2. where \ve considered fixed y, = -I. Here the values of N

b rather smull but approximalely same for all cases, It is interesting to note thnt the High-

order Partial Differential Approximant ~roduecs sometime, the exnel results.

Table 3.2:btimates of x, (y, = _I) by vMiousarproxilll~n[ methods for lhe functioll" in the

"~ample 3.4.1

Functions HPDA lIODA MPA PA MAA

exaet 0,06666667 exa~[ exact exact

II exaet 0.02994012 0.30892924 exact -0.02122462

II! eXil~t 0,01673453 0.25000000 exact

lV cxaet 0.02133610 -0 16031689 exact 0.11470842

Example3.4.2 We consider here some lest funetions that hnve several types singularities

with several types of secondary behavior.

I. Domi~~nl singularities are poles and the rerna;ndcr term hilS logari thrnic singularities

j (x,y) = (1- 2x+ y t' + In(l- x + 2y)+ sinxy

II. Dominant singularities are cllbie nnd the remuillJer tel'm has lognl'ithmie singularities
,

j'(x.y)= (1- 2x +Y)J + In(l- x+ 2y)+e"J'

III. Dominant singularities arc logarithmic a~d the r~mainder term has ~o singularity

f(x,y)= In(l- 2x + y)+ sinxy + rHJ'

IV. Dominant singularities are essenlial and the remai~dcr lerm hilS logarilhmi~

singuhlrity
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,
.f (x,y) = "I_hly + sin(x + y)+ In(l- x + 2y)

Table 3 3: r:'lil1\ates oLe, (.\', ~ 0) by yorio,", appmx imant method, for lhe funclions in the

cxarnplc 3.4.2

Functio HPOA HODA MI'A FA MAA

"'
0.49273522 0.50000000 0,17786075 0.202764977 0,10811102

II 0.60000000 0.50610591 0.67289720 1.61827200] 0.35331233

III 0.50515411 0.50000000 0.63245553 1.683060] 09 0.80127134

IV 0.56512441 0.49481271 O.375005M 0.(91)310587 0.26242321

Comparable rc~ults of approximating the dominating x,. with y, = 0 in ench ~ase by

various methods of series unaIY.>i,arc shO\vn in Table 3.3. for relalively same ,iL~~of 11',

it is interesting to note how badly the Hsher's approximull1s and Mullivariabk algebraic

approximants compares with the others. Most of the cases 11igh-order Partial Differential

Appl'OximBnt produces very good re'l,it"

35 Application to symmetric Jeffery Hamel flows

We consider here the \\,dl-kno\\'n problem named after Jeffery (1915) and Hamel (1916)

for the stcady two-dimcnsional flow of an incomprcssible viscou, fluiJ from a source or

,~ink at the intcr:':cclion betwccn two rigid planc walls. Jeffcry-l:Iamei solutions are

particular similarity solutions ofthc Navicr-Stokcs equations and arc found by solving an

ordinary differemial equation. Fmenkel [Hi1 desCl'ibed all these solution, in t~rms of

elliptic hUlctions, Sobcy and Vrazin [35] studied their bifurcations lh~ore[ically and

experimentally. They showed thnt lhe symmelric sol\ltion, which is slable for low

Reynold, !lumbers, undergoes pitchfork nnd Hopf bifurcations as the Reynolds numb~r

Increases.

Let (r,B) be polar coordinates, with r = 0 as the sink or source. Let ex b~ the semi-angle

and let the Jonwin of the flow be -Iai < 0 < lal, II and v be the velocity components in
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lhe r"dial ami t,mgclllJai direcllono ,.~,pcctivcly, v he the kincnwtic vis~o~ily and p be

lh~ pressurc. Th~ flow bclmvLDr~"n be expr~~s~d ill lerm, of N;lvier-Sloh.e~ equuliol1s

[16,35].

Furlher, w~assume a symmctric radial [low, so that v ~ O. Thcnlhe voilllnctrie flow rate

through the channel i,

(3.5.17)

[f'We rcquire Q 2: 0 then Lora < 0 the flow i, convcrging lO a sink at r = O.

