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Abstract

Similarity solution plays a vital role for the reduction of variables (depcndents or

independents) when the questions of partial differential equations arise in dealing with

the boundary value problems. The present study deals with the possible similarity

solutions of unsteady Iaminor boundary layer free convection flow around a vertical

curvilinear surtaec. The froc parameter method is introduced. Then the pertinent

ooundary layer partial differential equations under a suitable transformation are reduced

to a set of ordinary dilTercntiai equatiollS. These simultaneoi.L~transformed ordinary

differential equations with proper boundary conditions are solved numerically using

Nachlshcim-Swigert iteration technique and Runge-Kulla shooting method. The results

arc compared with an other relevant works for special situations. The non-dimensional

skin-friction factors (=fw,(O),r.2(O») and heat trans/ee co-efficient (=qw(O)) arc

displayed and shown graphically for some values of the controlling parameters by using

the Software FORTRAN 77 and TECPLOT.
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Nomenclature

comtant

specilic heal at constant pressure

dimensionless scaled stream function

dimensionless velocity

acceleration due to gravity

acceleration due to gravity along X-direction.

acceleration due to gravity along Y-direclion.

scale factor for curvilinear surface.

modified Grushofnllmber.

the coefficient oflhermal diffusivity.

charal.--teristic length.

temperature power! exponent pamrneter.

pressure

Reynolds number

Prandll number

Fronde number

heat flux

temperature orthe fluid.

temperature of ambient fluid.

surface temperature.

velocity components in the boundary layer.

characteristic velocity generated by buoyancy elfects.

co-ordinate along the edges of surface

co-ordinate normal to surface.
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p

p

K

~,lJ,r;;

r

Greek letters

oonstant

the coefficient of volumetric expansion.

boundary layer thickness

thermal boundary layer thickness

dimensionless temperature function

mass flow components (stream function)

dissipation Junction

similwily variable

the kincmetic coefficient ofviseosity.

the density ofthc ambient Jluid

coefficient of viscosity

the coefficient of thennal diffusivity

non dimensional skin friction

scaled co-ordinate defined in equations

the square root of the boundary layer thickness



Chapter-]

Introduction

Free convection heat transfer occurs whenever a body is placed in a fluid at a higher or a

lower temperature than that of the body. As a result of the temperature difference, the flows

between the fluid and the hody causes a change in the density of the fluid layers in the vicinity

of the surface. The difference in density leads to downward flow of the heavier fluid and

upwurd flow of the lighter one. If the motion of the fluid is caused solely by differences in

density resulting fmm temperature gradients, without the aid of a pwnp or a fan, the

associated heat transfer mechanismis called nalural or free convection. The density difference

gives rise to buoyancy effects due to which the flow is generated. A heated body cooling in

amhient air generates such a flow in the region surroutXlingit. Similarlybuoyant flow arising

from heat rejection to the atmosphere and to other ambient media, circulations arising in

heated rooms in the atmosphere and in bodies of water, causes thermal stratification of the

medium.Many other such heat transfer process, in our natural environment as well as in many

technological applications are included in the area of natural eorrvection.

The concept of'similarity' initiallyintroduced by Blasius (1908) has become a useful tool

now-a-days. On the basb of similarity transformations and finallythe reduction of the set of

partial differential equations to a set of ordinary differential equations have now reached stage

of any great extent. A partial differential equation (POE) with more than two independent

variables hecomes neces."af)'to formulate the true picture of the happenings and reasoning of

the problem. It is often dimeult and even impossible to find the solution of POE with the

usual classical method. So applied mathematicians and engineers devote themselves to

develop the ways and means for their solutions with simplifYingassumptions. Similarity

solution is one of the means, where the reduction of number of independent variables into one

being done successfully. A vast literature of similarity solution has appeared in the arena of

fluidmechanics, heat transfer, mass transfer etc. Oifferenttypes of perturbation techniques arc

followed to solve the non-linear PDEs followingprimarilyon local similaritysolution. ""



The theoretical analysis and experiments carried out by Schmidt and Bechmann (1930)

of the tree convection boundary layer flow of air subject to the gravitational force about an

isothermal, vertical flat plate constitute one of the earliest comprehensive studies of natural

convection now. Eckert and Soehngen (1948) verified and extended the experimental work

of Schmidt. Schuh (1948) obtained the numerical solutions by computing velocity and

temperature distributions for several Praudtl numbers. Ostrach (1953) studied aspects of

natural convection heat transfer. He also analyzed laminar free convection flow and heat

transfer about a flat plate parallel to the direction of the generating body force. Yang (1960)

studied the llilSteady laminar boundary layer equations tor free conve>etion on vertical plates

and cylinder to establish necessary and sufficient conditions under which similarity solutions

were possible. On the hasis of Utese conditions, all possible cases were derived, for two-

dimensional unsteady boundary layer flow. Braun et a1. (1961) investigated free-convection

similarity flows about two-dimensional and axisymetrie bodies with closed lower ends. He

fOl.lndthat families of bodies had similar velocity and temperature profiles along their entire

extents. He also computed growth of Ute boundary-layer thickness and velocity along 1he

surface as well as the heat transfer lor a wide nmge of Praudtl numbers. Stewart (197\)

derived boundary-layer solutions fur free conve>etion in 1aminar three-dimensional system by a

temperature-dependent or composition-dependent density. He detennined efle..:ts of rapid

mass transfer for centrifugal furces and generalized the results of Acrivos (1960) for power-

law fluids

Soundalgckar (1972) analyzed viscous dissipation effe>etson llilSteady free convection

flow past an infinite, vertical porous plate with constant suction. He derived the approximate

solutions ufthe governing coupled, nonlinear equations for velocity and temperature field. He

exhibited on graphs, the tluctualing p3l1s of the velocity, the transient velocity profiles, the

transient temperature profiles, the numerical values of amplitude and phase of the skin friction

and he-d transfer rate. Johnson and Cheng (1978) examined the necessary and sufficient

condition under which similarity solutions exist for free convection boundary layers adjacent

to Oat plates in porous media. The solutions obtained in his work were more gcm:ral than

those appearing in the previous studies. Laminar free convection from vertical surfaces had



been studied extensively by Sparrow and Gregg (1958) when the temperature of the surface

was uniform and numerical solution were dh,.playedalso for I'mndd illunbers in the range 0.1

to 10().Suwono (1980) applied the series of sevcral variables to the solutions of the boundary-

layer equations of free convection in laminar thrcc dimensional system. He verified the

numerical computation of the solution for the case of free convection over an inelined circular

cylinder. The temperature profilcs calculated from the first five terms of the series were

compared with the cxperimental data. Merkin (1985) studied the similarity solutions jor free

convection on a vertical platc when the (non-dimensional) plate temperature is x' and when

the (non-dimensional) surface heat nux was -x#. He ohtained solutions valid fur 1:2:1 and

J1 Z 1. He also discussed in both cases that the solutions became singular as 14 A" and as

J14 -I and the natures of these singularities. Jafapur and Yovannovich (1992) ana1yzed
,

laminar free convection heat transfer from isothennal spheres by a analyticalmethod. Pop and

Tllkbllr (1993) investigated the free convective flow over a non-isothermal two-dimensional

body of arhitrary geometric configuration. It was shown that there were a certain family of

body shape gcometries and eorre:,.pondingwall temperature distnbutions, which pennited

similarity solntions. He discussed in detail the effucts of geometric shape parameter and

Prandtl number on the velocity and tcmperature fields as well as on the heat transfer

coefficient. Conjugate frce convection on a vertical surface had been discussed in some detail

by Merkin and Pop (1996).

Cbaudhary et al. (1995) studied in detail the similarity solutions for free convection

boundary layer flow over a permeable wall in flllid saturated porous medium. It was seen that

the system depend~ on the two parameters m (the power law exponent) and y(the

dimensionless surface mass tran-~fcrrate). He also observed that the range of existence or

solution depends on m and, for lJuid, with drawl (y <0) on 1 as well, with a solution being

Ipossible for m>mo wherc m
D

= -- for y z 0 and for 1<0, m. decreasing monotonically from
2

I__ at y = 0 to -I as In4<>:>. Jill and Gogose (1996) studied trumerically,steady state natural
2

convection over a sphere. He obtained heat transfer and dnlg coefficients for a wide range of

Grashof lUunbers(IOISGr:":10&)for Prandlt numbers 0.72 and 7.0. A plrnne with a mushroom-

•



shaped front fonns above the sphere whose length and thickness decrease with the increasing

value of Gr. At high Gr ( Gr2':I01and Pr = 0.72 ), flow separation and an associated

recirculation vortex exist in the wake of the sphere. "lbe vortex size was found to increased

with the increasing value of Gr. The local Nusselt number along the spherc surface firSl

decreased, reached a minimum,and then increased ~ccply at the ncar of the sphere.

Gsnapathy (1997) studied time dependent free convection motion and heat transfer in

an infmite porous medium induced by a heated sphere. Sbouti et aL(1998) studied the

lUlSteadyfrce convection flow in the stagnation-point region of a three-dimensional body. He

considcred the ca~ewhere therc was an initial steady state that was perturbed by a stcp-change

in the wall temperature. It was seen that the temperature and surface heat transfer were

changed in a sma1linterval of time. The surface heat transfer parameter increased with the

increase of Prandtl numher while the surface skin friction parameters deereased with the

mcrease of Prandtl number. Jayaraj et al. (1999) discussed elaborately the analysis of

thermophoresis in natural convection flow with variable fluid properties over a cold vertical

plate. The effect of thermophoretic coefficienton wall concentration was also studied by him.

HeUums and ChurthiU (1962) presented a numerical solution of the coupled time

dependent boundary layer equations governing transient natural convection flow ovcr a semi-

infinite vertical plate in air. Goldstein and Brigges (1964) and Nanhu (1971) studied the

same problem analyticaUy.Elliot (1970) analysed the problem of lUlSteadyfree convection

boundary luyer flow over two-dimensional and axisymctric bodies for a step input in the

surface temperature. Williams et al. (1987) studied the lUlSteadyfree convection flow over a

vertical flat plute under the a=ption of variatioru;of the wall temperature with time and

distance. They found possible semi-similar solutions for a variety of classes of wall

temperature distributions. Sattar and AlaIn (1994) investigated the unsteady free convection

flow of a viscous, incompressible and electrically conducting fluid past a moving infinite

venical porous plate taking into ac;;ount the thermal dilfusion effect. The unsteadiness in the

flow field was introduced by time-dependent velocity of the moving plate. Kumari et al.

