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ABSTRACT 
 

 
 

The present numerical study has been conducted to investigate the unsteady 

boundary layer characteristics over a flat plate under the influence of wake vortices 

induced from an elliptic cylinder positioned in the free stream by numerical 

computations. This flow situation is an idealization of that occurring on 

turbomachinery blades where unsteady wakes are generated by the preceding row of 

blades. The major-minor axis ratio of the elliptic cylinder is taken 0.6 and the angle 

of attack 00 positioning the cylinder at different locations from the plate. The 

investigation covers a Reynolds number range up to 1000 based on the focal distance 

of the elliptic cylinder and undisturbed free stream velocity. The Reynolds numbers 

are relatively low so that in the limiting case of a boundary layer undisturbed by 

wakes this remained laminar over the full length of the test plate. The time 

dependent, two dimensional flow is simulated numerically using finite element 

formulation. Quadratic triangular elements and discontinuous linear triangular 

elements are used for velocity and pressure interpolation respectively. A finite 

element package COMSOL Multiphysics is used for the present computation. The 

development of the flow field up to certain time period is considered. Instantaneous 

streamlines of the disturbed flow field, instantaneous velocity field, instantaneous 

boundary layer integral parameters, and skin friction on different plate streamwise 

locations are presented for all the cases. The wake vortices strongly affect the 

boundary layer compared to undisturbed flow over flat plate. From the above results, 

two types of interaction can be obtained, one is the strong wake-boundary layer 

interaction and another is the weak wake-boundary layer interaction depending on 

the cylinder to plate relative position. Comparisons are also carried out for circular 

cylinder having the same height of the elliptic cylinder cross-section, for a particular 

cylinder to plate relative position and Reynolds number. 

 



 
 

INTRODUCTION 
 
 
 
 

Unsteady boundary layers are encountered in many engineering applications, and 

they are often transitional, especially in turbomachines and aeronautics, where the 

boundary layer transition originates from boundary layer interaction with transverse 

and longitudinal vortices. In turbines and compressors, the relative motion of 

adjacent blade rows gives rise to a variety of unsteady flow interactions. The blades 

in any moving blade row are continually passing through the individual wakes of the 

upstream blade rows. Similarly, the blades in the fixed blade rows are being struck 

by the wakes of the upstream moving blades. The wakes exhibit a defect in mean 

velocity and a superimposed high level of turbulence intensity. These conditions 

have a significant influence upon boundary layer transition process. The boundary 

layer, laminar or turbulent, strongly influences skin friction, and therefore, drag 

losses. Also the transition region of boundary layer affects the machine performance, 

the flow losses and especially the heat transfer to turbine blades. Hence, good 

understanding of the unsteady boundary layer behavior is important for improving 

the design of turbomachines.  

 

Bluff body wakes are complex; they involve the interactions of three shear layers in 

the same problem, namely a boundary layer, a separating shear layer, and a wake. 

Considering figure 1.1, wake formation can be explained as that when flowing fluid 

touches the nose A of the airfoil, the flow stagnates. Between point A and B (ahead  

 

            
 

Figure 1.1a: Flow around the airfoil.              Figure 1.1b: Separation on the airfoil. 
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of the position of the maximum thickness C), there is a continual increase of the 

main- stream velocity just outside the boundary layer. Beyond point B, there is a 

continual decrease in the main-stream velocity so that the maximum velocity just 

outside the boundary layer occurs at the point B.  According to Bernoulli’s equation, 

pressure must decrease from close to the stagnation pressure at A to a minimum 

pressure at B and must then increase again beyond point B. Thus the boundary layer 

beyond B feels a pressure which is increasing in the direction of flow, and such a 

pressure variation is known as adverse pressure gradient. But since the fluid in the 

boundary layer has small kinetic energy, it may possibly reach a condition of 

stopping and reversing its direction and thus cause the boundary layer to deflect 

away from the boundary. This is the onset of separation. There may then take place a 

considerable readjustment of the flow, where separation having started downstream 

of D, results in a thick region irregular flow named as Wake. 

 

Figure 1.2 shows a schematic diagram of the rotor-stator wake interaction which is 

commonly available in most of the multi-stage turbomachines.                                                             

 

 
 

Figure 1.2: Schematic diagram of rotor-stator wake interaction in  
Turbomachinery [46]. 

 
 

In recent years gas turbine engine aerodynamicists have focused their attention on 

improving the efficiency and performance of the low pressure turbine (LPT) 

components. Normally, the LPT experiences a variation in Reynolds number ranging 
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from 50,000 to 250,000 depending on operational conditions. Since the major portion 

of the boundary layer, particularly along the suction surface, is laminar, the low 

Reynolds number in conjunction with the local adverse pressure gradient makes it 

susceptible to flow separation, thus increasing the complexity of the LPT- boundary 

layer aerodynamics. The periodic unsteady nature of the incoming flow associated 

with wakes substantially influences the boundary layer development including the 

onset and extent of the laminar separation and its turbulent re-attachment. The 

phenomenon of the unsteady boundary layer development and transition in the 

absence of separation zones has been the subject of intensive research that has led to 

better understanding of the transition phenomenon on the LPT-boundary layer. 

 

In aeronautics, wake vortices are formed any time an aerofoil is producing lift. Lift is 

generated by the creation of a pressure differential over the wing surfaces. The 

lowest pressure occurs over the upper surface of the wing, and the highest pressure is 

formed under the wing. Air always wants to move towards the area of lower 

pressure. This causes it to move outwards under the wing towards the wingtip curl up 

and over the upper surface of the wing. This starts the wake vortex. The same 

pressure differential also causes air to move inwards over the wing. Small trailing 

edge vortices, formed by outward and inward moving streams of air meeting at the 

trailing edge, move outwards to the wingtip and join the large wingtip vortex. 

           
 

Figure 1.3: Viewed from behind the generating aircraft, the left vortex rotates  

   clockwise and the right vortex rotates counter-clockwise [47]. 
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Viewed from behind the left vortex rotates clockwise and the right vortex rotates 

counter- clockwise. They spread laterally away from the aircraft and descend 500 to 

900 feet at distances of up to five miles behind it. The intensity or strength of the 

vortex is primarily a function of aircraft weight, wingspan and configuration (flap 

setting, etc). During an aircraft’s critical landing phase wake vortices can endanger 

following aircraft. To avoid wake vortex encounters, follower aircraft must maintain 

a safe distance to a landing aircraft up ahead of them. With increased traffic growth 

and design of new high capacity aircraft, problems related to wake vortices are 

becoming more and more important. In order to increase airport capacities whilst at 

least maintaining safety levels, the knowledge of the wake vortex behavior under 

varying meteorological conditions achieves considerable significance over the last 

three decades throughout the world. 

 

In order to understanding and provide data for verifying and improving prediction 

methods of so far described physical engineering problems, the present paper reports 

on a basic numerical study on the simplified situation of boundary layers exposed to 

periodic wakes induced by an elliptic cylinder passing over the plate. 

 

 

1.1 MOTIVATION OF THE PRESENT RESEARCH WORK 

 

The unsteady flow past a bluff body has received significant attention because it 

represents one of the most common problems in fluid structure interaction (FSI). 

Flow around bluff bodies such as cables, chimneys, or airfoils are generally unsteady 

and periodic in nature. Especially, the wake behind a circular cylinder has been 

studied numerically and experimentally by many investigators due to its periodic 

vortex shedding and simple geometry. In addition, noncircular cylinders such as 

elliptic and rectangular cylinders are sometimes preferred, rather than the circular 

cylinder, for special applications. For example, the drag coefficient of elliptic 

cylinders at a small angle of attack is much smaller than that of a circular cylinder in 

aerodynamic applications. The heat transfer coefficient of elliptic cylinders was also 

found to be nearly equal to or a little higher than that of a circular cylinder by Ota et 
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al. [1], [2]. Furthermore, elliptic cylinders have the general fluid dynamic features 

between those of a circular cylinder (Aspect Ratio, AR = 1) and a flat plate (AR 

=∞ ). Hence, elliptic cylinder has wide engineering applications and can be used as 

an effective passive tool to control the flow nearby. 

 

The initial development of unsteady two-dimensional uniform flow past impulsively 

(suddenly) started inclined elliptic cylinder was investigated by Wang [3], Dennis 

and Staniforth [4], Staniforth [5] and Panniker and Lavan [6]. All of these studies 

were carried out at high but finite values of the Reynolds number, except for 

Panniker and Lavan [6] in which the initial flow was investigated at a Reynolds 

number of 200. 

                                                                                                                             

Numerical solutions of laminar flow past elliptic cylinders at various angles of attack 

were obtained by Lugt and Haussling [7], who studied the problem of flow 

development past an abruptly accelerated elliptic cylinder at 45° incidence in the 

range of Reynolds numbers from 15 to 200. Modi &Wiland [8] and Modi & Dikshit 

[9, 10] studied experimentally that the flow characteristics of the wake behind elliptic 

cylinders located in a uniform flow are changed considerably depending on the angle 

of attack and the axis ratio (AR) of the cylinder.  Badr, Dennis and Kocabiyik [11] 

solved numerically the problem of uniform flow past an impulsively started inclined 

elliptic cylinder for Reynolds numbers ranging from 900 to 5000 and for the range of 

angle of attack between 0 and 90°. The results reveal an unusual phenomenon of 

negative lift occurring shortly after the start of motion depending upon the value of 

the angle of inclination and is consistent with the experimental findings of Taneda 

[12, 13]. 

 

In many wall-bounded flows of engineering interest, it is often desirable to delay the 

onset of laminar-turbulent transition in order to reduce the skin friction drag on the 

surface. In aeronautical applications, drag reduction via laminar flow control is 

primarily relevant to the cruise configuration. Typical high-lift configurations used in 

commercial subsonic transports involve multi-element airfoils consisting of a leading 

edge slat and a trailing edge flap in addition to the wing. Flight tests suggest that 
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high-lift flow fields may involve large regions of laminar flow. Due to intricate 

coupling between transition and flow separation in such flows, accurate prediction of 

transition inset is crucial to the design of high-lift devices. While transition scenarios 

on a single airfoil have been studied in great detail, boundary layer transition due to 

disturbances generated by upstream geometry, as in the multi-element airfoil, has 

received less scrutiny. 

 

 

            
 

Figure 1.4: Sketch of the wake/boundary interactions on a multi-element airfoil [48]. 

 

 

Effects of wake/blade interaction phenomenon in turbomachines have been studied 

mostly from the view point of blade vibration or noise generation. Recently, they 

have attracted a great amount of attention from various researchers because it has 

become known that the wake/blade interaction affects the stage efficiency and 

increase the heat load on the blade much more than was expected from steady flow 

analysis. Hence a number of relevant studies have been carried out up to date. The 

existence of disturbed laminar, transitional and turbulent flow on a turbine blade had 

been demonstrated by Addison and Hudson [14]. A detailed experimental study on 

the behavior of the separated zone on the suction surface of a highly loaded LPT-

blade under periodic unsteady wake flow was presented by Schobeiri et al. [15]. 

Similar problem of turbomachinery were conducted numerically by Volkov and Tau 

[16]. For the control and prediction of the effect of vortex generation from aircraft 

near a ground was studied by Lee and Gerontakos [17], Holzäpfel et al. [18], Corjon 

and Poinsot [19] etc. 
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Boundary layer disturbances by the interaction of wake vortices from circular 

cylinder is an interesting field of research. A study had been made of the process of 

laminar to turbulent transition induced by a von Karman vortex street, in the 

boundary layer on a flat plate by Kyriakides et al. [20]. From the experimental 

observations they developed a correlation which can predict the onset of transition 

under strong wake-boundary layer interaction. Choi and Lee [21] experimentally 

investigated the flow characteristics around an elliptic cylinder with an axis ration of 

AR=2 located near a flat plate. Investigations of boundary layer transition in 

undistributed flow and in flow periodically disturbed by wakes were carried out by 

Orth [22], Wu and Durbin [23], Wu et al. [24] etc. over the years. 

