IO L i ———

Similarity Solutions for Unsteady Laminar
Boundary Layer Flow Around a Vertical
Heated Curvilinear Surface

A dissertation submirted in partial folfilment of the
requirements for the award of the degree

of
Master of Philosophy
in Mathematics

by

Md. Yeakub Ali
Roll No. 040209010F,, Registration No. 04024190
Session: April-2002
Department of Mathematics

Bangladesh University of Engineering and Technotogy
Dhaka-10{)

Supervised
by
br. Md. Zakerullah
Professor
Department of Mathematics, BUET, Dhaka

o 10 e
# 00856

Department of Mathematics
Bangladesh University of Engineering and Technology
Dhaka-1000
April, 2005



The Thesis Entitled
Similarity Solutions for Unstcady Laminar Boundary Layer

Flow Around a Vertical Heated Curvilinear Surface
Submited by

MD.YEAKUB ALI
Reglslmhun Wo. 0402410, Roll No. 040209010F, Session: Apnil-2002, a full time studenl
of M. Phil (Mathemalics) has been accepted as satisfactory in partial fulfillment for the
degrec ol
Master of Philosophy in Mathematics
02/04/2005

Board of Examiners

1. Dr. Md. Zakerullah
Pripfessor
Departmeni of Mathematics

BUET, Dhaka-1000

A froly JM-
2, Head Member
Depariment of Maihemalics (Ex-oflicio)

BUET, Dhaka-1 000

3. Dr. Md. Abdul Malegue E Nleme'

Associate Professor
Department of Mathematics
BUET, Dhaka-1000.

4, Dr. Gazi Md. Khalil Vh“lelnbﬂr %

Profeszor {Cxternal) )
Department of Naval Architecture and Maune Fngingennyg
BUET, Dhaka- 1000,




Dedications

ey — el

This work iy dedicated to

My parents

il



Contents
Page No.

Declarution v
Acknowledgements vl
Abstract vii
Nomenchture viii
CHAPTER-1

[atroduction 1
CHAPTER-2

Basic equations 7

Governing boundary layer equations 16
CHAPTER-3

Transformations leading to similarity solution 18
CHAPTER-4

Study of some possible similarity cases 28
CHAPETER-5

Figures and Tables 63

Results and Discussion R4
CHAPETER-S f

Conclusion 80

Relerences 87

iv



Candidate’s Declaration

None of the materials contained in this thesis is‘will be submitled in support of any other

degree or diploma at amy other university or institution olher than publications.

M

2nd April , 2005 (Md. Yedkub Al)



Acknowledgement

The author expresses his indebtedmness and deep sense of pratitude to his supervisor .
Md. Zaokerullah, Professor of Mathematics, Bangladesh University of Engineering and
Techrology (BUET), Dhaka for his continuous guidance, valuable suppestions, constant
encouragament and help all along during the period of this research work.

The author wishes to cxpress his gratitude to Dr. Md. Abdul Maleque, Associate
Professor of Mathematics, Bangladesh University of Engimeering and Technology
(BUET}, Dhaka for his kind help in sehving the equations numerically.

Thanks are due to the administration, Chitlagong Umiversity of Engineering and
Techmology, Chitlagong for granting him deputation and leave wilhout pay [or (he period
of his M.Phil study.

The author would like to thanks Chairman, University Granls commissien of Bangladesh,
Dhaka for offering him the UGC Fellowship.

The author would like to offer sincere thanks to his fiiends and colleagues specially all
the (eachers and slafl of the depariment of malhemalics, BUET, Dhaka for their all kimds
of co-operation.

Finally, it will be an injustice if the author dees not express his indebtedness, love and
thanks to his wife Khandaker Shamema Akler and affection to his only daughier Zarin

Tasmm.

(Md. Yeakub Al)

vi



Abstract

Similarity solution plays a vilal role for the reduction of variables (dependents or
independents) when the questions of panial IdilTerenlial equations arise in dealing with
the boundary value problems. The present study deals with the possible similarity
solutions of unsteady laminar boundary layer free convection [low around a vertical
curvilinear suriacc. The frec parameter method is introduced. Then the pertinent
boundary layer partial differential equations under a swtable transformation are reduced
to a sct of ordinary differential equations. These simultaneous transformed ordinary
differential equations with proper boundary condilions are solved numerically using
Nachisheim-Swigert iteration technique and Runge-Kutta shooting method. The resuits
arc cormpared with all other relevamt works for special gituations. The non~dimensienal
skin-friction factors {=rw1{{1],fﬂ{ﬂ}] and heat transfer co-effcient [=q,{{'.i}] arc
displayed and shown graphically for some values of the comtrolling paramelers by using
the Sofiware FORTRAN 77 and TECPLOT.
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Up, Vr

A ¥

Nomenclature

constant
specitic heai al constant pressure

dimensionless scaled stream function
dimensionless velocity

acceleration due to gravity

aceeleration due to gravity along X-direction.
acceleration duc to gravity along Y—direction.
scale factor for curvilinear surface.

modified Grashol number.

the chefficient of thermal diffusivity.
characteristic fength.

temperature powet/ €Xponent parmmeter,
PIEssure

Reynolds number

Prandt! number

Froude number

heat flux

temperalure of the fuid.

lempcrature of ambient fluid.

surface temperature,

velocity components in the boundary layer.
characteristic velocity gencrated by buoyancy elfects.
co-ordinale along the edges of surface

co-ordinate nommal to surlace.
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&g

Greek letters

constant

the coefficient of volumetric expansion.
boundary layer thickness

thermal boundary layer thickness
dimensionless temperature function
mass flow components (stream {unction)
dissipation lunction

similarily variable

the kinemetic coefTicient of viscosity.
the density of the ambient fluid
coefficient of viscosity

the coelficicm of thermal diffusivity

non dimensional skin friction

scaled co-ordinaie defined in equations
the square root of the boundary layer thickness
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Chapter-1

Introduction

Free conveetion heal transfer occurs whencver a body is placed in a fluid at a higher or a
lower temperature than that of the body. As a result of (he temperature dilference, the fows
between the fluid and (he body causes a change in the density of the fluid Jayers in the vicinity
of the surfice. The difference in density leads o downward flow ol the heavier Nuid and
upward flow of the Kghter one. If the motion of the fluid is caused solely by differences
density resulling from temperature gradients, without the aid of a pump or a fan, the
associated heat transfer mechanism is called naturaf ot free convection, The density differcnce
pives rise to bunyancy effecls duc to which the [low is generated. A healed body cooling in
ambicnt air generaies such a flow in the region surrounding it. Similarly buoyant flow arising
from heat rejection to the atmosphere and to other ambient media, circulalions arising in
heated rooms in the atmosphere and in bodies of water, causes thermal siraiification of the
medium, Many other such heat transfer process, in our natural environment as well as in many

technological applications are included in the area of matural corvection.

The concept of 'similarity' initially introduced by Blasius {1908) has become a useful tool
now-a-days. On the basis of similarity transformations and finally the reduction of the set of
partial differential equations to a set of ordinary differential equations have now reached stage
of amy greal extent. A partial differential equation (PDE) with more lhan two independem
variables becomes necessary to formulate the true picture of the happenings and reasoning of
the problem. It is ofien difficult and even impossible to find the solilion of PDE with the
usual classical method. So applied mathcmalicians and engineers devole themselves Lo
develop the ways and means for their solulions with simplifying assumptions. Simmilarity
solution is one of the means, where the reduciion of number of independent variables into one
heing done suceessfully. A vast literature of similarity solution has appeared in the arema of

fluid mechanics, heat transfor, mass transfer ete. Diflerent types of perturbation techniques arc

followed to solve the non-lincar PDEs following primarily on local similarity solution. we,

’Q.



The theoretical analysis and experiments carricd out by Schmidt and Bechmann {1930)
of the {ree convection boundary layer flow of air subject to the gravilational force aboul an
jsothermal, vertical flat plate constitute one of the carliest comprehensive siudies of natural
convection NMow. Eckert and Seehngen (1948) verificd and extended the experimental work
of Schmidt. Schuh {1948) oblaincd the numerical solutions by computing velocity and
temperature distributions for several Prandtl numbers. Ostrach (1953) studied aspects of
natural convection heat transfer. He also analyzed laminar free convection flow and heat
transfer about a fat plate parallel to the direction of the penerating body [orce. Yang (1960}
studied the unsleady laminar boundary layer equations for free convection on verlical plales
and cylinder to establish necessary and sufficient conditions under which similarity solutions
were possible. On the basis of these conditions, all possible cases were derived, for two-
dimensional unsteady boundary layer flow. Brann et al. (1961) investigated free-comvection
similarity flows about two-dimensional and axisymetric bodies with closed Jower ends. He
found that famities of bodies had similar velocity and tempernture profiles along (beir entire
extents. He alse computed growth of (he boundary-layer thickness and velocity along the
surface as well as the heal transfer for a wide range of Prandl] numbers. Stewart (1971)
derived boundary-layer sohuitions for frec convection in laminar three-dimensional sysiem by a
temperature-dependent or composition-dependent densily. He delermined effects of rapid
mass lransfer for centrifupal forces and generalized the resuits of Acrivos (1960) for powur-
law fuids

Soundalgekar {1972) anatyzed viscous dissipation effects on unsteady free convection
flow past an infinite, verlical porous plate with constant suction. He derived thc approximale
solutions of the governing coupled, nonlinear equations for velocity and temperature feld, He
exhibited on graphs, the fluctuating parts of the velocity, the transient velocity profiles, the
transient {emperature profiles, the numerical values of amplitude and phase of the skin friction
and heai transfer rate. Johnson and Cheng {(1978) cxamined the necessary and sulficiert
condition under which similarity solutions exist for free convection boundary layers adjacent
to (lat plates in porous media. The solutions obtained in his work were more general 1han

those appearing in the previous studies. Laminar free convection from vertical surfaces had



been studied extensively by Sparrow and Gregg (1958) when the temperature of the surlace
was uniform and numerical sojution were displaved also for Prandtl numbers in the range 0.1
1o 100. Suwone {1980) applied the series of sevcral variables to the solutions of the boundary-
layer equations of frec conveclion in laminar threc dimensional system. He verified the
numerical computation of the solution for the case of free convection over an inclmed circular
cylinder. The temperature profiles calculated fom the first five terms of the serigs were
compared wilh the experimental data. Merkin (1985) sludied the similarity solutions lor frec
convection on a verlical platc when the (hon-dimensional) plate lemperature is x* and when
the (non-dimensional) surface heat flux was —x*. He obtained solutions valid for 4 21 and
221, He also discussed in both cases that the solutions became singular as A — A, and as
2 = —1 and (he natures of thcse singularitics. Jafapur and Yovaonovich {1992) analyzced
laminar free convection heat lransfer from isolbermal spheres by a analytical method. Pop and
Takhar (1993) invesligated the free convective flow over a non-isothermal two-dimensional
body of arhitrary geemetric configuration. It was shown Lhat (here werc a certain family of
body shape peometries and corresponding wall lernperature disinbutions, which permited
similarity solutions. He discussed m detail the effects of geometric shape parameter and
Prandl]l number on the velocity and temperature fields as well as on the heat transfer
cocfficient. Conjugate frce convestion on a verlical surface had been discussed 1 some detail
by Merkin and Pop {1996).

