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Abstract

Finite element method is an efficient method for solving ordinary and partial differential

equations in both lincar and nonlinear cases that arise in different branches of applied

sciences slIeh <ISheat transfer, fluid flow, solid meehm:tics, quantum mechanics, All kinds

of problems such as initial and boundary value problems and eigenvalue problems are

solved by using finite clement method. In all these cases algebraic polynomial or

Lagrange interpolation fnnClion is used to approximate the field vari<lble.

In our present study we have replaced the Lagrange interpolation function by the

Hypcrbolic interpolations namely sine and tangent hyperbolic interpol<ltion in solving an

eigenvalue problem by finite element method. The resnlt shows tbat eigenvalucs obtained

by using sine and tangcnt hyperbolic interpolation agree well with those of Lagrange

interpolatioll.
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Chapter 1

INTRODUCTION

1.1 General

Finite element method is one of the bcst numerical methods for solving a wide variety

of practical problems in the Jleld of applied science and engineering. It has its

superiority other methods becansc of its ability to solve problems concerning domain

with irregular geometry and heterugeneous composition. Variou~problems slleh as Heat

Transfer [IJ, Nonlinear [2], Transient [3J and Eigenvaille Problems [4-6J are solved by

using finite element method. Because of the close similarity between the equations of

eigenvalue and boundary value prublems the step~ involved in the construction of their

finitc clement models are entirely analogous. Galerkin weighted residual procedure is

used to dedllce the finite clement model of eigenvalue problem.

Differential eigenvalue problems are then reduced 10algebraic eigenvaluc problems by

means of the finite element approximation. For most of the problems A and B will be

symmetric matrices of order n and X is a column vector with n components called the

eigenvector. If the physical problcm is the Iree vibration analysis of a strllclure A \vill

be the stiffness matrix B will be mass matrix and }. is the square of natrual frequency

and X is the mode shape of the vibrating structure. The eigenvallie problem can be

written m.(A - XB)X= O. There are various methods of solving algebrui~ eigenvalue

problem su~h as Jacobi method, Power method, subspace iteration method etc. In

solving our problem Jacobi method has been used.

In this method the real symmetric malrixA is reduced to a diagonal matrix by a serics of

orthogonal transformation 51' 51------------ III 2x2 subspaccs. When the

diagonalization is completed the eigenvali.les are located on the diagonal and the

orthogonal matrix of eigenvectors is obtained as the product of all orthogonal
transformation.

Here will be considered the solution of the eigenvalue problem

_J,~[x2dIjlJ-~1jI=21j1 which was solved by Ramaolum et al [6], in a
xdx dx x
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different manner. In general Lagrange interpolation and Hermite interpolations arc used

in solving the problem by finite clement method. Lagrange interpolation is used in

solving second order problem and Hermite is used in fourth order problem. Rammohan

er al used Lagrange interpolation. It has been replaced by Hyperbolic interpolation and

is solved the problem to find the eigenvalues. Numerical calculation will be perlbnned

by using FORTRAN programming language.

1.2 Objectives of the Work
The main object of this study is to find the effect ill the solution of the eigenvahle

problem [6] by finite element method if the hyperbolic interpolation is used instead of

Lagrange interpolation. Rummohan at al [6] calculated the eigenvalLles using linear

clement and Lagrange interpolation. We shall find the eigenvalues for quadratic and

cubic clement using Lagrange interpolation.

Eigenvalues will be calculated for tbe linear, quadratic elcment using bypcrbolic

interpolation instead of Lagrange interpolation and compare the results with those

obtained by Lagrange interpolation to observe the effect of hyperbolic interpolation on

the solution of eigenvalue problem.

1.3 Review of thc Earlier Works
The conception of finite element method has come from the idea of removing the

difficulties faced by weighted residual methods where the approximation function is

derived from intuitive idea and the body is considered as a whole body. In the finite

element method the body is discretized into sub-domains and the systematic function is

derived for each sub-domain.

The use of piecewise-continuous functions defined over a sub-domain to approximate

an unknown function can be found in the work of Courant [7J, who used an assemblage

of triangnlar elements and the principle of minimum tolal potential energy to study the

St. Venant torsion problem. in 1943.Although certain key features of the finite element

method ean be found in the works of Hrenikoff [8J and Courant [7J, its formal

presentation is attributed to Argyris and Kelsey [9] and Turner, Clough, Marlin and

Topp [10J.The teun 'finite clement' was first nsed by Clough [11] in 1960, in his paper

titled, "The Finite Element Method in Plane Stress Analysis." After its introduction it
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has continually developed and improved. Since its inception the literature on finite

element application has grown exponentially. While in early days the contribulors have

been almost engineers, today a large of them comes from the field of mathematics.

Various types of problems such as Hyperbolic Problems [12] solid mechanics [13] are

solved by using finite element method. lnitiaJ value problems and boundary value

problem~having Dirichlet, Neumann and mixed boundary conditions are solved by this

method.

Mo~t boundary value problems have an associated eigenproblem. The two are closely

related both in physical meaning and mathematical expression. Most boundary value

problems have an associated eigenproblcm. The two arc closely related, both ill physical

meaning lind mathematical expression,

There are presently several methods that arc appropriate for the medium to large

generalized eigenproblems that occur in finite clement application. They take full

advunlage of the symmetric, positive definite, bunded properties of the stifl'nes~and

mass matrices, One or more of the followingmethods will be found in most ~ommercial

finite element progrilItlsthat solve eigenproblem [14]'

1. Generalized Jacobi method

2. Householder method

3. Givens method

4. Lanczos method [15J

5. Subspace iteration method [16J
The first method is based on the classical Jacobi method [1846J for the standard

eigenproblcm. It was modified dwing 1960s to handlc the generalized eigenproblem.

The modification is referred to as the genereliled Jacobi method. The algorithm

(Converging for a wide range of problems) is one of the easiest to understand und code,

The generalized Jacobi method calculates the entire eigensystem (i.e. all eigenvailies

and eigenvector) and therefore by itself, would be appropriate only for small problem.

In order to extend its usefulness to large problems, it is first necessary to reduce the

large eigenproblems to a much smaller eigenproblem by eleminating the values of

dependent variable associated with higher eigenvalues.
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The resulting smaller problem models only the lowest eigenvalues and corresponding

eigenvectors. An algorithm that performs such a reduction is sometimes called an

eigenvalue economizer. The most widely used one at present is the Guyan reduction

[17] .
Different solution techniques to solve the eigenproblcms are illustrated in details in [18]

and [19].

Rmnmohan et ill [6J solved the eigenvalue problem 10 calculate the energy levels of

quantum mechanical system by finite clement nlethod. This method provided a

convenient procedure for the calculation of energy eigenvalues of the quantum

mechanical system. They investigated the levels of accuracy that can be attained in the

method of finite clements using various approximations. They illustrated it by

considering two examples which formed a convenient basis for describing the

calculation tcchnique, One of them is the radial equatiun for hydrogen atom fur

sphcrieally symmetric statcs and the other is simple harmunic Oscillator in one

dimension. These twu illustrative examples provide guidelines in the calculation of

energy cigenvalues of the hydrogen atom in an arbitrary spatially uniform magnetic

field, a problem not solvable by analytical means.



Chapter 2

WEIGHTED-RESIDUAL METHODS

Weighted Residt.:al Methods and Rayley-Ritz method play an important role for the

mathematical development of finite clement method. The weighted residual methods are

discussed here.