 

 

 
 

Figure 1.5: Interaction in a simplified geometry 

 

 

In the current research, numerical simulations have been performed to study the 

interaction between the unsteady wake of an upstream element and the boundary 

layer over a downstream element. To study such flows in a simpler setting, a model 

problem is considered, illustrated in figure 1.5, which consists of an elliptic cylinder 

positioned over a flat plate. Although there have been a number of experimental 

investigations on the flow around flat plate under the influence of cylinder wake 

which is placed at various heights above the plate, numerical investigations is limited 

due to its complexity in grid generation. Also wake induced from the elliptic cylinder 

got less attention in this regard. A numerical study of this type of flow on laminar 

Reynolds number ranges will be considered in this research work. This kind of study 

can be applied to many engineering problems such as undersea pipelines, building 

constructions and heat transfer enhancement of heat exchangers. 
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1.2 OBJECTIVES 

 

The specific objectives of the present research work are as follows: 

i. To investigate the flow field around the elliptic cylinder for the validation of 

the present Finite Element model.  

ii. To investigate the boundary layer development on the flat-plate under the 

influence of wake vortices induced from elliptic cylinder. 

iii.   To study the effect of Reynolds number on the flow field.  

iv.   To investigate the effect of the relative position (i.e. the streamwise and 

vertical distance) between the cylinder (center of the ellipse) and the flat 

plate leading edge, on the flow field. 
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LITERATURE REVIEW 
 

 

 

Boundary layer development along a flat plate under the influence of wake vortices 

induced from an elliptic cylinder has not been numerically investigated to a great 

extent mainly due to the geometrical complexity arising from grid generation and 

variety of influential parameter. 

 

The literature relevant to the present study can broadly be divided into two groups: 

one is concerning flow past an elliptic cylinder in an otherwise uniform free stream 

and another is concerning with the flow over a flat plate under different influential 

parameters which can cause instability in the boundary layer development. 

 

 

2.1 FLOW AROUND ELLIPTIC CYLINDER 

 

The phenomenon of flow separation and bluff body wakes has long been intensely 

studied because of its fundamental significance in flow physics and its practical 

importance in aerodynamic and hydrodynamic applications. Flow behind a circular 

cylinder has become the canonical (reduced to the simplest and most significant form 

possible without loss of generality) problem for studying such external separated 

flows. Engineering applications, on the other hand, often involve flows over complex 

bodies like wings, submarines, missiles, and rotor blades, which can hardly be 

modelled as a flow over a circular cylinder. In such flows, parameters such as 

thickness ratio and angle-of-attack can greatly influence the nature of separation and 

the wake structure. Elliptic cylinders, which are more general geometrical 

configurations than the canonical circular cylinder, can provide a richer flow 

behavior characteristic of typical engineering flow configurations and significantly 

augment the understanding of wake flows. For these cylinders, changes in 

eccentricity allow for shapes ranging from that of a circular cylinder to a flat plate. 
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There have been many experimental studies of fluid flow from elliptic cylinders. 

Schubauer [25, 26] studied experimentally the velocity distribution and turbulence in 

the boundary layer on the surface of an elliptic cylinder with axes ratio (AR) of 

1:2.96 at 00=α , where α  denotes the angle of attack. He found that the velocity 

distribution in the boundary layer, its thickness, and its separation from the surface of 

the body depend entirely on the velocity distribution in the region of potential flow, 

outside the boundary layer. His experiment disclose that there exists the critical 

Reynolds number regime, which extends from about =Re 85,000 to 312,000, Re 

being the Reynolds number based on the major axis of the cylinder. He also observed 

a so-called separation bubble upstream of the turbulent boundary layer at the critical 

Reynolds number. However, his main purpose seems to have an investigation of the 

boundary layer characteristics.  

 
 
The drag coefficient and Strouhal number were measured for an elliptic cylinder of 

axis ration 1:2 at 00=α and 090 by Delay and Sorensen [27]. All the result of  
090=α  seem to be characteristic of the subcritical flow but the data at 

00=α extend from the subcritical flow to the supercritical one. The Strouhal number 

was found to vary discontinuously at the critical Reynolds number. Details of the 

flow around the cylinder, however, have not been described in their paper. 

 

A series of experimental studies on steady and unsteady flow behaviors of elliptic 

cylinders have been reported by Modi and his colleagues [8-10]. The mean and 

fluctuating pressure distribution, the drag, lift, and moment coefficients, the Strouhal 

number and also the near wake features were clarified at the subcritical Reynolds 

number. They described that the Reynolds number range examined was included in 

the subcritical flow regime and that the aerodynamic characteristics exhibited no 

dependency upon the Reynolds number. In spite of their descriptions, the lift and 

moment coefficients for an elliptic cylinder of axis ratio 2:5 indicate a large variation 

with the Reynolds number especially at angles of attack smaller than 020  [9]. 

                                                                                                                                        

Yano and Kieda [28] presents an approximate method for solving Ossen’s linearized 



 11

equations for 2D steady flow of incompressible viscous fluid past an inclined elliptic 

cylinder of aspect ration AR = 0.1 and 0.5 at Reynolds number between 0.01 and 5. 

The angle of attack was 000 9045,0 and=α . The drag and lift coefficients have 

maximum values at 090=α . Honji [29] observed the starting flow around a sphere 

and an elliptic cylinder at 045  and 054 angles of incidences. 

 
Taneda [12] studied the relationship between the time dependent lift and flow pattern 

for the case of an impulsively started elliptic cylinder (AR = 2.1) at angles of 

incidence of 020  and 045 at Reynolds numbers 3500 and 6000 respectively. He 

reported very high initial lift values and a gradual downward movement of the rear 

stagnation point. In addition, it was pointed out that lift takes negative values in a 

small time interval shortly after the impulsive start in the case of angle of attack 020  

unlike the case of angle of attack 045 . 

 
Shintani et al. [30] gave a detail description of the flow field near an elliptic cylinder 

placed perpendicularly in a uniform stream at low Reynolds number. Particular 

attention was given on the effects of both the shape due to the flattening of the 

cylinder and fluid inertia on the flow field. In this paper, Umemura’s method of 

coordinate transformation through matching procedure was applied for the analysis 

of the flow past the elliptic cylinder. 

 

Ota et al. [2] investigated experimentally the flow around an elliptic cylinder of axis 

ratio 1:3 in the critical Reynolds number regime, which extends from about 35,000 to 

125,000. The critical Reynolds (Rec) number has been found to vary with the angle 

of attackα . Rec attains a minimum around 05=α  to 010 and it increases both at 

smaller and larger angle of attack. The flow around the cylinder at the critical 

Reynolds number is very unstable. The subcritical flow state and the critical one 

appear alternatively and the Strouhal number reaches a maximum of about 1.0 and 

1.5 depending onα . It is found , however, that the universal Strouhal number based 

on the velocity along the separated shear layer and the wake width is nearly equal to 

0.19, on average, even in the critical Reynolds number regime. The flow at higher 
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Reynolds number beyond the critical one becomes relatively stable and the small 

separation bubble was observed on the suction side of the cylinder.       

 
Numerical solutions for laminar incompressible fluid flows past an abruptly started 

elliptic cylinder at 45° incidence were obtained by Lugt and Haussling [7] in the 

Reynolds number range from 15 to 200. Almost steady-state solutions were obtained 

for Re = 15 and 30, whereas for Re = 200 a Kármán vortex street developed. 

Comparisons between the obtained location of the first vortex and the flow 

visualization results reported by Honji [29] show good agreement. However, the 

surface pressure distribution reported in Lugt and Haussling’s paper shows some 

discrepancies since the pressure periodicity is not fully satisfied.  

 

The numerical solutions to the viscous, incompressible flow over an impulsively 

started elliptic cylinder at 0, 30, 45 and 90° incidence were determined for moderate 

and large values of the time by Patel [31]. He obtained a numerical solution in the 

range of Reynolds number from 60 to 200. Patel’s solution is based on a Fourier 

series approximation of stream function and vorticity.    

 
 
Nair and Sengupta [32] investigated the incompressible flow past impulsively started 

elliptic cylinders of thickness-to-chord ratio of 0.1 and 0.25 for different angle of 

attack and for Reynolds number of 3000 and 10,000 by solving 2D Navier- Stokes 

equation. The Navier-Stokes equation is solved in stream-function-vorticity 

formulation using finite difference method. The resulting flows were quite complex. 

They found that if the angle of attack is large, then the released vortices are strong 

and hence remain coherent over larger distance in the wake and the stronger the 

vortices, the more is the tendency to form rotating pairs and triplets. In contrast, the 

weak vortices show multiple vortex interaction and stronger diffusion. 

 

Badr, Dennis and Kocabiyik [11] studied the 2D unsteady viscous flow over an 

impulsively started inclined elliptic cylinder by numerical method. The problem is 

solved for axis ratio between 0.5 and 0.6, Reynolds number ranging from 900 to 

5000 and angle of attack between and00 090 . The direction of free stream was 
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normal to the cylinder axis and the flow field unsteadiness aroused from two effects, 

the first is due to the flow field development following the start of the motion and the 

second is due to vortex shedding in the wake region. A series truncation method 

based on Fourier series is used to reduce the governing Navier-Stokes equations to 

two coupled infinite sets second order differential equations. The results revealed an 

unusual phenomenon of negative lift occurring shortly after the start of the motion, 

which is consistent with the experimental findings of Taneda [12].   

 

Mittal and Balachandar [33] conducted two and three dimensional simulations of an 

incompressible viscous flow over elliptic cylinders by spectral methods. The ellipse 

aspect ratio is AR = 2 and the span wise aspect ration (ratio of spanwise length to 

semi-major axis of the cylinder) is A = 2. Two angle of attack and00 045 were 

considered. The Reynolds number is fixed at 525. The drag coefficient calculated 

with the three-dimensional simulation agrees better with the experimental value than 

that of the two-dimensional simulation. The values of the coefficient of drag obtained 

with the two-dimensional simulation are 74, 16, and 1.3% higher than those obtained 

with the three-dimensional simulation. 

 

Allessio and Kocabiyik [34] studied numerically the flow of a viscous 

incompressible fluid past an inclined elliptic cylinder which starts translating and 

oscillating impulsively. These oscillations are allowed in a direction perpendicular to 

the uniform oncoming flow having a magnitude which is less than or equal to the 

constant translational velocity. The investigation is based on an implicit finite 

difference/spectral scheme for integrating the unsteady Navier-Stokes equations 

expressed in a stream function vorticity formulation. The Reynolds number is fixed 

to 1000. Two angles of attack 045=α and 090=α were considered. They examine 

the effect of increase of velocity ratio on the near-wake structure as well as the 

hydrodynamic forces acting on the cylinder. Vortex dynamics close behind the 

cylinder are affected by the changing acceleration of the cylinder. An interesting 

phenomenon has been observed in the flow pattern depending on the velocity ratio 

and the angle of inclination. In all cases considered in this study, the LC  curve 

oscillates with the forcing frequency of the cylinder whereas a switch over in the 
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nature of the fluctuations of the drag coefficient is observed with the increase in 

angle of inclination.  

 

Johnson et al. [35] studied numerically the flow around an elliptic cylinder with 

spectral methods. /the aspect ratios ranging from 0.01 to 1.0 and the Reynolds 

number ranging from 30 to 200 was used. Six different types of flow pattern were 

categorized in the simulations. These are, steady flow, Von Karman-type vortex 

shedding, symmetric wake, transitional vortex shedding, steady secondary shedding 

and unsteady secondary shedding. They have shown substantial change in the 

shedding types caused by the convective instability interacting with the vortex 

shedding occurring behind the cylinder.   

 

 

2.2 BOUNDARY LAYER INSTABILITY 
 

Boundary layer transition in incompressible flow has commonly been divided into 

“natural” and “bypass” type. Natural transition process is based on the formation, 

amplification and breakdown, due to instability of Tollmein-Schlicting (T-S) waves 

[36]. This process culminates with the formation and growth of “turbulent spots”, 

which finally coalesce into fully developed turbulent boundary layer flow.  

 

 
 

Figure 2.1: The process of natural transition 
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But in some conditions, transition occurs sooner, via the mechanisms not yet fully 

understood. Morkovin [37] called this bypass transition, a term indicative of the fact 

that the aforementioned natural transition path to turbulence is bypassed i.e. the 

formation of turbulent spots may occur without the initial amplification of T-S waves 

observed in natural transition. This process is characterized by growth over time 

scales much shorter than the viscous scale of TS waves. Transition in a boundary 

layer on a solid body in a stream is affected by many parameters: pressure 

distribution in the external flow, the nature of the wall (roughness), radius of 

curvature, heat transfer, suction of the boundary layer, vibration, the nature of the 

disturbances in the free flow (intensity of turbulence) etc. Transition induced by free-

stream turbulence has become synonymous with bypass. 