Chaudhary el al. (1995) studicd in detail the similarity solutions for free convection
houndary layer flow aver a permeable wall in fluid saturated porous medium. 1t was seen that
the  syslem depends on the two parameters m (the power law exponent) and y(the

Jimensionless surface mass {ransfer rate). He also observed that the range of existence of

solution depends on 7 and, for flwd, with drawl (¥ <0) on v as well, with a solution being

possible for pr>mg where m, = -% for ¥ 2 0 and for y<0, m, decreasing monotomcally from

—é— at ¥ =0 to -1 as |[{— . Jia and Gegose (1996) studied numerically, steady slate natural

convection over a sphere. e obtained heat transfer and drag cocfficients for a wide range of

Grashof numbers {10'<Gr<16% for Prandlt numbers .72 and 7.0. A plume with a mushroom-



shaped front forms above the sphere whose length and thickness decreasc wilh the mercasing
value of Gr. At high &r ( Gr>10° and Pr = 0.72 ), flow separation and an associsted
recirculation voriex exisi in the wake of the sphere. The vorlex size was found to increased
with the increasing value of Gr. The local Nusselt number along the spherc surface first
decreased, reached a mimimum, and then increased steeply at the near of the sphere.

Ganapathy (1997) studied time dependent free convection motion and heat transfcr in
an infinite porous medium induced by a heated sphere. Slaouti et al{1998) studied the
unsleady free convection flow in the slagnation-point region of a three-dimensional body . He
considered the case where therc was an initial steady state that was perturbed by a step-change
in the wall lemperature. 1t was seen that the temperature and surface heat transfer were
changed in a small mterval of time. The surface heat transfer parameter increased with ihe
increase of Prandll numher while the surface skin friction parameters decreased with the
increase of Prandtl number. Jayaraj et al. (1999) discussed claborately the analysis of
thermophoresis in natural convection flow with variable fluid properties over a cold vertical

plate. The effect of thermophoretic coefticient on wall concemration was also studied by him

Hellums and Churehill {1962) presemed » numerical solution of the coupled time
dependent boundary layer equations goveming transient natural conveciion flow over a semi-
infinite vertical plate in air. Goldstein and Brigges (1964) and Nanbu (1971) sludied the
same problem analytically. Elliot (1970) enalysed the problem of unsleady free convection
boundary loyer How over two-dimensional and axisymetric bodies for a step ioput in the
surface temperature, Williams et al. (1987) studied the unsteady free convection flow over a
vertical flat plale under (he assumption of variations of the wall temperature wilh time and
distance. They found posaible semi-similar solutions for a variety of classes of wall
lemperature distribulions. Sattar and Alam (1994) investigaied the unsteady free convection
flow of a viscous, incompressible and electrically conducting fluid past a moving infinile
vertical porous plate Laking into account the thermal diffusion effect. The unsteadiness in the
flow field was introduced by time-dependent velocity of the moving plate. Kumari et al.
(1996) studied the transient free convection flow over a conlinuous moving vertical sheet in
an ambict fluil, The unsteadincss in the flow field was ceused by the time-dependent



velocity of the sheet. The constant temperature and the conslani heat flux conditions were
considered, Kumari and Nath (1984) congidered the unsieady free convection flow in the
slagnation-point region of a heated porous three-dimensional body where the unsieadiness in
the flow field was caused by a time-dependent wall lemperature. The semi-similar equation
governing the flow were solved numerically.

Rees and Pop (1995) investigated the cffects of large-scalc surface non-uniformities on
(he boundary layer ltow induced by a constant heat flux, vertically aligned, semi-infinite
surface embedded in @ porous medium, The analysis had been restricted Lo valucs of x that
take O(1) values ns Rg — oo, In this range of values of x, the boundary layer thickness is

1
() Rz ?), which was much smaller than the 1) length scale associated with the waves of the

surface. Three-dimensional, laminar, ncempressible boundary layer similarity solutions were
SlLll!iiEﬂ by Hansen and Ohio (1958). He found similarity requiremecnts of the three-
dimensionzl, laminar, boundary layer equations along with a general method of analysis. The
problem of unsteady larminar mixed convection flow and heat transfer beiween two corolating
dizks with wall effects including both wall conduction and wall heat capacity were
investigated numerically by Monyan and Tzonglee (1997). In his work, both the thermal
boundary conditions of uniform heat fux { UIIF ) and uniform wall temperature ( UWT )
were considered. The Boussinesq approximation werc used to characterize the centrifugal-
buoyancy effects. He noticed the wall effects on the characteristics of fluid flow and thermal
performance. The predicted results reveal that wall effects played a vital role mn the unsteady
mixed convection heal transfer, especially for the early transient period. Additionally, in the
situation of buoyancy-opposing flow (Gr,>0 ), the centrifugal buoyancy induced by the
rotation had retarding effect on the skin friction coefficient and heat transfer rate. Zakerullah
and Maleque (1998) studied theoretically three dimensional combined laminar boundary
layer flows over inclined verlical orthogonal curvilinear surfaces. They described the detaled
analyses of similarity requirements for an incompressible boundary layer fluid in order 1o
reduce the governing pariial differential equation into a set of ordinary differemtial equations.
Different possible cases were exhibiled in tabular form for AT -vamations in addition to those

of exterior velocity components tahulated by Hansen and Ohie (1958).



The present studies concerns with the sysiemalic analyses in reducing the poverning
partial differential equations for unsteady free convective laminar incompressible flow over
(the veriical curvilinear surface into 2 set of ordinary differential equation. Finally sirmlarity
requirements is exhibiled for AT, ky, #;, Urand ¥ varialions. Numerical results are presented
to predicl flow characteristics for the di(ferent numerical valucs of the controlling parameters
involved in the similarity transformation. Results are, therefore, compared with known results

in literature,




Chapter-2

Basic Equations

Considering the fow direction along the £ axis and n-axis and be defined in the
surface over which the boundary layer is flowing. For simplicity #, {&,n) =1 has been set
such that ¢ represents actusl distance measured normal to the surface. The body force is
taken as the gravitational force g(g:(£.m), £,(5.7).0) Thus the basic unsteady
continuity, momentum and energy equations for a viscous and heat conducting fuid with

variable fluid properties subject to the body force in curvilinear co-ordinates are,

continuity equation

Dp, 16 3 0 - i
i +P’{a§(h3“}+ on (hlv}+5§{ thW}} 0 {2.1)

u-momentum equation

I 2 A
fz. EE.F&.E&.FEﬂF_v_E},i ':_l_mld__l_'?ﬁ-kﬂv:u {22)
Dt hhon R 0L Rk 8| m Y k8

v-momentum equation

- . 2
;{Dv w ok, v aﬁl]:i LI N .

_—+ —_
Dt hh, 68 h, 8 hh; én

w-momentum equation

' z o
p[_ﬂl_z__ai_v_@}_ﬁaﬂﬁzw 24

and energy equation

nr o
o0 —— =kV°T+ ud 2.5
£ Dy (2.5)



g nd v @ i
where ——=—+——+——+wW_—
Pt ot h3E hydn 84

. 1 ol h @ afh & & i
Vo= SR =| L +—| hh, — 27
hthz[aé[h ﬂ’-f}ﬁn(haﬁnJ ac[”xﬂ @7)

and @ is the dissipation function.

(2.6}

The Boussinesq approximation

The study of unsteady free convective laminar boundary layer equations needs a
discussion of the Boussinesq approximation. In this approximation density variations

other than the variation in the body force term in the momentum equation are ignored.

Thus the elimination of the first term (= -{;—f) in the continuity equation will be found to

lead to great simplifications in the boundary layer equations, particularly when Lhe latter
are expressed in terms of a stream function. Fluid property vanations are ignored
completely in this approximations and this factor, together with the removal of density
variations in the comvection terms, removes the requirement for the use of Howarh-
Dorodnitsyn transformation.

Since the equation of the state plays an important role for a uid, we consider this in

general formas p = p(T . p) {2.8)
One may write, dp = —pfdl + pKdp {2.9)
1{dey . . . .
where 8, =——| —= | is the volumetnc expansion coefliciet.
A

and X = L[%] is the isothermal compressibility coeflicient.
P r

In non-dimensional form the equation (2.9} may be written as

- e
Pg:-ﬁr.ﬁTdH+Kp{p" 4 ]dﬁ (2.10)

~ o
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In the case of slow motion one obtains for a gas Kp, = 0(1), is proporiional to

- . :
M?P<c 1 but for aliquid Lo s more significant than for a gas. However for a liguid
Po

Kp, <<1, hence the equation {2.10) becomes
90 _ _p, AT®
o
= p=p()
= dp =—pfdT
=p-p,=—p0T-1)
( Suffix ‘r' represents the small changes from 2 reference condition as a first

approximation. )

Hence p=p Q- (T-T)} (2 11)
Similarly, we can write for another Lransport prooerty g = #(T). Tt yields
p=p fl+a(T -1 (2.12)

where a= [-1— E)
pafl )
To the first order of small quantities equations (2.11-2.12) and similar equations for k

and C, provide

pEprr ‘HE‘U;‘ kzkr* Cp EC;J,

In the present case, heating due to viscous dissipation is neglected and [uid is considered
unsteady end incompressible. For simplicity, the fluid considered here is a Boussinesq

one

Here u, v, w denote velocity components in the £ 5 and ¢ directions, g is the density, ¢
denotes time, i is the dynamic viscosity coefficient, &1, #; denote the scale factors in the

Eand 5 directions. p is the pressure, T is the temperature, € is the specific heat at

constant pressure, & is the thermal conductivity of the [uid.



The boundary conditions to be imposed on the present problem may be determined as
follows:
(i) The fluid must adhere to the surface (the no ship condition);

w1, 5,10 =v.§,n0)=0 {2.13)
(i) The temperature of the fluid a1 the surface must be function of £ £ and 7 {non-

isothermal surface).

T(tEn 0 =1.05m (2.14)
(i) The fluid at large distances from the surface must remain undisturbed:
u(t, &m0} =vit,5, 7,0} =0 (2.15)

{iv) The temperature at large distances from the surface must be equal to the undisturbed
fluid temperature.

T, £,1,%) = T, {=constant} (2.16)

The pressure gradients in the £ and # directions result from the change is elevation up the
curved surface,

Thus the hydrostatic conditions are

L
B 35 e
1 p
ang —-——=-02 .k
h, dn ’

For Boussinesq approximation, the u:4::-ni;inuit3,r equatian becomes

*—‘:—{hzn} +— (h V) + (h hw)=10 (2.17)

Thus the eliminations of pressure terms, the equations (2 2) and (2.3) become

Dy uv 8h wveidh v Oh 1 2
S w o ¥ o p g, +EV 2.18)
p{m kh Oy b 3 hh 55] PR e (

10



] £ A
;{Dv uv Sy  vw Oy u Uhl]= L(p—pg, + 59 (2.19)

[ - RN

Dt hh 8 h 00 hhdn] h
For incompressible flow, introducing the Boussinesq approximation p— g,, = =9 p.ATE
in equating (2.18 - 2.19). We get

Dy wv 8y wedh V o, | 1

—+ — L1 ATGe, + 4V u 2 20
Dt mh, om0 By, OF | PG E @20

o

Dv o 5h:+ﬂ€hz _ut o =__:L_pﬁT,5Tﬁ.g + UV {2.21)
Dt mh B B, 8 hhOm] '

Before proceeding to obtain solutions of the equations (2.17), (2.20), (2.21), (2.4} and
(2.5), it is proposed first to discover the dimensionless groups upon which the solution
depend. We begin by introducing dimensionless quantities into the equation, referring all

lengths to some characteristic length L elong the surface, velocities with reference to

some characterisiic velocity {/ and ¢ by i—f The density will made dimensionless with

respect to p,, the pressure will be referred to p,U7° and the temperature to Lhe
temperature difference between the wall and T, (=7, -7, = AT).The other transperl
properties other the fluid u, &, C, and the gravilational components g,.g, will be made
dimensionless by g,k C, and g respectively. We use suffix 0 to refer to some
comvenient constant reference conditions far from the surface.

