# Similarity Solutions for Unsteady Laminar Boundary Layer Flow Around a Vertical Heated Curvilinear Surface 

A dissertation submitted in partial fulfillment of the
requirements for the award of the degree

Md. Yeakub Ali

Roll No. 040209010F, Registration No. 0402410
Session: Apri-2002
Department of Mathematics
Bangladesh University of Engineering and Technology
Dhaks-1000

Supervised
by
Dr. Md. Zakerullah
Professor
Department of Mathematics, BUET, Dhaka


Department of Mathematics
Bangladesh University of Engineering and Technology
Dhaks-1000
April, 2005

# The Thesis Entitled <br> Similarity Solutions for Unsteady Laminar Boundary Layer Flow Around a Vertical Heated Curvilinear Surface 

Submitted by

## MD.YFAKUB ALI

Registration No. 0402410, Roll No. 040209010F, Session: Apri-2002, a full time student of M. Phil (Mathematics) has been accepted as satisfactory in partial fulfilment for the degree of

## Master of Philosophy in Mathematics <br> 02/04/2005

## Board of Examiners

1. Dr. Md. Zakerullah

Professor


Departinent of Mathematics
BUET, Dhaka-1000

Aleambets

## 2. Head

Member
Department of Mathematics
(Ex-ollicio)
BUET, Dhaka-1000
3. Dr. Md. Abdul Maleque


Associate Professor
Department of Mathematics
BUET, Dhaka-1000.
4. Dr. Gaza Md. Klualil

Professor


Department of Naval Architecture and Marine Engineering BUET, Dhaka- 1000 .

## Dedications

This work is dedicated to
My parents

## Contents

Page No.
$v$
Declaration
vi
Acknowledgements
Abstract ..... vii
Nomenclature ..... viii
CHAPTER-1
Introduction ..... 1
CHAPTER-2
Basic equations ..... 7
Governing boundary layer equations ..... 16
CIIAPTER-3
Transformations leading to similarity solution ..... 18
CHAPTER-4
Study of some possible similarity cases ..... 28
CHAPETER-5
Figures and Tables ..... 63
Results and Discussion ..... 84
CHAPETER-6f
Conclusion ..... 86
Relerences ..... 87

## Candidate's Declaration

None of the materials contained in this thesis is/will be subnited in support of any other degree or diploma at any other university or institution other than publications.


2nd April, 2005
(Md. Yeakub Ali)

## Acknowledgement

The author expresses his indebtedness and deep sense of gratitude to his supervisor Dr. Md. Zokeruliah, Professor of Mathematics, Bangladesh University of Engineering and Technology (BUET), Dhaka for his continuous guidance, valuable suggestions, constant encouragement and help all along during the period of this research work.

The author wishes to express his gratitude to Dr. Md. Abdul Maleque, Associate Professor of Mathematics, Aangladesh University of Engineering and Technology (BUET), Dhaka for his kind help in solving the equations numerically.

Thanks are due to the administration, Chittagong University of Engineering and Techmology, Chitlagong for granting him deputation and leave wilhout pay for the period of his M.Phil study.

The author would like to thanks Chairnan, University Grants commission of Bangladesh, Dhaka for offering him the UGC Fellowship.

The author would like to offer sincere thanks to his friends and colleagues specially all the teachers and staft of the depariment of madhemalies, BUET', Dhaka for their all kinds of co-operation.

Finally, it will be an injustice if the author does not express his indebredness, love and thanks to his wife Khandaker Shamema Akter and affection to his only daughter Zarin Tasnim.

(Md. Yeakub Ali)

## Abstract

Similarity solution plays a vital role for the reduction of variables (dependents or independents) when the questions of parial differential equations arise in dealing with the boundary value problems. The present study deals with the possible similarity solutions of unsteady laminar boundary layer free convection flow around a vertical curvilincar surfacc. The frec parameter method is introduced. Then the pertinent boundary layer parial differential equations under a suitable transformation are reduced to a set of ordinary diflerential equations. These simultaneous transformed ordinary differential equations with proper boundary conditions are solved numerically using Nachisheim-Swigert iteration technique and Runge-Kutta shooting method. The resuits are compared with all other relevant works for special situations. The non-dimensional skin-friction factors $\left(=\tau_{w 1}(0), \tau_{w_{2}}(0)\right.$ ) and heat transfer co-efficient ( $=g_{w}(0)$ ) are displayed and shown graphically for some values of the controlling parameters by using the Soflware FORTRAN 77 and TECPLOT.

## Nomenclature

| $a, b, c, d_{1} R_{1} k_{1}$ | constant |
| :---: | :---: |
| $C_{p}$ | specific heal at constant pressure |
| $F, S$ | dirnensionless scaled stream function |
| $f, s$ | dinemsionless velocity |
| $g$ | acceleration due to gravity |
| gr | acceleration due to gravity along X -direction. |
| $g r$ | acceleration duc to gravity ulong Y -direction. |
| $h_{1}, h_{2}, h_{3}$ | scale factor for curvilinear surface. |
| Grxyt, | modified Grashor number. |
| $k$ | the coefficient of thermal diffusivity. |
| $L_{1}, L_{2}$ | characteristic length. |
| m | temperature power/ cxponent parameter. |
| $P$ | pressure |
| $R_{F}$ | Reynolds number |
| $P_{T}$ | Prandll number |
| Fr | Froude number |
| $q_{w}$ | heat flux |
| $T$ | temperalure of the fluid. |
| $T_{\alpha}$ | temperature of ambient fluid. |
| $T_{w}$ | surface temperature. |
| $u, v, w$ | velocity components in the boundary layer. |
| $U_{F}, V_{F}$ | characteristic velocity gencrated by buoyancy effects. |
| $x, y$ | co-ordinate along the edges of surface |
| $z$ | co-ordinate normal to surlace. |

## Greek letters

| $\alpha, \beta$ | constanl |
| :--- | :--- |
| $\beta_{T}$ | the coefficient of volumetric expansion |
| $\delta$ | boundary layer thickness |
| $\delta_{T}$ | themal boundary layer thickness |
| $\theta$ | dimensionless temperature function |
| $\psi, \tau$ | mass flow components (strean function) |
| $\Phi$ | dissipation lunction |
| $\phi$ | similarity variable |
| $\nu$ | the kinemetic coeflicient of viscosity. |
| $\rho$ | the density of the ambient lluid |
| $\mu$ | coefficient of viscosity |
| $\kappa$ | the coefficient of themal diffusivity |
| $\tau_{w}$ | non dimensional skin friction |
| $\xi, \eta, \zeta$ | scaled co-ordinale defined in equations |
| $\gamma$ | the square root of the boundary layer thickness |

## Chapter-1

## Introduction



Free convcetion heat transfer occurs whencver a body is placed in a fluid at a higher or a lower temperature than that of the body. As a result of the temperature diflerence, the flows between the fluid and the body causes a change in the density of the fluid layers in the vicinity of the surface. The difference in density leads to downward flow of the heavier nluid and upward flow of the hghter one. If the motion of the fluid is caused solely by differences in density resulting from temperature gradients, without the aid of a pump or a fan, the associated heat transfer mechanism is called natural or free convection. The density difference gives rise to buoyancy effects duc to which the flow is generated. A heated body cooling in ambicnt air generales such a flow in the region surrounding it. Similarly buoyant flow arising from heat rejection to the almosphere and to other ambient media, circulations arising in heated rooms in the atmosphere and in bodies of water, causes thermal stratification of the medium. Many other such heat transfer process, in our natural environment as well as in many technological applications are included in the area of natural convection.

The concept of 'similarity' initially introduced by Blasius (1908) has become a useful tool now-a-days. On the basis of similarity transformations and finally the reduction of the set of partial differential equations to a set of ordinary differential equations have now reached stage of ary great extent. A partial differential equation (PDE) with more than two independent variables becomes necessary to fommulate the true picture of the happenings and reasoning of the problem. It is ofien difficult and even impossible to find the sohtion of PDE with the usual classical method. So applied mathematicians and engineers devote themselves to develop the ways and means for their solutions with simplifying assumptions. Similarity solution is one of the means, where the reduction of number of independent variables into one heing done successfully. A vast literature of simikarity solution has appeared in the arent of fluid mechanics, heat transfer, mass transfer etc. Difierent types of perlurtation techniques are followed to solve the non-linear PDEs following primarily on local similarity solution.

The theoretical analysis and expcriments carricd out by Schmidt and Bechmann (1930) of the free convection boundary layer flow of an subject to the gravilational force aboul an isothermal, vertical that plate constitute one of the carliest comprehensive studies of natural convection fiow. Eekert and Soehngen (1948) verified and extended the experimental work of Schmidt. Schuh (1948) oblaincd the numerical solutions by computing velocity and temperature distributions for several Prandtl numbers. Ostrach (1953) studied aspects of natural convection heat transfer. He also analyzed laninar free convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. Yang (1960) studied the unsleady laminar boundary layer equations for frec convection on vertical plates and cylinder to establish necessary and sulficient conditions under which similarity solutions were possible. On the basis of these conditions, all possible cases were derived, for twodimensional unsteady boundary layer flow. Brann et al. (1961) investigated free-convection similarity flows about two-dimensional and axisymetric bodies with closed lower ends. He found that fanrilies of bodies had sirnilar velocity and temperuture profiles along their entire extents. He also computed growth of the boundary-layer thickness and velocity along the surface as well as the heal transfer for a wide range of Prandll mumbers. Stewart (1971) derived boundary-layer solutions for free convection in laminar three-dimensional system by a temperature-dependent or composition-dependent densily. He determined effie:ts of rapid mass transler for centrifugal forces and generalized the results of Acrivos (1960) for poworlaw fluids

Soundalgekar (1972) analyzed viscous dissipation effects on unsteady free convection flow past an infinite, verical porous plate with constant suction He derived the approximate solutions of the governing coupled, nonlinear equations for velocity and temperature field. He exhibited on graphs, the fluctuating parts of the velocity, the transient velocity profiles, the transient temperature profiles, the numerical values of amplitude and phase of the skin friction and heal trangfer rade. Johnson and Cheng (1978) cxamined the necessary and sufficient condition under which similarity solutions exist for free convection boundary layers adjacent to flat plates in porous media. The solutions obtained in his work were more general than those appearing in the previous studies. Laminar free convection from vertical surfaces had
been studied extensively by Sparrow and Gregg (1958) when the temperature of the surface was uniform and numerical solution were displayed also for Prandtl numbers in the range 0.1 to 100 . Suwone (1980) applied the series of sevcral variables to the solutions of the boundarylayer equations of free convection in laminar thrce dimensional system. He verified the numerical computation of the solution for the case of free convection over an inclined circular cylinder. The temperature profiles calculated from the first five terms of the series were compared with the experimental data. Merkin (1985) studied the simikrity solutions for free convection on a verical plate when the (non-dimensional) piate lemperature is $x^{\lambda}$ and when the (non-dimensional) surface heat liux was $-x^{\mu}$. He obtained solutions valid for $\lambda \geq 1$ and $\mu \geq 1$. He also discussed in both cases that the solutions became singular as $\lambda \rightarrow \lambda_{0}$ and us $\mu \rightarrow-1$ and the natures of these singularitics. Jafapur and Yovannovich (1992) analyzed laminar free convection heat transfer from isothernal spheres by a analytical method. Pop and Takhar (1993) invesligated the free convective flow over a non-isothermal two-dinensional body of arhitrary geometric configuration. It was shown that there werc a certain family of body shape gcometries and corresponding wall temperature distributions, which permited similarity solutions. He discussed in detail the effects of geometric shape parameter and Prandl] number on the velocity and temperature fields as well as on the heat transfer coefficient. Conjugate free convection on a vertical surface hed been discussed in some detail by Merkin and Pop (1996).

Chaudhary et al. (1995) studied in detail the similarity solutions for free convection houndary layer flow over a permeable wall in fluid saturated porous medium It was seen that the system depends on the two parameters m (the power law exponent) and $\gamma$ (the dimensionless surface mass transfer rate). He also observed that the range of existence of solution depends on $m$ and, for fluid, with drawl $(\gamma<0)$ on $\gamma$ as well, with a solution being possible for $m>m_{0}$ where $m_{0}=-\frac{1}{2}$ for $\gamma \geq 0$ and for $\gamma<0, m_{0}$ decreasing monotonically from $-\frac{1}{2}$ at $\gamma=0$ to -1 as $\mid \gamma \rightarrow \infty$. Jia and Gogose (1996) studied numerically, steady state natural convection over a sphere. He obtained heat transfer and drag cocfficients for a wide range of Grashof numbers $\left(10^{1} \leq G r \leq 10^{8}\right.$ ) for Prandlt numbers 0.72 and 7.0. A plume with a mushroom-
shaped front forms above the sphere whose length and thickness decrease with the increasing value of Gr. At high $G r\left(G r \geq 10^{7}\right.$ and $\operatorname{Pr}=0.72$ ), flow separation and an associated recirculation vortex exist in the wake of the sphere. The vortex size was found to increased with the increasing value of Gr. The local Nusselt number along the sphere surface first decreased, reached a minimum, and then increased stecply at the near of the sphere.

Ganapathy (1997) studied time dependent free convection motion and heat transfer in an infinite porous modium induced by a heated sphere. Sloouti et al(1998) studied the unsleady free convection flow in the stagnation-point region of a three-dimensional body. He considered the case where therc was an initial steady state that was perturbed by a stcp-change in the wall temperature. It was seen that the temperature and surface heat trangfer were changed in a small interval of time. The surface heat transfer parameter increased with the increase of Prandll number while the surface skin friction parameters decreased with the increase of Prandtl number. Jayaraj et al. (1999) discussed claborntely the analysis of thermophoresis in natural convection flow with variable thid properties over a cold vertical plate. The effect of thennophoretic coefficient on wall concentration was also studied by him.

Hellums and Churchill (1962) presented a numerical solution of the coupled time dependent boundary layer equations goveming transient natural convection flow over a semiinfinite vertical plate in air. Goldstein and Brigges (1964) and Nanbu (1971) studied the same problem anatyically. Elliot (1970) analysed the problem of unsleady free convection boundary loyer How over two-dimensional and axisymetric bodies for a step input in the surface temperature. Willigms et al. (1987) studied the unsteady free convection flow over a vertical flat plate under the assumption of variations of the wall temperature with time and distance. They found possible semi-similar solutions for a variety of classes of wall temperature distributions. Sattar and Alam (1994) investigated the unsteady free convection flow of a viscous, incompressible and electrically conducting fluid past a moving infinile venical porous plate laking into account the therrial diffusion effect. The unsteadiness in the flow field was introduced by time-dependent velocity of the moving plate. Kumari et al. (1996) studied the transient free convection flow over a continuous moving vertical sheet in an ambicnt fluikl. The unsteadiness in the flow field was caused by the time-dependent
velocity of the sheet. The constant temperalure and the conslani heat flux conditions were considered. Kımari and Nath (1984) considered the unsteady free convection flow in the slagnation-point region of a heated porous three-dimensional body where the unseadiness in the flow field was caused by a time-dependent wall temperalure. The semi-similar equation governing the flow were solved numerically.

Rees and Pop (1995) investigated the effects of large-scalc surface non-uniformities on the boundary layer How induced by a constant heat flux, vertically aligned, semi-infinite surface embedded in a porous medium. The analysis hall been restricted to valucs of $x$ that take $O$ (I) values us $R a \rightarrow \infty$. In this range of values of $x$, the boundary layer thickness is $O\left(R a^{-\frac{1}{3}}\right)$, which was much smaller than the $O(1)$ length scale associated with the waves of the surface. Three-dimensional, laminar, meompressible boundary layer similarity solutions were studied by Hansen and Ohio (1958). He found similarity requirements of the threcdimensional, laminar, boundary layer equations along with a general method of analysis. The problem of unsteady laminar mixed convection flow and heat transfer between two corotaling disks with wall effects including both wall conduction and wall heat capacity were investigated numerically by Monyan and Tzonglec (1997). In his work, both the thermal boundary conditions of uniform heal flux (UIF ) and uniform wall tcmperature ( UWI ) were considered. The Boussinesq approximation were used to characterize the centrifugalbuoyancy effects. He noticed the wall effects on the characteristics of fluid flow and thermal pertormance. The predicted results reveal that wall effects played a vital role in the unsteady mixed convection heat transfer, especially for the early transient period. Additionally, in the situation of buoyancy-opposing flow ( $G r_{\Omega}>0$ ), the centrifugal buoyancy induced by the rotation had retarding effect on the skin friction coefficient and heat transfer rate. Zakerullah and Maleque (1998) studied theoretically three dimensional combined laminar boundary laye flows over inclined vertical orthogonal curvilinear suraces. They described the detailed analyses of similarity requirements for an incompressible boundary layer fluid in order to reduce the governing parlial differential equation into a set of ordinary differential equations. Different possible cases were exhibiled in tabular form for $\Delta T$-variations in addition to those of exterior velocity components tahulated by Hansen and Ohio (1958).

The present studies concerns with the systematic analyses in reducing the governing partial differential equations for unsteady free convective laminar incompressible fow over the vertical curvilinear surface into a set of ordinary differential equation. Finally similarity requirements is exhibited for $\Delta T, h_{1}, h_{2}, U_{F}$ and $V_{F}$ varialions. Numerical results are presented to predici flow characteristics for the different numerical values of the controlling parameters involved in the similarity transformalion. Results are, therefore, compared with known results in literature.

## Chapter-2

## Basic Equations

Considering the flow direction along the $\boldsymbol{\xi}$ axis and $\eta$-axis and be defined in the surface over which the boundary layer is flowing. For simplicity $h_{3}(\xi, \eta)=1$ has been set such that $\zeta$ represents actual distance measured nomnal to the surface. The body force is taken as the gravitational force $\bar{g}\left(g_{\varepsilon}(\xi, \eta), g_{\eta}(\xi, \eta), 0\right)$ Thus the basic unsteady continuity, momentum and energy equations for a viscous and heat conducting fluid with variable fluid properies subject to the body force in curvilinear co-ordinates are,

## continuity equation

$$
\begin{equation*}
\frac{D \rho}{D t}+\rho\left\{\frac{\partial}{\partial \xi}\left(h_{2} u\right)+\frac{\partial}{\partial \eta}\left(h_{1} v\right)+\frac{\partial}{\partial \zeta}\left(h_{1} h_{2} w\right)\right\}=0 \tag{2.1}
\end{equation*}
$$

## $u$-momentum equation

$$
\begin{equation*}
\rho\left[\frac{D u}{D t}+\frac{w}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}+\frac{w u}{h_{1}} \frac{\partial h_{1}}{\partial \zeta}-\frac{v^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}\right]=\frac{1}{h_{1}} \rho g_{\xi}-\frac{1}{h_{1}} \frac{\partial p}{\partial \xi}+\mu \nabla^{2} u \tag{2.2}
\end{equation*}
$$

$\nu$-momentum equatien

$$
\begin{equation*}
\rho\left[\frac{D v}{D t}+\frac{w v}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}+\frac{w w}{h_{2}} \frac{\partial h_{2}}{\partial \zeta}-\frac{u^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}\right]=\frac{1}{h_{2}} \rho \boldsymbol{F}_{\eta}-\frac{1}{h_{2}} \frac{\bar{\partial}}{\partial \eta}+\mu \nabla^{2} v \tag{2.3}
\end{equation*}
$$

$w-m o m e n t u m$ equation

$$
\begin{equation*}
\rho\left[\frac{D w^{1}}{D t}-\frac{u^{2}}{h_{1}} \frac{\partial h_{1}}{\partial \zeta}-\frac{v^{2}}{h_{2}} \frac{\partial h_{2}}{\partial \zeta}\right]=-\frac{\partial p}{\partial \zeta}+\mu \nabla^{2} w \tag{24}
\end{equation*}
$$

and energy equation

$$
\begin{equation*}
\alpha_{p}^{+} \frac{D T}{D t}=k \nabla^{2} T+\mu \Phi \tag{2.5}
\end{equation*}
$$

where $\frac{D}{D t}=\frac{\partial}{\partial t}+\frac{u}{h_{1}} \frac{\partial}{\partial \xi}+\frac{v}{h_{2}} \frac{\partial}{\partial \eta}+w \frac{\partial}{\partial \zeta}$
$\nabla^{2}=\frac{1}{h_{\mathrm{t}} h_{2}}\left[\frac{\partial}{\partial \xi}\left(\frac{h_{2}}{h_{1}} \frac{\partial}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\frac{h_{1}}{h_{2}} \frac{\partial}{\partial \eta}\right)+\frac{\partial}{\partial \zeta}\left(h_{1} h_{2} \frac{\partial}{\partial \zeta}\right)\right]$
and $\Phi$ is the dissipation function.

## The Boussinesq approximation

The study of unsteady free convective laminar boundary layer equations needs a discussion of the Boussinesq approximation. In this approximation density variations other than the variation in the body force term in the momentum equation are ignored. Thus the elimination of the first term $\left(=\frac{D \rho}{D t}\right)$ in the continuity equation will be found to lead to great simplifications in the boundary layer equations, particularly when the latter are expressed in terms of a stream function. Fluid property variations are ignored completely in this approximations and this factor, together with the removal of density variations in the convection terms, removes the requirement for the use of HowarthDorodnitsyn transformation.
Since the equation of the state plays an important role for a lluid, we consider this in general form as $\rho=\rho(T, p)$
One may write, $d \rho=-\rho \beta_{T} d T+\rho \bar{K} d p$
where $\beta_{\tau}=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{P}$ is the volumetric expansion coeflicient.
and $\bar{K}=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial p}\right)_{T}$ is the isothermal compressibility coefficient.
In non-dimensional form the equation (2.9) may be written as

$$
\begin{equation*}
\frac{d \bar{\rho}}{\bar{\rho}}=-\beta_{T} \Delta T d \theta+\bar{K}_{p_{0}}\left(\frac{\rho_{0} U^{2}}{p_{0}}\right) d \bar{p} \tag{2,10}
\end{equation*}
$$

In the case of slow motion one obtains for a gas $\bar{K} p_{0} \cong 0(1), \frac{\rho_{0} U^{2}}{p_{0}}$ is proporional to $M^{2} \ll 1$; but for a liquid $\frac{\rho_{0} U^{2}}{p_{0}}$ is more significant than for a gas. However for a liquid $\bar{K} p_{0} \ll 1$, hence the equation (2.10) becomes

$$
\begin{aligned}
& \frac{d \bar{\rho}}{\bar{\rho}}=-\beta_{T} \Delta T d \theta \\
\Rightarrow & \rho=\rho(T) \\
\Rightarrow & d \rho=-\rho \rho_{\mathrm{r}} d T \\
\Rightarrow & \rho-\rho_{r}=-\rho_{r} \beta_{T}\left(T-T_{r}\right)
\end{aligned}
$$

(Suffix ' $r$ ' represents the small changes from a reference condition as a first approximation.)

$$
\text { Hence } \quad \rho=\rho_{r}\left\{1-\beta_{T}\left(T-T_{r}\right)\right\}
$$

Similarly, we can write for another transpon prooerty $\mu=\mu(T)$. It yields

$$
\begin{equation*}
\mu=\mu_{r}\left\{1+a\left(T-T_{r}\right)\right\} \tag{2.12}
\end{equation*}
$$

where $\quad a=\left(\frac{1}{\mu} \frac{\partial \mu}{\partial T}\right)$,
To the first order of small quantities equations (2.11-2.12) and similar equations for $\mathbf{k}$ and $C_{p}$ provide

$$
\rho \cong \rho_{r}, \mu \cong \mu_{r}, k \cong k_{r}, \quad C_{p} \cong C_{p_{r}}
$$

In the present case, heating due to viscous dissipation is neglected and fluid is considered unsteady and incompressible. For simphicity, the fluid considered here is a Boussinesq one

Here $u, v, w$ denote velocity components in the $\xi, \eta$ and $\zeta$ directions, $\rho$ is the density, $t$ denotes time, $\mu$ is the dynamic viscosity coefficient, $h_{1}, h_{2}$ denote the scale factors in the $\xi$ and $\eta$ directions. $p$ is the pressure, $T$ is the temperature, $C_{p}$ is the specific heat at constant pressure, $k$ is the thermal conductivity of the fluid.