(1996) studied the transient free convection tlow over a continuous moving vertical sheet in

an ambicnt fluid.. The UItSteadincssin the flow field was caused by the time-dependent



velocity of the sheet. The constant temperature and the constant heat flux conditions were

considered. Kumari and Nllth (1984) considered the unsteady free convection flow in the

stagnation-point region of a heated porous three-dimensional body where the unsteadiness in

the flow field was caused by a time-dependent waU temperature. Thc semi-similar equation

governing the flow were solved numerically.

Rees and Pop (1995) investigated the effects of large-scale surface non-unifonnities on

the boundary layer now induced by a constant heat 'nux, vertically aligned, semi-infinite

surfuce embedded in a porous medium. The analysis had been restricted to values of x that

take 0(1) values as Ra ~ 00. In this range of values of x, the boundary layer thickness is
,

D( Ra '), which was nruch smaller than the 0(1) length scale associated with the waves of the

surface. Three-dimensional, laminar, incompressible boundary layer similarity solutions were

studied by Hansen and Ohio (1958). He found similarity requirements of tbe threc-

dimensional, laminar, boundary layer equations along with a general method of analysis. The

problem of unsteady laminar mixed convection flow and heat transfer between two corotating

disks with wall effects including both wall conduction and wall heat capacity were

investigated numerically by Monyan and Tzonglee (1997). In his work, both the thermal

boundary conditions of uniform heat flux ( UHF) and uniform wan temperature ( uwr )
were COlISidered.The Boussinesq approximation were used to characterize the centrifugal-

buoyancy effects. He noticed the wall effects on the characteristics of fluid flow and thermal

perlormance. The predicted results reveal that wall effects played a vital role in the unsteady

mixed convection heat transfer, especially for the early transient period. Additionally, in the

situation of buoyancy-opposing How (Gr" >0 ), the centrifugal buoyancy induced by the

rotation had retarding efleet on the skin friction coefficient and heat transfer rate. ZakemUah

and Maleque (1998) studied theoretically three dimensional combined laminar boundary

layer flows over inclined vertical orthogonal curvilinear surfaces. They described the detailed

analyses of similarity requirements for an incompressible boundary layer fluid in order to

reduce the governing partial differential equation into a set of ordinary differential equations.

Different pos~ible case~ were exhibited in tabular ronn for !:J.T -variations in addition to those

of exterior velocity components tabulated by Hansen and Ohio (1958).

l



The present studies concerns with the systematic analyses in reducing the governing

partial differential equations for unsteady free convective laminar incompressible flow over

the vertical curvilinear surface into a set of ordinary differential equation. Finally similarity

requirements is exhibited for /1T, hI, hz, UF and Vf. v.uiations. Numerical results are presented

to prediclllow characteristics for the different munerical values of the controUing parameters

involved in the similarity transformation. Results are, therefore, compared with known results

in literature.

6
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Chapter-2

Basic Equations

Considering the flow direction along the .; axis and II-axis and be defined in the

surface over which the boundary layer is flowing. For simplicity h,(.;,q) == 1 has been set

5uch that t; represents actual distance measured normal to the surface. The body force is

taken as the gravitational force g(g,(;,q), g,(';,1]),O) Thus the basic unsteady

continuity, momentum and euer.!,'yequations for a viscous and heat conducting fluid with

variable fluid properties subject to the body force in curvilinear co_ordinates are,

continuity equation

Dp -(' J a l_+ _(h,u)+_(h,v)+ __ (hLh,w)=0
DI as 871 at;

(2.1)

/I-momentum equation

p[DIl +~ Dh,+~ {}h, _~ 8h,] = -.!..pg _2. 8p + pV'u (2.2)
1JI h,h, 01] h, at; h,h, as h, ~ h, a;

v-momentum equation

[
Dv IlV Dh, vwoh, u' OhL]_ 1 1 i7p"l;7' (2.3)

P [)t + h]h, a; + h, a'-hJhz 0'1 -h;PKo-h;D'I +p v

w-momentum equation

p[DW _ Uo iJh, _~ iJho] = _ fJp + IN'w
Dt h, [g h, at; at;

and energy equation

r£' DJ" =k'V'-T+;j:p
, D,

,

(2 4)

(25) •

•



DOl/ova Dwhere _=_+ __ +__ +w_
f)t 8t h,as h, all a,;

v' ~-' ["-[h, "-J + "-["'-"-J +"-(h h "-J]h,h2 PiS h, Dig aT) h, a,., DC " a,
and <lJis the dissipation function.

The Boussinesq approximation

(2.6)

(2.7)

The ,tndy of unsteady free convective laminar boundllJ)' layer equations needs a

discussion of the Boussinesq approximation. In this approximation density variations

other than the variation in the body force term in the momentum equation are ignored.

Thus the elimination of the first term ('" f)p) in the continuity equation will be found to
VI

lead to great simplifications in the boundary layer equations, particularly when the latter

are expressed in terms of a stream function. Fluid property variations are ignored

completely in this approximations and this factor, together with the removal of density

variations in the convection terms, removes the requirement for the use of Howanh-

Dorodnitsyn transfonnation.
Since the equation of the state plays an important role for a fluid, we consider this in

general fonn as p=p(T,p) (2,8)

One may write, dp = -pflrdT+ pKdp

where flr == _~[apJ is the volumetric expansion coefficierrt,
P aT p

and K = ~(apJ is the isothermal compressibility coefficient.
piJpc

in non-dimensional fonn the eqllation (2.9) may be written as

"!. == -At>.TdIJ +KPo[P,fJ
2 JdP

p Po

•

(2.9)

(2,10)



In lhe case of slow motion one obtains for a gas Kp, ;; 0(1),
u'B2...- is proportional to
Po

U'for a liquid B2...- is more significaot than for a gas. However for a liquid
Po

Kp" «1, hence the equation (2.10) becomes

~ 00 -PrL'JTdO
p

==> p 00 peT)

==>dpoo-pPrdT

==> p- p, 00 -P'PT (T - T,)

( Suffix 'r' represents the small changes from a reference condition as a first

approximation.)

Hence p=p,{I-PT(T-T,)} (211)

Similarly, we can write for another transport prooerty P 00 p(D. It yields

(2.12)

To the first order of small quantities equations (2.11-2.12) and similar equations for k

and C, provide

In the present case, heating due to viscous dissipation is neglected and fluid is considered

unsteady and incompressible. For simplicity, the fluid considered here is a Boussinesq

Here u, v, w denote velocity components in the ;, T/ and ,directions, P is the density, t

denotes time, p is the dynamic viscosity coefficient, hI, It, denote the scale factors in the

; and T/ directions. p is the pressure, T is lhe temperature, Cp is the specific heat at

constant pressure, k is the thermal conductivity of the fluid.



The boundary conditions to be imposed on the present problem may be determined as

follows:

(i) The fluid must adhere to the surface (the no slip condition):

1/(1 , ~, 1],0) 0= v(1,.;, 1/,0) '" ° (2.13)

(ii) The temperature of the fluid at the surface nrust be function of t, ,;, and 1/ (non-

isothermal surface).

1'(1,';, '1,0) '" 1~(I,;, '1)

(iii) The fluid at large distances from the surface must remain undisturbed:

u(I,;,1],oo) '" v(t,;,1],oo) '"°

(2.14)

(2.15)

(iv) The temperature at large distances from the surface must be equal to the undisturbed

fluid temperature.

1'(1,';,1/,00) '" 1~(=constant) (2.16)

The pressure gradients in the; and '1directions result from the change is elevation up the

curved surface.

Thus the hydrostatic conditions are

1 Jp
- h. 0'; "'-P~gi;

lOp
and - h, 01] 0= -p~g.

For Boussinesq approximation, the continuity equation becomes

oeD-(htu) +_(h, v)+-(h,h,w) 0= °a~ D1] 0;

Thus the eliminations of pressure terms, the equations (2 2) and (2.3) become

[
DU yv ah, 'W"ah, ,,' i3h,] I "'P _+ + o=_(p_p )g~+p¥ U

lJl h,h, OlJ h, a; h,h, J.; h, ~

w

(2.17)

(2.18)

-



(2,19)

For incompressible flow, introducing the Boussinesq approximation P- P~'"-P PT!'J.Tf)
in equating (2.18 - 2, 19). We get

{

DU IIV ro, wv ro, v' ,)/],] _ 1 ,I< "1'A-.- ,-,'_+ ----+------- ---PI' L>. VI>+fl¥ II
J)t h,h, 811 h, a( h,h., as II, T "

[
Dv Ul' ah., VI<'ro, II' iih,] 1 A. 'P -+ --+-- --- ~--pP !'J.T~ +J-lV v
Dt h,h, ig h, a( h,h, G'f/ h, T "

(220)

(2.21)

some characteristic velocity

Before proceeding to obtain solutions of the equations (2,17), (2.20), (2.21), (2.4) and

(2.5), it is proposed first to discover the dimensionless groups upon which the solution

depend. We begin by introducing dimensionless quantities into the equation, referring all

lengths to some characteristic length L along the surface, velocities with reference to

U and t by U. The density will made dimensionless with
L

respect to Po' the pressure will be referred to P.P' and the temperature to the

temperature difference between the wall and T~,(==Tw -1:" == AD, The other transport

properties other the fluid J-l, k, Cp and the gravitational components g", g" will be made

dimensionless by JJ",ko,(~p" and g respectively, We use suffi" 0 to refer to some

convenient constant reference conditions far from the sutface.

Hence the substitutions are as follows:

_ U
1==-1

L

- "u"'-U'

_ v _ w
v=-w"'-

U' U

- pp~-,
p,

B

:C',. ,:;r"
",'

"./ Ii'.' .



l'-T~ 6T==T-T6T • ~ ",.

