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ABSTRACT ,

This thesis addresses a production inventory model to maximize the expected averape
profit considering fuzziness of random demand and inventory holding cost along with
reliability of the production process. The classical invenmr':r control madels assume that
products are produced by perfectly reliable produstion process with a lixed set-up cost,
While the reliability of the production process cannot be increased without a price, its sel-
up cost can be reduced with invesiment in flexibility and reliability improvement., In this
thesis, a production inventory model with reliability of production process consideratien
is developed in ap imprecise and uncerain mixed fuzzy environment. The goal of this
thesis is to introduce demand and inventory holding cost as a fuzzy random variable in an
imperfect production process. Here. set-up cost and reliability of the production process
along with production periad are decision variables and expected average profit is the
objcctive function which is to be maximized. Expected average profit of the model is a
‘fuzzy quantity due to fuzzy-randomness of the demand and inventory holding cost and its
graded mean integration value (GMIV) is optimized using unconstraint signomial
geomctric programming to determine optimal decision for the decision maker. A

numerical example has becn presented (o cxplain the model.
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NOMENCLATURE

K = production rate per day {constant).

D= demand per day (fuzzy randoim in naturc).

£ = production cost per unil time,

h= holding cost per unit quantity per day {fuzzy random in nature).
€y = set-up cost per cycle (a decision variable).

%, = selling price of [resh units.

5, = selling price of defective units.

r = the reliability of the production process (a decision variable).

T = duration of cach cycle which is fuzzy random in nalure due to fuzzy-randomness

of B1.
T, = production period (a decision variable).

Y (£, 7)= total cost of interest and depreciation for a production process per production

cyele.
F(Cy, r, Ty )= total profit function of €y, 7, Ty
g{t)= inventory level at time t.

Z= profit function which is fuzzy random in nature due to fuzzy-randomness of B.
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ABBREVIATIONS

LOQ Economic order quantity

EPL Economic production lot

FP(Q Feonomic production quantity

JIT Just-in-time

DLF Discounted cash flow

FEPQ Fuzzy economic production quantity
FTPIC Fuzzy total production inventory cost
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BP Basic period

FSGA Fuzzy simulation based genetic algorithm
wIp Work-in-process
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RO Return on inventory investment
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TFN Triangular fuzzy numI:;er

FRV iuzzy random variable
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FIFO First in [irst out
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CHAPTER 1
INTRODUCTION

Inventory control is the process of managing the timing and the quantities of goods to be
ordered and stocked, so that demands can be mct satisfactorily and cconomically.
Inventory control policies are decision rules thut focus on the trade-ofT between the costs
and benefits of altemmative sofutions o guestions of when and how much to order for each
different type of item. Success of inventary control depends on some important issues 1.2,
uncertainty about the sizc of future demands, uncertainty of inventery cost, uncertainty of
lead time, reliability of the production process cic. lnventory is the costliest operaling
expense for a manufacturer and properly managing that function is crucial to optimizing
pmduct{ivity and profitability. As the profit of an organization depends on production

inventory, it is important to optimize the production inventory problem.

1.1 Rationale of the study

In the global competitive market, manufacturers must maintain optimum guantity of
inventory to maximize profit and efficicncy of supply chain. Companies aim (0 maintain
the required amount of inventory at right placc and at right Ume with right cost. IT
malerial is not available preciscly, the supply chain may incur expensive repereussions
and production downtime. In this regard, optimization of production inventory model and
finding optimum amount of inventory level has paid extensive aticntion among the
researchers. Considering some realistic faclors such as fuzzy random demand, fuzzy
inventory holding cost and reliability of the production system a production mventiory

model is developed to maximize the expected average profit.
1.2 Objectives of the sindy

The objectives of this thesis work are:

i. To incorporatc uncerainty in production inventory model by integrating

fuzzy random variables.

ii. To develop a mathematical model of production inventory considering fuzzy

random demand and invenlory cost with reliability of the production process.
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iii. To optimize the pruduction inventory model by maximizing lotal profit and
set-up cost. reliability of the production process aleng with the production

period are as the decision variables.

This thesis, however, presents possible clues in the development of production inventory
model by providing mathematical results to help on understanding, formulation and

analysis of such mathematical inventory model.

1.3 Outline of methodology

The research work is theoretical in pature. A mathematical inventery model is developed
considering some practical situations such as fuzzy random demand, fuzzy inventory
holding cost and reliability of the production process. The production inventory model is
composed of some mathematical equations which arc used to determine the numerical
values of different decision variables {sct-up cost per cycle, reliability of the production
process, duration of time until the production is being held and maximum profit). The

methodology is as follows:

i. A profit function iz developed considering selling price of fresh units, selling
price of defective units, production cost. holding cost, sei-up cost and cost of
interest and depreciation cost

li. Expected average profit and graded mcan integrated value (GMIV) of
expecied average pn::_ﬁt are determined and optimized.

iii. Mathematical equations are obtained from optimal feasible solutions
considering some imponant factors (fuzzy random demand. fuzzy inventory
holding cost and teliability of the production process) which are present in
real life production inventory problem.

iv.  Equations for set-up cost per cycle, reliability of the production process and
duration of time until production is being held are developed for this
preductien inventory problem and graded mean integration value {GMIV) of
total profit is optimized using unconstraint  signomizl  geometric
programming. |

v. A numerical example is considered to iltustrate and explain the production

inventory model.



CHAPTER II
LITERATURE REVIEW

In the production inventory mathematical modeling, the problems are complex and mult
objectives and theoretical in nature. That is, there exist scveral criteria that musl be laken
into consideration when formulating and solving the model. [t is common that some or all
of these criteria arc conflicting, perhaps incommensurable and set by morc than one
decision maker. Among these criteria there are for example: demand, inventery holding
cosls, set-up costs, reliability of the production process, imperfection and impreciseness
of the production process ctc. Traditionally, these problems have been tackled as single
objective optimization problems afler combining the multiple criteria into single scalar
value. On the other hand, inherent complexity and uncerainty of some variables make
the inventory problem complicated. This imposes a pressurc upon the rescarcher to

implement an appropriate and rcalistic mathematical modeling of the production

mveniory problem.
2.1 Literature review

Some research papers have been studicd to understand the background of the study.
Many factors have been considered to develop the previous production inventory models.
Differcnt methodologics have been followed to develop and solve models. In this

section, some research papers have been studicd to understand the factors and

methodologics considered by researchers.

Andersson and Melchiors (2001 developed a one warghouse scveral retailers’ inventory
system  assuming lost sales at the retailers. Using the well-known METRIC-
approximation as a framewotk, they presented a heuristic for finding cost elfective base-
stock policics. Almaost all mutti—eghe!nn inventory models assume that demand not
satislicd immediately can be backordered. In some situations this assumption may not be
realistic. For example, it may be more representative to model stock outs as lost sales
whert the retailers are in a competitive market and customers can easily turn 1o another

firm when purchasing the good. I'he research dealing with multi-echelon inventory

3



models has focused mainly on the backorder casc, and the number of models dealing with
lost sales is rather limited. The main reason for this is the added complexity of the lost
sales case. The researchers considered a two-echelon inventory system with one central
warehouse and an arbitrary number of retailers. The retailers face customer demand and
replenish their stocks from (he central warehouse. The warehouse, in tuen, replenishes its
siock from an outside supplier. In the paper the researchers analyzed a model for a one
warehouse, multiple retailers’ inventory system. Demand occurs only at the retailers and
follows independent Poisson processes, All lead times arc assumed to be constant. All
installations use (S-1, $)-policies with continuous revicw, It is assumed that backlogging
of custemer demand is not allowed. The analysis departs in one of the most widely
known multi-echelon inventory models, the METRIC-model. They demonstrated how the
ME’I‘RI(;-mndeI can be modified to handle the lost sales case. Uheir approach gives an
approximate mede! which is quite simple and efficient from a computational point of
view. The inventory system under consideration consists of one central warchouse and an
arbitrary number of retailers. Lhe retailers face Poisson customer demand, No
backlogging is allowed at the rctailers. Conseguently, the customers that arrive to a
retailer that is out of stock will become lost sales for the retailer. When stock outs occur
at the warchouse, il demands from the retailers are fully backlogged and the backorders
are filled according o a FIFQO-policy. The transporiation time between the warehousc and
a given retailer is assumed to be constant as well as the transportation time from the
external supplicr to the warehouse. The cost of replenishment is assumed to be zero or
negligible compared to the holding and stock out costs. The cxternal supplicr is assumed
(© have infinite capacity, which means that the replenishment lead time for the central
warehouse is constant. A heuristic method for evaluation and optimization of (S-1, S)-
policies for onc warghouse, multiple rctailers inventory system iz presented. The
evaluation technique uses the well-known MLUTRIC-approximation as a framework.
From a computational point of view tI;c presented 1echnique is very efficient and simple.
The original backorder METRIC-model is one of the most widely used multi-echelon
inventory models. The lost sales generalization of this model makes the policy evaluation

a bit more complex, since an iterative procedure is needed to obiain the cosl. Still, the



model is rather simple and casy to implement. Morcover, in many practical situations lost

sales is a rcasonable way to model stock outs.

Hsieh (2002) proposed two fuzzy production inventory models with fuzzy parameters for
crisp production guantity, or for fuzzy production quantity. The fuzzy total production
inventory costs of these models under the fuzzy arithmetical operations of function
principle arc proposed. The final purpose is to find optimal solutions of thesc models by
using graded mean integration rcpresentation method lor defuzziling fuzzy total
production inventory cost, and by using extension of the Lagrangean method for solving
inequality constrain problem. Furthermore, he founds that the optimal solutions are all
crisp real numbers. In addition, when the fussy parameters (fuzzy inventory cost, fusey
demand, fuzzy setup cost, fuzzy demand rate, and {uzzy production ratc) are all crisp real
numbers, the optimal solutions of proposed models can be specilied to meet classical
production inventory models. In the real world. the parameters and variables in inventory
model may be almost uncertain datum. Graded mean integration representation method is
-used to defuzzify the trapezoidal fuszy total production inventory cost. In the fuzzy
production inventory model for crisp production quanlity, the first derivative of fuzzy
lotal production inventory cost is used to solve the eptimal production quantity.
Furthermore, the algorithm of extension of the Lagrangean method is used to solve

inequality constrains in fuzzy production inventory model for fuzzy production quantity.

Lin et al. (2003) deals with inventory models that unify ihe inventory problems of raw
materials and finished products for a single product imperfect manufacturing system. The
products are manufactured in batches, and raw matcrials are jointly repienished from
outside suppliers. The system is assumed to deteriorate during the production proccss. As
a result, some proporion of defective items is produced. The defective items are
reworked at some cost either before or afier a sale. Periodic inspections at equally spaced
times and restorations of the production process are used to operatc the system. The .
objective is to minimize the expected total cost for the system. A solution procedure is
developed to find a near optimal solution for the basic model. The anal ysis is extended to
various cases where the defect rate is a function of the setup cosl, the proportion of

defective itemns is not conslant. or the inventory system has a limited capacity for raw

5



materials. Production of a single product produced in batches on a single facility or
production process is considered in this study. Authors assumed that at the beginning of
each production run the production process is in an “in-control” state and producing
itemns that conform to the specification. Afier a period of time, the production process
deleriorates. As a result, the process shifts from the in-control state 1o the out-of-control
siatc in which a certain percentage of items produced are non-conforming. The imperfect
production process and the raw materials are considered which are required for cach
production run. After the process is shilted from the in-control state to the out-of-control
state, the state change will be discovered by inspection and foflowed by some reslorative
work. The inspection and restoration times are assumed 10 be negligible. Although this
assumption can be relaxed, it is quite plausible, given the current advances in the
technologics used for inspection. Morcover, the usc of modular designs in complex
production systems cnables speedy repair of faifed machines and resterations. The
models are generalized to consider the case wherc the shifi of the production process can
be detected and corrected during a production run. The elapscd time until the process
shifts is a random vartable and assumed to have an exponential distribution with mean
I/p. It is assumed that the percentage of detectives, p. is a constant throughout the
duration when the production process is in an out-of-control state. Furthermore, the
defect rate, p, is assumed to be independent of the sctup cost. Tn the development of the
bhasic model, it is assumed that once the production process is out of control, the
percentage of defective items produced (p) remains constant throughout the entire cycle.
However, this assumption may not be realistic. 1t is conceivable that as the production
system detcriorates over time, the percentage of defective iterns produced may increase
accordingly. ln this section, the basic model is extended to incorporate two dynamic
cases: the production system deteriorates linearly after the system is in the out-ol-control
state, and the production system deteriorates exponentially afler the process is in the out-
of-contral state. The integrated EPQ models deal with the joint effects of maintenance
policy by inspection and the production-inventory system, including raw materials on the
cost of operating a single facility. Periodic inspections and equally spaced inspection
times arc adopled to develop the basic model and to determinc the relationship of

reworking cost and warranty cost. A solution procedure is developed to obtain a near



optimal production run time for the (inished product. economic ordering quantity for each
raw material, and an inspection schedule. Such a production run time is found to be
shorter than that of the perfect production system. The time decreases as the numbcr of
raw materials or the warranty cost inereascs. The model is extended for the situation
where both the mean elapscd time of the shifi and the percentage of defective items
produced is a function of the production setup cost. The analysis is further extended to
incorporate cases where the process wiil deteriorate linearly or exponentially aficr a

certain time. Finally, the model is directed 1oward a case that has a limited capacity for

raw materials.