The boundary conditions to be imposed on the present problem may be determined as follows:
(i) The fluid must adhere to the surface (the no slip condition):

$$
\begin{equation*}
u(t, \xi, \eta, 0)=v(t, \xi, \eta, 0)=0 \tag{2,13}
\end{equation*}
$$

(ii) The temperature of the fluid at the surface must be function of $t, \xi$, and $\eta$ (nonisothermal surface).

$$
\begin{equation*}
T(t, \xi, \eta, 0)=T_{w}(t, \xi, \eta) \tag{2.14}
\end{equation*}
$$

(iii) The fluid at large distances from the surface must remain undisturbed:

$$
\begin{equation*}
u(t, \xi, \eta, \infty)=v(t, \xi, \eta, \infty)=0 \tag{2.15}
\end{equation*}
$$

(iv) The temperature at large distances from the surface must be equal to the undisturbed fluid temperature.

$$
\begin{equation*}
T(t, \xi, \eta, \infty)=T_{\infty}(=\text { constant }) \tag{2.16}
\end{equation*}
$$

The pressure gradients in the $\xi$ and $\eta$ directions result from the change is elevation up the curved surface.
Thus the hydrostatic conditions are

$$
\begin{gathered}
-\frac{1}{h_{1}} \frac{\partial P}{\partial \xi}=-\rho_{\infty} g_{\xi} \\
\text { and }-\frac{1}{h_{2}} \frac{\partial p}{\partial \eta}=-\rho_{\infty} g_{\eta}
\end{gathered}
$$

For Boussinesq approximation, the continuity equation becomes

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(h_{2} u\right)+\frac{\partial}{\partial \eta}\left(h_{1} v\right)+\frac{\partial}{\partial \zeta}\left(h_{1} h_{2} w\right)=0 \tag{2.17}
\end{equation*}
$$

Thus the eliminations of pressure terms, the equations (2 2) and (2.3) become

$$
\begin{equation*}
\rho\left[\frac{D u}{D t}+\frac{u v}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}+\frac{\mu \nu}{h_{1}} \frac{\partial h_{1}}{\partial \zeta}-\frac{v^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}\right]=\frac{1}{h_{1}}\left(\rho-\rho_{\infty}\right) g_{\xi}+\mu \nabla^{2} u \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\rho\left[\frac{D v}{D t}+\frac{w}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \zeta}+\frac{v w}{h_{2}} \frac{\partial h_{2}}{\partial \zeta}--\frac{u^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}\right]=\frac{1}{h_{2}}\left(\rho-\rho_{\infty}\right) g_{\eta}+\mu \nabla^{2} v \tag{2.19}
\end{equation*}
$$

For incompressible flow, introducing the Boussinesq approximation $\rho-\rho_{\mathrm{on}}=-\rho \beta_{T} \Delta T \theta$ in equating (2.18-2.19). We get

$$
\begin{align*}
& \rho\left[\frac{D u}{D t}+\frac{u v}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}+\frac{w v}{h_{1}} \frac{\partial h_{1}}{\partial \zeta}-\frac{v^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}\right]=-\frac{1}{h_{1}} \rho \beta_{\tau} \Delta T \theta \xi_{\xi}+\mu \nabla^{2} u  \tag{220}\\
& \rho\left[\frac{D v}{D t}+\frac{w v}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}+\frac{v w}{h_{2}} \frac{\partial h_{2}}{\partial \zeta}-\frac{u^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}\right]=-\frac{1}{h_{2}} \rho \beta_{T} \Delta T \theta_{\eta}+\mu \nabla^{2} v \tag{2.21}
\end{align*}
$$

Before procecding to obtain solutions of the equations (2.17), (2.20), (2.21), (2.4) and (2.5), it is proposed first to discover the dimensionless groups upon which the solution depend. We begin by introducing dimensionless quantities into the equation, referring all lengths to some charactenstic length $L$ along the surface, velocities with reference to some characterisuc velocity $U$ and $t$ by $\frac{U}{L}$. The density will made dimensionless with respect to $\rho_{0}$, the pressure will be referred to $\rho_{0} U^{2}$ and the temperature to the temperature difference between the wall and $T_{s},\left(=T_{w}-T_{m}=\Delta T\right)$. The other transpori properties other the fluid $\mu, k_{,} C_{p}$ and the gravilational components $g_{\xi}, g_{\eta}$ will be made dimensionless by $\mu_{0}, k_{0}, C_{p_{0}}$ and $g$ respectively. We use suffix 0 to refer to some convenient constant reference conditions far from the surface.
Hence the substitutions are as follows:

$$
\begin{aligned}
& \bar{\xi}=\frac{\zeta}{L}, \bar{\eta}=\frac{\eta}{L}, \bar{\zeta}=\frac{\zeta}{I}, \bar{t}=\frac{U}{L} t \\
& \bar{u}=\frac{u}{U}, \bar{v}=\frac{v}{U}, \bar{w}=\frac{w}{U} \\
& \bar{\rho}=\frac{\rho}{\rho_{0}}, \bar{\mu}=\frac{\mu}{\mu_{0}}, \bar{k}=\frac{k}{k_{0}}
\end{aligned}
$$

$\bar{p}=\frac{1}{\rho_{0} U^{2}} P, \bar{g}_{\xi}=\frac{\boldsymbol{g}_{\xi}}{g}, \bar{g}_{y}=\frac{\boldsymbol{g}_{g}}{g}$
$\overline{C_{p}}=\frac{C_{p}}{C_{p_{\theta}}}, \theta=\frac{T-T_{\infty}}{T_{w}-T_{\infty}}=\frac{T-T_{\infty}}{\Delta T}, \Delta T=T_{w}-T_{\infty}$.
Here $U$ is the maximum fluid velocity generated by buoyancy effect and defined by $U^{2}=g \beta_{T} \Delta T L$ where $\beta_{\tau}=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{\phi}$ is a volumetric expansion coefficient. For simplicity, $h_{1}, h_{2}$ are themselves dimensionless because they are different in individual co-ordinate system, $L$ is some characteristic lengh.

We obtain the following non-dimensional equations:
continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial \bar{\xi}}\left(h_{2} \bar{u}\right)+\frac{\partial}{\partial \bar{\eta}}\left(h_{1} \bar{v}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \bar{w}\right)=0 \tag{2.22}
\end{equation*}
$$

## u-momentum equation

$$
\begin{align*}
\frac{\partial \bar{u}}{\partial \bar{t}}+ & \frac{\bar{u}}{h_{1}} \frac{\partial \bar{u}}{\partial \bar{\xi}}+\frac{\bar{w}}{h_{1}} \frac{\partial \bar{u}}{\partial \bar{\eta}}+\bar{w} \frac{\partial \bar{u}}{\partial \bar{\zeta}}+\frac{\overline{u v}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \bar{\eta}}+\frac{\bar{w} \bar{u}}{h_{1}} \frac{\partial h_{1}}{\partial \bar{\zeta}}-\frac{\bar{v}^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \bar{\xi}}=-\frac{1}{h_{1}} \beta_{r} \Delta T \theta \frac{\bar{g}_{\xi}}{F_{r}} \\
& +\frac{1}{R_{F}} \bar{v}\left[\frac{1}{h_{1} h_{2}}\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \bar{u}}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \bar{u}}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \frac{\partial \bar{u}}{\partial \bar{\zeta}}\right)\right\}\right] \tag{2.23}
\end{align*}
$$

## $v$-momentum equation

$$
\begin{align*}
& \frac{\overline{\partial v}}{\partial \bar{i}}+\frac{\bar{u}}{h_{1}} \frac{\partial \bar{v}}{\partial \bar{\xi}}+\frac{\stackrel{\rightharpoonup}{v}}{h_{2}} \frac{\partial \bar{v}}{\partial \bar{\eta}}+\bar{w} \frac{\partial \bar{v}}{\partial \bar{\zeta}}+\frac{\overline{u v}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \bar{\xi}}+\frac{\bar{w} \bar{v}}{h_{2}} \frac{\partial h_{2}}{\partial \bar{\zeta}}-\frac{\bar{u}^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \bar{\eta}}=-\frac{1}{h_{2}} \beta_{\mathrm{r}} \Delta T \theta \frac{\bar{g}_{\bar{\eta}}}{F_{r}} \\
&+\frac{1}{R_{F}} \bar{v}\left[\frac{1}{h_{1} h_{2}}\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\overline{\bar{v}}}{\partial \vec{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \bar{v}}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \frac{\partial \bar{v}}{\partial \bar{\zeta}}\right)\right]\right\} \tag{2.24}
\end{align*}
$$

## w-momentum equation

$$
\begin{align*}
\frac{\partial \bar{w}}{\partial \bar{t}}+ & \frac{\bar{u}}{h_{1}} \frac{\partial \bar{w}}{\partial \bar{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial \bar{w}}{\partial \bar{\eta}}+\bar{w} \frac{\partial \bar{w}}{\partial \bar{\zeta}}-\frac{\bar{u}^{2}}{h_{1}} \frac{\partial h_{1}}{\partial \bar{\zeta}}-\frac{\bar{v}^{2}}{h_{2}} \frac{\partial h_{2}}{\partial \bar{\zeta}}-=-\frac{1}{\bar{\rho}} \frac{\partial \bar{p}}{\partial \bar{\zeta}} \\
& +\frac{1}{R_{F}} \bar{v}\left[\frac{1}{h_{1} h_{2}}\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \bar{w}}{\partial \bar{\zeta}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \bar{w}}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \frac{\partial \bar{w}}{\partial \bar{\zeta}}\right)\right\}\right] \tag{2.25}
\end{align*}
$$

and energy equation

$$
\begin{align*}
& \bar{\rho}^{\bar{C}}\left[\left\{\frac{\partial \theta}{\partial \bar{t}}+\frac{\bar{u}}{h_{1}} \frac{\partial \theta}{\partial \bar{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial \theta}{\partial \bar{\eta}}+\bar{w} \frac{\partial \theta}{\partial \bar{\zeta}}\right\}+\theta\left\{\frac{\partial(\ln \Delta T)}{\partial \bar{t}}+\frac{\bar{u}}{h_{1}} \frac{\partial(\ln \Delta T)}{\partial \widetilde{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial(\ln \Delta T)}{\partial \bar{\eta}}+\bar{w} \frac{\partial(\ln \Delta T)}{\partial \bar{\zeta}}\right\}\right] \\
& =\frac{\bar{k}}{F_{1} R_{F}} \frac{1}{h_{1} h_{2}}\left[\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \theta}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \theta}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \frac{\partial \theta}{\partial \bar{\zeta}}\right)\right\}\right. \\
& +\theta\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\partial(\ln \Delta T)}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial(\ln \Delta T)}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \frac{\partial(\ln \Delta T)}{\partial \bar{\zeta}}\right)\right\} \tag{226}
\end{align*}
$$

where $R_{s}=\frac{U L}{v_{0}}$, The Reynoids number based on free convection fluid velocity.

$$
\begin{aligned}
& P_{r}=\frac{\mu_{0} C_{p_{0}}}{k_{0}}, \text { The Prandtl number of the fluid. } \\
& F_{r}=\frac{U^{2}}{g L}, \text { The Froude number. }
\end{aligned}
$$

The boundary conditions in dimensionless form are

$$
\begin{gather*}
\bar{u}(\bar{t}, \bar{\xi}, \bar{\eta}, 0)=\bar{v}(\bar{t}, \bar{\xi}, \bar{\eta}, 0)=0  \tag{2.27}\\
\bar{\theta}(\bar{t}, \bar{\xi}, \bar{\eta}, 0)=1  \tag{228}\\
\bar{u}(\bar{t}, \bar{\xi}, \bar{\eta}, \infty)=\bar{v}(\bar{t}, \bar{\xi}, \bar{\eta}, \infty)=0  \tag{2.29}\\
\bar{\theta}(\bar{t}, \bar{\xi}, \bar{\eta}, \infty)=0 \tag{2.30}
\end{gather*}
$$

If $\delta$ be the boundary layer thickness, then the dimensionless boundary layer thickness is

$$
\bar{\delta}=\frac{\delta}{L} \ll 1 \text { since } L \gg 1
$$

Order of the magnitude of each of the terms in equations (2.22 to2.26) are estimated, so that very small tems can be neglected Since,

$$
\begin{gathered}
\frac{\partial \bar{u}}{\partial \bar{t}} \sim 0(\mathrm{I}), \frac{\partial \bar{u}}{\partial \bar{\xi}} \sim 0(\mathrm{I}), \frac{\partial \bar{u}}{\partial \bar{\eta}} \sim 0(\mathrm{I}), \frac{\partial \bar{v}}{\partial \bar{t}} \sim 0(1), \frac{\partial \stackrel{\rightharpoonup}{v}}{\partial \bar{\xi}} \sim 0(1), \frac{\partial \bar{v}}{\partial \bar{\eta}} \sim 0(1) \\
\text { then also } \frac{\partial \bar{w}}{\partial \bar{\zeta}} \sim 0(1), \text { since } \bar{\zeta} \text { is of order } \bar{\delta} \text { so that } w \sim 0(\bar{\delta}) .
\end{gathered}
$$

$$
\begin{aligned}
& \text { and } \frac{\partial^{2} \bar{u}}{\partial \bar{\xi}^{2}} \sim 0(1), \frac{\partial^{2} \stackrel{\rightharpoonup}{v}}{\partial \bar{\xi}^{2}} \sim 0(1), \frac{\partial^{2} \stackrel{u}{u}}{\partial \bar{\eta}^{2}} \sim 0(1), \frac{\partial^{2} \bar{u}}{\partial \bar{\zeta}^{2}} \sim 0\left(\frac{1}{\bar{\delta}^{2}}\right), \frac{\partial^{2} \bar{v}}{\partial \bar{\zeta}^{2}} \sim 0\left(\frac{1}{\bar{\delta}^{2}}\right), \\
& \frac{\partial^{2} \bar{w}}{\partial \zeta^{2}} \sim 0\left(\frac{1}{\bar{\delta}}\right), \frac{\partial w}{\partial \bar{\zeta}} \sim 0(1), \frac{\partial \bar{w}}{\partial \bar{\xi}} \sim 0(\bar{\delta}), \frac{\partial w}{\partial \bar{\eta}} \sim 0(\bar{\delta}), R_{F} \sim 0(1), F_{y} \sim 0(1)
\end{aligned}
$$

Let $\delta_{T}$ be the thermal boundary layer thickness, the conduction term becomes of the same order of magnitude as the convectional term,, only if the thickness of the themal boundary layer is order of

$$
\left(\frac{\delta_{\tau}}{L}\right)^{2} \sim \frac{1}{R_{F} \mu_{r}}
$$

In view the previously obtained estimation for the thickness of the velocity boundary layer

$$
\delta \sim \frac{1}{\sqrt{R_{r}}}, \text { it is found that } \frac{\delta_{T}}{\delta} \sim \frac{1}{\sqrt{F_{r}}}
$$

Assuming that $h_{1}, h_{2}$ and all their first derivatives is of $0(1)$.
Setting the order of magnitude in each terms of equations (2.22-2.26), one obtains,
continuily equation

$$
\begin{equation*}
\frac{\partial}{\partial \bar{\xi}}\left(h_{2} \bar{u}\right)+\frac{\partial}{\partial \bar{\eta}}\left(h_{1} \bar{v}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \bar{w}\right)=0 \tag{1}
\end{equation*}
$$

(0) $\rightarrow$
(1)

## u-momentum equation

$\frac{\partial \bar{u}}{\partial \bar{t}}+\frac{\bar{u}}{h_{1}} \frac{\partial \bar{u}}{\partial \bar{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial \bar{u}}{\partial \bar{\eta}}+\bar{w} \frac{\bar{\partial} \bar{u}}{\partial \bar{\zeta}}+\frac{\overline{u v}}{h_{1} h_{2}} \frac{\partial h_{i}}{\partial \bar{\eta}}+\frac{\bar{w} \bar{u}}{h_{1}} \frac{\partial h_{1}}{\partial \bar{\zeta}}-\frac{\bar{v}^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \bar{\xi}}=-\frac{1}{h_{1}} \beta_{r} \Delta T \theta \frac{\bar{g}_{\bar{\xi}}}{F_{r}}$
$(0) \rightarrow$
(1)
(1)
(1)
(I)
(1)
( $\bar{\delta}$ )
(1)

$$
\begin{align*}
& +\frac{1}{R_{F}} \bar{v}\left[\frac{1}{h_{1} h_{2}}\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \bar{u}}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \bar{u}}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2}\right) \frac{\partial \bar{x}}{\partial \bar{\zeta}}+h_{1} h_{2} \frac{\partial \bar{u}}{\partial \bar{\zeta}^{2}}\right\}\right] \\
& \left(\bar{\delta}^{2}\right) \tag{1}
\end{align*}
$$

## $\mu$-momentum equation

$$
\begin{equation*}
\frac{\partial \bar{v}}{\partial \bar{t}}+\frac{\bar{u}}{h_{1}} \frac{\partial \bar{v}}{\partial \bar{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial \bar{v}}{\partial \bar{\eta}}+\stackrel{\rightharpoonup}{w} \frac{\partial \bar{v}}{\partial \bar{\zeta}}+\frac{\overline{\bar{s}}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \bar{\xi}}+\frac{\stackrel{\rightharpoonup}{v} \bar{w}}{h_{2}} \frac{\partial h_{2}}{\partial \bar{\zeta}}-\frac{\bar{u}^{2}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \bar{\eta}}=-\frac{1}{h_{2}} \beta_{r} \Delta T \theta \frac{\bar{g}_{\bar{u}}}{F_{r}} \tag{1}
\end{equation*}
$$

$(0) \rightarrow \quad(1)$
(1)
(1)
(1)
( $\bar{\delta}$ )
(1)

$$
\begin{align*}
& +\frac{1}{R_{F}} \bar{v}\left[\frac{1}{h_{1} h_{2}}\left\{\frac{\partial}{\partial \bar{\zeta}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \bar{\nu}}{\partial \vec{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \bar{v}}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2}\right) \frac{\partial \bar{v}}{\partial \bar{\zeta}}+h_{1} h_{2} \frac{\partial \bar{v}}{\partial \bar{\zeta}^{2}}\right\}\right] \\
& \left(\bar{\delta}^{2}\right)  \tag{I}\\
& \text { (1) }
\end{align*}
$$

## w-momentull equation

$$
\frac{\partial w}{\partial \bar{t}}+\frac{\bar{u}}{h_{1}} \frac{\partial w}{\partial \bar{\xi}}+\frac{\vec{v}}{h_{2}} \frac{\partial w}{\partial \bar{\eta}}+\bar{w} \frac{\partial \bar{w}}{\partial \bar{\zeta}}-\frac{\bar{u}^{2}}{h_{1}} \frac{\partial h_{1}}{\partial \bar{\zeta}}-\frac{\bar{v}^{2}}{h_{2}} \frac{\partial h_{2}}{\partial \bar{\zeta}}-=-\frac{1}{\bar{\rho}} \frac{\bar{W}}{\partial \bar{\zeta}}
$$

(0) $\rightarrow$
$(\bar{\delta})$
$(\bar{\delta})$
( $\bar{\delta})$
( $\bar{\delta}$ )
(1)
(1) $\frac{1}{(\bar{\delta})}$

$$
\begin{aligned}
& +\frac{1}{R_{F}} \bar{v}\left[\frac{1}{h_{1} h_{2}}\left\{\frac{\partial}{\partial \bar{\xi}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \bar{w}}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial w}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2}\right) \frac{\partial \bar{w}}{\partial \bar{\zeta}}+\left(h_{h} h_{2}\right) \frac{\partial^{2} \bar{w}}{\partial \bar{\zeta}^{2}}\right\}\right] \\
& \left(\vec{\delta}^{2}\right) \\
& (\bar{\delta})
\end{aligned}(\bar{\delta}) \quad \text { (1) } \frac{1}{(\bar{\delta})} .
$$

and energy equation
$\bar{\rho} \bar{C}_{p}\left[\left\{\frac{\partial \theta}{\bar{\partial} \bar{T}}+\frac{\bar{u}}{h_{1}} \frac{\partial \theta}{\partial \bar{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial \theta}{\partial \bar{\eta}}+\bar{w} \frac{\partial \theta}{\partial \bar{\zeta}}\right\}+\theta\left\{\frac{\partial(\ln \Delta T)}{\partial \bar{T}}+\frac{\bar{u}}{h_{1}} \frac{\partial(\ln \Delta T)}{\partial \bar{\xi}}+\frac{\bar{v}}{h_{2}} \frac{\partial(\ln \Delta T)}{\partial \bar{\eta}}+\bar{w} \frac{\partial(\ln \Delta T)}{\partial \bar{\zeta}}\right\}\right]$
$(0) \rightarrow$ (1) (1)
(1)
(1)
(1)
(1) (I)
(1)
(0)

$$
\begin{align*}
& =\frac{\bar{k}}{P_{r} R_{r}} \frac{1}{h_{1} h_{2}}\left[\left\{\frac{\partial}{\partial \bar{\zeta}}\left(\frac{h_{2}}{h_{1}} \frac{\partial \theta}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial \theta}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2}\right) \frac{\partial \theta}{\partial \bar{\zeta}}+h_{1} h_{2} \frac{\partial^{2} \theta}{\partial \bar{\zeta}^{2}}\right\}\right. \\
& \left(\bar{\delta}_{r}^{2}\right) \quad(1) \quad \frac{1}{(\bar{\delta})}  \tag{1}\\
& \left.+\theta\left\{\frac{\partial}{\partial \bar{\zeta}}\left(\frac{h_{2}}{h_{1}} \frac{\partial(\ln \Delta T)}{\partial \bar{\xi}}\right)+\frac{\partial}{\partial \bar{\eta}}\left(\frac{h_{1}}{h_{2}} \frac{\partial(\ln \Delta T)}{\partial \bar{\eta}}\right)+\frac{\partial}{\partial \bar{\zeta}}\left(h_{1} h_{2} \frac{\partial(\ln \Delta T)}{\partial \bar{\zeta}}\right)\right\}\right]
\end{align*}
$$

## Governing equations

The governing boundary layer equations of the flow field in general orthogonal curvilinear co-ordinates are continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(h_{2} u\right)+\frac{\partial}{\partial \eta}\left(h_{1} u\right)+\frac{\partial}{\partial \zeta}\left(h_{1} h_{2} w\right)=0 \tag{2.31}
\end{equation*}
$$

$u$-momentum equation

$$
\begin{equation*}
\frac{D u}{D t}+\frac{u v}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial \eta}-\frac{v^{2}}{h_{1} h_{2}} \frac{\partial h_{2}}{\partial \xi}=-\frac{1}{h_{1}} \rho_{T} \Delta T \theta g_{\xi}+v \frac{\partial^{2} u}{\partial \zeta^{2}} \tag{2.32}
\end{equation*}
$$

## $\nu$-momentum equation

$$
\begin{equation*}
\frac{D v}{D t}+\frac{u^{v}}{h_{1} h_{2}}-\frac{\partial h_{2}}{\partial \xi}-\frac{u^{2}}{h_{1} h_{2}}-\frac{\partial h_{1}}{\partial \eta}=-\frac{1}{h_{2}} \beta_{T} \Delta T \theta g_{y}+v \frac{\partial^{2} v}{\partial \zeta^{2}} \tag{2.33}
\end{equation*}
$$

and energy equation

$$
\begin{equation*}
\frac{D \theta}{D t}+\theta\left\{\frac{\partial}{\partial t}(\ln \Delta T)+\frac{u}{h_{1}} \frac{\partial}{\partial \xi}(\ln \Delta T)+\frac{v}{h_{2}} \frac{\partial}{\partial \eta}(\ln \Delta T)\right\}=\frac{v}{\operatorname{Pr}} \frac{\partial^{2} \theta}{\partial \zeta^{2}} \tag{2.34}
\end{equation*}
$$

where $\operatorname{Pr}=\frac{\mu C_{p}}{k}$ is the Prandtl number of the fluid.