Suppose a differential equation is \0 be solved is

Au=jm ~ (2.1)

where A lS the operator $ ','

T:1e pJnction u is not only required to sa'c'isfythe equa~ion, it is also required to oatisfy

some boundary condiLions,

In the Weighted melhod the solution u is approximated as

Lto '" LC,9j + ~o (2.2)

t/Jo and Pj are function of ;; and C/8 are para.:neters,t/Jo is required to satisfy all

speeiflcd hQundary conditions and 9, arc required to satisfy homogeneous form of all

boundary conditions of the problem.

Substllution of the approximate solutiOn 11" into the left-hand ,ide of equation (2.1)

gives a function In "A(lIn) that, in genc'i-al, is not equal to the specified function! The

difference A(u,,) - j, called the residual of the approxi:-natlOn is nonzero,

The re,ldual It is a funcLlOn of position a~ "veil as of the parameters c:,s, In ihe

\Vclghtcd residual method as the name suggeststhc parameter; 'is are determined by

rcquiri:lg the resIdual It to vanish m the weighted integral sense,

fw, (x)R(x,c J}it" 0
c

i =I, 2, 3, .. ," (2.3)

where lV,', are Lheweight funClions ~nd n i, a olle-d'mensional com;:.in, which in

gcacrai, are not the same as the approximation fun~tiOll 9,. The ~et {w,} must be a

•

"
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linearly independent set, otherwise, the equations provided by equation (2 3) will not be

linearly independent and hence will not be solvable.

Jw(A("J-I)i< ~ 0

Jw(AI2:, ,I, +,,)-I}Jx = 0

JwA~:>J~,dx '" Jw(j - A(<po))dx
,[(wA(I,)'" ]C, = Iw(I - A(I,))'"

Some of the weighted residual methods are

1. The Petrov-Galerkin Method
The weighted residual is known as I'ctrov-Galerkin method when w, ot-,p.. When the

operator A is linear, equation (2.3) can be simplified to the form

(2.4)

i '"1,2,3, ... __,11

Note that the coefficient matrix tAl is not symmetric:

A" '" JwA,p)~;tAJJ
W

2. Tile Galerkin Method

For the choice of weight function w equal to the approximate function,p" the

Weighted-residual method is hellef known as Galerkin method

Now, w=1/!,
(25)

I.e, weight function = trial function

j '" 1,2,3 .. _ .... ,11

where

(
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(2.6)
J '" 1,2,< .••.. ,11(,,(,)R(,,,,)1' 0 Q;

o
Obviously, the Galerkin method is quite powerful since it can be applied 10 physical

problems thai do not have an altemative variational formulation

Once again we note that A'i is not symmetric.

If the equation permits, and oue wishes, the differentiation can be transferred from the

solution u to the weight function W =' !/Jr'and on thereby obtains the weak form to relax

the continuity requirements 011 the approximation functions and include the specifIed

natural boundary conditions ofille problem.

With equation (2.S), equation (2.3) yields

3. The Least Square Method
In this method we determine the parameters C J by minimizing the in\cl:\rat of the square

oflhe residual.

Choosing
oj{

WJ"'- ",,
(2,7)

(2.9)

(2,8)
j -'I, 2, 3,,, "..,n

Since we integrate w, r. to x, it follows that the quantity I depends on the parameters

e/ only, i.e. J eoJ(C1,Cl" .... ,Crt)' From equation (2.9) it is concluded that

In order to evaluate the choice, consider the following quantity I;

J '" jR'(x,'"',, .., "..,cn)dx

So the equation (2.3) takes the fOlm

(2.1 1)

B1 eo2JR BRd;( (2.\0)

Bc} [l Bc,
An evaluation of equation (2.9) showS that J is the square of the error, i.e, the residual,

integrated over the region of interest, A comparison equation (2.8) and (2.10) reveals

that
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I.e. our choice of weight flmction given by equation (2.7) implies that { is stationary. As

the residual R lind thus also the quantity I, can be made arbitrarily large, it is concluded

that the stationary of I as expressed through equation (2 I J) is a minimum,

Consequently, the choice of weight function given by equation (2.7) implies that the

square orthe error is a minimum~ hence the terminology oflhe least-squares method.

The Least-square method always results in a symmetric in a symmetric coefficient

matrix, which is clearly an advantage inllumerical calculations.

bA(~,)[ A(~,CJ?I+~)-j JdX ~ 0

tllAI,),A&J"'} "1A(I,liJ - Alo)]d,

"'LAljc, ""f~
J='

Here,

AlLC"h + qlol- f =' 11.

an
"'=-, IX

"

4. The Collocation MethOd
In the Collocation method, we seek an approximate solution in the form of equation

(2.11) by requiring the residual in the equation to be identical! Yzero at n selected points

x, in domain n...
i.e. R(x"cj)=O, i=1,2,3, ,11

woolf, =' o(x - x, )=Dlrac della junction

In this method the weight function W is chosen based on Dirac's delta function.

J(x _ x,). This function is defined as

(

00 if
o(x-x,)= 0

x=x,
otherwise

(212)

(2.13)



9

where x, is a given fn,ed value. Alternatively due to equation (2.12), it may be written

(2,15)

(2.14)

W '" [oCr- .<)5(x - x,) .....S(x - xJ]

where x; and ;( denote x _values slightly larger than and smaller x" respectively

In the point collocation methml, the weight function w is chosen such that

equation (2.13) as

called collocation points. In order to illustrate the consequence of this choice of weighl

function, it is evaluated

where w '" w, ,w" w" •...•..•. , IV, are known functions of x,

The f1x:edpoints x" x"''"' x" are chosen arbitrarily within the region" ,:;x,:; b and are

•fwdx=oO which becomes

",
J8{x-x,)Rdro=O j=oI,2, ... ,11

(2.16)

"

"That is, the point collocation forces the residual R(xJ,) to be zero at the collocation

points.

As Dirac's delta function is zero unless x =' x, we have

Illustration
Let us illustrate the above methOds by considering an example
Here will be shown the various weighted residual differ in how the weight function IV is
chosen. Obviously, the specific choice of the weight function influences the values of

the parameters '1"2" "",c", which aTCto be detcrmined.

d'lI 1___ 1I+X ",0
dx' 11(0)",0, 11'(1)",1

1I(X)
~or a weighted residual method !fi, and !fi, should satisfy the following conditions:

The exact solution is givcn by
2cos(l-x)-sinx 1 2+x -

cosl

'.r
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(~ati5fythe actual be.)
,

lo(l)~l

.,(1)~0 (satisfy the homogeneous form of actual be.)

