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ABSTRACT r

This thesis addresses a production inventory model to maximize the expected average

profit considering fuzzines' of random demand and inventory holding cost along with

reliability of the production process. The classical inventory control models a,sume thm

products are produced by perfectly reliable production pwces, with a fixed set-up cost.

While the reliabil ity of the production proccs; cannol he increased \\,i(hout a price, its sel-

up cost can be reduced with investmcPI in flexibility and reliability improvement. In thi~

thesis, a production inventory model with reliability of production process consideration

is developed in an imprecise and uncertain mixed fuzlY environment. The goal of this

thesis is to introduce demand and inventory holding cost as a fuzzy random variable in an

imperfect production process. Hcrc. set.up cost and reliability of the production proce~~

along with production period arc decision var;ables and expected average profit is the

objective function which is to be maximized. Expected average profit 01.the model is a

-fuzzy quantity due to fuzzy-randomne<;s of the demand and inventory holding cost and its

graded mean integration value (GM!V) is optimized using unconstraint signomlal

geometric progr ••mmlng to determine optimal deci~i()n for thc decision maker. i\

numerical example has been presented to explain thc model.

VI!
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NOMENCLATURE

K = production rate per day (constant).

D= dcmand per day (fuzzy random in nature).

P = production cost per unit timc,

h= holding cost per unit quantity pcr day (fuzzy nmdom in nature).

Co •• set-up cost per cyde (a decision variable).

S, = selling price of fresh units,

S,= seliing price of defective units.

r •• the reliability of the production process (a decision variable).

t = duration of eaeh cycle which is fuzzy random in nature due to fuzzy-randomness'

of D.

T, = production period (a decision variable),

Y(Co,r)= total co,t of interest and depreciation for a production process per production

cycle,

F(Co.r. T,)= total profit function of Co,r, T,.

q{t)= inventory levei at time t.

Z= profit function which is fuzzy random in nalur<::due 10 fuzzy.randomness of D.
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CHAPTER I
INTRODUCTION

Inventory control is the process of managing the timing and the quantities of goods to be

ordered and stocked, so that demands can be met satisfactorily and economically.

Inventory conlrol policies are decisIon rules that focus on the trade-offbelween the costs

and benefits of alternative solutions to questions of when and how much to order for each

different type of item. Suece~s of inventory control depends on some important issues i.e.

uncertainty about the size offuture demands, uncertainty oflnventory cost, uncertainty of

lead timc, reliability or thc production process Cleo Inventory is thc costliest operating

expense for a manufacturer and properly managing that function i, crucial to optimi:r,ing

product}vity and profitability. As the profit of an organization dep~nd, on production

inventory, it i~ important to optimiy,,"the production invenlory problem.

1.1 Rationale of the study

_In the global competitive market, manufacturers must maintain optimum quantity of

inventory (0 maximize profit and efficiency of supply chain. Companies aim to maintain

the required amount of inventory at right place and at right lime with right cost. If

material is not available precisely, the ~upply chain may incur expen,ive repercussions

and production downtime. In thi~ r~gard, oplimi7.atiotl of production inventory model and

finding optimum amount of inventof) level has paid extensive aUcntion among th~

researchers. Considering some realistic factors such as fuzzy random demand, fuzzy

inventory holding cost and reliability of the production system a production jnv~ntory

model is developed to maximize the expected av~rag~ profit.

1.2 Objectives ofthe study

The obj~Clive" of this thesis work are:

I. To incorporate uncertainty in production inventory model by integrating

fuzzy random variables.

1'- To develop a mathematical model of production inventory consIdering fuzzy

random demand and inventory cost with reliability of the production process.



Ill. To optimize the production inventory model by maximizing total profit and

set-up cost. reliability of the production process along with the production

period are as the decision variables.

This thesis, however, presents possible clues in the development of production inventory

model by providing mathematical results 10 help on under~tanding, formul31ion and

analysis of such mathematical inventory model.

1.3 Outline of methodology

The research work is theoretical in nature. A mathemalieal inventory model is developed

considering some practical situations such as fuuy random demand, fuay invcntory

holding cost and reliability orthe production proee:.s, The production inventory model is

composed of some mathcmatical equations which arc used to determine the numcrical

values of different decision variable, (set -up cost per cycle, reliability of the production

process, dur31ion of time until lhe production is being held and maximum profit). The

methodology is as follows:

J. A profit function is developed considering selling pricc of fresh units, selling

priec of defective units, production cost. holding COSI,set-up cost and cost of

interest and depreci31ion cost

11. Expected avcragc profit and graded mcan integrated value (GMIV) of

expecled avcrage profit are determined and optimized.

]I], Mathematical equations are obtained from optimal fe""ibie solutions

considering some important factor, (fu~~y random demand. fuzzy inventory

holding cost and reliability of the production process) which are present in

real life production inventory problem.

Iv. Equations for set-up COSIpcr cycle, reliability of thc production process and

duration of lime until production is being hcld arc developed for this

production inventory problem and graded mean intcgration value (GMIV) of

total profit 's optimized u"!,g unconstraint signomial geometric

programmlng_

v. A numerlcal example is considered to illu,trate and explain the production

inventory model.

2



CHAPTER II
LITERATURE REVIEW

In the production inventory mathematical modeling, the problems are complex and multi

objective~ and theoretical in nature. That is, there exist scveral criteria that must be takcn

into consideration whcn fonnulating and solving the model. !l is common that some or all

of thcse criteria are confljding, pcrhaps incommensurable and set by more than one

decision maker. Among these criteria there arc for example: demand, inventory holding

costs, set-up costs, reliability of the production proce~s, imperfection and impreciseness

oflhe production process etc. Traditionally, these problems have been tackled as single

objective optimization problems after combining the multiple criteria into single scalar

value. On the other hand, inherent eomple;>,.ityand uncertainty of some variables make

the inventory problem complicated. This impose~ a pressure upon the researcher to

implement an appropriate and realistic mathematical modeling of the production

inventory problem.

2.1 Literature review

Some research papers have been ~tudied to understand the background of the study.

Many factors have been considered to develop the previous production inventory models.

Different methodologies have been followed to develop and solve models. In this

section, some research papers have been studied 10 understand the factors and

methodologies considered by researeher~.

Andersson and Melchiors (2001) developed a one warehouse several retailers' inventory

system assuming lost sales at the retaikrs. Using the well-known METRIC-

approximation as a framework, they pre:;ented a heuristic ror finding cost elTective base-

stock policics. Alm",t all multi-echelon inventory models assume that demand not

satislicd immediately can be backordered. 111some situatiol1~ tbi, a;sumption may not be

realistic. For example, it may be more representative to model ,tock outs as lost sales

when the retailer.:; are in a competitive markei and customer. can easily turn to another

firm when purchasing the good. rhe research dealing "ith multi-echelon inventory

]

,
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modeb has focused mainly on the backorder case, and the number of models dealing with

lost sales is rather limited. The main rew;on for this is the added complexity of the lost

sales case. The researchers considered a two-echelon inventory system with one central

warehouse and an arhitrary number of retailers. The retailers face customer demand and

replenish their stocks from the central warehouse. The warehouse, In turn, replenishes its

,tock from an outside supplier. In the paper the re>earehers analyzed a model for a one

warehouse, multiple retailer,' Inventory system. Demand occurs only at the retailers and

follows independent Poisson processes. All lead times arc assumed [0 be constant. 1\11

installations use (S-l, S)-polieles with continuous review, It Is aswmed that backlogging

of customer demand is not allowed. '1he analysis departs in one of the most widely

known multi-echelon inventory models, the METRIC-model. They demonstrated how the

METRIC-model can be modified to handle the lost sales case. I'heir approach gives an

approximate model which Is quite simple and efficient from a computational point of

view. The Inventory system under consideration conslsb of one central warehouse and an

arbitrary number of retailers. I'he retailers face Poisson customer demand, No

backlogging is allowed at the retailers. Consequently, the customers that arrive to a

retailer that is out of stock will become lost ,ales for the retailer. When stock outs occur

at the warehouse, all demands from the retailers arc fully backlogged and the baekorders

are filled according to a FIFO-policy. The transportation time between the warehouse and

a given retailer Is tlssumed to be constant as well as the transportation time from the

external supplier to the warehouse. The cost of replenishment is assumed to be zero or

negligible compared to the holding and stock out costs. The external supplier Is assumed

to have infinite capacity, which means that the replenishment lead time for the central

warehouse is constant. A heuristic mcthod for evaluation and optimization of (S-l, S)-

policies for one warehousc, multiple rctailers inventory system is presented, The

evaluation technique uSe~ the well-known METRIC-approximation as a framework.

From a computational point of view thc presented technique is very efficient and simple.

The original backorder METRIC-model Is one of thc most widely used multi-echelon,

inventory models. The lost sales generalization ofthis model makcs the policy evaluation

a bit more complex, since an itemtive procedure is needed to obtain the co~t. Stili, the

4



model is nlther simple and easy to implement. Moreover, in many practical situation; lost

sales is a reasonable way to model stock outs.

Hsieh (2002) proposed two fozzy production invcntory models with fUl."yparameters for

crisp production quantity, or for fuzzy production quantity. The fl.lZzytotal production

inventory costs of these models under the fuzzy arithmetical operations of function

principle are prop<Jsed.The final purpose is to find optimal solutions of these models by

using graded mean integration representation method for defuzzifing fuzzy, total

production inventory cost, and by using extension of the Lagrangean mcthod for solving

inequality constrain problem. Furthermore, he founds that the optimal solutions are all

crisp real numbers. In addition, whcn the fuuy parameters (fuzzy inventory cost, fuay

demand, fuzzy setup cost, fuzzy demand rate, and fuzzy production rate) are all crisp real

numbers, the optimal solutions of proposcd models can be specified to meet classical

production inventory models. In the real world. the parametcrs and variables in inventory

model may be almost uncertain datum. Graded mcan integration representation method is

'used to defuzzify the trapezoidal fuuy total production inventory cost. In the fuzzy

production inventory model for crisp production quantity, the first derivative of fuay

total production inventory cost is used to solve the optimal production quantity_

Furthermore, the algorithm of extension of the Lagrangean method is used to solve

inequality constrains in fuzzy production inventory model for funy production quantity.

Lin et al. (2003) deals with inventory models that unilY the inventory problems of raw

materials and finished products for a single product imperfect manufacturing systcm. The

products are manufacturcd in batchcs, and raw matcrials are jointly replenished from

outside suppliers. The system i~assumed to del~riorate during lhe production process. As

a result, some proportion of dcfective items is produced. The defective items are

rcworked at some cost either before or after a ~ale. Pcriodic inspections at equally spaced

limes and restorations of lhc produclion process are used to operatc the syst~m. The'-

objective is to minimize the expeclcd total co~l for the system. A sotution procedure is

developed to find a ncar optimal solutioll for thc basic model. The analysis is extended to

various cases where the defect rate is a function of the setup cost, the proportion of

defective items is not constant. or the inventory ~}slem has a limited capacity for raw

5



matcrials. Production of a singlc product produced in batehc> on a single facility or

production process is eonsidcred in this study. Authors assumed that m the beginning of

each production run the production process is in an "in-control" state and producing

items that conform to the specification. Aftcr a period of time, the production process

deteriorates, As a result, the process shifts from the in-control state to the out-of-control

slate in which a certain percentage of items produced are non-conforming. The imperfect

production process and the raw materials are considered which arc required for each

production run. After the process is shined from the in-control state to thc out-of-control

slate, the slate changc will be discovered by inspection and followed by some restorative

work. The inspection and restoration times are assumed to be negligible. Allhough this

assumption can be relaxed, il is quite plausihle, given the eurrcnt advances in the

technologies used for inspection. Morcover, the lise of modular designs in complex

production syslems cnables speedy repair of failed machines and restoralions. The

models are generalizcd to considcr the case where the shift oflhe production process can

be detected and corrected during a production run. The elapsed time until the process

shifts is a random variahle and assumed to have an exponential distribution witb mean

lip. It is assumed that the percentage of deteclives, p, is a constant througbout the

duration when tbe production process is in an out-ol:eontrol slale. Furthermore, the

defect rate, p, is assumed to he independent oftbe setup cost. In the development of the

basic model, it is IISSUmedthm once the production process is out of control, the

percentage of defective items produced (p) remains constant lhroughout the entire eyele.