The boundary conditions are

$$
\begin{gather*}
u(t, \xi, \eta, 0)=v(t, \xi, \eta, 0)=0  \tag{2.35}\\
\theta(t, \xi, \eta, 0)=1  \tag{2.36}\\
u(t, \xi, \eta, \infty)=v(t, \xi, \eta, \infty)=0  \tag{2.37}\\
\theta(t, \xi, \eta, \infty)=0 \tag{2.38}
\end{gather*}
$$

## Chapter-3

## Transformations leading to Similarity solution

Equations (2.31-2.34) are non-linear, simultaneous partial differential equations and the solutions of these equations are extremely difficult to obtain. Hence our aim is to reduce equations ( $2.31-2.34$ ) to ordmary differential equations with the help of (2.31) which pernits possible variations in $\Delta T, U_{F}, V_{F}, h_{1}$ and $h_{2}$ with respect to $t, \xi$, and $\eta$. Let us now change the variables $t, \xi, \eta$, and $\zeta$ to a new set of variables $\tau, X, Y$ and $\bar{\phi}$.

$$
(t, \xi, \eta, \zeta) \rightarrow(\tau, X, Y, \bar{\phi})
$$

by the set of following equations,

$$
\begin{equation*}
t=\tau, \xi=X, \eta=Y, a n d \bar{\phi}=\frac{\zeta}{\gamma(\tau, X, Y)} \tag{3.1}
\end{equation*}
$$

$\gamma(\tau, X, Y)$ is considered primarily here to be proportional to the square root of the local beundary layer thickness.

$$
\begin{align*}
& \frac{\partial}{\partial t}=\frac{\partial}{\partial \tau}-\frac{\bar{\phi}}{\gamma} \gamma_{\tau} \frac{\partial}{\partial \bar{\phi}}  \tag{3.2}\\
& \frac{\partial}{\partial \xi}=\frac{\partial}{\partial X}-\frac{\bar{\phi}}{\gamma} \gamma_{X} \frac{\partial}{\partial \bar{\phi}}  \tag{3.3}\\
& \frac{\partial}{\partial \eta}=\frac{\partial}{\partial Y}-\frac{\bar{\phi}}{\gamma} \gamma_{Y} \frac{\partial}{\partial \bar{\phi}}  \tag{3.4}\\
& \frac{\partial}{\partial \zeta}=\frac{1}{\gamma} \frac{\partial}{\partial \bar{\phi}}  \tag{3.5}\\
& \frac{\partial^{2}}{\partial \zeta^{2}}=\frac{1}{\gamma^{2}} \frac{\partial^{2}}{\partial \bar{\phi}^{2}} \tag{3.6}
\end{align*}
$$

Let two stream functions $\psi$ and $\Phi$ be defined as the mass flow components within the boundary layer for the case of incompressible flow.

The following equalions can be written

$$
\begin{align*}
& \psi_{\zeta}=h_{2} u, \Phi_{\zeta}=h_{1} v  \tag{3.7}\\
& -\left(\psi_{\zeta}+\Phi_{\eta}\right)=h_{1} h_{2} w \tag{3.8}
\end{align*}
$$

to satisfy the equation of continuity (2.31). Guided by the idea of similarity procedure of Hansen and Ohio (1958) are allowed to write
$\int_{0}^{\bar{\phi}} \frac{u}{U_{i}(t, X, Y)} d \bar{\phi}=F^{\prime}(\tau, X, Y, \bar{\phi}) \quad$ where $U_{F}^{2}=-g_{X} \beta \Delta T L_{1}$
$\int_{0}^{\overline{V_{f}}(\tau, X, Y)} \frac{v}{V_{\phi}=S(\tau, X, Y, \bar{\phi}) \quad \text { where } V_{F}^{2}=-g_{Y} \beta \Delta T L_{2}, ~}$
where $L_{1}$ and $L_{2}$ are primarily considered to be some characteristic lengths.
Let us assume that the separation of variables are

$$
\left.\begin{array}{l}
F(\tau, X, Y, \bar{\phi})=L(\tau, X, Y) \bar{F}(\bar{\phi}) \\
\mathcal{S}(\tau, X, Y, \bar{\phi})=M(\tau, X, Y) \bar{S}(\bar{\phi})  \tag{3.11}\\
O(\tau, X, Y, \bar{\phi})=N(\tau, X, Y) \bar{O}(\bar{\phi})
\end{array}\right\}
$$

where $\bar{F}, \bar{S}$ and $\bar{\theta}$ are the functions of single variable $\bar{\phi}$. From (3.9-3.10) and (3.11), it is found that

$$
\left.\begin{array}{rl}
u & =U_{H} L \bar{F}_{\bar{p}}  \tag{3.12}\\
\text { and } v & =V_{H} M \vec{S}_{\phi}^{\prime}
\end{array}\right\}
$$

Again from (3.7), we have

$$
\begin{align*}
& \int_{0}^{\bar{\phi}} \frac{u}{U_{i}} d \bar{\phi}=\frac{1}{h_{2} \not U_{t=}}\{\psi(\tau, X, Y, \bar{\phi})-\psi(\tau, X, Y, 0)\}  \tag{3.13}\\
& \therefore \psi(\tau, X, Y, \bar{\phi})=h_{2} \gamma U_{t} L \bar{F}(\bar{\phi})+\psi(\tau, X, Y, 0) \tag{3.14}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\Phi(\tau, X, Y, \bar{\phi})=h_{1} \gamma V_{F} M \bar{S}(\bar{\phi})+\Phi(\tau, X, Y, 0) \tag{3.15}
\end{equation*}
$$

and

$$
\begin{align*}
h_{1} h_{2} w= & -\left(h_{2} \gamma U_{F} L\right)_{X} \bar{F}+\vec{\phi} \gamma_{X} h_{2} U_{F} L \vec{F}_{\bar{\phi}}-\left(h_{1} \gamma V_{F} M\right)_{Y} \bar{S} \\
& +\vec{\phi}_{\gamma} h_{Y} V_{F} M \vec{S}_{\ddot{\phi}}+h_{1} h_{2} w_{0}(\tau, X, Y, 0) \tag{3.16}
\end{align*}
$$

where $\quad w_{0}(\tau, X, Y, 0)=-\frac{1}{h_{1} h_{2}}\left\{\psi_{X}(\tau, X, Y, 0)+\Phi_{Y}(\tau, X, Y, 0)\right\}$
is the suction / injection velocity nonmel to the surface.
The convective operator

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\frac{1}{h_{1} h_{2}}\left[h_{2} u \frac{\partial}{\partial \xi}+h_{1} v \frac{\partial}{\partial \eta}+h_{1} h_{2} w \frac{\partial}{\partial \zeta}\right]
$$

in terms of new set of varinbles $\tau, X, Y$ and $\bar{\phi}$ may be derived as

$$
\begin{align*}
& \frac{D}{D t}=\frac{\partial}{\partial \tau}+\frac{1}{h_{1}} U_{t} L \bar{F} \bar{\phi} \frac{\partial}{\partial X}+\frac{1}{h_{2}} V_{t} M \bar{S}_{\bar{F}}-\frac{\partial}{\partial Y}- \\
& \frac{1}{\gamma}\left\{\frac{\left(h_{2} \not U_{H} L\right)_{X} \bar{F}}{h_{1} h_{2}}+\frac{\left(h_{1} W_{H} M\right)_{r} \bar{s}}{h_{1} h_{2}}-w_{0}+\bar{\phi} \gamma_{H}\right\} \frac{\partial}{\partial \phi} \tag{3.17}
\end{align*}
$$

[By using equations (3.2-3.5)].
In view of equation (3.17), equations (2.32), (2.33) and (2.34) become
u-momentuili cquation

$$
\begin{align*}
& v \bar{F}_{\bar{\phi} \phi \bar{\psi}}+\frac{\gamma\left(h_{2} H_{F} L\right)_{X}}{h_{1} h_{2}} \overline{F F}_{\bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{\gamma} \gamma_{F} M\right)_{Y}}{h_{1} h_{2}} \overline{S F} \bar{\phi} \bar{\phi}-\left(w_{0} \gamma-\bar{\phi}_{\gamma} \gamma_{q}\right) \bar{F}_{\bar{\phi} \bar{\phi}} \\
& -\frac{\gamma^{2}}{h_{1}}\left(U_{F} L\right)_{X} \bar{F}_{\phi}^{2}-\frac{\gamma^{2}}{h_{2}} V_{F} M\left\{\frac{\left(U_{F} L\right)_{Y}}{U_{\mu} L}+\frac{h_{1 Y}}{h_{1}}\right\} \bar{F} \bar{\phi}_{\bar{S}}^{\bar{\phi}}+\frac{\gamma^{2}}{h_{1} h_{2}} \frac{\left(V_{Y}\right)^{2} M^{2}}{U_{F} L} h_{2 X} \bar{S}_{\bar{\psi}}^{2} \\
& -\frac{\gamma^{2}\left(U_{F} L\right)_{t}}{U_{F} L} \bar{F} \bar{\xi}-\frac{\gamma^{2}}{U_{F} L} \frac{1}{h_{1}} \rho_{T} \Delta T N \bar{\theta} g_{X}=0 \tag{3.18}
\end{align*}
$$

$v$-momenturn cquation

$$
\begin{gather*}
v \bar{S}_{\bar{\phi} \bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{1} \gamma_{F} M\right)_{Y}}{h_{h} h_{2}} \overline{S S}_{\bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{2} U_{F} L\right)_{X}}{h_{1} h_{2}} \bar{F}_{\bar{\phi} \bar{\phi}}-\left(w_{0} \gamma-\bar{\phi} \gamma_{+}\right) \bar{S}_{\bar{\phi} \bar{\psi}} \\
-\frac{\gamma^{2}}{h_{2}}\left(V_{F} M\right)_{Y} \vec{S}_{\phi}^{2}-\frac{\gamma^{2} U_{F} L}{h_{1}}\left\{\frac{\left(V_{+} M\right)_{X}}{V_{F} M}+\frac{h_{2 X}}{h_{2}}\right\} \bar{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}+\frac{\gamma^{2}}{h_{1} h_{2}} \frac{\left(U_{F} L\right)^{2} M^{2}}{V_{F} M} h_{I Y} \bar{F}_{\bar{\phi}}^{2} \\
-\frac{\gamma^{2}\left(V_{F} M\right)_{\mp}}{V_{F} M} \bar{S}_{\bar{\phi}}-\frac{\gamma^{2}}{V_{F} M} \frac{1}{h_{2}} \rho_{T} \Delta T N \overrightarrow{0}_{g_{Y}}=0 \tag{3.19}
\end{gather*}
$$

and enerpy cquation

$$
\begin{gather*}
\frac{v}{\operatorname{Pr}} \bar{\theta}_{\bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{2} \gamma U_{F} L\right)_{X}}{h_{h} h_{2}} \bar{F}_{\bar{\phi}}+\frac{\gamma\left(h_{1} \gamma V_{K} M\right)_{Y}}{h_{1} h_{2}} \bar{S} \bar{\theta}_{\bar{\phi}}-\left(w_{0} \gamma-\bar{\phi} \gamma_{t}\right) \bar{\theta}_{\bar{\phi}} \\
-\frac{\gamma^{2} U_{F} L}{h_{1}}\left\{(\ln N)_{X}+(\ln \Delta T)_{X}\right\} \bar{F} \bar{\phi}_{\bar{\phi}}-\frac{\gamma^{2} V_{F} M}{h_{2}}\left\{(\ln N)_{Y}+(\ln \Delta T)_{Y}\right\} \bar{S}_{\bar{\phi}} \bar{\theta} \\
-\gamma^{2}\left\{(\ln N)_{\mathrm{F}}+(\ln \Delta T)_{\mathrm{r}}\right\} \bar{\theta}=0 \tag{3.20}
\end{gather*}
$$

The associated boundury conditions are

$$
\begin{aligned}
& U_{\xi}(\tau, X, Y, 0)=0=\bar{F}_{\bar{\psi}}(0) \\
& V_{F}(\tau . X, Y, 0)=0=\bar{S}_{\bar{\psi}}(0) \\
& \omega(\tau, X, Y, 0)=-w_{0}
\end{aligned}
$$

where $w_{0}$ is considered to be the surface suction or injection velocity for the curvilinear surface. For the temperature function the boundary condition becomes

$$
\begin{gathered}
\theta(\tau, X, Y, 0)=N(\tau, X, Y) \bar{\theta}(0)=1 \\
\Rightarrow N(\tau, X, Y)=1 \text { and } \bar{\theta}(0)=1
\end{gathered}
$$

In order to salisfy the boundary conditions (2.35) and (2.37) without loss of generality we may put $L=M=1$.
The boundary conditions al large distance satisfy

$$
\begin{aligned}
& \quad \begin{array}{l}
U_{F} L \bar{F}_{\phi}(\infty)=0 \Rightarrow \bar{F} \bar{\phi}(\infty)=0 \\
V_{F} M \bar{S}_{\phi}(\infty)=0 \Rightarrow \bar{S}_{\phi}(\infty)=0 \\
\text { and } \bar{\theta}(\infty)=0
\end{array}
\end{aligned}
$$

Then the two momentum equations (3.18) and (3.19) and the energy equation (3.20) take the following forms.

## $\boldsymbol{\mu}$-momentum equation

$$
\begin{align*}
& -\frac{\gamma^{2}}{h_{1}}\left(U_{F}\right)_{X} \bar{F}_{\dot{\phi}}^{2}-\frac{\gamma^{2}}{h_{2}} V_{F}\left\{\frac{\left(U_{F}\right)_{Y}}{U_{F}}+\frac{h_{\mathrm{Y} Y}}{h_{1}}\right\} \vec{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}+\frac{\gamma^{2}}{h_{1} h_{2}} \frac{V_{F}^{2}}{U_{F}} h_{2 X} \bar{S}_{\phi}^{2} \\
& -\frac{\gamma^{2}\left(U_{F}\right)_{r}}{U_{F}} \stackrel{F}{F}^{\circ}-\frac{\gamma^{2}}{U_{F}} \frac{1}{h_{1}} \rho_{F} \Delta \operatorname{T\theta g} g_{x}=0 \tag{3.21}
\end{align*}
$$

## -momentum eqnation

$$
\begin{gather*}
v \bar{S}_{\bar{\phi} \bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{1} \gamma V_{F}\right)_{Y}}{h_{1} h_{2}} \overline{S S}_{\bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{2} \gamma U_{F}\right)_{X}}{h_{1} h_{2}} \bar{F} \bar{S}_{\bar{\phi} \bar{\psi}}-\left(w_{0} \gamma-\bar{\phi} \gamma \gamma_{\tau}\right) \bar{S}_{\bar{\phi} \bar{\phi}} \\
-\frac{\gamma^{2}}{h_{2}}\left(V_{F}\right)_{\gamma} \bar{S}_{\bar{\phi}}^{2}-\frac{\gamma^{2} U_{F}}{h_{1}}\left\{\frac{\left(V_{F}\right)_{X}}{V_{F}}+\frac{h_{2 X}}{h_{2}}\right\} \bar{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}+\frac{\gamma^{2}}{h_{1} h_{2}} \frac{\left(U_{F}\right)^{2}}{V_{F}} h_{1 Y} \bar{F}_{\bar{\phi}}^{2} \\
-\frac{\gamma^{2}\left(V_{F}\right)_{F}}{V_{F}} \bar{S}_{\bar{\phi}}-\frac{\gamma^{2}}{V_{F} h_{2}} \beta_{T} \Delta T \bar{\theta}_{g_{Y}=0} \tag{3.22}
\end{gather*}
$$

and energy equation

$$
\begin{align*}
& \frac{v}{\operatorname{Pr}} \bar{\theta}_{\bar{\phi} \bar{\phi}}+\frac{\gamma\left(h_{2} U_{F}\right)_{x}}{h_{1} h_{2}} \bar{F} \theta_{\bar{\phi}}+\frac{\gamma\left(h_{l} \gamma V_{F}\right)_{Y}}{h_{1} h_{2}} \bar{S}_{\bar{\theta}}^{\bar{\phi}}-\left(w_{0} \gamma-\bar{\phi}_{\gamma} \gamma_{\tau}\right) \bar{\theta}_{\bar{\phi}} \\
& -\frac{\gamma^{2} U_{F}}{h_{1}}(\ln \Delta T)_{x} \bar{F}_{\bar{\phi}} \bar{\theta}-\frac{V_{\gamma} \gamma^{2}}{h_{2}}(\ln \Delta T)_{\gamma} \bar{S}_{\bar{\phi}} \bar{\theta}-\gamma^{2}(\ln \Delta T)_{\tau} \bar{\theta}=0 \tag{3.23}
\end{align*}
$$

The boundary conditions are

$$
\left.\begin{array}{l}
\bar{F} \bar{\phi}(0)=\bar{S} \bar{\phi}(0)=0 \\
\bar{F} \bar{\phi}(\infty)=\bar{S} \bar{\phi}(\infty)=0  \tag{3.24}\\
\bar{O}(0)=1, \theta(\infty)=0
\end{array}\right\}
$$

The coeflicients of $\overline{F F} \bar{\phi} \bar{\phi}$ and $\overline{S S}$ 酗 in (3.21) and (3.22) may be expressed as

$$
\frac{\gamma\left(\gamma h_{2} U_{F}\right)_{X}}{h_{1} h_{2}}=\frac{1}{2}\left[\left(\frac{\gamma^{2} U_{F}}{h_{1}}\right)_{X}+\frac{\gamma^{2}\left(h_{2} U_{F}\right)_{X}}{h_{1} h_{2}}-\gamma^{2} U_{F} h_{2}\left(\frac{1}{h_{1} h_{2}}\right)_{X}\right]
$$

and $\quad \frac{\gamma\left(h_{1} V_{Y}\right)_{X}}{h_{1} h_{2}}=\frac{1}{2}\left[\left(\frac{\gamma^{2} V_{F}}{h_{2}}\right)_{Y}+\frac{\gamma^{2}\left(h_{1} V_{Y}\right)_{Y}}{h_{1} h_{2}}-\gamma^{2} V_{F} h_{1}\left(\frac{1}{h_{1} h_{2}}\right)_{Y}\right]$
Thus momenturn and energy equations become

$$
\begin{align*}
& v \bar{F} \bar{\phi} \bar{\phi}+ \frac{1}{2}\left(a_{9}+a_{1}-a_{2}\right) \overline{F F} \overline{\phi \phi}+\frac{1}{2}\left(a_{3}+a_{4}-a_{5}\right) \overline{S F}_{\bar{\phi} \bar{\phi}}-\left(a_{6}-\bar{\phi}_{7}\right) \bar{F} \overline{\phi \psi} \\
&-a_{8} \bar{F}_{\phi}^{2}-\left(a_{9}+a_{10}\right) \bar{F} \bar{S}_{\bar{\phi}}^{-}+a_{11} \bar{S}_{\bar{\phi}}^{2}-a_{12} \bar{F} \bar{\phi}+a_{13} \bar{\theta}=0  \tag{3.25}\\
& v \bar{S}_{\bar{\phi} \bar{\phi} \bar{\phi}}+\frac{1}{2}\left(a_{3}+a_{4}-a_{5}\right) \overline{S S}_{\bar{\phi} \bar{\phi}}+\frac{1}{2}\left(a_{0}+a_{1}-a_{2}\right) \bar{S}_{\bar{\phi} \bar{\phi}} \bar{F}-\left(a_{6}-\bar{\phi} a_{7}\right) \bar{S}_{\bar{\phi} \bar{\phi}} \\
&-a_{14} \bar{S}_{\bar{\phi}}^{2}-\left(a_{15}+a_{16}\right) \bar{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}+a_{17} \bar{F}_{\phi}^{2}-a_{18} \bar{S}_{\bar{\phi}}^{-}+a_{19} \bar{\theta}=0 \tag{3.26}
\end{align*}
$$

and

$$
\begin{gather*}
\frac{v}{\operatorname{Pr}} \bar{\theta}_{\bar{\phi} \bar{\phi}}+\frac{1}{2}\left(a_{0}+a_{1}-a_{2}\right) \overline{F \theta}_{\bar{\phi}}+\frac{1}{2}\left(a_{3}+a_{4}-a_{5}\right) \overline{S \theta} \bar{\phi}- \\
\quad-\left(a_{6}-\bar{\phi}_{7}\right) \bar{\theta}_{\bar{\phi}}-\left(a_{20} \bar{F}_{\bar{\phi}}+a_{27} \bar{S}_{\bar{\phi}}\right) \theta-a_{22} \bar{\theta}=0 \tag{3.27}
\end{gather*}
$$

where the constant a's and the differential equation involving the independent variable $\tau$, $X$, and $Y$ are given by the following differential equations:

$$
\begin{align*}
& \left(\frac{\gamma^{2} U_{F}}{h_{1}}\right)_{X}=a_{0}, \quad \frac{\gamma^{2}\left(h_{2} U_{F}\right)_{X}}{h_{1} h_{2}}=a_{1}  \tag{3.28a,b}\\
& \gamma^{2} U_{F} h_{2}\left(\frac{1}{h_{1} h_{2}}\right)_{X}=a_{2}, \quad\left(\frac{\gamma^{2} V_{E}}{h_{2}}\right)_{Y}=a_{3}  \tag{3.29a,b}\\
& \frac{\gamma^{2}\left(h_{1} V_{F}\right)_{Y}}{h_{1} h_{2}}=a_{4}, \quad \quad \gamma^{2} V_{H} h_{1}\left(\frac{1}{h_{1} h_{2}}\right)_{Y}=a_{5}  \tag{3.30a,b}\\
& \boldsymbol{\gamma}_{\mathrm{F}}=a_{7}  \tag{3.31a,b}\\
& \frac{\gamma^{2}}{h_{1}}\left(U_{H}\right)_{X}=a_{8}, \quad \frac{\gamma^{2}}{h_{2}} V_{\mu}\left\{\frac{\left(U_{r}\right)_{Y}}{U_{F}}\right\}=a_{9}  \tag{3.32a,b}\\
& \frac{\gamma^{2}}{h_{2}} V_{F} \frac{h_{1 Y}}{h_{1}}=a_{10}, \quad \frac{\gamma^{2}}{h_{1} h_{2}} \frac{\left(V_{F}\right)^{2}}{U_{F}} h_{2 X}=a_{11}  \tag{3.33a,b}\\
& \frac{\gamma^{2}\left(U_{F}\right)_{\tau}}{U_{F}}=a_{12}, \quad \frac{\gamma^{2}}{h_{1} U_{F}} \beta_{T} \Delta T g_{X}=a_{13}  \tag{3.34a,b}\\
& \frac{\gamma^{2}}{h_{2}}\left(V_{F}\right)_{Y}=a_{14}, \quad \frac{\gamma^{2} U_{F}}{h_{1}} \frac{\left(V_{F}\right)_{X}}{V_{F}}=a_{15}  \tag{3.35a,b}\\
& \frac{\gamma^{2} U_{F}}{h_{1}} \frac{h_{2 X}}{h_{2}}=a_{16}, \quad \frac{\gamma^{2}}{h_{1} h_{2}} \frac{\left(U_{F}\right)^{2}}{V_{F}} h_{1 Y}=a_{17}  \tag{3.36a,b}\\
& \frac{\gamma^{2}\left(V_{F}\right)_{\mathrm{r}}}{V_{H}}=a_{18}, \quad \frac{\gamma^{2}}{h_{2} V_{F}} \beta_{T} \Delta T g_{Y}=a_{19}  \tag{3.37a,b}\\
& \frac{\gamma^{2} U_{F}}{h_{1}}(\ln \Delta T)_{X}=a_{20}, \quad \frac{\gamma^{2} V_{\rho}}{h_{2}}(\ln \Delta T)_{\gamma}=a_{21}  \tag{3.38a,b}\\
& \gamma^{2}(\ln \Delta T)_{\tau}=a_{22} \tag{3.39}
\end{align*}
$$

Sirrilar solutions for (3.25), (3.26) and (3.27) exist only when all the a's are finite and independent of $\tau, X$ and $Y$ that is to say that all a's must be constants. Thus the boundary layer momentum equations and the energy cquation will become non-ifiear ordinary differentibl equations. If $\Delta T(\tau, X, Y), h_{1}(\tau, X, Y), h_{2}(t, X, Y)$, $U_{s}(\tau, X, Y), V_{i}(\tau, X, Y)$ and $\gamma(\tau, X, Y)$ satisfy the cqualions (3.28-3.39).
To find $\Delta T(\tau, X, Y), h_{1}(\tau, X, Y), h_{2}(\tau, X, Y), U_{F}(\tau, X, Y), V_{F}(\tau, X, Y)$ and $\gamma(\tau, X, Y)$ in different situations.
We first ignore the suction or injection effects i.c. $a_{6}=0$.
From the cxpression for a's, we have
similarly,

$$
\begin{equation*}
a_{1}+a_{2}=\gamma^{2}\left(\frac{U_{F}}{h_{1}}\right)_{x} \tag{3.40}
\end{equation*}
$$