Here U is the maximum fluid velocity generated by buoyancy effect and defined by

U" = gflT6TL where A =-~[~~Jis a volumetric expansion coefficient. For
pc,

simplicity, h"h, are themselves dimensionless because they are different in individual

co-ordinate system, I. is some characteristic length.

We obtain the following non-dimensional equations:

continuity equation

a~(h,ii)+ a~(h,V)+ a~(h,h,W)=O (2.22)

u-momcntum equation

au + ii m~+ V iJii +w ~ + /IV Dh, + w ii Dh.!-~ V-' Dh,;. '" __ I fI ATe lh
al h,a~ h, ef[ as h,h,v![ h, v( h,h, as II, r F,

+-' c[-' r a ['2 '~J+-'-['i &iJ+ '_(h,h, ''":J)] (2.23)
R, h,h,1as h, iJ~ of[ ho of[ as at;

v-momentum equation

ov + U D~ + if iJV + w ~ + !IV Dh,;. + wi' Dh,;. _ ii' vh, = _.2- fI ATe g.
01 hj e~ h, Df[ vs h,h, as h, Ds h,h, D1] h,' F,

+ ~F v[ h,~, {:~( ~ ~ J+ 8
Vq(:::; J+ :?(h,h, ~)}] (2.24)

•



w-momeDtum equation

aw li ow v ow _ ow li' f}h, ii' 000 1 if:J_+_--=+ +w--=__ ~ __ -.:-==----=
ai hJ a~ h, a"if ar; h, ar; h, ar; p ar;

+ ~F v[h,~,{a?(:: ~)+a~(;: :;)+a~(h,h,:;)}] (2.25)

and energy equation

pC' [J a~+ u D~ + v ae + w o~) + e{oOn AT) + ;; 0(1" ~T) + v BOnAT) + w a(ln ~T))]
p 10, h

L
a~ h, ar; at; 0' h, Bg hl or; at;

where R,. == VL , The Reynolds number based on free convection fluid velocity.

"
flOCP - Po , The Prandtl number of the fluid.

, k"

u'F, == gL ' The Froude number.

The boundary conditions in dimensionless form are

li(iX,"if, 0) = v(i,"t, "if,0)== 0

8(i,;g,17,0) = I

ii(iX,17,ro) =' v(i,;g,Tj",ro) == 0

B(i,;g,I/,ro) == 0

(226)

(2.27)

(228)

(2.29)

(2.30)

lfS be the boundary layer thickness., then the dimensionless boundary layer thickness is

- J6=-«1 since L »1.
L

B ,
!



Order of the magnitude of each oftbe terms in equations (2.22 102.26) are estimated, so

that very small terms can be neglected Since,

fJii Jii ou iJjj av iW
_, -0(1)~-O(I) --0(1) ~-O(I) --=-0(1) --O{I)
al '8'; 'Dry 'at 'aq 'ar;

~ - - -
then also vi; - 0(1), since S is of order li so that w - 0(8),

a'li a'f a'ii a'ii [' J e'" [' J
and a[' - 0(1), a;f' - 0(1), ai]' - 0(1), 8;;' - 0 8' ' DC' - 0 ;S' '

J'W {'J ow w - ow -__ = ~-O(l) --=-0(8) --0(8) R -0(1)F -0(1)As' s'a,; 'as 'arr 'F "

Let liT be the thermal boundary layer thickness, the conduction term becomes of the
same order of magnitude as the convectional term" only if the thickness of the thermal
boundary layer is order of

In view the previously obtained estimation for the thickness of the velocity boundary
layer

•. 1"~dh6,1o---,ltlsloun t at----,,fii; oF,
Assuming that ~,h2 and all their first derivatives is of 0(1),

Setting the order of magnitude in each terms of equations (2.22 - 2.26), one obtains,

continuity equation

(0) ---->

G_(h,i7l+ ~G_(hLV)+ 8_(h,h,w)=08; VI] 8'
(I) (1) (1)

u_momentum equation

au + Ii ~ + v au +w ~ + uv all. + W 11 Dh.!- _ -v' Dh2 '" _.!... P AT(} gt
?i h, D,g II, 8lf ig h,h, 8lf h, rg h,h, 8s hL r F,

(0)---->(1) (I) (1) (I) (1) (6) (I) (1)



+_1 .J-IJ-!C[h, aii]+-!C["- "']+-!C hh) '" +hh~l]
R
F
'Lh,h, 1a;f h, i3~ Dlf h, off a;( 1 '8( 1 2 a;'

(IP) (I) (I) _1_ _1_
(8) (8')

v-momentum equation

~+ii ~+v ov +w~+ uv Dh.!. + VW Dh2_ ii' Dh, = __1 P I1TOg,
at h, ae h, 81f at; h,h, Of h2 at; h,h, 8lf h2 r F,

(OH (1) (1) (1) (I) (1) (8) (1) (1)

I 11 \ a [h, iN] '[h, iN] a iN iN I]+_, + +- hh -+hh-
R
p

h,h, a:t h, a~ aJ[ h, oJ[ er;( 1 ,) ar; L 1 ai;'

(I) (1)
I

(8)
I

(3' )

w-momentum equalion

iJW Ii aw- v ow _ ow ii' 8h, ,,' ah2 1 fJj!_+_~+ +W~ __ ~ __ ~_= ----=
aj h, oe h, aT{ at; h, at; hz ae; 15 at;

(0)--+ (8) (J) (8) (8) (l) (1) ~(8)

+_1 V[_I J-!C("'-iJW]+-!C("-iJW]+-!C hh law +('h "wi]
R
p

h,h, 1D:t h, 8~ ar; h, or; ar; ( 1 , ar; ,~,) ai;'
(6') (8) (0) (I) ~(8)

and energy equation

"r llao ii De v DO _ij(J) "(O(lnaI') Ii D(In/!.T) va(lnAT) _D(lnM'l)J,~ _+_--=+ __ -+W--= +" + + +w _
> 01 h, Df h,;;Tf D' oi h, Dl; h, oi} DI;

(0)--+ (I) (1) (I) (1) (I) (1) (I) (1) (0)



(l)(I)

0-'--_1 [1-'-('" "J,-'-('" "J,-'-( h) ", h "'lP,R
F
h,h, 1Dg h, ag oT{ h, iJf{ 0'; h, , DI; h" 8('

I I
(6) (6")

+01 8_(h2 8(lnAT))+~(hl J(lnATl), a(h,h, o(lnAT»))]
10; h, 0; oJ[ h, V'/f a; 8(

<I) (1) (0)

Governing equations
The governing bmmdary layer equations of the flow field in general orthogonal

curvilinear co-ordinates are

continuity equation

a a a-(~u)+-(~lI)+-(~hzw)=0
0; all a;

(2.31)

u-momentum equation

J)II +~ oh, _~ ah, ==_~p ""TOg+v a'u (2.32)
VI h..h,a'l h,h, 0; h, T ~ 8('

v-momentum equation

Du +~ Dh, _~ Dh, =_2-p !J.TBg +v a'" (2.33)
J)t h,h, iJ.; h,h, ull h, T '1 ac;'

and energy equation

DO 18 u D val v (/0_,' _(In,',,T)+ __ (lnl1T)+ __ (1n!J.T) =---
J)t 8t h, 0; h, 01/ Pr ac;'

where Pr" ~ P is the Prandtl number of the fluid.

(2.34)



The boundary conditions are
u(t,,;, 11,0) == vet,';, 1/, 0) = 0

O(t,';,I/,O)=1

/l(t,,;, 1/, "') == vet,s, 1/, "') = 0

O(t,,;, 1/, "') " °

(2.35)

(2.36)

(2.37)

(2.38)



Chapter-3

Transformations leading to Similarity solution

Equations (2.31-2.34) are non-linear, simultaneous partial differential cquatiollS and

thc solutions of these equatioll'l are extremely difficult to obtain. Hence our aim is to

reduce equations (2.31 - 2.34) to ordinary differential equations with the help of (2.31)

which permits possible variations in 6T,U F' VF ,hI and h,. with respect to I ,.;. and TJ.

Let us now change the variables I , q, 1/, and ( to a new set of variables 1; X,Y and I/J.

(t,q,Tf,() ....•.(r,X,y,r)

by the sel offollowing equations,

l=r,,;=X,TJ=Y,and~- t;
r(r,X,Y)

(3.1)

rCr,X,Y) is considered primarily here to be proportional 10 the square root of the local

boundary layer thickness.

88;8-"---y ~
VI aT Y 'JIjJ

~ _ ~_ t/J !!..-
8q-aX rrx8~

88,pJ
OTi= DY -yYr a~

a 1 D
-=-~ar; r ar;

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Let two stream functions Iff and <1>be defined as the mass flow components within the

boundary layer for the case of incompressible flow.



Tho;: following equations can be written

~f;=h,U,!tl;=h,v

- (tp; +<Il~)= h[hz W

(3.7)

(3.8)

(3.9)

to satisfy the equation of eontitruity (2.31). Guided by the idea of similarity procedure of

HRDsen and Ohio (1958) arc allowed 10write

jI U d~=F(r,X,Y,~) whereU}, =-gxfJ/1TLI
oU,,(r,X,Y)

•I •. d~=S(r,X,Y,~) whereV} =-gyfJ8TL2
,V,,(r,X,Y)

where L1 and 1.2 are primarily considered to be some characteristic lengths.

Let us assume that the separation of variables are- --IF(r,X,Y,1J) = L(r,X, Y)F(ofI)

s(r,X,Y,~) =M(r,X,Y~"~)

O(r,X ,Y,ofI)= N(r,X,Y)O(ofI)

(3.10)

(3.11)

where F,S and 0 are the functions of single variable 1jJ. From (3.9-3.10) and (3.11), it

is found that

Again, from (3.7), we have

•J-"-df
o U,.

(3.12)

(3.13)

- --
:. \fI(r,X,Y,ofI) = hlrU"LF(ofI) + \fI(r,X, Y,O)

Similarly,

!P(r,X, Y,1J)= h,rVrMS(1J)+<l>(r,X,Y,O)

and h,h:Jw = -(llJyU FL)X F + fr xhzUr LFi - (hlrV pM)y S

- -
+ rfrryh,VFMS~+ h,h, wo(r,X ,Y,O)

(3.14)

(3.15)

(3.16)



where w,("-, X, Y,O) '" - h ~ {II',.(r,X,Y,O) +<1Jr(r,X,Y,O)}, ,
is the suction I injection velocity nonnalto the surface.