We take n=2. Let the functions 5alisfying the above conditIOns be

jiI,(x)==x t/>,o=x'(x'-Z), rP,=x(x'-3)

.o(o)~o,

.,(o)~o

the residua! in this approximation is

Pctr(lv_Galcrkin Method

Let the weight function be ,
w==W, =x

11JeIJ

,
w=If',=c

,
Je<RdI:=O
o

>oct
,
Jx'Rdx=O,

~c +17817c +29 =0
50000 1 5000' 100

42251_c +-c+_~O
315'8'42

c _ 96406 == 0,0224724
L 4289985

c = 369997 == -0,0862468
l 4289985

The solution is up" == <Po+ C,$, + c,i/J,
=1.258740 x-O,0449448 x' -0,0862468x' + 0,0224724 .1'4

The Galcrldn Method

The weight function in this case is

w="" =X2(X2 -2)
,
V«'-2)Rd<~O,
,

,
Jx(x' -3)Rdx=O
,

914 29 8-0+-0 +_~O
105 I 24' 105

3113,~---
1 1067116 =0.00291720

c = _ 22428 - -0.08406958
, 266779

Uo =1.2522087 x-O,0058344>:' _0,08406958>:' +0,0029172x
4
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The Least Square Method

. k" ali aR1a mgw"'Wl==-' W==\I',==-
Ge, Dc,

We have,
,
f -(lOX' +x4 -4)R dx == 0

"
161 67 1_, -c --=0
1512427

c - 141138 -0.036357
I 3881993

,
J-(x'+h)lIdx==O

"
67 \52 17.-',+-C,+-~O
24 35 60

c, == :::~::30;2 == -0 08861223
lItS == 1.2658366x - 0.072714x' - 0.0886122x' + 0,036357x4

The Collocation Method

Choosing the points x = t and x ==1 as the collocation points, we evaluate the resIduals

at these points and set them equal to zero:

R(H,
{*J~o;

233 28 2__ , --co--=o
81 I 27 - 9

52622-c+-c +-=0
8\' 27' 9

c, 1836 = 0,0384615
47736 "d

c, = 5130 =-0,107466
47736

The solution is given by :

11,== 1.322398x-0.0769230x' -0,107466x' +0.0384615x4

Comparison of the Weighted-residual and exact solutions of the boundary value

d'uproblem __ II+X2 =0, u(O)=O, 11'(1)=01.,},'
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Table 2.\: Comparison of the results of different Weighted-residual methods with exact

solution
Solution, u(x)

, 11",,,., ,,~ "0 ", s ",
0.0 0,0000 0.0000 00000 0,0000 0.0000

0.\ 0.1262 0.1253 0.1248 0,1258 0,1314

0.2 0.2513 0.2493 0.2495 0,2496 0,2606

0.3 0.3742 0.3714 0.3729 0.3711 0,3872

0.4 0.4943 0.4914 0.4946 0.4900 0.5108

0.5 0.6112 0.G088 0,6143 0.6059 0,6309

0.6 0.7244 0.7233 0.73\1 0.7189 0.7470

0.7 0.8340 0.8343 0,8455 0.8289 0,8603

0.8 0.9402 0.9433 0.956 J 0.9357 0,9694

0.9 1.0433 1.0483 1.0628 1.0396 1.0747

LO 1.1442 USDG L1652 1.1408 I. \764

Difficulties in Weighted-residual Methods:

From the above discussion of different Weighted-residual method it is clear that one is

to find an approximation function for the whole domain, that satisfies the boundary

conditions. The difficultly is that there is no definite procedure of finding the

approximation function. One is just to suppose it.

The finite clement method overcomes the difficulty of the Weighted-residual method;

by providing a systematic procedure for derivation of approximation function over sub-

regions of the domain, The function is II '"LII" 'P, where III arc the nodal values of

the function and rfi
l
are the Lagrange interpolation function

So finite element method is a piecewise application of Weighted-residual methods in

which the approximation function is an algebraic polynomial that are obtained from

interpolation theory.

,,



Chapter 2

WEIGHTED-RESIDUAL METHODS

(2,2)
II ='1:c" +"" ,'I'I '1'0

Weighted Residual Methods and RJi.yley-Ritz method play an important role for the

mathematical development of finite clement method. The weighted residual methods are

discussed here,

Suppose a differential equation is to be solved is
All "'I in (2,1)

where A is the operator
The function u is not only required to satisfy the equation, it is also required to sati,fy

some boundary conditions,

In the Weighted method the solution u is approximated as

,po and ,p} are function of x and c/s arc parameters.rPo is required to satisfy all

specified boundary conditions and ,pj are required to satisfy homogeneous fOfm of all

boundary conditions of the problem.
Substitution of the approximate solution II. into the left-hand side of equation (2, I)

gives a function In "A(u") that, in general, is not equa1to the specified function! The

difference A(II") - f, called the residual of the approximation is nonzero'

The residual R is a function of position as well as of the parameters CiS, In the

Weighted residual method as the name suggests the parameters CiS arc determined by

requiring the residual R to vanish in the weighted integral sense.

(2.3).., ni=1,2,3"!Wi(X)R(X,C J:ix" 0

"where w,'s are the weight functions and Q is a one_dimensional domain, which in

general, are not the same as the approximation function ,p,.The set {w,} must be a



y
(x-x x'-, )h+ 1 'y,

(X,-X,XX, -X,)

14

=N,y,+N,y,+N,y,

where N
_ (X-XI)(X-Xj),-

(Xl -X2)(X) -x})

N
(X-XI)(X-X]),-

(x, -X1)(X2 -Xl)

N _ (X-X1XX-X2)
3 - (XJ -XIXX) -X2)

Fig. 3.2: Shape functions for quadratic elemellt

For cubic element

(x-x2 x-X1XX-X4) (x-xIXX-X.1XX-X4)
y= Xl -X

2
Xl -X3XX1 _X4)Yl + (Xz -XIXX2 -x)XX2 _x4)YZ

<
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,

-0.21
Fig. 3.3: Shape functions for cubic element

X =Xl

•
x = X2

•
Fig. 3.4: Nodal numbers of the linear element

For the purpose of numerical integration using Gauss's quadrature fonnula and 10

convert to the limits of integration from x=.1'1lo x=x1 to the Jimits

~=-lto,;=l.

Fig. 1 represents a linear element

Substitution is

[
X1+X2 X2-X,I' J~~C+ ~-+~ - XI

1'-12= 2 2
x2 -XI

1 (X2 -xIXl+~)
2 x2 -XI

1= "2 (1+ ;). " (3.1.1 b)

x-x]
x,-x,and N,

x2-x]
= 1(X2 -xlXl-~)
2 X2-XI

~~H)

x, -xN,=~--
X, -x,

........• , (3.1.1a) ••---~.>------.
X~Xl X~X2 X=X3

Fig. 3.5: Nodal numbers of the quadratic element.

X,+X) x-x x+x
Substituting x =. - + J 1 .; and x, = . I 1

2 2 2
N, = (x-x,)(x-x,)

(x, -x,)(x-x,)

•
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[
XL +X, + X, -X, X, +X, XXI +X, + X, -X, -x.)

2 2; 2 2 2f,
N,=~--------~------~

(XL _ X, ;X, }X1 -X,)

Similarly,

Nz =(I-qXl+q)=l-;~

NJ=~;(l+;)2

For cubic element

(J.l.2a)

(3.L2b)

(3.1.2c)

(J.L3a)

(3.L3b)

(3.L3c)

(3.1.3d)

Fig.3.6: Nodal numbers urthe cubic element.

3.2 Hyperbolic Intcrpoiatian

Hyperbolic interpolation is

sinh(x - Xl) sinhex - XJ)" sinh(x - .tn)
y= sinh(X1-x1)sinh(x1-x]) sinh(x1-x"/1

sioh(x -xj)sinh(x -.1'3)' sinh(x -Xn)+-~-~-~~~--~~y + .
sinh(xl -xj)sinh(x2 -Xl) ,

sinh(x - Xl) sinh(x - ;'(2)" ., . ,slnh(x - .tn-I)
+ sinh(xn -x]lsinh(Xn -x2) .....• sinh(x" -xn_1)Y.