Cal el al. (2004) studied a single-petiod two-product inventory model with stochastic
demands and downward substitution. Optimal order quantities provided some propertics
are represented in Cal et al. (2004) study. They considered that there are two products
and two demand classes. The downward substitution means that, demands from class 2
can be satisficd using stocks of product 1, but stocks of product 2 cannot be used to
-satisfy demands from class 1. This substitution structure widely exists 10 real life, such as
the product with higher capabilities or more functions can satisty the demands for the
product with lower capabilities or less functions. The researchers assumed that the
demands for each product are stochastic and the retailer just places orders betore the
demands are realized for once. The order, holding, penaity. and salvage costs are
proportional to the quantity, and the revenue carned is also lincar in the quantity sold.
The objective is to decide the order quantity for each product. They developed a general
profit maximization model for the single-period two-product substitulion problem,
obtained the optimal condition for the order quantitics, and some properties with respect
to the optimal order quantities. In the mathcmatical model, the researchers studied a
single-period  two-product invenlory model with stochastic demands, proportionsal
revenues and costs, downward gubstitution. They developed a general profil
maximization model and show that it is concave and sub modular, and then obtained the.
optimal condition for the order guantities. For the optimal quantities, they studicd the

impact of the parameters, and get some properties.




Generally, production quality is not always perfect. It is usually depend on the operating
state of a production process which may shift from an in-control state to an out-of-control
state due to occurrence of some assignable cause(s). When a signat for an assignable
cause is triggered, a scarch is initiated and is terminated upon finding the cause within a
pre-speeified Larget time. The process is then brought back to an in-control slate by
repair. However, if the assignable cause is not discovered within the pre-specified time,
production is allowed to continue until the next sampling or warning, whichever occurs
first. [n this case, either the alarm is considercd to be false with a probability of Type [
error, o the assignable cause has not been eliminated with a probability of Type Il error.
In the latter casc, the process produces products in an out-of-control state until the next
sampling or waming, whichever occurs first. However, this state does not indicate any
severe damage to the system. Tradittonally, X and/or R control charts have been used to
monitor the stability of a production process. An X -chart is used to control process mean
and an R chart to contrel process variance. It is possible both the process mean and
process variance 1o vary simultancously during a produciion ¢ycle. Under these
-conditions, a generalized economic model for the joint determination of production
quantity, an inspection schedule, and the design of the X and R control charts are
developed by Rahim (2004). A direct search optimization method is used to delermine
the optimal decision vatiables of the economic medel. This research makes an
assumption that there is a pre-specified time to find an assignable cause when therc is an
out-of-control signal. If the source of the assignable cause cannot be detected within a
pre-specified time, the process is allowed to continue until the next warning signal is
triggered. This leads (o Type [ or Type LI crrors depending on the actual existence or non-
existence of an error, The time for scarching an assignable cause is considered 10 be an
additional decision variable. This assumption may invite some criticism and deserves
some explanation andfor justiﬁcaEion. Some researchers might interpret it as
contradicting the modern view in quality management that quality is the number one
priority or as supporting the traditional concept of quantity over quality. In other words,
time is considered to be more important than quality: hence, time is not to be wasted in
fixing a problem. The impl ication of this assumption is that, in the long run, resources

may be wasted in producing inferior goods. Customers may end up receiving poer guality



products that should have been detected in the process, Loss of the customer’s goodwill
may be incurred, and the manufacturer will eventuglly lose-cnmpetitivcnass, From the
numerical studies of this model, the optimal value of Type [l error lies, approximately,
between 0.01 and 0.05. That is. the probability of calching the shift if there is one, lies
berween 0.95 and .99, This indicates that if (he assignable cause occurs and is not

detected immediately, it will be detected, on average, aficr one sampling interval.

Marketing researchers and practitioners have long recognized the demand of many retail
iterns is proportional to the amount of inventory displayed. Recently, two distinet types of
inventory control models reflecting this relationship have appeared in the literature,
models in which the demand rate of an item is a function of the initial inventory level and
those in which it is dependent on the instantaneous inventory level. Urban (2005}
presenied a comprehensive overview of this litcrature and demonstrate the equivalence of
the two types of models through the use of a simple, periodic-review model. An
alternative approach to sensitivity analysis for inventory models with inventory-level-
-dependent demand is also prescnted. The operations management/operations research
literature has recently focused considerable attention on inventory models for products
exhibiting an inventory-level-dependent demand rate. In this paper. comprehensive
review of this literature is conducted, distinguishing between Type | models in which the
demand rate of an item is a function of the initial inventory Ievel and Type 1 modets in
which it is dependent on the insiantancous inventory level. A periodic-review model is
then developed, first solving the general Type I problem, then illusirating how the more
complex, Type 11 model can be solved. Although the literature has evolved into thesc two
distinet streams of research, the authors show that in situations in which the costs arc not
dependent on the inventory lovel throughout the period, the Type 1l model can be
represented by an equivalent Type | model. The two types of models are not identical in
all situations; for example, an equivalent Type [ model (as presented) would not be
suitable for a Type 11 model using average inventory levels for holding costs or average

backorder levels for shortage costs.

Chang et al. {2006} considered a mixed inventory model involving variable lead timc

with backorders and lost sales. They first fuzzify the random lead-time demand to be a
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fuzzy random variable and obtain the total cost in the fuzcy scnse. Then. they further
fuzzify the total demand o be the triangular fuzzy number and derive the fuzzy total cost.
By the cenlroid method of defuzzification, they derive the estimate of wlal cost in the
fuzzy sense. Also, they find the optimal solution for order quantity and lead time in the
fuzzy sense such that the total cost has a minimum value. The issue of lecad-time
reduction has received a great deal of attention in the field of production/mventory
management. Lead time usually consists of the following componcnts: order preparation,
order (ransit, supplier lead time, delivery time and setup time. Although most of the
literature dealing with inventory problems viewed lead time as an uncontrollable variable,
however, in some practical situations, lcad time can be reduced by controlling some or all
of its components, The benefits associated with efforts to reduce lead time, such as lower
the safety stock, reduce the loss caused by stock out, increase the scrvice level to the
customer, and gain the competitive advantages in business, can be clearly perceived
through the Japanese successtu] expericnces of using Just-in-time (J I'l) production. The
previous lead-time reduction modcls are based on the continuous review inventory
‘systerns in which the uncertainty of demand during lead lime is tackled from the
traditional probability theory and the annual average demand is assessed by a crisp valuc.
However, various types of uncertaintics and imprecision including randomness and
fuzziness are infierent in real inventory environments, in the article; the authors address
the issue of lead-time reduction under such circumstances. Spccifically, they attempt to
develop a fuzzy inventory modet by considering the fuzziness and randomness for lead
time demand, which is represented by a fuzzy random variable. Mlso, for the annual
average demand, due to the fact that it may Muctuate a little in an unstable eavironment
and is difficult to assess by a crisp value, they consider it as the fuzzy number, The
purpose of this article is to rccast Chang et al’s mixture inventory model involving
variable lead time with backorders and lost sales by Rurther considering the fuzziness of
lcad-time demand and annual avc:ﬂgc demand. The suthors aim at providing an
altcrnative approach of modeling upcertainty that may appear in real situations; whercas
they do not altempt to eslablish the superiority of proposing a new muodel to reduce more
inventory cost than previous one. Authors also consider a mixture inventory model and

address the issuc of lead-lime reduction in the fuzsy cnvironmenis. Building upon Chang
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ot al.’s (2006) model in which the annual average demand is a crisp value and the random
lead-time demand is normally distributed, the authors first fuzzify lead time demand to be
a fuzzy random variable and derive the total cxpected annual cost in the fuzzy sense.
Then, they further fuzzify demand to be the triangular fuzsy number and obtain the fuzzy
total cost. Afler defuzzification, they derive the estimate of total expecled annual cost in

the fuzzy sensc and obtain the corresponding optimal order quantity and lead time.

An inventory madel for deteriorating items with stock-dependent consumption rate and
shortages under inflation and time discounting over a linite planning horizon is derived
by Hou (2006). The total cost [unction is convex. With the convexity, a simple solution
algorithm is presented to determine the optimal order quantity and the optimal interval of
the wtal cost function. A sensitivity analysis of the optimal solution with respect to the
parameters of the system is carried out. This mode! incorporales some realistic features
tlhat are likely to be associated with some kinds of inventory. First, deterioration over
time is a natural feature for goods. Sccondly, veeurrence of shorages in inventory is a
natural phenomenon in real situations. Thirdly, it has been observed in supcrmarkets thal
the demand is usually influenced by the amount of stock dispiayed on the shelves, iz,
the demand rate may go up or down if the on-hand inventory level increascs or decreases.
Fourthly, the DCF approach pormits a proper recognition of the financial implication of
the opportunity cost in inventory analysis. Next, since the inventory systems always need
1o invest large capital to purchase inventories, which it is highly correlated to the retum
of investment. Hence, il is imporant to consider the effects ot inflation and the time
value of money in formulating inventory replenishment policy. In heeping with this
reality, these factors are incorporated into the present model. The model is very uscful in
the retail business. It can be used for electronic componenis, fashionable clothes,
domestic goods and other products which are more likely with the characteristics above,
Here, it has been given an analytic® formulation of the problem on the framework
described above and have presented an optimal solution procedure to find optirmnat
replenishment policy. From this research results, it is also verified that the effects of
inflation and the time value of money in formulating replenishment policy result in

smaller discounted total cost than a policy which does ignore the ellcets of these factors.



Finally, the sensitivity of the solution to changes in the valucs of dilfcrent paramcters has
been discussed. It is seen that changes in the consumption rate, the ordering cost and
shoriage cost lead to significant e[fects on the order quantity. The total cost is sensitive o
changges in the consumplion rale parameter, the unit cost and net discount rate of inflation
(R). Moreover, special cases that influence the optimal 1otal cost are also discussed. It is
obviously observed thai the total cost incrcases considerably with the case of the inflation

and time value of money arc not considered, that is, net discount rate of inflation is zero.