From (3.28a), we have $\quad a_{0}=\left(\frac{\gamma^{2} U_{F}}{h_{1}}\right)_{X}$

$$
\begin{equation*}
\Rightarrow 2 \gamma_{X}=\frac{h_{1}}{U_{F}}\left(a_{0}-a_{1}-a_{2}\right) \tag{3.42}
\end{equation*}
$$

Again from (3.29b), we have $\quad a_{3}=\left(\frac{\gamma^{2} V_{F}}{h_{2}}\right)_{Y}$

$$
\begin{equation*}
=2 \gamma \gamma_{Y}=\frac{h_{2}}{V_{F}}\left(a_{3}-a_{4}-a_{5}\right) \tag{3.43}
\end{equation*}
$$

By virluc of equation (3.28a), we get

$$
\begin{equation*}
\frac{\gamma^{2} U_{r}}{h_{1}}=a_{0} X+A(Y, \tau) \tag{3.44}
\end{equation*}
$$

where $A(Y, \tau)$ is either constant or function of $Y$ and $\tau$. Differentiating (3.44) with respect to $Y$ and in view of similarity requivements, One obtains

$$
\begin{equation*}
\frac{\partial A(Y, r)}{\partial Y}=\frac{h_{2}}{h_{1}} \frac{U_{F}}{V_{F}}\left(a_{3}-a_{4}-a_{5}+a_{9}-a_{10}\right) \tag{3.45}
\end{equation*}
$$

Again, differentinting (3.44) with respect to $t$

$$
\begin{gather*}
\frac{\partial A(Y, \tau)}{\partial \tau}=\frac{U_{F}}{h_{1}}\left(a_{12}+2 a_{7}-a_{23}\right) \text { [using constant a's] }  \tag{3.46}\\
a_{23}=\frac{\gamma^{2}}{h_{1}} h_{1 r} \tag{3.47}
\end{gather*}
$$

where

Similarly, in view of equation (3.29b), we get

$$
\begin{equation*}
\frac{\gamma^{2} V_{F}}{h_{2}}=a_{3} Y+B(\tau, X) \tag{3.48}
\end{equation*}
$$

where $B$ is eithet constant or function of $\tau$ and $X$. Differcntiating (3.48) with respect to $X$ and $\tau$ respectively and in view similarity requirements. We obtain

$$
\begin{gather*}
\frac{\partial B(\tau, X)}{\partial X}=\left(\frac{\gamma^{2} V_{p}}{h_{2}}\right)_{X} \\
\Rightarrow \frac{\partial B(\tau, X)}{\partial X}=\frac{h_{1} V_{F}}{h_{2} U_{F}}\left(a_{0}-a_{1}-a_{2}-a_{11}+a_{13}\right)  \tag{3.49}\\
\frac{\partial B(\tau, X)}{\partial \tau}=\left(\frac{\gamma^{2} V_{f}}{h_{2}}\right)_{\tau} \\
\Rightarrow \frac{\partial B(\tau, X)}{\partial \tau}=\frac{V_{F}}{h_{2}}\left(2 a_{7}+a_{1 月}-a_{24}\right) \tag{3.50}
\end{gather*}
$$

wherc $\quad a_{24}=\frac{\gamma^{2} h_{2 \tau}}{h_{2}}$
By virtue of (3.31b), we get $a_{7}=\gamma \gamma_{\mathrm{I}}$

$$
\begin{equation*}
\Rightarrow \gamma^{2}=2 a_{7} \tau+C(X, Y) \tag{3.52}
\end{equation*}
$$

where $C$ is either constant or function of $X$ and $Y$. Diferentiating (3.52) with respect to $X$ and $Y$ respectively and in view of sinnilarity requinments. We have

$$
\begin{gather*}
\frac{\partial C(X, Y)}{\partial X}=\left(y^{2}\right)_{X} \\
\Rightarrow \frac{\partial C(X, Y)}{\partial X}=\frac{h_{1}}{U_{F}}\left(a_{0}-a_{1}-a_{2}\right) \tag{3.53}
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\partial C(X, Y)}{\partial Y}=\left(\gamma^{2}\right)_{Y} \\
\Rightarrow \frac{\partial C(X, Y)}{\partial Y}=\frac{h_{2}}{V_{F}}\left(a_{3}-a_{4}-a_{5}\right) \tag{3.54}
\end{gather*}
$$

Taking the product of (3.45), (3.46), (3.49), (3.50), (3.53) and (3.54), we get

$$
\begin{gather*}
\frac{\partial D(\tau, X)}{\partial \tau} \frac{\partial B(\tau, X)}{\partial X} \frac{\partial C(X, Y)}{\partial X} \frac{\partial C(X, Y)}{\partial Y} \frac{\partial A(Y, \tau)}{\partial Y} \frac{\partial A(Y, \tau)}{\partial \tau} \\
=\left(2 a_{7}+a_{13}-a_{24}\right)\left(a_{0}-a_{1}-a_{2}-a_{11}+a_{15}\right)\left(a_{0}-a_{1}-a_{2}\right)\left(a_{3}-a_{4}-a_{5}\right) \\
\left(a_{5}-a_{4}-a_{5}+a_{9}-a_{14}\right)\left(2 a_{7}+a_{12}-a_{23}\right) \tag{3.55}
\end{gather*}
$$

The form of similarity solution, the scale factors $\Delta T\left(\tau_{1} X . Y\right), h_{1}(\tau, X, Y), h_{2}(\tau, X, Y)$, $U_{\mu}(\tau, X, Y), V_{P}(\tau, X, Y)$ and $\gamma(\tau, X, Y)$ depend wholly on the equation (3.55). This situation leads to the following possibilities:
Case-1: $\quad \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X} \neq 0 \frac{\partial C(X, Y)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial Y} \neq 0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y} \neq 0, \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0
$$

Case-2: $\quad \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial Y}=0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0
$$

Case-3: $\quad \frac{\partial B(\tau, X)}{\partial \tau}=0, \frac{\partial B(\tau, X)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial Y}=0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial A(Y, \tau)}{\partial \tau}=0
$$

Case-4: $\quad \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial Y} \neq 0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y} \neq 0, \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0
$$

Casc-5: $\quad \frac{\partial B(\tau, X)}{\partial \tau}=0 . \frac{\partial B(\tau, X)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial Y} \neq 0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y} \neq 0, \frac{\partial A(Y, \tau)}{\partial \tau}=0
$$

Case-6: $\quad \frac{\partial B(\tau, X)}{\partial \tau}=0, \frac{\partial B(\tau, X)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial Y} \neq 0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y} \neq 0, \frac{\partial A(Y, \tau)}{\partial \tau}=0
$$

Case-7: $\quad \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial Y}=0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0
$$

Case-8: $\quad \frac{\partial B(\tau, X)}{\partial \tau}=0, \frac{\partial B(\tau, X)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial Y}=0$,

$$
\frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial A(Y, \tau)}{\partial \tau}=0
$$

## Chapter-4

## Study of some possible similarity cases

Casc-1: $\frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X} \neq 0 \frac{\partial C(X, Y)}{\partial X} \neq 0, \frac{\partial C(X, Y)}{\partial Y} \neq 0$,

$$
\begin{gather*}
\frac{\partial A(Y, \tau)}{\partial Y} \neq 0, \frac{\partial A(Y, \tau)}{\partial t} \neq 0 \\
\text { Let } h_{1}=h_{2} \\
\text { Let, } \frac{\partial A(Y, \tau)}{\partial Y}=\text { constanl } \\
\therefore \frac{\partial A(Y, \tau)}{\partial Y}=\frac{U_{F}}{V_{F}}\left(a_{3}-a_{4}-a_{5}+a_{9}-a_{10}\right) \\
=k_{1} l_{1} \tag{4.1}
\end{gather*}
$$

where $k_{1}=\frac{U_{t}}{V_{s}}, l_{1}=a_{3}-a_{4}-a_{5}+a_{9}-a_{10}$

$$
\begin{gather*}
\frac{\partial B(\tau, X)}{\partial \tau}=\text { constant } \\
\therefore \frac{\partial B(\tau, X)}{\partial \tau}=\frac{V_{t}}{h_{7}}\left(2 a_{7}+a_{18}-a_{24}\right) \\
=k_{2} l_{2} \tag{4.2}
\end{gather*}
$$

where $k_{2}=\frac{V_{F}}{h_{1}}, 1_{7}=2 a_{7}+a_{18}-a_{24}$

$$
\begin{gather*}
\frac{\partial C(X, Y)}{\partial X}=\text { constant } \\
\therefore \frac{\partial C(X, Y)}{\partial X}=\frac{h_{1}}{U_{F}}\left(a_{0}-a_{1}-a_{2}\right) \\
=k_{3} l_{3} \tag{4.3}
\end{gather*}
$$

where $k_{3}=\frac{h_{1}}{U_{F}}$ and $l_{3}=a_{0}-a_{1}-a_{2}$

$$
\begin{gather*}
\frac{\partial C(X, Y)}{\partial X}=\text { constant } \\
\therefore \frac{\partial C(X, Y)}{\partial X}=\frac{h_{4}}{V_{F}}\left(a_{3}-a_{4}-a_{5}\right) \\
=\frac{1}{h_{2}} l_{4} \tag{4.4}
\end{gather*}
$$

wherc $l_{4}=a_{3}-a_{4}-a_{5}$

$$
\begin{gather*}
\frac{\partial A(X, \tau)}{\partial \tau}=\text { constant } \\
\therefore \frac{\partial A(Y, \tau)}{\partial \tau}=\frac{U_{f}}{h_{1}}\left(2 a_{7}+a_{12}-a_{23}\right) \\
=\frac{1}{k_{3}} l_{5} \tag{4.5}
\end{gather*}
$$

where $l_{5}=2 a_{7}+a_{12}-a_{23}$
and

$$
\begin{gather*}
\frac{\partial B(\tau, X)}{\partial X}=\text { constant } \\
\therefore \frac{\partial B(\tau, X)}{\partial X}=\frac{V_{F}}{U_{F}}\left(a_{0}-a_{1}-a_{2}-a_{11}+a_{45}\right) \\
=\frac{1}{k_{1}} l_{6} \tag{4.6}
\end{gather*}
$$

where $I_{6}=a_{6}-a_{1}-a_{2}-a_{11}+a_{15}$
Integrating equations(4.1), (4.2), (4.3), (4.4), (4.5) and (4.6), we get

$$
\left.\begin{array}{l}
A(Y, \tau)=k_{1} l_{1} Y+A_{0}(\tau) \\
B(\tau, X)=k_{2} l_{2} \tau+B_{0}(X) \\
C(X, Y)=k_{3} l_{3} X+C_{0}(Y) \\
C(X, Y)=\frac{l_{4}}{k_{2}} Y+C_{0}(X)  \tag{4.7}\\
A(Y, \tau)=\frac{l_{5}}{k_{3}} \tau+A_{0}(Y) \\
B(\tau, X)=\frac{l_{6}}{k_{1}} X+B_{0}(\tau)
\end{array}\right\}
$$

Taking linear combination of (4.7), we obtain

$$
\left.\begin{array}{l}
A(Y, \tau)=k_{1} l_{1} Y+\frac{l_{5}}{k_{3}} \tau+A_{0}  \tag{4.8}\\
B(\tau, X)=k_{2} l_{2} \tau+\frac{l_{6}}{k_{1}} X+B_{0} \\
C(X, Y)=k_{3} l_{3} X+\frac{l_{4}}{k_{2}} Y+C_{0}
\end{array}\right\}
$$

Again integrating equations (3.28a), (3.29b), (3.31b) and in view of equation (4.8), we get

$$
\begin{align*}
& \frac{\gamma^{2} U_{Y}}{h_{1}}=a_{0} X+k_{1} l_{1} Y+\frac{l_{5}}{k_{3}} \tau+A_{0}  \tag{4,9}\\
& \frac{\gamma^{2} Y_{F}}{h_{1}}=\frac{l_{6}}{k_{1}} X+a_{3} Y+k_{2} l_{2} \tau+B_{0}  \tag{4.10}\\
& \text { and } \gamma^{2}=k_{3} l_{3} X+\frac{l_{4}}{k_{2}} Y+2 a_{7} \tau+C_{0} \tag{4.11}
\end{align*}
$$

From equation (4.9)

$$
\begin{equation*}
\gamma^{2}=a_{0} k_{3} X+k_{1} k_{3} l_{1} Y+l_{5} \tau+A_{0} \tag{4.12}
\end{equation*}
$$

From equation (4.10)

$$
\begin{equation*}
\gamma^{2}=l_{6} \frac{1}{k_{1} k_{2}} X+a_{3} \frac{1}{k_{2}} Y+l_{2} \tau+B_{0} \tag{4.13}
\end{equation*}
$$

From equations (4.11), (4.12) and (4.13), We have to write

$$
\begin{gathered}
a_{11}=l_{3}=l_{6}, a_{3}=l_{4}=l_{1}, 2 a_{7}=l_{5}=l_{2} \\
=a_{1}=-a_{2}, a_{11}=a_{15}, a_{4}=-a_{5}, a_{9}=a_{10}, a_{12}=a_{23}, a_{18}=a_{24}
\end{gathered}
$$

Hence

$$
\begin{equation*}
\gamma^{2}=a_{0} k_{3} X+a_{3} k_{1} k_{3} Y+2 a_{7} \tau+A_{0} \tag{4.14}
\end{equation*}
$$

From equation (4.9), we have

$$
\begin{align*}
\frac{\gamma^{2} U_{F}}{h_{1}} & =\frac{a_{0} k_{3} X+k_{1} k_{3} l_{1} Y+l_{5} \tau+A_{0} k_{3}}{k_{3}} \\
& =\frac{a_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{3} \tau+A_{0} k_{3}}{k_{3}} \tag{4.15}
\end{align*}
$$

By virlue of equation (3.36a), we get $a_{16}=\frac{\gamma^{2} U_{F}}{h_{1}} \frac{h_{1} x}{h_{1}}$, since $h_{1}=h_{2}$

$$
\begin{gathered}
\Rightarrow \frac{h_{3} X}{h_{1}}=\frac{h_{1}}{\gamma^{2} U_{F}} a_{16} \\
=\frac{k_{3} a_{66}}{a_{0} k_{3} X+k_{1} k_{3} a_{3}+2 a_{7} \tau+A_{0} k_{3}} \\
\Rightarrow h_{1}=b_{1}\left(\alpha_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{7} \tau+C_{1}\right)^{\frac{\xi_{30}}{a_{0}}}
\end{gathered}
$$

where $b_{1}$ is constant of integration.

$$
\begin{gather*}
\therefore h_{1}=b_{1}\left(a_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{7} \tau+C_{1}\right)^{\pi} \quad \text { where } \frac{a_{16}}{a_{0}}=m . \\
\therefore h_{2}=h_{1}=b_{1}\left(a_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{7} \tau+C_{1}\right)^{m} \tag{4.16}
\end{gather*}
$$

Now using (4.15) and (4.17) in (4.9), we get

$$
\begin{gather*}
\frac{\gamma^{2} U_{F}}{h_{1}}=a_{0} X+k_{1} a_{3} Y+\frac{2 a_{7}}{k_{3}} \tau+A_{0} \\
\Rightarrow U_{F}=\frac{b_{1}}{k_{7}}\left(a_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{7} \tau+C_{1}\right)^{m} \tag{4.17}
\end{gather*}
$$

Similarly substituting (4.15) and (4.17) in (4.10), we get

$$
\begin{equation*}
V_{F}=b_{1} k_{2}\left(a_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{7} \tau+C_{\mathrm{r}}\right)^{m} \tag{4.18}
\end{equation*}
$$

Substituting, the values of $\gamma^{2}, h_{1}, h_{2}, U_{p}$ and $V_{f}$, we get the values of a's i.e.
$a_{0}, a_{3}$ and $a_{7}$ are arbitrary

$$
\begin{array}{llll}
a_{1}=2 m a_{0} & a_{2}=-2 m a_{0} & a_{4}=2 m a_{3} & a_{5}=-2 m a_{3} \\
a_{6}=0 & a_{8}=m a_{0} & a_{9}=m a_{9} & a_{10}=m a_{3} \\
a_{11}=m \frac{a_{0}}{k_{1}^{2}} & a_{12}=2 m a_{7} & a_{13}=\frac{k_{3}}{b_{1}^{2}}\left(a_{0} k_{3} X+a_{3} k_{1} k_{3} Y+2 a_{7} \tau+C_{1}\right)^{1-2 m} \rho_{1} \Delta T g_{X} \\
a_{14}=m a_{3} & a_{15}=m a_{0} & a_{16}=m a_{0} & a_{19}=m a_{3} k_{1}^{2} \\
a_{18}=2 m a_{7} & a_{19}=\frac{1}{b_{1}^{2} k_{2}}\left(a_{0} k_{3} X+a_{3} k_{1} k_{3} Y+2 a_{7} \tau+C_{7}\right)^{1-2 m} \beta_{7} \Delta T g_{Y} \\
a_{20}=(2 m-1) a_{0} & a_{21}=(2 m-1) a_{3} & a_{22}=2(2 m-1) a_{7}
\end{array}
$$

Hence the transform equations (3.25), (3.26) and (3.27) reduce to

$$
\begin{align*}
& v \bar{F} \overline{\sigma_{\bar{\phi}}}+\left(\frac{4 m+1}{2}\right) a_{0} \bar{F} \bar{F} \overline{\partial \bar{\phi}}+\left(\frac{4 m+1}{2}\right) a_{3} \bar{S} \bar{F} \overline{\bar{\beta} \bar{\beta}}+a_{7} \bar{\phi} \bar{F} \bar{\psi}-m a_{0} \bar{F}_{\bar{\phi}}^{z} \\
& -2 m a_{3} \bar{F}_{\bar{i}} \bar{S}_{\bar{\phi}}+m a_{0} \frac{1}{k_{1}^{2}} \bar{S}_{\bar{\phi}}^{2}-2 m a_{7} \bar{F}_{\bar{\phi}}+a_{1: 3} \bar{\theta}=0  \tag{4.20}\\
& v \bar{S}_{\bar{\phi} \bar{\phi} \bar{\phi}}+\left(\frac{4 m+1}{2}\right) a_{3} \overline{S S}_{\bar{\phi} \bar{\phi}}+\left(\frac{4 m+1}{2}\right) a_{0} \overline{F S}_{\bar{\phi} \bar{\phi}}+a_{7} \overline{\phi S}_{\bar{\phi} \bar{\psi}}-m a_{3} \bar{S}_{\phi}^{2} \\
& -2 m a_{3} \bar{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}+m a_{3} k_{\dot{\psi}}^{7} \bar{F}_{\bar{\phi}}^{2}-2 m a_{7} \bar{S}_{\bar{\phi}}+a_{19} \bar{\theta}=0 \tag{4.21}
\end{align*}
$$

and

$$
\begin{array}{r}
\frac{v}{\operatorname{Pr}} \bar{\partial}_{\bar{\phi} \bar{\phi}}+\left(\frac{4 m+1}{2}\right) a_{0} \overline{F O}_{\bar{\phi}}+\left(\frac{4 m+1}{2}\right) a_{3} \overline{S O}_{\bar{\phi}}+a_{7} \bar{\phi} \theta_{\bar{\phi}}- \\
(2 m-1)\left(a_{0} \bar{F} \bar{\phi}+a_{3} \bar{S} \bar{\phi}\right) \vec{\theta}-2(2 m-1) a_{7} \theta=0 \tag{4.22}
\end{array}
$$

In order to simplify the above type of equation we substitute

$$
\bar{F}=\alpha ; \bar{s}=\alpha s, \bar{\phi}=\alpha \phi, \bar{\theta}=0
$$

Thus the above equation changed to

$$
\begin{align*}
& f_{\phi \phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{0} \alpha^{2}}{v} f_{\phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{3} \alpha^{2}}{v} s f_{\phi}+\frac{a_{7} a^{2}}{v} \phi f_{\phi \phi}-m \frac{a_{0} \alpha^{2}}{v} f_{\phi}^{2} \\
&-2 m \frac{a_{3} \alpha^{2}}{v} f_{\phi} s_{\phi}+m \frac{a_{0} \alpha^{2}}{v} \frac{1}{k_{1}^{2}} s_{\phi}^{2}-2 m \frac{a_{7} \alpha^{2}}{v} f_{\phi}+a_{13} \frac{\alpha^{2}}{v} \theta=0  \tag{4.23}\\
& s_{\phi \psi}+\left(\frac{4 m+1}{2}\right) \frac{a_{3} \alpha^{2}}{v} s s_{\phi \phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{0} \alpha^{2}}{v} f s_{\phi \phi}+\frac{a_{7} \alpha^{2}}{v} \phi s_{\phi}-m \frac{a_{3} \alpha^{2}}{v} s_{\phi}^{2} \\
&-2 m \frac{a_{0} \alpha^{2}}{v} f_{\phi} s_{\phi}+m \frac{a_{3} \alpha^{2}}{v} k_{1}^{2} f_{\phi}^{2}-2 m \frac{a_{7} \alpha^{2}}{v} s_{\phi}+a_{19} \frac{a^{2}}{v} \theta=0  \tag{4.24}\\
& \text { and } \operatorname{Pr}^{-1} \theta_{\phi \phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{0} a^{2}}{v} f \theta_{\phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{3} \alpha^{2}}{v} s \theta_{\phi}+\frac{a_{7} \alpha^{2}}{v} \phi \theta_{\phi} \\
& \quad  \tag{4.25}\\
& \quad-(2 m-1)\left\{\frac{a_{0} \alpha^{2}}{v} f_{\phi}+\frac{a_{3} a^{2}}{v} s_{\phi}\right\} \theta-2(2 m-1) \frac{a_{7} a^{2}}{v} \theta=0
\end{align*}
$$

Choosing $\left(\frac{4 m+1}{2}\right) \frac{a_{0} \alpha^{2}}{v}=1$ and writing $\frac{a_{3}}{a_{0}}=c, \frac{a_{7}}{a_{0}}=d, \frac{2 m}{4 m+1}=\beta$.
Nlso for purely free convection we have to put

$$
\frac{2}{4 m+1} \frac{a_{13}}{a_{0}}=1 \text { and } \frac{2}{4 m+1} \frac{a_{19}}{a_{0}}=R \text { (constant) }
$$

Finally, we get the equations (4.23), (4.24) and (4.25).

$$
\begin{gather*}
f_{\phi \phi}+(f+c s) f_{\phi \phi}+(2-4 \beta) d \phi f_{\phi}-\beta\left\{\left(f_{\phi}+2 c s_{\phi}\right) f_{\phi}\right. \\
\left.+\frac{1}{k_{1}^{2}} s_{\phi}^{2}-2 d f_{\phi}\right\}+\theta=0  \tag{4.26}\\
s_{\phi \phi}+(f+c s) s_{\phi \phi}+(2-4 \beta) d \phi_{\phi \phi}-\beta\left\{\left(2 f_{\phi}+c s_{\phi}\right) s_{\phi}\right. \\
\left.+k_{1}^{2} c f_{\phi}^{2}-2 d s_{\phi}\right\}+R \theta=0 \tag{4.27}
\end{gather*}
$$

and $\operatorname{Pr}^{-1} \theta_{\phi \phi}+(f+c s) \theta_{\phi}+(2-4 \rho) d \phi \theta_{\phi}-(6 \beta-2)\left(f_{\phi}+c s_{\phi}\right) \theta$

$$
\begin{equation*}
-(12 \beta-4) d \theta=0 \tag{4.28}
\end{equation*}
$$

The boundary condition are

$$
\left.\begin{array}{l}
f(0)=f_{\phi}(0)=0, f_{\phi}(\infty)=0  \tag{4.29}\\
s(0)=s_{\phi}(0)=0, s_{\phi}(\infty)=0 \\
\theta(0)=1, \theta(\infty)=0
\end{array}\right\}
$$

If $U_{F}, V_{F}$ and $h_{1}$ be constant then c is proportional to the ratio of the change of local boundary layet thickness with respect to position on the both edges and $d$ is proportional to the ratio of the change of local boundary layer thickness with respect to time and position. If characteristic length with respect to both the edges be same, the parameter $R$ deternine the $\left(\frac{3}{2}\right)$ rd root of the gravilational ratio develops.
For $\beta=1, c=0, d=0, s=f$ and $R=1$, the equations (4.26-4.28) with the boundary conditions coincide with possible similarity solutions for laminar free convection on vertical plates, analysed by Yeng (1960) which was also identical with sirnilar solutions for free convection from a Non-isothermal verical plate discussed hy Sparrow and Grege (1958)

We have, in this case, the similarity requirements are

$$
\begin{aligned}
& h_{1}=b_{1}\left(a_{0} k_{3} X+k_{1} k_{3} a_{3} Y+2 a_{7} \tau+c_{1}\right)^{n} \\
& =b_{1} a_{0}^{m} k_{3}^{m}\left(X+\frac{k_{1} a_{3}}{a_{0}} Y+\frac{2 a_{7}}{a_{0} k_{3}} \tau+\frac{c_{1}}{a_{0} k_{3}}\right)^{m} \\
& =\alpha_{1}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{m} \\
& \therefore h_{1} \propto(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{m} \\
& \text { where } \\
& \bar{x}=X+X_{0} \\
& \bar{y}=Y+Y_{0} \\
& \bar{i}=\tau+x_{0} \\
& \alpha_{1}=b_{1} a_{0}^{m} k_{3}^{m} \\
& \bar{b}=\frac{k_{1} a_{3}}{a_{0}} \\
& \bar{c}=\frac{2 a_{1}}{a_{0} k_{3}}=\frac{2 d}{k_{3}}=2 k_{1} k_{2} d \\
& \frac{c_{1}}{a_{0} k_{3}}=X_{0}+\frac{k_{1} a_{3}}{a_{0}} Y_{0}+\frac{2 a_{7}}{a_{0} k_{3}} \tau_{0} \\
& \therefore U_{F}=\alpha_{2}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{m} \text { where } \alpha_{2}=b_{1} a_{0}^{m} k_{3}^{m-1} \\
& \left.U_{F}^{2} \propto g_{X} \beta_{T} \Delta T \text { (characteristic length } L_{1}\right) \text {, where } L_{1}=(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t}) \\
& \therefore V_{F}=a_{3}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{m} \text { where } a_{3}=b_{1} a_{0}^{m} k_{2} k_{3}^{m} \\
& V_{F}^{2} \propto g_{Y} \beta_{7} \Delta T \text { (characteristic length } L_{2} \text { ), where } L_{2}=(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{f}) \\
& \therefore \Delta T=a_{4}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{2 m-1} \text { where } a_{4}=\frac{a_{0}^{2 m} b_{1}^{2} k_{3}^{2 m-2}(4 m+1)}{2 \beta_{T} g_{X}} \\
& \Delta T \propto(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{l})^{2 m-1} \\
& \gamma^{2}=\alpha_{5}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{l}) \quad \text { where } \alpha_{5}=a_{0} k_{5}
\end{aligned}
$$

If $\bar{b}=\frac{k_{1} a_{3}}{a_{0}}$ is non-dimensional quantity, $k_{1}=\frac{U_{1}}{V_{k}}$ be also non-dimensional. Since $k_{1} k_{2} k_{3}=1$, it implies that $k_{2} k_{3}$ is non-dimensional. According to given defmition in (4.2) $k_{2}$ is the scale of velocity and $k_{3}$ is too. Hence $k_{2} k_{3}$ is dimensionless. Here $\bar{c}$ is linally the scale of velocity and $\bar{c} \bar{t}$ is the additive length added to the normal characteristic length $\bar{x}+\bar{b} \bar{y}$ then formed new characteristic length.