Because hyperbolic interpolation has the property of shape function 11has been selected

it as a new shape fWlction



N,

Substituting

For linear element

sinh(xz -x)
N, ' ( 1sinh Xl - Xl

sinh(X - XL)
N,' ( 1sinh x, - x,

Shape functions are given in the following figure.

Fig. 3.7: Hyperbolic shape functions for linear clement

","C' C'C",,_'~'_-_'~',2 2

'iooH(" -"ljHl
sinh(x, -Xl)

" , SillhH(x, -X,)}(l-';)
Similarly, N, = . ( )smh x, -x,

"laking x,=O, x,=1

Sinh!(l-':)
N _ 2
, - sinh(l)

Sinh!(l+,;)
N = 2
, sinh(l)

For Quadratic element

N _ sinh(x-x2)sinh(x-x3)
,- sinh(x, -x2)sinh(xl -xJ)

. sinh(x -Xl )sinh(X- Xl)
N2 = sinh(X2-x,}sinh(x2 -X))

17

(3.2.1a)

(3.2.1b)
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N] = sinh(x-x2)sinh(x-xj)
sinh(x] -XIXX] -.1'2)

Shape functions are given in the following fig'me.

N,

Fig. 3.8: Hyperbolic shape functions for quadratic clement.

On substitulion
x +x x -x x +X, .

X=L '+' '''and.x'''' -gIves2 2'" 1 2

._.(x,+x} x,-x,,, xL+x'J._'(XL+X' .1',-x,,, JSlIal + ~~ ~ . Sluu +-~.~. - x,
2 2 2 2 2

11', Sinl{ x, x, ~ xJ }inh(X\ _ x,)

N

I

= sinh(xJ ;.1'1 .;}inh{ Xl ;XI (;--;-l)}
SinhH(x, -XJ)}Sinh(XJ -XI)

. . ';Oh(("';", (1+qlJ).illh{"';": (Hl}
SIffil1arly, 11'2=-~~---~-~-----

SinhH(XJ -x1)}sinhH(x1-X3)}

11') = Sinh(x) ;.1'1 ;-}inh{ Xl; XI(1+ ;)}
sinh(x) -X1)SinhH(Xl -Xl)}

For x] =0, x] =2

N _sinh{sinh(;-l)
1 - sinh(l)sinh(2)

N _sinh(l+s)sinh(;-l)
,- sinh(1)sinh(-2)

(3.2.2a)

(3.2.2b)



sinh'; sinh (1+.;)N,=-~-~~~
sinh(1)sinh(2)

For cubic element

N _ sinh(x - x, )sinh(x- xJ )sinh(x - x,)
1 - sinh{x, -x1)siOO(x, -x,)sinh{x] -x,)

sinh(x - XI )sinh(x - xJ )sinh(x - X4)
N2=---~~~~-~-~--~sinh(x2 - Xl)Sinh(X~ - Xl)sinh(x2 - x~)
N _ sinh(;r-xl)sinh(x-xl)sinh{x-x4)
] - sinh(xJ -x4)sinh(x) -x2)sinh(xJ -x.)

N _ sinh(x-xl)sinh(x-X2)sinh(X-X3)
4 - sinh(x4 -Xl)sinh(X~ -x2)sinh(x4 -.1'3)

Shape functions are given in the following figure.

00

0'

0'

0.'
-0.2 .,

Fig. 3.9: Hyperbolic shape functions for cubic element.

On substitution

19

(3.2.2c)

X, +X, + x. -X,'; and
2 2

2x] +X,x, :---
3

X, +2.1',x,=~--
3
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'h[3X1+3X4-4XI-2X4J"'[7 3 2 4 X1-X4!,) ..• [X1-X4 X4-X'Jsin Suul x4 + ;(4 - x4 - x4 +~2~'~SlIUI~2~+~2-

N
1
=-~-----~---------~-----~

Sinh( Xl ;X4 )sinhH(xl -X4)}Sinh(XI -X4)

S~{X4 ;X1 Xi + s}inh{x4 ;X1 (_~+s)}Sinh(X4 ;x] }-1+{)
N, "-~-~~~-~-~-~~~-~--

sin/f':] ;X4 }inh~(XI-X4)Sinh(Xj -x4)

N, =

N, =

"00\["';" JH)j.'ool[ '. ;',}, >lHOf' ;" }H))
.'00["'; ",}llih\[" ~'. )j.'ooHI" >". l}

.',hll,. >', Xl +())","l["' ; " }3'+ ')"00\[ '. ; ",}, >.)))
Sinh{%(X4 _ x,}}Sinh{ x, ; x, }sinh( x, ~ x, )

.illlt. ; " }. + ,lj.'ool["' ; " )13(+1)"00\["; " }3Hll
sinh(x4 _ x, )Sinh{%(X<_ XL )}sinh{x, ~ .Tt}

N _ SinhH(3;+I)}~inhH(3;-I)}SinhH(s-1)}

1- sinh(-l)sinh(-2)sinh(-J)

N = Sinh{%(l+S'l}SinhH(3S-I)}Sinh{%(s-1)}
, sinh(1)sinh(-1)sinh(-2)

N _ Sinh{%(i+S'l}Sinh{&(3s+1l}Sinh{%(s-l)}

)- sinh(2)sinh(l)sinh(-1)

N = Sinh{%(l+sl}Sinha(3s+1l}SinhH(3';-I)}

, sinh(3)sinh(2)sinli(1) .

(3.2.3a)

(3.2.3b)

(3.2.3c)

(3.2.3d)
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Shape functions for both Lagrange and Hyperbulic interpolations are given together for

comparison as Jollaws:

Shape functions for linear dement are shown in figure 3.10; where fl, f2 denote the

hyperbolic shap~ functions and gl, g2 denote the shape functions for Lagrange

interpolations respectively.

•••____ ,.1(_)

____",,(xl 0.'

'.'
••

••• ••• •• •••
Fig. 3.10: Linear Lagnlnge and hyperbolic interpolation shape functions

Shape functions for quadratic element aTC shown in Ilgure 3.11; where fl, 12, f3 and gl,

g2, g3 are hyperbolic interpolation and LagraiJ.ge interpolation shape functions

respectively.

roC-e,,","')'
£2(,,)
f2 ("')
9"1(,,)
9"2(")
9'8(,,)

Fig. 3.11: Quadratic Lagrange and hyperbolic interpolation shape functions
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Shape functions for cubic element are shown in figure 3,12 where hl, h2, h3, h4 aIld Ll.

1.2, L3, L4 are hyperbolic interpolation and Lagrange interpolation shape functions

respectively,

h1(x)
~2(,,)
M(~) ,
h4(x)
L1(x) " ,12 Cal
L'(x) 0 ,
1.4(x)

o .•

•••
-0.2

Fig. 3.12: Cubic Lagrange and hyperbolic interpolation shape functions



"

Chapter 4

EIGENVALUE PROBLEMS

4.1 Finite Element Model of an Eigcnyaluc Problem

Determination oflhe values orlhe parameter). such that the equation

where A and B denote differential operators, has non trivial solutions u is called an

eigenvalue problem. The values of ,t are called eigenvalues and the associated

functions u are called eigenfunctions. For example, the equatioll~

d',---=2u with
dx'

B = 1

which arises in connection with the axial oscillations of a bar or the transverse

oscillations of a cable, constitutes an eigenvalue problem. Here }. denotes the square of

the frequency ofvibratioll w.