Islam and Roy (2006) devcloped an economic production quantity (EPQ) model with
MNexibility and reliability consideration of production process and demand dependent unit
production cost. The model has involved one storage space constraint. [t is formulated in
fuzzy environment introducing fuzziness in objective and constraint goals, coefficient
and indexes of objective function and constraint. The model is propesed to by fuzzy
geometric programming technigue. The determination of the mest cost-effective
production quantity is commonly known as classical cconomic production quantity
model. Over the last three decades tremendous amount of research effort has been
expanded on this topic. The inventory problem is controlled by seme constraints. Here
one constraint is capacity constraint. But, in real life problems, it is almosl impaossible 1o
predict the restricted resource amount precisely. Decision maker may change it within
some limits as per the demand of the situation. Hence it may be assumed uncertain in
non-stochastic sense but fuszy in nature. The researchers have formulated a fuzzy
economic production quantity (FEPQ) model with flexibility and rcliability consideration
of production process and demand dependent unit production cost under the slorage space

constaint. Shodages are not permitted in (his model.

Law and Wec (2006) developed an inventory model of an integrated production-
inventory model from the perspectivgs of both the manufacturer and the retailer. They
considercd both amcliorating and deleriorating effects laking account of multiple
deliveries, partial backordering and time discounting. The amelioration and deterioration
are assumed to follow the Weibull distribution. The discounted cash flow and
optimization technique are used to derive the optimal solution. This model is particularly

useful for items that amelicrate and deteriorate at the same time. Amelworation ocours
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when the value or utility of a product increases over time. Weibull ameliorating rates
with decreasing function with time and Weibull deteriorating rates with increasing
function with time are used in this modcl. Wetbull distribution is used Lo represent the
prodluct in stock as it deteriorates with time, The delerioration rate is assumed to increasc
with age; that is, the longer the items remaincd unused, and the higher the deteriorating
rate. Partial backordering is considered for a [laic competitive market becausc some
customets are impatient, and may find an alternative source when there is a shortage. The
main contribution of the model is to incorporate manufacturer—relail cooperation and
consider the factors of amclioration, delerioration, Weibull distribution, multiple
deliveries, partial backordering and time discounting simultaneously. They applied the
discounted cesh (low (DCF) approach and optimization technigue to delermine the
optimal production and replenishment policy. The model considered deterioration,
amelioration, multiple deliveries, partial backordering and time discounting. The mode! is
particularly useful for items that ameliorate and detcriorate at the same time. The

discounted cash flow and oplimization technique are used to derive the optimal solution.

Mohebbi (2006) considered that a production-inventory systemn wilh limited storage
capacity in which demand for a sinplc item arises according to a compound Poisson
stream whose occurrence ratc and random batch sizes at any point in time depend on the
state of a random (cxternal} enviromment, and production occurs continuously and
uniformly over time at a rale determincd by the stale of another independent and
rapdomly changing (internal) environment. It is assumed that each of the two randomly
changing environments is represented by a continuous-time homogeneous Markov chain
with a discrete stale space. The facility starts production as soon as the inventory level
drops below the storage limit and the production continues until the inventory level
reaches the storage full capacity. Assuming that the shortages are lost, the author has
derived the steady-statc distributioh of the inventory level which is used to formulate
come measurcs of common interest regarding the performance of such systems. The
author has also formulated an expected-net-revenue maximization problem and provides
some numerical results. In the production-inventory model, in which, the production and

demand rates are modufated by two independent continuous-time homagencous Markow
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chains. For stochastic piccewise lincar production and compound Poisson demands, the
author has applicd level-crossing theory to derive the limtting distribution of the
inventory level in a limited capacity production-storage system with lost sales. A number
of impomant performance measures including an expected revenue accumulation rate
function were formulated and some numerical results in terms of sensitivity analysis and
optimality of the system parameters were prescnted. These results clearly demonstrate the

ctitical impact of the variability induced by randomly changing cnvironments on the

systemn performance.

Houte et al. (2007) considercd a two-cchelon supply chain: a single retailer holds a
finished goods inventory to meet customer demand, and a single manufacturer produccs
the retailer’s replenishment orders on a make-to-order basis. In the selting the relaifcr’s
order decision has a direct impact on the manufacturer’s production. Tt is a well known
phenomenon that inventory control policics at the rctailer level ofien propagate cusiomer
demand variability towards the manufacturer, somelimes cven in an amplified form
-(known as the bullwhip effect). The manufacturct, however, prefers to smooth
production, and thus he prefers a smooth order patiern from the retailer. At first sight a
decrease in order variability comes at the cost of an increased variance of the retailer’s
inventory levels, inflating the retailer’s safety stock requirements. However, inlegrating
the impact of the retailer’s order decision on the manulaciurer’s production leads 10 new
insights. A smooth order pahllem  gcnerates shoter and less variable
{production/replenishment) lead times, introducing a compensating effcct on the retailer’s
safety stock. They show that by including the impact of the order decision on lead times,

the order pattern can be smoothed to a considerable extent without increasing stock

levels.

Dutta et al. (2007) developed a continuous review inventory sysiem where the annual
average demand is treated as a fuzzy random variable. Also, the lead-time demand is
assessed by a triangular fuzzy number, Since the annual demand is a fuzzy random
variable, Lthe associated total cost function is also a fuzzy random variable. As a result, the

total expected cost becomes a fuzzy quantity. They find the optimal order quantity along
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with the reorder point so that the associated total cost is minimum. Using possibilistic

mean value of a fuzzy number the {uzzy cxpected cost has been minimized here.

Atici and Uysal {2008) proposed to investigate the optimal production and inventory
paths of HMMS type models (proposed by Holt, Modigliani, Muth and Simen) on
complex time domains. Time scale caleulus which is a rapidly growing theory is a main
to0] for solving and for analyzing the model. In the case, one can use the results of the
qualitative analysis in time scales, whose development is in progress. A flexible and

capable medeling technique is considered here.

Chen and Chang ({2008) intreduced a fuzzy economic production guantity (FEPQ) maodel
with defective productions that cannot be repaired. Authors consider a fuzzy opporiunity
cost and trapezoidal fuzzy costs under crisp production quantity or fuzzy production
quantity in crder to extend the traditional production inventory model to the fuzzy
environment. Authors use Function Principle as arithmetical operations of fuzzy total
_production inventory cost (FTFIC), and use the Graded Mean Integration Representation
method to defuzzily the fuzzy total production and inventory cost. Then they use the
Kuhn-Tucker method to lind the optimal cconomic production quantity of the fuszy

production tnventory modcl.

Lin (2008) developed periodic review inventory model with wvariabic lead time by
considering the fuzziness of cxpected demand shorlage and backorder rate. Author
fuzzified the expected shortage quantity at the end of cycle and the backorder (or lost
sales} rate, and then obtained the fuzzy total expected annual cost. Using the signed
distance method Lo defuzzify, the estimate ol total cxpected annual cost i the fuzzy sense
is derived. For the proposed model, author obtained the optimal roview period and
optimal lead time in the fuzzy sensc so that the total expected annual cost in the fuzzy
sense has a minimum value. l'or a pe:ic-ciic review inventory control system with variable
lead time, Quyang and Chuang (2001) have treated the review period and lcad time a:-*;'l
decision variables in crisp set. This paper expiotes a similar inventory model in which not
only the expected demand shortage is fuzzified as a fuzzy random variable in the fuzzy

sense, but the lost sales rate is also considered 1o be a luzzy number. The rescarcher then
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obtained the total expected annual cost in the fuzzy sensc. Here, author used signed
distance method to defuzzify the fuzzy total expected annual cost and obtain an estimalte

of the total expected annuat cost in the fuzzy sense.

Mohebbi and Hao (2008) assumed that an unreliable supplier in a single-item stochastic
inventory system alternates randomly between Iwo possible states {i.e,, available and
unavailable), following a two-state continuous-time homogeneous Markov chain. For a
compound Poisson stream of demands and Erlang lead times, their model considers the
scenario where the processing of the outstanding order (if any} is interrupted al every
supplier’s transition epoch from the available to the unavailable state, and is restarled
from the outset upon the supplier's regaining its available state. They derived the
stationary distribution of the on-hand inventory under a continuous-review policy. The
model takes an explicit new account of the impact of supplier’s availability on the
replenishment lead time and thercfore, eapands the analytical treatment of supply
interruption to a broader extent. The primary objective in modeling the system is to
- derive the stetionary distribution of the inventory level as an enabler for establishing
various performance measurcs. The authors utilize a level-crossing approach to
accomplish this objective and use the resulting distribution Lo obtain the exact functional
form of the long-run expected total cost (i.c. the sum of ordering, holding and shonage

costs) per unit time of operating this inventory system.

Maiti (2008} devcloped multi-item inventory model with stock-dependent demand and
two-storage facilities is developed in fuzzy environment (purchase cost, investment
amount and storchouse capacity are imprecise) under inflation and time value of money.
Joint replenishment and simultancous transfer of items from one warchouse to another is
proposed using basic period (BP) policy. As some paramcters are fuzzy in nature,
obiective (average profit} functions as well as somc constrainis arc imprecisc in nature.
Madel is formulated as to optimize the possibility/necessity measure of the fuzzy goal of
the objective function and constraints arc satisfied with some pre-defined necessity. A
genetic algorithm (GA) is developed with roulette wheel selection, binary crossover and
mutation: and is used to solve the model when the equivalent crisp form of the model is

available. In other cases fuzzy simulation process is proposed to measurc
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possibility/necessity of the luzzy goal as weil as to check the constraints of the problem
and finally the model is solved using fuzzy simulation based genctic algorithm (FSGA).
Also a simulation approach is proposed to detcrmine this possibility/ necessity measure in

complex fuzzy environment.

Panda et al. (2008) developed a mathematical model for a single period multi-product
manufacturing system of stochastically imperfect items with continuous stochastic
demand under budger and shortage constraints. Afler calculating expected prolit in
general form in terms of density functions of the demand and percentage of
imperfectness, parlicular expressions for those density functions are considered. Here the
constraints are of three types: both arc stochastic, one stochastic and olher one imprecise
(fuzzy) and both imprecise. The stochastic constraints have been represented by chance
constraints and fuzzy constraints in the form of possibility/necessity constraints.
Stochastic and fuzzy constraints are transformed to equivalent deterministic ones using
‘here and now’ approach and fuzzy relations respectively. The deterministic problems are
solved using 4 non-linear optimization technique-generaliced reduced gradient method,
The authors propose an estension Lo economic production lot size model for imperfcet
items in which the produclion rate is assumed to be finite and demand ratc is stochastic

{continuous) under uncertain budget and shortage constraints.

Rezaei and Davoodi{2008) developed a deterministic inventory model considering the
scenario of supply chain with multiple‘ products and multipte suppliers, all of which have
limited capacity. They also considered the situation of imperfect quality. The rescarchers
introduced imperfect items and storage capacitly in the lot sizing with supplier selection
problem and formulate the problem as a mixed integer programming model. Then the
model is solved with a genetic algorithm. Using classical optimization methods the single
ontimal solutien can be obtained hut 1t is true when the problem is small. Some higher
level information (such as social and cultural consideration) could not be included in the
mode! using classical optimization methods. Although these solutions (obtatned via GA)}
are nol neccssarily optimal and arc almost near-optimal, it can be possible for decision

maker to selecl one of them that matches with the real world condition.
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Maiti et al. (2008) provided two defuzzification techniques for two fuzzy inventory
models using extension principle and duality theory of non-lincar programming and
interval arithmetic. An EOQ moedel for deteriorating items is considercd in fuzzy
environment. Here, the inventory cost coeflicients, storage space and budgetary cost are
fuzzy and represented by fuzzy numbers. Demands and rates of deterioration of the ilems
are constant. The fuszy total average cost for the inventory control system is derived and
minimized, Firstly, using the Zadeh’s extension principle a pair of mathematical models
are formulated to calculate the lower and upper bounds of the @ —cuts of total average
fuzzy inventory cost at possibility level o The first model is solved casily using a
gradient based optimization tcchnique (Generalized Reduced Gradient method), but Lo
colve the second model the authors proposed the duality thcorem of non-linear

programming such that the primal and dual models have the same objective value,

Tarim and Smith (2008) proposed a constraint programming model for computing the
finite horizon single-itcm invenlory problem with stochastic demands in discrele time
- petiods with service-levet constrainis under the non-stationary version of the “periodie
review, order-up-to-level’” policy (i.e., non-stationary (R,S}.or, simply (Rn Sa)) The
computational tests show that the approach is maore tractable than the conventional MIP
formulation. Two different domain reduction mcthods are proposed to improve the

computational performance of solution algorithms.