The similarity variable $\phi$ is

$$
\begin{aligned}
& \phi=\frac{z}{a y}=\frac{z}{\sqrt{\frac{2 v}{(4 m+1) a_{0}}} \sqrt{a_{0} k_{3}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})}} \\
& =G_{\bar{x} \bar{y} \bar{y}}^{\frac{1}{4}} \frac{z}{(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})} \\
& G_{\bar{x} \bar{y} \bar{i}}^{\frac{1}{4}}=\left\{\frac{(4 m+1)}{2 h_{i}^{2}} \frac{g_{X} \beta_{F} \Delta T(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{3}}{v^{2}}\right\}^{\frac{1}{4}}
\end{aligned}
$$

where
is the modified Grashof number.
The velocity components are

$$
\begin{aligned}
& u=U_{F} f_{\phi}(\phi) \\
& v=V_{F} s_{\phi}(\phi)
\end{aligned}
$$

and $w=\frac{1}{h_{1} h_{2}}\left\{-\left(h_{2} \gamma U_{F}\right\}_{X} \bar{F}+\bar{\phi} \gamma_{X} h_{2} U_{F} \bar{F}_{\bar{\phi}}-\left(h_{1} \gamma V_{F}\right)_{y} \bar{S}+\bar{\phi} \gamma_{Y} h_{1} V_{f} \bar{S}_{\bar{\phi}}\right.$

$$
=\sqrt{\frac{\cdot \overline{2} v}{(4 m+1) k_{3}}}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{-\frac{1}{2}}\left\{-\left(2 m+\frac{1}{2}\right)(f+c s)+\frac{1}{2} \phi\left(f_{\phi}+c s_{\phi}\right)\right\}
$$

Skin frictions are

$$
\begin{aligned}
\tau_{w 1} & =\mu\left(\frac{\partial u}{\partial z}\right)_{z=0} \\
& \frac{\tau_{w 1}}{\frac{1}{2} \rho U_{t}^{2}}=(4 m+1) \frac{G r_{x \mu^{-}}^{-\frac{1}{4}}}{h_{1}} f_{\psi}(0)
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{w 2}=\mu\left(\frac{\partial \nu}{\partial z}\right)_{z=0} \\
& \frac{\tau_{w 2}}{\frac{1}{2} \rho V_{F}^{2}}=(4 m+1) k_{1} \frac{G r_{x w}}{h_{1}} s_{w}(0)
\end{aligned}
$$

Heat flux,

$$
\begin{aligned}
q_{w} & =-k\left(\frac{\partial T}{\partial z}\right)_{z=0} \\
& =-k \Delta T\left\{\frac{(4 m+1) a_{0}}{2 v k_{3}}\right\}^{\frac{1}{2}}(\bar{x}+\bar{b} \bar{y}+\bar{c} \bar{t})^{-\frac{1}{2}} \theta_{\psi}(0) .
\end{aligned}
$$

## Cget-2:

$$
\begin{aligned}
& \frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial C(X, Y)}{\partial X} \neq 0 \\
& \frac{\partial C(X, Y)}{\partial Y}=0, \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X} \neq 0
\end{aligned}
$$

Let $h_{1}=h_{2}$
Let, $\frac{\partial A(Y, \tau)}{\partial Y} \neq$ constant.

$$
\begin{gather*}
\Rightarrow \begin{aligned}
\frac{U_{F}}{V_{F}}=k_{1} \neq & \text { const, } a_{3}-a_{4}-a_{5}+a_{0}-a_{10}=0=l_{1} \\
\frac{\partial B(\tau, X)}{\partial \tau} & =\text { constant } \\
& =\frac{V_{F}}{h_{1}}\left(2 a_{7}+a_{18}-a_{24}\right) \\
& =k_{2} l_{2} \\
& =\frac{\partial C(X, Y)}{\partial X}
\end{aligned}=\text { constant }  \tag{4,30}\\
\\
=k_{3} l_{3} \\
\frac{\partial C\left(a_{01}-a_{1}-a_{2}\right)}{\partial Y} \neq \text { conslant }  \tag{4.31}\\
\Rightarrow \frac{h_{1}}{V_{F}}= \\
\frac{1}{k_{2}} \neq \text { const, } a_{3}-a_{4}-a_{5}=0=l_{4} \\
\frac{\partial A(Y, \tau)}{\partial \tau}= \tag{4.32}
\end{gather*}
$$

$$
\text { and } \begin{align*}
& \frac{\partial B(\tau, X)}{\partial X}=\text { constant } \\
&=\frac{V_{H}}{U_{F}} \\
&\left(a_{11}-a_{1}-a_{2}-a_{11}+a_{15}\right)  \tag{435}\\
&=\frac{1}{k_{1}} l_{6}
\end{align*}
$$

By virlue of equation (4.8), we oblain

$$
\left.\begin{array}{l}
A(Y, \tau)=\frac{l_{5}}{k_{3}} \tau+A_{0}  \tag{4.36}\\
B(\tau, X)=k_{2} l_{2}+\frac{l_{6}}{k_{1}} X+B_{0} \\
C(X, Y)=k_{3} l_{3} X+C_{0}
\end{array}\right\}
$$

In view of equations (4.11), (4.12) and (4 13), we get

$$
\begin{align*}
& \gamma^{2}=k_{3} l_{3} X+2 a_{7} \tau+C_{0}  \tag{4.37}\\
& \gamma^{2}=a_{0} k_{3} X+l_{5} \tau+A_{0} \tag{438}
\end{align*}
$$

and $\gamma^{2}=l_{5} \frac{1}{k_{1} k_{2}} X+a_{3} \frac{1}{k_{2}} Y+l_{2} \tau+B_{0}$, setting $a_{3}=0$.

$$
\begin{equation*}
\therefore \gamma^{2}=l_{6} \frac{1}{k_{1} k_{2}} X+l_{2} \tau+B_{0} \tag{4.39}
\end{equation*}
$$

Comparing the above three equations for $\gamma^{2}$, we have to write,

$$
\begin{aligned}
& a_{0}=l_{3}=l_{6}, 2 a_{3}=l_{3}=l_{2} \text { and } A_{0}=B_{0}=C_{0} \\
\Rightarrow & a_{1}=-a_{2}, a_{11}=a_{15}, a_{12}=a_{23}, a_{18}=a_{24}
\end{aligned}
$$

Hence $\gamma^{2}$ is found to be

$$
\begin{equation*}
\gamma^{2}=a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3} \tag{4.40}
\end{equation*}
$$

In view of equation (3.44)

$$
\begin{gathered}
\frac{\gamma^{2} U_{F}}{h_{1}}=a_{0} X+A(Y, \tau) \\
\quad=a_{0} X+\frac{l_{5}}{k_{3}} \tau+A_{0}
\end{gathered}
$$

$$
\begin{equation*}
=\frac{a_{0} k_{3} X+2 a_{3} \tau+A_{0} k_{3}}{k_{3}} \tag{4.41}
\end{equation*}
$$

By virtue of equation (3.36a), we get

$$
\begin{gathered}
a_{16}=\frac{\gamma^{2} U_{F}}{h_{1}} \frac{h_{1}}{h_{1 X}} \\
\Rightarrow \frac{h_{1 X}}{h_{1}}=\frac{k_{3} a_{16}}{a_{i 0} k_{3} X+2 a_{3} \tau+A_{0} k_{3}} \\
\therefore h_{1}=b_{1}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{\frac{a_{0}}{a_{n}}}
\end{gathered}
$$

when $b_{1}$ is constant of integration

$$
\begin{equation*}
\therefore h_{2}=h_{1}=b_{1}\left(\alpha_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{m}, \text { where } m=\frac{a_{16}}{a_{11}} \tag{442}
\end{equation*}
$$

Again, in view of equation (3.48), we get

$$
\begin{align*}
\frac{\gamma^{2} V_{F}}{h_{1}} & =a_{3} Y+B(X, \tau) \\
& =k_{2} l_{2} \tau+\frac{l_{6}}{k_{1}} X+B_{0} \\
& =\frac{a_{0}}{k_{1}} X+2 a_{7} k_{2} \tau+B_{11} \\
& =\frac{a_{0} k_{3} X+2 a_{7} \tau+B_{0} k_{1} k_{3}}{k_{1} k_{3}} \tag{4.43}
\end{align*}
$$

From (4 41), we have

$$
\begin{align*}
\frac{\gamma^{2} U_{F}}{h_{1}} & =\frac{a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}}{k_{3}} \\
U_{F} & =\frac{b_{1}}{k_{3}}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{m} \tag{4,44}
\end{align*}
$$

$$
\begin{align*}
\frac{\gamma^{2} V_{F}}{h_{2}}= & \frac{a_{0} k_{3} X+2 a_{7} \tau+B_{0} k_{1} k_{3}}{k_{1} k_{3}} \\
& \therefore V_{F}=b_{1} k_{2}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{m} \tag{4,45}
\end{align*}
$$

The similarity requirements furnish us with the relations between the constants (a's). The relations are, $a_{0}, a_{7}$ are arbitrary,

$$
\begin{array}{lll}
a_{1}=2 m a_{10}, & a_{2}=-2 m a_{0}, & a_{3}=a_{4}=a_{5}=a_{6}=0, \quad a_{8}=m a_{0} \\
a_{9}=a_{10}=0, & a_{11}=\frac{m a_{0}}{k_{1}^{2}}, \quad a_{12}=2 m a_{7} & \\
a_{13}=\frac{k_{3}}{b_{1}^{2}}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{1-2 m} \beta_{7} \Delta 7 g_{X}, & a_{14}=0, \quad a_{15}=m a_{10} \\
a_{16}=m a_{0}, & a_{17}=0, & a_{18}=2 m a_{7}, \\
a_{19}=\frac{1}{b_{1}^{2} k_{2}}\left(a_{0} k_{3} X+2 a_{7} r+A_{0} k_{3}\right)^{1-2 m} \beta_{7} \Delta T g_{3}, & a_{20}=(2 m-1) a_{0} \\
a_{21}=0, & a_{22}=2(2 m-1) a_{7} . &
\end{array}
$$

Hence the general equations (3.25-3.26) reduce to

$$
\begin{aligned}
& v \bar{F}_{\bar{\phi} \bar{\phi} \bar{\phi}}+\frac{4 m+1}{2} \bar{F} \bar{F}_{\bar{\phi} \bar{\phi}}+a_{7} \bar{\phi} \bar{F}_{\bar{\phi} \bar{\phi}}-m a_{0} \bar{F}_{\bar{\phi}}^{2}+\frac{m a_{0}}{k_{1}^{2}} \bar{S}_{\phi}^{2}-2 m a_{7} \bar{F}_{\bar{\phi}}+a_{13} \bar{\theta}=0 \\
& v \bar{S}_{\overline{\bar{\phi} \bar{\phi}}}+\frac{4 m+1}{2} a_{0} \bar{S}_{\bar{\phi} \bar{\phi}} \bar{F}+a_{7} \bar{\phi}_{\bar{\phi} \bar{\phi}}-2 m a_{0} \bar{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}-2 m a_{7} \bar{S}_{\bar{\phi}}+a_{13} \bar{\theta}=0 \\
& \text { and } \frac{v}{\operatorname{Pr}} \bar{\theta}_{\bar{\phi} \bar{\phi}}+\frac{4 m+1}{2} a_{0} \bar{F} \bar{\theta}_{\bar{\phi}}+a_{7} \bar{\phi} \bar{\theta}_{\bar{\phi}}-(2 m-1) a_{0} \bar{F}_{\bar{\phi}} \theta-2(2 m-1)+a_{7} \bar{\theta}=0
\end{aligned}
$$

Subject to boundary conditions

$$
\begin{aligned}
& \bar{F}(0)=\bar{F}_{\bar{\phi}}(0)=0, \bar{F}_{\bar{\phi}}(\infty)=0 \\
& \bar{S}(0)=\bar{S}_{\bar{\phi}}(0)=0, \bar{S}_{\bar{\beta}}(\infty)=0
\end{aligned}
$$

for the dimensionless stream function and

$$
\bar{\theta}(0)=1, \bar{\theta}(\infty)=0
$$

for the dimensionless temperature function.

Let us now substitute

$$
\bar{F}=\alpha f, \bar{s}=\alpha s, \bar{\phi}=\alpha \phi, \bar{\theta}=\theta
$$

in the above equations. Thus the above equations changed to
$f_{\psi \mu+}+\left(\frac{4 m+1}{2}\right) \frac{a_{0} \alpha^{2}}{v} f_{\phi \psi}+\frac{a_{7} \alpha^{2}}{v}$ \&f $_{\psi \psi}-m \frac{a_{0} \alpha^{2}}{v} f_{\phi}^{2}+\frac{m}{k_{1}^{2}} \frac{a_{0} \alpha^{2}}{v} s_{\phi}^{2}-2 m \frac{a_{1} \alpha^{2}}{v} f_{\psi}+a_{13} \frac{\alpha^{2}}{v} \theta=0$
$s_{\phi \phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{0} \alpha^{2}}{v} f_{\phi}+\frac{a_{2} \alpha^{2}}{v}-\phi s_{\phi}-2 m \frac{a_{0} \alpha^{2}}{v} f_{\phi} s_{\phi}-2 m \frac{a_{7} \alpha^{2}}{v} s_{\phi}+a_{19} \frac{a^{2}}{v} \theta=0$
and
$\operatorname{Pr}^{-1} \theta_{\phi}+\left(\frac{4 m+1}{2}\right) \frac{a_{0} a^{2}}{v} f \theta_{\theta}+\frac{a_{y} \alpha^{2}}{v} \phi \theta_{\phi}-(2 m-1) \frac{a_{0} \alpha^{2}}{v} f_{\phi} \theta-2(2 m-1) \frac{a_{7} a^{2}}{v} \theta=0$
Choosing $\left(\frac{4 m+1}{2}\right) \frac{a x^{2}}{v}=1$ and writing $\frac{a_{7}}{a_{0}}=c, \frac{2 m}{4 m+1}=\beta$. Also $\frac{2}{4 m+1} \frac{a_{13}}{a_{0}}=1$ and $\frac{2}{4 m+1} \frac{a_{19}}{a_{0}}=R$ for purely free convection.

Now, $\frac{2}{4 m+1} \frac{a_{13}}{a_{11}}=1, \quad a_{13}=\frac{(4 m+1) a_{0}}{2}$
$\Rightarrow \frac{k_{7}}{b_{1}^{2}}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{1-2 m} \beta_{T} \Delta T g_{X}=\frac{4 / \pi+1}{2} a_{0}$
$\therefore \Delta T=\frac{b_{1}^{2}(4 m+1) a_{0}}{2 k_{3} \beta_{i} g_{x}}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{1-2 m}$
We have finally the following similarity equations.

$$
\begin{align*}
& f_{\phi 由}+f f_{\phi}+(2-4 \beta) c \phi f_{\phi}-\beta\left(f_{\phi}^{2}-\frac{1}{k_{1}^{2}} s_{\phi}^{2}+2 c f_{\phi}\right)+\theta=0  \tag{4.46}\\
& s_{\phi \phi \phi}+f s_{\phi}+(2-4 \beta) c \phi v_{\phi \phi}-2 \beta\left(f_{\phi} s_{\phi}+s_{\phi}\right)+\theta=0  \tag{4.47}\\
& \text { and } \operatorname{Pr}^{-1} \theta_{\phi \phi}+f \theta_{\phi}+(2-4 \beta) c \phi \theta_{\phi}-(6 \beta-2) f_{\phi} \theta-(12 \beta-4) c \theta=0 \tag{4.48}
\end{align*}
$$

The boundary conditions are

$$
\left.\begin{array}{l}
f(0)=f_{\phi}(0)=0, \quad f_{\phi}(\infty)=0 \\
s(0)=s_{\phi}(0)=0, \quad s_{\phi}(\infty)=0  \tag{4.49}\\
\theta(0)=1, \quad \theta(\infty)=0
\end{array}\right\}
$$

We have, in this case, the similarity requirements are

$$
\begin{aligned}
& h_{1}=b_{1}\left(a_{0} k_{3} X+2 a_{7} \tau+A_{0} k_{3}\right)^{m} \\
& =b_{1} a_{0}^{m} k_{3}^{m}\left(X+\frac{2 a_{7}}{a_{0} k_{3}} \tau+\frac{A_{0}}{a_{v}}\right)^{m} \\
& =a_{1}(\bar{x}+\bar{c} \bar{l})^{m} \\
& h_{\mathrm{T}} \propto(\overrightarrow{\mathrm{x}}+\bar{c} \bar{f})^{m} \\
& \text { where } \bar{x}=X+X_{0} \\
& \bar{t}=\tau+\tau_{0} \\
& \stackrel{\rightharpoonup}{c}=\frac{2 a_{3}}{a_{0} k_{3}} \\
& \frac{A_{0}}{a_{0}}=X_{0}+\frac{2 a_{7}}{a_{0} k_{3}} \tau_{0} \\
& \alpha_{0}=b_{1} a_{{ }_{1}{ }^{m} k_{3}^{m}} \\
& \therefore \quad U_{F}=a_{2}(\bar{x}+\bar{c} \bar{t})^{m} \text {, where } a_{2}=b_{1} k_{3}^{m-t} a_{0}^{m} \\
& \left.U_{F}^{2} \propto g_{X} \beta_{T} \Delta T \text { (characteristic length } L_{1}\right) \text {, where } I_{1}=(\bar{x}+\bar{c} \bar{t}) \\
& V_{F}=a_{3}(\bar{x}+\bar{c} \bar{f})^{m} \text {, where } \alpha_{3}=b_{1} k_{2} k_{3}^{m} a_{0}^{m} \\
& V_{r}^{2} \propto g_{1} \beta_{r} \Delta T \text { (characteristic length } L_{2} \text { ), where } L_{2}=(\bar{x}+\bar{c} \bar{f}) \\
& \Delta T=a_{4}(\bar{x}+\bar{c} \bar{i})^{2 m-1} \text {, where } a_{4}=\frac{b_{1}^{2}(4 m+1) a_{9}^{2 m}}{2 k_{3}^{2-2 m} \beta_{T} g_{X}} \\
& \Delta T \subset(\bar{x}+\bar{c} \bar{f})^{2 m-1} . \\
& \therefore \quad \gamma^{2}=\alpha_{5}(\bar{x}+\bar{c} \bar{l}) \text {, where } \alpha_{5}=a_{0} k_{3}
\end{aligned}
$$

The similarity variable $\phi$ is,

$$
\begin{aligned}
& \phi=\frac{z}{a \gamma}=\frac{z}{\sqrt{\frac{2 v}{(4 m+1) a_{0}} \sqrt{\alpha_{5}(\overline{\mathbf{r}}+\bar{c} \bar{t})}}} \\
& =\left(G r_{\overline{\bar{x}},}\right)^{\frac{1}{4}} \frac{z}{(\bar{r}+\bar{c} \bar{t})} \text { where } G r_{\bar{I} t}^{\frac{1}{4}}=\left[\frac{4 m+1}{2 h_{1}^{2}} \frac{g_{x} \beta_{r} \Delta f^{\prime}\left(\bar{x}+\bar{c} \overline{)^{3}}\right.}{v^{2}}\right] \text { is the modified }
\end{aligned}
$$

Grashof number.