However, this assumption may not be reali,lic. It is conceivable that as the production

system detcriorates over time, the percentage of defeetivc items produced may increasc

accordingly. In this seclion, the basic model is' extended to incorporate two dynamic

cases: the production system delerioratcs linearly aticr the system is in the out-of-control

slate, and the production system detcriorale, exponentially al1er the process is in the out-

of-control state. The integrated EPQ models dcal with the joint effect, of maintcnance

policy by inspection and the production-im'enlory systcm, ineluding raw materials on the

cost of operating a single lacility. Periodic inspection" and cqually _'paced inspection

times arc adopted to develop the basic model and to delerminc the relationship of

reworking cost and warranty cost. A solution procedure is developed to obtain a near

6



optimal production run time for the fini,hcd product. economic ordering quantity for each

raw material, and an inspecti(ln schedule. Such a production run time is found to be

shorter than that of the perfect production system. The time decreases as the number of

raw materials or the warranty cost Jncreasc~. The model is extended for the situation

where bolh the mean elapsed time of the shift and the percentage of defective items

produced is a function of lhe production setup cost. The analysis is further extended to

incorporate cases where the process will deteriorate linearly or exponentially after a

certain time. Finally, the model is directed toward a ca,e that has a limited capacity for

raw materials.

Cal el al. (2004) ,ludied a single-period two-product invenlory model wilh stochastic

demands and downward substitulion. Optimal order quantities provided some properties

are represented in Cal et al. (2004) study. They considered lhat there are two products

and two demand classes. The dO\vn1kardsubstitution means that, demands from class 2

can be satisfied using stocks of product I, but stocks of product 2 cannot be used to

'satisfy demands from class I. This 5ubstitution structure widcly exists in real life, such as

the product with higher capabililies or more functions can satisfy the demands for the

product with lower capabilities or less funclions. The researchers assumed that the

demands for each product are stochastic and the retailer just places order, before the

demands are realized for once. 'lhe order, holding, penalty. and salvage costs are

proportional to the quantily, and the revenue earned is also linear in the quantity sold.

The objective is to decide lhe order quantity for each product. They developed a general

profit maximization model for the ,ingle-period two-product substitution problem,

obtained the oplimal condition for the order quantities, and some properties with respect

to the optimal order quantities. In the mathematical model, the re~earehers studied a

single-period two-product inventory model with stochastic demands, proporlional

revenues and cost" downward ~ubstitution. They developed a general profil

mllXimization m(ldel and show lhat it is concave and sub modular, and then obtained the.

optimal conditi(m for the order quantities. For the optimal quantities, they studied the

impacl of the parameters, and get some properties.

7



Generally, production quality is not always perfec!. II is usually depend on lhe operating

state ofa production process which may ~hift from an in-<,omrol state to an oul-of-eontrol

state due to occurrence of some assignable causers). When a signal for an assignable

cause is triggered, a search is iniliated and is tenninated upon finding lhe cause within a

pre-specified target time. The process i" lhen brought back to an in-<,omrol state by

repair. However, iflhe assignable cause is nOl discovered within the pre-specified time,

produclion is allowed 10 continue until the next sampling or warning, whichever occurs

first. In this case, either the alarm is considered to be raise with a probability of Type!

error, or the assignable cause has not been eliminaled with a probability of Type 11error.

In the latter case, the process produces products in an out-of-conlrol state until the nexl

sampling or warning, whichever occurs fir,!. However, this stale does nO! indicale any

severe damage 10 lhe system. Traditionally, X and/or R conlrol charts have been used to

monitor the stabilily of a produelion proce,s. An X _chart is used to control process mean

and an R chart to control process variance. II is possible both the process mean and

process variance 10 vary simultaneously during a production cycle. Under these

conditions, a generalized economic modcl for the joint determinalion of production

quantity, an inspection schedule, and lhe design of lhe X and R conlrol charts are

developed by Rahim (2004). A direct search optimization method is used to derennine

the oplimal decision variables of the economic model. This research makes an

assumption that there is a pre-~peejjjed time to find an assignable cause when there is an

out"of-eontrol signal. If the source of the a,signable cause cannot be detected within a

pre_specified time, the process is allowed to continue until the next warning signal is

triggered. This leads to Type I or Type II errors depending on the actual existence or non-

existence of an error, The time for searehillg an assignable cause is considered to be all

additional decision variable. This assumption may Invite some criticism and deserves

some explanation and/or ju~tifieation. Some researchers might interpret it a,

contradicting the modern view ;n qoality management that quality is lhe number one

priority or as supportIng the traditional concept of quantity over quality. In other word"

time is con,idered to be more important thall quality: hence, time is not to be wasted in

fixing a problem. The implication of this assumption is that, in the long run, reSOUrees

may be wasted in producing inferior goods. Customers may end up receiving poor quality

8
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prooucts that should have bccn detected in the proce8S. Loss of the customer's goodwill

may be incurred, and the manL,faeturer will eventual1>' lose competitiveness. From the

numerical studies of this model, the optimal value of Type II error lies, approximately,

between 0.01 and 0.05. That is. the probability of catching the shift if there is one, lies

between 0.95 and 0.99. This indicates that if the assignable cause occurs and is not

detected immediately, it will be detected, on a~erage, after one sampling interval.

Marketing researchers and practitione'" have long recognized the demand of many retail

items is proportional to the amount of inventory displayed. Recently, t\\'O distinct types of

inventory control models reflecting this relationship have appeared in the literature.

m()dels in which the demand rate ()f an itcm is a function ofthc initial inventory level and

tho:,e in which it i, depcndcnt on the instantaneou:, inventory level. Urban (2005)

presented a eomprehen:,ive overview of this literature and demonstratc the equivalence of

the two types of models through the use of a simple, periodic-review model. An

alternative approach to sensitivity analysi, for invcntory models with inventory-Ievel-

'dependent demand is also presented. 'j he operations managemenliopcrations research

literature has recently focused considerable attenti()n on inventory models for products

exhibiting an inventory-level-dependent demand rate. In this paper. comprehensive

review of this literature is conducted, di~tinguishing between Type I modeb in which the

demand rate of an item is a function 01"thc initial inventory level and Type II models in

which it is dependent on the instantaneous inventory levcl. A periodic-review model is

then developed, first solving the gcneral Type I problem, then iilu,trating how the more

complex, Type J1model can be wived. Although the literature has evolved into these two

distinct streams of researeh, the autho'" shO\\ithat in situations in which the costs arc not

dependent on the inventory Icvel throughout the period, the Type IJ model can bc

represented by an equivalent Typc I model. The two types of models are not identical in

all situations; for example, an equi"alent Type I model (as presented) would not be

:,uitablc for a Type II modcl using average inventory levels for holding costs or average

backorder levels for shortage costs.

Chang et al. (2006) considered a mixed inventory model involving variable lead time

with backorders and lost sales. They first l"uz7ifythe random lead-time demand to be a

9
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fuzzy random variable and obtain the total cost in the fuuy sense. Then. they further

funify the total demand to he the triangular fuzzy numher and derive the fuzzy total cost.

By the centroid method of defu'l..zification, lhey derive lhe estimate of total cost in lhe

fuzzy sense, Also, they find the optimal solution for order quantily and lead time in the

fuzzy sense such that the total cost has a minimum value. The issue of lcad-time

reduction has received a gre31 dcal of aUcntion in the field of production/inventory

management. Lead time usually consists oftbe following components: order preparation,

order lransit, supplier lead time, delivery time and setup time. Although most of the

literature dealing with inventory problems viewed lead time as an uncontrollable variable,

however, in some practical situations, lead time can be reduced by controlling some or all

of its components. The benefits associated with efforts to reduce lead time, such as lower

thc saf~ty stock, reduce the loss cau~ed by stock out, increase the service level to the

cuslomcr, and gain the competilive advantages in business, can be clearly perceived

through the Japanese successful experiences of l,sing Just-in-time (JrJ) production. The

previous lead-time reduction modcls arc based on the conlinuous review inventory

systems in which lhe uncertainty of dcmand during lead lime is tackled from the

traditional probability theory and the annual average demand is assessed by a crisp value.

However, various types of uncertainlies and imprecision including randomness and

fuzziness are inherent in real inventory environments, In the article; thc authors address

the issue of lead-time reduclion under such circumstances. Specifically, lhey attempt to

develop a fuzzy inventory model by considering the fuzzines~ and randomness for lead

time demand, which is represenled by a fuuy random variahle. Also, for the annual

average demand, due to the fact thaI il may fluduate a little in an unstable environment

and is difficult 1Oasses~ by a crisp value, they consider it as the fuzzy number, The

purpose of this article is to recast Chang et al.'s miXlure inventory model involving

variable lead time with backorders and lost sales by Ii.,rlher considering the fuzziness of

lead-time dcmand and annual avemge demand. The authors aim at providing an

alternative approach of modeling uncertainty that may appear in real situations; whereas

they do not altempt to establish the superiority of proposing a new modcl to reduce more

inventory cost than previous one. Authors ai,,, consider a mixture inventory model and

address the issue of lead-lime reduction in the fl'7,q environ menIs. Building upon Chang
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et al.'s (2006) model in which the annual average demand is a crisp value and the random

lead-time demand is normally distributed, the authors first fuzzify lead time demand to be

a fuzzy random variable and derive the total expected annual cost in the fuzzy sense.

Then, they further fuzzif}' demand to be the triangular fuuy number and obtain the fuuy

total cost. After defuzzification, they derive the estimate of total expeeled annual cost in

lhe fuzzy sense and obtain the corresponding optimal order quantity and lead time.

An inventory model for deteriorating items with stock.dependent consumption rate and

shortages under inflation and time diseounting over a finite planning horizon is derived

by Hou (2006). The total co~t function is c(>nvex. With the convexity, a simple solution

algorithm is presented to determine the optimal order quantity and the optimal interval of

the total cost functIon. A sensitivity analysis of the optimal solution with respect to the

parameters of the system is carrIed out. This model incorporales some realistic features

that are likely to be associated with some kinds of inventory. First, deterioration over

time Is a natural feature for goods. Secondly, occurrence of shortages in inventory is a

natural phenomenon in real situations. Thirdly, it ha, been observed in supermarkets thai

the demand is usually influenced by lhc amount of stock displayed on the shelves, i.e.,

the demand rate may go up or down if the on-hand inventory level increases or decreases.

Fourthly, the DCF approach permits a proper recognition of the financial implication of

the opportunity cost in inventory analysis. Next, since the inventory syslCms always need

to invest large capital to purehase inventories, which it is highly correlated to the return

of investment. Hence, it is important to consider the effects of inflation and the time

value of money in formulating inventory replenishment policy. In keeping with this

reality, these factors an: incorporated into the present model. Thc model is very useful in

the retail business. It can bc uscd for electronic components, fashionable clothes,

domestic goods and other pro<Juctswhich are more likely with the characteristics abovc.