 

Mayle [38], in his description of the various modes of transition, states that the effect 

of unsteadiness caused by the periodic passing of wakes, from upstream airfoils or 

obstruction (cylinders), on transition is referred to as “wake induced transition”. 

Transition induced by wakes or shocks, appear to bypass the first stage of natural 

transition. The turbulent spots are formed and immediately coalesce and then grow 

and propagate downstream.  

 

 

2.2.1 Boundary Layer Disturbance by Cylinder wakes 

 

Liu and Rodi [39] investigated in detail the development of boundary layer along a 

flat plate under the influence of periodically passing wakes by hot-wire 

measurements. The wakes were generated by cylinders moving on a squirrel cage in 

front of the plate leading edge. The Reynolds number was fairly low so that the 

boundary layer remained laminar over the full length when no disturbing wakes were 

present. The influence of wake passing frequency on the boundary-layer 

development and in particular on the transition processes was examined. The hot-

wire signals were processed to yield ensemble-average values and the fluctuations 

could be separated into periodic and stochastic turbulent component. When wakes 

passed over the plate, the boundary layer was found to be turbulent quite early 
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underneath the free-stream disturbances due to wakes, while it remained initially 

laminar. The turbulent boundary layer stripes underneath the disturbed free-stream 

traveled downstream and grew together so that the embedded laminar regions 

disappear and the boundary layer became fully turbulent. The streamwise locations 

where this happened moves upstream with increasing wake-passing frequency, and a 

clear correlation was determined in this experiment. 

 

Savill and Zhou [40] made an extensive study at low Reynolds numbers of various 

types of simple interactions, using flow visualization. These studies included 

interactions with a variety of wakes. Wakes formed behind a circular cylinder were 

examined, in order to obtain an essentially two-dimensional vortex street, with most 

of the turbulent energy contained in the highly coherent vortices. They studied, what 

they called, “slow” or “weak” interactions in which the wake was initially 

sufficiently far from the boundary layer and was effectively fully developed, before 

starting to merge with the boundary layer. In contrast to the above type of transition, 

“fast” or “strong” interactions were also studied. In this type of interaction, the initial 

vortex street was still present, when the two shear layers merged together. Savill and 

Zhou concluded that the main parameter governing the growth of the interaction is 

the level of turbulence in the interaction region.  

 

Investigations of boundary layer transition in undistributed flow and in flow 

periodically disturbed by wakes were carried out based on extensive hot-wire 

measurements by  Orth [22]. The measurements were carried out in a low speed wind 

tunnel with a rotating cascade upstream of the testing section, where a flat plate of 

700 mm length and d = 20 mm thickness was mounted at half height. The rotating 

cascade consists of two disks. Three bars of 2 mm diameter were fixed between the 

disks. The bar moved on a circular path perpendicular to the flow in front of the 

plate, so that their wakes hit the plate periodically. This setup is chosen to simulate 

conditions in turbo machines, where the blades are often subjected to periodic wakes 

of upstream blade rows. In undistributed flow (Tu= 0.6 %), Tollmien-schlichting 

waves were observed, which are amplified and lead to transition. Under periodic 

flow conditions as found in turbo machinery, the observed early onset of transition is 
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likely to be caused by the high intensity of stochastic turbulence, and not by the 

periodic fluctuations. The boundary layer in flow periodically disturbed by wakes 

differs in two ways from a boundary layer developing in undisturbed flow. First, an 

early onset of transition is observed momentarily as the high turbulence level of the 

wake disturbs the boundary layer and leads to the formations of a turbulent patch. 

Second, laminar becalmed regions are formed behind the turbulent patches. The 

results also show that with increasing turbulence intensity, the onset of transition 

shifts to lower Reynolds number, and the effect of pressure gradient almost 

disappears. The wake turbulence leads to an earlier transition than observed in 

isotropic grid turbulence. 

 

A study had been made of the process of laminar to turbulent transition induced by 

the von Karman vortex street, in the boundary layer on a flat plate by Kyriakides et 

al. [20]. Hot-wire measurements over a range of Strouhal frequencies and free stream 

velocities were used for the identification of the transition onset. It was established 

that, the onset of the strong von karman wake induced transition process was a 

function of the free stream velocity, the position of the cylinder with respect to the 

plate, the cylinder diameter, the drag coefficient and the minimum velocity in the 

developing wake at the streamwise position of the onset of the boundary layer 

transition. It was also established that, in the case of weak wake-boundary layer 

interaction, the boundary layer transition process was accelerated by the overall free 

stream turbulence increase due to the wake of the cylinder. From the experimental 

observations they also developed a correlation which can predict the onset of 

transition under strong wake-boundary layer interaction. 

 

Wu et al. [24] numerically simulated the interaction between an initially laminar 

boundary layer developing spatially on a flat plate and wakes. The flow bared a close 

resemblance to the transitional boundary layer on turbomachinery blades. They 

found that the inlet wake disturbances inside the boundary layer evolved rapidly into 

longitudinal puffs during an initial receptivity phase. In the absence of strong forcing 

from free-stream vortices, these structures exhibited streamwise elongation with 

gradual decay in amplitude. Selective intensification of the puffs occurred when 
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certain types of turbulent eddies from free-stream wake interact with the boundary 

layer through a localized instability. Breakdown of the puffs into young turbulent 

spots was preceded by a wavy motion in the velocity field outer part of the boundary 

layer. 

 

Turbulent wakes swept across a flat plate boundary layer i.e. the phenomenon of 

wake-induced bypass transition was simulated by Wu and Durbin [23]. Benchmark 

data from a direct numerical simulation of this process were presented and compared 

to Reynold-averaged predictions. The data were averaged skin-friction and mean 

velocities. 

 

Choi and Lee [21] experimentally investigated the flow characteristics around an 

elliptic cylinder with an axis ratio of AR=2 located near a flat plate. The elliptic 

cylinder was embedded in a turbulent boundary layer whose thickness was larger 

than the cylinder height. The Reynolds number based on the height of the cylinder 

cross-section was 14000. The wake velocity profiles behind the cylinder were 

measured using hot-wire anemometry. In the near-wake region, the vortices were 

shed regularly only when the gap ratio was greater than the critical value of G/B=0.4. 

The critical gap ratio was larger than that of a circular cylinder. As the gap ratio 

increased, the drag co-efficient of the cylinder itself increased, but lift co-efficient 

decreases. The ground effect of the cylinder at small gap ratio constrained the flow 

passing through the gap, and restricted the vortex shedding from the cylinder, 

especially in the lower side of the cylinder wake 

 
 
 
2.2.2 Boundary Layer Instability in Aircraft and Turbomachinery 
 
 
Holzäpfel et al. [18] presented the results of high-resolution numerical simulations of 

aircraft wake vortex evolution and decay in different regimes and atmospheric 

conditions. They concluded that the stretching, tilting, and merger of ambient 

velocity caused by the primary vortices were the prominent mechanisms in vortex 

evolution and decay.  
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Lee and Gerontakos [17] investigated the characteristics of the unsteady boundary 

layer and stall events occurring on an oscillating NACA 0012 airfoil by using closely 

spaced multiple hot-film sensor arrays at Re=1.35x105. Aerodynamic forces and 

pitching moments, integrated from surface pressure measurements, and smoke-flow 

visualizations were presented.  

 
The existence of disturbed laminar, transitional and turbulent flow on a turbine blade 

had been demonstrated by Addison and Hodson [14]. The measurements included 

time-resolved hot-wire traverses and surface hot film gage measurements at the 

midspan of the rotor suction surface with three different rotor-stator spacing. They 

found that the start of transition was unsteady and dominated by stator wake 

turbulence. The transition process was characterized by the appearance of high 

frequency bursts above the lower frequency background disturbances.  

 

Numerical simulation on the interaction of axial compressor stator with upstream 

rotor wakes and tip leakage vortices were employed to elucidate their impact on the 

time-averaged performance of the stator by Volkov and Tau [16]. The key objectives 

of their computational results were (i) to identify the unsteady flow mechanisms 

responsible for the change of performance, (ii) quantify these changes, and (iii) 

translate this information into design insights. Two generic mechanisms with 

significant impact on the performance had been identified. These are reversible 

recovery of the energy in the disturbances (beneficial), and the no transitional 

boundary layer response (detrimental). They found that the impact of stator 

interaction with upstream wakes and vortices depends on the following parameters: 

axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At 

reduced spacing, this impact becomes significant. The most import aspect of the tip 

vortex is the relative velocity defect and the associated relative total pressure defect. 

 

A detailed experimental study on the behavior of the separated zone on the suction 

surface of a highly loaded LPT-blade under periodic unsteady wake flow was 

presented by Schobeiri et al. [15]. Two-dimensional periodic unsteady inlet flow was 

simulated by the translational motion of a wake generator, with a series of cylindrical 

rods attached to two operating timing belt driven by an electric motor. One steady 
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and two different unsteady inlet wake flow conditions with corresponding wake 

frequencies, wake velocity and turbulence intensities were investigated at 

Re=50,000, 75,000,100,000, and 125,000 based on blade suction surface length. The 

surface pressure distribution showed no major changes with respect to the above Re-

number changes. Passing the wake flow with its highly turbulent vortical core over 

the separation region caused a periodic contraction and expansion of the separation 

zone. They also found the periodic behavior of the boundary layer integral 

parameter. 

 

Direct Numerical Simulation (DNS) of a vortex pair embedded in a stable 

atmospheric boundary layer were presented by Corjon and Poinsot [19]. The effects 

of various crosswind conditions were studied. With or without crosswind, the 

vortices descend toward the ground and create secondary vortices. The presence of 

crosswind induces a boundary layer with negative vorticity, which act on the creation 

of secondary vortices. There is a redistribution of the vorticity induced by the 

primary vortices and that contained in the boundary layer. The sudden eruption of 

wall vorticity is favored in one case (downwind), when the crosswind shear and the 

secondary vortex have the same sign, and counteract in the other (upwind), where the 

crosswind shear and the secondary vortex have the opposite sign. In the case of high 

crosswind (and high shear), the upwind vortex doesn’t rebound. These computations 

allowed defining a new dimensionless parameter Ws, which gives the altitude of 

rebound as a function of crosswind and vortex characteristics. This parameter can be 

use in simple engineering models to predict rebound.       
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MATHEMATICAL MODELLING 
 
 
 

Unsteady boundary layers occur when the motion is started from rest or when it is 

periodic. When motion is started from rest both the body and the fluid have zero 

velocities up to a certain instant of time. The motion begins at that instant and it can 

be considered either that the body is dragged through the fluid at rest or that the body 

is at rest and that the external fluid motion varies with time. In the later case, an 

initially very thin boundary layer is formed near the body, and the transition from the 

velocity of the body to that in the external flow takes place across it and the thickness 

of the boundary layer increases with time. 

 
Unsteady boundary layer development over a flat-plate under the influence of wake 

vortices induced from elliptic cylinder is the function of angle of attack of the 

cylinder, undisturbed approach velocity of the free stream, and the relative position 

of the elliptic cylinder from the flat-plate. Von Karman wake Vortex Street 

originated from the elliptic cylinder will interact with the boundary layer 

development over a flat-plate with different intensities depending on the impinging 

vortex strength as well as different cylinder-plate relative positions. In this chapter, 

the governing basic equations for unsteady viscous incompressible flow field with 

appropriate boundary conditions applicable for the present problem will be discussed 

briefly. The generalized governing equations are based on the conservation of mass 

and conservation of momentum. Also, the quantities of interest for getting the picture 

of the present problem will be introduced. 
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3.1 FUNDAMENTAL EQUATIONS 

 

The motion in the present problem is two-dimensional. This flow field is governed 

by the conservation of mass and 2-D unsteady Navier-Stokes equation. 

 

Mass Conservation: 
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Where ρ is the fluid density, F is the body force, P is pressure field, and µ is the 

kinematic viscosity of the fluid. 

 

Vector forms of these equations are, 

 

Mass Conservation:         0. =∇V          ……………………………………….. (3.1) 
 

Navier-Stokes Equation: 
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Now the gradient will be the tensor, 
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Now transpose of U∇ , 
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For incompressible/ Newtonian fluid, 
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or, ( )( )TVV ∇+∇∇ µ. = V2∇µ  

 

So, equation (3.2) comes as 
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Where I is the identity matrix. 