In general the determination of the eigenvalues is of engineering as well as

mathematical importance. In structural problems, the eigen values denote either natural

frequencies or buckling loads. In quantum mechanics eigcnvalues denote the energy

levels. In fluid m~chanics and heat transfer, eigcnvalue problem" arise in cOlUlection

with the determination of the homogeneous part~ of the solution. ln these cases

cigenvalues oftcn denote amplitndes of the Fourier components making up the solution.

Eigenvalues are also useful in determining the stability characteristics of temporal

schemes.

In this ~eetion finite element models of eigenvalue problems will be d~veloped.ln view

of the close similarity between the eqoations of eigcllvalue and boundary value

probiems. TIle steps involved in the constmction of the finite element models are

entirely analogous. Differentiai eigenvalue problems arc reduced to algebraic

eigenvaluc problems by means of the finite elem~nl approximation. The methods of

solution of algebraic eigenvalue problems are then used to solve for th~ eigenvalues and

eigenvectors.
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Finite element model of cigen value "problenl' llsinl,l Galerkin, Weighted Residual

method.Derivative of Finite element model for eigenvalue prob!cm,is similar to those of

initial and boundary value problems.

Consider an eigenvalue problem

(4.1.1)

Where a is function of x or constant and A is the eigenvalue.

Over a typical clement Q'; a fmite clement approximation ofU in the foml is
,

U '" u,N\ +u,N'J +u,N', + +u.N'" == I.ujNJ'
1='

(4,1.2)

where e denotes the element number; u"ul' : ...u. are the nodal values of the variable

U in the node numbers 1,2, .... ,n

To apply Weighted residual method multiply both sides of equation (4.1.1) by wand

integrating over the clement n' which extends from x'" x A 10 X =' x&

[
dU]'" " dw dU "_ wa- + J-a-cb:+,1,JwUdx=O
dx "dx dx ""

Jdw adU dx+w(x.,l(adW] _W(xa)(adU] +A'jwUdx=O
dx dx dx '=', dx _"'. "

writing, QI =_["dU) , Q, ",[a~)
dx '=', '=',

Using Galerkin approach aml putting W = N,' ,N;,." .. """."' N,~

"dN'(' dN'J " ( )Q)a-I LU'-J +A1N,'I.u'N'dx-I.N,' x' '=0
~,"=lJ~_ JJ jJ

_, l.U' l.U "
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'I dN"(" dN"J '" -a-' L:u"-) +itJN'Iu'N'dx-IN'(x'\n'=O
dx,=,ldx 211 l,j'>o!J

',," "

'I dN'(' dN'J 'I ( )Qa--' Iu' --' +..1- N'I,u"N'dx-'i.N" X' '=0
dx-'dx oj) "JJ"j=' "

lbc j -Ih ulgehraic equation can be written as

"IK"u' +ALM'u' -Q' =0
J=l'l) "J'

(i = 1,2,3, ,n) (4.1.3)

The interpolation property N,' (x;) '" 0" == {~

<. dN' dN'
K ~Ja-'--'dx
'"dxdx

M~'J'N"N'dx
Ij 'j

'"

if
if

i*- j
is used 10write

i == j

(4.1.4)

(4.1.5)

Equations (4.1.3) can be expressed ill terms of the co-cfficicnts K,;, ",' and Q: as

K"+K" K"(M"M" M")Q'nU, 11U,+ + ,}I, + "U, + "U, + + ,,,U. == I

K' '+K' '+ K' '(M" M' , M' ) Q'"u, 1-'U' .••••• + ,"U+/I, "UI + "U1 + + ).u '" ,

K' '+K' '+ K" '(M" M' , If' ,) Q'",U, ",U, + ""U, +/1- .,U, + ",U1 + +1 ",U, == "

In matrix notation, !he linear algebraic equations (4.13) can be written as

[K' J{u'} + A[M'J{u'} ~ {Q'}

In deriving the element equations, we isolated a typical element (the e-th) from the

mesh and developed its finite element model. To solve the tota! problem, elements must

be put back into their original positions. 1n doing this betore discretization, the

continuity of the primary variables and balancc of the sceondary variables at the

connecting nodes between elements is imposed. Continuity of the primary val'iab1es

refers here to the single valued nature of the solution; balance of secondary variables

refern \0 the equilibrium of point sourecs at the junction of several elemcnts. Thus

imposing the following two conditions carries out the assembly of elements:

,
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1. CO,".tiuuity of primary variables at connecting nodes:

u;=u:+l (4.1.6a)

the last nodal value of the clement O' is the sanlC as the first nodal value of the

adjacent element Q<+l,

2. Balancc of secondary variables al connecting nodes;

~+Q••l =\0
~" L G

ifno external point source is applied
if an external point source of magnitude Qo is applied

(4.L6b)

In writing equation (4.1.5), it is assumed that elemenls are connected in a sequence.

The continuity of primary variables u; == u:+1 and balance of secondary variables

Q; + Q,Hl for a mesh of linear clements is illustnlled in fig. 4.1 (a) and 4.1(b) .The

balance of secondary variables can be intcrprelatcd as the continuity of ": (not

11d~')at the point common to elements n' and QN' (when no change in

imposed externally):

ue+\~
.----- /i

"" ' ,",', : ', , , , "
, , " ",', " "" ,. "" " , ," " ' ,: : i \, :' +1:

1
,', : 1 , ,,: d'- ,
, , :.' '.t-I" ":.\ : u2: U ':u, ,\ :U.n
: '" : .+11 : " :

U: u':-', :1: ...\, :.: I, ". : :: " :
1
, , , , " .,

" , " "" ' , " "
" '" " ' ,, , ", ' " ,, . '," : ' ," "', "iii 2'0 0) 2'6
e ""@ •..-) .+1 B "+2

Fig. 4.1(a): Assembly of two linear Lagrange clements: continuity (If the primary
variables.

Q'

Q" -&---£--&.-, Q',
Q~'

~_Q"+1~, '
Q,

Fig. 4.1(b): Assembly of two linear Lagrange clements: balance of the sccondary
variablcs
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The interelcments continuity of the primary variables is impo~ed by renaming the two

variables u: and

global node N:

at x = x" as onc und the ~ame, namely the vallie of u at the

U'=U',+l=U
" "

where N=(n-l)e +1 is the global node number corresponding to node n of the dement

0" and node 1 of the element rY'\. For example [or a mesh of linear finite elements

(n=2), thus obtained as

u: = U,
, , U
II,=U, = ,

F_' r Uu,=u,=r.
, uu, = ",1

To enforce balance of the secondary variables Q,' it is clear that set Q; + Qt.' can be

set equal to zero or a specified value Q, only if there is such expressions in given

equations. To obtain such cxpre,sions, the nth equation of the element [2' must be

added

to the first equation of the clement 0'" ;lhat is it is added as

"LK:iUj =Q,~

'"'
"

and LK,'tu;+' =G+!

pi

10 ~,'ivc
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[Here it is only written the firstlcrm oflhe two len hand side tenus of the equation

(4.1.3) to avoid the large calculation. This term will be taken in the final equ<ltion.]