The convective operator

Dol [a a DJ-=-+-- h"-+,,-+h~w-
DI at IJ.,hz 1 a; aT} J 8;

in terms of new set of variabks r , X , Yand rP may be derived as

val -at-a
-=-+-Ur,"F~-+-V, MS,--
Dlarh, axh,' aY

[By using equations (3.2 - 3.5)].

In view of equation (3, 17), equations (2.32), (2.33) and (2.34) become

U_Dlomentum equation

(3.16a)

(3.17)

2 _22 ((UL) ,)-- '(V)2M'-2-L(ULJ_F-LVM F Y+_"_Yp-s-+L r' I. S-
L. ' A ~ L. F U L h ; r hL. U L "2X 1
'~ "2 ,. j J"2 F

v-momentum equation

(3.lS)

(3.19)

., "
"

~



and energy equation

~o--+ y(h,rUFL)X F()- + y(hlyV,-M)y 50- -(w r-:i.- )0-
I'r.' h,h

1
' h]h, , 0 'i'll, r

_ r
2u

FL {(InN) x +(lnAT)x }F~O y
2
V, M {(InN)y + (lnATh }5,J:8

hi ~

- y2 {(InN), + (InAT),}B == 0

The associated boundary conditions are

(3.20)

U, ('l",X, Y,O) = 0 = F,(O)

VF(r.X,Y,O) = 0 = Si(O)

w('l",X,Y,O) = -wo

where Wois considered to be the surface suction or injection velocity for the curvilinear

surface. For the temperature lllllction the boundary condition becomes

B(r,X,Y,O) =N(r,X,Y)B(O) = I

=> N(r,X,Y) = 1 and B(O)= I

In ordcr to satisfY the boundary conditions (2.35) and (2.37) without loss of generality we

may put L=M=1.

The boundary conditions at large distance satisfY

UFLF~(w) = 0 :::> F,J:(w) = 0
- -

VFMS~(w) = 0:::> SHw) = 0
and o(w)=O

Then the two momentum equations (3.1&) and (3.19) and the energy equation (3.20) take

the foUowing forms.

u-mumenlum equation

(3.21)

~,
,



I'-momentum equation

(3.22)

and energy equation

~7J--+r(~rUF>X FO"+r(h1rVr')YSO-_(w _k~,)"
Pr;; hl~ r hj~ <I or 'l'lfT r

r'UF (ln6.ThF~O- VrY' (lnt..T)yS~O-r~(Int..T),e==O (3.23)
h, h,

The boundary conditions are

Ff(O)==~(O)==O )
F~(CiJ) == S~(oo)== 0
0(0) == I, O(CiJ)=0

The oocfficients of FF~~and SS# in (3.21) and (3.22) may be expressed as

r(~UFh
h,h,

Thus momentrun and energy equations bc<:ome

(3.24)

-1 -- -1 - -
- a~F~-(a9 + alO)FiSi + al1S~ - au F~ +auO = 0 (3.25)

-1 -- -, - -
-aw')j -(aI5 +aI6)F~S~ +al1F ~-alaS~ +a19B=0 (3.26)

"



and

- - -
- (06 ~ tPa7)fJ~-(02oF~ + 02,Si )0- 0220 '" 0 (3.27)

where the constant a's and the differential equation involving the independent variabler,

X, and Yare given by the following differential equations:

(3.28a,b)

(3.29a,b)

(3.30a,b)

(3.3Ja,b)

(3.32a,b)

a"

(3.33a,b)

(3.39)

(3.38a,b)

(3.37a,b)

(3.36a,b)

(3.35a,b)

(3.34a,b)

Lwd h =0
h,h2 U f' 2X 11

y' ---P,-ATgx - °lJ
!lU,

r2UF (VF)X

h, Vp

,r WF)'_O
- 18'V,

y'U
--'-(InAT)x "'ow

h,

r2(\nAT), =022

.'



Similar solutions for (3.25), (3.26) and (3.27) exist only when all the a's are

finite and independent of r , X and Y that is to say that all a's must be constants.

Thus the boundary layer momentum equations and the energy equation will become

non-linear ordinary differential equations. If "'T(r,X,Y),h,(r,X,Y),h,(r,X,Y),

U" (r, X ,Y),V,.(r, X,Y) and y(r,X,Y) satisfythe equations (3.28-3.39).

To find ilT(r,X,Y),h,(r,X,Y),h,(r,X,Y),UF(r,X,Y),VF(r,X,Y) and y(r,X,Y) 111

different situations.

We first ignore the suction or injection effects i.e. u6 '" o.
From the expression for a's, we have

,(U,]u,+a2"'y -
h, ,

(3.40)

similarly,

from (3.28a), we have

(3.41)

(3.42)

Again from (3.29b) , we have

(3.43)

(3.44)

By virtue of equation (3.28a), we get

'u~=aDX+A(Y,r)
h,

where A(Y, r) is either eonstant or function of Yand r. Differentiating(3.44) with respect

to Yand in viewof similarityrequirements, One obtains

(3.45)



Again, differentiating (3.44) with respect to r

where

8A(Y,r)
B,

VI!-(a12 + 2a7 - 0'1) [using constant a's]

" r'
all == -h"

"

(3.46)

(3.47)

Similarly, in vicw of equation (3.29b), we gel

'v
r h," ==o,Y+B(r,X) (3.48)

where B is either constarrt or function of r and X. Differentiating (3.48) with respect to

X and rrespectively and in view similarity requirements. We obtain

8R(r,X) == [r1Vr)
ax h,x

(3.49)

~d
8B(T,X)

D,

where

8B(T,X)_V"(2 )~ , - or +0" -0,.
" ~

(3.50)

(3.51)

Byvirlueof(3.31b),weget a7 ==yy,

(3.52)

where C is either constant or function of X and Y. DitTerentiating (3.52) with respect to X

and Y respectively and in view of~irnilarity requinnenls. We have

BeeX,YJ_1 '),ax IJ' x

=:- aC(x,Y) _~(o -0 -a )ax V
F

0 1 2
(3.53)



8C(X,Y) = I ,)
ay Ilr

=> JC(X,Y) =~(a -G -a)
BY V"J45

Taking the product of(3.45), (3.46), (3.49), (3.50), (3.53) and (3.54), we get

FJB(r,X) BBCT,Xl OC(X,y) ,X(X,Y) Mer, r) cA(Y, r)
aT ax ax BY or aT

=- (2a,+ at! - a,,)(a~- u, -(I, - a'l +a,,)(a, -(/, -o,)(a, - a, - as)

(a, -a. -a, +a, -uwX2a, +an -a,,)

(3.54)

(3.55)

The form or similarity solution, the scale factors AT(r,X.Y),h,(r,X,Y),h,(r,X,Y),

U,(T,X,Y),Vp(r,X,Y)and y(r,X,1') depend wholly on the equation (3.55), This

situation leads to the following possibilities:

Case-I:

Case-2:

Case-3:

Case-4:

aBCT,Xl •• 0 8B(r,X) ••0 aqx ,f) ••0 {lC(K, Y) •• 0
ih 'ax ax 'ar'

iJA(Y,z-) 0 8A(Y,r) 0, , ,
DY aT

BB(T,X) •• o 8B(r,X) •• 0 iJL'(X,Y) •• O OC(X,Y) -0
a,'ax'ax 'ar'

8A(Y,r) o,aA(Y,T);<o
8Y aT

aB(r,X) _ 0 aB(r,X) *- 0 OC(X,Y) ••0 8C(X,n
aT ' ax 'ax . BY 0,

BAlY,.) -0 aA(Y,r)-0
By'aT

8B(r, X) ••0 aB(r,X) _ 0 ac(x, Y) _ 0 OC'(X,Y)'" 0
Dr 'ax 'ax 'ilY'

DA(Y,r) ",0 aA(Y,r) ",0
BY 'Dr



Case-5:
aB(r,X)
B,

o. aB(r,X) 0 aC(x,Y)
ax 'ax

o OC(X,Y) 0
'ay #,

Case-Ii:

Case-7:

aA(Y,r) ;< 0,aA(r, r) = 0
Dr ar

aB(r,X) _ 0 aB(r, X) ",0 aeex, Y) ;< o.OC(X,Y) ;< 0
ar 'ax 'ax -or'

BA(Y,r);<o aA(Y,r) =0
ar 'ar

aB(r,X) ;< 0 aB(r,X) = 0 ac'{x,Y) _ 0 ac{x,Y) - 0
ar 'ax 'ax 'ay'

aA(Y,r) aA(r,r)
-,-y- = 0, -B-,~'0

Case-S:
aB{r,X)
B,

() iJB(r,X) () ac(x,Y) =() aC(x,y) 0
'ax'ax 'Dr'
BA(Y,r) =0 BA(Y,r) =0
ar 'ar

C
t'0

• >\.,,--'



Chapter-4

Study of some possible similarity cases

Ca~e-t: aB~~X)""0,aB~;X) ".0ac;~,Y)'"0,ac~~,Y)oF- 0,

aA(Y, r) ;< 0 BA(Y, T) ;0 0
Dr 'at

Let, aA~ir) constant

=kJ,

h U,
were k, =v'" =(1, -(1. -(1, +u. -ala,

(4.1 )

88(r,X)
a, constant

8R(r,X)
a,

v,..-;;:(2a, +U" -(1,,)
(4.2)

"-(a -(1 -(1 )
Ui' 0 l ,

aC(x ,Y)
ax

8C(X,Y)
ax

where k, =!i.- and!, = ao - G, - G,
Ui'

constant

= k,!, (4.3)



constant

where I, = UJ -U4 -a,

ac(x,Y)
ax

. ac(x,Y) =!!L(a -a -(.I)
8X V

F
", 5

"A(X ,)_~c'~~-constanta,

(4.4)

where I, = 2a, + a" -Q"

8A(Y, r)
a,

[II' (2 )
-;;: il, +a" -aLl

I~-l,
k,

(4.5)

md
oll(r,X)ax = constant

iJB(T,X)
ax

(4.6)

where !,=u.-G,-a,-u"+a,,

Integrating equations( 4.1), (4.2), (4.3), (4.4). (4.5) and (4.6), we get

A(Y,r)= kl,Y + Ao(r)
B(, ,X) = k,I,T+ Bo(X)

C(X, Y) = k/,X + CorY)

qX,f) =.!.i- Y +CalX)
k,
I

A{Y,r)=-' r+AvCY)
k,
I

Ber,X) = -"-X + Bo(r)
k,

(4.7)



Taking linear combination of(4.7), we obtain

IA(Y,r)= kl,Y+-' r+4,
"IB(r.X) = k,-',r +...s...X+BD"

C(X,n = k,l,X+!.Ly +c.