 

Equation (3.3) along with the compressibility constraint, equation (3.1) will be used 

for the present numerical computation. 

 

 

3.2 DIMENSIONLESS ANALYSIS 

 

An elliptic cylinder having major and minor axis of lengths 2a and 2b respectively 

and axis ratio (AR = b/a) of 0.6, in an otherwise uniform flow, U can be modeled by 

unsteady 2-D Navier-Stokes equation neglecting body forces, 

 

  ( ) VPVV
t
V 2. ∇+∇−=∇+
∂
∂ µρρ ……………………………………….(3.4) 
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The dimensionless quantities are, 
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Now equation (3.4) in dimensionless form, 
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Equation (3.5) is the dimensionless form of 2-D unsteady Navier-Stokes equation. 

 

And dimensionless form of conservation of mass, 

         0. // =∇ V  …………………………………………………………………. (3.6)  

 

In the present computation dimensionless time will be considered as τ = 
c

Ut  which 

was used by Badr, Dennis and Kocabiyik [11] where they used the vorticity/stream 

function formulation of unsteady 2-D Navier-Stokes equation. 
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3.3 BOUNDARY CONDITIONS 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Scheme of the computational domain (not to scale) 
 
 
 
Figure 3.1 shows the computational domain where an elliptic cylinder of axis-ratio 

0.6 is placed in front of a flat plate of 0.6m length in an otherwise uniform free 

stream, U. In the figure, xc is the streamwise distance and yc is the vertical distance 

repectively, between the cylinder centre and the flat plate leading edge and Xp 

indicates different streamwise locations on the plate. 

 
In the present finite element computation, some problems were to face for selecting 

the boundary conditions for different boundary of the computational domain. Some 

the boundaries of the domain were set with different boundary conditions and the 

programme was runned. Each time the undisturbed velocity profile was found to 

match not exactly the Blassius velocity profile for the flat plate but it overshoot i.e. 

u/U > 1 (two sample graphs are shown in figure 3.3). The results of the different 

trials for selecting the boundary conditions have been given in Table-3.1. To 

understand, each boundary is symbolized with different alphabetic numbering system 

as shown in figure 3.2. 

 

Y 

0.3 m

yc 

X Xp
0.352 m

0.4 m 0.6 m

Computational Domain, Ω 
U

xc 
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Figure 3.2: Alphabetic numbering of the boundaries of the computational domain. 
 

 

Identification numbers are as follows: 

a -- Left boundary     b – Lower left boundary 

c – Lower right boundary (flat plate)   d – Upper boundary 

e – Right boundary  

 

The reasons of this type of discrepancy may be explained as follows: 

 

1. Leading edge of the flat plate can affect the flow field. When the fluid touches 

the nose of the leading edge, the flow stagnates developing a large pressure and 

hence reduces the region of undistorted constant-pressure flow available on the 

plate. Numerically, at the point of x = 0.4 m, the computer finds two values of 

stream velocity; u = U for the slip condition of the lower left boundary of the 

domain and u = 0 for the no slip condition of the plate and this may cause a 

numerical error. 

 

2. It may be the result of the boundary condition that has been chosen for the 

present model. In a real external flow, there is no boundary at the top and flow is 

permitted to pass through freely. Unfortunately, this cannot be used in our flow 

field without encountering convergence problems. 

a

b c , flat plate

d

e
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 (Case-2) 

 

(Case-12) 

 

Figure 3.3: Velocity profiles for two test cases of Table 3.1 
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Table 3.1: Different combination of boundary conditions applied to the boundaries of 

the computational domain with %error occurred in the velocity profile. 

 
Boundary Conditions Inlet 

Velocity  a b c d e % error 

Velocity 
Inlet 

Slip 
 wall No slip Open boundary: 

Normal stress = 0 
Pressure, No 
viscous stress 0.29904 

Velocity 
Inlet 

Slip 
 wall No slip Open boundary: 

no viscous stress 
Pressure, No 
viscous stress 

 
0.588 

 

Velocity 
Inlet Symmetry No slip 

 
Open boundary: 

Normal stress = 0 
 

Pressure No 
convergence 

 
Velocity 

Inlet 

Slip  
wall No slip Open boundary: 

no viscous stress Pressure No 
convergence 

Velocity 
Inlet 

Slip  
wall No slip Open boundary: 

Normal stress = 0 No viscous stress 1 

 
Velocity 

Inlet 

Slip  
wall No slip Open boundary: 

no viscous stress No viscous stress No 
convergence 

Velocity 
Inlet 

Slip  
wall No slip Open boundary: 

Normal stress = 0 
Normal stress = 

0 0.545 

Velocity 
Inlet 

Slip  
wall No slip Open boundary: 

no viscous stress 
Normal stress = 

0 0.448 

Velocity 
Inlet 

Slip  
wall No slip Symmetry Pressure, No 

viscous stress 1.58 

Velocity 
Inlet 

Slip  
wall No slip Symmetry Pressure 1.5 

Velocity 
Inlet 

Slip  
wall No slip Symmetry No viscous stress No 

convergence 

Velocity 
Inlet 

Slip  
wall No slip Symmetry Normal stress = 

0 1.52 

Velocity 
Inlet 

Slip  
wall No slip Slip wall Pressure, No 

viscous stress 1.079 

Velocity 
Inlet 

Slip  
wall No slip Slip wall Pressure 1.082 

Velocity 
Inlet 

Slip 
 wall No slip Slip wall No viscous stress No 

convergence 

Velocity 
Inlet 

Slip 
 wall No slip Slip wall Normal stress = 

0 1.08 

U= 0.468 
(m/s) 

 
 

(Re2c = 
500) 

Velocity 
Inlet 

Slip  
wall No slip Pressure outlet Pressure outlet No 

convergence 
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Considering the results of Table-3.1, the boundary conditions for different 

boundaries of the present computational domain have chosen according to the lowest 

%error of the velocity profile (at Xp = 300mm) of the flat plate. 

.  

 
The computational Domain subjected to initial condition, 
 
              ( ) ( )VUvu t ,, 0 ==  
 
 
The boundary conditions to be considered are as follows:  
 

1. An inflow boundary condition is applied at the left boundary: 
 

    V = U   i.e.  Uu =  and  0=v  
  

2. Slip boundary condition is applied at the lower left boundary 
 

       0=∂
∂

y
u  ,  0=v  

3. No-slip velocity condition for all velocity components on all solid walls. 
So, 

 
a. On the plate surface, V = 0 i.e. u = v =0. 

b. On the surface of the cylinder, also V = 0  i.e. u = v =0. 

4.   An open boundary condition is applied at the upper boundary of the   

      domain. 

  (-pI + µ(∇V +(∇V)T)) n = 0     

5.   An outflow boundary condition is applied at the right boundary 

  µ(∇V +(∇V)T) n = 0    and  p = p0 

 
 
 
 
3.4 BOUNDARY LAYER PARAMETERS 
 
 
The presence of the boundary layer moves streamlines just outside the boundary 

layer from the body compared to the inviscid solution by an additional amount called 

the displacement thickness, δ . 
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dy
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where, 1δ   is the boundary layer thickness. 

Just as the boundary layer transports less mass than the undisturbed surrounding 

flow, it also transports less momentum.  The deficit in momentum flux for the entire 

boundary layer is measured by the momentum thickness, θ.  The measure of the 

amount by which fluid in the boundary layer loses momentum is directly related to 

the drag coefficient. 
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An idea of the shape of a boundary-layer velocity profile — and some idea about 

how likely it is to separate from the body — can be obtained from the dimensionless 

shape factor, H, which is the ratio of displacement to momentum thickness  

                                               
θ
δ

=H  

 

For unsteady flow field, sometimes it is convenient to use average shape factor, H av 
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where n is the number of sample points taken over a predetermined time. 

 

Sometimes, the root mean square (rms) value is useful especially when the variates 

are positive and negative.    

nHH
n

i
irms /

1

2 ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

 



 32

In general, H = 2.6 indicates laminar flow and H = 1.4 for turbulent flow. It is an 

inverse measure of the boundary layer momentum, which increases in the turbulent 

regime. 

Skin friction is the component of parasitic drag arising from the friction of the fluid 

against the "skin" of the object that is moving through it. Skin friction is a function of 

the interaction between the fluid and the skin of the body. 

The skin friction coefficient, Cf, is defined by:  

                  
2

2
1 U

C w
f

ρ

τ
=  

Where τw is the local wall shear stress, ρ is the fluid density and U is the free-stream 

velocity (usually taken ouside of the boundary layer or at the inlet).  

For unsteady flow field, sometimes it is convenient to use average skin friction co-

effecient,
avfC                                          
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n
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where n is the number of sample points taken over a predetermined time. 

 

And also the rms value of the skin friction is 
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COMPUTATIONAL DETAILS 
 
 
 
 

Due to the complicated nature of flow field, theoretical analysis is typically limited 

to either flows at very low Reynolds number or flows at early times after an 

impulsive start. Experimental techniques have become very sophisticated in recent 

years but an extensive spatial and temporal analysis of the three-dimensional flow 

field would quickly overwhelm the available resources. Numerical simulations 

provide a promising approach to analyse this problem. Numerical Methods are 

extremely powerful problem-solving tools-capable of handling large systems of 

equation, complicated geometries etc. that are often impossible to solve analytically. 

It provides a vehicle to reinforce the understanding of mathematics. 

 

The partial differential equations (PDE) of fluid mechanics and heat transfer are 

solvable for only a limited number of flows. To obtain an approximate solution 

numerically, we have to use discritization method which approximated the 

differential equations by a system of algebric equations, which can then be solved on 

a computer. The approximations are applied to small domains in space and/ or time 

so the numerical solution provides results at discrete locations in space and time. 

Much as accuracy of experimental data depends on the quality of the measuring 

instruments used, the accuracy of numerical solutions is dependent on the quality of 

discritization used. 

 

The complete Navier-Stokes equations are considered to be the correct mathematical 

description of the governing equations of fluid motion. The most accurate numerical 

computations in fluid dynamics came from solving the Navier-Stokes equations. The 

equations represent the conservation of mass and momentum.    
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There are several discritization methods available for the high performance 

numerical computation in CFD; 

 

• Finite volume method (FVM) 

• Finite element method (FEM) 

• Finite difference method (FDM) 

• Boundary element method (BEM) 

• Boundary volume method (BVM) 

 

In the present numerical computation Finite element method (FEM) is used. 

 

4.1 FINITE ELEMENT METHOD 

 

The finite element method (FEM) is a numerical technique for solving problems 

which are described by partial differential equations or can be formulated as 

functional minimization. A domain of interest is represented as an assembly of finite 

elements. Approximating functions in finite elements are determined in terms of 

nodal values of a physical field which is sought. A continuous physical problem is 

transformed into a discretized finite element problem with unknown nodal values. 

For a linear problem a system of linear algebraic equations should be solved. Values 

inside finite elements can be recovered using nodal values. 

 

The major steps involved in finite element analysis of a typixal problem are: 

1. Discritization of the domain into a set of finite elements (mesh generation) 

2. Weighted-integral or weak formulation of the differential equation to be 

analyzed.  

3. Development of the finite element model of the problem using its weighted-

integral or weak form. 

4. Assembly of finite elements to obtain the global system of algebric equations. 

5. Solution of equations. 

6. Post-computation of solution and quantities of interest. 
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4.2 MESH GENERATION 

 

In Finite element method, the mesh generation is the technique to subdivide a 

domain into a set of subdomains, called finite elements. Figure shows a domain, Ω is 

subdivided into set of subdomains, Ωe with boundary eΓ .  

 

 
Figure 4.1: Finite element discritization of a domain [41] 

 

The present numerical technique will discretize the computational domain into 

unstructured triangles by Delaunay Triangulation method. The delaunay triangulation 

is a geometric structure that has enjoyed great popularity in mesh generation since 

the mesh generation was in its infancy. In two-dimensions, the Delaunay 

triangulation of a vertex set maximizes the minimum angle among all possible 

triangulations of that vertex set.  