Hence the substitutions are as follows:

F_& =0 =_6 ;_U
==, = :—‘,[':—-—1‘
E=p =y e~ 5T
— v _ v W
i/ :—’ lV:—I‘I'i.'[.?:——
£f I £f
_— _ - Kk
p:_}ir#:i,k:_,_
2 Hiy ky
S
i

11




1 g _ _&,
g

U
) — 7 —

C=cr g=tle T wpoq, o7,
¢’ T,-7, AT

Here {7 is the maximum fluid velocity generated by buoyancy effect and defined by

Aydp

U =gf ATL where f; =—i[@-] is a volumetric expansion coefficient. For
pRat ),

simplicity, A%, are themselves dimensionless because they are different in individual

co-ordinate system, /. is some characteristic length.
We obtain the following non-dimensicnal equations:
continuity equation

3, . & &
5_5(},13‘}+_é?_.?(h1ﬂ+'§§={h1h2w}_ﬂ (222}

u-momentum equation

oF waom o vow ﬁah,_kiﬁé‘h, v ahz__iﬂﬁ,mg;
r

— =t w——+ — —

A mEE mom 00 mm oW O W 08 R F,

R L I 00 I A LR Pl Py (2.23)
R | mh |GE\W BE) o\ o7} @ g

p-momentum equation

T T T m ' i wr Tt 4 -
F ARV P TV T S __Lp Attt
of B 2§ h, 07 8 mh, OF  hy O¢ AMy on 1y F,

i_[h_zﬂ}i_(i.@v;}i[h,ﬁﬁ]ﬂ (.24
L\ EEVA BE ) anl\k O ) &4 a¢
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w-momentum equation

w uaow v W wloh V'Ooh 1 p

o hOE mom  of ha mdL 5ol

and energy equation

= HE T8, ¥ 0 +wﬂ} +H{5{1n AT) , ¥ HInAT) | ¥ AnAT) o &ln %T}H

. -ttt — =
"\ oE mom &

& B, OE  h, OF e
ko a(h, a8\ 3(h ooy, @ ol
= _— =t — += h-l s o=
PR, Wb, ||0E\ b 2F) onlh 87 & o
- = .h -
vol 2[F oA 0 (A oWAT) ], 81, SinAl) (2 26)
o\ A A ol h, 07 4 £
UL . . .
where R, =——, The Reynolds number based on free convection fluid velocity.
L
‘uucﬁ'n H
P= , The Prandtl number of the fluid.
)]
s
F =-— The Froude number.
gL

The boundary conditions in dimensionless form are

7(i,E,7,0)=¥(,£,7,0)=0 (2.27) .
 BGETO)= (228)
Wl E o) =V({LE, T, ) =0 (2.29)
G(F.£.7®)=0 (2.30)

If 5 be the boundary layer thickness, then the dimensionless boundary layer thickness is

E:%{{:l since L »>1.

13
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Order of the magnitude of each of the terms in equations (2.22 to2.26) are estimated, so

that very small terms can be neglected Since,
av v
—"U(l) —"*‘3{') F*ﬂil} -—~"J{1J =~ 0(1), 5;?:"*0{1)

then also —- ~ 0{1) , since ¢ is of order & so that w ~ 0(5)
I
8% {}[_—

52_ o oM 1
Dl,—;—’”ﬂl, _..“"ﬂl, ~ 1 2 ,,‘_ ~
¢ S5 - o 0, -0, 2 [](: -
o5y, T 08 R, =00, F, ~ 00)

on

aw
f)lr;.
Let &, be the thermal boundary layer thickness, the conduction term becomes of the

P — ] )
0{1)7 -
3 oE

same order of magnitude as the convectional term,, only if the thickness of the thermal

1

boundary layer 1s order of
0)
1. P

In view the previcusly obtained estimation for the thickness of the velocity boundary

&
it is found that & ~ ,
5 Jr

)

layer
N~ ! ,
HIRF

Assuming that 4 A, and all their first derivatives is of 0(1)
Setting the order of magnitude in each terms of equations (2.22 2.26), one obtamns

continuity equation
¢
[h N+ — e (h,w)=0

——{hzT)+
@ — {1) (1) (1)
u-momentum equation
‘??+E-ai+i-a§+wi+ ad ih‘:+“" Oh _ ¥ oh, :—a—ﬁrﬁTﬁ L
d ROE R 8;  hh, 07 A o }:h 8E A F,
- O O O m (%) (1 (1)
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) S0 o
R | b, |85\ A 6L ) On\h, €7 oc g’

= 1 1
g’ 1 1 —_ .
(#°) () (1) ) &5
w-momentum equation
FEF VO F W oh, VWOh, ® Eﬁ'—-iﬂrﬁ}“{;g—i
o koE hom 6:_:,’ hh 68 h 8 hh &7 h, F
> M O O n W @ (1
_{ ! {i_(h_z ﬁv:}i_[ﬂi}i_mi%_ﬂzﬂ
R, |mh |2E\ kL) oq\h 077 ) 04 ag Za
_. 1 1
5* I 1 e —_—
@) M M = 5

w-momentum equation

WA T L ai o v o 1
o hOE RmoOm O hOL h oS pac

o> & & @& & W (1)

()
AT [efmw) B(mam), 8 4 .
R VL":L#( A GE]Jr@ﬁ[hz an] a;*( ”2) +(h) == H
(&) (5} (& | (1 1

&

and energy equation
A H@L 708, 00 o ag} +H{ﬂ(!n AT) , @ 300 AT) T 2(nAl) , o At }H

& R O h, O o 0t hooF hz i o
09— () (1) (1) (1) (1 (1 (1} (1) (0}
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ko 1jlefmoe +iﬂ@_+i{hﬂh) Maﬂ
“PR bR |0E\h ) e\ mon) o e el

) (1) W ‘

L

R

3}
+3{i_[ i::I(lnet:r)}r 5 (h e(ln,f}.i’j] i_( B{ln.f.\T} ]
& og énlh, oF 4

{1 (1)

\-.pf'

Governing equations

The governing boundary layer equations of the flow field in general orthogonal

curvilinear co-ordinates are

continuity equation

9 3 3 .
a—g‘{hz”) +E;(h1“) +Eé':{h1h:"*) =0

k-momentum egquation

. 2 z
E+ w o v o =_lﬂTﬁTﬁg;+vi-u;
Di hh, On hh, 0F h, &l
y-momentum equation
2 2
2.”.— i ah u .(m_z-———ﬂrﬁ_? +Vi'—
Dt hh, OF frh A, ac?

and energy equation

D6
_EJFE{—_G M}+;}——ﬂnﬁﬂ+—h—a—ﬂnﬂ}}

2

where Pr=

1

(2.31)

(2.32)

(2.33)

(2.34)



The boundary conditions are
u(t.5,7,0)=vi(t,{,n0)=0
B(¢,5,7.0) =1
u(t,§,mm) =v(r,5,m,2}=0
Git,&,m,0) =0

17
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(2.36)
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Chapter-3

Transformations leading to Similarity solution

Equations (2.31-2.34} are non-linear, simultoneous panial differential cqualions and
the solutions of Lhese equations are extremely difficull to obtain. Henee our aim is (o
reduce eguations (2.31 - 2.34) to ordmary differentinl equations with the help of (2.31)
which permits possible variations in AT, U/, ¥,k and h, with respect to 1,5, and 7.

Let us now change the variables ¢, £ 7, and ¢ to a new set of variables 7, X,Y and é.
.y (. X.Y.9)
by the sei of following equations,

e E_ ¥ pe - __ &
t=1,E=X,p=Y and 3 XD (3.1)

¥{r, X,Y) is considered primarily here to be proportional to (he square root of the local

beundary layer ithickness.
B 8 ¢ B
T:——ﬂ?‘r—— (3.2}
ot Or y 8¢
a8 & ¢ 8
_:—_ﬂ?’,r_— {3.3}
af 68X y T dg
8 & ¢ b
-—=—"‘£?’Y-: (34)
fn OY y' O
8_19 (3.5)
o5y o
2 2
T G:6)
d¢" ¥ o¢

Let two stream functions pand @ be defined as the mass flow components within the
boundary layer for the case of incompressible flow.

18



The following equalions can be writicn
y, =hu, O, = v (3.7
—(w,+P,)=hw (3.8)

to satisfy the equation of continuity (2.31). Guided by the idea of similarity procedure of
Hansen and (hio (1958) arc allowed 1o write

# _
I d¢5=f'{f,X,Y,¢) wherel/} =—g, BATL, (3.9)
beEp (r,
F

=5 & 2 _ N
ﬁ[V [rxr)d¢ S(r,X.Y.¢) whereV? =g, PATL, (3.10)

where Ly und £.» are primarily considered to be some characlensiic lengihs.

Let us assume that the separation of variables are
F(r,X,Y.$) = Lz, X,¥)F($)
Sz, X,Y,0) = M(r,X,7)S($) (3.11)
0(r, X, Y, ¢) = Nz, X, 1)0(8)

where F,E and £ are the functions of single variablc E From {3.9-3.10) and (3.11), 1t

is found that
u=UsLFy (3.12)
and v=V, M S5
Again, from (3.7), we have
;["da.- Wz X.7,8) - p(r. X, 1,00} (3.13)
U T, v '
cowln, XY, 8) = hpU LF(§) + (7, X.Y.0) (3.14)
Similarly,
d(z, X, ¥,0) = hyVr MS(g) + (1, X,7,0) (3.15)
and ﬁhqw:_(h:?UFL)x}_?+$?’xh2Uﬁ LFE‘@!?’VFM)?E
r iy WV MS; + khw,(r, X,Y,0) (3.16)
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where wﬂ(r,x,nmphlh b (2. X,Y,0)+ @, (1, X,¥,0)} {3.16a)

17°2
is the suction / injection veloeity normal 1o the surface.

The convective operator

b_e a : [ﬁ' ui+h|v g +h]h1w£]
i1

D a: mh, as
in terms of new set of varinbles 7,0, Yand ¢ may be derived as
b_2 iU Iy AL V, M ,i—
b ar A ax h, aY
(hz:"tlr}'LJX (h WPM)}'E: +g‘yr i (31?)
y h R, h A, ol

[By using equations (3.2 - 3.5)].
In view of cquation (3.17), equations (2.32), (2.33) and (2.34} become

u-moemeniem cquation

Vi 1 VYL FF——JF%&_SF# (wo¥ —drr ) F 33
112 E
5 B o U o 2 . P 2 —
Py Tl ety dpigr - GIIM S
‘;,’1 h‘) U},L hl hlhl UrL
WD ] r
U.L “U.LR Pr Bx e

y-momentum cguation

VEEEE +M_)f_ﬁ3; +MFE;; _(wﬂ};_a:,yf)gig

Ay Py

i LV M)y By leoo y ULY MY =2

~ (W M)y S ——F PN I AFRSet ' By Fg
h, h, V.M h, hh, V.M

2 2
¥ (VFH:! )r - y 1 a
- 83— — . ATNOg, =0 3.19
VFM d VFM hZ ﬁ?‘ Ey ( )

i =% .
T

20
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and enerpy cquation

0__ YPUrL)e g YV M)y 552y o B 185

Bk, hy
2 - 2 [
_rUrl HInN)y +{ln.ﬁT}_r}F$H—y ViM KIn M), +(InAT), 556
i 2
—y*{InN), +(InAT) J9 =0 (3.20)

The asseciated boundury conditions are

U, (z,X,Y,0y=0=F3(0)

Ve (r. X, ¥ 0)=0= §; (0)

wit, X, ¥, 0 =—-w,
where w, is considered to be the surface suction or injection velocity for the curvilinear
surface. For the temperature tunction the boundary condition becomes