"

(4.8)

Again integrating cquatioIlS (3.28a), (3.29b), (3.31b) and in view of equation (4.8), we

go<

From equation (4.9)

From equation (4.1 0)

, 1 1r =l6--X+aJ-Y+12r+Bo
k1k2 k2

From cquatioll5 (4.11), (4.12) and (4.13), We have to ......ntc

all =/, =1., a, =1,=/" 2a, =/, =1,

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Hence (4.14)

From equation (4.9), we have

rlU r _ aokJX + k]kJ/]Y + Isr+ AOk]

h, "
= a,!c,X + k,k,a,Y +2a,r +Aok3

"
(4.15)



By virtue of equation (3.36a), we get

k,a",
u,k,X + k,k,u, +2a7,+ A,'s

=> II, ""b,(u,kJX +k,k,a,Y +2a,T+C,)'"

where h is constant of integration.

II, "" h,(a"k,X + k,Jr.,uJY+2a,' +C,)" "where ~""m."0
II, ""II, ",b,(a,k,X +k,k,a,Y +2a,,+C,}"'

Now using (4.15) and (4.1 7) in (4.9), we get

r'Up 2a,__ ""(loX +k,a,Y +--HAo
h, k,

=> UF = !?L(aok,X + k,kp,Y +2a, r +C,}"

"
Similarly substituting (4.15) and (4.17) in (4.10), we get

Vp =b,k,(a,k,X + k,k,u,Y +2a,'/"+C,)'"

Substituting, the values of y' ,h"h"U F and V, , we get the values of a's i.e.

a~,(I, and a7 are arbitrary

(4.16)

(4.17)

(4.18)

(I, = 2mao

a,""O

a, = -2mao

a., ""mu,

a, ""-2ma,

a" ""2ma,

a" ""mao a" ""ma,k,' (4.19)

a" ""2ma,

a",=(2m-l)(lo a" ""(2m-l)a, a'l ""2(2m -I)a,



Hence the transform equations (3.25), (3.26) and (3.27) reduce to

- (4m+l1_- (4m+l1~-- -- -,
vFm +l 2 roFF~~+l 2 rSF~~ +a,r)F~~-maoF~

~- 1-2 ~ -
-2ma,F~S~+ma"k'S~ -2ma,F~+a,.,B'"0

,

__ ~l - -

- 2ma,F~S~+ ma,k; F~- 2ma,S"++a"B'"0

(4.20)

(4.21)

,,'
(4.22)

In order to simplifYthe ahovc type of equation we substitute
- -

F=uj; S=rt.\', ''''0:$, 0"'0

ta a' a a' l a a'-(2m-I) -'-I, +-'-s. 1J-2(2m-I)-'-B=O
'v v

(4.23)

(4.24)

(4.25)



. [4rn+1Jaoa2 I d .. uJ a7 d 2mChoosmg --- -- = an wntmg - =c, - ~ ,
2 v Qo Go 4m+ 1

Also for purely free convection we have to put

2 u" = 1 and 2 ".,0. = R (constant).
4m+! Uo 4m+l ao

f.

Finally, we get the equations (4.23), (4.24) and (4.25).

lHO +(f +cs)fH + (2-4{J)d4fH - P{(/; +2cs~)f.

I
+-2$~-2#~}+B=O

k,

SHO+(j +C~}\'H + (2 -4P)dr/EH ~ P{(2f, + c.\';)s~

+ k1"cf,,2 - 2ds ••}+Re = 0

and Pr-I eN + (f + cs)e. + (2 - 4/l)dr/JO••- (6J3 - 2)([" +cs,,)O

-(l2j1-4)dO=O

The boundary condition are

j(O) = flO) = 0,/" (ro) = 0)
s(O) = s,,(O) = D,S/a» = 0
8(0)=1,61(00)=0

(4.26)

(4.27)

(4.28)

(4.29)

If u>,V
F

and h, he constant then c is proportional to the ndio of the change of local

boundary layer thickness with respect to position on the both edge~ and d is proportional

to the ratio of the change of local boundary layer thickness with respect to time and

position. [f characteristic length with respect to bolh the edges be same, the parameter R

determine the G) rd root ofthe gravitationalratio develops.

For P = 1, C == 0, d == 0, S = f and R = I, the equations (4.26 - 4.28) with the boundary

conditions coincide with possible similarity solutions lor laminar free convection on

vertical plates, analysed by Yang (1960) which was aL~oidentical with similar solutions

for free convection ITom a Non-isothennal vertical plate discussed by Sparrow and

Gregg (19511)



We have, in this ca'lC, the similarity requiremerrts are

h, = hi (aOkJX + kjkJuJY + 2077+ Cj)'"

- h 'k'[X k1u]Y 2°7 ~J'- IUO J + + r+
Go aOk] aok]

wl<re

=u,(.f+by+ciY

:. II, oc(.f+by+ciY

x=X+Xn

ji=Y+Yo

c=2a, =2d=2kkd, ,
aOk] k,

u;. "" gxPrAT (characteristic lengthLll, where r. = (x +by+(1)
.-. VF =aJ(x +bji+ el)"' where UJ = bjG;kll;;

vi! co:gyp, I::.T (characteristic JeDb>1hLz),where ~ = (x +by +el)

•• (- b-- _~)2"_1 L__ a~"b,~k:"-:!(4m+l)
u.J =a4 x+ y+ct Will:"'; u4 =-------

ZPrgx

•



- k,U)If b =-.- IS non-dimensional quantity,
"0

k = U I be also non-dimensional., V,
Sincek,k,k, = 1, it implies that k,k, is non-dimensional. According to given dermition

in (4.2) k, is the scale ofvclocity and k, is too. Hence k,kJ is dimensionless.

Here c is finally the scale of velocity and cl is the additive length added to the nonnal

characteristic length x +by then fonned new characteristic length.

The similarity variable <\Iis

wwe

,
Gr.t == !(4m + 1) gxPrAT(x +bji+CiY)'

x~ 2h2 v2,
is the modified Gmshof number.

The velocity components are

u==Urf,(t/J)
v= VFs,(rp)

and w==_'_{_(~]'U F}XF + (JYxhp FFj -(~rVF )r8 +(JyAV"Si
h,h2

. 2v - - -'{ ( 1J 1 )= (x+bji+C"t) 2 - 2m+- (f+cs)+-tKf,+cs,)
(4m+l)kJ 2 2

Skin rrictions are

,
G, '

=(4m+l)~fH(O)
h,



,
~ Gr ''w' xw--= (4m+l)k,--s",,(O)

1 V' h,-p F
2

Heal flux,

(aT)q =-k -
w oz zo~

J



Case-2:

aA(Y,T) ,,0 _D_H~(,_,X~)",0,
8Y'OT

8C(X,Y),,0 DA(Y,T)",0
BY 'aT'

Let h, "h,

Let DA(Y,T) ",constant,, oY

8C(X,Y) ",0
ax

aB(T,X)
ilX ,0

_ UF __ k I
-' V ,"'consl, 0,-0,-0,+0,-0,0=0= ,,

W(d)
--'- = constanta,

v=---.f...(207+0" -0",)
h,

= k,l,

_i!C_,_X_,_Y_l __ constant
OX

= !l-(o" - 0, - 0,)
U,'

iX.:(X,Y) .;t-constant
oY
h, I~ -,-~-.;t-const, a,-04-a,=0=/4
I'F k,

8A(Y, T) == constant
B,

U,
=h(2o, +a"-a2,),

(4.30)

(4.31)

(4,32)

(4.33)

(4.34)



'B(,x), - constantax
V", ( )=- a"-a, -a, -a" +a"
U,'

By virtue of equation (4.8), we obtain ,
A(Y,r)=-' r+Ao

"
B(1",X)=k,l, +~X +B,

"C(X,Y)= k,l,X +Co

In view of equations (4. Il), (4.12) and (4 13), we get

y' =k,l,X +2a7.+CO

y' =aokJX +/,,+Ao

and r' = /, -'-X + <1, _1 Y+!,r +Bo, setting a, = 0,
k,k, k,

, 1
y" =1,--X +1,r+B"

k,k,

Comparing the above three equations for r', we have to write,

°0 =1, =!" 2o, =1, =/, and An =Bo =Co'

Hence y' is found to be

(435)

(4.36)

(4.37)

(438)

(4.39)

(4.40)

In view of equation (3.44)

"=<1oX+-T+Ao

"



a"k,X +2a,r +Aok,
=

"
By virtue of equation (3.36a), we get

":. h, = b,(aok,X +2a7r +Aok,)""

when h, is constant of integration

a:. h, =h, =h,(aok,X+2a,T+Aok,)~, where m=-"-"-
",

Again, in view of equation (3.48), we get

'Vrh,." =a,Y+H(X,r)

a,=-x +2a,k,r+B"

"
_ Qok,X +2a,r +B,k/.,

k,k,

From (4 41), we have

r'UF a,kJX +2a,r+Aok,--=--------
hi k,

V F = ~(aok,X +2a,r +Aok,)'"k ',

From (4.43), we have

(4.41)

(442)

(4.43)

(4.44)



(4.45)

The similarity requirements furnish us with the relations betweenlhe constants (a's), The

relations are, aO,a7 are arbitrary,

a, = 2ma",

a, =aw =0,

a, ==-2mao,

rna,a,,=---;;>,,

a, =a, =a, =a6 =0,

ai2 = 2ma,

a. = 11Ul0

au = :; (aok,X +2a,r+Aok,)'-'" fJrl17gx,
,

ap == 0,

a" =0, a" = 2ma"

a" = _,_i_(ank,X +2a,r + Ank,)'.2••fJr!J.Tg,'
h, k,

all> = (2m -1)ao

a" =2(2m-1)a,.