 
The process of solving the linear or nonlinear systems of equations yielded by the 

finite element method and its brethren is simpler and faster on structured meshes, 

because of the ease of determining each node’s neighbors. Because unstructured 

meshes necessitate the storage of pointers to each node’s neighbors, their demands 

on storage space and memory traffic are greater. Furthermore, the regularity of 

structured meshes makes it straightforward to parallelize computations upon them, 

whereas unstructured meshes engender the need for sophisticated partitioning 

algorithms and parallel unstructured solvers. Unstructured meshes, far better than 
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structured meshes, can provide multiscale resolution and conformity to complex 

geometries. 

 

Figure 4.2 shows the mesh mode for the present numerical computation. Special 

attention is given for mesh generation on the cylinder surface and on the plate 

surface. 

 

 
 

Figure 4.2: Current mesh structure with around 29,000 elements. 
 

Numerical results greatly depend on the mesh generation. A grid sensitivity test has 

been carried out to find the optimum element number. 29,000 elements mesh has 

been selected to predict the result based on accuracy and time. 
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Figure 4.3: Grid Independency test for xc/2c = 0 yc/2c = 1, at Xp = 400mm. 

        (where Hav is average shape factor) 
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4.3 WEAK FORMULATION OF THE DIFFERENTIAL EQUATION 

 

The motion of fluid is governed by the global laws of conservation of mass and 

momentum. 

 

Conservation of mass: 

               0
x
u
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∂
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Conservation of momentum: 

0f
xx

u
u

t
u

i
j

ij

j

i
j

i =ρ+
∂

σ∂
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

ρ ……………………………………....    (4.2) 

with constitutive equation: 

 

σ ij = τij - Pδij  ;  τij = µDij 
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Using the constitutive equations and deformation rate-velocity relations, 

equation(4.1) and (4.2) can be expressed solely in terms of the velocity component 

and pressure: 

 

                            0
x
u

i

i =
∂
∂              ………………………………………….  (4.4) 

          0f
x
u

x
uP

xx
uu

t
u

i
i

j

j

i
ij

jj

i
j

i =ρ+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

µ+δ−
∂
∂

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

ρ  ………..  (4.5) 

 

The starting point for the development of the finite element models of equations (4.4) 

and (4.5) is their weak forms. For convenience, the left side expressions of eq.(4.4) 

and (4.5) are denoted by f1 and f2. 
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The weighted –integral statements of the two equations over a typical element eΩ  

are given by 

 

                         0dxfQ
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where (Q,w) are weight functions. 

The following integral statements are found [42] 
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where Ti is the boundary stress components. 

This completes the weak form development. 

 

4.4 FINITE ELEMENT MODEL 

 

Suppose that the dependent variables (ui,P) are approximated by expansions of the 

form, 

                  ∑
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                 P    (x,t)  = P)t(P)x( T
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………………………..…(4.11) 

 

Where Ψ and Φ are (column) vectors of interpolation (or shape) function, and ui and 

P are vectors of nodal values of velocity components and pressure, respectively. 
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The weight function (Q,w) have the following correspondence [41] 

                               w ≈ ψm  , Q ≈ Φ l 
 

Substituting equation (4.10) and (4.11) into equation(4.8) and (4.9) the following 

forms are found [42] 

 

Continuity:        - QT u = 0            ……………………………………………(4.12) 

Momentum: M
.
u + C (u) u + Ku – Q P = F   ………………………………...(4.13) 

    

For two-dimensional case, equation (4.12) and (4.13) have the following explicit 

form, 
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where the superposed dot represents a time derivative. The co-efficient matrix shown 

in equation (4.14) are defined by 
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The interpolation used for the pressure variable should be different from that used for 

velocities, because the weak forms in equations (4.8) and (4.9)contain the first 
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derivative of the velocities ui and no derivatives of pressure P. This observation lead 

to the conclusion that the pressure variable should be interpolated with functions that 

are one order less than those used for the velocity field and the approximation may 

be discontinuous.  

 

In the present numerical computation, quadratic triangular element for velocity field 

and linear triangular element for pressure field is used. In COMSOL, it is Lagrange 

P2-P1 element. 

 

                   

                                                                              
 
 

Figure 4.4: Velocity-pressure (discontinuous) interpolation 
 
 
 
4.5 SIMPLE ALGORITHM 
 
 
The acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked 

Equations. The principal difficulty in solving the momentum equations for 

incompressible flows lies in the determination of pressure. In the iterative SIMPLE-

like algorithm, the discrete form of the continuity equation is converted into an 

equation for the pressure correction. It is essentially a guess-and-correction 

procedure for the calculation of pressure. The pressure corrections are then used to 

update the pressure and velocity fields so that the components obtained from the 

solution of momentum equations satisfy the continuity equation. In a short procedure 

is a pressure field P* is guessed discretized momentum equations are solved using the 

guessed pressure field to yield velocity components u* and v*. The simple algorithm 

is shown by the flow chart below. 
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4.6 SOLUTION OF SYSTEM OF LINEAR ALGEBRIC EQUATION 

 

As a result of the decoupling of the equation for each dependent variable and 

subsequent linearization, large sets of linear algebric equations are obtained. In order 
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to solve these equations, algebric multigrid (AMG), Unsymmetric multifrontal 

method (UMF), Generalized minimul residual(GMRES) –type  solver are used. 

 

The solution process in AMG, which involves relaxation, transfer of residuals from 

fine to coarse grid, and interpolation of corrections from coarse to fine levels, is very 

efficient for fine-grid problem, provided the above ‘multigrid components’ are 

properly chosen. It is also more economical for coarse grids. 

 

The generalized minimal residual (GMRES) method is an extension of the minimal 

residual method (MINRES), which is only applicable to symmetric systems, to 

unsymmetric systems. Like MINRES, it generates a sequence of orthogonal vectors, 

but in the absence of symmetry this can no longer be done with short recurrences; 

instead, all previously computed vectors in the orthogonal sequence have to be 

retained. For this reason, "restarted" versions of the method are used. It is an efficient 

iterative process for solving systems of linear equations 

 

UMFPACK (Unsymmetric MultiFrontal Package) is a set of routines for solving 

unsymmetric sparse linear systems, Ax=b, when A is sparse and unsymmetric.  

It is based on the Unsymmetric-pattern MultiFrontal method. UMFPACK factorizes 

PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are lower and upper 

triangular, respectively, P and Q are permutation matrices, and R is a diagonal matrix 

of row scaling factors (or R = I if row-scaling is not used). Both P and Q are chosen 

to reduce fill-in (new nonzeros in L and U that are not present in A). The permutation 

P has the dual role of reducing fill-in and maintaining numerical accuracy (via 

relaxed partial pivoting and row interchanges). UMFPACK first finds a column pre-

ordering that reduces fill-in, without regard to numerical values. It scales and 

analyzes the matrix, and then automatically selects one of three strategies for pre-

ordering the rows and columns: unsymmetric, 2-by-2, and symmetric. This solver is 

very efficient for solving the unstructured finite element mesh. In the present 

computation this direct type of solver is used.  
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RESULTS AND DISCUSSION 
 
 
 
 

In the previous chapter, computational technique along with detail discretization of 

governing equation is presented. This chapter will be divided into two sections: the 

first section will deal with the results obtained from the elliptic cylinder in uniform 

flow, comparing with the results of the published data available in literature. And in 

the second section, results of the present numerical simulation of the two 

dimensional boundary layer development on the surface of a flat plate under the 

influence of passing wake vortices induced from an elliptic cylinder and the effects 

of different parameters i.e. the relative position of the cylinder to the plate, the 

Reynolds number etc. will be discussed. The parameters affecting the results have 

been summarized in Table 5.1, where 2c stands for the distance between the foci of 

the ellipse. The cylinder is positioned at the non-dimensional axial distance xc/2c 

from the plate leading edge, while yc/2c is the non-dimensional vertical distance of 

the axis of the cylinder from the surface of the plate. The flat plate used in the 

present model is 600mm long with a sharp leading edge. The geometrical scheme of 

the various test cases investigated in the present numerical problem, is shown in 

figure 5.2. 

 
Table 5.1: Summary of computational Conditions 

 

Free Stream Velocity, U 
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5.1 FLOW AROUND ELLIPTIC CYLINDER 

 

In this section, the method of the solution and the accuracy of the numerical scheme 

of elliptic cylinder in uniform flow will be verified for Reynolds number Re2c = 

1000, the angle of attack of 00=α and 030=α  and cylinder axis ratio AR = 0.6. 

 

In order to verify the present numerical scheme used in this work, the initial flow for 

the problem of flow field of the elliptic cylinder only is considered. The figures 

(figure 5.3 to 5.7) of instantaneous streamline and drag and lift coefficients found in 

the present problem show a good agreement with the numerical solution of Badr, 

Dennis and Kocabiyik. 

 

The patterns of instantaneous streamlines for 00=α and 030=α  at different times 

are shown in figure 5.3 and 5.5 respectively. The corresponding flow visualization by 

Badr, Dennis and Kocabiyik [11] are also presented for comparing or validity of the 

present numerical computations.  

 

Figure 5.3 shows that at the start of motion, the wake cavity behind the cylinder 

(at 00=α ) contains a symmetrical pair of equal and opposite recirculating-flow 

regions (upper clockwise and lower counter-clockwise voetex pairs) on either side of 

the wake whose length grows (due to viscous stresses) with the increase of time τ. 

Eight snapshots of the flow field for the case 030=α  are shown in figure 5.5. Figure 

5.5(a,A) shows the formation of a separation bubble. The vortex resulting from the 

separation bubble develops at time 0.3=τ  near the upper half of the cylinder. After 

a while this vortex detaches and moves downstream. During the time interval 1< τ < 

10, the formations and detachments of the upper (clockwise) and lower 

(counterclockwise) vortex pairs take place and in further time, this classical mode of 

vortex shedding leads to the formation of a Karman vortex street. Comparison of 

these figures with the corresponding ones in case of 00=α  indicates that the 

separation point moves more toward the front of the cylinder as α  increases from 00  

to 030 . Karman vortex street can also be found when the time is very large 

( 10>>τ ). 
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The fluid forces acting on the cylinder are mainly the drag and lift forces represented 

by D and L respectively. These forces arise from the fluid pressure and shear forces 

acting on the cylinder surface and are usually expressed by the coefficients named 

drag coefficient, DC  and lift coefficient, LC  respectively, where 

( )cU
DCD

22
1 2ρ

=    and  
( )cU

LCL
22

1 2ρ
=  

 

The above equation can be split into two parts, one due to frictional forces and the 

other due to pressure forces. 

 

DPDFD CCC +=     and   LPLFL CCC +=  

Where, DFC  and DPC  are the friction and pressure components of the drag 

coefficient and LFC  and LPC  are the friction and pressure components of the lift 

coefficient respectively. 

 

The calculated values of DFC , DPC  and DC  for Re2c = 1000 and 00=α , when the 

flow is symmetric about the major axis are plotted in figure 5.4. The figure shows 

that the contribution of frictional force to the total drag coefficient DC  is relatively 

small.  

 

In the case of flow past an inclined elliptic cylinder ( 030=α ), lift is present unlike 

the symmetrical case ( )00=α . The calculated values of DC  and LC  are plotted as 

shown in figure 5.6 and 5.7 respectively for the case of 030=α . These figures 

indicate a periodic variation of the flow field associated with vortex shedding. The 

comparison of DC  found in 030=α  with the corresponding one in the case of 
00=α  for the same time interval (0 < τ < 10) indicates that the DC  curve shows 

non-periodic behavior in the case of 00=α , whereas in the case of 030=α , the DC  

curve shows a periodic behavior after a transition period when 6=τ . Figure 5.7 

illustrates an interesting behavior of the lift coefficient, LC , where it takes negative 

values almost at 8=τ . This unusual behavior of negative lift was also presented by 
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Taneda [12, 13] experimentally. In order to explain this phenomenon, the streamlines 

patterns shown in figure 5.5 can be matched with the time variation of LC  given in 

figure 5.7. The decrease in LC  started approximately at 5=τ , which marks the 

beginning of detachment of the first vortex and the formation of the second vortex at 

the upper surface of the cylinder as shown in figure 5.5(g, G). At 8=τ (approx.), the 

first vortex started shedding away from the surface (figure 5.5(h,H)) causing a net 

circulation in the reverse direction and resulting in the negative lift.        