Let 'jI =\,';(,-,0) bc (he SlrClimfunclion, Then

A Rcy~old, /lumher ],e for the flow call be (klined by

Expressing in tenus of the dilllensio~less v"rtables

,,=!!.. and e(I"Re ul = ~/(U)~ a " Q'

lhe corresponding N"vicf-Stokes cqlL<llions r 16, 35] c~n be reduced to the ordinary

di(i(;rcnlial cqllatlo~

e",1+ 4 a" eil + 2(/ ReG! el' = 0

with the bou",l",y condilions

G=:tl, G' =0 ~ty=:U

(3.5.18)

(3,5.l\))

The coefficlenls of thc series for G l~ (lm,ers or lie ~nda can be computed by using

MAPLE, The filsl few eO~LfL~L~nlsare

(3,5.20)

To lIlvc,tigale this Jcrrery-HaLllclllow by approximanl mdhod" we take

(x,y)= (a.Re)



and. the series

S(a. Re)= (J" (0. a. Re)
\Ve have used lwo "ppro"imale method, to C()mp'lre the results wilh Praenkel's

asymptotic behavior. '1he High-order. Differential Approxi mation and the High-Order

Parlial Differenlial Approximalion arc applied to the expression S(a,Re) in order to

detemline the erilieal behavior of a, and R"". Some e~til1lilte<;are ~hown in Table 3.4.

Since the flow really depends on the two paml1leters a and Re, we apply the High-order

Partial DilTcrcntial Approximant, to the <;eric~S(ri,Re) to calculate the crilieal I:<r and

Reo relationship hy considering the highesl derivative polynomial cocfficicnts of High.

order Partial Differenlial Appwxill1nnl~. PWll1 Figurc 3.2 wc ~ce that Ihe reslLUby our

melhod agrees ver}' well with the Fraenkel's asymptotic resull. namely

(3.5,21)

" 2"
x

"'.

"""

Sil\gubTiLy """ OJ' hp<1c
Si"~"I.,, ,L)',to'"' Lo, I,,,,,okel' < 1~lat;oo'" "

\.

'",'-.----_h_'-----,
"". ,

10,11 '" ';0 II
R,

50.0

Figure3,2: The crilieal II~""relationship (curve marked with 'quare) for a symmelric 110wby
using High-order Partial Di1Terenti~1APP~OXI1l1~ntSwith d = 6, The curve marked wilh diamond
i, the Frael1kel', '''ymplolie result. Tile other curve (~) is ,['"dOll'.
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Table 3.4:Estilllatc, of Re., by lhe 1ligh-omer PRrtj~1[),flcrcrlti~I i\pp",,,imant, (HPDA) and the

High.",der DifT,'rcnlialApproximant (IIO[)A) lor the Jeffccy-Hamel problem (<1, = O. I)

J-1PDA HODA

d N I{c, ./0,.' Rc,

) 8 65.420143407049822707 9 54,580567J48199421138

4 II 54,I01790J19138738101 14 54,580567148199421138

5 14 54.575430270369712868 20 54,581088584976777508

6 17 54.6197491602346<:l6701 27 54,581086860760345143

For analysis, we make use of the series III power.~ of two independent vm-iables, By

analyzing the series, we have calculatcd thc valuc of (hc singularilies lnlo Ihe real field.

Table 3.1 shows the resllll~ obtained by using the High-order partial differential

appro~imal1l method. From Ihcsc, wc deduce that thc method i~ well l"or Ihe higher values

of d, whcn the function contain complicated remainder terms. Also in tile Figure 3.1 we

see thm somctimcs thc approximale ~ingularity curve obtaincd by using thc High.order

partial differential approximant melhod coincides with thc ol'iginal ~ingularity curve. The

Table 3.2 and 3.3 show the results obtained by lI~ing the High-onJer partial differential

approximant method and the other rncthod~ wch a~ High-order Differential approximants

(HODA), MulLivarillble Fmte approximant (MPi\) I"i~hcr's approximllnts (FA) and

Multivariable Algebraic approximants (Mi\i\), The accuracy of the results obtained by

using our melhod i~ very satisf,lctory in many cascs, Figure 3.2 an<l Table 3.4 show

5ingularity curve and singular points respecli\'ely ii)r ,ymmetric Jeffery-H~mel flow, The

curve obtained by om ncw mcthod matcilc~ vcry clo~ely "ith th<ll of FruenkeI's

asymptotic result.
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3.7 Conclusion

In thi~ chapter. \\'e have proposed a new form of partial differential approximants to

serie~ in p"wers of two independeLlt variable" which \\'e name as High-order Parlial