This process reduces the number of equations from 2E to E+ 1. The first eqi.latioll ofthc

first element UIld the last equation orlhe last element will remain unchanged. except for

renaming of the primary variables. The first term of the left hand side of equation

(4.1.3) can be ""Tilten in tenns of the global nodal values as

(K' '+K' '+ +K. ').(K ••L '+l+K"+l c>,+ +K".L "')
"LU, ",u, "U, Il U] II 11, I" U"

= lK~IUN+ K~1-U,\'+l +. " ... + K~"V,1'+"-1)+(K~tlu N+"-I + K1,;IU N<" + ..... + Kt:IU N+l"-2)

= (K~LUN+ K,:,u ,,_,+ + K,'~,_"UN'''~l)+ (K~" + K~'")U" .••_l
K"'U K'.cU+ " N+.+"''''+ I" h,,'n_l

where N=(n~ l)e+ 1

For a mesh ofE linear elements (n=2), thus obtained

K!,ul +K!2u2 "'Q; (unchanged)

K~,ul +( Kh +Kfl Pl + Kfp3 '" Qi +Q1
2

K'-'U (K£-1 X'21 £-1+ 22 + 11

(unchanged)

These are called assembled equations. They contain the sum of the co- efficicllts and

source term at nodes common to two elements, The numbering of the globai equations

corresponds to the numbering of the globai primary degrees of Irecdom, U,. This

correspondence carries the symmetry of elements matrices to the global mutrix. The

above equations can be expressed as matrix equation

Kll KI2 U, Q:
K~I Ki:! + K]21 K~:! 0 U, Qi+QI:!

Kil Ki. + K,ll U, Qi+Q~~

0 K£-I K£ K' u, Qt' +Qr22 + II ", K' U 1.+1 QiK" n

Thus from cquution (4.1.3) the as~embled matrix eigenvalue equation is

KU + 2MU '" Q.
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4.2 Solution of Eigenvalue Problem Using Lagrange lntcflloilltion

The eigenvalue problem solved by Rammohan et al [6] is

__ I_<i-(x2 dV!J -'l:VI =" Alfl
)::2 dx rbt; x

with domain having limit 0 to 20 taking 20 clements.

The sample eigenvalue problem discussed in the previous chapter was with constant

coefficient. So the element stiffness equation was same for all elements. Dul for this

case the coefficient is variable. So the element stiffness matrix will be different for

different elements.
Multiplying the equation by; is thus obtained

_ ~(X2 d;)_2XIf",).x21Jf

Now multiply the equation by the weight function wand integrale from 0 \0 20. An

integration by parts leads to the equation.

20 dwd 2"J( x'_.1-2xw'f )dx'"J}.WljIdx
~dxdx .'

where the bDundary condition 1JI{20 '" 0)i8 applied.

For linear clement, writing lfI '" N.~/.+N,~/,and considering the Galerkin approach

W=: N, and W'" N
1
, the element stiffncss matrix can be writtcn as

'" (,dN, dN, )k_'" I X _. __ 2xNN dx
'" dxdx '1

where i,j'"1,2

with

hdx=,-d~
2

XA+XB Xn-xA!,
X =~-~ +~-~-,

2 2

d! 2
"d -=-

'" h
X
B

- X A == h 0= length of an element

From equation (3,1.1) of chapter 3 the ,hapc functions are
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,
k, L ~ R~(i-<. c;l'(-lX-l)-~(l+;)~(1-;)~(l + ;)J~d; '"0.17

,
Similarly olher c\emeflts of the matri" arc oblaincd as

k
12
"kol ,,-,500

K(L) ={ -.17 -.500]
Thlls for dement I -.500 -.17

Taking -",,,0, xD=2, h =1

K,2l == [L50 -"1Forekmcnt2 -2.8 1.17

Also taking x,,,19, xB=20, h= \

K'lO) =[ 36,7.75 -386,83]
Forelcmcnt20 -386,83 367.17

,-I+H+-H++-H-+-+++++-+-1--J',->,
11 ' 1U 1 2 3 4 5 6 7 S 9 IU II 12 13 14 15 16 17 18 19 20

Fig. 4.2: Discretization of the bod)' into 20 linea. c\cDlents.

The elcm~nt' of the rna's matrix arc

") '" 'd",~=X,/'IiX

"

m '" ')1(1' ')' ~(1- i')!(l- f)!di' = 0.0333
"4'2~2~2'-,

Siluilar\y, 111"=' mOl = 0.05, III" '" 0.2

~
I "~.
I.. -.,~ •



Thus for e1cment 1

Thus for clement 2

Thus for element 20

M(l) =[.033 .05]
.05 0.2

M(1) = [.533 .383]
.383 \.033

M(20) =[123.53 63.383]
63.383 130.03
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The global stiffness Illatrix K and the global mass matrix M will be a 21 x21 matrix.

The matrix eigenvalue equation to be solved is KljI = ;.jfljl with

If! =[1,11" 1f/" If'19' 1fI", If,,]

and 1=[;1' ~,""" , )19'~01
The equation is solved by Jacobi method using FORTRAN programming and the

eigenvalues are obtained as follows.
Table-4.1: Eigenvalues obtained using 2_nodcd element

", A, ", " " " h ,~" AID

12.929 11.565 10.787 9.724 8.522 7.292 6.111 5.023 4.051 3.199

A" A" AD A" 2" }.16 A" ,,, ).19 A>O

2.466 1.843 1.319 0.886 0.533 0.225 0.D48 -0.093 0.238 -0,942

This result is obtained by Rammohan et al [6]. Eigenvalues will now be found by using

quadratic and cubic element.
For quadratic element writing, IfI = N,lfIl +N2'f2 + N3'fJ' The clement stiffness matrix

is obtained liS

,,(,dNdN )k = I x -' ._J -2xNN. dx
'I" dxdx '1

where i,.i= 1,2,3

From equation (3.2.2) of chapter 3 the shape functions are

Nl=~~(;-l),

N2=1-;2

N, =~~(l+~)
2
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Taking xA ==0, xB ~2 andh=2

'" = l\[~"J'l+,X-H-2(1 , "[-21,(HlX-~,(Hl)\d,=0.77
Similarly the other elements of the matrix arc obtained as

kl' = k" = -0.80

k" = k" = 0.53

k~1 == k12 = --4.00

k12 =2.13

kJJ=2.13

Thus for element 1
[

0.27
K(I) = -0.80

0.53

0.80

2.13
-4.00

0.53 ]
-4.00
2.13

Taking;

For element 2 [

5.87 -9.33
K{J)= -9.33 19.20

2.13 -17.87

213 ]
-17.87
13.07

Taking

For clement 10
[

386.67 -461.60 62.93]
K(IO) == -461.60 ,923.73 -512.80

62.93 -512.80 436.53

'R )'. . x +x x -x h
The mass matrIx IS, ml, = " ~+ 8 A N,N -d!;, 2 2 )2.,
Taking x, =0, xn =2 and h=2

Similarly,

mLJ =m" =-0.11
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mll- =1.17

m" = 0.83

[

0.03 -0.05 - 0.11]
Thus for clement 1 M(I)= -(l.DS 1.17. 0.48

_ 0.11 0,48 0.83

[

1.36 048 - 0.64]
for element 2 M(l) = 0.48 9.71 2.08

-0.64 2.08 3.76

For element 10
[

88.83
y(lD) = 43.15

- 24.11

43.15
385.17
53.28

-24.11]
53.28
104.03

The global stiffness matrix K and the global mass matrix M will be a 21x21 matrix.