 

 

5.2 INSTANTANEOUS STREAMLINES OF THE PRESENT FLOW FIELD 

 

Figure 5.8 to figure 5.19 represent the instantaneous stream lines development of the 

flow field for all test cases of the present numerical problem and figure 5.20 for a 

circular cylinder. Actually the wake region can be classified into some flow regimes 

based on the Reynolds number such as laminar steady regime, laminar vortex 

shedding regime, wake transition regime, shear layer transition regime, asymmetric 

reattachment regime (critical transition), symmetric reattachment regime (or 

supercritical regime) etc. From the visualization of the flow field, it can be said that 

for the three Reynolds numbers used in the present numerical problem, the flow 

fields were in the laminar vortex shedding regime. As the wake moves downstream, 

it starts interaction with the boundary layer on the plate by advecting low speed fluid 

from the wall into the outer region and high speed fluid from the core towards the 

wall, as rollers of alternating rotation are convected above the boundary layer and so 

the shape of the streamlines found in the figures are in wavy shape.. The interaction 

procedure of the cylinder wake and the boundary layer of the flat plate can be 

divided into three stages [42]. In the first stage, the wake and the boundary layer are 

separated and can be well represented by the usual relationships (i.e. only the wake 

behaviors behind an elliptic cylinder and the boundary layer on the plate for 

undisturbed flow individually) as shown in the figure 5.1. 
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Figure 5.1a: Streamlines in a regular vortex            Figure 5.1b: Flow over a flat plate 
street behind the elliptic cylinder. 
 

 

The second stage corresponds to the initial merging of the wake and the boundary 

layer and is the most important and the most complicated in the evolution of the 

merging flow. Here, the outer part of the wake and the innermost part of the 

boundary layer are substantially unaffected by the interaction, although the flow in 

the merging region is completely different from that in the undisturbed flow. In the 

final stage, the merging flow disappears and the layer gradually reverts to a new 

thicker boundary layer (as found mostly in figures 5.8, 5.9, 5.10, 5.12, 5.13, 5.16, 

5.17). The wake spreads outward from the source until its energy is lost, usually by 

friction or dispersion and becomes weaker. Strong inviscid-viscid interaction takes 

place in the form of an eruption in the boundary layer and these eruptions and the 

vortices penetrate into the wake region and weaken the vortex formation in the shear 

layer [43]. The merging distance depends, of course, on the spreading rate of the 

wake and on the boundary-layer growth (i.e. on the Reynolds number), as well as on 

the initial distance between the wake and the solid body. The shape of the body that 

forms the wake is also affect the merging distance. Under the effect of the bluff body 

(circular cylinder) the thickness of the boundary layer of the flat plate gets thicker 

than that of a streamlined body (elliptic cylinder).  

 

An interesting feature also found in figures 5.11, 5.14, 5.15, 5.18, 5.19 and 5.20, is 

that when the wake interacts with the plate boundary layer, there develops some 
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vortices or bubbles. It can be explained as that the molecular diffusion in some places 

in the laminar boundary layer is often small as compared with the existing pressure 

gradients of the plate. The transport of streamwise momentum across the boundary 

layer is therefore not sufficiently large to prevent a deceleration of the innermost 

fluid which eventually begins to flow separation. The separated shear layer which is 

formed curves back to the plate surface and forms a shallow region of reverse flow 

called separation bubble. From the flow field it can be said that at high Reynolds 

numbers the size of the bubble becomes small. Figure 5.14, 5.17, 5.18 shows that the 

separation bubbles acts only to displace the above fluid almost without affecting the 

pressure distribution. These bubbles are referred to as short bubbles [44]. In the 

present flow cases these short bubbles are further affected by the cylinder wakes i.e. 

change in the flow condition occurs (according to [45] an increase of incidence or a 

reduction in speed) and the “short bubbles” are “burst” to form a “long bubble” 

(found in present numerical simulation) or an unattached free shear layer (not found 

here). The bursting mechanism can be stated as that the supply of kinetic energy 

from the shear layer to the bubble must balance the loss through viscous dissipation 

and that, it may be necessary for the bubble to expand to maintain equilibrium. There 

are always generation of this “mushroom-like” core very early stage from the leading 

edge and convected downstream while creating secondary instability roles over the 

plate. Visualizing the streamlines of the present numerical problem it is found that, as 

the elliptic cylinder position changes streamwise from the left to the right of the plate 

leading edge the size of the bubbles also increases due to the combined action of the 

cylinder wake and the leading edge of the plate. Again the core size was biggest 

when the cylinder to plate relative position was smallest i.e. at cylinder elevation of 

xc/2c = 0 yc/2c = 0.75 because of strong interaction of the wake and the boundary 

layer.  

 

 

 

 

 

 



 49

5.3 INSTANTANEOUS VELOCITY PROFILE 

                                                                                                                               

Figure 5.21 to figure 5.34 show the instantaneous velocity distribution (for 

undisturbed flow) at different streamwise locations on the flat plate for different 

Reynolds numbers and also for different cylinder to plate relative positions.  

 

Figure 5.21 and 5.22 presents the undisturbed flow field on the flat plate. The shapes 

of the velocity profile for all axial locations of undisturbed flow are similar to 

Blassius profile. The figure 5.20 shows that the thickness of the velocity profile 

increases with the increase of axial distance from the leading edge of the plate for the 

same Reynolds number and figure 5.22 shows that the boundary layer thickness 

decreases with the increase in Reynolds number for same axial location of the plate.  

 

An overall picture of the boundary layer-cylinder wake interaction could be obtained, 

by studying the velocity profiles. The velocity profiles of all cases, for several 

streamwise locations, are presented from figure 5.23 to 5.34 for a particular non-

dimensional time τ = 800. From the visualization of the velocity profiles, it can be 

said that the shape of the profiles are largely dependent on the combined effect of 

Reynolds number, cylinder to plate relative position, size of the wake, the presence 

and size of the separation bubble. But in general (Figure 5.35), in every velocity 

profile, two regions could be identified. The first one was a wake region; it appeared 

downstream of the cylinder, creating a velocity defect which gradually disappeared 

with the streamwise distance. The second was the boundary layer region. In this case 

the velocity distribution, up to the point of interaction, followed the shape of Blasius 

profile, indicating that the boundary layer was still laminar. As we move from the 

plate leading edge to the downstream, it is found that the shape of the streamlines are 

wavy and the velocity profile is not as Blassius because of the effect of the shed 

vortices to the near wall region. In this region the wake from the cylinder perturbs 

the boundary layer by advecting low-speed fluid from the wall into outer region and, 

and high speed fluid from the core towards the wall, as rollers of alternating rotation 

are convected above the boundary layer. Thus approximately S-shaped velocity 

profile under the influence of wake vortices is identified. As the wake decays, the 
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advection effect becomes less significant. In the low Reynolds number cases (in the 

present problem) the flow tends towards a more quiescent state towards the end of 

the computational domain and the statistics never reach turbulent level. Figure 5.35 

shows the variation of the velocity profiles at a particular axial location on the plate 

(Xp = 100mm) as the wake vortices moves downstream the computational domain. 

For τ = 505 it is found that the lower vortex advects the low speed fluid to the outer 

region and the stramlines shows a peak here. From the corresponding velocity profile 

it is clear that upto about the vertical distance of the domain, y = 0.0072m (or 7.2 

mm) the velocity profile follows the Blassius profiles shape. After then (y > 7.2 mm) 

the lower vortex advects the fluid in the boundary layer to the outer region lowering 

the local streamwise velocity u upto y = 0.018m (indicates the presence of the lower 

vortex core). Further with the increase of y, u velocity increases and reaches a 

maximum at about y = 0.035m indicating that there is a region of high velocity above 

the core of the lower vortex. After then, as y increases u velocity decreases to match 

the flow field velocity U. According to this, the velocity profile for τ = 505 found is a 

reversed S shape. As the time increases, the region of the lower vortex gradually 

shifts downstream the plate and the discrepancy between u and U decreases 

gradually. But as the region of lower vortex crossing the location of Xp = 100mm, 

upper vortex region is also moving towards that Xp gradually and at time τ = 508 the 

upper vortex is along the line Xp = 100mm. The upper vortex tries to push the 

streamlines towards the plate wall advecting the high speed fluid from the outer 

region to the wall. In this case, as y increases from the wall, u velocity gradually 

increases and reaches a maximum value below the vortex core and then u velocity 

decreases while crossing the upper vortex core. After then, u velocity starts 

increasing to match the field velocity U. In this case, the velocity profile found is an 

S- shaped. In this present numerical simulation, the velocity profiles found in the 

different flow conditions almost follows the sequential behavior found in Figure 

5.35.  

 

For a particular gap ratio (cylinder to plate relative position) and Reynolds number, it 

is clearly observed that the boundary layer thickness increases with the increase of 

plate axial location. This is due to, wake vortices widen further downstream and thus 
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the merging of wake vortices with boundary layer occurs in large scale. More wake 

vorticity elements available in the boundary layer which can interact more with 

increasing plate axial locations. Thus velocity deficit starts (for wake region) 

somewhat earlier in upward direction from the plate with increasing the streamwise 

positions. It can be concluded that if the plate length is much more than 600mm (as 

in present numerical problem), there may be a region when the velocity profile will 

follow the Blassius profile due to weak interation of the wake and boundary layer. In 

some velocity profiles it is found that there is region of undershoots (0<u/U<1) 

following the overshoot region (vortex centre where u/U > 1) from the plate to the 

upward direction. In some cases, (say in figure 5.23, 5.24, 5.25 etc.) this nature is 

found before the wake vortex center. The reason for such behavior seems to be 

connected with the existence of secondary flow of a kind which is similar to that on a 

lift-generating body. Again some profiles exhibit a negative behavior i.e. u/U < 0 

indicating the presence of a separation bubble on the plate surface.                                               

 

While changing the cylinder to plate relative position from xc/2c = -3, yc/2c = 1 to 

xc/2c = 3, yc/2c = 1, i.e. from left to right of plate leading edge with same elevation, 

and also for xc/2c = 0 yc/2c = 1 to xc/2c = 0 yc/2c = 0.75, the boundary layer 

thickness for the same axial location of the plate, decreases (figure 5.27, 5.28 and 

5.29) due to the effect of the wake size before coming into the contact with the plate 

and wake boundary layer interaction. But there were some exceptions in the case 

when the cylinder to plate relative position was xc/2c = 0 yc/2c = 0.75. When the 

cylinder is located at xc/2c = -3 yc/2c = 1, the wake size is larger before it merges the 

plate compared to that when the cylinder is located at xc/2c = 0 yc/2c = 1 and so the 

boundary layer thickness is large fro cylinder location at xc/2c = -3 yc/2c = 1 to xc/2c 

= 0 yc/2c = 1 and so on. 

 

With the increase in Reynolds number for any comparable gap ratio, the free stream 

disturbance level increases due to the inherent increase in vortex street strength. 

 

Figure 5.34 shows the comparison of velocity profile due to the effect of the wake 

induced from a circular cylinder (bluff body) and an elliptic cylinder (streamlined 
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body) with the same projected height at the centers of them (i.e. considering the 

diameter of the circular cylinder, d = 2b, where 2b is the minor axis of the elliptic 

cylinder) and for the same elevation of the location of them (xc/2c = -3 yc/2c = 1) and 

also for the undisturbed profile. The figures clearly show that the boundary is much 

thicker for circular cylinder than for elliptic cylinder indicating that bluff body 

(circular cylinder) wake size is larger than that of streamlined body (elliptic 

cylinder). As the flow goes downstream, the wake behind the circular cylinder is 

spread out toward the wall region. On the other hand, the wake behind the elliptic 

cylinder has less influence on the near-wall region compared to the circular cylinder. 

Therefore, the wake region formed inside the boundary layer is smaller than that of 

the circular cylinder. 

 

 

5.4 BOUNDARY LAYER INTEGRAL PARAMETERS 

 

The boundary layer integral parameter such as displacement thickness (δ1), 

momentum thickness (θ), shape factor (H), are of particular interest to turbine 

designer, since they provide an accurate first estimation of the quality of the designed 

blade. 