&z, X.Y,0)= Nr.X.DE()=1
— N(r, X, ¥)=1 and 8(0} =1

In order to salisfy the boundary conditions (2.35) and (2.37) without loss of gencrality we
mayput L=M=1.
The boundary conditions at large distance satisfy

UplF3(®)=0= F3(x)=0

V-MS3(x)=0=S;(x)=0

and E[Eﬂ) ={

Then the two momentum eguations (3.18) and (3.19) and the encrgy equation (3.20} lake
the foliowmg forms.

d-momentum equation

vF s +y—m’%ﬁﬁ +L}f:—*"£§?;; —(wor — 87y F 5

I 11z
2 2 opr?
(U )X}—i_ Ly, M_q_hi Fi S' +T_Lh”5i
PR T Wiy U,
: z
:" {UF}f T :r( 1
L M E e~ AT =0 3.21)
t, ¢ U, hﬂf oy {
!
21
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v-momentum ¢qnation ‘
VS + ——?(TVF LA PRAL LIS (h;ﬁf L B33 - (war - 7. 5%
172 1

2 _ ZU V }I e 2 U 2 _
_?_(VF)YSE _ y F {( F}X + 2X }F;S; +L( F} hlr Fi
Hy Ay Vi by Ve

2 _ 2 -
Yes P g AT, =0 (3.22)
Vr Vit

and energy egquation

3-— Yl ) Fg, o AT e)r 72"” 883 — (wor — 7. )0

L l

:VU

Y Vr (InAT), F30- ;: OnAT), 538 -7*(InAT),8=0  (3.23)

1

|
The boundary conditions are |
|
|

F3(0)=S53(0)=0
Fg(@)=583{x)=0 (3.24) |
0(0)=1, B(=)=0

The coeflicients of ﬁ;; and ﬁ.}; in (3.21) and (3.22) may be expressed as

yUhUr)x zl{”fur] LUy th[“] }

kb, 2|\ A A,
o yohV)e _L|( 7P NRULOTY h[L
why 2\ Ry ), A Wk ),

‘I'hus mementum and epergy cquations become
— 1 —_ ] —=__ - =
v e +E{a:’.| +a,— a4, ) FFag +E{a3 +a, —ag)SFa —(a; —da; Y s
—a,F s —{ay +a,g)F3S% +a, 83 —ap Fo + a0 =0 (3.25)
A | AL -5 i
v& a5 +E(a3 +a, —a; S84 +E{an +a, —a,)5 F —(a; —da; )55

_-1 —__" _2 __ f—
~a,, 8§ —(as + 2 WsSi+a,Fe—a,53 +a,0=0 (3.26)
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— 1 _ _
and 103; +—(ay + 4 mal)Fﬂa+i(aj +a, —a;)503 —
Pr 2 2

— (@ — Pa, )0; —(ay F3 + 4y, 83)0—a,0 =0 (3.27)

where the conslant a's and (he differential equation involving the independent variabler ,
X, and Y are given by the following differential equations:

Irr 2
[:’ U = a,, v Uy =g, (3.28,5)
I uhy
. 2
] 1 ?' VF
y Ugh, ——] =a,, [—-—-] =d, {3.2%9ab)
\'hl'hl x h‘.’. ¥
2
Y (MVe)y ! 1
. V.hl— | =a 31.30eb
b 1 ¥ ref Tty ), s { )
Wo¥ =d; ¥y, =ay, (3.31ab)
y 2
)
};,_I{UF)X = dy. %Vr {f =dy (3.32a,b)
X h 2 V 2
Yy ag, r~ ) — (3.332.h)
R PRNTR
¥ (Us), P ar -
U, =2 nU, By 0Tgy = ay (3.34a,b)
2 2
I y Up (Fedy
—{(V)y =ay, Pt g (3.35a,0)
A Fly =0y WV, s
e by 2 (UY
¥ Up by _ . yo WUg) ho=a, (3.36a,b)
oo mhy Ve
2 2
¥ e
4 V: =g h:VF DriATg, =a, (3.37a.b)
2 2
?ff {(InATY, =ay,. r, (inAT), =a,, (3.38a,b}
I 2
y (InAT), =a,, {3.39)
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Similar sohutions for {3.25), (3.26) and (3.27) cxist only when all the a's are
finite and independent of 7, X and ¥ that is to say that all #'s must be constants.
Thus the boundary layer momentum equations and the energy cquation wift become
non-imear ordinary differential equations. I Af(r, X.F).A{r,A.1).h(z X, ¥y,
U, (r, X, ).V, (r, X,¥) and y(z, X, ¥} satisfy the cqualions (3.28-3.39).

To find AT(7, X, ¥) R (7, X, YYR(2, X, ¥), U (0, X, ¥), Vo (2. X, ¥} and y(zr,X.Y) in
different situations.

We first ignore the suction or injcction effects i.c. a, =0.

From the cxpression lor a's, we have

U
i, t iy :fz[_h‘f_) (3.40%
1 Jx
14
similarly, a, +a, = y’[i) (3.41)
)
y'U
From (3.28a), we have a, = f F
B,
= 2, = (g, —a, —ay) (3.42)
Ur
s
Again from (3.29b) , we have a, = LA
e Jy
= 2pyy = Vﬁfas —a, —dy) {3.43)
F

By virtue of equation {3.28a), we gel

Iy
Thi —a X +AY,7) (3.44)

1
where A(Y, 7) is either constant or function of ¥ and 7 Differenuating (3.44) with respect

to Yand in view of similarity requirements, One obtains

gAY, ry h, U,
7 =fV; (@, — Gy — 15 + 8y — ay,) (3.45)
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Again, differentinting (3.44) with respect to ¢

L, .
614\'(5]}’, 2 = —"(a,, +2a, — d,;) |using constant a’s] {3.46)
T
y?
A
Similarly, in view of equation (3.29b), we gel
il

h: =a. Y+ B{r,X} (3.48)

where B is either constart or function of 7 and X . Diffcrentiating {3.48) with respect to
X and 7 respectively and in view similarity requirements. We oblain

8B, X) _(1'V
ax o)

_, 8B X) _ hV,

ax };ZU;_ (@, — gy, —ay =y + ) (3.49}
:
and SE[T,X] _ ¥ Vf.
or hy ).
= M = Eﬂ{?.aF iy ~ gy ) (3.50)
[oFs h,
2
wherc a,, = & 65m
A,
By virlue of {3.31b), we get a, =7,
::v}’2 =2a,1+C(X.I) (3.52)

where  is either constant or function of X and ¥. DilTerentiating (3.52) with respect to X
and ¥ respectively and in view of similarity requirments, We have
C(X. Y} _( 2
ay (J’ )X

AC(X,¥) A
== U:-.- (@, —a,—a;) {3.53)




and

oC(X, ¥y _
a?r _(72]1’

dC{X,Y)
= oy = %{ﬂa —a, —as) (3.54)
Taking the product of (3.45), (3.46), (3.49), (3.50), (3.53) and (3.54}, we get

A0z, X) 8B(r, X) 8C(X Y OC(X,Y) 84(Y. 1) 8A(Y , )
dr ay ox oY a¥ or

= (20, + oy —a, N2, — @) —ay =ty + Ay )@, —a —ay)a; —d, —dg)

(o, —a, —a, +a, —a, {24, +a, —uy) (3.53}

The form of similarty solution, the scale faclors AT(r, X.¥F).A{r, X, Y). (7, X.T).
U, (0, X,V {r.X.Y)and y(r.X.F} depend wholly on the equation {3.55), This

situation leads to the following possibilities:

Cﬂﬁe—l: 53{1', X) = n’ 5B(T"X} 20 af"{X:-Y) + ﬂ, aC(Xj }r) < Il
dr ax Ax ay
0AY, 7} 0, Ao L,
oY dr
Case-2: SB(,X) o BB XY (XYY LY o
a7 ax ax ar
aaldyny o A L,
ar ar
Case—3: Bz, X) o 8B X) ., CXY) XY _ o
oF ax Ay ay
a’d{}: 'E') = {‘-', aﬂi{}’_f} —0
aY ar
Case—4: B8z, X) -0, OB(r, X) _ 0, (XYY _ ﬂ’ar:(x,}') 0
E’]A(Y!T) -+ {}’ ﬂA(Y,r) " {'_I
) 4 ar
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Casc—5:

Case—6:

Case—7:

Case—8:

OB(r, X) _, BX) _ICLLY) (LT

F

ar ox ax aY
BAY,7) .0 BA(Y,7) _ 0
Ay fr
B(z, X) _ o 8B(z, X) 40 aC(X,Y) -0 (X, Y “0
ot ) ¢ ) ¢ ) ’
BA(Y, 1) .0 A(Y,7) _ 0
oy T oot

aB(r. X} £0 oB(r. X) _ dC{X.Y) _ 0 dC{X.Y) _a

D .
or ax ay oY
SA(Y, 1) o, aA(Y.r) £0
oy ar
o8z, X) _, 98(r, X _, XYY _ o BCX.Y) _ o
Br ;) ¢ ) ¢ ay ’
AT _, 24,7y _
Y "8t
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Chapter-4

Study of some possible similarity cases

3

Caset: FB@X) o 8BEX) (KT, 0XT)

aA(Y?T) =+ U, 51‘1{]", I'J #{]
gy dr
Let & =4,
Let, oatT) _ constanl
ar
dA(Y,r) U;
S Tar Ty, (A )
=k (4.1)

[
=Y 4 —a - _
where &, = Jy=d,—a,—ds+d, —ay,

Il

LX) _ onstant
ar
- B E(j@ +ay —dy)
ar
= kyly (4.2)
Ve
where &, =h—*, 1, =26, + a3 —ay,
1
&N constant
. (ALY
L =%(au —a )
= ki (4.3)
R

where k, = I andf, = g, — g, —a,
P
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(X, T)
ax

. XYY R
) ¢ V.

= constant

where [, =a, —a, —d;

AAX,T)
ar

o) U

= gonstant

or h

where [, = 2a, +a,, —a,,

and

where [, =a, — g,

Intcprating equations(4.1), (4.2). {4.3), {(4.4). (4.5} and (4.6), wc get

OB(1, X)

= gonstant

oB(r,X) ¥y
ar U,

—dy —dy T a;

AY,7) = kLY + A D)
Blr. X)y=klr+BIX)
C{X. 1) = kﬂfﬂx + Cy(F)

C(X,Y)= ;_4 Y+ G0 |

2

AY., o) = i—‘f+ A4,(Y)

1

Bz, X) = X + By(o)

1

29

(a, —a, - a5}

—L(2a, +a,;, —ay)

(@, —a —a,—a, +a;)

(4.4}

{4.5)

(4.6)

(4.7



r

Taking linear combination of (4.7), we obtan

A{Y,f)=k1!]}’+i—5r+ﬁo

3

e

B(r.X)= klszﬁf-x + B,

C(X, )=k}, X +£L}’+cﬂ

2

(4.8)

Again legrating equations (3.28a), (3.29b), (3.31b) and in view of equation (4.8), we

get

, ,
U, !
Y—"':HUX+k1I1l"+k—5r+Aﬂ
3

2
f:"’ =i—ﬁx +a,Y +k,r+ B,
1

and ¥’ =k3:'3X+%-Y+2a.,r+{?n
2

From equation (4.9)
yP =gk, X + kLY +1T+ A4
From equation (4.10}

1
y1=!6LX+a3—Y+£zr+BD
=2 .