Here, it has been given an analytic' fonnulation of the problem on the frame,vork

described abovc and have presented an optimal solution procedure to lind optimal

replcnishment policy. From this research results. it is also verified that thc effects of

inflation and the time value of money in formulating repleni,hment policy result III

smaller discounted total cost than a policy which docs ignore the effects of these factors.
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Finally, the sensitivity of the solution to changes in the values of di fferent parameters has

been discussed. it is seen that changes in the consumption ralc, the ordering cost and

shortage cost iead to significant elTects on the order quantity. The total CoMis sensitive to

changcs in the consumption ralc paramcter, the unit cost and net discount ralCof inflation

(R). Moreovcr, speciai cases that influence the optimal total cost are also discussed. It is

obviously observed that the total cost increase; considerably with the case of the inflation

and time vaiuc of money arc not considered, that is, net discount ralc of inflation is 7.ero.

Islam and Roy (2006) developed an cconomic production quantity (F:PQ) model with

flcxibi lity and reliability consideration of production process and demand dependent unit

production cost. The model has involved one storage space constraint. 11is formulated in

fuzzy environment introducing fuzziness in nbjcctive and constraint goals, coefficient

and indexes of objective function and constnlinl. The model is proposed to by fulZY

geometric programming technique. The determination of the most cost-ell"ective

production quantity' is commonly known as classical cconomic production quantity

model. Over the last three decades tremendous amount of research enor! has been

expanded on lhis topic_ The inventol) problem is controlled by some constraints. Here

one constraint is capacity constraint. But, in real life problems, it is almost impossible to

predict the restricted rcsource amount precisely. Decision maker may change it within

some limits as per the demand of the situation. Hence it may be assumed uncertain in

non-stochastic sense but fuay in nature. The researchers have rormulatcd a fuzzy

economic production quantity (FEPQ) model with flexibility and reliability consideration

of production process and demand dependent unit production co;t under the storage space

constraint. Shortages are not permitted in this model.

Law and Wee (2006) developed an inventory model of an integrated production-

inventory modei from the perspectiv~s of both the manufacturer and the retailer. They

considered both ameliorating and deteriorating effects taking account of multiple

deliveries, partial baekorderillg and time discounting. The amelioration and deterioration

are assumed to follow the Weihllil distribution. The discounted cash flow and

optimization technique are used to dcrive the optimal solution. This model is particularly

useful for items that ameliorate and deteriorate at the same time. Amelioration occurs
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when the value or utility of a product inerea~e, over time. Weibull ameliorating rates

with decreasing function with time and Weibull deteriorating rates with increasing

function with time are used in this model. Weibull distribution is used to represent the

product in stock as it deteriorates with time, The deterioration rate is assumed to increase

with age; that is, the longer the items remained unused, and the higher the deteriorating

rate. Partial backordering is considered for a lair competitive market because some

customers arc impatient, and may find an alternative source whcn there is a shortage. The

main contribution of the model is to incorporate manufacturer-retail cooperation and

consider the factors of amelioration, deterioration, Weibull distribution, multiple

deliveries, partial backordering and time discounting simultaneously. They applied the

disc\lUnted cash flow (OCF) approach and optimization technique to determine the

optimal production and replenishment. policy. The model considered deterioration,

amelioration, multiple deliveries, partial backordering and time discounting. The model is

particularly useful for Hems that ameliorate and deteriorate at the same time. The

discounted cash flow and optimization technique arc u,ed to derive the optimal solution.

Mohcbbi (2006) considered that a production-inventory system with limited storage

capacity in which demand for a single item arises according to a compound Poisson

stream whose occurrence rate and random batch si~es at any point in time depend on the

state of a random (external) environment, and production occurs continuously and

uniformiy over time at a rate determined b} the slate of another independent and

randomly changing (internal) environment. It is assumed that each of the two randomly

changing environments is represented b} a continuous-time homogeneous Markov chain

with a discrete state space. The facility starts production as soon as the inventory level

drops below the storage limit and the production continues until the inventory level

reaches the storage full capacity. Assuming that the shortages are Io~t, the author has

derived the steady-statc distributioh of the inventory level which is used to fonnulate

some measures of common interest tcgarding the performance of such systems. The

author has also formulated an expeeted-net-revenuc maximization problem and providcs

some numcrical reSuUS.In the production-inventory model, in which, the production and

demand rates are modulated by twO independent continuous-timc homogeneous Markov
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chains. For stochastic piccewise lincar prodoction and compound Poisson demands, the

author has applied level-crossing theory to derive the limiting distribution of the

inventory level in a limited capacity production-storage system with lost sales. A number

of important performance measures including an cxpected revenlle acctlmulation rate

fllnction were fonnulated and some numerical results in terms of sensitivity analysis and

optimality of the system parameters were presented. These results clearly demonstrate the

critical impact of the variability induced hy randomly changing environments on the

system performance.

Boute et al. (2007) considered a two-echelon supply chain: a single retailer holds a

finished goods inventory to meet clIstomer demand, and a single manufacturer produces

the retailer's replenishment orders on a make-to-order basis. In the selling the retailer's

order decision has a direct impact on the manulaeturer's prodlletion. It is a well known

phenomenon that inventory control policies at the retailer level often propagate customer

demand variability towards the manufacturer, sometimes even in an amplified form

_(known as the bullwhip effect). The manufacturer, however, prefers to smooth

production, and thus he prefers a smooth order pallern from the retailer. At first sight a

decrease in order variability comes at the cost of an increased varianec of the retailer's

inventory levels, innating the retailcr's safety stock requirements. However, integrating

the impact of the retailer's order decision on the manu facturer's production leads to new

insights. i\ ;mooth order pattern generates shorter and less variable

(production/replenishment) lead times, introducing a compensating effect on the retailer's

safety stock. They show that by including the impact of the ordcr decision on lead times,

lhe order pattern can be smoothed to a considerable exlent without increasing stock

ievels.

Dutta el al. (2007) developed a continuous reView inventory system where the annuai

average demand is treated as a fuzzy random variable. Also, the lead-lime demand is

assessed by a triangular ftlzzy number. Since the annual demand is a fuzzy random

variahle, the associated tolal cost funclion is also a fuzzy random variable. As a result, the

total expected cost becomes a fllzzy quantity. They find the optimal order quantity along
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with the rcorder point so that the associated total cost is minimum. Using possibilislic

mean value of a fuuy number the luzzy expected cost has been minimized here.

Atici and Uysal (2008) proposed to invcstigate the optimal production and inventory

paths of HMMS type models (proposed by Holt, Modigliani, Muth and Simon) on

complex time domains. Timc scale calculus which is a rapidly growing theory is a main

tool for solving and for analyzing the modeL In the case, one can use the rcsults of the

qualitative analysis in time scales, who,e development is in progrcss. A flexible and

capable modeling technique is con,idcred here.

Chen and Chang (2008) introduced a funy economic production quantity (FEPQ) model

with detCetive productions that cannot be repaired. Authors considet a fuzzy opportunity

cost and trapezoidal linzy eo,t, under crisp production quantity or fuzzy production

quantity in order to extend the traditional production inventory model to the fuzzy

environment. Authors use Function Principle as arithmetical operations of fuzzy total

. production inventory cost (FTPIC). and use the Graded Mean Integration Representation

method to defuailY the fuzzy total production and inventory cost. Then they usc the

Kuhn-T",:kcr method to find the optimal economic production quantity of the fuuy

production inventory model.

Lin (2008) developed periodic review inventory model with variable lead time by

considering the fuzziness of expected demand shortage and backorder rate. Author

fU7zified the expected shortage quantity at the end of cyele and the backorder (or lost

sales) rate, and then obtained the fULlY toral expected annual cost. Using the signed

distance method to defunify, the estimate "ftotal expected annual cost in the fuuy sense

is dcrived. For the proposed model, author obtained the optimal review period and

optimal lead time in the fuzzy sense so that the total expected annual cost in the fuzzy

sense has a minimum value. For a periodic review inventory control system with variable

lead time, Ouyang and Chuang (2001) have treated the review period and lead time as'

decision variables in crisp set, This paper explores a similar inventory model in which n\ll

only the expected demand shortage is fuzzified a, a fuzzy random variable in the fuzzy

sense, but the lost sale,>rate is also considered to be a fuzzy number. The researcher then
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obtained the total expected annual cost in the fuzzy ~ense. Here, allthor used signed

distance method to defu1J.iry the fuzzy total expected annual cost and obtain an estimale

of the total expected annual cost in the fuzzy sense.

Mohebbi and Hao (2008) assumed thai an unreliable supplier in a single-item stochastic

inventory system alternates randomly between IWOpossible states (i.e" available and

unavailable), foliowing a two-state continuous-time homogeneous Markov chain. For a

compound Poisson stream of demands and Edang lead limes, their model considers the

scenario where the processing of the outstanding order (if any) is interrupted at every

supplier's transition epoch from the available to the unavailable state, and is restarted

from the outset upon the supplier'" regaining its available state. They derived the

stationary distribution ofthe on-hand inventory under a continuous-review policy. The

model takes an explicit neW account of the impact of supplier's availability on the

replenishment lead time and therefore, e"pands the analytical treatment of supply

interruption to a broader extent. The primary objective in modeling the system is to

. derive the stationary distribution of the inventory level as an enabler for establishing

variolls perfonnanee meaSlJ[es. The authors utilize a level-crossing approach to

accomplish this objective and use the resulting distribution to obtain the exact functional

fonn of the long-run expected total cost (i.e. the sum of ordering, holding and shortage

costs) per unit time of operating this inventory system.

Maiti (2008) developed multi-item in~entory model with stock-dependent demand and

two-storage facilities is developed in fll7J_yenvironment (purchase cost, investment

amount and storehouse capacity are imprecise) lInder inflation and time value of money.

10int replenishment and simultaneous transfer of items from one "arehouse to another is

proposed using basic period (BP) policy_ As some parameters are fuzzy in nature,

objective (average profit) funetion~ @,Swell us some constraints are imprecisc in nature.

Model is formulated as to optimiL.Cthc p""ibil ity/neces,ity measure or the fuzzy goal of

the objective runetion and constraints arc satisfied with some pre-defined necessity. A

genetic algorithm (GAl is developed with roulette wheel selection, binary crossover and

mutation and is used to solve the model ".hen the equivalent crisp form of the model is

availablc, In other cases fuzzy simulation process is proposed to measure
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possibility/necessity of the fuzzy goal as well as to check the con,tmints of the problem

and finally the model is solved using fuzzy simulation based genetic algorithm (FSGA).

Also a simulation approach is proposed to determine this possibility/ necessity measure in

complex fuzzy environment.

Panda et a!. (2008) developed a mathematical model for a single period multi-product

manufacturing systcm of stochastically imperfecl items with conlinuous ;loehastie

demand under budget and shortage constraints. After caieulating expeewd profit in

general form in terms of density lunctions of the demand and percentage of

imperfectness, parlicular expre~sions for tho,e density functlons are considered. Here the

conslraints are of three types: both are stocha;tic, one stochaslic and other one imprecise

(fuzzy) and both imprecise. The stochastic conslraints have been rcprcsented by chance

constraints and fuz7.y constraints in the form 01' possibility/necessity constraints.

Stochastic and fuzzy constraints are transformed to equivalent deterministic ones using

'here and now' approach and fuzzy relalions respectively. The determinist1c problems are

soived using a non-linear optimiz<ttion technique-generaliLed reduced gradient meth<Xl.