Vijavan and Kumaran (2008) iniroduced fuzeiness by allowing the cost components
imprecise and vague to cermain extent. Continuous review and periodic review inventory
models in which a fraction of demand is backordered and the remaining fraction is lost
during the stock out period arc considercd under fuzzy environment. Authors used
trapezoidal fuzzy numbers (o represent these charactleristics. The optimum policies of
these models under fuzzy costs are also derived by them. Inventory models which involve
both backorders and lost sales arc known as models with a mixture of backerders and lost
sales. Stochastic inventory models with a mixture of backerders and lost sales are
described by introducing fuzziness in the cost parameters. The inventory maodel alsa

implies that the impact ol fuzziness is nullilied when each of the cost components are

allowed fozziness in equal percentages,



Chung et al. {2009) proposed an inventory model which showed that the total cost
function per unit time is convex by a rigorous proof, derived the closed forms for the
upper and lower bounds on the optimal cycle time of the total cost function per unit time,
therehy enabling straightforward application of the standard bisection algorithm to
numnerically computc the optimal cycle time and compared optimal solutions oblained by

using this approach (the bisection algorithm} and Park’s approach.

Chung et al. {2009) established a new inventory model with two warehouses for items
with imperfect quality. They devcloped a mathematical model by maximizing the annual
total profit. They developed an inventory model Lo incorporale concepts of two
warchouses and imperfect quality to relax assumptions (All units produced are of perfect
quality and. The inventorics are stored by a single warchouse wilh unlimited capacity) to
establish a new economic production quantity model. In practice, the above two
assumptions are unrealistic and product quality is not always perfect but directly affected
by the reliability of the production process used to produce the products. On the other
- hand, as we all know, the capacily of any warehousc is limiled. The researchers have
incorporated concepts of the basic two warehouses and imperfect quality in their

mathematical model. They concluded that capected total profit per unit time ETPU{(y) is

piccewise concave.

Banerjee et al. (2009) recast an inventory model to be more relevant to current situations,
where the penalty cost for a shortage occurrence at a downstream stage i & supply chain
is continually transmitied Lo the upstream stages. The supplier, in this case, at the
upstream of the supply chain is rcsponsible for ali the downstream shortages dug to the
chain reaction of its backlog. Authors developed a model in which the backorder cost per
unit time is a linearly increasing function of shortage time, and it ¢laims that the optimal
policy for the supplier is setting the optimal shorlage time per inventory cycle to

minimize its wotal relevant cost in a J{T environment.

Liu and Lian (2009} considered the cost-effective inventory control of work-in-process
(W1P) and finished products in a two-stage distributed manufacturing system. The first

stage produces a common WIF, and the sceond stage consists of several production siles
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that produce differentiated products with different capacity and serviec level
requiremnents. The unit inventory holding cost is higher #t the second stage. Authors used
a network of inventory-queue model to evaluate the inventory cost and service level
achievable for given inventory control pelicy, and then derives a very simple algorithm Lo
find the optimal inventory contro! policy that minimizes the overall inventory holding
cost and satisfies the given service level requirements. The researchers consider a
distributed manufacturing system that consists of two production stages. The first
production stage produces & common impertant component with limited capacity, and the
second stage is a differentiation stage that consists of several stations which produce
different finished products. taking the output of first stage and other possible components
as (heir raw materials. [t develops a simple **fronticr curve”™ optimization method to find
the optimal inventory control policies at ali sites that provide the required service levels
for all fnished products simultaneously. The optimization algorithm is iterative and
allows for easy “‘whatif” analysis, and considers explicitly the joint cost and

performance effect of inventory control policy at all sites to the system.

Mondal et al. (2009) considered an economic production lot (EPL} model considering,
the unit production cost depends upon the cost of raw materials, labor charges
advertisement cost, produced units, etc.. demand rate is a deterministic function of selling
price and the advertisement cost and Selling price is determined by & mark-up over the
unit production cost. The authors have made an extension Lo thc cconomic production lot
size model incorporating both marketing decision regarding the defective items and
variable unit price depending on the rateof production. It is a common belief that moere
production gives more profit. Another popular myth is that profit increases with the

increase of selling price per unit item.

Panda and Maiti (2009) considersd, multi-item economic production quantity (EPQ)
models with selling price dependent demand, infinite production rate, stock dependent
unit production and holding cests in this paper. Flexibility and rcliability consideration
are intoduced in the production process. The modcls are developed under two furzy
environments - one with fuszy goal and fuzzy restrictions on storage area and the other

with unit cost as fuzey and possibility - neccssity restrictions on storage spacc. ‘The
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objective goal and constraint goal are defined by membership functions and the presence
of fuzzy parameters in the objective function is dealt with fuszy possibilily/nceessity
measures. The models are formed as maximization probtems. The first onc-the fussy goal
programming problem is solved using fuzzy additive goal programming {(FAGP) and
modified geometric programming (MGP) methods. The second model with fuzzy
possibility/necessity measures is solved by geometric programming (GP) method. The
authors have considered demand as power function of selling price, unit costs dependent
on inventory tevel, holding costs again as tunctions of unit costs. Here they have
formulated multi-itern profit maximization production inventory models with limited
storage arca in [urzy/fuzzy possibility and neccssity sense under process rcliability and
flexibility. They have considcred fursy possibility and necessily mcasures of the

objective function when its some paramcters are fuzzy.

A production inventory model for a newly launched product is developed by Roy et al.
(2009) incorporating inflation and time value of money. It s assumed that demand of the
item is displayed stock dependent and lifetime of the product is random in nature and
follows exponential distributien with a known mean. Here learning elfect on produetion
and setup cost is incorporated. Model is formulated to maximize the expected profit from
the whole planning horizon. A fuzzy-based lifetime extension of genetic algorithms is
considercd. A penetic algorithm (GA) with varying population size is used Lo solve the
model where crossover probability is a function of parent’s age lype (young, muddfe-
aged, old, ete.) and is obtained using 2 fizey rule base and possibiiity theory. In this GA a
subset of betier children is inctuded with the parcnt population for next generation and
size of this subset is a percentage of the size of its parcnt set. This GA is named fuzey
genetic algorithm (FGA) and is used to make decision for above production inventory
model in different cases. The model s illustrated with some numerical data. Sensitivity
analysis on expected profil function”is also presented. Performance of this GA with
respect to some other GAs is comparcd. An EPQ model has been considered under |
inflation and time discounting over a stochastic time horizon incorporating the lcarning

cffect on both the produetion and setup cost.
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Maiti et al. (2009) developed an invenlory mode] for a deteriorating item (seasonal
product) with linearly displayed stock dependent demand in imprecise cnvironment
(involving both fuzzy and random paramcters) under inflation and timc value of moncy.
Authors assumed that time horizon, i.e., period of business are random and follow
exponential distribulion with a known mean. The resultant elfect of inflation and time
value of money is assumed as fuzzy in nature. The particular case, when resultant effect
of inflation and time value is erisp in nature, is also analyzed. For crisp inflation eflect,
the total expected prolit for the planning horizon is maximized using the GA {Genetic
Algorithm) to derive optimal inventory decision. On the other hand when inflationary
effect is fuzzy then the expected profit is fuzzy in nature too. For crisp model cxpected
prolit is proposed to maximize using a GA with roulette wheel selection, arithmetic
crossover and random mutation. Tn the case of fuszy model, a fuzey simulation process is
proposed to maximize the optimistic/pessimistic return of the objeclive function and a
fuzzy simulation based genetic algorithm with GA operators 1s developed to solve the
model. To solve the stochastic mode! {madel-1) GA is used. The basic technique to deal
ﬁrnblems of the fuzzy stochastic model (model-2) is to convert the possibility/necessity

constraint to s deterministic equivalent,

Expected inventory order crossovers occur il at the moment of ordering it is expected that
orders will not arrive in the sequence they are ordered. Recent rescarch has shown that,
expected inventory order crossovers will be cncountered more Trequently in future. and
that use of a myopic order-up-to policy based on a stochastic dynamic rOgrammnling
approach leads to improved performance compared to the classical approach. Riezebos
and Gazlman (2009) showcd that the improved pelicy is still heuristic in nature, as it
neglects several control options that are available on the various ondering moments and
mekes some restrictive assumplions with respect to  the  separability (ie.,

decomposability) of the stochastic dynimic programming problem.

Sakaguchi (2009) discussed a method to get an economic order quantity in inventory
systerns with discretc demand to determine whether it increascs or decreases from period
lo period. The researchers assumed h and p are the holding cost and the shortage casts per

unit per period, respectively, and ¢ is the purchasing cost per unit, 7 is the amount on
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hand in initial period after a regular order is received, t length of petiod, N number of
periods and they also assumed that demand in a single period be a discrete random
variabte. The decision criterion of single period is the minimization of the expected cost

which includes the purchasing, holding and sherlage costs.

Sharma (2009) developed a composite for & generalized environment of a manufacturing
situation, where the procurement of multiple input tems has been considered along with
the production of a finished item and fractional backordering is included. The modei can
be used for a variety of situations. They provided the output parameters for possible
combinations of inpul parameters, which can be uscd directly and are also suitable for
further analysis. According to the researcher a 100% inspection of manufactured product
is carried oul and therefore the finished product inventory includes non-defective items
only. However the manufacturing facility will produce certain defective itcms atso in
general and therefore these are incorporated in the relevant cost formulation and the
generalized procedure. The composite model can be used for a wide variety of cases. For
- example, the formulation can be adjusted for the situation when a particular facilily is
gencrating the acceptable items only. The researcher devcloped this composite modcl
incorporating the manufacturing and procurement of input items, Author included
fractional/partial backordering along with' the finite replenishment rate of input items.
The model is suitable for adapting to the varicty of situations available in
industrial/business environment. In the context of continuous manufacturing, the
demands are usually more than the production rate and these decmands are looked at from
a different perspective in any manufacturing system. But there arc cases in the batch
production where the production rate is usually greater than the demand rate. Therefore it
becomes relevant to formulate the tolal cost and to obtain the output parameiers afier

pptimizing the costs and this model serves this purpose properly.

o

Hsu et al. (2009) developed a fuzzy multi-ohjective joint replenishment inventory model
of deteriorating items. The model maximizes the profit and return on inventory
investment (RONY under fuzzy demand and shorlage cost constraint. They propose a
nove) inverse weight fuzzy non-linear programming (IWFNLP) to formulate the fuzzy

model. A sofi computing, differential evolution {DE} with/without migration pperation,’ is
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proposed to solve the problem. The performances of the proposced fuzzy methed and the
conventional fuzzy additive goal programming (FAGP) arc compared. Chey show that
the solution derived from the [WFNLP method satisfics the decision maker’s desirable
achievement level of the profit objective, ROII objective and shortage cost constraint
goal under the desirable possible level of fuzzy demand. It is an effective decision tool
since it can really reflect the relative imporiance of each fuzzy componcat. A mulli-
objective joint replenishment deteriorating items inventory model with stock-dependent
demand and total average shortage cost constraint is formulated in a fuzzy environment.
Under the basic period (BP) approach, the objective of this model is (o maximize the
profit and ROII objectives. ROIL is defined as the ratio of profit to the average inventory
investment. Two fuzzy scenarios arc considered in this study. A multi-objective
inventory model with fuzzy shortage cost constraint is first developed. Then they extend
the model by assuming the demands are also fuzzy in nature, The fuzzy multi-objective
models are formulated using FAGP method. A novel method IWFNLP is also proposed.
This method embeds the idea of inverse weights into the Max—Min fuzzy model. The
" results of the FAGP and I'WFNLP methads solved by DE with/without migration
operation are illustrated numerically. In the numerical cxamples, dilferent patterns of
weights are assigned to each fuzzy component including the possible level of fuzzy
dernand, profit objective, ROII objective and total shortage cost constraint goal. A muiti-
objcetive joint replenishment deteriorating items inventory model with fuzzy demand and
shortage cost constraint is developed. The model with fuzsy demand and shorrage cost
constraint that simultaneously maximizes the profit and return on inventory investment
objectives is non-existence. The rescarchers also initiate the formulation of a multi-
objective inventory model by the inverse weight fuzzy non-linear  programming
(IWFNLP) and fuzzy additive goal programming (FAGP) methods simultancously. An
eMcient constraint handling method is embedded into the differential evolution (DL)

with/without migration technique to solve the complex inventory model.