 

Figure 5.36 to 5.52 show the spatial and temporal variation of displacement thickness 

(δ), momentum thickness (θ) and shape factor (H). From this figures it is observed 

that the boundary layer integral parameters exhibit the fluctuating behavior. The 

values of boundary layer integral parameters change with time. In unsteady disturbed 

boundary layer, always there are some fluctuating behaviors compared to 

undisturbed boundary layer analysis. Table 5.2 shows the values of boundary layer 

integral parameters found in the present numerical simulation for undisturbed flow 

on flat plate for Re2c
 = 500  
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Table 5.2: Undisturbed boundary layer integral parameter for Re2c = 500 

 

xp(mm) δ(mm) θ (mm) H 

100 3.02 1.14 ≈ 2.64 

200 4.31 1.64 ≈ 2.633 

300 5.31 2.02 ≈ 2.628 

400 6.16 2.35 ≈ 2.625 

500 6.92 2.64 ≈ 2.623 

600 7.63 2.91 ≈ 2.613 

 

 

Figure 5.36 and 5.37 show the variation of displacement thickness, momentum 

thickness and shape factor with the plate axial location for undisturbed flow 

condition. For a particular Reynolds number (figure 5.36), both the displacement 

thickness and momentum thickness increases with the increase in plate axial length 

exponentially (for laminar flat plate both δ and θ are proportion to Xp1/2) but 

ultimately their ratio i.e. the shape factor remain same i.e. H ≈ 2.6 indicating that the 

flow is laminar. Observing figure 5.37, it is clear that both the displacement 

thickness and momentum thickness decreases with the increase in Reynolds number 

(for laminar flat plate both δ and θ are proportional to Rex
-1/2) but the shape factor 

remains constant for all the Reynolds number. 

 

Figure 5.38 to figure 5.49 presents the temporal variation of the boundary layer 

integral parameters, each for a particular Reynolds number and a particular cylinder 

to plate relative position. From each of the figures, it is found the parameters show a 

regularly shaped fluctuating behavior for a definite time period and this fluctuation is 

due to the periodic affect of the cylinder wake on the plate boundary layer.  

 

For a particular Reynolds number and a particular cylinder to plate relative position, 

the trend of graphs of thicknesses and shape factor exhibit that with the increase of 

plate axial distance, the amplitude of the fluctuations gradually decreases but the 

numerical values of the thicknesses were increases (except for the cases when the 
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cylinder was positioned at very near the plate leading edge i.e. xc/2c = 0 yc/2c = 

0.75). This behavior may be due the fact that there was strong interaction near the 

plate leading edge where the size of the wake was small (sharp sinusoidal behavior 

of streamlines showing peak and valleys) and as the wake passes forward i.e. to the 

downstream of the plate the interaction was weaker and the wake size became larger 

(sinusoidal behavior of streamlines almost damped out). Negative value of 

momentum thickness is found when the wake from the cylinder perturbs the 

boundary layer by advecting low-speed fluid from the wall into outer region and 

positive peak is found when the wake perturbs the boundary layer by advecting high 

speed fluid from the core towards the wall. Other values are found for the time 

interval between two vortices crossing a fixed axial length of the plate. The value of 

shape factor is totally dependent on the ratio of the displacement and momentum 

thicknesses, or more clearly on the value of u/U, i.e. whether u/U < 0 (when 

separation bubble is present), or u/U = 0 (at the point of separation), or 0<u/U<1 or 

u/U > 1. On average, the value of shape factor H is found about 3 (> 2.6 for laminar 

flat plate consideration) or more indicating that there is always a tendency of flow 

separation [40]. 

 

Figures 5.41, 5.45 and 5.49 for the cases when the cylinder was placed very close to 

the plate leading edge i.e. for xc/2c = 0 yc/2c = 0.75, the regular fluctuating behavior 

of the thicknesses was not found. Rather the thicknesses varied randomly with time 

and so the shape factor. This random behavior is mainly due to the strong interaction 

of the cylinder wake and the flat plate boundary layer. Due to this interaction, 

separation bubbles were found in some places on the plate and these bubbles also 

burst in some cases at different time. 

 

For a particular cylinder to plate relative position, observing the figures of boundary 

layer integral parameter, it can be say that, as the Reynolds number increases the 

value of displacement and momentum thickness decreases and so the shape factor 

(figure 5.50), found in the plate length after Xp = 300 mm. But the case xc/2c = 0 

yc/2c = 0.75 shows a random behavior. 

 



 55

Again, for particular Reynolds number, the shape factor found in the present 

simulation to increase as the cylinder moves closer to the flat plate (figure 5.49). 

 

 

5.5 SKIN FRICTION DEVELOPMENT ON THE PLATE SURFACE 

 

Figure 5.53 shows the variation of skin friction with the plate streamwise axial 

position. For the undisturbed flow case and also for the disturbed cases with the 

presence of cylinder wake, it is found that as the axial distance of the plate increases, 

skin friction decreases for a particular Reynolds number. This trend can be found in 

literature. For undisturbed flow case, the figure slows that, with the increase of 

Reynolds number, skin friction decreases. This behavior is also found for the 

disturbed cases of figure 5.53 (b) and (c) but not in Figure 5.53 (d) and (e) when the 

cylinder wake affected the boundary layer. The discrepancies for the case (d) and (e) 

is due to the random generation of separation bubble. At the point of separation, skin 

friction shows a peak, inside the bubble it drops down.  

 

Figure 5.54 shows the variation of skin friction with different plate axial location for 

different cylinder to plate relative position, at a particular Reynolds number. From 

the figure it is clear that, as the cylinder moves closer to the plate, the interaction 

between the cylinder wake and plate boundary layer becomes stronger and the skin 

friction increases, except for case (b) and (c) for Re = 800 and also for Re = 1000, 

when the cylinder was plate after the leading edge of the plate at that instant for τ = 

500. This behavior may not be found in another instant of time. Actually these cases 

are complicated to explain due to incident of combined effect of wake itself and 

further the wake-separation interaction. In general, the value of skin friction for 

undisturbed flow on the flat plate was found the below (not very large amount) the 

disturbed flow. In each case, the skin friction starts from a perturbed laminar value 

that does not coincide with the Blasius profile. This is due to the combination of the 

proximity to the leading edge (where Blasius similarity is invalid) and the free-

stream acceleration due to the .flow obstruction by the cylinder, which causes the 

initial skin-friction undershoot.  
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Figure 5.55 shows the variation of time-average skin friction with Reynolds number 

for different cylinder to plate relative position. The general trend shows that as the 

Reynolds number increases skin friction decreases because of lower viscous effect on 

the plate except for the case when the cylinder was nearest to the plate. This may be 

due to the fact that there was much more interaction comparing the other cases and 

the flow may be in the transition region. 

 

Figure 5.56 exhibit the comparison of skin friction for the cases of without cylinder 

i.e. undisturbed flow and with cylinder with axis ratio. From the figure it is clear that 

as the axis ratio increases i.e. b/a = 0 (for elliptic cylinder) to b/a = 1 (for circular 

cylinder), the skin friction increases. In both cases the skin friction that found was 

larger than the skin friction found for undisturbed case when the axis ratio is 0. 

 

 

5.6 BOUNDARY LAYER TRANSITION 

 

Wake-induced boundary-layer transition in the present configuration depends both 

on the physical distance from the plate leading edge, x/D, and on the plate Reynolds 

number, Rex .The former dependence appears as an ‘interaction distance’, the 

physical streamwise distance required for the wake disturbance to contaminate the 

boundary layer, while the Rex-dependence enters through the degree of boundary-

layer instability, which increases with Rex. From the above observations, we 

conjecture that transition may depend on a Reynolds number based on the distance 

from the impingement point. 

 

In the present computation, the Reynolds number Re2c is fairly low so that the 

boundary layer remained laminar over the full plate length when no disturbing wakes 

are present. When wake passes over the plate, the free stream was intermittently 

disturbed by wakes. Underneath the wake disturbed free stream, the boundary layer 

become transitional quite early. 
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The transition point can be identified from the skin friction plots on the plate 

streamwise location. In general, when the Cfx (present problem) crosses the Cf curve 

for the Blassius laminar flow and increase continuously and sharply after that, the x-

location on the plate where the Cfx interact the Cf curve for the Blassius laminar 

flow, is considered as the onset of transition. From visualization of the figures 5.51, 

the onset of transition is typically difficult to identify. Because the curves show 

fluctuating behavior of laminar and turbulent region randomly. This is due to the fact 

that wake induced transition may be considered as bypass transition i.e. some of the 

initial stages of the natural transition process do not take place or bypass. This task is 

difficult and the underlying physics of by-pass transition is not yet very well 

understood. It becomes essential to capture the coupling between large freestream 

wake disturbances and the pretransitional boundary layer in order to correctly 

describe transtion. 

 

The overall behavior of the curves of figure 5.54 show that the flow field very close 

to the undisturbed laminar case at that instant. The Cfx found slightly larger than the 

undisturbed laminar case. Although the laminar boundary layer is buffeted by the 

shed vortices, it remains stable and no transition is observed within the 

computational domain. The overall flow field may be considered laminar. 
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CONCLUSION 
 

 
 

Unsteady boundary layer development over a flat plate under the influence of wake 

vortices induced from an elliptic cylinder is investigated for different cylinder to 

plate relative positions and also for different Reynolds number. A comparison is also 

carried out for circular cylinder having the same height of the elliptic cylinder cross-

section, for a particular cylinder to plate relative position and Reynolds number. The 

interaction between the boundary layer developed over a flat plate and the cylinder 

wake has been studied from the view-point to visualize the effect of the presence of a 

cylinder in the laminar boundary layer over a flat surface, where the cylinder controls 

the laminar boundary layer flow. 

 

Two types of boundary layer-wake interaction are obtained from the computations, 

one is the strong wake-boundary layer interaction and another is the weak wake-

boundary layer. The intensity of interaction greatly depends on plate streamwise 

location, the Reynolds number of the flow and the gap ratio between the plate and 

the cylinder. The higher the Reynolds number and the lower the gap ratio, the more 

rapidly the wake loses its coherence, and the more unstable the boundary layer is to 

perturbation. Despite the difference in the Reynolds number and gap ratio, the 

mechanism of interaction is the same for all the cases. 

 

The impingement of wake on the boundary layer causes velocity and momentum 

deficit on the flow field. The boundary layer integral parameters such as 

displacement thicknesses, momentum thicknesses, and shape factors are also 

disturbed by wake vortices. The wake vortices and separation bubbles varies the 

thicknesses randomly and so the shape factor.  

 

Wake vorticity elements can always generate from rotating circular cylinder and 

affects on the transition in boundary layers. Transitional phenomena are crucially 
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important to the design of the compressor and the turbines. In the former, about half 

the loss of stage efficiency at the design point owes to skin friction, which is several 

times larger in a turbulent boundary layer than in its laminar counterpart. The 

separation bubble, which usually is laminar at the point of separation, if transitions it 

will likely reattach to the blade surface and the loss in efficiency is limited. Under 

some circumstances, the transitional process is slow and the flow reattachment point 

may move far downstream on the suction surface and the large separated region 

cause severe losses is stage efficiency.  

 

Bubble bursting creates an increase in drag and an undesirable change in pitching 

moment. If a very large bubble is formed on bursting, or if the shear layer fails to 

reattach, there is also an appreciable fall in lift. This is one type of stall the thin 

aerofoil nose stall. Hence, the technological importance of the present study is 

sufficiently demonstrated by transition problems on turbines and compressors and on 

airfoils. 
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RECOMMENDATIONS FOR FUTURE WORKS 
 
 
 

The following recommendations can be put forward for the further works as follow-

ups of the present research: 

 
 

1. Influence of wake generated from elliptic cylinder of different axis ratio and 

angle of attack, on flat plate boundary layer development. 

2. Influence of wake generated from a square cylinder or hexagonal cylinder on 

plate boundary layer development. 

3. To study the influence of a rotationally oscillating circular cylinder on the 

boundary layer of a flat plate. 

4. To study the influence of a transversely oscillating circular cylinder on the 

boundary layer of a flat plate. 

5. The numerical computations can be carried out at higher Reynolds number that 

is for turbulent region. 