The authors propose an e:.tension to economic production lot size modcl for imperfect

items in which the production rate ls assumed to be finite and demand ratc is stochastic

(continuous) under uncertaln budgct and shortage constralnts.

Rezaei and Davoodi(2008) developed a dcterministic inventory modei considering the

scenario of supply chain with multiple prodllctS and mullipJc supplier;, ail of which have

limitcd capacity. They also consldered the situation of imperfect quality. The researchers

introduced imperfect items and storage capacity in the lot sizing with supplier selection

problem and formulate the problem as a mlxed integer programming model. Then the

model is solved wilh a genetic algorithm. U~ing classical optimization methods the single

optimal solution can bc obtalned b.ul It is true whcn the problem is small. Some higher

levei information (such as social and culluml consideration) could not be included in lhe

model using classical optimization methods. Although these solutions (obtained via GA)

are not necessarily optimal and arc almost near.optimal, lt can be possible for declsion

maker to select one of them that matches with the real world condition.
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Maiti et aL (2008) provided t\\lO defuzzification techniques for two fuzzy inventory

models using extension principle and duality theory of non-linear programming and

interval ari!hmetie. An EOQ model for deteriorating items is considered in fuzzy

environment. Here, the inventory cost coelTicients, sturagc space and budgetary cost are

fuzzy and repre;ented by fuzzy numben<. Demands and rates of deterioration of the items

arc constant. The funy total average cost for the inventory control system is derived and

minimized. Firstly, using the Zadeh's exten,ion principle a pair of mathematical models

are formulated to calculate the lower and upper bounds of !he {l -cuts of total average

fu7.ZYinventory cost at possibility level {l. The first model is solved easily using a

gradient based optimization technique (GeneraliLed Reduced Gradient method), bul to

solve the second model the authors proposed the duality theorem of non-linear

programming such that the primal and dual models have the same objective value.

Tarim and Smith (2008) pnlposed a constraint programming model for computing the

finite h(,rizon single-item inventory problem with stochastic demands in discrete time

periods with service-level constraints under the non-stationary version of the "periodic

review, order-up-to-Ievel" policy (i.e., non-stationary (R,S),or, simply (Rn, So)). The

computational tests show that the approach is more tractable than the conventIonal MIP

formulation. Two different domain rcduction methods are proposed to improve the

computational performance of solution algorithms.

Vijayan and Kumaran (2008) introduced fuaincss by allowing the cost components

imprecise and vague to certain extent. Continuous review and periodic review inventory

models in which a fraction of demand is backordered and the remaining fraction is lost

during the stock out period arc con,idered under fuzzy environment. Authors used

trapezoIdal fuzzy numbers to represent these churacteristics. The optimum policies of

these models under fuZlY costs are also derived by them. Inventory models which involve

both baekorders and lost sales arc known as model; with a mixture of backorders and lost

sales. Stochastic inventory models with a mixture of backorders and lost sales are

described by introducing fuzziness in the cost parameters, The inventory model also

implies that the impact of fuzziness is nullil,ed when each of the cost components are

allowed fUZ7inessin equal percentages,
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Chung et a!. (2009) prOp<Jsedan inventory model which showed that the total cost

function per unit time is convex by a rigorous proof, derived the closed fomts for the

upper and lower bounds on the optimal cycle time of the total cost function per unit time,

thereby enabling ~traightforward application of the standard bisection algorithm to

numerleally compUle the optimal cyele time and comparcd optimal solutions obtained by

using this approach (thc bisection algorithm) and Park's approach.

Chung et a1. (2009) established a new inventory model with two warehouses for items

with imperfect quality. rhey developed a mathematical model by maximizing the annual

total profit. They developed an inventory model to incorporate concepts of two

warehouses and imperfect quality to relax assumptions (All unit; produced are of pcrfect

quality and. The inventnries are stored by a single warehouse with unlimited capacity) to

establish a new economic production quantity model. In practice, the above two

assumptions are unrealistic and product quality is not al'Ways perfect but directly affected

by the reliability of the production proces8 used to produce the products. On the other

hand, as we all know, the capacity of any warehouse is limited. The re>.earchers have

incorporated concepts of the basic two warehouse, and imperfect quality in their

mathematical model. They concluded that e:l.pected total profit per unit time ETPU(y) is

plecewlOOconcave.

Banerjee et al. (2009) recast an inventory model to be more relevant to current situations,

where the penalty cost for a shortagc occurrence at a dO\\'l1stream stage in a ~upply chain

is continually transmitted to the upstream stages. Th~ supplier, in this case, at the

up~tream of the supply chain i, responsible for all the downstream shortages due to the

chain reaction of its backlog. Authors developed a model in whleh the backorder cost per

unit time is a linearly increasing function of shortagl;' time, and it claims that the optimal

policy for the supplier is setting the optimal shortage time per inventory cycle to

minimize it->lOta!relevant cost in a lIT environment.

Liu and Lian (2009) considered the cost-effective Jnventory control of work-in-process

(WIP) and linished products in a two-stage dlstributed manufacturing system. The first

stagl;'produces a common WIP, and the ,econd stage consists of several production sites
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that produce differentiated products with different capacity and service level

requirements, The unit inventory holding co,t i~ higher at the second ~tage. Authors used

a network of inventory-queue model to evaluate the inventory co~t and service level

achievable for given invenlOry control policy, and then derives a very simple algorithm to

find the optimal inventory control policy that minimi,.es the overall inventory holding

cost and satisfies the given service level relluirements. The researchers consider a

di~tributed manufacturing system that eon,i,t, of two production stages. The first

production stage produces a common important component with limited capacity, and the

second stage is a differentiation stage that eon,i"t~ of several ~tations "hich produce

different linished product,. taking the output offir,t stage and other possible components

as their raw materials. it develops a simple "frontier curve" optimization method to find

the optimal inventory control policies at all sites that provide the required service levels

for all finished products simultaneously. The optimization algorithm is iterative and

allows for easy "what-Jf' analy,is, and considers explicitly the joJnt cost and

performance effect of inventory control policy at all sites to lhe system.

Mondal et al. (2009) considered un economic production lot (EPL) model considering,

the unit production cost depends upon the cost of raw materials, labor charges

advertisement cost, produced units, etc.. demand rate is a deterministic function ofselJing

price and the advertisement cost and Selling price Is detcrmined by a mark-up over the

unit production cost. The author~ havc made an extension to the economic production lot

size model incorporating both marketing decision regarding rhe defective items and

variahle unit price depending on the rate'of production. It is a common belief that more

production gives more profit. Another popular myth is that profit increases with the

increase of,elling price per unit item.

Panda and Maiti (2009) considered, multi-item economic production quantity (EPQ)

models with ,elling price depcndent demand, infinite production rate, stock dependent

unit production and holding costs in this paper. Flexibility and reliability consideration

are introduced in the production process. The models are developcd under two fuzzy

cnvironments _ one with fuay goal and fuzzy restrictions on storage area and the other

with unit cost as fuay and possibility - necessity restrictions un storage ~pace. The
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objective goal and con,traint goal are dctlned by membership functions and the presence

of fuzzy parameters in the objective function is dealt with fuay possibility/necessity

measures. The models are funned as maximization problems. The first one-the fuay goal

programming problem is solved using fuzzy additive goal programming (FAGP) and

modified geometric programming (MGP) methods. The second model with fuzzy

possibility/necessity measures is solved by gcometric programming (GP) method. The

authors have considered demand as powcr function of selling pricc, unit costs dependent

on invcntory level, holding costs again as tunctions of unit costs. Here they have

fonnulated multi-item profit maximization production inventory models with limited

storage area in fuzzy/fuzzy possibility and neccssity sense under process reliability and

flexibility. They have considered fUNY possibility and nece;sity measures of the

objectiv,e function when its some paramctcrs are fuzzy.

A production inventory model for a newly launched product is developed by Roy et aJ.

(2009) incorporating inllation and time value of money. It is as;umed that demand of the

item is displayed stock dependent and lifetime of (he product is random in nature and

follows exponential distribution with a known mean, Here learning effcct on production

and setup cost is incorporated. Model is formulated to maximize the expected profit from

the whole planning horizon. A fuzzy-ba~ed lifetime extension of genetic algori(hm~ is

coosidered. A genetic algorithm (GA) \vith varying population size is used to solve the

model where crossover probabilil} is a function of parent's age type (young, middle-

aged, old, etc.) and is obtained using a fuay rule base and possibility theory. In this GA a

subset of better children is included with the parent population for next generation and

size of this subset is a percentage of the size of its parent set. Thi; GA is named fuzzy

genetic algorithm (FGA) and is used to make deci;ion for above production inventory

model in different cases. The model is illustrated with some numerical data. Sensitivity

analysis on expected prolit function" is also presented, Performance of this GA with

respect to some other GAs is compared, An EPQ model has been eon_,idered under;

inflation and time discounting over a stochastic time horizon incorporating the learning

effect on both the production and setup cost.
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Maiti et al. (2009) developed an inventory model for a deteriorating item (seasonal

product) with linearly displayed stock dependcnt demand in imprecisc cnvironment

(involving both fuzzy and random paramctcrs) under inflation and time value "f money.

Authors assumcd that time horizon, i.e., period oj" business are random an<J follow

exponential distribution with a known mean. The resultant effect of inflation and time

value of money is assumed as fuzzy in nature. The particular case, when resultant effect

of inflation and time value is crisp in nature, is also analyzed. For crisp inflation effect,

the total expected profit for the planning horizon is maximized using the GA (Genetic

Algorithm) to derive optimal inventory decision, On the other hand when inflationary

effect is fuzzy then thc cxpecte<Jprofit is fuzzy in nature too. For crisp model cxpected

profit is proposcd to maximize using a GA with roulcttc wheel selection, arithmetic

crossovey and ran<Jommutation. In the case offu~LY model, a fuzzy simulation process is

proposed to maximize the optimistic/pessimistic return of the objective function and a

fuvy simulation based genetic algorithm with GA operators is dcvclope<J to solvc the

model. To solve the stochastic model (model-I) GA is used. The basic technique to deal

problems of the fuzzy stochastic model (modcl-2) is to convert the possibility/necessity

constraint to its deterministic equivalent.

Expected inventory order cro,sowrs occur if at the moment of ordering it is expected that

orders will not arrive in the sequence they arC ordered. Recent research has shown that,

expected inventory order crossovers will be cncountered more ft"C{juentlyin future. and

that use of a myopic order-up-to policy base<J on a stochastic dynamic programming

approach leads to improved performance compare<J to the classical approach, Rie7ebos

and Gaalman (2009) showed that the improved policy is still heuristic in nature, as it

neglects several comrol options that are available on the various on!ering moments and

makes some restrictive assumptions with respect to the separability (i.e.,

decomposability) of the stochastic dyn~mic programming problem.

Sakaguchi (2009) di~cussed a method to get an economic order quantity in inventory

systems with discrete demand to detel1lline whether it increases or decreases from period

to period. The researchers a~sumcd hand p arc the holding cost and the shortage cosb per

unit per period, respectively, and e is the purchasing co,t per unit, ~ is the amount on
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hand in initial period after a regular oruer i, received, t length of period, N number of

periods and they also assumed that demand in a single period be a discrete random

variable. The decision criterion of,inglc period is the minimization ofthe expectcd cost

which includes the purchasing, holding and shortage costs.