From cqualions (4.11), (4.12) and (4.13), We have to writc

a, =1, =l,a,=i,=I,2a ==

= ) = iy, G T dy5e 3y = gy g = p,y thy = 3y iy =ty

Henee y? =ak. X +ak kY +2a,7+ 4,

From cquation {4.9), we have

P U, ak, X +kk Y + 1o+ Ak

Ay k,

. a ke, X +k koY +2a, 1+ Ak,

ks
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(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



1
By virtue of cquation {3.36a), we get &€, = %}l—x ,since B =h,
|
= P _ Ih' d,
oy U
ki

Tk X +kka, +2a,0+ Ak,

T

= Rk =blai X +kkaY +2a7+C)%

where &, is conslani of integration.

b = b (kX + kkat +2a,0+C) where 26 =

d,
k=R =b(akX +hEkaY +2a 0+ ) (4.16)
Now using (4.15) and (4.17} in (4.9}, we get
2
: 2
&=aux+klajl’+—ﬂ-lr+‘4“
| ki
= U, = ki(a,];ﬁx kjaY +2u7+C)" @17
1
Similarly substituting (4.15) and (4.17) in {4.10), we get
Ve =bi(ak X +kkaY+2a7+C) {4.18)
Substituting, the values of °, k.4, U, and ¥, , we pet the values of a's i.e.
a,,a; and a, are arbirary
a, = 2Zma, a, = —2ima, a, = 2mda, a; =--2ma.,
a, =0 a, = ma, a, = m, a, = ma,
k
a, = m:—n a, = 2ma, a, = E;—[aﬂksX+a3k,k}Y+2a?r+Cl)1'M B ATy,
1 1
4y = ma, s = Py oy, = M, a, =mak’ (4.19)
a,y = 2md, a, = bz —(a kX +ak kY +2a,r+C)7" G ATg,
i 1
iy = (2m—1)a, iy, = (2m —1)a, a,, = 2(2m—a,

3l



2,
A

Hence the transform equations (3.25), (3.26) and (3.27) reduce 1o

1 —
vF +(4m2+ }:ﬂFF;; (4”'2”}: SFs +a,9F i —ma, F

—2ma, FiS; + ma, %Ei —Zma, by +a,8 =0 (4.20)
|

vSizi + [4m ha I]aj 887 +[4m b l]a“ﬁ;; +a, 5% ~ma,Sy
_2ma, F3 83 + makl Fi —2ma, 57 +a,8 =0 (4.21)

— (am+1) = (4m+1 —

and lﬂ;; +( i 0F03+[ = a, S0 +a,¢i; —
Pr 2 2

(2m—1)ag F3 +a,53)0—2(2m — a0 =0 (4.22)

In order to simplify the above type of equation we substitute
F=af, S=us, p=ud, =0

Thus the above eguation changed lo
2

4m+1ia dm+1Ya,a’ s s 4 a,’
fw[z)ﬂﬂﬁ(zjj‘,sf#*‘l@rﬁ ufn&

f+a,S0=0 @)
Vv

4m+1) gy’ am+1\aya’ a,a’ aa’

2 v v
2 2 2
—2m % g ﬁma Y S s¢+a,9%~ﬁ=ﬂ (424)
2 2
and Pr™' 0, +(4m+1]aua 18, [4m+1)a3a SH¢+a?a 90, N
| a,a° a.a’ a.a’
~(2m -1y - f, + s, 10 =202m - 1)——0 =0 (4.25)

i



. {Am+1)aya’ . a 2
Choosmg( z ] % _1 and writing 2 =¢,~L=d, ——= .
v a 7y dm+1
Also for purely free comvection we have to put
iﬂi:1 and LGL;:R {constant}.
im+1 a, dm+1 a,

Finally, we get the equations (4.23), (4.24} and (4.25).
Ss YU Hes) oy +2—aD)dify — BUT, +2054) ]

1
+k—2s§—2¢ﬂ}+&=ﬂ (4.26)
L

‘ Sag HUF H O8Iy H2 APV ~ BURS, +e8,)s4

+hlefy —2ds,}+ REO=0 (4.27)
and Pr' @, +(f +cs5)6; +(2— 4 0)dp0, = (6~ 2)(f; +es54)0
—(124-Hde=0 (4.28)
The houndary condition are
F(B)=1(0)=0,f,(=)=0
$(0)=5,(0)=0,5,(x) =0 (4.29)

0y =1, B{(=)=10
If I, ,¥,.and A be constant then ¢ is proportional to the ratio of the change of local

boundary Jayer thickness with respeci to position on the both edges and d s proportional
to the ratio of (e change of local boundary layer thickness wilh respect to time and
position. [f characterislic lengih with respect to both the edges be same, the parameter X

determime the [%] rd root of the gravilational ratio develops.

For f=1,c=0,d=90,5s=F and K = 1, (he equalions {4.26 - 4.28) with the boundary
conditions coincide with possible similarity solutions for laminar free convection on
vertical plates, analysed by Yang (1960) which was also identical with similar solutions

for free convection from a Non-isothermal verical plate discussed hy Sparrow and
Gregg {1958)
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We have, i this case, the similarity requiremenis are

h =h(ak, X +tkaY+2a,74+c)"

k m
=h,a{,"k§"[,l’+ 19y, 291, G )
dy ayky ayk,

=a,(x+by+E)"

s R (X+bV 4y

where x=X+X,
F=r+7,
f=f+rﬂ
&, = bagky
]
i,
= e =E{=2klk2d
ayk; 3
£ =Xﬂ+k]a3’]':}+ 2a, r,
ayk, y ayk,

L Up = ay (X +by +26)™ where a, = bar k!

UZ o« g, frAT (characieristic length ), where L=(x+ by +¢¥)
. Vi =a (X+by+0f)" where @, = bayk,ky

Vi g, f, AT (characteristic length I,), where L, = (€+b7 + 1)

a.i “b,z kf "dm+1)
240.2

. AT =@, (T+ 5y +57y" where a, =

AT « (T+hy+E0)"

¥t =a (X + by +&7) wherear, = ayk,
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- ka ,

If h=-12 is non-dimensional quamity, £ = be also mnon-dimensional,

dy 3

Since &k k, =1, it implies that &k, is non-dimensional. According to given defmition
in (4.2) k,is the scale of velocity and k, is too. Hence &k, is dimensionless.

Herc & is finally the scale of velocity and &7 is the additive lenglh added Lo the normal
characteristic length ¥ + b¥ then formed new characteristic length.

I'he similarity variable $ is
e
m\j%k&{f*‘b?‘*f )
L F4
= G X+hy+ar
i X % 1
where Gri, ={(4m11) 8B AT+ 4 }
2h 14

is the modified Grashof number.

The velocity components are

u=Uf,(d)
v="Frs,(9)

1 _ = — - — —
and wzﬁ'{_{}hﬂﬁ}xﬁr+¢?’rf’zu}r% (¥ E)y S +@yyBV.S;
Lo

(2 o3 ] 1
= m(x+by+cr) 3{—-(2m+5)(f+cs)+5¢{ﬁ +c.';¢)}

Skin frictions are

i
Tl = ‘H[E]
z=[)

Ty

Grf
i ={4m+1) h
—plJ? |
3 2

Su(D)
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h
R
z=[}

Tr

Grl;
= (4m+ Dk, fi 54 (0}

1
— opE
ZPJL

Heat flux,

Gy = —F{EJ
0z J .

{4m + )a,

vk,

L

=

}2{3:“+5?+EF)_

20,(0).
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£A(Y, 1) =0 a8, X £ 0 (XYY -0
i ’ ar ’ aY
XYY o M7, BEX)
7 Tar ) ¢
Let b = A,
Let, M # constant,
oy
?Tsz] #EDnSt, L'i'l _a_1_ ""aj +a".l —am =ﬂ=f]
F
M= constant
or
B
=YL (2a,tag~a,)
|
= k.1,
w = gonsiant
X
h
= _l_{ﬂu - - ﬂz]
"
=kl
M:mnﬁmm
oF
‘;i] =L:tc@nst, a,—a,—a,=0=/{
]}F Z
M = conslant
67
=gi{2‘a? +da, —a,}
1
1
- k_fs
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(4.31)
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2B(r, XD
X

I/
_Fw o o
=——{a,—a,—a,—a, +a;)
.

and = GOnstant

i
= 435
P (4 35)
By virlue of equation (4.8}, we oblain
A(¥, )= ‘!I—Sz'+A{‘1
ks
B{r,X) =k, +::riX +8,; (4.36)
i
C(X,Y)= k}".aX"'Co
In view of equations (4.11}, {4.12) and {4 13}, we get
y =k X +2a,7+C, {(4.37)
7y =a,k X +hr+A, (438)
and y* =1, ! X+a, l Y+1Lrt+B,, setting a, =0,
172 i
. 1
oyt =l XY+Lt+B, (4.39)
172
Comparing the above three equations for y°, we have to write,
a,=f=14, 2a,=I =1, and 4, =8, =C,.
= Q) =—0gs 8y =5y 813 = g3 Ty = Tyy-
Hence »* is found to be
y? =k, X+ 2a,T + Ak, (4.40)

2
In view of equation (3.44) z fF =a, X +AY,7)

1

=a,X +;i‘r+fiu
3
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_ a b, X +2a, 0+ 4k,

4.41
‘. (4.41)
By viniue of equation {3.36a), we get
e k
e = 4 A - h_J
| LY
= h]X = I;‘-ﬂ-alrﬁ
B ak,X +2a,7+ Ak,
S
soh = b{ak, X +2a,T + A k)
when A is constant of integration
o hy =k = by (agk, X + 20,7 + Ak}, where m =218 (442)
al’l
Again, in view of equation (3.48), we pget
" Ve _aysnix.o
IIS
=k L+ 21X +H8,
L
Ty
=—X+2ak,r+5,
1
a kX +2a, 7+ 8k k,
= : 4.4
ik, (4.43)
From (4 41), we have
P, ak X +2ar+ Ak,
A k,
E‘l m
e = k—{ank3X+2a1r + A%} (4.44}
E]
From {4.43), we have
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¥ Ve agk X +2a7+ B kk,
k. ko,

oo Ve =k (a kX + 2a,m+ Ak . (4.4%)
The simitanity requirements firnish us with the relations between the constams {a’s). The

relations are, &,,a, are arbitrary,

a4 =2ma,, a, =-2ma,, g, =, =d; =d, =1, d, =ma,
et
— g = Nl —
g =a,=0, gy =—3 @, = 2mda;
'kl
K ek X 20,7+ Ak ) AT =0 =
a; _}’_E(HCI 2 a7+ Ak, YT B ATg @, =Y, a. =ma,
|
a, =md,, a, =0, a,, =2ma,,

| 2
a, = ﬁ{.:a'nﬁrj,-'l’+2a?r+ Ak )" B.ATg, a, =(2m-Na,
172

a, =0, a, =2(2m-1)a,.