Differential i\pproxill1ant~. This High-order Partial Differential i\ppro~imunt is 'uch that

the order of the partial differential equation increases with N. From fir~t order purtial

differential equation with two independent variables one ean reprod\lees Lhe fisher's

appmximant~. The method can be extended to three or more independent variahlc,. One

or the highest derivatives polynomial e()enici~nb is a powerful tool to reveal the critical

relationship between the independent variahles,

We have applied this method and the multivariablc approximant methods to a number of

interesting tesL functions that contain different type~ of singularities. Our method gives

better result~ than those obtained by olher methods,

We have applied the new method to ~cries where the form of the singularity i~ not known

with certainty, such a~ the problem of Jeffery-Hamel now, w~have compared the results

with the High-order Differential Approximant in tubular form and with the FraenkeJ'~

asymptotic result graphically. We have found that Lhe new method is very efficient.

However, we have not yet _developed a theory that would explain its strengths and

limitation,. So w~ may rely on intelIige.H numerical inVC~ligillions,
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CHAPTER 4

CONCLUSIONS

4.1 Discussion

In lhi, thesis, wc havc stu<.lie<.lsever~1 lcchniques for :;uinmalioll of s('ries and introduced

a new approadl to part'JI diffcrcntiaI approximanls. The aim of this work was to

approximale singul~nty behavior of nonlineJr problems. The solution of nonlinear

problem:; m~y be expanded into series in powers of one or more independent variables.

Numerical approximatiOIl by power series expansion is frequently used, but the question

of en"l~ieney ()f >;uehappr()x imati{)ll$are nucial

In ChapterI we have prescntcd elementary bifurcation theory, powcr series of one or

several independent variables, singularities of one and muhivariable power series and

cuntinued Ii-actiun uf a functiun involveJ single inJependent variable.

III Ch~pter2, we have reviewed P(ldc-HcrlJlil~ class as well as thl;"several approximant

mclhods. Thesc IllcthoJs woulJ be helpful in dewnbing a new method.

In Chapter3, we have JcvclopeJ a new method, whieh we call ~11gh-order Partial

Dlffcrential ApprOXlmallts The novel feature of this method is that the order of the

partial Jifferentlal cquallon incrc~ses infinitely witll the number of serie:; eoefficiellts

used. In many cases this melhod is more powerful to approximate i;jngularity behavior

than the other exi~ting rnelho<.l~discus;ed in Chapter 2. For example, our new method

gives more accurate results for the funclions that contain complicatcd tenns than those

obtained by olher IllcthoJs. We also ~pplLedour new mclho<.llo ~YJl1mctricJeffery-Hamel

nows. We havc shown Ihis mcthod malch very nicely with thc Fmcnkel's asymptotic

rcsult and very much compelitive wilil lilc High-orJer Differential API'r<J"imanL
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4.2 Future work

]11 thi~ thesis we have developcd High-order Partial Diffcrential Approximant where we

considered the general form of homogeneous linear partial differential equation excll.lding

the term; related to 'llixed derivativc. Further research can be earricd out on this field by

taklllg the general rOm] of partial dlffercntial approximants (1.2.3) as well as the

asymptotic behavior of the error of proposed mcthod.



Appendix

#program ror lhe d-lh orokr lI()rnog~'ncou~1'1)1"
fiSeri",s mu,t he 01'"~,,(Iamhd,,,mu)~Ordcr (M 1.1I.
d:~d;
N'~3~d-l, ii Ilighc-;t ord",r of lamhda and Illll,

Ne:~add(rI,I,r~O,N-I);
M:=( 1/3}*d~( (d"2)+6 *d+ I It Ii TOlal !lumber or unknown (Nu-=M)
c:~mray(I,.M):
\:=array(1 ..Ne);
II # If !lflltlltlll #1111 i! Ii !Iii II # IiIII1 i: !ili N!Iii ,Ii Ii ~ iii: 111.1If i! !III!! II Ii ,IfII it i,'I!ilil lil.l ,Ii!llilili
p:~O:
]:~O:
for m /Tom I tu d do

ulp].~dlmy,lamhda$(m}) ,
#print(p,lLl pJ),

p'~p+1,
ulp].~dim:v_mu$(m)) .
1:~1+1:

#prinl(p,u[p J);
p:~p+J:

od:
##1.111#fl i!## If### lllii:# #### ###II!f Iii! Ii lill Ii## iii! ~II If II ~ ii It :i It iti! If If n' il Ii II It.ll
p:~O:
]:=1 :
for m from I to d do
for 1m from] 102 do