The velocity components

$$
\begin{aligned}
& u=U_{F} f_{\phi}(\phi) \text { where } U_{F}^{2}=-g_{X} \beta_{Y} \Delta T L_{J} \\
& v=V_{F} s_{\phi}(\phi) \text { where } V_{F}^{2}=-g_{Y} \beta_{T} \Delta T L_{2}
\end{aligned}
$$

and $w=\frac{1}{h_{1} h_{2}}\left[-\left(h_{2} \gamma U_{F}\right)_{X} \bar{F}+\bar{\phi} \gamma_{X} h_{2} U_{F} \bar{F}_{\vec{\phi}}\right]$

$$
=\left\{\frac{2 v}{k_{3}(4 m+1)(\bar{x}+\bar{c} \bar{t})}\right\}^{\frac{1}{2}}\left[\frac{1}{2} \phi f_{*}-\left(2 m+\frac{1}{2}\right) f\right]
$$

Skin frictions are

$$
\begin{aligned}
& \tau_{w x 1}=\mu\left(\frac{\partial u}{\partial z}\right)_{z \times 0} \\
& \frac{\tau_{u 1}}{\frac{1}{2} \rho U_{F}^{2}}=(4 m+1) \frac{G r_{x t}^{-\frac{1}{4}}}{h_{1}} f_{\phi}(0) \\
& \tau_{w 2}=\mu\left(\frac{\partial v}{\partial z}\right)_{z=0} \\
& \frac{\tau_{w 2}}{\frac{1}{2} \rho V_{z}^{2}}=(4 m+1) k_{1} \frac{G r_{x t}}{h_{1}} s_{\phi( }(0)
\end{aligned}
$$

Heat flux, $\boldsymbol{q}_{w}=-k\left(\frac{\partial T}{\partial z}\right)_{z=0}$

$$
=-k \Delta T\left(\frac{4 m+1}{2 v}\right)\left(\frac{\alpha_{n}}{k_{3}}\right)^{\frac{1}{2}}(\bar{x}+\bar{c} \bar{f})^{-\frac{1}{2}} \theta_{\phi}(0)
$$

Case-4:

$$
\begin{aligned}
& \frac{\partial A(Y, \tau)}{\partial Y} \neq 0, \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \quad \frac{\partial C(X, Y)}{\partial X}=0 \\
& \frac{\partial C(X, Y)}{\partial Y} \neq 0, \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X}=0
\end{aligned}
$$

Choosing $h_{1}=h_{2}$,

$$
\text { Let, } \begin{align*}
\frac{\partial A(Y, r)}{\partial Y} & =\text { conslant. } \\
& =\frac{U_{\hbar}}{V_{s}}\left(a_{3}-a_{4}-a_{5}+a_{9}-a_{i 1}\right) \\
& =k_{1} l_{1} \tag{4.50}
\end{align*}
$$

$$
\frac{\partial B(\tau, X)}{\partial \tau}=\text { constant }
$$

$$
\begin{align*}
& =\frac{V_{F}}{h_{1}}\left(2 a_{7}+a_{18}-a_{24}\right)  \tag{4.51}\\
& =h_{2} l_{2} \\
& \frac{\partial C(X, Y)}{\partial X} \neq \text { constant } \\
= & \frac{h_{1}}{U_{F}}=k_{3} \neq \text { constant, } a_{0}-a_{1}-a_{2}=0=l_{3} \\
& \frac{\partial C(X, Y)}{\partial Y}=\text { constant }
\end{align*}
$$

$$
=\frac{h_{1}}{V_{p}}\left(a_{3}-a_{4}-a_{5}\right)
$$

$$
\begin{equation*}
=\frac{1}{k_{2}} l_{4} \tag{4.53}
\end{equation*}
$$

$$
\frac{\partial A(Y, \tau)}{\partial \tau}=\text { constant }
$$

$$
=\frac{U_{F}}{h_{1}}\left(2 a_{7}+a_{12}-a_{23}\right)
$$

$$
\begin{equation*}
=\frac{1}{k_{3}} l_{3} \tag{4.54}
\end{equation*}
$$

$$
\begin{align*}
& \text { and } \frac{\partial B(\tau, X)}{\partial X} \neq \text { constant } \\
& \Rightarrow \frac{V_{F}}{U_{F}}=\frac{1}{k_{1}} \neq \text { constant, } a_{0}-a_{1}-a_{2}-a_{11}+a_{15}=0=l_{6} \tag{455}
\end{align*}
$$

By virtue of equation (4.8), one obtains

$$
\left.\begin{array}{l}
A(Y, \tau)=k_{1} l_{1} Y+\frac{l_{5}}{k_{3}} \tau+A_{0}  \tag{4.56}\\
B(\tau, X)=k_{2} l_{2} \tau+B_{0} \\
C(X, Y)=\frac{l_{4}}{k_{2}} Y+C_{0}
\end{array}\right\}
$$

In view of equations (4.11), (4.12) and (4.13), we get

$$
\begin{gather*}
\gamma^{2}=\frac{l_{4}}{k_{2}} \gamma+2 a_{7} \tau+C_{0}  \tag{4.57}\\
\gamma^{2}=a_{0} h_{3} X+k_{1} k_{3} l_{1} Y+l_{5} \tau+A_{0}
\end{gather*}
$$

without loss of any generality. Setting $a_{0}=0$

$$
\begin{gather*}
\therefore \gamma^{2}=k_{1} k_{3} l_{1} Y+l_{2} \tau+A_{0}  \tag{4.58}\\
\text { and } \quad \gamma^{2}=a_{3} \frac{1}{k_{2}} Y+l_{2} \tau+B_{0} \tag{4.59}
\end{gather*}
$$

Comparing the above three equations (4.57-4.59) for $\gamma^{2}$, we have to write,

$$
\begin{gathered}
a_{3}=l_{1}=l_{4}, \quad 2 a_{7}=l_{5}=l_{2} \\
\Rightarrow \quad a_{9}=a_{10}, a_{4}=-a_{5}, a_{12}=a_{23}, a_{18}=a_{24}
\end{gathered}
$$

Hence $\gamma^{2}$ is found to be

$$
\begin{equation*}
\gamma^{2}=a_{3} k_{1} k_{3} Y+2 a_{7} \tau+A_{0} k_{3} \tag{4.60}
\end{equation*}
$$

In view of equation (3.44), we have $\frac{\gamma^{2} U_{F}}{h_{1}}=a_{0} X+A(Y, \tau) \quad \because a_{0}=0$

$$
\begin{equation*}
=\frac{k_{1} k_{3} a_{3} y^{\prime}+2 a_{7} \tau+A_{0} k_{3}}{k_{3}}[\text { By using (4.56) }] \tag{4.61}
\end{equation*}
$$

Again, in view of equation (3.48), we have

$$
\frac{\gamma^{2} V_{F}}{h_{1}}=a_{3} Y+B(X, \tau)
$$

$$
\begin{align*}
& =a_{3} Y+k_{2} 2 a_{7} \tau+B_{0}[\text { By using (4.56) }] \\
& =\frac{k_{1} k_{3} a_{3} y+2 a_{7} \tau+k_{1} k_{3} B_{0}}{k_{1} k_{3}} \\
& =\frac{k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}}{k_{1} k_{3}} \tag{4.62}
\end{align*}
$$

By virtue of equation (3.33a), we get

$$
\begin{aligned}
& \frac{h_{1 Z}}{h_{1}^{\prime}}=\frac{a_{10} h_{1}}{V_{A} \gamma^{2}} \\
&=\frac{k_{1} k_{3} a_{10}}{k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}} \\
& \therefore h_{1}=b_{1}\left(k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}\right)^{\frac{q_{30}}{a_{4}}}
\end{aligned}
$$

where $b_{1}$ is the constant of integration.

$$
\begin{equation*}
\Rightarrow h_{1}=h_{2}=b_{1}\left(k_{1} h_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}\right)^{m} \text { where } m=\frac{a_{10}}{a_{3}} \tag{4.63}
\end{equation*}
$$

From (4.61), we have

$$
\begin{equation*}
U_{F}=\frac{b_{1}}{k_{3}}\left(k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{1} A_{0}\right)^{m} \tag{4.64}
\end{equation*}
$$

Similarly, from (4.62), we ger

$$
\begin{equation*}
V_{F}=\frac{b_{1}}{k_{1} k_{3}}\left(k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}\right)^{m} \tag{4.65}
\end{equation*}
$$

Substituting ( $4.60,463-465$ ) in the similarity requirements one may obtain the following relations between the constants (a's):
$a_{3}, a_{7}$ are arbitrary.

$$
\begin{array}{lll}
a_{0}=a_{2}=a_{2}=0, & a_{4}=2 m a_{3}, & a_{5}=-2 m a_{3},
\end{array} a_{6}=a_{k}=0
$$

$$
\begin{aligned}
& a_{19}=\frac{k_{1} k_{3}}{b_{1}^{2}}\left\langle k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}\right)^{1-2 m} \rho_{T} \Delta T g_{Y}, \quad a_{20}=0 \\
& a_{21}=(2 m-1) a_{3}, \quad a_{12}=2(2 m-1) a_{7} .
\end{aligned}
$$

Furthemore, equations (3.25-3.27) reduce to

$$
\begin{aligned}
& v \overleftarrow{F}_{\overline{\phi \bar{\phi} \bar{\phi}}}+\frac{4 m+1}{2} a_{3} \bar{S} \bar{F}_{\overline{\phi \phi}}+a_{7} \bar{\phi} \bar{F}_{\bar{\phi} \bar{\phi}}-2 m a_{3} \bar{F}_{\bar{\phi}} \bar{S}_{\bar{\phi}}-2 m a_{7} \bar{F}_{\bar{\phi}}+a_{13} \bar{\theta}=0 \\
& v \bar{S}_{\overline{\phi \bar{\phi} \bar{\phi}}}+\frac{4 m+1}{2} a_{3} \bar{S} \bar{S}_{\bar{\phi} \bar{\phi}} \bar{F}+a_{7} \bar{\phi}_{\bar{\phi} \bar{\phi}}-m a_{3} \bar{S}_{\bar{\phi}}^{2}+m k_{1}^{2} a_{3} \bar{F}_{\bar{\phi}-2}-2 m a_{7} \bar{S}_{\bar{\phi}}+a_{19} \bar{\theta}=0 \\
& \quad \text { and } \frac{v}{\operatorname{Pr}} \bar{\theta}_{\phi \bar{\phi}}+\frac{4 m+1}{2} a_{3} \bar{S} \bar{\theta}_{\bar{\phi}}+a_{7} \bar{\phi} \bar{\theta}_{\bar{\phi}}-(2 m-1) a_{3} \bar{S}_{\bar{\phi}} \theta-2(2 m-1)+a_{7} \bar{\theta}=0
\end{aligned}
$$

The boundary conditions are

$$
\begin{gathered}
\bar{F}(0)=\bar{F}_{\bar{\phi}}(0)=0, \bar{F}_{\bar{\phi}}(\infty)=0 \\
\bar{S}(0)=\bar{S}_{\bar{\phi}}(0)=0, \bar{S}_{\bar{\phi}}(\infty)=0 \\
\bar{\theta}(0)=1, \bar{\theta}(\infty)=0
\end{gathered}
$$

As in previous cases, substituting $\bar{F}=\alpha f, \bar{S}=\langle s, \bar{\phi}=\alpha \phi, \vec{\theta}=\theta$ choosing $\frac{4 m+1}{2 v} a_{3} a^{2}=1$ and writing $\frac{a_{7}}{a_{3}}=c, \frac{2 m}{4 m+1}=\beta$. Also for free convection we put $\frac{2}{4 m+1} \frac{a_{13}}{a_{3}}=1$ and $\frac{2}{4 m+1} \frac{a_{19}}{a_{3}}=R$ (constant)

The above equations simplify to

$$
\begin{gather*}
f_{\psi \psi}+s f_{\psi}+(2-4 \beta) k \phi f_{\psi}-2 \beta\left(f_{*} s_{t}-c f_{\psi}\right)+\theta=0  \tag{4.66}\\
s_{\psi \phi}+s s_{\psi \psi}+(2-4 \beta) c \phi s_{\psi \psi}-\beta\left(s_{\phi}^{2}-k_{1}^{2} f_{\psi}^{2}-2 c s_{\phi}\right)+R \theta=0 \tag{4.67}
\end{gather*}
$$

and $\mathrm{PT}^{-1} \theta_{\phi}+s \theta_{\phi}+(2-4 \beta) c \phi \theta_{\phi}-(6 \beta-2) f_{\phi} \theta-(12 \beta-4) c \theta=0$

The boundary conditions are

$$
\left.\begin{array}{l}
f(0)=f_{\phi}(0)=0, \quad f_{\phi}(\infty)=0  \tag{4.69}\\
s(0)=s_{\phi}(0)=0, \quad s_{\phi}(\infty)=0 \\
\theta(0)=1, \quad \theta(\infty)=0
\end{array}\right\}
$$

In this case, the similarity requirements are

$$
\begin{aligned}
& h_{1}=b_{1}\left(k_{1} k_{3} a_{3} Y+2 a_{7} \tau+k_{3} A_{0}\right)^{m} \\
& =b_{1} k_{1}^{m} k_{3}^{m} a_{3}^{m}\left(Y+\frac{2 a_{7}}{k_{1} k_{3} a_{3}} \tau+\frac{A_{0}}{k_{1} a_{3}}\right)^{m} \\
& =\alpha_{1}\left(\bar{y}+\bar{c} \overline{)^{m}}\right. \\
& h_{1} \propto(\bar{y}+\bar{c} \bar{f})^{m} \\
& \text { where } \bar{y}=Y+Y_{0} \\
& \bar{t}=\tau+\tau_{0} \\
& \bar{c}=\frac{2 a_{7}}{k_{1} k_{3} a_{3}} \\
& \frac{A_{0}}{k_{1} a_{3}}=Y_{0}+\frac{2 a_{7}}{k_{1} k_{3} a_{3}} \tau_{0} \\
& a_{1}=b_{1} k_{1}^{m 1} k_{3}^{m} a_{3}^{m r} \\
& \therefore \quad U_{F}=\alpha_{2}\left(\overline{F^{\prime}}+\bar{c} \bar{l}\right)^{m,} \text {, where } \alpha_{2}=h_{1} k_{1}^{m{ }_{1}} k_{3}^{m-t} a_{3}^{m m} \\
& U_{F}^{2} \times g_{X} \beta_{T} \Delta T \text { (characteristic length } I_{1} \text { ), where } I_{1}=\left(\overline{y^{j}}+\bar{c} \bar{l}\right. \text { ) } \\
& V_{F}=\alpha_{3}\left(\bar{y}+\bar{c} \overline{)^{m}} \text {, where } \alpha_{3}=b_{1} k_{1}^{m-1} k_{3}^{m-1} a_{3}^{m}\right. \\
& V_{F}^{2} \not \propto g_{F} \beta_{T} \Delta T \text { (characteristic length } L_{2} \text { ), where } L_{2}=(\bar{y}+\bar{c} \bar{l}) \\
& \Delta T=\alpha_{4}(\bar{y}+\bar{c} \bar{l})^{2 m-1} \text {, where } \alpha_{4}=\frac{b_{1}^{2}(4 m+1) \alpha_{3}^{2 m}}{2 k_{1}^{1-2 m} k_{3}^{2-2 m} \beta_{T} g_{X}} \\
& \Delta T x(\bar{y}+\bar{c} \bar{t})^{2 m-1} . \\
& \gamma^{2}=\alpha_{5}(\bar{y}+\bar{c} \bar{t}), \text { where } \alpha_{3}=k_{1} k_{3} a_{3}
\end{aligned}
$$

The similarity variable $\phi$ is,

$$
\begin{aligned}
& \phi=\frac{z}{a \gamma} \frac{z}{\sqrt{\frac{2 v}{(4 m+1) a_{\bar{z}}}} \sqrt{\alpha_{s}(\bar{Y}+\bar{c} t)}} \\
& =\left(G_{r_{\bar{y}}} \frac{1}{\frac{1}{4}} \frac{z}{(\vec{Y}+\bar{c} \bar{t})}\right.
\end{aligned}
$$

where $\left(G r_{\bar{y} \bar{i}}\right)^{\frac{1}{4}}=\left[\frac{(4 m+1)}{2 k_{1} h_{1}^{2}} \frac{g_{y} \beta_{\tau} \Delta T(\bar{y}+\bar{c} \bar{t})^{3}}{v^{2}}\right]^{\frac{1}{4}}$ is the modified Grashof number.

The velocity components are

$$
\begin{aligned}
v & =U_{F} f_{\psi}(\phi), \quad v=V_{F} s_{g}(\phi) \\
\text { and } \quad w & =\frac{1}{h_{1} h_{2}}\left[\left(h_{1} V_{F}\right)_{Y} \bar{S}+\bar{\phi} \gamma_{Y} h_{1} V_{F} \bar{S}_{\bar{\phi}}\right] \\
& =\left\{\frac{2 \nu k_{1} k_{3}}{(4 m+1)(\bar{y}+\bar{c} \bar{t})}\right\}^{\frac{1}{2}}\left[\frac{1}{2} \phi s_{\psi}-\left(2 m+\frac{1}{2}\right) s\right]
\end{aligned}
$$

Skin frictions are

$$
\begin{aligned}
& \tau_{w 1}=\mu\left(\frac{\partial u}{\partial z}\right)_{z=0} \\
& \frac{\tau_{w 1}}{\frac{1}{2} \rho U_{F}^{2}}=\frac{(4 m+1)}{k_{1}} \frac{G r_{m}^{-\frac{1}{4}}}{h_{1}} f_{m p}(0) \\
& \tau_{w 2}=\mu\left(\frac{\partial \nu}{\partial z}\right)_{z=0} \\
& \frac{\tau_{w 2}}{\frac{1}{2} \rho V_{F}^{2}}=(4 m+1) \frac{G r_{u}}{h_{1}} s_{m( }^{-\frac{1}{4}}(0)
\end{aligned}
$$

Heat flux, $q_{w}=-k\left(\frac{\partial T}{\partial z}\right)_{z=1}$

$$
=-k \Delta T\left(\frac{4 m+1}{2 r}\right)\left(\frac{a_{3}}{k_{1} k_{3}}\right)^{\frac{1}{2}}(\bar{y}+\bar{c} \bar{t})^{-\frac{1}{2}} \theta_{\phi}(0) .
$$

## Case-7:

$$
\begin{aligned}
& \frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial B(\tau, X)}{\partial \tau} \neq 0, \frac{\partial C(X, Y)}{\partial X}=0, \frac{\partial C(X, Y)}{\partial Y}=0 \\
& \frac{\partial A(Y, \tau)}{\partial \tau} \neq 0, \frac{\partial B(\tau, X)}{\partial X}=0
\end{aligned}
$$

Let $h_{1}=h_{2}$ and $a_{3}=a_{0}=0$.
Let $\frac{\partial A(Y, \tau)}{\partial r} \neq$ constant
$\Rightarrow \frac{h_{2}}{h_{1}} \frac{U_{F}}{V_{F}}\left(a_{3}-a_{4}-a_{5}+a_{9}-a_{10}\right) \neq$ constant.
$\therefore k_{1}=\frac{U_{f}}{V_{s}} \neq 0, l_{1}=a_{3}-a_{4}-a_{5}+a_{9}-a_{10}=0$

$$
\begin{align*}
& \frac{\partial B(\tau, X)}{\partial \tau}=\text { constant } \\
& \begin{aligned}
\Rightarrow \frac{\partial B(\tau, X)}{\partial \tau} & =\frac{V_{F}}{h_{1}}\left(2 a_{7}+a_{18}-a_{24}\right) \\
& =k_{2} l_{2}
\end{aligned}
\end{align*}
$$

$\frac{\partial C(X, Y)}{\partial X} \neq$ constant
$\supset \frac{h_{1}}{U_{r}}\left(a_{0}-a_{1}-a_{2}\right) \neq$ constant
$\therefore k_{3}=\frac{h_{1}}{U_{F}} \neq 0, l_{3}=a_{0}-a_{1}-a_{2}=0$
$\frac{\partial C(X, Y)}{\partial Y} \neq$ constant
$\Rightarrow \frac{h_{1}}{V_{j F}}\left(a_{3}-a_{4}-a_{5}\right) \neq$ constant.
$\therefore \frac{l}{k_{2}}=\frac{h_{1}}{V_{r}} \neq 0, l_{4}=a_{3}-a_{4}-a_{5}=0$
$\frac{\partial A(Y, \tau)}{\partial \tau}=$ constant

$$
\begin{align*}
\Rightarrow \frac{\partial A(Y, t)}{\partial \tau} & =\frac{U_{F}}{h_{1}}\left(2 a_{7}+a_{12}-a_{23}\right) \\
& =\frac{1}{k_{3}} l_{5} \tag{474}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial B(\tau, X)}{\partial X} \neq \text { constant } \\
& \Rightarrow \frac{V_{F}}{U_{F}}\left(a_{0}-a_{1}-a_{2}+a_{11}-a_{15}\right) \neq \text { constant } \\
& \therefore \frac{1}{\hbar_{1}}=\frac{V_{P}}{U_{i}} \neq 0, l_{6}=a_{0}-a_{1}-a_{2}-a_{11}+a_{15}=0 \tag{4.75}
\end{align*}
$$

By vinue of equation (4.14), we have

$$
\begin{equation*}
\gamma^{2}=2 a_{7} \tau+A_{0} \tag{4.76}
\end{equation*}
$$

(I) choosing $A_{0}=0$

$$
\begin{equation*}
\therefore \quad \gamma^{2}=2 a_{7} \tau \tag{4.77}
\end{equation*}
$$

In view of equation (3.34a), we have

$$
\begin{align*}
& a_{12}=\frac{\gamma^{2}\left(U_{F}\right) \tau}{U_{F}} \\
& \Rightarrow \frac{\left(U_{F}\right) \tau}{U_{F}}=\frac{a_{12}}{2 a_{7} \tau} \text { [By using (4.77)] } \\
& \therefore U_{F}=b_{1}\left(2 a_{7} \tau\right)^{m} \tag{4.78}
\end{align*}
$$

where $m=\frac{a_{12}}{2 a_{7}}$ and $b_{1}$ is the constant of integration
Similarly, from equation (3.37a), we get

$$
\begin{align*}
& a_{18}=\frac{\gamma^{2}\left(V_{F}\right) \tau}{V_{F}} \\
& \Rightarrow \frac{\left(V_{F}\right) \tau}{V_{F}}=\frac{a_{18}}{2 a_{7} \tau} \\
& \therefore V_{r^{\prime}}^{\prime}=b_{2}\left(2 a_{7} \tau\right)^{m} \tag{4.79}
\end{align*}
$$

where $m=\frac{a_{18}}{2 a_{1}}$ and $b_{2}$ is the constant of integration.