In order to understand the potential benefits of the consignment stock policy, an
analytical model is offered by Zavanclla and Zanoni (2009} with reference to the

inleresting industrial case of a single-vendor and multiple buyer productive situation, thus
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obtaining the oplimal replenishment decisions for both the vendor and buyers in such a
situation. The results show how ihe CS policy works better than the uncoordinated
optimization. The study aimed at proposing a model for a single-vendor multi-buyer
system, integrated in a shared management of the buyers’ inventory, so as to pursuc a
reduction or the stability of the holding costs while descending the chain. The inventory
management is carricd out according to the CS practice and, consequently, the model
appears to be simpler. The results show that the joint management of the inventory gives
rise to economic benefits, which, however, may be modest or relevant according to the
structure of the chain. The results themselves suggested the development of a sensitivity
analysis, which allowed drawing some interesting remarks on the influence of the

parameters relevant Lo the economic performance of the supply chain.

Benjaafar et al. (2010) considered the control of a production-inventory sysiem with
impatient customers. The optimal policy can be described using two thresholds: a
production base-stock level that determines when production takes place and an
- admission threshold that determines when orders should be aceepted. Here, it is described
that an algorithm for computing the performance of the system for any choice ol basc-
stock level and admission threshold. In a numerical study, the authors comparc the
performance of the oplimal policy against scveral other policics. A system is considered
where a single product is produced at a single facHity to fulfill demand from customers
who place orders continuously over time according to a Poisson process with ratc L8
ltems are produced onc unit at a time with exponentially distributed production times
with mean 1/p. The production facility can produce ahead of demand in a make-to-stock
fashion. However, items in inventory incur a holding cost h per unit per unit time. Upon
arrival, an order is either fulfilled from inventory, if any is available, backordered, or
rejected. If an order is rejected, the system incurs a rgjection cost r. If an order is
backordered, the system incurs no imMediate cost. However, customers are impatieni and

may decide to cancel their orders if their wailing time in backlog cxceeds a patience time.

Chen and Kang (2010) developed the integrated inventory models with perm issible delay
in payment, in which customers’ demand is sensitive to the buyer’s price. The models

consider the two-level trade policy in the vendor—buyer and buyer—customer relationships

25



in supply chain management. A simple recursive solution procedurc is proposed for the
integrated models to detcrmine the buyer’s optimal pricing and productionforder strategy.
Although the total profit from the buyer and vendor increases together, the buyer’s share
lessens. To compensate the buyer’s Joss duc to the cooperative relationship, a negotiation

system is presented in order 1o allocate the profit increase to the vendor and buyer to

determine the pricing and production/order strategy.

Haji and Darabi (2010) investigaled the eflect of information update on a specific class of
problems specifically the effect on the decisions retated o a single-period inventery
model . The goal is to find the best set of decisions to minimice the total cost of the
inventory systems. The paper helps to find the optimal policy for a single-period
inventory systern with information update choice. The introduction of update decision

generated a tolal cost function that is not necessarily convex.

Liao and Huang (2010} considered the impact of a replenishment policy on the liming of
_ihe cash flows associated with payments Lo suppliers and revenue streams from
customers. That is, the same cash amount will possess different moncy value at different
future ime. The more appropriate net present value (NPV) object instead of the average
cost objective is adopted in this paper, In addition, the deteriorating effects will be
incorporated in this inventory model, and the time to deterioration of cach item lollows
an exponential distribution. The discounted cash flow (DCF} approach is used to derive
the optimal solution in this study. Furthermare, s has been first found that the optimal
solution not only exists bus also is unique. Then, the authors provided a theorem to locate
the optimal ordering policy of two icvels trade credit, deteriotation and time discounting
simultaneously. The discounted cash flow (DCF} approach to determine the pptimal
ordering policy is applied. The paper incorporates some realistic features that are likely to
be associated with the inventory of some kinds ol items. One is that deterioration over
time is a natural feature for items; the other is that the DCL* approach permits a proper
recognition of the financial implication of (he opportunity cost in inventory analysis with

two fevels of trade credil.
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e et al. (2010) developed a production-inventory model for deteriorating items with
multiple-market demand, where each market has a dilfferent selling season and a dillerent
constant demnand raic. To foster additional managerial insights, the authors performed
extensive sensitivity analyses and illustrated the results with a simulation study. Global
markets offer selling opportunities and pose production management challenges for
manufacturers of deteriorating items. Lxploiting the difference in timing of ihe selling
season of the deleriorating items at difTerent markets is a unigue opportunity te improve
the profitability of a detetiorating items’ manufacturer. In this paper, it has su gEested a
method for finding the optimal production and inventory schedule for manufacturers of
deteriorating iterns. Here, it is assumed that the manufacturer produces in one location
and sells in different markets that have differcnt selling seasons. It has showed that our

method helps minimize costs, The model considered the demand rate in each market as

conslant.

Kevork (2010) considers the classical single-period inventory model, also known as the
- Newsboy Problem, with the demand normally distributed and fully observed in
successive inventory cycles. The extent of applicability of such a model lo inventory
management depends upon demand estimation. Appropriatc estimators for the optimal
order quantity and the maximum expected profit are developed. The slatistical propertlies
of the Two estimatots arc explored for both small and large samples, analytically and
through Monte-Carlo simulations. For small samples, both estimators are biased. The
form of distribution of the optimal order quantity estimator depends upon the critical
fractile, while the distribution of the maximum expected profit estimator is always lefi-
skewed. Small samples propertics of the estimalors indicate that, when the critical fractile
is set over a half, the optimal order quantity is underestimated and the meximum
expected profit is overestimated with probability over 50%, wheress (he probability of
overestimating both quantities excedds again 50% when the critical fractile is below a
haif. For large samples, based on the asymptotic properties of the two estimators,
confidence intervals are derived for the correspending true population values. The
validity of confidence intervals using small samples is tested by developing appropriate

Monte-Carlo simulations.
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Leung (2010) first generalized a number of integrated modcls with/without Jot streaming
and with/ without complete backordcrs under the integer—multiplier coordination
mechanism, and then individually derived the optimal solution to the three- and four-
stage model, using algebraic methods of complete squarcs and perfect squares, 1t is
subsequently deduced optimal cxpressions lor some well-known models. For this model,
Leung checked that the optimal solution, which is algebraically derived, is a global one.
Two ready extensions of this modcel that warrant future research endeavors in this field
arc: First, following the evolution of three- and four-stage multi-firm supply chains, can
the integrated model of a five- or higher-stage multi-firm supply chain is formulated and
algebraically analyzed. Sccondly, using complete and perfect squares, we can solve the
integrated modcl of a n-slage multi-Mfirm supply chain cither for an equal cycle time, or an
integer muitiplier at cach stage with a fixed ratio parial backerdering allowed for

some/all downstream firms (or retailers), with or without lot streaming can be solved.

An optimal production inveniory mode! with fuzzy time period and fuzzy inventory costs
* for defective items is formulated and solved by Mandal et al. (2010} under fitzzy space

constraint. Here, the rate of production is assumed (o be a function of time and

considered as a control variable. Also the demand is linearly stock dependent. The

defective rale is taken as random, the inventory holding cost and production cost are
imprecise. The fuzzy parameters are converied to crisp ones using credibility measure
theory, The dilfercnt iters have the different imprecise time periods and the
minimization of cost for cach item leads to a multi-objective optimization problem. The
model is under the single management house and desired inventory Jevel and produet cost
for each item is prescribed. The multi-objective problem {s reduced to a single objective
problem using global criteria method (GCM) and solved with the help of fuzzy riemann
integral (FRI) method, Kuhn-Tucker condition and generalized reduced gradient (GRG)
technique. In optimum results intluding production functions and corresponding
optimum costs for the different models are oblained. A multi-objective and multi-item
defective dynamic system with a resource constraint with different fuzzy time periods has

been solved for the Nirst time via GCM, FRI, Kushn—Tucker condition and GRG methods.

28

] 2



For the first time, a dynamic production inventory model with imprecise time periods

under space constraint has been formulated and solved.

Rieksts and Ventura (2010) discusses inventory models over an infinite planning horizon
with constant demand ratc and two modes of transporiation. These transporiation options
include truckioads and a less than truck- load carrier. An optimal aigorithm is derived for
a one-warchouse onec-retailer system. A power-of-two heuristic algorithm is also
proposed for a one-warehouse multi-retailer system. Computational results are provided
o show that, on the average, the hearistic algorithm is at least 94% effective. An optimal
policy is derived for a one-warehouse onc-retailer inventory system that includes the
option of transporting freight with two different modes. Although the optimat policy may

have non-stationary order intervals, a tractable optimal algorithm is developed.

Sana (2010) developed a model to determine the optimal product reliability and
production rate that achieves the biggest total integrated profit for an imperfect
_ manufacturing process. The basic assumption of the classical economic manufacturing
quantity (EMQ) model is that all manufacturing items are of perfect quality, The
assumption is not true in practice. Most of the production system produces perfect and
imperfect quality items. In some cascs the imperfect quality (nonconforming) items are
reworked at & cost to testore its quality ta the original one. Rework cost may be reduced
by improvements in product reliability {i.e., decrcasing in product reliability parameter).
Lower value of product reliubility parameter results in increase development cost of
production and also smaller quantity of nonconforming products. The unit production
cost is a fuaction of produet reliability parameter and production rate. As a result, higher
development cost increases unit production cost. The problem of optimal planning work
and trewark processes belongs to the broad field of production—inventery model which
deals with all kinds of reuse processes in supply chains. These processes aim to recover
defective product items in such a way that they meet the guality level of “good item’. The
benelits from imperfect quality items are: regaining the material and value added on
defective items and improving the environment protcetion. [n this point of view, a model
is introduced here to guide a firm/indusiry in addressing variable product reliability

factor, variable unit production cost and dynamic produetion rate for (ime-varying

29

N ’



demand. The paper provides an optimal control formulation of the ptoblem and develops
necessary and sufficient conditions for optimality of the dynamic variables, In this
purpose, the Euler-Lagrange method is used to obtain optimal solutions for product

reliability parameter and dynamic production rate.

Production, remanufacture, and waste disposal EPQ Lype modcls are developed and
analyzed by Saadany and Jabet (2010), where a manufacturer serves a stattonary demand
by producing new items of & product as well as by remanufacturing collccied
used/retymed items. In these developed modets, the return rate of uscd items is modeled
as a demand-like function of purchasing price and acceptance qualily fevel of retumns.
The model developed herein is a decision 100l that helps managers in determining the
optimum acceplable acquisition quality leve] and its corresponding price for used ilems
(hat are collecled for recovery purposcs and that minimizes the total system cost. The
model developed by assuming the return rate of nsed items follows a demand-like
function dependent on two decision variables which are the purchasing price, P, and the
- aceeptance quality levcl, g, for these returned items. In addition, this paper accounts for
the cost of raw materials required to produce a single new unit of the product, C,, where
the monetary value of the purchasing price for a retumed item is PM = P - (. Two
models are developed in this paper. The first model assumes a single production cycle
and a single remanufacturing cycle per intervat T. The second model, a generalization of

the first, assumes m remanufacturing cycles and n production cycles per interval T,

Yang (2010) developed an economic order quantity (EOQ) model, in which, shortages
arc partial back- logging to reflect the fact that longer the waiting time; the smaller the
backlogging rate, the effects of infiation and time vatuc of money are relevant or vital,
and the replenishment cycles and the shortage intervals are time- varying. As a result, the
proposed model is in a general framgwork that includes numerous previous madels. The
optimal replenishment schedule uniquely exists and the total profit associated with the

inventory system is a concave function ol the number of replenishments is proved.