Hence the general equations (3.25-3.26) reduce to

- 4m+l...,,-: --: -:2 ma~.2 - -
vFii1+ 2 J'1'ii+a7(Jj<1i-maor~ +7'S~-2ma7F~+a130=0,

- 4m+1 -.." ~ -:..,. ..,. -
vSiii+ 2 aoSUr+a,(JS,i-2maor,S.-2ma,S,+a,,8=O

v - 4m+1 -- -- - -
ood -P-r0•• + --2~aoF8, +a,(JO, - (2m-1)aorjO - 2(2m- 1) +a78 = 0

Subject to boundary conditions

F(O)=F;;(O)=O, Fi(oo)=O

S(O) =S,(O) = 0, S,(oo) = 0

for the dimensionless stream function and

8(0)=1,8(00)=0

for the dimensionless temperature function,

Let us now substitute

'"

,
"'I.,



in the above equations. Thus the above equations changed to

( J
' ' , ' , ,

I, 4m+1 a,a I" a,a"., u,a [.' m u,u- , , a,a- I' a" "_,,, -- --" ,-- -m-- ,---so - m-- +u,,-o_"
••• 21''''''' v'k'v 1"1',

(
4m+l]aoa' a,a' a"a' a,a' a',~+-- --jf ••+--;S •• -2m--f, s. -2m--s. +a" -09 = 0

2 v v v v v

"d
_, (4m +1]aoa' a,a' aoa' a,a'Pr 0•• + -- --fO,+--t/>B.-(2m-l)--f.B-2(2m-l)--B=O

2 v v v v

Ch ,,[4m+IJaa' d" a,oosmg --- --=1 an wntmg -==e,
2 v a.

2 a19 = R for purely free convection,
4m+1 ao

2m -fJ. Also
4m+ 1 "d

2 a
Now " =1

'4m+la" '
(4m+l)ao

a13= 2

k'(kX Ak'-'''P' 4m+l~ -, ao, +2a,'+ 0 ,) T6.Tgx= ao,- 2,
. b,'(4m+ l)ao L_'""I1T= (a"k,X+ 2a,f+ A,k,)

2k,fJ,g,. '

We have finally the following similarity equations.

f •••+ if;.! + (2 - 4fJ)ct/f•• - fJ(f/ - k~'.1'; +2ef;) +09== °
s•••+ j~H+ (2 - 4fJ)C~',.- 2Plt"s" + s;)+0 == 0

and Pr-'O,. + fO. + (2- 4p)et/>B.-(6fJ - 2)f;O- (J2p - 4)eO== 0

The boundary conditions are

f(O) = 1;(0) = 0, f,,(oo) == 0)
s(O)= s.(o)= 0, s.(oo)=O

09(0)=1, 0(00)==0

We have, in this case, the similarity requirements are

(4.46)

(4.47)

(4.48)

(4.49)

t
•



hI ex: (x +C1)ffl

where X",X+X,

h '" k •u,"',a"3

v •.= a,(x +cl)'", where u2 = h,k;-'a;

vj ex: gx PT/),T (characteristic length 1-]), where I"] '" (x+cl)

v•."a,(x+cl)m, where a3 "b]klk;'a;

V; ocg, Pr!J.T (characteristic length L2), where L2 ,,(x +cl)

_ b2(4m+l)alffl
!J.T" a (x+cl)2m., where a = 1 U, , 'Z,2-'mp

3 TKx

The similarity variable q. is,
,

2v ~aJ(x+cl)
(4m+l)a~

, [4m+lg P,M'(X+Cl)'] , ,where Gr_4" x , IS the modified
~'2h,' v'

Grashof !lUmber.



The velocity components

1/ "U FI.(ifi) where ui, == -gx f3rJ.TLJ

v == VF$.(ifi) where vi = -grf3rJ.TL2

and w =_I_[-(h2yUF)xP +hxh,u,.Fjl
h,h,

,
J 2, )'[~?J-[2m+~lf]
lk,(4m+l)(x+cl) 2' 2

Skin frictions are

,
r Gr 4
~, ==(4m+l}k,-"-s •••(O)

~pV' hi
2 '

Heat flux, q~= -k[~Tl
oz ,=0

,

"-kAT( 4m+ IXa, J' (x +ct)-i8••(0),
2v k,

..



aL'(X,Y) "'-0 JA(Y, r) "'-0
BY 'ar'

CasH:

Choosing hJ '" h,'

aA(Y,'-) "'-0
BY '

8H(r,X) 0---; ,

"
[J(~(X,Y) -0
ax

aB(r,X) =0
ax

JA(Y, .-)
Let, --- '" COJ15tant,

BY

u" ( )=- a,-a4 -a., +a, -a",
V",

=k,l,

_8_B~(,_,_X~), __ constant
D,

v
'" ;(2a,+aLS-a,,),
'" k,l,

aL'(X Y)
ax' "'-constant

h, k=> u= ,*constant,aO-aJ-a,=O=I,,
8C(X Y)---'--- constantaY

1=-1
k ',

(lA(Y, r)---= constantD,
11,

= -(la, +a" -a~1)
h,

=_, I
k ',

(4.50)

(4,51)

(4.52)

(4.53)

(4.54)

,



"d 88('I",X) '" constant
ax

vI' I _ -I~ -~-*constant,ao-a,-a,-all+a"-O-,,
U" k,

By virtue of equation (4,8), one obtains

A(r, T) == k,t,Y+~t+ Ad

"B(r,X) == k,!,r +Eo

C(X,Y)=~Y+Co

"
In view of equations (4.11), (4.12) and (4. 13), we get

y' "'~Y+2a7r+CO

"
y2 =aok,X +k,k,I,Y +l,r+4,

without loss of any generality. Setting ao == 0

y' =k,k,l,Y+I,r:+Ao

(455)

(4.56)

(4.57)

(4.58)

"d o 1
y" ==u,-Y+f,,+Bo,, (4.59)

Comparing the above three equations (4.57- 4.59) for r', we have to write,

a'=!'=!4,2a,==!,=!,

Hence y2 is found to be

r2 =a,k,k,Y +2a,r+A,k, (4.60)

Inviewofeqllation(3.44),wehave r'U,.- =uoX+A(Y,r) ";uo=O
h,

_ k,kp,Y + la,'!" +Ank,

"
Again, in view of equation (3.48), we have

r~",== a,Y +B(X, r)

[By using (4.56)] (4.61)



=a,Y +k, 2a,' +Ho[By using (4.56)J

k,k,o,Y +2a,' + k,k,B,~
kJk,

k,kp,Y +2a7,+k,Ao~
k,k,

By virtue of equation (3.33a), we get

k,k,a,o~
k,k,G,Y +2a,T +k,Ao

"
h, '"b,{k,k,a,Y +Za,T+ k,Ao) '"

where b, is the constant of integration.

(4.62)

=> h, =h, =b,(k,kp,Y +2a7T+k,Ao)~ ""where m=-
",

(4.63)

(4.64)

(4.65)

From (4.61), we have

UF = ~(k,k,a,y +2a7, +k,Ao)m

"
Similarly, from (4.62), we get

VF = ~(k,k,oJY + 2a,f +k3Ao)mk,k,

Substituting (4.60, 4 63-4 65) in the similarity requirements one may obtain the following

relations between the constants (a's):

0" a, are arbitrary.

°o=a,"'a,=O,

aill = rna" all =0,

a.=2ma"

a" = 2ma,

a, =-2ma" a,"'a,=O

a" = :~ (k,k.,a,Y +Zo,T +k,Ao)'-'m iJrA'fgx,, at< = rna,

a" =mk,'aj, a" =2ma"



a" = k~:, (k,kJa,Y +2a,l"+ k,Ao)'.2m flTATgr '
,

a,,, = 0

a" = (2m -I)a" a", =2(2m-l)a,.

Furthermore, equations (3.25-3,27) reduce to

- 4m+1 -- -- - - - -
vFiU+ 2 a3Sf-(ii+a,,,,r~.-2ma,riSi-2ma7ri+aL30=0

v - 4m+l -- -- - -
"d -0,- + ---a',i',O- +a,,,,O,-- (2m -l)a,S,_B - 2(2m -I) +a,O =0Pr' 2 . ,

The boundary conditions are

F(O)=Fi(O)=O, Fj(oo)=O

S(O)=Si(O)=O, Sj(oo)=O

0(0)=1,0(00)=0

m prevIOus cases, substituting

. 4m+l 2choosmg---,a,a = 12, d" a7 2man wntmg - = c, -- = fl,
a, 4m+l

Also for free convection we

2 a 2 aput 13= I and __ ,~19 = R (constant)
4m+1 a, 4m+1 a,

The above equations simplity to

fHl + sfH + (2 - 4{J)<:KH ~ 2{JU.'"1 - "I.) + {I = 0

s>N + sSH + (2 - 4fl)c,psH - /3(.\"~- k,'l.' - 2cs.) + RO = 0

and PT-1 BH +sO, + (2 - 4/3),,1)0. -(6fl - 2)1; 0 - (12/3 - 4)c0 = 0

The boundary conditions are

1(0) =1,,(0)= 0, Moo) = 0)
s{O) = ,\'.(0) = 0, s,,(oo) = 0

0(0)=1, 0("")=0

(4.66)

(4.67)

(468)

(4,69) •

•"



In this case, the similarity requirements are

II, "h,(k,k,u.1Y +2a,r + k,Ao)"'

-bk"'kma"'[Y+ 20, r+~l.- I I , ,
k,k,a, k,u,

==a,(Y+cl)"'

h, oc(y+ciY

where Y"Y+Yo

_ 2a
C = '

k,k,a,

U (j -'" h hk'''-~-' "'F =a, '+CI), were a, == , , ", a,

u~ ocXxf3T61' (characteristic length I,,), where "1 "(Y +cl)

v; ocg,f3r",r (characteristic length D,), where I"]. = (y+cl)

, _ ' ••..., h,' (4m + l)a:"'t,,1'=a(y-+Ci)" wherea= '
4 , 4 2k,,-,mk;-2m PTgx

111' OC (Y +Cl)2m-, .

y' =a,0'+c/), where G, = ",",a,
The similarity variable q, is,

1J=~ar 2v .J (Y --)a, +,,1
(4m+1)a, ,



,
where fGr__"':-'" [C4m+1) gr Pr8T(? + cl) 1r is the modified Grashofnumber.