Hence the general equations (3.23-3.26) reduce to

= 4m+l == _-—— e My =a = =
VFFF'?T +T1‘ JF;; +ﬂ'7¢5 Pl;; —maﬂ."; +'—k:-'i—n5:¢ -ZMHTFE +ﬂ'13l9 =}
1
vSﬁ; +—2 ao.'i';;.‘* +a?¢1ﬁ.§?p—E -EmHD}f;.SJ -Zma,,b; +a.@ =0
4 X5+t PO a8, - (2m-1)a,F.0~22m g =
arn E o5+ a, ;+a?¢5 ﬁ-—( m—1a, 8- 2m-N+a,d =0

Subject to boundary conditions
F(0)= F;(0) =0, F;(x)=0
$(0)=5;(0)=0, §;(=)=0
for the dimensionless stream function and
g(0y=1, B{x) =0

for the dimensionless temperature function,

Lel us now substitute

¥ |
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F=qf,S=as,¢=ap, 0=
in the above equations. Thus the above equations changed to

A+ ] ayx’ aa’ a’
_,f_+a']3 & =0
1%

1 2
. o a.a .
Jw +( 2 ] DV ff# M v Ho =

R

kv v
2 2 2 z

4m+ 1\ a,a’ a,a a,a a,a a
s‘w+( 5+ . @, —2m " S, 5, —2m y sﬁ+aw-v—19=[l

2 v
and
q Am+1Ya,a’ a,a’ @,a’ a,a’
Pr 9#+ fﬁ, + {JHEL —(2m-1) féﬁ—E(Zm—r]} 7=0
2 v v ¥ ¥
2
Choosing [4m+l]aa =1 and writing . c, m__ £ Also ——z—ai=] and
v a, Am+1 dm+1 a,
2 a, .
———= = R for purely free convection.
dm+1 a,
Am+1 a, 2
k "
= Sr(ak X + 207w+ Ak,)" ATk, = 4’”2 LY
1
I
o arT =200 o v da e A )
zk?ﬂf g,l' I
We have finally the following similarity equations.
1
S t L (2480, — ﬁ[f: —k—z.s-j + Zcf‘) +8=0 {4.46)
1
Sppp + Sop H(2= APy, —28(/,s, +5,)+0=0 (4.47)
and Pr' 8, + f8, + (2-Af)cdd, — (67 -2) 1,80 - (128 - 4)cf =0 (4.48)

The boundary conditions are

S0)=1(0)=0, f,(c}y=0
5(0)=5,(0}=0, 5,()=0 (4.49)
G(0y=1, Bloo)=0

We have, in this case, the similarity requirements are

4}




b = b @,k X + 2,7 + 4,k,)"

2 A4
=bla,;"k3f"[X+ ki r+——°—J
al:l 3 HU

=g {x+ci)"
h (¥ +TH)"

where ¥r=X+X,

|
1}
i
+

Ty

@, =halk;]
U, =a, (¥ +E7)", where a, = bk a’
75 o g f- AT (charactenistic length £.;), where £, = (X +¢f)
Ve =a, (¥ +cf)", where a; = bk kay

V2w g, B AT (characteristic length 1), where L, = (¥ +27})

b (4m + a2
zkaz_zmﬁrgr

AT = @ (X +T1)*"", where a, =

AT w (T+E7)P.
¥t =g (T +ET7), where @, = ayk,

The similarity variable ¢ is,

I Z

,;5:__
oy \f 2 m

(4m + i,

dm+1 g LA+l
2k v

1
=(Grﬂ-)l_ z__ where Gr3 =[

— is the modified
{T+cCt) }

Grashof mumber.
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The velocity components
u =Ug f(¢) where UL = ~g, B ATL,
v =Fgs,(8) where Vi =-g, A ATL,

1
hh,

2y 11 I 1
B {k3(4m I +a‘)} {EM - "[szrEJf }

Skin frictions are

[‘ {hz?{"rp )j.' F+ E?XhZUFE}

and w =

7
ol a1y e Ful0)
—pl/} A
2 F
o=
w3 -'u 5:.' o
1

) o
[T (D 5, (0)
Eﬂ"’ﬁ I

= kA7 ( dm + II‘:—”) 2 (¥ +27) 2 &, (0).

2v 5
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ﬁ'A{}’,r] T—D, GB(T!X);tU? a(X’F}zﬂ
s ot aX

SUX,T) o YD) o BBEX) g
&y ar ax

Choosing h = A,,

AY.T) _

Let,
&Y

NslArm.

£,
:_.’_(31 —d,—d,ta, _aiﬂ)

I

=4/

¥ {4.50}
M = constant
or

'

(2a, +a,; —a,,)
]

=kl (4.51)

aC(X.Y)

= constant
aX

= jihz k, = constamt, &, —a, —a, =0=1, {4.52)
F
aC(X.Y)
5) 4

= constant

h
=—L(a, -a,-a,)
F

1
=1 45
P (4.53)
SA(F, 1)

= constamt
o

= U_F{iﬂ7 +a, _aza)

=7, (4.54)
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aB(r, X)

and # constant
X
Ve _ 1 =0=1 455
= F—k—icenﬂaﬂt: a, —da, —d; —d, +G]5— s ( - }
F L

By virtue of equation (4.8), one obtams

.

/
AY 2y =khY +- 2+ 4,

3

Br, X)=kLT+B, v {4.56}
CiX,. = ;:“ Y+,
[n view of equations (4.11), {4.12) and (4.13), we pet
3’ =%—Y+Za?f+(:n {4.57)
2
yleak X +EkIY +1r+4,
without loss of any generality. Setting @, =0
Syt =hhkLY i+ 4, (4.58)
and y° =a, kil’ +L7+ B, (4.59)
2
Comparing the above three equations (4.57- 4.59) for y°, we have to write,
a, =l =1, 2a,=I=1I
= Ay =g dy = g iy =dyys thy = dy,.
Hence %* is found to be
yl=ak kY +2a 1+ 4k {4.60)
: : ¥,
In view of equation (3.44), we have p =a,X+A¥,r) a,=0
|
_Aka Y Y200 AR (o ging (4.56)] (4.61)

k,

Agam, in view of equation (3.48}, we have

2

4 ;"‘ =,V +B(X.1)
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=a,V + k&, 2a.7+ B, [By using (4.56)]

_kka¥ +2a7 thE B

Kk,
_kkat +2ar vk 4,
) ko,
By virtue of equation (3.333), we get
hi - “mhi
KoVt

Ak,
kkal+2ar+k A,

173" s

P

by = bk daY + 2,0+ kA

where 5, is the constant of integration.

— B =h =b(kkaY+2a,r+kA)" where m=0

y
From {4.61), we have
U, = i—](“fp’fgﬂf +2a,r+k, A )"
El

Similarly, from (4.62), we get

v, = %(k]kgaﬁ’ + 24,7+ kA"

I3

(4.62)

(4.63)

(4.64)

(4.65)

Substituting {4.60, 4 53-4 65) in the similarity requirements one may obtain the following

relations between the constants (a’s):
a,, a, are arbitrary.
ay,=a,=a, =0, a, =2ma,, a, =—2ma,,
a,=ma,, a, =0, a, = 2ma,
K .
a, = b—i{h ka¥ +2a,c+k A" B ATe,,
i

— i —
: @, =mhkydy,  dy = 2ma;,
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i, = k_f;ijs_{k ka ¥+ 20':,1' + .{'3449}1‘2"1 ﬁTﬁTgr : dy =0

17373
|

ay =(2m—1la,, a, =22m—1a,.

Furthermore, equations {3.25-3.27) reduce to

= dm+l = T ~ o = T
¥ Fazg + 5 a8 Koo + a, ¢ b EmcI}f*;S; —2mag b+ a,t =0
=AM+l oo ow . = e, g2, T - =
VSH; + 5 ) Si—.‘* +a?¢553; -ma}.fa; + Pk, ajfﬂ; —Ema?S; +a,8 =0
Vo= dm+l =5 - = —
and EH&; +——a,88; +a,p8; - (2m -1)a, 5.0 -2(2Zm-1)+a,6 =0

The boundary conditions are
F(0)=F{0)=0, Fy{w)=0

S0)=5;(0=0, 5;(=)=0
G(0y=1, G{x)=0

As in previous CASES, substituting Feoof S=as,p=ap, =6

1 L. & im .
a,a’ =1 and wrting — =¢ = B. Also for free convection we

. dm+
choosing \
a, 4m +1

2 2
put——-1% = | and < fe_p {constant)
dm+1 a; dm+1 a,

The above equations simplify to

Fap t g +(2=A8XH, ~28(f,5, —of,)+8=0 (4.66)
See T 55 + (2~ A, — Bls, ~ K} -2e5,}+RE=0 (4.67)
and Pro' @, +58, +(2- 47)c¢6, —{68-2)f,0-(120 -8 =0 (4 68)
The boundary conditions are

FO) = £,(00=0, f{)=0
{0)=5,(0)=0, s,{x)=0 (4.69)
G0 =1, B(x}=0
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In this case, the similenty requirements are

h = b (kkay +2ac+kA4)"

=k kyal| ¥+ 2 T+ 4
kk.a, e,

=a,(y+ei)”

where Y=Y +F,

Ve =a,(F+30)", where a, = bk k" a)
UL x g, BrAT (characteristic length £,), where £, = (5 +&7)
Ve =a,(F+ef)", where a, = b4 "% "a]
View g [ AT (characieristic length £;), where L, = (P +&1)

B (dm + a;™

Af =a, (Y +E0*™", where a, =
e T,

AT = (F+THY¥".
i =a.(y+ci), where a, =k k.a,

The similarity variable ¢ is,

¢=— :
¥y 2v —
—————-(4m T JE )
=(G’;f)‘17 :

(F+ct)
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(dm+ 1) g, f AT(F+aty

where (Grﬁ:'); ={ b 2

The velocity components are

w=Ufd) . v=Ves, )

1 Ay v
wd v = O#7), 5+ Fryh 5,
2

1
)
] is the modified Grashef number.

= 2v ks % lcﬁs' ~[2m+l}
“Nam+y+en| [277F 2

Skin Fictions are

3 Pl
-Z)
v 6'.'" FL ]
A
~ 7
D2 = (m+ =2 s, (0}
_ pif; h]

49



Case-7 :
aAY,T) o BBX) o SCXT)
&y T Ot A
SAY . 1) £0, aB(r, X)) ~0
or ax

Let Ay =h, end a, =a, =0,

0,

Let M * constant
) 4

hUs
B Ve

_Ue

XYY g
¥

{a, -a, —a, +a, —d,) = constant.

k=Lt 20f=a-a,-a,+a,-a,=0

1
r3

aB{r, X)

oF

"
= —OB(TJ X) = _VF (a; +a, —ay)
a1 R

=gonstant

= kz'fz

h
= —L-(a, —a, —a,) = constant
-

h
ky=—w0l =a,-a-a,=0
F
dC(X ¥
# #Constant
(i) 4
"&1
— —(a, —a, — a,) + constant,
V. :
1k
gd{¥
A7) _ onsiant
arg
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_ MY Uy

AB(r. X)

=

e F 0 =ay -

ar

X

F

i,

V.
{J.

1

h,

Foonstant

(2a, +a, ~a,)

(@, —a, —a, +a,, —a,;) # constant.

—dy~a, ta,; =0

By virue of equation (4. 14), we have
y:=2a1+ 4,

{T) choosin

EA-:;:D

?2 = M?T

In view of equation {3.34a), we have

alﬂ

- ?’2 (Ue)r

U,

= Welr = Jo [By using (4.77)]

i,

2a.T

. Ue=b(2a,0)"

where m =

2a,

d,, ) ,
2. and b, is the constant of mtegration

Similarly, from equation (3.37a), we gel

2a,

a , : :
=—% and &, is the constant of integration.

=] |

(4 74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)



Also, by virnue of equation {3 47), we have

2

¥

Un = T
1
ht o
— Mf_ “n
A, 2a.7

r h:l, = 'h1 =h3{2a71')m

a, . , :
where m 2-5:3* and b, is the constant of integration.
a,r

(4.80)

With the help of the equations (4.77-4.80), the similanty requirement yield the following

relations between the constants:

dgy=a =g, =d, =g, =g, =a, =0

&, is arbitrary.

=, =a, =a; =0

1

a.,=2ma, a,=——————————f1 Afj,
12 T L3 b] 31'3 {.ZHTT)ZJN—! ﬂ? gﬂ.