The above mentioned papers did not consider the inventory model with fuzzy randem

demand and inventory cost wilh reliability of the productien process which are most
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realistic factors for a production process. This thesis paper develops an inventory model
to incorporate concept of reliability wilh fuzzy random demand and invenlory cost
consideration to establish a new economic production quantity model, Consequently, the

inventory model in this paper is more practical than the traditional EPQ model.



CHAPTER 11
PROBLEM IDENTIFICATION

A retailer may estimate thal the demand of a commodity may follow a particular
distribution, Again, inventory holding cost of the product may follow a particular
distribution. However, it is very diflicult to estimate the exact value of the parameters of
the distribution. In this case, these parameters are considered as furzy numbers.
Conseguently, the distribution of these parameicrs are fuzzy random distribution and it
can be said that the demand and inventory holding cost are fuzzy random. A basic
assumplion in the inventory management system is thal sct-up cost for production is
fixed. Tn addition, the models also implicitly assume that items produced are of perfect
quality. ITowever, in reality, products are not always perfect but arc directly affected by

the reliability of the production process cmployed (o manufacture the product.

1.1 Problem Delinition

In this thesis work, an sconomic production quantity (EPQ) model is considered, where
demand and inventory holding cost of the product are fuzsy random in nature with known
probability distribution and the production process is assumed to be not 100% perfect, i.e.
a fraction of the produced items are defcctive. Morgover, it is assumed that the defective
items are sold at a reduced price and the selling price of fresh units is taken as a mark-up
over the unit production cost. The model is formulated to maximize the cxpected average
profit. Since demand and inventory holding cost are fuzzy random in nature, cxpected
profit is a fuzzy number. So a-cut ol the expected profit is obtained and by using this
graded mean integration value {GMIV) of cxpected profit is obtained and this is then
optimized using unconstraint signomial geometric programming to determinc optimal
decision of decision maker. Mathematical equations are oblaiped from optimal feasibie
solutions considering fuzzy random demand and inventory holding cost along with
reliability of the production process which are very important in real life production
inventory problem. Equations for sct-up cost per cycle, reliability of the production
orocess, duration of time until production is being held and maximum total profit are

developed for this production inventory problem.
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3.2 Assumption of the study

Some assumptions are considered in this thesis works. Assumptions arc as follows:
i, Preparation time is negligible.

ii.  Production stans immediately aficr receiving the order.

Part of wnrentory cycle drrmy
which progucticn [and usage)
E 8 Iaking place

Demand par1 of cyele
with ko proZkuction

g Waxivum
E inventory

Receiving order ant
starting production

E

Fig. 3.1: Instanlanecus production in FPQ modcl.

iii. Here, production period {T;), production process rcliability (r) and set-up
cost (€g) arc decision variables.
iv. Defective items are sold immediately with a lower price than fresh items.
v. Selling pricc (51) of fresh units is mark-up {m) of production cost (F) such
that, §; = mP;m > 1,
vi.  Selling price (S) of defcctive unils is mark up (m,) ol production cost (F)
such that, §; =m; ;0 <m; = 1.
vii.  The total fresh units are greater than the demand, i.e. rK > D.
where K is production rate per day and D is demand per day which in fuzzy
random in nature. ‘
viii. Total cost of interest and depreciation per production cycle ¥{Co,r) is
inversely related to set-up cost co and dircetly related to process reliability (1}
according to following general power function (Cheng, 1989):
Y(Co 1) = alytr®
Whete a, b and ¢ are positive constants chosen to provide best fit of the estimated cost
function. This assumption is bascd on the fact that to reduce (he costs of production sct-

up and scrap and rework on shoddy products, substantial investment in improving the
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Nexibility and reliability of the production process is neccssary. Conscquently, the total
cost of interest and depreciation per production cycle of the modern Mexible production
process is much higher than that of the conventional inflexible process. In reality, this
relationship should be discrete but a continuous function is used here as an approximation
which is needed to simplify the subsequent mathematical analysis. A similar cquation to
model the relationship between sct-up cost and interest and depreciation cost has been

suggcsted by Beek and Puttin (1987).



CHAPTER1Y
MODEL FORMULATION

4.1 Preliminary conccpts
Let X be a classical set of objects, called the universe, whose generic clements are
denoted by x. Membership in a classical subset A of X is ofien viewed as a characteristic

function py from A'to {0,1} such that

1 forxed
Ha = (4.1}

0 otherwise

Here {0, 1} is called a valuation set, 1T the valuation set is allowed (o be the real interval
[0, 1], A is called a fuzzy set and to distinguish from classical sct, it is denoted by A.In
this case characteristic function p, is called membership function of A and is denoted
by pz. The closer the value pg (¥} of to 1, the more x belongs to A. So a fuzzy set A, in

the universe of discourse X is completely characterized by the set of pairs as below
A=((om() xeX)

Clearly A is a subset of X that has no sharp boundary and in this case il is normally

written as AS X, A fuzzy set AS X is said to be normal it 3 at least onc xg € X such that

iz (xp) = 1. A fuzzy set ASX is said (o be convex il ¥x; EX, Yxp € X,and VA E
[0.1]

Wi {Ax, + (1 — A)x,) 2 min(ualx ), palxz))
Any convex normalized fuzzy subset & of R (where R represents set of real numbers)

with membership functionpy: R = [0, 1}, is called a fuzzy number (Dubois and Prade

(1980).



4.2 L-R represcntation of fuzzy numbers

L-R representation of fuzzy numbers is presented by Dubois and Prade {1980). A fuzzy
number ASR s said to be an L-R type fuszy number if its membership function pg is
given by

L(%-—x) for x<m, a>0

Mg = (4.2)

X—m
R(T] for x=m, 1=>10
Where, L is for left and R is for right reference, m is the mean value of A, o and § are

called left and right spreads, respectively.

4.3 o - Level set

a-Level set (or interval of confidence at level @) of & fuzzy set A in X is a crisp subset of

X denoted by A () and s defined by
Al@y={x € X/pua(x)=2 e, va €[01]}

Let F be the set of all fuzzy numbers. Then for any A, B €F and for any 1€ R,
(A*BYay=Aa)*B(a), (AA) a) = (Ad) @), where s € {+,-, ., /land for * =/, 0 € A,
{Bector and Chandra, 2003)

4.4 Triangular fuzzy number (TFN)

A TFN A is specified by the triplet {ay,a7,05) and is defined by its continuous

membership lunction p; (x): X—[0, 1] as follows:

Lix) = (x_u") ifa; <x < a;

Qg =,
ualx) = R{x) = (;3::;) ifa, €x < a; (4.3)
¢ otherwise

So an a@-cul of A can be expressed by the following interval

Ala)= [al + (’al - El}aa iy — {ﬂﬂ - ‘-'12]3]- iz Ei [ﬂa‘l]



4.5 Graded mean integration value (GMIY) of fuzzy aumber

Chen and Hsieh {1999) introduced graded mean {ntegration representation method based
on the integral value of graded mean e-level of LR-fuzzy number for defuzzifing LR-
fuzzy numbers. Suppose A is a LR-fuzzy number. Then according to Chen and Hsieh

(1999}, GMIV of A is denoted by P (A) and is defined as

1

P(A) = f G) {L7x) + R (x} dxfflxdx

L]
= [, X{L7 ) + R ()} dx (4.4)
4.6 Interval arithmetic

Let #& {+, —,.,/} be a binary operation on the set of positive real numbers. |f A and B are
closed intervals then A+ B = {g + b:a € A, b € 1} defines a binary oporation on the set
of closed intervals {Moore, 1966). In the case of division, it is assumed that 0 € B The .

operations on intervals used here may be explicitly caleulated lrom the above definition

a5

A+ 8= [aLrﬂ‘R] +[bL,bﬁl] — [aL+bLJaR + bR] (45)
A—B=la,ap]— b, bg ] = |a, - By ag — bg] (4.6)

A.B=l[a,az].[b.bg]=

[minfay by, apbg. ag by, apby ¥}, max{ard,, a; b, ag by, agbgl] (4.7)

A _ lagae] _ 11

B [bubr!) [, ap ]. [bn’nJ where 0¥ B (4.8}
_ ([kay. kagl, fork=10

“A = {[kﬂmkﬂ;,], fork <0 (4.9)

Wherc, & is a real number.



4.7 Fuzzy random variable (FRY) and its expectation

Let F be the sct of all fuzzy numbers. A metric d on F is defined by

d(A,B) = J [{4.(@) — B (@)} da + Jy {4x(a) - Br(a)}? da (4.10)

Where, A, (&), Ag{a) are lower and upper end points of Ag: Bp(a), Bp{adare lower and

upper end points of By, then (F.d) is a complete metric space.

Let {Q, A, P) be a complete probability space. A FRV is a Borel measurable function

Y (L AP) = (F.d).

If ® is a FRY, then [X], = [X7.XF], a €{0,1] is a random closed interval set, and

X7, X+ are real valued random variable.

The expectation of a FRY X is defined as a unique fuzzy number & € £, whose o — cul,

g is given by u, = [EX], = E[X,] = [E(X2), ECXDL @ € [0.1].
Fora FRY, X = {{(X7,X3):0 < & £ 1}, the expectation of X is defined by,
.E'Tf=ffdp ={(fx;dp,fx; dP):DE-:If_Z 1)

If ¥ is discrete FRY, such that (X =%)=p;1=123, ... . then its fuzzy

expectation number is given by EX = 31, % B .

It is also proved (Lopez-Diaz and Gil, 1998) that EX € F and [EX]o = [ XodP =
[EX;,EXZ], for =0, Hence it can be said that, the fuzzy expected value is a

summarizing fuzzy value of the cenfral tendency of FRY.
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4.8 Mathematical modeling
Accorling to assurnptions, inventory level at time (, q(t} is given by

dgiy _ [TK—D foro <t <T, 4.11)
ot |-B  forT<t<T '

w'hﬂl'f, ':I(D] - U: ':I(Tl) =g q(‘T) =0

dyfty _

According to Dubois and Prade (1980) fuzsy integration on = == rK - D ferotstsTy

is done. Now inlegrating trom 0 to Ty, @7 is obtained which is given by,
a = (K- D)Ty

And di:i?l: —B, forT,<t=T

Now integrating from T, to T. T is obtained which is given by,
g =D(T-T)
Soatt=T)

(rK=-D)T; = BT~ T3)

This gives,
T=% (4.12)

Total production holding cost per cycle is cqual to.

Efq(t]dt; E[LTI q[-t)dt+£jrq[t}dt] )

— AL (v — D)t + J; D (F = Tydr]

(4.13)



Afler solving equation (4.13), total production holding cost per cycle is oblained and
given by
RDT? i

Z{r]{

A profit function is developed considering sclling price of fresh units, selling price of

defective uniis, production cost, holding cost, set-up cost and cost of interest and

depreciation cost.