~ y,f 2kh' v, ,

The velocity components are

v = Vl's.(,p)

Skin frictions are

,
'" _kl1r[4m + lX"'-]'(j+cf) -iB"(0).

2v k,k,



Case-7 :

aA(Y,r)_o cB(r,X)".O CC(X,Y)_O OC(X,Y)",O
ay 'Dr 'ax 'ay

aA(Y,r)".o 8B(r,X)_o
ar '[})(

Let h, =h, and a, "'ao =0.

Let aA(Y, r) ". constant
Dr

h, (JF )~ ---(0, -0, -0, +0.-aw ".constant.
hi VI'

.'. k, '"VI' 1'0, I, "'a, -04 -0, +0, -"10 =0
V,

oB(r,X) -constantJ,
~ aB(r, X) = VI' (207+0" _ a,.,)

8r h,

'"k,l,

EC(X Y)---'-"'constantax
h~ -' (ao-a, -0,) 1'constant
U,

. k h, I.. ,=-1'0, ,=°0-0,-°2=0U,

8C(X,Y) 1'constant
JY

:::::> !!L(a, - a4- a,) ".constant.
VI-" .

_1",!!L~o I 0k. V+-, 4"'a,1-a4-a,'"
, ,

aA(Y, r)-~~ --constanta,

(4,70)

(4.71)

(4,72)

(4.73)

•



8A(Y,r)_UF(2a )
=> or --;;: ,+0" -<1"

=_1 I

",
1JB(r,X) "'constant
&

v=> l: (ao-uJ -a2 +a'1 -a,,) ",constant.,
1 V,

.. -=-*0, I.="o-<1J-0, -all +u15 =0
k, [f",

By virtue of equation (4.14), we have

y'- =2a,r+Ao

(1) choosing Ao = 0

:. y' = 2a,T

In view of equation (3.Hal, we have

y'(UF),
aLl =

U,

(U), a .=> F =_,,_ [Byusmg(4.77)]
Up 2a7T

:. UF=b,(2a,r)"

where m = a" and b, is the constant ofmlegration
2a,

Similarly, from equation (3.Ha), we get

r'(VF),a" = V,

=> (VF)" =~

"
2F a,r

V" = h, (2a, r)'"

where m =~ and b, is the constant of integration.
2a,

(474)

(4.75)

(4.76)

(4,77)

(4.78)

(4.79)

•

•



Also, by virtue of equation (3 47), we have

h, =h, =h,(2a,T)'"

where m = a'1 and b, is the constant of integration.
2a"

(4,80)

u" = 2ma"

With the help of the equations (4.77-4.80), the similarity requirement yield the following

relations between the constants'

a, is arbitrary.

a. =a. =alO = all =0

"'" = 2ma" a" = 1 P "g'
• '0 h

J
h,(2a

7
T)'m.' T X

al4 =a'5 =a16=a" =0

1" ------P "g1
19 - h,b,(la,')"'"" r ,.

a20 =a" =0, a", =2(2m-l)a7

For this case the general equation (3.25.3.27) are therefore reduced to

T Fiii +a,~Fii -2a,mFi +a"O'= 0

,!tn. +a,~Sii - Za,mSi +u,/i = 0

T- -- -
and Pr 8ii +a,(dli -2(m-J)a78 =0

The boundary conditions are

:(0) = :.(0) = 0,~i(a::) = 0)
5(0)=5;;(0)=0, S;(oo)=O

0'(0) = J, B(w) = 0 '.'ill
I



As in previous cases, substituting P = a I, S = a>", ?!= ar/!, iJ = 0 and choosing

aa' a, a ,
-'- = 1 and later we have to put -'. = 1 and ....!2..= R (Constant) for free convectIOn,
v a, a,

Finally the above equations are reduced to

I •••+r/!IH -2ml. +0=0

The boundary conditions are

1(0) = 1.(0) = 0,1;(00)= 0)
s(O) = s;(O) = 0, s,,(m) = 0

0(0) = I, O(m) = 0

(4.81)

(4.82)

(4.83)

(4.84)

For m" I +p, p is a constant, s =f, R = 1, the eqllations (4 8]- 4 84) with the boundary

conditions coincide with unsteady free convection with uniform hut unsteady surface

temperature variations at large distance x, analysed by Yllng (1960) We have, in this

case, the similarity requirements are

h, == h, "b,(2a,r)m

= 0:, (I)rn where a, = h,(2a7r)rn, r = i,

h, oc(I)"'

:, U,._=ao(1)"', where a, =b,(2a,)'"

uf ocgxf3rAT (characteristiclengthLll, where L, =(1)"'

:. VI' =0:,(7)"', where 0:, =h2(2a7)"'

V; ocKf f3T!:lT (charactcristiclengthL,), where L, = (if'

, 'hr =a,t,werea,=2a, •
•



The similarity variable ~ is

The velocity components (u, v, w) are

u==UFf;(,p)

v==V"s.(,p)

and w=O

Skin frictions are

,
pa "'--

T"" = ~(i) 's",,(O),2"
Heat flux

- ka ,~-~
Ifw = r;:-4 (i) '8.(0),2"

(II) Ifwe choose u, == 0, Ao == arbitrary constant.

From (3.7.7), we have y' = Ao

The equation (3.47) implies,

!ir.. = G"

h, "
"-,

=:> J. - b e .•••"- ,
-ben<-,

where b, is the constant of integration and n == G" .

"

(4.85)

(4.86)



In view of equation (3.34a), we have

(U,), a"~~_o

UF A"

=:> U,,=b,e"'

where b, is the constant of integration and n = a" .
A,

Again, from equation (3.37a), we get

(VF), = aLE

VF A"

=:> VF = b,e"',

where b, is the constant of integration and n = a" .",
Therefore, the constants becomes

(4.87)

(488)

aJ<=a" =aLG =aL7 =0, a" =11A".

Thus the general equations (3.25-3.27) reduce to

v J-<~il' - nAoJ-<i +a,lJ ;;0

As before the above equations take the form

a", ;;a" =0 a", ;; 21lAo.

(4.89)



with the boundary conditions

/(0) '"/.(0) '"0,I,,("'); 0)
s(O) eo .>" (0) '" 0, s" ("') '" 0

e(o)" t, e(a;) = 0

The analytical solutions of(4.89), are

(4.90)

R [-"" -.]s;-) e ~e
Pr' '"'

The similarity requirements are

Up ; b,en;

U;. ccg x P,./:"T (characteristic length Ll), where L, = en,

The similarity variable of! is

The velocity components are

II;Up/,,(,p)
v; Vp\.(,p)



and w=O.

Skin friction are

(&,)
T~L= J\ Oz .=0

Heat flux

(aT)q =-k -
~ & ••0

= -ka, ~e'nIB; (0)



Cll.se-8:

M(Y, T) _ 0 aB(T,X) = 0
ay 'ar'

££'(x'Y)_o DA(Y,r)_O
ay 'Dr'

Choosing h, = h, = I,

M(Y )Let ' r etcconstant, ar
u, )~ -(a] -1/4 -a, +a.-alO etcconstant
V,

u,._=> k, =-etcO,/, =a,-a.-a,+a,-alO=O
V,

aB(r, X) etcconstant
D,

=> VF(2a, +a" -a,,) etcconstant

=> k,=Vp",0,/2=2a,+u,,-u14=0

oX:'(X,Y) .,. constant
DX

~ _l_(an-a,-a,)etccoristant
[lr'

1=> k,=-.,tO,I,=uo-a,-a,=O
[I".

iJC(X Y)-~'~etc constant
DY

1~ -(u,-a.-a,).,tconstant
V,

1 1~ -=-etcO,14=a,-a,-a,=0
k, V",

3A(Y, r)---'" constantD,

=> [I",(2a,+a"-a,,,)etcconstant

oX:'(X,Y) _ 0
DX

aB(r,X) -0
DX

(4.91)

(4,92)

(4.93)

(4,94)



1
::::> T=UF7c-O,I,=2a,+a,,-a,,=O,
oB(r,X) ;to constant

8X

V=> ; (Go - G, - G2 - all + a,,);t constant,,
1 V, [ _ -0~-o-;tO, ,-Go-(/,-Q,-Q,,+u,,-
k, U,..

The equmions (4.91 - 4.96) implies,

a,=u[O, 2o,=-a", G"=Q,,, 2o,=-a", Go=G,+a" a,=(I.+a,

By virtue of equation (4.9), we get

y'UF =aoX +Ao
[By using (4 91) and (4.95)]

Fmm(4.10), we have

y'VF=a,Y+Bo
[By using (4.92) and (4.96)]

In view of equation (4.11), we get

".r' =2a,r+Cn
[By using (4.93) and (4.94)]

By virtue of equations (4.98-4.100), U F and VF are found 10 be

(4,95)

(4.96)

(4.97)

(4.98)

(4.100)

(4.101)

wd

(4.102)

(4,103)

Substituting (4 101-4.103) in the similarity requirements one may obtain the following
relations between the constant (a's).
Gn,a, anda] are arbitrary

Q, =Go' (I, =0, Q. =a" a, =G. =0, (I, =Go> G9= Q,o=a,l =0, a" =-2a,

"L4 =u" a" =a" =a'7=0, a]O =-la"

<1,,"'<10, a"=<1,, a,,=-4a7,



~d

Thus the general equation (3.25-3.27) take the forms for this case:

v- -- -- -- - - -
PrBjj + aOFBj + a,SO~ +a7rf!Bj - (aoFj +a,Sj)B +4a,B ,,0

The boundary conditions are

p(O)" F~(O)"0, F,l(oo)" 0

S(O)=.S',(O)=O, S,i(m)=O

0(0) == 1, 0(00) = °
ABin previous cases, substiMing Ii == aj, .S'== as, 8 == B, 'j= arf! choosing ana' = 1 and,
later writing

convection.

a "-'=c-'=d, .