Sharma (2009) dcvcloped a composite for a generalized environment of a manufacturing

situation, where the procurement of multiple Input items has been considered along with

the production of a finishe<J item and fractional backoruering is included. The model can

be used for a variety of situations. They provided the output parameters for possible

combinations of input parameters, which can be used directl} and are also suitable for

further analysis. According to the re,eareher a 100% inspection of manufactured product

is carried out and therefore the finished product inventory includes non-defcctive items

only. fiowever the manufacturing facility will produce certain defective items also in

general and therefore these are incorporated in the relevant cost formulation and the

generalized procedure. The composite model can be used for a wide variety of cases. For

- example, the formulation can be adjusted for the situation when a particular facility is

generating the acceptable items only. The researcher developed this composite model

incorporating the manufacturing and procurement of input items. Author included

fractional/partial backordering along with- the tinite replenishment rate of input items.

The model is suitable for adapting to the variety of situations available in

industrial/business environment. In the context of continuous manufacturing, the

demands are usually more than the production rate and these dcmands are looked at from

a different perspective in any manufacturing system. But there are cases in the balCh

production where the production rate is usually greater than the demand rate. Therefore it

becomes relevant to formulate the total cost and to obtain the output parameters after

optimizing the costs and thi, model serves this purpose properly.

Hsu ct al. (2009) developed a fuzzy multi-objectivc joint replenishment inventory model

of deteriorating items. The model maximizes the profit and return on inventory

investment (ROll) under fuzzy demand and shortage cost constraint. They propose a

novel inverse weight fuzzy non-linear programming (lWFNLP) to formulate the fuzzy

model. A 50ft computing, differential evolution (DE) with/without migration operation,' is
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proposed to solve the problem. The performa~ees of the proposed fuzzy method and the

conventional fuzzy additive goal programming (FAGP) arc compared. fhey show that

the solution derived from the IWFNLP method satisfies the decision maker's desirable

achievement level of the profit objective, ROIl objective and shortage cost constraint

goal under the desirable possible level of fuzzy demand. It is an effective decision tool

since it can really reflect the relative importance of each fuzzy component. A multi"

objective joint replenishment deteriorating item~ inventory model with stock-dependent

demand and total average shortage cost constraint is formulated in a fuzzy environment.

Under the basic period (HP) approach, the objective of this model is to maximize the

profit and ROll objectives. ROll is defined as the ratio of profit to the average inventory

investment. Two fUl.zy scenario~ arc considered in this study. A multi-objective

invent?ry model with fuzzy shortage cost constraint is first developed. Then they extend

the model by assuming the demands arc also fuzzy in nature. The fuzzy multi-objcctive

models are formulated using FAGP method. A novcl method IWFNLP is also proposed.

This method embeds the idea nf inverse weigbt~ into the Max-Min fuzzy mndel. The

results of the FAGP and IWFNLP methods solved by DE with/without migration

operation arc illustrated numerically, In the numerical examples, different patterns of

weights are assigned to each fuzzy component including the possible level of fuzzy

demand, profit objective, ROll objective and total shortage cost constraint goal. A multi-

objective jnint replenishment deteriorating items inventory model with fu7,7,ydemand and

shortage cost constraint is developed. Th" model with fuuy demand and ;hortage cost

constraint that simultaneously maximizes the profit and return 0n inventory investment

objectives is non-existence. The researchers also initiate the formulation of a multi-

objective inventory model by the inverse weight fuzzy non-linear programming

(JWFNLP) and fuzzy additive goal programming (FAGP) methods simultaneously. An

efficient constraint handling method is embedded into the differential evolution (DE)

with/without migration technique to solve the complex inventory model.

In order to understand the potential benefits of the consignment stock policy, an

analytical model is oflcred by Zavanella and Zanooi (2009) with reference to the

interesting industrial case of a single-vendor and multiple buyer productive situation, thus
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obtaining the optimal replenishment decisions for both the vendor and buyers In such a

situation. The results show how the CS policy works better than the uncoordinated

optimization. The study aimed at proposing a model for a single-vendor multi-buyer

system, integrated in a shared management of the buyers' inventory, so as to pursue a

reduction or the stability of the holding costs while descending the chain. The inventory

management is carried out according to the CS practice and, consequently, the model

appears to be simpler. The resulls show that the joint management of the inventory gives

rise to economic benefits, which, however, may be modest or relevant according to the

structure of the chain. The results themselves suggested the development of a sensitivity

analysis, which allowed drawing some interesting remarks on the influence of the

parameters relevant to the economic performance 01'the supply chain.

Benjaafar et al. (2010) considcred the control of a production-inventory system with

impatient customers. The optimal policy can be described using two thresholds: a

production base-stock level that determines when production takes place and an

. admission threshold that determines \vhen orders should be accepted. Here, it is described

that an algorithm for computing the performance of the system for any choice of base-

stock level and admission threshold. In a numerical study, the authors compare the

perfonnanee of the optimal policy againSI several other policics. A system is considered

where a single product is produced at a single facility to fulfill demand from customcrs

who place orders continuously over time according to a Poisson process with rate }..

Items are produced one unit at a lime with exponentially distributed production times

with mean lif-'. The production fac1lity can produce ahead of demand in a make-to-stock

fashion. However, items in inventory incur a holding cost h per unit per unit time. Upon

arrival, an order is either fulfilled from inventory, if any is available, backordcrcd, or

rejected. If an order is rejected, the system incurs a rejection cost r. If an order is

baekordercd, the system incurs nO immediate cost. However, cuslomers are impatient and

may decide to cancel their orders if their waiting time in backlog exceeds a patience time.

Chen and Kang (2010) developed the integrated inventory models with permissible delay

in payment, in which customers' demand is sensitive to the buyer's price. The models

consider the two-level trade policy in the vendor-buyer and buyer----customcrrc1ationships
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in supply chain management. A ,imple recursive solution procedure is proposed for the

integrated models to determine the buyer's optimal pricing and production/order strategy.

Although the total profit from the buyer and vendor increases together, the buyer's share

lessens. To compensate the buyer's loss duc to the cooperative relationship, a negotiation

system is presented in order to allocate the prol1t increase to the vcndor and buyer to

determine the pricing and production/order strategy.

Haji and Darabi (2010) investigated the effect ofinformatioll update on a specific class of

problems specifically the effect on the decision, related to a single-period inventory

model ,The goal is to find the best ser of decisions to minimi.:e the rotal cost of the

inventory systems. The paper helps to find the optimal policy for a single-period

inventory system with infonnation updatc choice. The introduction of update decision

generated a total cost function that is not nccessarily convex.

Liao and Huang (2010) considered the impact of a replenishment policy on the timing of

the cash flo"'s associated with paymcnts to suppliers and revenue ,treams from

customers. That is, the same cash amount will possess different money value at diffcrent

future time. The more appropriate net present value (NPV) object instead of the averagc

cost objective is adopted in this puper, In addition, the deteriorating effects will be

incorporated in this inventory model, and the timc to deterior"tion of each item follows

an exponential distribution. The discounted cash flow (DCF) approach is used to derive

the optimal solution in this study. Furthermore, is has been fir,t found that the optimal

solution not only exi,t, bus also is unique. Then, the authors provided a theorem to locate

the optimal ordering policy of two levels trade credit, deterioration and time discounting

simultaneously. The discounted cash flow (DCI') approach l(l determine the optimal

ordering polley is applied. The paper incorporates some realistic features that are likely to

be a,soeiated with the inventory of "ome kinds of items. One is that deterioration over

time is a natural feature for items; the other is that the DCI' appmach permits a proper

recognition of the financial implication of the opportunity cost in inventory analysis with

two leveb of trade credit.
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He et al. (2010) developed a production-inventory model for deteriorating items with

mulliple-market demand, where each market has a ditTerent selling season and a different

constant demand rate. To foster additional managerial insights, the authors performed

extensive sensitivity analyses and illustrated the results with a simulation study. Global

markets offer selling opportunities and pose production management challcnges for

manufacturers of detcriorating Items. Exploiting the difference in timing of the selling

season of the deteriomting items at ditTerent markets is a unigue opportunity to improve

the profitability of a deteriorating items' manufacturer. In this paper, it has suggested a

method for finding the optimal producllon and inventory schedule for manufacturers of

deteriorating items. Hcrc, it is assumed that the manufacturer produces in one location

and sells in different markets that have different selling seasons, tt has showed that our

method, helps minimize costs. The modcl considered thc demand rate in each market as

constant.

Kevork (2010) considers the classical single-period inventory model, also known as the

. Newsboy Problem, with the demand normally distributed and fully observed in

successive inventory cycles. The extent of applicability of such a model to inventory

management depends upon demand estimation. Appropriate estimators for the optimal

order guantity and the maximum expected profit are dcveloped. The statistical properties

of the two estimators arc explored for both small and large samples, anal>1ically and

through Monte-Carlo simulations. For ,mall samples, both estimators are biased. The

form of distribution of the optimal ordcr quantity estimator depends upon the critical

tractile, while the distribution of the maximum expected prot1t estimator is always Icft-

skewed. Small samples properties of the estimators indicate that, when the criticai fractile

is set over a half, the optimal order quantity is underestimated and the maximum

expected profit is overestimated with probability over 50%, whereas the probability of

overestimating both quantities excee"ds again 50% when the critical tTactile is below a

half. For large samples, based on the asymptotic p"'perties of the two estimators,'

confidence intervals are derived for the corresponding true population values. The

validity of confidence intervals using small sample, is tested by developing appropriate

Montc-Cario simulations.
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Leung (2010) first generalized a number of integrated models with/without Jot streaming

and with! without complete baekordcrs under the integer-multiplier coordination

mechanism, and then individually derived the optimal solution to the three- and four-

stage model, using algebraic methods of complete squares and perfect squares. It is

subsequently deduced optimal expressions for some well-known models. For this model,

Leung checked that the optimal solution, which is algebraically derived, is a global one.

Two ready extensions of this model that warrant future research endeavors In this field

are: First, following the evolution of three- and four-stage multi-firm supply chains, can

the integrated model of a five- or higher-stage mulli-finn supply chain is formulated and

algebraically analyzed. Secondly, using complete and perfect squares, we can solve the

Integrated model of a n-stage multi-firm supply chain either for an equal cyele timc, or an

integer, multiplier at each stage with a fixed ratio partial backordering allowed for

some/ali downstream firms (or retailers), with or without lot streaming can be solved.

An optimal production inventory model with fuzzy time period and fuzzy inventory costs

. for defective items is formulated and solved by MandaI et al. (2010) under fU7.lY~pace

constraint. Here, the rate of production is assumed to be a function of time and

considered as a contml variable. Also the demand is linearly stock dependent. The

defective rate is taken as random, the inventory holding cost and production cost are

imprecise. The fuzzy parameters are converted to crisp ones using credibility measure

theory. The different items have the different impredse time periods and the

minimization of cost for each item leads to a multi-objective optimiLation problem. The

model is under the single management house and desired Inventory level and product cost

for each item is prescribed. The multi-objective problem is reduced to a single objective

problem using global criteria method (GeM) and solved with the help of fuzzy riemann

integral (FR1) method, Kuhn-Tucker e(lnciition and generalized reduced gradient (GRG)

technique. In optimum results intluding production functions and eorre~ponding

optimum costs for the different modei~ arc obtained. A multi-objectlve and multi-item

defective dynamic system with a resource constraint with different fuzzy time periods has

been solved for the first time via GeM, FRI, Kuhn-Tucker condition and GRG methods.
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for the first time, a dynamic production inventory model with imprecise time periods

under space constraint has been formulated and solved.