Total profit incurred per preduction cycle

= (selling price of fresh units) + (selling price of defective units)
- {production cost) — (setup cost) — {holding cost)

— (cost of interest and depreciation cost)

" Selling price for defective units and production cost are depended to the reliability of the

production process. From Bag et al. (2009},

Selling price for defective unils =m, P [1;;)5

. el
Production cosl =—

-
Sa, Total profit per cycle,Z

BB & P (1—?")5 PO ¢, kDT? D 7
=TH -_——— e — — —_—
e r r T 2 K /
- aCu_bT'ch

rKT,

Putting the value of ¥ = —*and after simplifying,

Total profit per cycle, 2 .

rp s (1 — r) P kT, 5 P . Co + aCy or¢ 5 hrkTy
= F ST r T TKT | TKTy Z
(4.14)

Here as fuzziness and randomncss appear simultaneously into the optimization setting, it

is essential to interpret the problem and to transform it into the deterministic equivalent
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one. GMIV of EZ is employed to defuzzify. For this, it is only needed to know the several

a — level set of EZ for all @ € [0,1].

Now, considering the fuzzy tandom demand D and holding cost h with the given set of
data
(dy,5.), (d2, B2 ) {ds, Bs), - (du Pn) and {hy, B )s (g, Bz ) (hs, Pa s v --s {hy, Pn;)

respectively, the profit Z is FRY and ils expectation is a unique fuzzy number which is,

b LI —tl
- 1—-r o ;T E, Co T .
= d
‘ me( )”“ Z Z[ rmq rKTl the
=1 j:
u T
_Zhjph"erTl
2
i=1
(4.15)

As the demand and holding cost data are imprecise with furzy probability, so for the sake
of simplicity, all the data set and its comesponding probabilities arc considered as TI'N

. and shown in Table 4.1 and Tablc 4.2,

Table 4.1: TFN for demand and associated probabilities

Demand Probability
(2.3) (b.0.5)

Table 4.2: TEN for holding cost and associated probabilities

Holding cost Probability
(ﬂ' hl—hl) Py Pm,p_lﬂ)

Where.1 = 1,2, ...... qandj =12, ,....0

Then the fuzzy expected profit function will also be a TFN, E7 = (EZ,EZEZ)
Where,
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FZ = E[Z{a = 1)]

EZ = E[Z(a = 0)]

n -

3

i= |

n

-2,

i=1 -

FZ = El4g(a = 0)]

Here the a-level set of the fuzzy number EZ are considered as follows

EZ(a) = E[2(@)] = [E{Z, (@), E(Zp(@)];

- = hj oy Ty
mP+(——)m1P+Z‘_2" dip;
1=1
'P C{r acu—hr{: d “ EPIHFKT-I
Tt YT, |GB 2
J‘=
v —
-T hippiTi| —
mP+( )rn1 Z 1[351 ! d\py
i=
- u
_P+ Cp  aly °re _Zhlpmrh’h
rTKT KT | L2
L =
f<a<1
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And differcnt @ -cut intervals for the fuzzy number EZ are obtained for different a

between 0 and 1.Taking, a-ut on both sides of equation {4.15)

-1 BB Ty |~
£ =Z mP+(—-—)m1P+Z 20 G
i=1 |=1
i P (‘ﬂ a{:n-hr‘: a . iﬁlﬁﬁhjﬂrKTi
S < P 2
= j=

(4.16)
Now, a-cut value for demand, holding cost and their associated probabilities

Go=ld+a(h—d} d-a@-d)]
Ba=Ip+a(p—pi). B-a® - pl
qu={5+a(hj—@, b — aghy —hy))

ﬁhia = [%'{' a(ph} —Pﬂ)- m" I Py _phj)]
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Using these and arithmetic interval, from equation (4.16) it is obtained

+i hf+ﬂ(hj—h:)][r*_m_”(mf“&)]ﬂ] o

= 2
+ﬂ(dx—ﬂ}m+a(m p))
ZI rKT aii{?” —ald = d)}pi -

—pJl} -Z{h —a(h_f_hf'}}{p_g'“ Pnj — Puy) KTy '

Bt

1

[{i ﬂ(h*h)}{PnJ'ﬂ w7~ Pl ]{d T -
=1
(F

) m, P

P}
—b..r
E rf?;"j aiﬂn‘:hﬁ”(di‘@}{&”(m'@”
“{w( )}ﬁwa(pm-—m)wa]
£ 2
@.i7)
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From equation (4.17), L™ (&) and R™1{a) are obiained,

L7 () = [Z: mP+(—;-—)m]P
ol etoaln

+a(d —dy )]fpfﬂ(n-a)i
Lis =N .
Z [r rm", rx'rr ]{df — a(di - d P~ a @i

=1

—rpil} —z (h = alhy = 1)} { ﬁi = @(Pny — Pry) }?"KTl]

(4.18)
And

R™(a} = Zﬂ: mP + (L:T) 77y P

=1

+Z[h_f—“(h - i) }{ng a(Br; — Pu)ITh ][— @ - ) B

i=1

—a{p; — po)}

mn

a(, ore
e O R EARI I
Zu: h"‘“ h;— )]{Fh;"‘ﬂf(ﬂ'n; l;)}rh’fl]
=1

2
(4.19)
Now, using the method of rcpresentation of generalized fuzzy number based on the

integral values of graded mean-a -level, a defuzzified representation of the unique fuzzy

numbet is found, .

2 (3} L@ + R (@) da

() = _I'[:’ ada

= [ afl™ (@) + R} de (420)

45



From equations (4.18) and (4.19) substituting valuc of L= () and R™1{a} in equation
{4.20) and after simplifying G{EZ) is obtained,

G(f?) =gy = a7t agTy = @ Cer ' T — acCoPre T — agrTy = F{C v, Th)

(4.21%
Where,
a2, = P{m — m,)(E; + Fs5}
1 = B
il =E(EE_E3+E4+E?_|:E+E9)
1 .
4 =% (Ey + Eg}
a -
dg = E(I-:'l + Eg)
K -
g = E(ﬁa + Eyp)
Aind,

n
Ey= ) sdimotg(dp - 20ip+ dip) + 5 (- d) (- )
i=1

u
<[+ (a2 )+ (-8~
=1
n
[SlanHem- 1nromd+He-2)n -]
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Bq = [z [(Ephj - ZEE.]}_]-F hi;]hi l + 2 (hj -E) (p’hj - Ell)}
j=1
Z[ .p. 2d; |:n+dlp,) 21[]( l—ﬂ)(m—@ }]

[zuj_)}]

(1 1 1
[ , 1120 d pr + 3 (P — 20 + i) + g5 (e - &) (o
-

. ]_

L]
1—  1,— om0 1
Be= ) (5 4B+ 5 (&~ 24+ 45) + 3 (& - )0 — b))

i=1

u
1—__ 1 =y, L
Eo= D [ B 3 (5 oy = 25 o+ ) + 3 (o — )Py = )]

=1

u
E,= D [+ (B ooy — 20y By + byB) + (B — @5 = pw)]
=1

n
1—  1,— -1
le[gdlpﬁg(dipi—zmpi+dm.)+1(di—m)(ﬁ—pl}]
1=

=
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i
Eg = Z[(E Phi — 2By Pry + hiPry) + 20y — by} By — Pj)]

i=1

n
1— 1 ,— - ey 1
xz [Edip’ + 1—2(d| pL— 2d; B + dib) 55 (d, — d)(pi — p‘)]

=1

u

E; = Z[E{E‘ — b)) (Pry — Pujd |

=1

n
R S
XZ['@EHPL + ﬁ{di p; — 24, p; + dip) 300 {d; — di](ﬁ*Pi)]
i=

u

1 1 1
B0 = {3 P+ 5 (0P = 28y + o) + 7y =) O -pw)

=1

GMIV of the expected average profit is determined and optimized. According to this, the
problem is (o determine(Co, 1, Ty), S0 that GMIV of EZ, F(Co,r, Ty} is maximum. Here
the function F{C,,1,1}) is optimized by unconstraint signomial geometric programming.

The problem is io,

Maximize F(Cﬂ,r, le ={; — ﬂzr_l + Hng — ﬂ4£u?'_lTl__1 - IIEEEBTE_lTl_I — ﬂﬁTTI
(4.22)

This is equivalent to,

Minimize F'{Cq. 7. Ty)
= —ay +apr = aylh + agCer I + asCatre T 4 agrTy

As a, is independent of the decision variables Co.r, Ty, S0 it can be neglected to derive

the optimal value of the objective function. Then the problem reduces to
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Minimize F*{Co, 7, Ty) = ar ™ = a3 Ty + 2y Cor 117 + aclqPro T + 2Ty

Ihis is an unconstraint signomial geometric propramming preblem with degrees of

difficulty (13D} = number of lerms - (number of variables +1) = 5-(3+1=1

The dual problem of the above problem is

aon = ()" ()™ ()" ()" @) =

Wa

Subject to the normality and orthogonality conditions,

Wy =Wy + Wyt wy, +w; =1
Wy = bwy =0
—w, —wy+(e—1)wy +ws =0

—w, — W5 — Wy +w; =10

Solving the normality and orthogonality conditions,
wy=1-2(b+ 1}w,

wy, =1 —={(2b+c+ 2w,
W = bwy

ws =1—(b+c+1)wy

Substituting the above dual weights into the dual function equation (4.23), d(w,) is

obtained,
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a; 1-2(b+1Iwy 3 — 14 (2h+c+ 2wy
d{w,) = . x
1-2(b+ 1w, 1—-(2b+c+ 2w,
ﬂ-.‘_ :Iﬂl.k'q_ I:u‘s. wy [ 'ﬂﬁ :Il—{lr+r:+1]|w4
X |— = |— x
bw, Wy 1—(b+c+ 1w,

Taking logarithm and d{wy) = y{w4) then equating ;%4 = (, it 15 obtained

a; -2(b+1} as (&b+c+2) g, 1 fas)
og| |l I
1-2{(b+ 1)w, 1-(2b+c+ 2)w, hw, Wy
a, —{b+i+1}
x| ] =0
1=(b+cec+ 1w,
This is equivalent to,
a{zmﬂ} » agzb+c+zj v af X ag X ﬂg(b+c+1}
[ 1 ]—2[b+1:| [ 1 ]{2b+{.+‘2} [ 1 ]b
x = x |
1-2(0+ Dw, 1=-(2b+c+ 2w, bwy
'BL 1 —({b+c+1)
o |—] x =1
[w.‘,] [1 —(b+c+ 1)w4] ]
(4.24)

From equation (4.24) optimal value of w, is obtained, which is written as w,"

The optimal feasible solution of dual problem of equaticn {4.23)
wy' =1—2(b+ 1wy
we =1=(2b+c+ 2w,

st = bw4'

w={1—{b+4+c+ 1w}
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Putting these valucs into the objective function in equation (4.23} optimum value of

d(w) is obtained as d(w™) which is written as Ky

o -
1=-(2b+c+ 2)wy”
]1—{b+c+1}w,,*

a, ]1-2{b+1)w4‘
1= 206 + Dw,"

bw,* Wy
Zq ]°7¢ [‘15 ' [ ds
X X j— X
[bw.,"] Wy 1-{b+c+ Dwy’

=14(2h4c+ 2w
F = d(wh) = | ]

Putting values of a3, a3, @4, as and ¢ , the equation beconies,

1-2(B+ 1wy’

P(E; — myE; + Eg — myE
F5=d(w")=[(1 119 5 1Ez)
1—2(b+ 1)w,"
1 =1+ [2Bh+o+2]w," 1 by *
y 5{Ep ~ Ey + E4 + By —Eg + Eg) y g (E1+Eg)
1 - (2-‘5 + C + Z)Wq_* bW4*
a w, K 1—(b+c+1nr"
N & (E1 +Es) y 7 (B¢ + Evo)
W.l_‘ 1 - (b + [ + 1)W4*
(4.25)

Again from the relationship between primal-dual variables (Beightler and Phillips, 1976;

Duffin et al. 1967), following relations can be determined:

P(E, — m,E; + Eg — mEs)r~ = wy d{w*) ‘ (4.26)
—2(E, — By + By + By — Bg + Eg)Ty = wy"d(w") (4.27)
—(E; + E)Cor ™1 = wg"d(w")a (4.28)
2 (E; + Es)CaPro T = wyd(w”) (4.29)
X (Be + EaodtTy = w5"d(w?) (4.30)
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Now, to solve the above simultaneous equations to abtain the optimal solution of the
primal problem, equations (4.28) and (4.30) are multiplied and optimal value of set-up

cost per cyele (Cy) is obtained which is as follows:

. 2bwy [1=(B+a+ 1w,  Hdlw e
o= [ (E;+Es){Eg+Eqp) *30

Now equations {4.29} and (4.30) are multiplied to obtain optimal value of reliability {r} of

the productien process which is as lollows:

1
. _ ih+‘{Eﬂm‘}hw*'[l—(b+c+ﬂw,,']h*1[d{w-)}znu]E
r _[ @l(E,+Bx HEg+E0)]0H1 (4.32)

o obtain optimal value of production period (Ty) equations (4.30} and (4.32) arc

multiplied and optimal value of Ty is as follows:

ta E}]ﬂ(r z Jm_l

= ac + c (Eg+ C

Tl = I t:|+1_‘1 b : _1_5 Lt t:|+1__1 2b+z I {433}
7T VK (bwy JE(w, T (et Dy T £ AW ©

Maximum value of profit is determined as,
Fmax = @1 — Fag

Foax = P(m—m;){E; + Eg}) — Ty (4.34}
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CHAPTER V
RESULTS AND DISCUSSIONS

The thesis work is theoretical in nature. A mathematical preduciicn inventory model is
developed considering some practical situations such as fuzzy random demand, fuzzy
inventory cost and reliability of the production process. The production inventory model
is composed of some mathematical equations which can be used (o determine the optimal
values of different dccision vatiables Le. set-up cost per cycle, reliability of the
production process and duration of time until the production is being held. The equation
for maximum total profit is also developed which can be used to get the maximum profit
of production inventory model, The model is discussed by iltustrating @ numerical

gxample.