"0 ao
Also we

a
put-----"- == 1

a"
~da,. =R

a"
(constant) for iTee

The above equation with their attached boundary conditions are simplified to

I ••• + (f +cs)lfO +dfflf - 1_' + UI. + 8=0

s ••• + (f + cs)s"" +drfr,'•• - cs: + 2ds. +R8 = 0

The boundary conditions are

f(O) == f_(O) = 0, f_(m) = 0)
s(O)==s.(O)==0, s_(oc)=O

B(O) = 1, 0(00)= 0

The similarity requirements are

h,==h,=l

U
F
= aoX +A"
2a,r+Co

(4.104)

(4.105)

(4,106)

(4.107)

wherex=X+Xo' ""t = T+To' a, =-
2a,

(ilL.I,.
,



vi ocg-rPrAT (characteristic length LI), where L1 = ;

a
whereao =-'-, y=Y+Yo• 2(1,

v; ocgyPrAT (characteristic lengthL2), where /'2 = ~',
AT x=a't"

- yAT-a4~', aawhere a = 01, 'a4a,Prg,-

y2 = a, (1), where a, = 2a7

The similarity variable <j> is,

.Mz
e

~2rn"a, (1)

The velocity components are

11 - -}and w=-r-(h,yU,.-).-F-(h,rVF)'S
h,h,

"



Skin frictions are

, -
°oa, Ls (0)
Sa' ~ H,v (I)"

[a'JHeat flux, qw = -k -
Jz ,=0

~
' '=-ka, ----, 8,,(0)
lav _-

, (I)'

and qw = -k[~~J
o. ,"'!
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Table-(I)

p 1"(0) .•"(0) 0'(0)
03333 0,6956 0.2920 0.6613
0,3360 06940 0.2918 0.6744
0.3390 06922 0.2917 0.6887
0.3420 0,6905 02916 0.7029
0.3450 0.6887 02916 0.7169
0.3480 0.6869 0,2916 0,7307
0.3510 0.6851 0,2916 07445
0,3540 0.6832 02917 0,7580
0,3570 0.6827 0.2920 0,7710
0.3600 0,6809 0.2921 o 7845
03630 0,6803 0.2925 o 7975
0.3660 0,6797 0.2928 0.8103
0,3690 06791 0.2932 0.8231
0.3720 0,6785 0.2936 0.8358
0.3750 0,6778 0.2941 0.8484

c=) 0, d=LO, kl=O.3, R=O.4, Pr=O,72

Table - (3)

c 1"(0) .•"(0) 8'(0)
01000 0,9198 0.0864 0.3740
0,2000 09173 0.0856 0.3749
03000 0,9154 0.0849 0.3754
0,4000 09135 0.0842 0,3760
0,5000 0.9111 0.0835 0.3768
0,6000 0.9094 0,0828 0.3773
0,7000 0.9077 0,0821 0.3778
08000 0,9054 0,0814 0.3786
0.9000 0,9038 00808 03790
1.000 0,9022 00801 0,3795
2.000 0.8884 00740 0,3838
3,000 08793 0,0682 0,3866
4,000 o 8737 0,0625 0,3883
5.000 0.8724 0.0565 0.3887

d=0.2, )3=0.3, k, = 0.4, R= 0, 1, Pr=O.72

Table- (2)

p .r(0) s"(o) 0'(0)
0.3333 0.3110 0,1255 1 8072
0.3560 0.3102 01252 1.8489
0,3390 03093 0,1249 1.8984
0,3420 0,3085 0,1245 1.9402
03450 0,3071 0.1241 1,9852
0.3480 o 3063 0,1238 2.0295
0,3510 0.3055 0.1235 2.0734
0.3540 0.3047 0.1232 2.1167
0.3570 0.3035 0.1228 2,1597
0.3600 0.3028 0.1226 22021
0.3630 0.3021 0,1224 22441
0.3660 0.3014 0,1222 2,2856
0.3690 0.3007 0,1220 2,3267
0.3720 0.3001 0,1218 2.3675
0,3450 0,2994 0,1217 2.4076

c=LO, d=LO, k,=0,3, R=O 4, Pr=7,OO

Table - (4)

d .r(0) .\'"(0) 0'(0)
-0.3000 0.8724 00563 0,3887
-0,2000 0.9508 00841 0,3352
_0.1000 09458 0,0845 0,3445
00000 0,9374 0.0846 0.3545
01000 0,9263 0.0845 0.3651
0,2000 0.9135 0.0842 0.3760
0,3000 0.8984 0.0836 0.3875
0.4000 0.8834 0,0830 0.3988
0.5000 0.8671 0,0821 04105
0.6000 0.8501 00812 0.4225
0.7000 0,8338 0,0802 0.4341
0,8000 0,8166 00791 0.4463
0,9000 0,7999 00779 0.4583
1.0000 07841 0,0767 0.4700
2,0000 0,6493 0.0654 0.5839

c=O.4, )3=0.3, kj=O.4, R=O I, Pr=O,72



Table - (5)

R j "(0) s"(O) - /}'(O)

0,0000 0.9486 0.0000 0.3522
01000 0,9482 0.0885 0,3522
02000 0,9476 0.1773 0.3518
0,3000 0.9462 0,2663 0.3513
0.4000 0.9440 0.3557 0.3507
0.5000 0.9414 04459 0.3497
0.6000 0.9376 0,5366 0.3487
0,7000 0.9332 06285 0.3474
0,8000 0.9279 07216 0.3459
0.9000 0.9212 0,8161 03442
1.0000 0.9133 09125 0,3421

c=O.O, d=O.O, 13"'0.3, kj=LO, Pr=O,72

Table - (6)

k 1"(0) s'(O) 1'1'(0)
_1,0000 0.9133 0.9125 0.3421
1.0000 0.9133 09125 0,3421
2.0000 0.9435 0,8934 03490
3,0000 0.9485 0,8904 0,3501
4,0000 0,9503 0,8895 0,3505
50000 0,9509 o 8889 03507
60000 0,95]4 0.8886 0.3508
7,0000 0.9516 0.8885 0.3509
8,0000 0.9518 a.88M 0.3509
9,0000 0.9519 0.8883 0.3509
10.0000 0.9520 0.8883 0.3509
11.0000 0.9521 0.8882 0.3509
12,0000 0.9521 0.8882 0,3509

c=o.O, d=OO, ~=0.3, R=1.0, Pr=O.72



Results and Discussion

In the present investigation, possible similarity solutiollS of ullSteady laminar boundary

layer free convection flow around a vertical curvilinear surface is solved numerically by

Nachtsheim-Swigert iteration technique. The calculations were carned out for several

values of parameter 13(Table 1 and Table 2) for Pr = 0 72 and Pr = 7.0. For constant aU

temperature 13= t and constant heat flux 13= i, We display numerical values

of["(0),8"(0),-8'(0) in the range .3333"; 13,,; .3750 in tabular fonn. The values for

1"(0), s"(O), -8'(0) may be obtained at the rectangular body surface (~=0) which are

required in evaluatingthe skin-frictionsand heat transfer co-efficients,

Figures l(s, b) and l(c) represent respectively dimensionless velocity and temperature

profiles for d = OJ, 13= 0.3, k] = 0.4, R = 0.5, Pr = 0,72 with several values of c. The

velocity profiles vary as usual with the parameter c, From figure l(a,b) it can be

concluded that the velocity profile decreases as the values of the parameter c(O,O-]5)

mcreases Near the surface velocity profile increases, becomes maximum and then

decreases and finally takes asymptotic values From figure l(c) we observe that the

temperature profile is large near the surface and decreases away from the surface and

finally takes asymptotic value, Here we also see that temperature profile decreases with

the increases oflbe parameter c

Figures 2(a) and 2(c) represent respectively dimensionless velocity and temperature

profiles for c = 0.4, 13= 0.3, kj = 0.4 R = 05 and Pr = 0.72 From Figure 2(a,b) we

observe that the velocity profile decreases owing to increase in the value of the parameter

d, Near the surface velocity profile becomes maximum and then decreases and finally

takes asymptoticvalues,
From figure 5(c) we see that the temperature profile remains unchanged for differem

vall.lesof the parameter R For 0.0 ,,;R ,,;0,8 the temperature profile becomes maximum

at the surface of the plate then decreases away from the plate and finallytakes asymptotic



value at of! '" 4.2, From 5(b) it is observed that the velocity profile illcreases as the value

parameter R increases.

From figure 9(a) and 9(b) we observe that along u-directioll skill mction gradually

decreases with the increasing of parameter c, the skin friction more decreases with the

increasing of c. The fig, 9(c) asserts that the parameter c illcreases the heat transfer rate

highly with its increasing value. With olle of the parameter R~O,VF ~O, the equation

(3.26-3.29) may be well compared with 2-dimellssional equations of renowned authors.
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Chapter-6

Conclusion

An analysis is made of three dimensional unsteady laminar boundary layer equations for

free convection flow around a curvilinear surface, in order 10 establish necessary and

sufficient conditions under which similarity solutions are possible, On the basis of these

condilions, out of eight possible C<mcsfive cases have been studied here. The remaining

three steady possible cases were derived by Khan (1998). An additional parameter d ,

which is the ratio of botmdary layer thickness due to variations with respeet 10 position

and time is established here. For this situation; the possible variation in !'IT and the scale

factors II, and h, are found in the similarity solution for the momentum equations and

energy equation. Hence with the positive real value of d, the flow parameters like skin

friction coefficients (=rw' (0), Tw2 (0)) arc found to decrease while heat transfer coefficient

(= qw(O)) increases. Such effects arc quite remarkable in presence of other parameter

A{=~:)in the momentum equations, but the energy equation is of free from this

parameter. Further investigation are necessary to draw the overall remarks oonc1tL~ively.
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