Rieksts and Ventura (2010) discusses inventory models over an infinite planning horizon

with constant demand rate and two modes of transportation. These tran~portation options

include truckloads and a less than truck. load carrier. An optimal algorithm is derived for

a onc-warehou~e one-retailer system. A power-of-two heuristic algorithm is also

proposed for a one-warehouse multi-retailer system. Computational results are provided

to show that, on the average, the heuri~tic algorithm is at ieast 94% effective. An optimal

poiicy is derived for a one_warehouse one-retailer inventory system that includes the

option of transporting freight with two different mode,. Although the optimal policy may

have non_~tationary order intervals, a tractable optimal algorithm is developed.

Sana (2010) developed a modei 10 determine the optimal product reliability and

production rate that achieves the biggest total integrated protit for an imperfect

manufacturing process, The basic assumption of Ihe classical economic manufacturing

quantity (EMQl model is that all manufacturing items are of perfect quality. The

assumption is not true in practic~. Most of the production system produces pcrfeet and

imperfect quaiity items. In some cascs the imperfect quality (nonconforming) items are

reworked at a cost to rcstore its quaiity to thc original on~. Rework cost may be reduced

by improvements in product rcliabillty (i.e., decreasing in product reliability parameter).

Lower vaiue of product reliabillty parameter resuit, in increase deveiopment cost of

production and aiso smaller quantity of nonconforming products. The unil production

cost is a function ofproducl reliability parameter and production rate. As a result, higher

development co,t increases unit production cost. The'problem of optimal pianning work

and rework processes belongs to the broad fieid of production-inventor>' model which

deals with ali kinds of reuse processes in supply chains. These processes aim to recover

defective product items in such a way that they meet the quality level of 'good item'. The

benefits from imperfect quality items are: regaining the material and value added on

defective items and improving the environment protection. In this point of view, a model

is introduced hcre to guide a firm/industry in addressing variable product reliability

factor, variable unit production cost and dynamic production rate for time-varying
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demand. 1 he paper provide~ an optimal control formulation of the problem and develops

necessary and sufficicnt conditions for optimality of the dynamic variables. In this

purpose, the Euler-Lagrange method is used to obtain optimal solution~ for product

reliability parameter and dynamic production rate.

Production, remanufacture, and wa,te disposal i:-PQ type models are developed and

analY7.edby Saadany and Jaber (2010), where a manufacturer serves a stationary demand

by producing new Items of a product as well as by remanufacturing eollccted

used/returned items. In the,e developcd model,>, thc retum rate of used items Is modeled

as a demand-like Junction of purchasing price am! acccptance quality level of returns.

The model developed herein Is a decision tool that helps managcrs in determining the

optimum acceptable acqui~ition quality level and its corresponding price for used items

thai are collected for recovery purposes and that minimizes the total system cost. The

model developed by a~sumlng the return rate 01" used items follows a demand-like

function dependent on two decision variables which are the purchasing price, P, and the

acceptance quality level, q, for the~e returned items. In addition, this paper accounts for

the cost of raw materials required to produce a singlc new unit of the product, Co. where

the monetary value of the purehasing price for a returned item is PM = P - Co. Two

models are developed In this paper. The first model assumes a single production cycle

and a single remanufacturing cycle per interval 1. The second model, a generalization of

the first, assumes m remanufacturing cyeles and n production cycles per interval T.

Yang (2010) developed an economic order quantity (EOQ) model, in which, shortages

are partial back- logging to reneet the fact that longer the waiting time; the smaller the

backlogging rate, the effects of intlatlon and time value of monev are relevant or vital,

and the replenishment cycles and the shortage intervals are time- varying. As a result, the

proposed model is in a general framl<work that includes numerous previous models. The

optimal replenishment schedule uniquely exj"t~ and the total profit associated with the

inventory system j~a concave function orthe number of replenishments i~proved.

The above mentioned papers did not consider the Inventory model with fuzlY random

demand and inventory cost with reliability of the production process which are most
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realistic factors for a production process. This thesis paper develops an inventory model

to incorporate concept of reliability with fuzzy random demand and Inventory cost

consideration to establish a new economic production quantity model. Consequently, the

inventory model in thIs paper is mNe practical than the traditional EPQ model.
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CHAPTER III
PROBLEM IDENTIFICATION

A retailer may estimate that the demand of a commodity may follow a panieular

distribution, Again, inventory holding cost of the product may follow a panicular

distribution. Ilo",ever, it is ver} diflieu It to estimate the exact value of the parameters of

the distribution. In this case, these parameters are con~idered as funy numbers.

Consequentiy, Ihe distributi'ln of these parameters are fun.y random distribution and it

can be said that the demand and inventory holding cost are fuzzy random. A basic

assumption in the inventory management system is that sct-up cost for production is

fixed. In addition, the modeis also implidtly assume thaI items produced are of perfect

quality. However, in reality, products are not always perfect but arc directly affected by

the reliability of the production process employed to manufacture the product.

3.1 Problem Definition

In this thesis work, an economic production quantity (EPQ) model is considered, where

demand and inventory holding cost of the product are fuay random in nature with knO"'l1

probability distribution and the production process is assumed to be not 100% perfect, i,e.

a fraction of the produced items are defective. Moreover, it is assumed that the defective

items are sold at a reduced price and the selling price of fresh units is taken as a mark-up

over the unit production cost. The model is formulated to maximize the expected average

profit. Since demand and inventory holding cost are fuzzy random in nature, expected

profit is a fuzzy number. So (t-cut of the expected prolit is obtained and by using this

graded mean integration value (Gt\lIV) of expected profit is obtained and this is then

optimized using unconstraint signomial geometric programming to determine optimal

decision of decision maker. Mathematical equations are obtained Itom optimal feasible

solutions considering fuzzy random demand and inventory holding cost along with

reliability of the production process ",hich arc very important in real life production

inventory problem. Equations for set-up cost pef cycle, reliability of the production

process, duration or time until production is being held and maximum total profit are

developed for this production inventory problem.
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3.2 Assumption of the study

Some assumptions are considered in this thesis works. Assumptions arc as follows:

1. Preparation time is negligible.

II. Production starts immediately after receiving the order.

Receiving onl •• and
storting prodoction

Fig. 3.1: Instantaneous production in F.PQmodcL

"",

111. I'lere, production period (T,), production process reliability (r) and set-up

cost (CQ) arc decision variables.

IV. Defcetive items are sold immedialely with a lower price lhan fresh items.

v. Selling price (5,) of fresh unils is mark-up (m) of produclion cost (P) such

that, 51 ""mP;m>l.
v!. Selling price (5) of deleclive unit:. is mark up (m,) of production cost (P)

such that, 52 "" mtP;O < mt ;5 1.

VI!. The tolal frcsh units are greater than lhc demand, i.e. rK > 15.

Where K is production rate per day and 15is demand per day which in fuuy

random in nature.

Vll!. Total cost of interest and depreciation per production cyele Y(Co,r) is

inversely related to set-lie cost co and directly rclated to process reliability (r)

according to follo"ing gcncral power funelion (Cheng, 1989):

Y(Ca, r) ""aC;;brC

Where a, b and c are positive con,lants chosen to providc bcst fit of the estimated cost

function. This assumption is bascd on the lilct lhat to reduce the costs of production set-

up and scrap and rework on shoddy products, substantial investment in improving the
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flexibility and reliability orthc production process is necessary. Consequently, the total

cost of interest and depreciation per production cycle of the modern flexiblc production

process is much higher than that of the conventional inflexible process. In reality, this

relationship should be discrete but u continuous function is used here as an approximation

which is needed to simpliry thc subsequent mathematical analysis. A similar equation to

model the relationship between set-up cost and intercst and depreciation cost has been

suggcsted by Beek and Puttin (1987).
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CHAPTER IV
MODEL FORMULATION

4.1 Preliminary concepts

Let X be a classical set of objects, called the universe, whose generic clements arc

denoted by x. Membership in a classical subset A of X is often viewed as a characteristic

function >tA from Xto to, I} such that

!1 forxEA
I!A ==

o otherwise
(4.1 )

Here to, I} is called a valuation set. If the valuation set is allowed to be the real interval

[0, I], A is called a fuzzy set and to distinguish from classical set, it is denoted by A. In

this case characteristic function I!A is called membership function of A and is denoted

-by IIA. The closer the value I'A(X)of to 1, the more x bclongs to A. SO a fuzzy set A, in

the universe of discourse X is completely characterizcd by the set of pairs as below

A=={(X.flA(X»), x EX}

Clearly A is a subset of X that has no sharp boundary and in this case it is normally

written as A<;;x. A fuzzy set A <;; X is said to be normal if3 at lea,t one XoE X such [hat

I!A(xo) == 1. A fuzzy set A <;;X is said to be convcx if ItXl E X, ItX2 E X, and itA E

[0,1]

Any convcx normalilcd fuzzy subset ii of It (wbere R represents set of real numbers)

with membership functionl-l,,:R --> [~,lJ,is called a fu:uy number (Dubois and Prade

(1980),



4.2 L-R representation of fuzzy numbcr~

L-R represen(a.tion of funy numbers is presented by Dubois and Prade (1980). A fuzzy
number A~R ;, said to be an L-R type funy number if Its membership function J.!A is
given by

for x~m. «>0
(4.2)

for x~m, {3>O

Va E [O,l])

Where, L is for left and R is for right reference, m is the mean value of A, a and {3arc

called left and right spreads, respectively.

4.3 a _Level set

a-Lev~1 set (or interval of confidence at level a) of a fuuy set A in X is a crisp sobset of

X denoted by A (a) and is defined by

A(a) == (x E XI l-lA (x) ~ a,

Let F be the set of all fuzzy numbers. Then for any A, B E F and for any .l. E R,

(A*B)(a)=A(a)*B(a), (.l.A)(a) ~ (.l.A)(a), where * E {+, -, ., /Jand for * ~ /, 0 ~ Aa

(Bector and Chandra, 2005)

4.4 Triallgular fuzzy number (TI"N)

A TfN A is specified by the triplet (o"o"a3) and is del1ncd by its continuous

membcrship function l-lii(x): X---'lO, I] as follows:

lfa2S'x:O;;a3

otherWise

(4.3)

So an a-cuI of A can be expressed by the following inlerval
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4.5 Graded mean integration \'alue (GMIV) offuu:y number

Chen and Hsieh (1999) introduced graded mean integration representation method based

on the integral value of graded mean a-level of LR-fuzzy number for defuzzifing LR-

fuzzy numbers. Suppose A is a LR-fuzzy number. Then according to Chen and Hsieh

(1999), GMIV of A is denoted by P (A) and is defined as

j,' , j,'PCA)== (-){L-'(x)+R-'(x)}dxl xdx
" 2 "

(4.4)

4.6 Interval arithmetic

Let 'E {+, - •.•f} be a binary operation on the set of positive real numbers. If A and B are

closed intervals then A • B == (a. b: a E A, b E B} defines a binary operation on the set

of elosed intervals (Moore, 1966). In the case of division, it is assumed that 0 E B. The

operations on intervals used here may be explicitly calculated Ii'om the above definition

"

A.B== [a~,aR].[b~.bR] '"

[min{a~b~, aLbR• aR b~,aRbR }, max(oLbL, a[bR, OR be' aRbR}]

kA == j[kaL.kaR], for k ~ 0
t[koR,kad, fork<O

Where, k is a real number.
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4.7 Fuzzy random \'ariable (FRY) and its expectatioo

Lct F be the set of all fuzzy number~. A metric d on F is defined by

(4.10)

Where. A~(a),An(a) are lower and upper end point~ of Aa; BLCa),Bn(a)are lower and

upper end points of Ba, then (F,d) is a complete metric space.