The matrix eigenvalue equation to be solved is KIji = ),.iJrp with
•

1If=[IfI' If" , ifl19' 'fI,", 'f/21]

and )"=[,t,, A..!, , A,9' Az~r
The equation is solved by Jacobi method using standard FORTRAN programming and

the eigenvalues are obtained as follows.

Tab\e-4.2: Eigenvalues obtained u~ing3-nodcd element

2, 2, }., " " " 2, }~ }" ),10

15.509 14.085 12.427 10.522 8.681 7.049 5.667 4.520 3.578 2.664

2" 2" AU 2" )'1' 2" 2" 2" 2" }-20

2183 1.634 1.179 0.798 0.483 0.229 0.035 0.099 -0.249 0.990

For cubic element writing, If/ =: N,If/, +N,lf/i +N,If/, + N,If/,. The element stiffuess

matrix is can be written as

k '" Lj(lXA+XB + XB -XA ;J' dN, .~. dNJ .~-2lx, +X8 + Xft -XA ;IN N l~d;
".\ 2 2 d;hdxh 2 2 'i2

From equation (3.1.3) of cbapler 3 the sbape functions are

N, "'-190(1-4~+;)G-;)-
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0.25 -0.99 1.12 -0.65

K(I) =
-0,99 4.09 -7.60 3.27

Thus for clement 1 1.12 -7.60 13.30 -11.72

-0.65 3.27 -11.72 7.33

387.93 -514.62 154.93 -40.75

For element 7 K(7) = -514.62 1192.88 -893.87 \77.66

154.93 -893,87 13.40.95 -643.64

-40.75 177.66 -643.64 497.73

The mass matrix is,

Taking xA = 0, x =3 lind h=3,

For element 1

For element 7

.03 -.06 0.12 0.10

MIl) =
-,06 ].12 -0.56 -.50

0.12 -0.56 4.50 1.19

0.10 -,50 _ 1.19 1.54

6558 50.17 -17.12 11.18

MP) = 50.17 358.73 -47,79 -25.24

-17.12 -47.79 402.58 66.41

11.18 -25.24 66.41 85.26

The global stiffness matrix K and the global mass matrix M will be a 21x21 matrix,

The matrix eigenvalue equation to be solved is Krji = J.M1ji with
,

1/f=[V/(, 1/12' ...............•.. , lfi,9' IflO' Ifl,,)
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The equation is solved by Jacobi method using FORTRAN programming and the

eigenvalues are obtained as follows.

Table-4.3: Eigenvlllues obtained using 4-noded element

A, 2, 2, }, A, " " " " AlO

21.295 18.987 16.012 12.985 10.383 8.354 5.897 4.896 4.058 32.87

XII 2" }.Il 2" An An An An }.I? A" A"

2.624 2.056 1.567 LlS3 0.786 0.476 0.226 0.034 -0.100 .0,250 -0.998



Chapter 5

SOLUTION METHODS FOR EIGENPROBLEMS

5.1 Preliminaries to the Solution of Eigenproblems

The purpose of this chapter is to describe the actual solution procedures used tll solve

the eigenproblems of interest. Before presenting the aigorithms, some important basic

considerations for the soiution of eigenproblems wili be discussed in this chapter. The

simplest problems encountered is the standard eigenproblem,

K,+,==A.'¥ (5.1)
Where K is the stiffness matrix of a singie finite element or of an element assemblage.

We recailthat K has order nand half- bandwidth m (I.e., the total bandwidth is 2m+l)

and K is a positive semidefinite or positive definite. Bandedness means l11atail elements

beyond the bandwidth of the matrix are zero. Because K is symmetric, we can state this

condition as

a,==O for j>i+mK

where 2m
K
+ I is the bandwidth of K. If the haif-bandwidth of a matrix is zero, we

have nonzero elements oniy on the diagonal of the matrix. I'or example, the identity

matrix is a diagonal matrix. There are n eigenvalues and corresponding eigenvectors

satisfying equation (5.1). Thei -th eigenpair is denoted as ()., ,0/,), where the eigenvalues

are ordered according to their magnitudes:

0:>-", :<>A, :<>A,,_l$A. (5.2)

The solution for p -eigenpairs can be written

(5.3)

Where 'P is an n x p matrix with its column equal to the p-eigenvalues and

corresponding eigenvectors and A is a p x p diagonal matri,.: listing the corresponding

eigenvalues. As an e,.:ample equation equation(5.3) may represent the solution to the

lowest p _eigenvalues and corresponding eigenvectors of K, in which case

'P==W"VI, ..... ,0/ p J and A~ diag(A,), i==1,2,..... ,p, We recail that if K is positive

definite, A, >0, i,,=l,2, ,n, and if K is positive semidefinite, A, ~O,
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i '"1,2,..... ,n,where the numbers of zero eigenvalues is equal to the number of rigid

modes in the systems.
A very frequently considered eigenvalue problem is the one to be solved in vibration

mode superposition analysis. In this case we consider the generalized eigenvalue

problem,

K"F1I,M\lI (5.4)

where K and M are, respectively, the stiffness matrix and mass matrix of the finite

element assemblage. The eigenvalues 2, and eigenvectors If, are the free vibration

frequencies (radianslsc<:ond) squared, w,', and corresponding mode shape vectors,

respectively. The mass matrix may be banded, in which case its half-bandwidth mM is

equal to m
K
, or M may be diagonal with m"~ 0; i,e., some diagonal elements may

possibly be zero, ]n general a banded mass matri" Is positive semidefinite,

A variety of eigensystenl solution methods have been developed and are reported in

literature. Most of the teclmiques have been devised for rather general matrices.

However, in finite element analysis we are concerned with the solution of the specific

eigenvalue problems summarized above, in which each of the matrices have specific

properties such as being banded, positive definite and so on. The eigensystem solution

algorithm should take advantage of these properties in order to make a more economical

solution possible.

5.2 Solution Methods for Rigenproblems
The solution methods that are considered here first can be subdivided into four groups,

corresponding to which basic property is used as the basis of the solution algorithm.

The vector iteration methods make up the first group, in which the basic properties used

i, that

Ao=diag(J.,), i=I,2, ,n. The solulion methodswhere

KII', 0= ).,MII',

The transfonnation methods make up the second group, using and

'+' T K'f' 0= A

'¥"M'Y 0= 1

'+'0=[11'"11',, .•.... ,11',,] aud

(5.5)

(5,6) I
of the third group are polynomial iteration techniques that operate on the fact that



where

p(,l/)=o

p(A)=det(K-..1.M)
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The solution methods of fourth group employ the Sturm sequence property of the

characteristic polynomials

p(,t) = dct( K - 2M)

pV) ()},!) = det( KV) _ J.1'lM(')}; r = 1,2,<. , ... ,n-l

Where pl') (1(')) is the characteristic polynomial of the ,r -th associated constraint

problem corresponding to K\jI=AMW.
Before presenting the solution techniques of interest, II few basic additional points

should be noted. It is important to realize that all solution methods must be iterative in

naUlre because, basically, solving the eigenvalue problem KIj/=AMljI is equivalent to

calculating the roots of the polynomialp(,1,), which has order equal to the order of K

and M. Since there arc for the general case no explicit formulas available for the

calculation of the roOlSof p(..1.) when the order of pis larger than 4, an iterative

solution method has to be used. However, before iteration is started, we may choose to

transform the matrices K and M into a form that allows a more economical solution of

the required eigensystem.