A[pl~O:
tur n from () IOlTl do
fork Ii-om0 ton do

Afp]:~!lfrl + c[1] *Imnhda '(m-n)*mll"(n-k):
I:~I+I.

od
od:

I1prinl(p,A[pl};
p:~p+1'

od
od
### 111111#It IJii ~ Ii !iIIll Ii #11 if II,; # lili ,'!lii/ II II #11 ~ ,!#,1 It i: ,'/IU: :illii :i II I,'!ill # 1111~ IIli il
f:~v-;-add(A[1]*u[ 11- i~O ,2~d-1):
IIprint(f),
f:~c~pand(t):
till #i! II #### if## If iii! Ii 1I#1iIt I,'# /I 1i#!1II # 11# if 1:# ~ i: If /I !ltl It II II /I 111111if Jf Ii # ill! II ,lijl
1 ='1'.

lor j from 0 10 N-1 do
q[ j ]:~coem[lambda, i):
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IIprinl(q[iJ);
od
#1111# II Ii III,: I!iI#I! II !IIi ii#111111111111II I: iiII /I II ill!! Ii i Ii /I llii ~ :/ill,' 1[;1II if IllIl! Ii II iIi iII II II
,:~'j':
. ",J,~J
for, from 0 to N-] do

for j from 0 to (N-I-,) do
eq[ ',il:= coefr( qI i],lnu,j):

#print(fi.i ]'cq[ij]);
od:

od:
fi II Ii lllilllllilJ 1I!l1IIlil Ii II ii !III ii Ii II Ii II i!-Ji ~ ii i:N IIIl it :i Ii liil iJ1111iiil II Ii ii Ii II II Ii! I Ii II J+1iii
k:=I:
i:~'i':
j:~J':
for i from 0 to N-I do

for j from 0 10(N-I-i) do
x[k]'=eq[jj]:
#xfk]:= eq[ i,il-t-cq[j ,ij:

IIprint{xlkJ).
#print(b[kj):

k.=k-t-l:

""od:
aa:=array(l.Nc.l,.Ml.
i:='i':
j:=J':
lor i from I to Ne do

for j Irom 1 10 M do
aal ijl:~ coeff( xl iI,c[i]):

od:
od:
#lIlIliil!l#1i Ii #111111II Ii II!I# llii Jill II Ii 11;1illiti Ii Ii II Ii II !I Ii iii! ~ Ii iI if lili Iill il Ii iI Ii II Ii#if
i:='j':
j'='j':
b:=array( 1._Nc):
for i from 1 to Ne do

bl i]:=-( ~[ij-'ldd(aallj]*cf.i lJ~ I "M)l'
od;
11# 111111# Ii llfi# lilill II liilil!ilt Iii! II I i Ii #ifll 1I!i1lII ililii II iI!l1i illl # Ii if!! ~/I 1111!IIi il I<Ii ii
wilhOina]g):
c:=linsolve(aa,b)
g,=f:
iiprinl(g);
ilOptional Check the method
for ifrom] to 500 do
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I

t[i] ~1
od:
pon/(AAI2 *d-2 J~A [2 *d-2 J):
print(Ml2 .d-l1~ A[2*d-l J L
1!######lliiiillfi!llil!###!I#llilil###IiIlN:illilHILlllllllli'##jIH:iHI,'I/:iill/!iill:lr
Ff"=F( lambda,fllu):
p:~O'
I:~O.
for In from 1 to d do

u[p] =difflFClambda$(m))'
IIprint(p,u[ pll;

p:~p+1'
ulp]:~dlff(F(rnu$(m)) :
1:~1'-I'

IIprinl( p,uf pIl~
p,-p+I'

od:
##Ii #/11/ I!!f# II llii Ii II Ii 1/ liiflii! Ii IiI/iiI/ii 1111#11II II iili 1I1f!! Ii iI#i i liN Ii iI!t!! II ,I,'Ii /I!l1I
1111##ittl# 11111/#11## i1111i 1/!l1I1/ i/## II Mill i/f, 1/ 1I!t1lii II !IIi II II iii! !Iii Ii Ii II 1/!l1i Ii II iI
hpdc:=Ff+add(A[i].u[i],i=O ..2.d_l)
ilprint(hpde);
1/##lililifilltl###I!i!#!l1i ifill! 1/
crtpt:=fiJonnal( f~olve ( :A [2 *d- 2 JA[2*d-1 J) , (ll1mhda,lnu i,com pkx)},
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