6. To extent this study for a sliding flat plate. 

7. To investigate the effect of incorporating the turbulence intensity (Tu) on the 

free stream. 
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Figure 5.2: Positions of elliptic cylinder of all test cases. 
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(a)                                                                (A) 
 
 
 

           
(b) (B) 
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Figure 5.3: Comparison of Instantaneous streamlines of the flow for Re2c=1000, and 
α = 00: (a,A) τ = 2.0  ; (b,B) τ = 5.0 ; (c,C) τ = 10.0. (a-c) Flow visualization by Badr, 
Danis and Kocabiyik and (A-C) Present Finite Element Computation. 
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Figure 5.4: Variation of the Drag Coefficients CD, CDF, and CDP withτ  at Re2c = 
1000 and α = 00. (a) results from Badr, Danis and Kocabiyik, (b) Present Finite 
Element Computation. 
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Figure 5.5: (a,A,b,B,c,C,d,D)                     (Continue…) 
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Figure 5.5: Comparison of Instantaneous streamlines of the flow for Re2c=1000, and 
α =300: (a,A) τ = 1.0; (b,B) τ = 2.0; (c,C) τ = 3.0; (d,D) τ = 4.0; (e,E) τ = 5.0; (f,F) τ = 
6.0; (g,G) τ = 7.0; (h,H) τ = 8.0. (a-h) Flow visualization by Badr, Danis and 
Kocabiyik and (A-H) Present Finite Element Computation. 
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Figure 5.6: Variation of the Drag Coefficients CD, CDF, and CDP withτ  at Re2c = 
1000 and α = 300. (a) results from Badr, Danis and Kocabiyik, (A) Present Finite 
Element Computation. 
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Figure 5.7: Variation of the Drag Coefficients CL, CLF, and CLP withτ  at Re2c = 1000 
and α = 300. (b) results from Badr, Danis and Kocabiyik, (B) Present Finite Element   
Computation.     
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Figure 5.8 (Continue…) 
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Figure 5.8: Instantaneous streamlines on the flow field for Re2c = 500, xc/2c = -3 
yc/2c = 1. 
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Figure 5.9 (Continue…) 
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Figure 5.9: Instantaneous streamlines on the flow field for Re2c=500, xc/2c = 0, 
yc/2c=1.  
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Figure 5.10 (Continue…) 
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Figure 5.10: Instantaneous streamlines on the flow field for Re2c=500, xc/2c = 3 yc/2c = 1.  
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Figure 5.11 (Continue…) 
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Figure 5.11: Instantaneous streamlines on the flow field for Re2c=500, xc/2c = 0 yc/2c 
= 0.75.  
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Figure 5.12 (Continue) 
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Figure 5.12: Instantaneous streamlines on the flow field for Re2c=800, xc/2c = -3 
yc/2c = 1.  
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Figure 5.13 (Continue…) 
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Figure 5.13: Instantaneous streamlines on the flow field for Re2c=800, xc/2c = 0 yc/2c 
= 1. 
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Figure 5.14 (Continue…) 
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Figure 5.14: Instantaneous streamlines on the flow field for Re2c=800, xc/2c = 3 yc/2c 
= 1. 
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Figure 5.15 (Continue…) 
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Figure 5.15: Instantaneous streamlines on the flow field for Re2c=800, xc/2c = 0 yc/2c 
= 0.75.  
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Figure 5.16 (Continue…) 
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Figure 5.16: Instantaneous streamlines on the flow field for Re2c=1000, xc/2c = -3 
yc/2c = 1. 
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Figure 5.17 (Continue…) 
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Figure 5.17: Instantaneous streamlines on the flow field for Re2c=1000, xc/2c = 0 
yc/2c = 1. 
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Figure 5.18 (Continue…) 
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Figure 5.18: Instantaneous streamlines on the flow field for Re2c=1000, xc/2c = 3 
yc/2c = 1. 
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Figure 5.19 (Continue…) 
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Figure 5.19: Instantaneous streamlines on the flow field for Re2c=1000, xc/2c = 0 
yc/2c = 0.75. 
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Figure 5.20 (Continue…) 
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Figure 5.20: Instantaneous stream lines for the flow field Re2c=500, xc/2c =-3 yc/2c = 
1 for circular cylinder. 
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Figure 5.21: Undisturbed profile of velocity distribution on different flat plate axial 
location, (a) Re = 500, (b) Re = 800, (c) Re = 1000.  

Xp (mm) 

Xp (mm) 

Xp (mm) 



 99

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
u/U

y 
(m

)

Re 500
Re 800
Re 1000

  

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
u/U

y 
(m

)

Re 500
Re 800
Re 1000

 
   (a)      (b) 
 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

u/U

y 
(m

)

Re 500
Re 800
Re 1000

  

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
u/U

y 
(m

)

Re 500
Re 800
Re 1000

 
   (c)      (d) 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
u/U

y 
(m

)

Re 500
Re 800
Re 1000

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
u/U

y 
(m

)

Re 500
Re 800
Re 1000

 
   (e)      (f) 
 
 
Figure 5.22: Variation of undisturbed profile of velocity distribution with respect to 
Reynolds number Re for different plate axial location, (a) Xp = 100mm, (b) Xp = 
200mm, (c) Xp = 300mm, (d) Xp = 400mm, (e) Xp = 500mm, (f) Xp = 600mm.  
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Figure 5.23: Instantaneous velocity distribution on different flat plate axial locations 
for τ = 800, xc/2c = -3 yc/2c = 1 (a) Re2c=500, (b) Re2c=800 (c) Re2c=1000. 
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Figure 5.24: Instantaneous velocity distribution on different flat plate axial locations 
for τ = 800, xc/2c = 0 yc/2c = 1 (a) Re2c=500, (b) Re2c=800, (c) Re2c=1000. 
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Figure 5.25: Instantaneous velocity distribution on different flat plate axial locations 
for τ = 800, xc/2c = 3 yc/2c = 1 (a) Re2c=500, (b) Re2c=800, (c) Re2c=1000. 
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Figure 5.26: Instantaneous velocity distribution on different flat plate axial locations 
for τ = 800, xc/2c = 0 yc/2c = 0.75, (a) Re2c=500, (b) Re2c=800, (c) Re2c=1000. 
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Figure 5.27: Variation of velocity profile with cylinder to plate relative positions for 
τ = 800, Re = 500, (a) Xp =100mm (b) Xp =200mm, (c) Xp =300mm, (d) Xp 
=400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.28: Variation of velocity profile with cylinder to plate relative positions for 
τ = 800, Re = 800, (a) Xp =100mm (b) Xp =200mm, (c) Xp =300mm, (d) Xp 
=400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.29: Variation of velocity profile with cylinder to plate relative positions for 
τ = 800, Re = 1000, (a) Xp =100mm (b) Xp =200mm, (c) Xp =300mm, (d) Xp 
=400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.30: Variation of velocity profile with Reynolds number Re at cylinder to 
plate relative positions xc/2c = -3  yc/2c = 1 for τ = 800 (a) Xp =100mm (b) Xp 
=200mm, (c) Xp =300mm, (d) Xp =400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.31: Variation of velocity profile with Reynolds number Re at cylinder to 
plate relative positions xc/2c = 0 yc/2c = 1 for τ = 800 (a) Xp =100mm (b) Xp 
=200mm, (c) Xp =300mm, (d) Xp =400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.32: Variation of velocity profile with Reynolds number Re at cylinder to 
plate relative positions xc/2c = 3 yc/2c = 1 for τ = 800 (a) Xp =100mm (b) Xp 
=200mm, (c) Xp =300mm, (d) Xp =400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.33: Variation of velocity profile with Reynolds number Re at cylinder to 
plate relative positions xc/2c = 3 yc/2c = 1 for τ = 800 (a) Xp =100mm (b) Xp 
=200mm, (c) Xp =300mm, (d) Xp =400mm, (e) Xp =500mm, (f) Xp =600mm. 
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Figure 5.34: Variation of velocity distribution on the flat plate for different types of 
cylinder located ahead of the plate for Re2c = 500, τ = 800, xc/2c = -3 yc = 1, (a) Xp = 
100mm, (b) Xp = 200mm, (c) Xp = 300mm, (d) Xp = 400mm, (e) Xp = 500mm, (f) 
Xp = 600mm. 
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 113

 τ = 510 
 

 τ = 511 
 

 τ = 512 
 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
u/U

y 
(m

)

τ = 505
τ = 506
τ = 507
τ = 508
τ = 509
τ = 510
τ = 511
τ = 512

 
 
Figure 5.35: Instantaneous streamlines for sequential time interval (τ = 505 to τ = 
512) and the corresponding velocity profiles of each time τ for Xp = 100 mm, Re2c = 
500, xc/2c = -3, yc/2c = 1.  
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Figure 5.36: Spatial variation of □-displacement thickness (δ), ∆-momentum thickness (θ) and 
○-shape factor (H) of undisturbed flow over the flat plate for (a,b) Re2c = 500, (c,d) Re2c = 800 
and (e,f) Re2c = 1000. 
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Figure 5.37: Comparison of displacement thickness (δ), momentum thickness (θ) and shape 
factor (H) for different Reynolds number of undisturbed flow over the flat plate, (a) 
displacement thickness (δ), (b) momentum thickness (θ) and (c) shape factor (H). 
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Figure 5.38: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 500, xc/2c = -3  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
 



 118

-2

0

2

4

6

8

10

12

538 543 548 553 558
τ

δ,
 θ

 (m
m

)
δ (mm)
θ (mm)

-200

-150

-100

-50

0

50

538 543 548 553 558

τ
H

 
(a) (b) 

 

0

2

4

6

8

10

12

14

538 543 548 553 558τ

δ,
 θ

 (m
m

) δ (mm)
θ (mm)

0
1

2
3

4
5

6
7

8

538 543 548 553 558τ

H

 
(c)      ` (d) 

 

0

2

4

6

8

10

12

14

16

538 543 548 553 558
τ

δ,
 θ

 (m
m

)

δ (mm)

θ (mm)

0

1

2

3

4

5

6

538 543 548 553 558τ

H

 
(e)       (f) 
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Figure 5.39: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 500, xc/2c = 0  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.40 (Continue…) 
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Figure 5.40: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 500, xc/2c = 3  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.41 (Continue…) 
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Figure 5.41: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 500, xc/2c = 0 yc/2c = 0.75, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.42: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 800, xc/2c = -3  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.43: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 800, xc/2c = 0  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.44: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 800, xc/2c = 3  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.45: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 800, xc/2c = 0  yc/2c = 0.75, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.46: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 1000, xc/2c = -3  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.47: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 1000, xc/2c = 0  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.48: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 1000, xc/2c = 3  yc/2c = 1, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.49: Temporal variation of □-displacement thickness (δ), ∆-momentum thickness (θ) 
and shape factor (H) for Re2c = 1000, xc/2c = 0  yc/2c = 0.75, (a,b) Xp =100mm, (c,d) Xp = 
200mm, (e,f) Xp =300mm, (g,h) Xp =400mm, (i,j) Xp =500mm, (k,l) Xp =600mm. 
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Figure 5.50: Average shape factor (Hav) variation with plate stream-wise locations for different 
Reynolds number for cylinder to plate relative position (a) xc/2c = -3  yc/2c = 1, (b) xc/2c = 0  
yc/2c = 1, (c) xc/2c = 3  yc/2c = 1, (d) xc/2c = 0  yc/2c = 1. 
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Figure 5.51: Average shape factor (Hav) variation with plate stream-wise locations at different 
cylinder to plate relative position. for different Reynolds number (a) Re2c = 500, (b) Re2c = 
800, .(c) Re2c=1000. 
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Figure 5.52: Figure: Hrms variation with plate stream-wise locations at different cylinder to 
plate relative position. for different Reynolds number (a) Re2c = 500, (b) Re2c = 800, .(c) 
Re2c=1000. 
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Figure 5.53: Variation of skin friction coefficient (Cf) with different plate location for τ = 500 
□-Re2c 500,  ∆-Re2c 800, ○-Re2c 1000, (a) undisturbed flow case and; and also for different 
elliptic cylinder to plate location, (b) xc/2c = -3  yc/2c = 1, (c) xc/2c  = 0  yc/2c = 1, (d) xc/2c = 
3  yc/2c = 1, (e) xc/2c = 0  yc/2c = 0.75. 
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Figure 5.54: Variation of skin friction with different plate axial location for τ = 500, at 
different elliptic cylinder to plate relative position, for (a) Re2c = 500, (b) Re2c = 800, (c) Re2c 
= 1000. 
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Figure 5.55: Variation of Cf with respect to Reynolds number at different cylinder to flat plate 
relative position, (a) for Cf average, and (b) Cf rms. 
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Figure 5.56: Variation of skin friction with the plate axial location for undisturbed flow, 
disturbed flow with elliptic cylinder and with circular cylinder for τ = 500 Re2c=500 and xc2c 
= -3 yc/2c = 1. 
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