@, =a&; = =d,; =0

ay, = 2ma a, = 1 JiNLY § o4
E 75 19 = o Hradgy

b.b,(2a,7)™"

@y =8, =0, a, =2(2m-1)a,
For this case the general equation (3.25-3.27) are therefore reduced to

0

TE-FF +a,8 P EG?mE; +a,8 =0

T = J— —_

The boundary conditions are
F{oy=F,(0)=0, F;(=)=0
S0)=3; (=0, §;(0)=0
A(0Y =1, () =0
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As in previous cases, substituting # =a f,§ =ax, ¢ = ap, # =# and choosing

a. o’

(4 1 il .
T_ =1 and later we have to put —= =1 and = = & (Constant) for free convection.
v a, o,

Finally the above equations are reduced to

o T8 S —2mf,+6=0 {4.81)
Sppg T Sgg —2m5, + RO =0 {4.82)
and Pr' @, + ¢4, -22m-1)¢ =0 {4.83)

The boundary conditions are

SOy = £,(0)=0, f,(x}=0
s(0)= 54 (0)=0, 5,(x)=0 {4.84)
G(01=1, @) =0

For m=1+p, pis a constant, s = f, & = 1, the equations (4 81- 4 84) with the boundary
conditions coincide with unsteady free convection with umform but unsteady surface
temperature vadations at large distance x, analysed by Yang (1960) We have, in this
case, Lthe similanty requirements are
ho=h, =86(023,7)"
= b, {20, )7 (7)"
=a {f}" where a, =5,(2a,7)", 1 =1.
h ()"
oo =a ()", where e, =5 (2a.)"
U: o g, frAT {characteristic length L}, where Z, = (/)"
L Ve =, ()", where a, = b, (2a, )"

Vi o g B AT (characteristic length £;), where £, = (7)™

AT =a, ()™, where a, _ 3uhh 2a)"
BrEx
AT = (1)*™.
y* =ad, where a, = 2a, [ |
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The similarity variable ¢ is

===

44 Vv —
4 — J2af
a'."

Z

Jﬂﬁﬁ

The velocity components {¥, v, w) are

u=Ug], § (#)
b=V,5,(#)

and w=0

Skin frictions are

rwﬁ%@ﬁ@@

;=
w2 II'_EV
Heat flux

3
4. =X 5" 26, (0)
2y

o

(IT) If we choose a, =0, A, = arbitrary constant.

@) 5,,(0)

From (3.7.7), we have ¥° = A4,

The equation (3.47) implies,

A _ay

B 4

= A =£:r1f3‘E
= b

: . , a
where b, is the constant of integration and n=—2

1
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In view of eguation (3.34a), we have

W), _
U, 4
= Uy =be™ (4.87)

i . . a
where %, is the constant of integration and n = f

0

Again, from equation (3.37a), we get

AN
Ve 4,
SV, =be™, (4 88)

. . . o
where 5, is the constant of integration and r = j*—

!

Therefore, the constants becomes

aﬂ:a]:a1=a4=35:56:g7:a8:ag gng]”:ﬂ
. __ 4 o _
a, =nd,, a,= Tnr B ATg ., ay =y =ad,; =a, =0, a;=nd,
bb.e
A,

g ATg, Oy =8, =0 a., =2n4,.

&y = =
® o hbetr
Thus the general equations (3.25-3.27) reduce to

p Fp —nA Fy +a,8 =0

As before the above cquations take the form

f# —fﬁ +8=10
Spe —Sp +RE=D {4.89)
By—Prf=0

55



with the boundary conditions

FO)= £, 0)=0, f(=)=0
S(0y=5,{0)=0, 5,(0}=0
G0} =1, ec)=0

The analytical solutions of (4.89), are

! : :
.f=%|i5ﬁ_¢—?}, S:i1|i? "—?] and g=¢" '
Prz

The similanty requirements are

'hl = l'.t-'lenF
o= e™
[y =be™

{72 « g, B, AT (characteristic length .,), where I, =&
;F _ bié?m-

v a g, 8, AT {characteristic length L;), where L, = &™

AT =ae™ where a———, F=1
bb,f- 8.
AT x ¢
y =4,

The similarity vanable ¢ is

#5:..5_:

v &

_ 1
l,r-

The velocity components are

H= {ij.pi ()
v= VFS;;(¢}
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Skin friction are

- A2)
wl_lu az i
=mz\ﬁe”"f,,m)
¥
%)
Tyn = M| ——
(¢4 =0

= ub, \[Lze”’s.,,, (0)

Heat flux

of
- g 2L
qw [ EH J;:D

= —ke, ﬁe”f{, {0)
v
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Case-3:

a4(Y,7) —0 ak{z, X) —0 AC(X.T) ~0
aY ' &t ’ ax
cC(X,r) ~0 cA(Y, 7} _o aB(r, X) -0
ar T Bt 7 ¢
Choosing & =h, =1,
Let, M * constant
o
g
= V—(ﬂ3 —d, —a, +a, —a, ) # constant
F
&,
= k=—=z0{=a,-a,-a,+a,—a,=0 {4.91}%
-
BER) o constant
ot
= Vp.{2a, +a, -a,)+ constant
= b=V, #0],=2a0,+a,-a,=0 (4.92)
HALT) | constant
i
1 _
= —{a, —a, —a,) = cornstani
[/,
o k=201, =a,—a,—a, =0 (4.93)
i, :
(ALY
-l # constant
ay
= Llfcir3L -, —d, ) % constant
Ve
Lol iot—a-a,-a =0 (4.94)
kz Vﬁ. L) 3 4 3 '
SAY, 7)

——=' 7 » constant
oy

= /. .(2a,+4a,;, —a,)# constant
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= IL=UF°:D:I;:2‘77+”|3 —ay, =0

il

oB{r, X}
aX

F
= —=—(a,—a —-a,—a,+a,)*constant,
F
1V
— =L 20,1 =a,—-a, -a,-a, +a,=0
kU,

= constant

=

The equations {4.91 — 4.96) implies,
a, =da,, 2. =-a,, a,=a. Ld =-a, a =ata, a,=4J,+ta,
By virtue of equation (4.9}, we get

YUy =a,X + A4,

By using {4 91} and (4.95}]

From {4.10), we have

rV.=af¥+8, _

[By using (4.92) and (4.96)]

In view of equation (4.11), we get

Lyi=2a.r+C,
[By using (4.93) and (4.94)]

By virtue of equations (4.98-4.100), I/, and ¥, are found to be

U= a, X+ A4,

To2a,74F,

and . = a¥+8,
2a,7+C,

(4.95)

(4.96)

(4.97)

(4.98)

(4.100)

(4.101)

(4.102}

(4.103)

Substituting (4 101-4.103} in the similarity requirements one may obtain the following

relations between the constant {a’s).
a,.a, and @, are arbntrary

h=ay, a,=0, a,=a;, a,=a¢, =0, gy =a,, o, = a,=a,=0, a, =—2a,

C(2ar+ Y

a X + 4, D ATz, a,=a, a, =, =da,=0, a,=-2a,

13
_(2ag+C)Y

) {ﬂj.r'i‘Hn) ‘ﬁrﬁ?:g}" ﬂz':' =aU’ 'a21 :451'31 azz =_4ﬂ7-

[4J7N
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Thus the general equation (3.25-3.27) take the forms for this case:

VI a FEE +a3§13;; +a?¢TF';- —anF; +2a.7; +a,,6 =0

V;S‘;;; +ﬂ35f S‘;l; +HD§F;F +HT¢ S;— -a13; +2(‘JFS;.- +ﬂ'w£" =

and ig_;; + GGFET; + ajgé +HTE§$ - (aL,F; +ara§$)€ +4a,8 =0
The boundary conditions are
F{0)=T;(0)=0, F5(x)=0
§5(0)=55(0)=0, §5(w) =0
g0 =1, #(x)=0

I

As in previous cases, substituting F =af, S =as, 8 =8, § =ap choosing—— =1 and
v

., a i a i )
later writing —>=¢, —=d. Also we pur—2=1 and —* =R (constant) for fee
a
i}

o, a, g,

comveclion.

The above equation with their attached boundary conditions are simplified to

Soag + 465}y + iy — [ +2df, 48 =0 (3.104)
Seug TOF +08)sy, +dds,, —cs; +2ds, + RO =0 {4.105)
and Pr” B +{f +c8)8, +dg0, —(f, +es,)8+4d6 =0  (4.106)

The boundary conditions are
F0)=f,(0)=0, fi(w}=0
s(0)=5,(0)=0, s,(x)=0 (4.107)
F0y=1 Hmw)=0

The similarity requirements are

h=h=1
1, _d X+ 4,
" 2T +C,
T -
=a— , where ¥ = X + X, r=r+r0,a]=a—"
! 2a,

L



UE o g B AT (characterstic length L;), where L, =

. _ Y+ B
o2+,
a2 wherear, =2, F=F+¥,
Tt © 24,

Vo o« gy A, AT (characteristic length L;), where /., =

M

T a
.'i;"'=ﬂj_xz, wherg Q3=“E-—0——-
4 14,85 by
X
AT o« —
EZ
and ﬁT=a4%, where a, =#3—
¢ 4a; J'g:rgr
A=,
f

~opt =a,({), where a2, = 2a,

The similarty vanable ¢ is,

- -
Ll -

ar ‘Pm

Ja,z
Vv, a,(7)
The velocity components are

w=LU_f($}, v =Ves,(9)

and “":a]a ) F -y, 5}
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Skin frictions are

Qu
fh] = K 52
2=0

3 —
a X

Bady _ 2

(£)°?
v
fe ﬂ(ﬁz]
£=0

2 —
adaay Y
E:r‘i 7wl
Ty

=H J (0}

Heat ﬂux, g, =- [%J
=0

ad X
=—ka, ¢

@y

-6,(0)
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Figure L(1). Yariation of (he dimensionlcss velacity /' along the
w-direclion with ihe simlarity variable ¢ for different valus of ¢
I Bascd on equation(d, 26=.29)].
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Figure 1(b}: Varizuon of the dimensionless velocity 5 along the
v-dircction wilh (he similarity variable g for different values of ¢
| Based on equation(4, 26-4, 29)]
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Figure 2(a): Variation of Lhe dimensionless velocity /' along the
a-direction with (he simlazity variable ¢ for differem values of
|Based on equation(.26-4.297].
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Figure 2(b}: Variation of the dimcnsionless velocity 5' along the
v-direction with Lhe similanty variable ¢ for dillerent valucs of of
[ Bascd on equaiion($.26-4.29)].
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Figure 3(a): Variation of (he dimensionless velocity /' along the

u-direction with (he similanty variable ¢ for different values of 5
| Based on equation{4.26-4.29)].
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Figure 3(b); Varianen of the dimensionless velocity 5' along the
y-direction with the similariry variable ¢ for different values of
| Based on equation{4.26-4 29|,

67



1
09
- &
- a4, 4=0.3, k=0 4 R0 5. Fr=0 72
(PN ol
- 1{\
07 E
g p=0-33
06
' N et 40
ey WA e -- [i=th 45
04f
ozl
0.z
0.1 F
ﬂL: M
Q
Figure 3(c): Variation of (he dimensionless (emperamn & with
the similarify variable ¢ for different values of 4 [ Bascd on
ciquation{4 26-4.29)].
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Figure 4(a). Variahon of the dimensiontess velacity ' along the
w-direction with the similarity varigble ¢ for dilferent values of
k, {Based om equation(d.26-4.29)],
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Figure 4(h}: Variation of the dimensionless velocity s' along the
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Figure 4{<): Varianon of the dimensionless lemperature & with
Ihe simalarity variable ¢ for different valoes of k| | Based on
equatton(d. 26-.29].
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Figure 5(a); Variation of (he dimensionless velocity f* along Lhe

y-dircction with the similandy vanable ¢ for differcnt values af R
| Based on equation(d.26-4.29)].
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Figore 5(by: Variation of the dimensionless velocily &' along the
v-direction with ke similarity variable ¢ for different values af K
[ Based on equation{4. 26-4.29)].