Also, by vimue of equation (347), we have

$$
\begin{align*}
& a_{23}=\frac{\gamma^{2}}{h_{1}} h_{1} \tau \\
& \Rightarrow \frac{h_{1} \tau}{h_{1}}=\frac{a_{23}}{2 a_{7} \tau} \\
& \therefore h_{2}=h_{1}=h_{3}\left(2 a_{7} \tau\right)^{m} \tag{4,80}
\end{align*}
$$

where $m=\frac{a_{23}}{2 a_{7} \tau}$ and $b_{7}$ is the constant of integration.
With the help of the equations (4.77-4.80), the similarity requirement yield the following relations between the constants'

$$
\begin{aligned}
& a_{0}=a_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=a_{5}=a_{6}=0 \\
& a_{7} \text { is arbitrary. } \\
& a_{8}=a_{9}=a_{10}=a_{14}=0 \\
& a_{12}=2 m a_{7}, a_{13}=\frac{1}{b_{1} b_{9}\left(2 a_{7} \tau\right)^{2 m-1}} \beta_{7} \Delta 7 g_{x} \\
& a_{14}=\alpha_{15}=a_{16}=a_{17}=0 \\
& a_{18}=2 m \alpha_{7}, \quad a_{19}=\frac{1}{b_{2} b_{3}\left(2 a_{7} \tau\right)^{2 m-1}} \beta_{\tau} \Delta T g_{Y} \\
& a_{20}=a_{21}=0, \quad a_{22}=2(2 m-1) a_{7}
\end{aligned}
$$

For this case the general equation (3.25-3.27) are therefore reduced to

$$
\text { and } \frac{\tau}{\operatorname{Pr}} \bar{\theta}_{\bar{\phi} F}+a_{7} \bar{\phi} \bar{\theta}_{\bar{f}}-2(m-1) a_{7} \bar{\theta}=0
$$

The boundary conditions are

$$
\left.\begin{array}{l}
\bar{F}(0)=\bar{F}_{\vec{\sigma}}(0)=0, \bar{F}_{\vec{\phi}}(\infty)=0 \\
\bar{S}(0)=\bar{S}_{\bar{\phi}}(0)=0, \bar{S}_{\vec{\psi}}(\infty)=0 \\
\bar{\theta}(0)=1, \bar{\theta}(\infty)=0
\end{array}\right\}
$$

$$
\begin{aligned}
& \tau \bar{F}_{\bar{\phi} \bar{\phi}}+a_{7} \bar{\phi} \bar{F}_{\bar{q} \bar{\phi}}-2 a_{7} m \bar{\Gamma}_{\bar{\phi}}+a_{13} \bar{\theta}=0 \\
& \tau \bar{S}_{\overline{\partial \sigma}}+\alpha_{7} \bar{\phi} \bar{S}_{\bar{\phi} \bar{\beta}}-2 a_{7} m \bar{S}_{\bar{f}}+a_{19} \bar{\theta}=0
\end{aligned}
$$

As in previous cases, substituting $\bar{F}=\alpha f, \bar{s}=\alpha x, \bar{\phi}=\alpha \phi, \bar{\theta}=\theta$ and choosing $\frac{a_{7} \alpha^{2}}{v}=1$ and later we have to put $\frac{a_{12}}{a_{7}}=1$ and $\frac{a_{12}}{a_{7}}=R$ (Constant) for free convection. Finally the above equations are reduced to

$$
\begin{align*}
& f_{\text {帆 }}+\phi f_{\phi}-2 m f_{\phi}+\theta=0  \tag{4.81}\\
& s_{\text {㭗 }}+\phi s_{\phi \phi}-2 m s_{\phi}+R \theta=0  \tag{4.82}\\
& \text { and } \operatorname{Pr}^{-1} \theta_{\phi \phi}+\phi \theta_{\phi}-2(2 m-1) \theta=0 \tag{4.83}
\end{align*}
$$

The boundary conditions are

$$
\left.\begin{array}{l}
f(0)=f_{\phi}(0)=0, f_{\phi}(\infty)=0  \tag{4.84}\\
s(0)=s_{\phi}(0)=0, s_{\phi}(\infty)=0 \\
\theta(0)=1, \theta(\infty)=0
\end{array}\right\}
$$

For $m=1+p, p$ is a constant, $s=f, R=1$, the equations (481-484) with the boundary conditions coincide with unsteady free convection with uniform but unsteady surface temperature variations at large distance $x$, analysed by Yang (1960) We have, in this case, the similarity requirements are

$$
\begin{aligned}
h_{1}=h_{2} & =b_{3}\left(2 a_{7} \tau\right)^{m} \\
& =b_{3}\left(2 a_{7}\right)^{m}(\tau)^{m} \\
& =a_{1}(\bar{f})^{m} \text { where } \alpha_{1}=b_{3}\left(2 a_{7} \tau\right)^{m}, \tau=\bar{f}
\end{aligned}
$$

$h_{1} \propto(\bar{t})^{m}$
$\therefore U_{r}=\alpha_{2}(\bar{t})^{m \prime}$, where $\alpha_{2}=b_{1}\left(2 \alpha_{7}\right)^{m}$
$U_{F}^{2} \propto g_{X} \beta_{T} \Delta T$ (characteristic length $L_{1}$ ), where $L_{1}=(\bar{l})^{m}$
$\therefore V_{F}=\alpha_{3}(\bar{l})^{m}$, where $\alpha_{3}=b_{2}\left(2 a_{7}\right)^{m}$
$V_{F}^{z} \propto g_{F} \beta_{T} \Delta T$ (characteristic length $L_{2}$ ), where $L_{2}=(\bar{l})^{m t}$
$\Delta T=a_{4}(\bar{l})^{2 m-1}$, where $a_{4}=\frac{a_{13} b_{1} b_{3}\left(2 a_{7}\right)^{m}}{\beta_{T} g_{x}}$.
$\Delta T \propto(\bar{l})^{2 m-1}$.
$\gamma^{2}=\alpha_{5} \ddot{l}$, where $\alpha_{5}=2 a_{7}$

The similarity variable $\phi$ is

$$
\begin{aligned}
& \phi=\frac{z}{\alpha \gamma}=\frac{z}{\sqrt{\frac{v}{a_{7}} \sqrt{2 \alpha_{7} \bar{l}}}} \\
& =\frac{z}{\sqrt{2 v(\bar{l})^{\frac{1}{2}}}} .
\end{aligned}
$$

The velocity components ( $L, v, w$ ) are

$$
\begin{aligned}
& u=U_{F} f_{\psi}(\phi) \\
& \nu=V_{1}, s_{\phi}(\phi)
\end{aligned}
$$

and $w=0$
Skin frictions are

$$
\begin{aligned}
& \tau_{w 1}=\frac{\mu \alpha_{I}}{\sqrt{2 v}}(\bar{l})^{m-\frac{1}{2}} f_{\phi}(0) \\
& \tau_{w 2}=\frac{\mu \alpha_{3}}{\sqrt{2 v}}(\bar{t})^{m-\frac{1}{2}} s_{\phi \phi}(0)
\end{aligned}
$$

Heat flux

$$
q_{w}=\frac{-k \alpha_{4}}{\sqrt{2 v}}(\bar{f})^{2 m-\frac{3}{2}} \theta_{\phi}(0)
$$

(II) If we choose $a_{7}=0, A_{0}=$ arbitrary constant.

$$
\begin{equation*}
\text { From (3.7.7), we have } \gamma^{2}=A_{0} \tag{4.85}
\end{equation*}
$$

The equation (3.47) implies,

$$
\begin{align*}
& \frac{h_{15}}{h_{1}}=\frac{a_{23}}{A_{0}} \\
& \Rightarrow h_{1}=b_{1} e^{\frac{\mathfrak{q}_{3}}{A_{n} r}} \\
& =b_{1} e^{n \tau} \tag{4.86}
\end{align*}
$$

where $b_{1}$ is the constant of integration and $n=\frac{a_{23}}{A_{0}}$.

In view of equation (3.34a), we have

$$
\begin{align*}
& \frac{\left(U_{t}\right)_{\mathrm{t}}}{U_{i}}=\frac{a_{\mathrm{l} 2}}{A_{11}} \\
& \Rightarrow U_{F}=b_{2} e^{n z} \tag{4.87}
\end{align*}
$$

where $b_{2}$ is the constant of integration and $n=\frac{a_{12}}{A_{0}}$.
Again, from equation (3.37a), we get

$$
\begin{align*}
& \frac{\left(V_{F}\right)_{\tau}}{V_{F}}=\frac{a_{\mathrm{LB}}}{A_{0}} \\
& \Rightarrow V_{F}=b_{3} e^{n s} \tag{488}
\end{align*}
$$

where $b_{3}$ is the constant of integration and $n=\frac{a_{18}}{A_{0}}$.
Therefore, the constants becomes

$$
\begin{array}{ll}
a_{64}=a_{1}=a_{2}=a_{4}=a_{5}=a_{6}=a_{7}=a_{8}=a_{9}=a_{19}=a_{14}=0 \\
a_{12}=n A_{61}, \quad a_{13}=\frac{A_{4}}{b_{1} b_{2} e^{2 n t}} \beta_{7} \Delta T g_{X}, & a_{14}=a_{15}=a_{16}=a_{17}=0, \\
a_{18}=n A_{0} . \\
a_{19}=\frac{A_{0}}{b_{1} b_{3} e^{2 n r}} \beta_{r} \Delta T g_{r}, & a_{20}=a_{21}=0
\end{array} a_{22}=2 n A_{0} . \quad .
$$

Thus the general equations (3.25-3.27) reduce to

$$
\begin{aligned}
& v \bar{F}_{\overline{\beta \bar{\phi} \bar{\phi}}}-n A_{3} \bar{F}_{\bar{\phi}}+a_{13} \bar{\theta}=0 \\
& \bar{\delta}_{\bar{\beta} \bar{\beta} \bar{\beta}}-n A_{0} \bar{S}_{\bar{\phi}}+a_{19} \bar{\theta}=0
\end{aligned}
$$

$$
\text { and } \frac{v}{\operatorname{Pr}} \bar{\theta}_{\bar{\sigma} \bar{\phi} \bar{\phi}}-n A_{0} \bar{\theta}=0
$$

As before the above equations take the form

$$
\left.\begin{array}{l}
f_{\phi}-f_{\phi}+\theta=0  \tag{4.89}\\
s_{m}-s_{\phi}+R \theta=0 \\
\theta_{d \phi}-\operatorname{Pr} \theta=0
\end{array}\right\}
$$

with the boundary conditions

$$
\left.\begin{array}{l}
f(0)=f_{\theta}(0)=0, f_{\phi}(\infty)=0 \\
s(0)=s_{\phi}(0)=0, s_{\phi}(\infty)=0  \tag{4.90}\\
\theta(0)=1, \theta(\infty)=0
\end{array}\right\}
$$

The analytical solutions of (4.89), are
$f=\frac{\mathrm{L}}{\operatorname{Pr}^{\frac{1}{2}}}\left[e^{-\mathrm{Pr}^{\frac{1}{2}} \phi}-e^{-\phi}\right], \quad s=\frac{R}{\operatorname{Pr}^{\frac{6}{2}}}\left[e^{-\mathrm{Pr}^{\frac{1}{2}} \theta}-e^{-\phi}\right] \quad$ and $\quad \theta=e^{-\mathrm{Pr}^{\frac{1}{2}} \phi}$

The similarity requirements are

$$
\begin{aligned}
& h_{1}=b_{1} e^{n \bar{i}} \\
& h_{1} \propto e^{n i} \\
& U_{F}=b_{2} e^{n i}
\end{aligned}
$$

$U_{H^{\prime}}^{2} \propto g_{x} \beta_{r} \Delta T$ (characteristic length $L_{1}$ ), where $L_{1}=e^{n \bar{T}}$

$$
V_{F}=b_{3} e^{n t}
$$

$V_{F}^{2} \propto g_{F} \beta_{T} \Delta T$ (characteristic lenglh $L_{2}$ ), where $L_{2}=e^{n \bar{t}}$

$$
\Delta T=\alpha_{1} e^{2 \pi \bar{i}} \text { where } \alpha_{1} \frac{n}{b_{1} b_{2} \beta_{\tau} g_{x}}, \bar{t}=\tau
$$

$\Delta T \propto e^{2 n t}$

$$
\gamma^{2}=A_{0}
$$

The similarity variable $\phi$ is

$$
\begin{aligned}
& \phi=\frac{z}{a_{\gamma}}=\frac{z}{\sqrt{\frac{v}{n A_{0}}} \sqrt{A_{0}}} \\
& =\sqrt{\frac{n}{v} z}
\end{aligned}
$$

The velocity components are

$$
\begin{aligned}
& u=U_{F} f_{\phi}(\phi) \\
& v=V_{F} s_{\phi}(\phi)
\end{aligned}
$$

$$
w=0
$$

## Skin friction are

$$
\begin{aligned}
& \tau_{w l}=\mu\left(\frac{\partial u}{\partial z}\right)_{r=0} \\
& =\mu b_{2} \sqrt{\frac{n}{v} e^{n i}} f_{\infty}(0) \\
& \tau_{w 2}=\mu\left(\frac{\partial v}{\partial z}\right)_{z=0} \\
& =\mu b_{3} \sqrt{\frac{n}{v} e^{n i} s_{\phi \phi}(0)}
\end{aligned}
$$

Heat flux

$$
\begin{aligned}
& \boldsymbol{q}_{w}=-k\left(\frac{\partial T}{\partial z}\right)_{r=0} \\
& =-k \alpha_{1} \sqrt{\frac{n}{v}} e^{2 s i} \theta_{\phi}(0)
\end{aligned}
$$

## Case-8:

$$
\begin{aligned}
& \frac{\partial A(Y, \tau)}{\partial Y}=0, \frac{\partial B(\tau, X)}{\partial \tau}=0, \frac{\partial C(X, Y)}{\partial X}=0 \\
& \frac{\partial C(X, \gamma)}{\partial Y}=0, \frac{\partial A(Y, \tau)}{\partial \tau}=0, \frac{\partial B(\tau, X)}{\partial X}=0
\end{aligned}
$$

Choosing $h_{1}=h_{2}=1$,

$$
\begin{aligned}
& \text { Let, } \frac{\partial A(Y, \tau)}{\partial Y} \neq \text { constant } \\
\Rightarrow & \frac{U_{F}}{V_{F}}\left(a_{3}-a_{4}-a_{5}+a_{9}-a_{10}\right) \neq \text { constant } \\
\Rightarrow & k_{1}=\frac{U_{F}}{V_{F}} \neq 0_{2} l_{1}=a_{3}-a_{4}-a_{3}+a_{9}-a_{10}=0 \\
& \frac{\partial B(\tau, X)}{\partial t} \neq \text { constant } \\
\Rightarrow & V_{F}\left(2 a_{7}+a_{18}-a_{24}\right) \neq \text { constant } \\
\Rightarrow & k_{2}=V_{F} \neq 0_{1} l_{2}=2 a_{7}+a_{18}-a_{24}=0 \\
\Rightarrow & \frac{\partial C\left(X_{,} Y\right)}{\partial X} \neq \text { constant } \\
\Rightarrow & \left.k_{3}=\frac{1}{U_{F}} \neq 0, a_{n}-a_{1}-a_{2}\right) \neq \text { constant } \\
& \frac{\partial C(X, Y)}{\partial Y} \neq \text { constant } \\
\Rightarrow & \frac{1}{V_{F}}\left(a_{3}-a_{4}-a_{4}-a_{5}\right) \neq \text { constant } \\
\Rightarrow & \frac{1}{k_{2}}=\frac{1}{V_{r}} \neq 0, l_{4}=a_{3}-a_{4}-a_{5}=0 \\
\Rightarrow & \frac{\partial A(Y, \tau)}{\partial \tau} \neq \text { constant } \\
& U_{r}\left(2 a_{7}+a_{12}-a_{29}\right) \neq \text { constant }
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow & \frac{1}{k_{2}}=U_{F} \neq 0, l_{5}=2 a_{7}+a_{12}-a_{23}=0  \tag{4.95}\\
& \frac{\partial B(\tau, X)}{\partial X} \neq \text { constant } \\
\Rightarrow & \frac{V_{F}}{U_{F}}\left(a_{\theta}-a_{1}-a_{2}-a_{11}+a_{15}\right) \neq \text { constant } \\
\Rightarrow & \frac{1}{k_{1}}=\frac{V_{F}}{U_{F}} \neq 0, l_{6}=a_{0}-a_{1}-a_{2}-a_{11}+a_{15}=0 \tag{4.96}
\end{align*}
$$

The equations (4.91-4.96) implies,

$$
\begin{equation*}
a_{9}=a_{10}, 2 a_{7}=-a_{12}, \quad a_{11}=a_{15}, 2 a_{7}=-a_{1 k}, \quad a_{0}=a_{1}+a_{2}, \quad a_{3}=a_{4}+a_{5} \tag{4.97}
\end{equation*}
$$

By virue of equation (4.9), we get

$$
\begin{align*}
& \gamma^{2} U_{F}=a_{0} X+A_{0}  \tag{4.98}\\
& {[\text { By using (4 91) and (4.95)] }}
\end{align*}
$$

From (4.10), we have

$$
\begin{equation*}
\gamma^{2} V_{F}=a_{3} Y+B_{0} \tag{4.100}
\end{equation*}
$$

[By using (4.92) and (4.96)]
In view of equation (4.11), we get

$$
\begin{equation*}
\therefore \gamma^{2}=2 a_{7} \tau+C_{n} \tag{4.101}
\end{equation*}
$$

[By using (4.93) and (4.94)]
By virtue of equations (4.98-4.100), $U_{F}$ and $V_{F}$ are found to be

$$
\begin{align*}
& U_{F}=\frac{a_{0} X+A_{0}}{2 a_{7} \tau+V_{11}}  \tag{4.102}\\
& V_{F}=\frac{a_{3} Y+B_{0}}{2 a_{7} \tau+C_{0}} \tag{4,103}
\end{align*}
$$

Substituting (4 101-4.103) in the similarity requirements one may obtain the following relations between the constant ( $a$ 's).
$a_{n}, a_{3}$ and $a_{7}$ are arbitrary
$a_{1}=a_{0}, a_{2}=0, a_{4}=a_{3}, a_{5}=a_{6}=0, \quad a_{8}=a_{0}, a_{9}=a_{10}=a_{11}=0, a_{12}=-2 a_{7}$ $a_{13}=\frac{\left(2 a_{7} \tau+C_{0}\right)^{2}}{a_{0} X+A_{0}} \beta_{T} \Delta T g_{x}, \quad a_{14}=a_{3}, \quad a_{15}=a_{16}=a_{17}=0, \quad a_{18}=-2 a_{7}$,
$a_{19}=\frac{\left(2 a_{7} \tau+C_{0}\right)^{2}}{\left(a_{3} \gamma+R_{0}\right)} \beta_{\tau} \Delta 7 g_{Y}, \quad a_{20}=a_{0}, \quad a_{21}=a_{3}, \quad a_{22}=-4 a_{7}$.

Thus the general equation (3.25-3.27) take the forms for this case:

$$
\begin{aligned}
& v \bar{F}_{\overline{\phi \bar{\phi} \bar{\phi}}}+a_{0} \bar{F} \bar{F}_{\bar{\phi} \bar{\phi} \bar{c}}+a_{3} \bar{S} \bar{F}_{\bar{\phi} \bar{\phi}}+a_{7} \bar{\phi} \bar{F}_{\bar{\phi} \bar{\phi}}-a_{0} \bar{F}_{\bar{\phi}}^{2}+2 a_{7} \bar{S}_{\bar{\phi}}+a_{13} \bar{\theta}=0 \\
& v \bar{S}_{\bar{\phi} \bar{\phi} \bar{\phi}}+a_{3} \bar{S} \bar{S}_{\bar{\phi} \bar{\phi}}+a_{0} \bar{S}_{\bar{\phi} \bar{\phi}} \bar{F}+a_{7} \bar{\phi} \bar{S}_{\bar{\phi} \bar{\phi} \bar{\phi}}-a_{3} \bar{S}_{\bar{\phi}}^{2}+2 a_{7} \bar{S}_{\bar{\phi}}+a_{19} \bar{\theta}=0
\end{aligned}
$$

and

$$
\frac{v}{\mathrm{Pr}} \bar{\theta}_{\bar{\phi} \bar{\phi}}+a_{0} \bar{F} \bar{\theta}_{\bar{\phi}}+a_{3} \bar{S} \bar{\theta}_{\dot{\theta}}+a_{7} \bar{\phi} \bar{\theta}_{\bar{\phi}}-\left(a_{0} \bar{F}_{\overline{\bar{y}}}+a_{3} \bar{S}_{\bar{\phi}}\right) \theta+4 a_{7} \bar{\theta}=0
$$

The boundary conditions are

$$
\begin{aligned}
& \bar{F}(0)=\bar{F}_{\bar{\beta}}(0)=0, \bar{F}_{\bar{\phi}}(\infty)=0 \\
& \bar{S}(0)=\bar{S}_{\bar{\sigma}}(0)=0, \bar{S}_{\bar{\phi}}(\infty)=0 \\
& \bar{\theta}(0)=1, \bar{\theta}(\infty)=0
\end{aligned}
$$

As in previous cases, substituting $\bar{F}=\alpha f, \bar{S}=a s, \bar{\theta}=\theta, \bar{\phi}=\alpha \phi$ choosing $\frac{a_{0} \alpha^{2}}{v}=1$ and later writing $\frac{a_{3}}{a_{0}}=c, \frac{a_{7}}{a_{0}}=d$. Also we put $\frac{a_{13}}{a_{0}}=1$ and $\frac{a_{19}}{a_{0}}=R$ (constant) for free corvection.
The above equation with their attached boundary conditions are simplified to

$$
\begin{align*}
& f_{\psi \psi}+(f+c s) f_{\psi}+d \phi f_{\phi}-f_{\phi}^{2}+2 d f_{\phi}+\theta=0  \tag{4.104}\\
& s_{\psi \psi}+(f+c s) s_{\phi}+d \phi s_{\phi}-c s_{\phi}^{2}+2 d s_{\phi}+R \theta=0 \tag{4.105}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}^{-1} \theta_{\phi}+(f+c s) \theta_{\phi}+d \phi \theta_{\phi}-\left(f_{\phi}+c s_{\phi}\right) \theta+4 d \theta=0 \tag{4,106}
\end{equation*}
$$

The boundary conditions are

$$
\left.\begin{array}{l}
f(0)=f_{\phi}(0)=0, \quad f_{0}(\infty)=0 \\
s(0)=s_{\phi}(0)=0, \quad s_{\phi}(\infty)=0  \tag{4.107}\\
\theta(0)=1, \quad \theta(\infty)=0
\end{array}\right\}
$$

The similarity requirements are

$$
\begin{aligned}
& h_{1}=h_{2}=1 \\
& \begin{aligned}
U_{F} & =\frac{a_{0} X+A_{0}}{2 a_{7} \tau+C_{0}} \\
& =a_{1} \frac{\bar{x}}{\bar{t}}, \quad \text { where } \overline{\mathbf{r}}=X+X_{0}, \quad \bar{t}=\tau+\tau_{0}, a_{1}=\frac{a_{0}}{2 \alpha_{1}}
\end{aligned}
\end{aligned}
$$

$U_{F}^{2} \propto g_{X} \beta_{T} \Delta T$ (characteristic length $L_{1}$ ), where $L_{1}=\frac{\bar{x}}{\bar{t}}$ $V_{F}=\frac{a_{3} Y+B_{0}}{2 a_{7} \tau+C_{0}}$

$$
=\alpha_{2} \frac{\bar{y}}{\bar{l}}, \quad \text { where } \alpha_{2}=\frac{\alpha_{3}}{2 a_{7}}, \quad \bar{y}=Y+Y_{0}
$$

$V_{F}^{2} \propto g_{y} \beta_{T} \Delta T$ (characteristic length $L_{2}$ ), where $l_{2}=\frac{\bar{y}}{\bar{t}}$
$\Delta T=a_{3} \frac{\bar{x}}{\bar{t}^{2}}, \quad$ where $\alpha_{3}=\frac{a_{0}^{2}}{4 a_{3}^{2} g_{X} \beta_{T}}$
$\Delta T \propto \frac{\bar{x}}{\bar{l}^{2}}$.
and $\quad \Delta T=\alpha_{4} \frac{\bar{y}}{\bar{t}^{2}}, \quad$ where $\alpha_{4}=\frac{a_{0} a_{3}}{4 a_{7}^{2} \rho_{T} g_{Y}}$

$$
\Delta T \propto \frac{\bar{y}}{\bar{t}^{2}}
$$

$\therefore \gamma^{2}=\alpha_{5}(\bar{l})$, where $\alpha_{5}=2 a_{7}$
The similarity variable $\phi$ is,

$$
\begin{aligned}
\phi & =\frac{z}{\alpha \gamma}=\frac{z}{\sqrt{\frac{v}{a_{0}}} \sqrt{2 a_{7}(\bar{l})}} \\
& =\frac{\sqrt{a_{0} z}}{\sqrt{2 \operatorname{ma}_{10} a_{7}(\bar{f})}}
\end{aligned}
$$

The velocity components are

$$
u=U_{r} f_{\phi}(\phi), \quad v=V_{F} s_{\phi}(\phi)
$$

and $w=\frac{1}{h_{1} h_{2}}\left\{-\left(h_{2} y J_{F}\right)_{X} \bar{F}-\left(h_{1} \gamma_{F}\right)_{I} \bar{S}\right\}$

$$
=-\sqrt{\frac{v}{2 a_{0} a_{7} \bar{I}}}\left(a_{0} f+a_{3} s\right)
$$

Skin frictions are

$$
\begin{aligned}
\tau_{w 1} & =\mu\left(\frac{\partial u}{\partial z}\right)_{z=0} \\
& =\mu \sqrt{\frac{a_{0}^{3}}{8 a_{7}^{3} v}} \frac{\bar{x}}{(\bar{l})^{\frac{3}{2}}} f_{\infty}(0) \\
\tau_{w 2} & =\mu\left(\frac{\partial v}{\partial z}\right)_{z=0} \\
& =\mu \sqrt{\frac{a_{0} a_{3}^{2}}{8 a_{7}^{7} v}} \frac{\bar{y}}{(\bar{l})^{\frac{3}{2}}} s_{m}(0)
\end{aligned}
$$

Heat flux, $q_{w}=-k\left(\frac{\partial T}{\partial z}\right)_{z=0}$

$$
=-k \alpha_{3} \sqrt{\frac{a_{0}}{2 a_{3} v}} \frac{\bar{x}}{(\bar{l})^{\frac{5}{2}}} \theta_{\phi}(0)
$$

and $\quad \boldsymbol{q}_{w}=-k\left(\frac{\partial T}{\partial z}\right)_{z=0}$

$$
=-k \alpha_{4} \sqrt{\frac{a_{0}}{2 a_{7} v}} \frac{\bar{y}}{(\bar{f})^{\frac{5}{2}}} \theta_{\phi}(0) .
$$

## Chapter-5

Figures and Tables



Figure l(a). Variation of the dimensionless velocity $f^{\prime}$ along the $u$-direction with the sumbarity variable $\phi$ for different valucs of $c$ [ Bascd on equation(4.26-1.29)]


Figure 1 (b): Variation of the dimensionless velocity $s^{\prime}$ along the $v$-direction with the similarity variable $\phi$ for diferent values of $c$ | Based on equation(4.26-4.29)]


Figure l(c) Variation of the dimensionless temperature $\theta$ with the similanty variable $\phi$ for different values of $c$ 「 Eased on cquation(4 26-4.29)].