5.1 Numerical illustration

To illustrate the model, a particular EPQ problem is considered. Supposc for a particular

- EPQ problem, following data are eonsidered:

K = 60 units
m=2.0
m, = 0.80
P = 21.7 units
a = 1600
b = 0.50
c= 075
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Demand and holding cost data are associaled with the probability. Demand and holding

cost data are given in T'able 5.1 and Table 5.2 respectively. Triangular fuzzy number is

considered for demand and holding cost

Tabie 5.1: Demand data and associated probabitities

Demand

Probability

(18, 20, 22)
(23, 25.27)
(28, 30, 32)
(33, 35, 37)
(38, 40, 42)
(43, 45, 47)
(48, 50, 52)

(0.045, 0.05. 0.055)
(0.143, 0.15, 0.157)
(0.292, 0.30, 0.308)
(0.192, 0.20, 0.208)
(0,092, 0.10, 0.108)
(0.093, 0.10, 0.107)
(0.094, 0.10, 0.106)

Table 5.2: Helding cost data and associated probabililies

Holding Cost Probability

(0.5, 1.0, 1.5) {0.054, 0.060, 0.063)
(2.0, 2.5, 3.0) (0.216, 0.220, 0.227)
(3.5, 4.0,4.5) (0.383, 0,390, 0.398)
(5.0, 5.5, 6.03 {0.227, 0.230, 0.236)
(6.5, 7.0, 7.5) {(0.050, 0.100, 0.108)

From given data, valuc of E;, Ey, Eg, Eq, Es, Eg, Es, Eg, Eg, Ejp are determined, then

value of a,, @, G3, @4, s, ¢ ar¢ also evalualed using following equations:

n
B= Y g+ 3 (a2 + i)+ (0 4) (- 1)
i=1

= 16.5312
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B2 = i[ﬂm+ (ﬁphi — 2h, pyi + ypni ) + (hj — by } (pyj _Phi)]]
i=1 —
[Z g 3 (dp 20+ dpr) + +(a “ﬁ)im-&)]]

= 57.558

E; = IZ [(Ephj - 2‘13@+ hiﬂ’_i) + 2 (hj —E) (Ph; — &1)}}

j=1
S+ oy (0 - 20 p + ) + 55 (4= ) }]

i=l

ps

= 3.3790

3 {hs o+ a2+ ) + g (= 2)

- PiJ ] = 0.0080
o1
E; = {‘EE (di pi—Zd p +d|p])+ (di d)(ﬁ—pj)}
i=1
=17.755
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11
1 _ 1= _
= Z [ by Pni +3 (y pn; — 2y Paj + hyPeg) + 7 (b, — By — Ph;)]
£

= 2.1505
- J— -——
;= 3 (s o + (By pwg = 28, By + bypeg) + By = 1)@ = P
=1

f 1 1,
S M e G-ad-e)

i=1

= 72.528

Ep = Z[(hj Doy — 2y By + hypiy) + 208; ~ )y - pwy)]
1=
i |

11— Y1 =
<> [am+ (@ m - 28p+ i) + 35 @ - F - P

i=1

= —~3.8520

Eq = Z [E(E —h))(pry — Prj)]
|=1

1
Z [12'3 ip+ 360 ( dl Bi— ZIdl pi + dlpl) + = 84(] —di}p o)

=0.0104

u

1 1 ; 1
Bio =) {30y ooy 5 (P = 28 by + i) + 5 =) o~ P

=1

= 1,9395

And
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a, = P(m — m)}E; + E5) = B92.295

a, = P(E, — m,E; + Eg —m, Eg) = 148.716

1
g =§{Ez - E-3 +E+ + E? — Eﬂ- + Egj = 65289
1.
ap = 2 (E; + E5) = 05711
]
as = 7 (Fy + Es) = 91377

K
dg = E(hﬂ + F‘-lﬂ') = 122.70

Now optimal value of w;, , which is writlen as w, ", is caleulaled using cquation (4.24),

—(b4c+1)

~2{h+1) (2h+c+2) B
a, X a, X ad X ag % a,

-2(h+1} (Zb+c+2) b

X [[1 . 2(b1+ l)w,‘,] % [1 — (b +1 T z)wJ % 1:-1?4]

=1

11t 1 —(B+e41)
x[ﬁ] x[l—(b+c+1)w4] I

ar,  w,' =0.1775338

Using the value of w, ", values of w,",w;", wy", and ws’ arc also calcalated using the

following equations.
w,"=1~2(6+ 1w, = 04674
wy' =1—(2b+¢+ 2w, = 033425
woy' = bw,* = 0.0BR77
wg = 1—(b+c+ 1w, =0.6005
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Now value of Fj or d(w"*} is calculated using cquation (4.25)

P(El - I‘I’1-| Ej_ + E5 - I‘I’11E.;) 1—2(b+j:|W4‘

fg = dwh = 1—2(b + L)w,"
1 s ER e NI 1 by
j(Ez—Ez‘FE‘;"‘E?”Ea"‘Ee} y g (E1 +Es)
X 1= (2b+c + 2wy’ Bw,®
a Wyt K . 1—(b+e+1iw,’
" '].T:(El + E5) x ?(Eﬁ + Lw)
W4- 1 - (b + [N + 1)W.1_*
or, Fy = 332.81 units
4.7 and 7 are evaluated using cquation (4.3 1}, {#4.32) and (4.33) respectively,
2w, {1 — (b + ¢ + 1w, Hd(w"}}?
c.;=[ we L= (b + ¢ + D, Hd0w ) ‘184‘%
(E; + Es}(Eg + Egg)
1
2b+1b e *"M1—(b+c+1 'b‘Hd *y12b+27c
r.z[ (Bwy")Pwe {1 = C Jwy 3 d(w)) }zﬂ_gm
2[{Ey + Es)(Fs + E1g)]
l(F +E JE(E +E jtﬁ“
ke [ 4 C
T; = il RASAR A = 1.704

B, B 1 B+l zbiz |
27 VK (bwyYe(ws )e{l— (b e+ Dwy't e T {dlw)) c

Now maximum total profit is determined from equation (4.34) as [ollowing,
=a,—-F;
= P(Tﬂ - ]TI:L}(EI + EE) — F{:

= 559,50 units
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Three decision variables are related to each other. Figure 3.1 shows the rclationship
between production pericd and reliability. With improvement ol reliability of the system,
production peried is decrcased. From equation (4.30), it is shown that production period

and reliability are inversely related.

Production Poriod Vs. Reliability
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Fig. 5.1: Relationship between praduction period and reliability

Set-up cost Vs. Reliability
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Fig. 5.2: Relationship between set-up cost and reliability |
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Set-up cost and reliability are also related Lo each other. Set-up cost is decreased with
improvement of reliability of the production process. The relationship between set-up

cost and reliability is shown in Figure 5.2

Both production period and set-up cost decrease with improving reliability. But set-up
cost and production period arc proportionally related. With increasing production period,

sel-up cost increases. Figure 5.3 shows the relationship between set-up cost and

production peried.

Set-up cost ¥s. Production Period
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Fig. 5.3: Relationship between set-up cost and production period

Total profit is effected by three decision variables namely reliability of the production
process, production period and set-up cost, The cffect of reliability on total profit is
shown in Figure 5.4. Tolal profit increases with improvement of reliability up o 0.9560.
Tolal profit is negative when reliability is less than 0.20245 and lotal profit goes
downward when reliability is greater than 0.9560. Set-up cost and production period arc
assumed constant values of 843 units and 1.704 units respectively to obtain the-

relationship between profit and rcliability.
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Profit Vs. Reliability
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Fig. 5.4: Variation of total profit with rcliability of the production system

Profit Vs. Production Period
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Fig. 5.5: Variation of total profit wilh production period

It is observed that total prolit varies with varying production period. Figure 5.5 presents

the relationship between profit and production period. Reliability and set-up cost are kept
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constant te obtain the relationship between profit and production period . For production

period less than 1.704 units, profitis increased and after thal profit decreascs.

Profit Vs, Set-up cost
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Fig. 5.6: Variation of total profil with set-up cost

It is also obscrved that profit depends on sel-up cost. The relationship between profit and
set-up cost is illustrated in Figure 5.6. Profit is maximum at sct-up cosl 84.3 units.
Reliability and production period arc assumed as copstant to explain the relationship

between profit and set-up cost.

Ihe optimal value of sct-up cost 84.30 units, reliability of the production process (.9360
and production peried 1.704 units are oblained for the above mentioned production
inventory problem. Maximum total profit is also determined for the modegl which is

$39.50 unils.
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CHAPTER V1
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

As the profit of an organization largely depends on production inventory, optimization of
produciion inventory model is very important due to complex rclationship cxists between
decision variables and objective function. Uncertainty, imprecision and reliability of the
production process have significant impact on the praduction system. i is also important
to incorporate uncerlainty, imperfection and reliability ol the system to optimise the

production inventory model.

The objective of this thesis work is to devclop a mathematical model of production
inventory by maximizing the total profit. Set-up cost per cycle, rcliability of the
production process and production period are decision variables. To maximize the total
profit, equations for optimal valuc of decision variables are also obtained. Equation for
maximum profit is evatuated using the optimal cquations of decision variables. Finally,

the model is solved by providing a numeral example.

The implementation of fuszy random variable as demand and inventory holding cost give
more realistic information where the variable valucs are imprecise. So the model is more

realistic and applicable than traditional production inventory models,

[mprecision and uncertainty in imperfect production process are tncorperated in the
production inventory problem. Reliability is an important [actor for a production process
which is incorporated in this model. The model is applicable in an imperfect production

process where reliability is an important factor.
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6.2 Recommendations

Geometric programming is used to [ind optimal decision for decision maker is very
complex situations. This approach may be followed to deal with different optimizalion
problems involving imprecision and uncertainty in science and technology. This model
can be extended considering lead time, shertage ete. as fuzsy random variables.
Unconstraint signomial geometric programming lechnique is used to optimize the model.
Some other optimization techniques such as non lincar geometric programming etc. may
be used to optimize the model. Triangular fuzzy number is considered to develop this
inventory model. Trapczeidal and gaussian furzy number can also be considered to

incorporate uncerainty in this mode!
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