Let (0, A, P) be a complete probability space. A FRY is a Borel mea;.urablc function

X: cn,A,?)'" (F,d).

If R i; a FRY. then [X]a = [X,;,X,i], (l E [OJ] is a random closed interval ~e(, and

X';,X,i are real valued random variable.

The expectation of a FRY X is dellned as a unique fuzzy number fl E F, who~e a - cut,

Ua is given byua '" [EX]u == E[Xu] '" [E(X';),E(X,i)], a E [0,1].

For a FRY. X '" (X';,X,i): 0 ~ a ~ 1}, the expectation of X i~det1ncd by.

If X IS discrete FRY, such that (X'" XI) == ti;; 1'" 1,2,3, '" '"

expectation number is given by EX == r~,XiPI '
then its fuzzy

11 is also proved (Lopez-Diaz and Gil, 1998) that EXE F and [EX]o '" In XodP '"

[EXo,EX~]. for U'" O. Hence it can be said that, the fuzzy expected value i~ a

summarizing fuzzy value of the central tendency (If FRY,
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4.8 Mathematical modeling

According to assumptions, inventory level al time t, q(t) is given by

dq(t)",fr~-D forO SIS:;
dt 1-D forT1<tST

Where, q(O) '" O,q(T1) '" q" q(f) == 0

(4,11)

Acoording to Dubois and Prade (1980) fuuy integration on d::t) == rK - 5, for 0:5 I S 1',

is done. Now integrating from 0 to T], q, is obtained which is given by,

dq(t) - -And"dt'" -D, forT, <t:5T

Now integrating from T, toT, q] is obtained which is given by,

50alt=T,

This gives,

Total production holding cost per cycle is equal 10,

r' . J". f'Fi)o q(l)dt= Fi~" q(t)dt+ 'l",q(t)dt]

(4.12)

(4.13)
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After solving equation (4.13), total production holding cost per cycle is oblained and

given by

FiBf2 D
-[1--1

2 cK

A profit funclion is developed considering selling price of fresh unilS, selling price of

defective unils, production cost, holding cost, set-up cost and eosl of interesl and

depreciation cost.

Total profit incurred per production cycle

= (selling price of fresh units) + (selling price of defective units)

_ (production cost) - (setup cost) - (holding cost)

_ (cost of interest and depreciation cost)

Selling price for defective units and production cosl are depended to the reliahility of the

production process. From Bag et al. (2009),

Selling price for defective unils =m, P (l-r)D,
,"Production cost""- ,

So,Total profit per cyc!e,Z

Putting the value of f = r~T,and after simplifying,

Towl profit per cyc!e,Z

I (1 - ') 'T,] - IP CO aCo-""115 hekT,.= mP+ -- m,P+-- D- -+---+--- --_.
r 2 r rKT1 rKT, 2

(4.14)

Here lISfuuiness and randomness appear simultaneously inlO the optimization setting, it

is essential to interpret the problem and to tran;fonn it into the deterministic equivalent
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one. GMIV ofEz is employed to defuu.ify. Forthis, it is only needed to know the several

(l - level set of Ez for all (l E [0,1J.

Now, considering the fUZ7,yrandom demand D and holding cost fi with the given set of

d.b
(al. p,). (a2, P2)' (as' P3)"" ., (an, Pn) and (ill' Ph'), (fi2, Ph2)' (il" Ph,), ..... , (fit, Phj)
respectively, the profit Z is FRV and its expcctation is a unique fU7.zynumber which is,

_ ~[ (1-') ~h'P'jT']EZ='L mP+ -,- m'P+L 2
/_1 I~'

" -_ IhjPh;KT,
j~'

(4.15)

As the demand and holding cost data are imprecise ",ith fUZLYprobability, so for the sake

of simplicity, all the data set and its corresponding probabilities are considered as TFN

and shown in Table 4.1 and Table 4.2.

Table 4.1: TFN for demand and associated probabilities

Demand Probability

Table 4.2, TFN for holding cost and associated probabilities

Holding cost

~.h"ii;)

Where. i =' 1,2, , n and j '" 1,2, ., , U

Probability

~.PtlIYhj)

Then the fuzzy expected profit fundion will also be a TFN, EZ '" (EZ. EZ,Ef)
Wbere,
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EZ = E[ZR(a = 0)]

= ~[mp+c~r)mlP+ ~hjPf']dlPI
_ ~[~ ~ aCo-br'j"J""""7_ ~hjPh;"rKT,
.{... r + rKT, + rKT, ,P, L 2
,=1 1~1

Here the a-level ~el of the fuzzy number EZ are con,idered as follows
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And different (:l -cut intervals for thc fuzzy number E2 are obtained for different a

between 0 and I.Taking, a-cut on both ~ides of equation (4.15)

(4.16)

Now, a-cut value for demand, holding cost and their associated probabilities
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-_.
Using these and arithmetic inlerval, from equation (4.16) it is obtained

fl" = [[~ [mP+ (' ~')m,p
+ ~~ +a(h) - ~)}{~ + «(Phi -~)}Tl] {d,

+" (d, - dJ}[p, +a (p, -10)
_f[~+_C_"+-"C_._--"-'Jld.-a'd -d-)}[p---;-a~pL T rKT rKT ' \U, , , 1.1-',
;~l 11

f [~-a(h; - h;)} (Ph7 - aCP;i - Phi) }TKTl]
-p,)J}-L 2 .

)=1

[~[mp+('~')m,p
+Z [iij - a(~ - hj)}[~ - aCPhj - Phf)]Tt] {d; - a cd;" - dl)}fP.

- a(jJi - p,)}

-i [~+T~~,+ a~~::C]{d; + a (d( - :0){ p, + a (PI- EJn
,~1

_ ~ ("L +" (h, - h,)} ["';- +" (p'j - "'") )'KI']]
(4.17)
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From equation (4.17), L-1(a) and R-1(a) are obtained,

(4.18)

A"d

R-'(,J = [t [mp+ C ~ ')m,p
+ ~ {hj - a(~ - hJ)}(~ - a~ - Phl)}T1] (d, _ a(d, _ d,)}OJi

- al.P1- Pi)}
_~[~+~+ aGo-brei (di + a (di - dl)}{Pi +a (Pi - pJnL. r rKT1 rKT, - --

i=1

_~ (~+[((hj -~)} {~+a(pnJ ~~ }rKT1]

(4.19)

Now, using the method of representation of genemli;ed fuzzy number based on the

integral values of graded mean-ll -level, a defuzzified representation of the unique fuZlY

number is found,

G(EZ)
fo'(2) [L-'ell) + R-1 (a)} da

f[~adll
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From equalions (4.18) and (4.19) substituting value ofL -lea) and R-1(a) in equation
(4.20) and after simplifying G(fZ) is obtained,

(4.21)

Where,

And,

"
E1== L ~~PI +~(~p, - 2d; PI+ diP,) +~(di -~) (PI - p;)

i~l

E. == [~~ Phj + Q2PI>I- 2hj Ph) + hj~r:L)+ (hl-!0 (Phi - Phi)} J

x [~gd, p, +~.(diPI-'--2d,P,+dir.J +~(d; - ~ (Pi - Pi)I]



E, = [t, {(hi,"i - 2h, ,,' + h;",) + 2 (hi - h,) (p" - ,.,ll]

x [t (~~Pi + 1
1
2(diP; - 2dj Pi+ dLp;) + 2

1
0(d, - dt) (Pi - PI) J]

E, = [t,{2 (hi - '0 ('"'- P'lll ]
x [ff-'- d,p +_1_(dP'_2d,,'+d_,.'I +_l_(d __ d.'(P.L 120 _-1. 360....! 1 -'--'- 1!:lJ 840 I ~ I
,~1

"
£7 =2) hj P~I+ (hj Ph) - 2hj Phj + bjPhj) + eh) - hj)(p~j- Phi)]

)=1
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"
Ea ==L)~Phj - 2hJ Phi + hjPhJ) + 2(hj - hj)(Phj - Phj)]

j~l

"
E9 == :2)2(hj - hj)(Phl - Ph)]

J-1

""[ 1 - 1 - - 1 - IXL. 120 diP, + 360 (dj PI - 2d1Pi + diP!) + 840 Cd;- dj)(jJ, - Pi)
;=1

GMIV ofthc expected average profit i> determined and optimized. According to thi>, the

problem is to delerminc(Co. r, T1), so that GMIV of EZ, F(Co, r, T,) is maximum. Here

the function F(Co, r,1;) is optimized by unconstraint signomial geometric programming.

The problem is 10,

(4.22)

This is equivalent to,

M(nimize F'(CQ,r, Tt)

== -a,. + azr-1 _0 ujT, + U4Cnr-1Tl-1 + a5Cr;brC-1Tt-' + U6TT,

As a, is independent uf the decision variables Co.r, Tt> so it can be neglected to derive

the optimal value of the obj~tive function. Then the problem reduces to



M. . . FOCC T) -, ,+ C -'r-' + C-b 0-1,-' + ,Lmm(U OJ'l =aZr -(111 ol<jor 1 as 0 r 1 a6T 1

This i~an unconstraint signomial geomelric programming problem with degrees of

difficulty{DD) ~ numbcroftcrm>. (number of variables +I) = 5 - (3 + 1)= I

The dual problem of the above problem is

Subject to the normality and orthogonality conditions.

Solvillg the normality and orthogonality conditions,

w, = 1- 2(b + 1)w4

W2 = 1-(2b+c+2)w4

Ws = 1- (b+ c + l)w,

(4.23)

Substituting the above dual weights into the dual function equation (4.23), d(w4) is

obtained,
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[

", ]1-1(b+l1W' [ ., ]-J+(2HCHlW4
d(W4) '" ----- , x ------

1-2(b+l)w4 1-(2b+c+2)w1

X [-"'-]b ...." x ["']., x [ ., ]'_(b+C+l)W'
bw~ w~ 1-(b+c+l)w4

Taking logarithm and d(W4) "" y(w4) then equating ay '" 0, it is obtained"~,

II a, ]-""" [ ., ],,"m,, I.']' [a,],
log 1-2(b+l)w4 x 1-(2b+c+2)w4 x bW1 X 11'4

I a ]-''''''''1x 6 - 0
1-(b+c+l)w4 -

This is equivalent to,

-2(0+1) X (lb+c+2) x' X _(bH+t)
Uz u3 a4xu5 an

[

1 -2(b+l) 1 (20+<+2) 1 I'
x [l-Z(b+l)wJ X[1-C2b+C+2)wJ X[bW4

']' [ 1 -''''''']x- x =1[W~ l-Cb+C+l)wJ

(4.24)

From equation (4.24) optimal value of 11'4 is obtained, which is written as 11'4'

The optimal feasible solution of dual problem or equation (4.23)

11'''= 1- 2(b + 1)11''-

wz"=1-(2b+c+2)w.'
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Putting these values into the objective function in equation (4.23) optimum value of

dew) is obtained as dew') whieh is written as Po

[
" ]'-'CH')W4' [ " j_1+(2b+c+Z)W ••

dew') '" l- X .<
1- 2(b + 1)wf' 1- (2b + c + 2)wf'

X [-",--]ow., X ["' jW" X [ ", j'-(HC+l)W"
bWf' W4' 1-(b+c+1)W4'

Putting values of a,. a" a4• as and af, , the equation becomes,

(4.25)

Again from the relationship between primal-dual variables (Beightler and Phillips. 1976;

Duffin et al. 1967), following relations can be determined:

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Now, to solve the above simujtaneou~ equations to obtain the optimal solution of the

primal problem, equations (4.28) and (4.30) are moltiplied and optimal valuc of set-up

cost per cycle (Co) is obtained which is as follows:

C'; = [lbW, '('_(b+c+1)w, ')(d(W'}j']
tE, +E,)(E,+E,.l

(4.31)

Now equations (4.29) and (4.30) are multiplied to obtain optimal value ofreliabililY (r) of

the production process which is as follows:

To obtain optimal value of production pcriod (1'1) equations (4.30) and (4.32) arc

multiplied and optimal value ofT, is as foliows:

[ "" ,.,-, I1'" _ ,,'(E,+E5) , m,+ElO) (
1- "+, ", b., '0"

,_,__ ' K(ow. ')c(w, ')'ll-(h+o+ l)w. ,)-,--' {d(w')j-'--'

Maximum value of profit is dctennined as,

Fm•• =a,-Fij
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CHAPTER V
RESULTS AND DISCUSSIONS

The thesis work is theoretical in nature. A m<lthematical production invenlOry model is

developed considering some practical situations such as fuay random demand, fuuy

inventory cost and reliability of the production process. The production Inventory model

is composed of some mathematical equations which can be used to detcrmine the optimal

values of different decision variablcs i.e. "et-up cost per cycle, reliability of the

production process and duration of time until the production is being held. The equation

for maximum tOlal profit is also developed which can bc used to get the maximum profit

of production inventory model. The model is discussed by illustrating a numerical

examplc.