Figure 2(a): Variation of the dmensionless velocity $f^{\prime}$ along the $t$-direction with the simularity variable $\phi$ for different values of $d$ [Based on equation(4.26-4.29)].


Figure 2(b): Variation of the dimensionless velocity $s^{4}$ along the $v$-direction with the similanty variable $\phi$ for dillerent values of $d$ [ Bascd on equation(4.26-4.29)]


Fugure 2(c). Variation of the dimensionless temperature $\theta$ with the similanty varable $\phi$ for different valucs of $d$ [ Based on equation(4.26-4.29)].


Figure 3(a): Variaton of the dimensionless velocity $f^{\prime}$ along the $\mu$-direction with the similanty variable $\phi$ for different values of $\beta$ [ Based on equation(4.26-4.29)].


Figure 3(b): Variation of the dimensionless velocity $s^{\prime}$ along the $v$-direction with the similarity variable $\phi$ for different values of $\beta$ [ Based on equation(4.26-4 29)|.


Figure 3(c): Variation of the dimensionless temperature $\theta$ with the similarity variable $\phi$ for different valucs of $\beta$ [ Based on cquation(4 26-4.29)].


Figure 4(a). Varialion of the dimensiontess velocity $f^{\prime}$ along the $u$-dircetion whth the similarity variable $\phi$ for different valucs of $k_{1}$ (Bised on equation(4.26-4.29)|.


Figure 4 (b): Variation of the dimensionless telocicy $S^{\prime}$ along the $v$-direction with the similarity variable $\phi$ for different valucs of $\boldsymbol{k}_{1}$ [ Bascod on equation(4.26-4.29)].


Figure 4(c): Variation of the dimensionless lemperalure $\theta$ with the simularity tariable $\phi$ for different values of $k_{1}$ [Based on equation(4.26-1.29)].


Figure 5(a): Variation of the dimensionless velocity $f^{\prime}$ along the $w$-direction with the similanty vanable $\phi$ for differctt values of $R$ [ Based on equation(4.26-4.29)|.


Figure 5(b): Variation of the dimensionless velocity $s^{\prime}$ along the $p$-direation with the similarity variable $\phi$ for diflerent values of $R$ [ Based on equation(4.26-4.29)].


Figure 5(c): Variation of the dimensionless temperature $\theta$ with the similarity variable $\phi$ tor different values of $R$ I Bascd on equalion(4.26-4.29)].


Figure 6(a): Variation of the dimensioticss velocity $f^{\prime}$ along the $t$-direction with the simularity vanable $\phi$ for different valucs of Pr [ Based on equation(4.26-4.29)].


Figure 6(b): Variation of the dimensionless velocity $s^{\prime}$ along the $p$-direction with the similarity variable $\phi$ for different values of $\operatorname{Pr}$ [ Bascad on equation(4.26-4.29)].


Figure 6(c): Variation of the dimensionlcss temperarure $\theta$ with the smularity variable $\phi$ for different valucs of $\operatorname{Pr}[$ Based on cqualion(4.26-4.29) .


Figurc 7(a): Variation of the dimensionless skin fricion factor $f^{\prime \prime}$ along the $\%$-direction with $\beta$ [ Based on equation(4.26-4.29)]


Figure 7(b): Variation of the dimensionless skin friction factor $s^{\prime \prime}$ along the $v$-direction with $\beta$ [ Based on cquation(4.26-4.20)]


Figure 7(c). Variation of the dimensionless heat transfer factor $-\theta^{\prime}$ with $\beta$ [ Based on equation(4.26-4.29)].


Figure 8(a): Vanation of the dimensionless skin ficition lactor $f^{\prime \prime}$ along the $u$-direction with $\beta$ \{ Based on equation(4.26-4.29)].


Figure 8(b): Varation of the dimensionless skin friction factor $s^{\prime \prime}$ along the $v$-direction with $\beta$ [ Based on equation(4.26-4.29)].


Figure 8(c): Variation of the dumensionless heat transfer factor $-\theta^{\prime}$ wilh $\beta$ [ Batced on equation(4 26-4.29)].


Figure 9(a): Variauion of the dimenstonless skin fnction facior $f^{\prime \prime}$ along the $u$-direction with $c$ [ Bascd on equation(4.26-4.29)].


Figure 9(b): Variation of the dimensionless skin friction facior $s^{11}$ along the $w$-dircction with $c$ [ Based on cquation(4.26-4.29)].


Figure 9 (c): Variation of the dimensionless heat transfer lactor $-\theta^{\prime}$ wilh $c$ [ Baces on oquation(4.26-4.29)].


Figure IO(a) Vanation of the dimensionless skin fretion factor $f^{\prime \prime}$ along the $u$-drection wilh $d$ [ Based on equation(4,26-4.29)|.


Figure 10(b): Variation of the dimensionless skin friction factor $s^{\prime \prime}$ along the $v$-direction with $d$ [ Based on cquaion(4.26-4.29)].


Figure 10(c): Variation of the dimensionless heat Lransler factor $-\theta^{\prime}$ with $d^{\prime}$ [ Based on equation(4.26-1.29)]


Figure 11 (a): Variation of the dimensionless skın friction factor $f^{\prime \prime}$ along the $u$-direction will $k_{1}$ [ Based on equation(4.26-4.29)].


Figure 11(b): Variation of the dimensionless skin fretion factor $s^{\prime \prime}$ along the $u$-firccition with $k_{1}$ [ Based on cquatuon(4.26-4 29)]


Figure 11 (c): Variation of the dimetsionless heat tranfer Fathor $-\theta^{\prime}$ with $k_{1}$ [ Basced on equation(4 26-4.29)].


Figure 12(a): Variation of the dimensionless skon friction factor $f^{\prime \prime}$ along the $w$-direction sith $R$ [ Based on equation(4 26-4.29)].


Figure 12(b): Variation of the dimensionless skin friction factor $s^{\prime \prime}$ along the v-direction with $R\{$ Based on cquation(4.26-4.29) $\}$


Figure 12(c): Variation of the dimensionless heat transfer factor $-\theta^{\prime}$ wilh $R$ [ Based on cquation(4.26-4.29)].

## Table - (1)

| $\beta$ | $f^{\prime \prime}(0)$ | $s^{\prime \prime}(0)$ | $-\theta^{\prime}(0)$ |
| :---: | :---: | :---: | :---: |
| 03333 | 0.6956 | 0.2920 | 0.6613 |
| 0.3360 | 06940 | 0.2918 | 0.6744 |
| 0.3390 | 06922 | 0.2917 | 0.6887 |
| 0.3420 | 0.6905 | 02916 | 0.7029 |
| 0.3450 | 0.6887 | 02916 | 0.7169 |
| 0.3480 | 0.6869 | 0.2916 | 0.7307 |
| 0.3510 | 0.6851 | 0.2916 | 07445 |
| 0.3540 | 0.6832 | 02917 | 0.7580 |
| 0.3570 | 0.6827 | 0.2920 | 0.7710 |
| 0.3600 | 0.6809 | 0.2921 | 07845 |
| 03630 | 0.6803 | 0.2925 | 07975 |
| 0.3660 | 0.6797 | 0.2928 | 0.8103 |
| 0.3690 | 06791 | 0.2932 | 0.8231 |
| 0.3720 | 0.6785 | 0.2936 | 0.8358 |
| 0.3750 | 0.6778 | 0.2941 | 0.8484 |

$\mathrm{c}=10, \mathrm{~d}=1.0, \quad k_{1}=0.3, \quad \mathrm{R}=0.4, \quad \mathrm{P}_{\mathrm{F}}=0.72$

## Table - (3)

| $c$ | $f^{\prime \prime}(0)$ | $s^{\prime \prime}(0)$ | $-\theta^{\prime}(0)$ |
| :---: | :---: | :---: | :---: |
| 01000 | 0.9198 | 0.0864 | 0.3740 |
| 0.2000 | 09173 | 0.0856 | 0.3749 |
| 03000 | 0.9154 | 0.0849 | 0.3754 |
| 0.4000 | 09135 | 0.0842 | 0.3760 |
| 0.5000 | 0.9111 | 0.0835 | 0.3768 |
| 0.6000 | 0.9094 | 0.0828 | 0.3773 |
| 0.7000 | 0.9077 | 0.0821 | 0.3778 |
| 08000 | 0.9054 | 0.0814 | 0.3786 |
| 0.9000 | 0.9038 | 0.0808 | 03790 |
| 1.000 | 0.9022 | 00801 | 0.3795 |
| 2.000 | 0.8884 | 00740 | 0.3838 |
| 3.000 | 08793 | 0.0682 | 0.3866 |
| 4.000 | 08737 | 0.0625 | 0.3883 |
| 5.000 | 0.8724 | 0.0565 | 0.3887 |
|  |  |  |  |

$\mathrm{d}=0.2, \beta=0.3, k_{1}=0.4, \mathrm{R}=0.1, \operatorname{Pr}=0.72$

Table - (2)

| $\beta$ | $f^{\prime \prime}(0)$ | $s^{\prime \prime}(0)$ | $-\theta^{\prime}(0)$ |
| :---: | :---: | :---: | :---: |
| 0.3333 | 0.3110 | 0.1255 | 18072 |
| 0.3560 | 0.3102 | 01252 | 1.8489 |
| 0.3390 | 03093 | 0.1249 | 1.8984 |
| 0.3420 | 0.3085 | 0.1245 | 1.9402 |
| 03450 | 0.3071 | 0.1241 | 1.9852 |
| 0.3480 | 03063 | 0.1238 | 2.0295 |
| 0.3510 | 0.3055 | 0.1235 | 2.0734 |
| 0.3540 | 0.3047 | 0.1232 | 2.1167 |
| 0.3570 | 0.3035 | 0.1228 | 2.1597 |
| 0.3600 | 0.3028 | 0.1226 | 22021 |
| 0.3630 | 0.3021 | 0.1224 | 22441 |
| 0.3660 | 0.3014 | 0.1222 | 2.2856 |
| 0.3690 | 0.3007 | 0.1220 | 2.3267 |
| 0.3720 | 0.3001 | 0.1218 | 2.3675 |
| 0.3450 | 0.2994 | 0.1217 | 2.4076 |

$\mathrm{c}=1.0, \mathrm{~d}=1.0, \quad k_{1}=0.3, \quad \mathrm{R}=04, \quad \mathrm{P}=7.00$

Table - (4)

| $d$ | $f^{\prime \prime}(0)$ | $s^{\prime \prime}(0)$ | $-\theta^{\prime}(0)$ |
| :---: | :---: | :---: | :---: |
| -0.3000 | 0.8724 | 0.0563 | 0.3887 |
| -0.2000 | 0.9508 | 00841 | 0.3352 |
| -0.1000 | 09458 | 0.0845 | 0.3445 |
| 00000 | 0.9374 | 0.0846 | 0.3545 |
| 01000 | 0.9263 | 0.0845 | 0.3651 |
| 0.2000 | 0.9135 | 0.0842 | 0.3760 |
| 0.3000 | 0.8984 | 0.0836 | 0.3875 |
| 0.4000 | 0.8834 | 0.0830 | 0.3988 |
| 0.5000 | 0.8671 | 0.0821 | 04105 |
| 0.6000 | 0.8501 | 00812 | 0.4225 |
| 0.7000 | 0.8338 | 0.0802 | 0.4341 |
| 0.8000 | 0.8166 | 00791 | 0.4463 |
| 0.9000 | 0.7999 | 00779 | 0.4583 |
| 1.0000 | 07841 | 0.0767 | 0.4700 |
| 2.0000 | 0.6493 | 0.0654 | 0.5839 |

$\mathrm{c}=0.4, \quad \beta=0.3, \quad k_{1}=0.4, \mathrm{R}=0 \mathrm{I}, \quad \mathrm{Pr}=0.72$

Table - (5)

| $R$ | $f^{\prime \prime}(0)$ | $s^{\prime \prime}(0)$ | $-\theta^{\prime}(0)$ |
| :---: | :---: | :---: | :---: |
| 0.0000 | 0.9486 | 0.0000 | 0.3522 |
| 01000 | 0.9482 | 0.0885 | 0.3522 |
| 02000 | 0.9476 | 0.1773 | 0.3518 |
| 0.3000 | 0.9462 | 0.2663 | 0.3513 |
| 0.4000 | 0.9440 | 0.3557 | 0.3507 |
| 0.5000 | 0.9414 | 04459 | 0.3497 |
| 0.6000 | 0.9376 | 0.5366 | 0.3487 |
| 0.7000 | 0.9332 | 06285 | 0.3474 |
| 0.8000 | 0.9279 | 07216 | 0.3459 |
| 0.9000 | 0.9212 | 0.8161 | 03442 |
| 1.0000 | 0.9133 | 09125 | 0.3421 |
|  |  |  |  |

$\mathrm{c}=0.0, \quad \mathrm{~d}=0.0, \quad \beta=0.3, \quad k_{1}=1.0, \mathrm{P}=0.72$

Table - (6)

| $k_{\perp}$ | $f^{\prime \prime}(0)$ | $s^{\prime \prime}(0)$ | $-\theta^{\prime}(0)$ |
| :---: | :---: | :---: | :---: |
| -1.0000 | 0.9133 | 0.9125 | 0.3421 |
| 1.0000 | 0.9133 | 09125 | 0.3421 |
| 2.0000 | 0.9435 | 0.8934 | 03490 |
| 3.0000 | 0.9485 | 0.8904 | 0.3501 |
| 4.0000 | 0.9503 | 0.8895 | 0.3505 |
| 50000 | 0.9509 | 08889 | 03507 |
| 60000 | 0.9514 | 0.8886 | 0.3508 |
| 7.0000 | 0.9516 | 0.8885 | 0.3509 |
| 8.0000 | 0.9518 | 0.8884 | 0.3509 |
| 9.0000 | 0.9519 | 0.8883 | 0.3509 |
| 10.0000 | 0.9520 | 0.8883 | 0.3509 |
| 11.0000 | 0.9521 | 0.8882 | 0.3509 |
| 12.0000 | 0.9521 | 0.8882 | 0.3509 |

$c=0.0, \mathrm{~d}=00, \beta=0.3, \mathrm{R}=1.0, \quad \mathrm{Pr}=0.72$

## Results and Discussion

In the present investigation, possible similarity solutions of unsteady laminar boundary layer free convection flow around a verical curvilinear surface is solved numerically by Nachtsheim-Swigen iteration technique. The calculations were carried out for several values of parameter $\beta$ (Table 1 and Table 2) for $\operatorname{Pr}=072$ and $\mathrm{Pt}=7.0$. For constant all temperature $\beta=\frac{1}{3}$ and constant heat flux $\beta=\frac{3}{8}$. We display numerical values of $f^{\prime \prime}(0), s^{\prime \prime}(0),-\theta^{\prime}(0)$ in the range $.3333 \leq \beta \leq .3750$ in tabular form. The values for $f^{\prime \prime}(0), s^{\prime \prime}(0),-\theta^{\prime}(0)$ may be obtained at the rectangular body surface $(\phi=0)$ which are required in evaluating the skin-frictions and heat transfer co-efficients.

Figures $1(\mathrm{a}, \mathrm{b})$ and 1 (c) represent respectively dimensionless velocity and temperature profiles for $d=0.3, \beta=0.3, k_{1}=0.4, R=0.5, \operatorname{Pr}=0.72$ with several values of c . The velocity profiles vary as usual with the parameter c. From figure $l(a, b)$ it can be concluded that the velocity profile decresses as the values of the parameter c(0.0-1 5) increases Near the surface velocity profile increases, becomes maximum and then decreases and finally takes asymptotic values From figure $1(c)$ we observe that the temperature profile is large near the surface and decreases away from the surface and finally takes asymptotic value. Here we also see that temperature profile decreases with the increases of the parameter c

Figures $2(a)$ and $2(c)$ represent respectively dimensionless velocity and temperature profiles for $c=0.4, \beta=0.3, k_{1}=0.4 \mathrm{R}=05$ and $\operatorname{Pr}=0.72$ From Figure 2(a,b) we observe that the velocity profile decreases owing to increase in the value of the parameter d. Near the surface velocity profile becomes maximum and then decreases and finally takes asymptotic values.
From figure 5 (c) we see that the temperature profile remains unchanged for different values of the parameter $R$ For $0.0 \leq R \leq 0.8$ the temperature profile becomes maximum at the surface of the plate then decreases away from the plate and finally takes asymptotic
value at $\phi=4.2$. From $5(b)$ it is observed that the velocity profile increases as the value parameter $\mathbf{R}$ increases.

From figure 9 (a) and 9 (b) we observe that along u-direction skin friction gradually decreases with the increasing of parameter c , the skin friction more decreases with the increasing of c . The fig. $9(\mathrm{c})$ asserts that the parameter c increases the heat transfer rate highly with its increasing value. With one of the parameter $R \rightarrow 0, V_{F} \rightarrow 0$, the equation (3.26-3.29) may be well compared with 2-dimenssional equations of renowned authors.

## Chapter-6

## Conclusion

An analysis is made of three dimensional ursteady laminar boundary layer equations for free convection flow around a curvilinear surface, in order to establish necessary and sufficient conditions under which similarity solutions are possible. On the basis of these condrions, out of eight possible cases five cases have been studied here. The remaining three stcady possible cases were derived by Khan (1998). An additional parameler $d$, which is the ratio of boundary layer thickness due to variations with respect to position and time is established here. For this situation; the possible variation in $\Delta T$ and the scale factors $h_{1}$ and $h_{2}$ are found in the similarity solution for the momenturn equations and energy equation. Hence with the positive real value of $d$, the flow parumeters like skin friction coelficients ( $=\tau_{w 1}(0), \tau_{w 2}(0)$ ) are found to decrease while heat transfer coefficient $\left(=g_{w}(0)\right)$ incrcases. Such effects are quite remarkable in presence of otber parameter $\boldsymbol{k}_{1}\left(=\frac{U_{F}}{V_{F}}\right)$ in the momentum equations, but the energy equation is of free from this parameter. Further investigation are necessary to draw the overall remarks conclusively.

## References

Acrivos, A.

Blasius, H .

Braun, W. H., Ostrach, S. and Heighway, J. E.

Chaudhary, M.A., Merkin, J. H. and Pop, I

Eckert, E. R. G., and Soehngen, E. E

Eliot, L.

Ganapathy, R.

Goldstein, R. J., and Brigges, D G

Hansen, A. G., and Ohio, C.

Hellums, J D., and Churchill, $\mathrm{S} \mathbf{W}$.

1960 A theoretical analysis of laminar natural convection heat transfer to non-Newtonian lluids.
A. I. Ch. E. J1 6, 584-590.

1908 Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Physik, Bd. 56, 1-37. Engl. Translation in NACA-TM-1256.

1961 Free-corvection similarity flows about twodimensional and axisymmetric bodies with closed lower ends.
Int. J. Heat Mass Transfer Vol. 2, 121-135.
1995 Similarity solutions in free convection boundary layer flows adjacent to vertical permeable surfaces in porous media.
Eur J. Mech., B/Fluids, Vol. 14, No. 2, 217-237.
1948 Studies on heat transfer in laminar free convection with Zehnden-Mech interferometir.
Tech. Rept 5747, ATI 44580, Air Materiel Command (Dayton, Ohio)

1970 Free convection on a two-dimensional or axisymmetric body
Quanterly Journal of Mechanics and Applied
Mathematics 23 153-62.
1997 Time-dependent free convection motion and heat transfer in an infinite porous medium induced by a heated sphere. Int. J. Heat Mass Transfer. Vol. 40, No. 7, 1551-1557.

1964 Transient free convection about vertical plates and circular cylinders.
Joumal of heat Transfer 86, 490-500.
1958 Possible Similarity solutions of the Laminar, Incompressible, Boundary-Layer Equation.
Trans. ASME 80, 1553.
1962 Transient and steady state, free and natural convection, Numerical solutions AIChE Journal 8, 690-5.

Jafarpur, K., and
Yovannovich, M, M

Jayaraj, S.,
Dinesh, K. K., and Pillat, K. L

Jai, H., and
Gogose, G.

Johnson, C H., and Cheng, P .

Khan, M. A. H.

Kumari, M., Staouti, A.,
Nakamura, S.,
Takhar, H. S., and
Nath, G.
Kumari, M., and
Nath, G.

Merkin, J. H., and
Pop, 1 .

Nanbu, K.

Merkin J H. 1985 A note on the simularity solutions for free convection on a vertical plate
Journal of Engineering Mathematics 19, 189-201.
1992 Laminar free convective heat transfer from isothermal spheres: a new analytical method
lnt J. Heat Mass Transfer. Vol. 35, No. 9, 2195-2201

1999 Thermophoresis in natural convection with variable properties.
Heat and Mass Transfer 34, 469-475.
1996 Laminar natural convection heat transfer from isothermal spheres.
Int. J. Heat Mass Transfer, Vol. 39, No. 8, 1603-1615.

1978 Possible similarity solutions for free convection boundary layers adjacent to flat plates in porous media.
Int. J. Heat Mass Transfer, Vol. 21, 709-718.
1998 Free convective laminar boundary layer flows about an inclined vertical curved surface.
M. Phil Thesis., Math , BUET

1996 Unsteady free convection flow over a continuous moving vertical surface.
Acta Mecharrica 116,75-82.

1984 Unsteady free convection boundary layer flow at a three-dimensional stagnation poimt.
Engineering Transactions 32, 3-12.

1996 Conjugate free convection on a vertical surface. lint J. Heat Mass Transfer, Vol. 39, No. 7, 1527-1534.

1971 Limit of pure conduction for unsteady free convection on a vertical plate Int. J. Heat Mass Tranfer, Vol. 14, No 4, 1531.

Ostrach, S

Pop, I , and
Takhar, H. S.
Rees, D. A. S., and Pop, I.

Sattar, M. A., and
Alam, M M.

Schmidt, E., and
Bechmann, W.

Schuh, H.

Slaouti, A,
Takhar, H S , and Nath, G.

Sparrow, E M. and Gregg, J L.

Stewart, W. E.

Soundalgekar, V. M. 1972 Viscous dissipation eflects on unsteady free
1972 Viscous dissipation eflects on unsteady free
convective flow past an infinite, vertical porous plate with constant suction.
Int. J. Heat Mass Transfer, Vol. 15, 1253-1261.
1953 New aspects of natural convection heat transfer. Trans ASME 75, 1287.

1993 Free Convection from a Curved Surface. ZAMM. Z. angew, Math. Mech. 73, 6, 534-539.

1995 Free Convection Induced by a Verlical Wavy Surface With Uniform Heat Flux in a Porous Medium.
Transactions of the ASME, Vol. 117, 547-550
1994 Themal diffusion as well as transpiration effects on MHD free convection and mass transfer flow past an accelerated vertical porous plate.
Indian Journal of Pure and Applied Mathematics 25, 679-88

1930 Das Temperature-und Geschwidigkeitsfeld vor einer Wärme abgebenden senkrechter platte bei natürlicher konvection.
Tech. Mech u. Termodynamik, Bd. 1, (10), 341-349.

1948 Boundary Layer of temperature.
Gt. Brit. Ministry of Air Production Volkenrode Repts. and Transls, 1007.

1998 Unsteady free convection flow in the stagnation piont region of a three-dimensional body.
Int. J. Heat Mass Transfer, 41, 3397-3408.

1958 Similar solutions for free convection from a nonisothermal vertical plate.
Trans. ASME , Vol, 80, 379.
1971 Asymprotic calculation of free convection in Laminar Three-dimensional systems.
Int. J. Heat Mass Transfer, Vol. 14, 1013-1031

Suwono, A

Williams, J. C.,
Mulligan, J C., and Rhyme, T. B.

Yang, $K . T$.
1960 Possible similarity solutions for laminar free convection on vertical plates and cylinders
J. Appl. Mech. 27, 230.

Zakerullah, M., and 1998 Similarity requirements for combined forced and Maleque, K. A dimensional systems.
Int. J. Heat Mass Transfer, Vol. 23, 53-61.
1987 Semi-similar solutions for unsteady free-convection boundary layer flow on a vertical that plate.
Journal Fluid Mechanics 175, 309-32.
free convective laminar boundary layer now over

1980 Laminar free convection Boundary Layer in threevertical curvilinear surfaces.
Journal of Bangladesh Academy of Sciences,
Vol. 22, No. 1, 79-90