Fil



03

0.2

L=
L

=
Drllll .IIII _I|||.||1IIII|-|IIIIIII |||II

04

0.35

03

'@

a2k
015
01F

oos By

o~0.4, d=0.2, p=0.3, k;=0 4, P 72

Figure 5(c): Variation of the dimensionless temperature & with
the similarity variable ¢ lor different valuss of R [ Based on
equation(d.26-4.29)].
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Figure 6(a): Variation of the dimensionlcss velocily ' along the

w-divection with (he simmlarity vanable ¢ for dilferent vatues of Pr
[ Based on equation{4.26-1.22}].
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Figure 6{b): Variation of the dimensionless velocity 5' along Lhe
s-direction wilh the similarity variable ¢ for dilfcrent values of Fr
[ Based on equation(4 26-4.29}).
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Figure 6(c): Variation af the dimensionlcss temperarure £ with
the simukarity vaniable ¢ for diffcrent valucs af Pr [ Baged on
cquation(4.26-4 .29}
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Figurc 7{a): Variation of the dimensionless slan fnction factor F
along the w-dircction with f# [ Based on equation(4.26-4.29))
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Figure 7(b): Varigtion of the dimensionless skin fricoon factor 5
along Lhe v-dircction with f# [ Based on cquation(4.26-1.29))

73




(.84

0.8z e=10, d=1.0, k=0 3, B=0.4, Pr=0 72

|IIII1'-|I'

o8

078

-8 (o)

0.76

III|1

074

072

av

n.&e

Figure 7{c). Variation of Lhe dimensionless heat Lransier (actor
—~ @& with § [ Based on equation{4.26-1.29)].
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Figure B(a): Vanatien of the dimensionless skin [riction actor I
along (he u-direction with /7 | Based on equation(4.26-4.29)}.
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Fipure 2(b); Vanalion of the dimensionless skin friction factor 5
alonp the v-direction with A [ Based on equation(4.26-1.29)].
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Figure #{c): Variation of the dimcnsionless heat transfer [aclor
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Figure 9(a): Variation of the dimensionless skin friction factor /™
atong the u-direction with ¢ [ Bascd on equation{#.26-4.27].

.0E: Y

d=02, p=0.3, k=04, E=0.1, Pr=0 12
008 .

0.0vs

s (0)

oa?

0.085

008
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Figure 9(c). Yariation of the dimensionless heat lransfer Taclor
— &' wilh ¢ | Basad on equation(4.26-4.29]].
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Figure 10{a)' Vanation of the dimensionlces skin Friclion factor
" along (he v-direction wilh & [ Based en equation{4.26-4.29)|.
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Figure 10(b); Variation of the dimengionless skin friction faclor
5" along the wdirection with 4 | Based on equanion{4.26-4.29)].
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Figure 10{c): Variation of the dumensionless heat (ransler [olor
—~ @ wilh 4 | Pased on equation(4.26-1.29)]
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Figure 11¢a): Variation of the dimensionless skan friction factor
/" along the w-girection wilh &, { Based on cquation(4.26-4.29)].
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Figure 11(b); Variatron of the dimensiomless skin friction factor
5" along the wdirection with 4, [ Based on equation(4.26-4 29}
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Figure 11(c); Variation of the dimensionless heat ransfer faclor
—#' with k, [ Based on equation{d 26-4.29)].
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Figure 12(a): Varigtion of (he dimensionless skin fviction factor
™ along he u-direction with & [ Based on equation(# 26-3.29)].
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Fagure 12¢b): Variation of the dimensionless skin [riction facior
s'" along the v-dircction with & { Basad on cquation(4.26-4.29)].
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Figure 12(¢c): Yariation of the dimensionless heat (ransfer Lslor
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Table — (1) Table — ( 2)

I FIy s"0) | -8 A J(0) sy | -&10)
03333 | 06956 |02020 |0.6613 03333 | 03110 |0.1255 |18072
03360 |D6940 |0.2918 |0.6744 03560 |0.3102 |01252 |1.8489
03390 | 06922 |02917 |0.6887 03390 | 03003 |01249 | 1.8984
03420 | 06905 |02916 |0.7029 03420 | 03085 |0.1245 |1.9402
0.3450 | 0.6887 | 02916 |0.7169 03450 | 03071 |0.1241 |1.9852
0.3480 | 0.6869 | 02016 |0.7307 03480 | 03063 |0.1238 |2.0295
03510 [0.6851 |0.2916 |07445 0.3510 | 03055 10.1235 |2.0734
03540 {06832 |02917 |0.7580 03540 {03047 |0.1232 |2.1167
03570 |0.6827 loz920 07710 03570 |0.3035 |0.1228 |2.1597
03600 |0.6809 ]0.2521 |0 7845 03600 03028 |0.1226 |22021
03630 | 06803 |02025 |07975 03630 | 03021 |0.1224 |22441
03660 | 0.6797 |0.2628 {0.8103 03660 | 03014 |01222 |2.2856
03650 |D6791 |0.2032 |0.8231 03690 | 03007 |0.1220 |2.3267
03720 | 06785 |0.2036 |0.8358 03720 | 03001 |0.1218 | 23675
03750 | 0.6778 | 02041 |0.8484 03450 |02004 |01217 |2.4076
¢=10, d=1.0, =03, R=0.4, Pr=0.72 ¢=1.0, d=1.0, &=03, R=04, Pr=7.00

Table - (3) Table — (4)

¢ F(0) sy | -8 d F(m S0y | -0
01000 |0G198 |00864 |0.3740 203000 | 08724 |D0563 |0.3887
02000 | 09173 | 00856 |0.3749 02000 | 0.0508 | 00841 [0.3352
03000 | 09154 |0.0849 |03754 J0.1000 | 09458 | 00845 |0.3445
04000 | 09135 |0.0842 |0.3760 00000 |09374 | 00846 |0.3545
0.5000 | 0.9111 | 00835 |0.3768 01000 | 09263 | 00845 |0.3651
0.6000 | 09094 |0.0828 |03773 02000 |09135 |0.0842 |0.3760
0.7000 | 0.9077 |0.0821 |03778 0.3000 | 08984 |0.0836 |0.3875
08000 | 09054 |0.0814 |0.3786 04000 |0.8834 |0.0830 |0.3988%
0.9000 | D.9038 |00808 |03790 0.5000 |0.8671 {0.0821 |04105
1.000 | 09022 | 00801 |0.3795 0.6000 | 0.8501 |00812 |04225
2000 | 0.8884 | 00740 | 03838 0.7000 |08338 |0.0802 |04341
3000 | 08793 |0.0682 |0.3866 0.8000 |0.8166 |00791 |0.4463
4000 | 08737 |0.0625 |0.3883 00000 |0.799¢ |00779 | 0.4583
5000 |08724 |0.0565 |0.3887 1.0000 | 07841 |00767 lo0a700

20000 | 0.6403 | 00654 |0.5839

d=02, B=0.3, k=04, R=0.1, Pr=0.72 c=0.4, p=0.3, k=04, R=01, Pr=0.72

B2




Table — (5)

R A7 | S0y | -8
00000 | 0.9486 | 0.0000 |0.3522
01000 |09482 |0.0885 |0.3522
02000 | 09476 |0.1773 | 03518
03000 |09462 |0.2663 |0.3513
04000 | 09440 | 03557 |0.3507
0.5000 | 09414 | 04459 |03497
0.6000 | 09376 |0.5366 |0.3487
07000 09332 | 06285 |0.3474
08000 |09279 (07216 |0.3459
0.5000 | 09212 08161 |03442
1.0000 {05133 109125 03421
¢=0.0, d=0.0, B=0.3, k=10, Pr=0.72

33

Table - (6)

MR ECEET
-1.0000 | 0.9133 0.0125 0.3421
1.0000 0.0133 9125 0.3421
2.0000 0.0435 {.8934 {1 3490
3.0000 0.9485 0, 82904 0.3501
40000 09303 {38805 00,3505
5 0000 0.9500 0 8%R9 {0 3507
6 0000 0.93514 0.88BO 0.3508
7.0000 095186 0. 8RRS 0.3509
8.0000 09518 0.8884 03509
Q.0000 09519 0.8883 03509
10.0000 | 0.9520 {.B883 0.3509
11.0000 | 0.9521 {8882 0.3509
12,0000 | 0.9521 (0.3882 0.3509

¢=0.0, d=00, B=0.3, R=1.0, Pr=0.72




Results and Discussion

in the present investigation, possible similanty solutions of unsteady laminar boundary
layer free comvection low around & vertical curvilinear surface 1s solved numerically by
Machtsheim-Swigert iteration technique. The calculations were carmed out for several
values of parameter 3 (Table 1 and Table 2) for Pr = 0 72 and Pr = 7.0. For constant all

3 .
temperature 3 = and constant heat flux f = 5 We display numencal values

L Y

of f7(0), 5"(0), —&'(0) in the range 3333 < P < 3750 in tabular form. The values for
FT(0), 57(0), — &'(0) may be obtained at the rectangular body surface (¢ = 0} which are

required in evaluating (he skin-frictions and heat transfer co-efficients.

Figures 1(z, b) and 1(c) represent respectively dimensionless velocity and temperature
profiles ford = 0.3, =03, k&, =04, K =05 Pr=072 with several values of ¢. The
velocity profiles vary as usual with the parameter c. From figure 1(z,b) it can be
concluded that the velocity profile decreases as the values of the parameter ¢(0.0-1 5}
increases Near the surface velocity profile increases, becomes maximum and then
decreases and finally takes asymptotic values Frowm figure 1(c) we observe that the
temperature profile is large near the surface and decreases away from the surface and
finally takes asymptotic value. Here we also see that temperature profile decreases with

the increases of the parameder c

Figures 2(a) and 2{c) represent respectively dimensionless velocity and temperature
profiles for c = 0.4, f =03, k, =04 R =05 and Pr = 0.72 From Figure 2(a,b) we
observe that the velocity profile decreases owing to increase in the velue ot the parameter
d. Near the surface velocity profile becomes maximum and then decreases and finaily
takes asymptotic values.

From figure 5(c) we see that the temperaiure profile remains unchanged for different
values of the parameter R For 0.0 < R 5 0.8 the temperature profile becomes maximum

at the surface of the plate then decreases away from the plate and finally takes asymptotic
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value at ¢ = 4.2. From 5(b) it is observed that the velocity profile increases as the value

parameter R increases.

From figure 9(a) and 9(b) we observe that along u-direction skin frction gradually
decreases with the increasing of parameter c, the skin friction more decreases with the
increasing of ¢. The fig. 9(c) asserts that the parameter c increases the heat transfer rate

highly with its increasing value. With one of the parameter R— 0,/ =0, the equation

(3.26-3.29) may be well compared with 2-dimenssional equations of renowned authors.



Chapter-6

Conclusion

An analysis is made of three dimensional unsieady laminar boundary layer equalions for
free convection flow around a curvilinear surface, in order to establish nccessary and
sulficicnt conditions undcr which similarity solutions are possible, On the basis of these
conditions, out of eight possible cases five cases have been studied here. The remaining
three stcady possible cases were derived by Khan (1998). An additional parameter d ,
which is the ratio of boundary layer thickness due 1o varations with respect 10 position
and time is estahlished here. For this situation; the possible variation in AT and the scale
factors & and A, are found in the similarity solution for the momentum equations and
encrgy equalion. Hence with the positive real velue of 4, the fiow parameters like skin

friction coefficients (=z.,(0),7,,(0}) are found to decrease while heat transfer coefficient

(: qw{ﬂ)) incrcases. Such effecis are quite remarkable in presence of otber parameter

kl[= %l] in the momenium equations, but the enerpy equation s of free from Lhis
F

parameter. Further mvestigation are necessary to draw the overall remarks conclusively.
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