5.1 Numerical illustration

To illustrate the model, a particular EPQ problem is considered. Suppose for a particular

EPQ problem, following data are considered:

K = 60 units

m= 2.0

P = 21.7 units

a = 1600'

b = 0.50

c = 0.75
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Demand and holding cost dala are associated with the probability. Demand and holding

COSIdata are given in rable 5.1 and Table 5.2 respectively. Triangular lilzzy number is

considered for demand and holding cost

Table 5, 1: Demand data and associated probabilities

Demand
(18,20,22)
(23, 25, 27)
(28, 30, 32)
(33, 35, 37)
(38,40,42)
(43,45,47)
(48,50,52)

Holding Cost
(0.5, 1.0, 1.5)
(2.0,2.5,3.0)
(3.5,4.0,4.5)
(5.0,5.5,6.0)
(65,7.0,7.5)

Probability
(0.045,0.05.0.055)
(0.143, 0.15, 0.157)
(0.292, 0.30, 0.308)
(0.192, 0.20, 0.208)
(0.092, 0.10, 0.108)
(0.093,0.10,0.107)
(0.094,0.10,0.106)

Table 5.2: Holding cost data and associated probabilities

Probability
(0.054, 0.060, 0.065)
(0.216,0.220,0.227)
(0.383,0.390,0.398)
(0.227, 0.230, 0.236)
(0.090, 0,100, 0.108)

From given data, value of E" E" E" E•• E5• E6• E7, ER• E9, EIOare determined, then

value of a" az, a3' a4' as, a6 arc also evaluated using following equations:

"
E, ==L~di E.!. +hdjPi~ 2d; PI+ diP,) +~(dl ~ d,)(pj ~ PI)

1='

== 16.512
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E, = [t, l'1 P" + (h;r" - 2h, Po, +h,P,,) + (h, - hJ CP" - p,,)} ]

X [t Hd; Pi + ~~Pl - 2dj!?! + dLp;)+~(d1 - d;) (PI - PI) J]
0= 57.558

E3 '" [~((hjPhi - 2hl Phj+ hjPhi) + 2h -:0 (Phi - Phi)}]

X [~(~di Pi + 1
1
2(diP, - Zdi Pi + dLJ0 + 2~ (dj - d1) (Pi - Pi) J]

'" 3.3790

E, = [t, (2(h, - h,)CPo, - "")}]

x [~{ l~O dt Pi + 3~O(diPI- 2di Pi + diP!) + S:O(d; - di)CPL

- Pi) IJ == 0.0080

"" 1 _ 1(_ _ ) 1 -E5 =L {2: dj Pi +"3 dj PI - 2dj Pi + diP, + 4" Cd; - dj)(jJ; - PI)}
i~l 0

= 17.755
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0= 2.1505

"
E7 0=2.) hi Pbi + (hj Pbj - 2h) Phi + hlPha + (hi - h))(Pbj - Phj) 1

1~1

f'['- 1_ - 1_ IXL Zd;Pi+ :3(diPi-2d,p, +dIPi) +"4 (dl-di)CPi-p,)
i~l

0= 72.528

"
Ea 0= L[(h) Ph) - 2hj Pb) + hjPbi) + 2(hj - hj)(Phl - Phi)]

1~1

0= -3.8520

"
E9 0=L [2(h) - hj)(Phl - Ph))]

J~l

0= 0.0104

0= 1.9395

A,d
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U, = P(m - m,)(E1 + E,) = 892.295

U2 = peE, - m,El + Es - m,Es) = 148.716

Now optimal value Ofw4' which is wriuen as W4' , is calculated u~ing equation (4.24),

_2(b+I) (2h+0+2) b -(bH+I)
a, XU3 xa4xa5xa"

[

1 _2(IJ+l} 1 (20+0+2) 1 b

x [1-2(b+l)wJ x[1-C2b+C+2)wJ x [bwJ

[1]' [ 1 ]_(H''')I,_ , = 1
W4 1-(b+c+l)w.

or, w~.= 0.1775338

Using the value ofw~', values of w,', w,', w3',and ws' arc also calculated using the

following equations.

W,' = 1.- 2(b + l)w/ = 0.4674

W2' = 1- (2b + c + 2)w4' = 0,33425

W3' = bw4' = 0.08877

Ws' = 1- (b + c+ l)w4' =,0.6005
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Now value of Fo or dew') is calculated using equation (4.25)

Fo == [
PCE - m E + E - m E )]'-'(b+J)W,

d(w')", 1 " '5 "
1- 2(b + l)w.

1 ]_l+(2b+C+2)W" [' IOW'-
,[Z(E2-E3+E4+E7-E8+E9) x R(E,+Es)

1-(2b+c+2)w" bw4'

a w. [ K ]'-(O+C+llW"
, [R (E, + E5)] x "2(E6 + E,o)

w~. 1-(b+c+l)w4'

of,F,; == 332.B1 units

Co' T' and T,' are evaluated using equation (4.31), (4.32) and (4.33) respectively,

• [_2b_W"'c' Ccl_-~(b_+_'c+_l")_Wc;c){cd"(w~')~)'ICO'" = 84.30(E, + E5)(E6 + £':10)

Now maximum total profit is delennincd from equation (4.34) as following,

=u,-F.i

== P(m - m,)(E, + Es) - Fo
== 559.50 units
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Three decision variables are relatcd to each "lher. Figure 5.1 shows thc relationship

between production period and reliability. Wilh improvement "freliability of the sySlem,

production period is decrcased. From equation (4.30), it is shown lhal production period

and reliability are inversely relatcd.

Production Pcriod Vs. Reliability
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Fig. 5.1: Relalionship betwccn production period and reliability

Set-up cost Vs. Reliability
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Fig. 5.2: Relati()n~hip betwccn set-up cOSland reliability
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Set-up cost and reliability are also related to each other. Set-up cost is decreased with

improvement of reliability of the production process. The relationship between set-up

cost and reliability is shown in Figure 5.2.

Both production period and set-up cost decrease with improving reliability. But set-up

cost and production period arc pro[l(lrtionally related. With increasing production period,

set-up cost increases. Figurc 5.3 shows the relationship between sd-UP cost and

production period.

Set-up cost Vs. Production Period
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m
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,i

o 0,5

ii ii ,i , Ii
u , "

",
, I

] 3.5 4 4.~ 5 5.5 6 6.5 7
ProductionP.riod cr,}

Fig. 5.3: Relationship betwccn set-up cost and production period

Total profit is effected by three decision variables namely reliability of the production

process, production period and set-up cos!. The effect of reliability on total profit is

shown in Figure 5.4. Total profit increases with improvement of reliability up to 0.9560.

Total profit is negative when reliability is less than 0.20245 and total profit goes

downward when reliability Is greater <than0.9560. Set-up cost and production period arc

assumed constant values of 84.3 units and 1.704 units respectively to obtain the'

relationship between profit and reliability.

60



'"0,00
'00'"0,"0
'""o.100
.200
.300
.400
.500
-600
-700
-800
.900
.lOOO

II' -: 1

ill II
Ti! '!
'! '

'i:

Profit Vs. Reliability

! I ! ' I : ' ,
i I ! , ' " ,
! I i :I j i '
'I!' '

:, ! I:' "
, ," !:,'

Roli.bilty (r)

Fig. 5.4: Variation ortolal profit wilh reliability of the production system

Profit Vs. Production Period
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fig. 5,5: Variation of lOlaI profit wilb production period

It is observed that total prolit varies ",itb varying production period. Figure 5.5 presents

the relationship between profit and production period, Reliability and SCI-UPcost arc kept
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constant to obtain the relation~hip bctween profit and production period, For production

period less than 1.704 units, profit i~ increased and aftcr that profit decreascs.

Prnllt Vs, Set-up cost
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'"0
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Fig. 5.6: Variati()11of total profit with set-up eost

It is al~()obscrved that profit depends on set-up cost. Th~ relationship betwccn pr()fit and

set-up cost is illustrated in figure 5.6. Profit i, maximum at set-up cost 84.3 units,

Reliability and production period arc assumed as c()nstant to cxplain thc relationship

bet"een profit and set-up cost.

["heoptimal value 0 I'set-up cost 84.30 1mits, rei iabil ity of the producti()n process 0,9560

and production period 1.704 units are "btaincd for the above mentioned production

inventory problem. Maximum tOlal prollt is ais() determined for thc model which is

559.50 units.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

As lhe profit of an organi71llion largely depcnds on production invenlory, optimi.talion of

produclion invenlory model is very importanl due to complex relationship exists belween

decision variables and objective funclion, Uncerlainty, imprecision and reliability of the

production pmeess have :,ignificant impact on the production sy:,lem. Jl is also important

to incorporate uncertainty, imperfection and reliabilily of the system to optimi/e lhe

produclion inventory model.

The objective of this thesis work is to develop a malhematical model of production

invenlory by maximi7ing thc total pro lit Set-up cost pcr cycle, reliability of the

production process and production period arc decision variables. To maximize the tOlal

profit, ~uations for optimal value of dedsion variables are also obtained. Equation for

maximum profit is evaluated using the optimal equations of decision variables. Finally,

the model is solved by providing a numeral example.

The implemenlation of tiuzy random variable as demand and inventory holding cost give

more realistic infonnation where lhe variable valuc~ arc imprecise. So the model i, more

realistic and applicable than traditional produclion inventory models.

Imprecision and uncertainly in imperfect prodllction process are incorporaled in the

production inventory prohlem. Reliability is an important laelor for a prodlldion process

which is incorporated in this m(>del.The model i, applicable in an imperfect production

process where reliability is an importanl fador.
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6.2 Recommendations

Geometric programming is used 10 find oplimal decision for decision maker is very

complex situations, This approach may be followed to deal wilh differenl oplimizalion

problems involving imprecision and uncertainly in science and technology. This model

can be extended considering lead time, shortage elc. as fuuy random variables.

UnC<1nstraintsignomial geometric pwgramming lechnique i, used to optimize the model.

Some other optimizalion techniques such as non linear geometric programming etc. may

be used to oplimize the model. Triangular fU7,7,ynumber is considered 10 develop lhis

invenlory model. Trape70idal and gau"iall fun,y number can aiso be consldered to

incorporate uneenainty in this model
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