Two general types of methods, namely transformation and iterative methods are

aval1ablefor solving eigenvalue problems. The transformation methods such as Jacobi,

Givens and Householder schemes are preferable when all the eigenvalues and

eigenvectors are required. The iterative methods such as the power method are

preferable when few eigenvalues and eigenvectors are required.
The transformation method comprises a group of eigensystem solution procedure,>that
employ the basic properties of eigenvectors in the matrix IV.

To solve the generalized problem KIV=AMW, M••I, using standard Jacobi method, it

would be necessary \0 first transfoml the probicm into the standard rOOD.However, this

transformation can be dispensed 'with by using a generalized Jacobi soiutlon method

that operates directly on K and M. The algorithm proceeds as summarized in eqUlltion

(5,I)to(5.6).

•
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It is pointed out in section 5.2 that the transformation methods comprise a group of

eigensyslem solution procedures that employ the basic properties of the eigenvectors in

the matrix '1',

'I'TK'I'=A (5.4.1)

(5.4.2)

Since the matrix '1', of order nxn, which diagonalizes K and M in the 'Way given in

equation (5.4.1) and (5.4.2) is unique, we can try to construct it by iteration. The basic

scheme is to reduce K and M to diagonal form using successive pre- and post

multiplication by matrices p;' and PK, respectively, where k = 1,2, Specifically, if

it is defined K, = K and 111, = 111, it can be formed

Kl = P,' K,P,
K, =p,rK,p,

(5.7)

K>+1 = P,' K,P,

M) =p,' M,P,
M, = p,T M,P,

Similarly, (5.8)

P
K

an: selected to bring K, and M,closer to diagonal ronn. Then for a proper

procedure we apparently need to have

Kk+' --+ A and M", ~ 1 as k ~ co

in "hich case, with I being the last iteration

'¥ =P,P, 1', (5.9)

In practice, it is not necessary that M••, converges to I andK", to A, but they only

need to converge to diagonal Conn. Namely if

K'<l ~diag(K,) Mk+'~diag-(M,)as k~",

(5.10)

(5.11)
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5.2.1 The Jacobi Method
The basic Jacobi solution method has been developed for the solution of standard

eigcnvahle problems (M being the identity matrix), amI it will be considered in this

scrtion. The method was proposed over a century ago and has been used extensively. A

major advantage of the procedure is ih simplicity and stability. Since the eigenvector

properties in equation (5.1) and (5.2) (with M = I) are applicable to all symmetric

nlatrices K with no restriction on the eigenvalues, the Jacobi nwthod can be used to

calculate negative, zero, or positive eigenvalues.

Considering the standard eigenvalue problem
(5.12)

Where {K] is a symmetric matrix.

Method
The method is based on a theorem in linear algebra which states that a real symmetric

matrix [K] has only real eigenvalues and that there exist a real orthogonal matrix [PI

such that Ip], [K][P] is diagonal. The diagonal elements are the eigenvalues and the

columns of the matrix IPJ are the eigenvectors.

jthcolumnith

In the ,Jacobi method, the matrix [P] is obtained as a product of several "rotation"

matrices of the form

1 0
o 1

cosB

sinO

_ sine---t----Hh

cosO ,.__ -j jthrow

1

where all elements other than those appearing in columns and rows iand j are

identical with those of the identity matrix [I]. If the sine and cosine entries appear in

positions (i,i), (i,j), V,I)and (j,j), then the corresponding elements of [r:T[K][p,]
can be computed as



li'i = kll cos' B + 2kij sinBcosO + k 11 sin' B

Klj =!f
l
, =(k,,_k,,)sinOcostJ+k,,(cos'B-sin

2B)

ill = k" sin 1 e - 2k, sinBcosl1 + kF COS' (J

If 0 i~chosen as

tan2B=2k ;(, -, ) _!!..~O5.!!-,"11'44
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(5.14)

(5.15)

then, it makes kif = lip =' O. Thus each step oflhe Jacobi method reduces a pair of ofT-

diagonal elements to zero, Unfortunately, in the next step, while the method rcduc~s a

new pair of zeroes, it introduces nonzero contributions to formerly zero positions.

However, ~uccessive matrices introduce nonzero contributions to formerly zero

positions.

Ip,! l~nK]1~I[p,],Ip,j' Ip,j' [~rIKJ[~IIp,IIP,I, ""
converge to the required diagonal form and the desired matrix [P] (whose columns give

the eigenvectors) would then be given by

Ip] 0 I~lip, IIp,I"" (5.16)

The minimum number of rotations required to bring K into a diagonal form is

n(Il-1)/2. A disadvantage of the Jacobi method is that the dements annihilated by a

plane wtation may not necessarily remain zero during subsequent transformations.

5.2.2 The Generalized Jacobi Method

To solve the generalized problem KW=AM,+"Mo'I, using standard Jacobi method, it

would be necessary to first transform the problem into the standard lbrm. However, this

transformation ean be dispensed with by using a generalized Jacobi solution method

that operates directly on K and M. The algorithm proceeds as summarized in equation

(5.1) to (5.6) and is a natural extension of the standard Jacobi solution scheme; i.e., the

generali7.ed method reduces to the scheme presented for the problem KW=A'+'when M

is an identity matrix.
Referring to the discussion in the previous section, in the generalized Jacobi iteration

and using the following matrix!',:
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I

p~,
I a

r I

I (5.17)

where, the constants a und r arc selected in such a way as to reduce to zero

simultaneously elements (i,j) in K, and M" Therefore the values of a and r arc

function of the elements k(') k(li) kl» m\') mIl) and m(k) where the supcrscripl
"",,"','" j]'

(k) indicates that the k -th iteration is considered. Perfanning the multiplications

l',TK. P, and p,TM, P, and using the conditio~ that k,;"') and m~+I)shall,we obtain the

following two equations for a andy:

md am~k)+ (1+ar )m;')pntJ = 0

k(k) k(f) k(i)

~(k) = m1k)= ~J{k)
" F ,

(5.18)

( 5,19)

(i,e., the suhmatrices considered arc scalar multiples, which may be regarded to be a

trivial case), we use a = 0 and r = _k~k)jktJ In general, to solve for a and r from

equation (5,18) and (5.19), it can be defined

(5.20)

The relations for a and r are used and have primarily been developed for the case of

M being a positive full or banded mass matrix. In that ease (and, in fact, also under less

restrictive conditions), we have

i(.1k)
r---"-"- ,,

The value of x needed to obtain a and r is then to be determined using

(5.21)

,
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(5.22)

and hence x is always nonzero. In addition, detPk '" 0, which indeed is the necessary

condition for the algorithm to work.

The generalized Jacobi solution procedure has been used a great deal in the subspace

iteration method and when a consistent mass idealization is employed. Assume that M

is a diagonal mass matrix, M '" I and m
"
> 0, in which case we employ in equation

(5.19)

(5.23)

(5.24)

And otherwise equations (5.16) to (5.21) are used as before. However, if M= I, the

relation in

eqmltion (5.18) yieldsa=-y, and it is recognized that Pk in equation (5.18) is

multiple of the rotation matrix defined equation (5.12) In addition, it should be

mentioned that the solution procedure can be adapted to solve the problem KIjI = A,1jI

when M is a diagonal matrix ""ith some

zero diagonal clements.

The complete solution process is analogous to the Jacobi Iteration in the solution of the

problem KIjI = AIjI. TI,e dilferences arc that now a mass coupling factor

[(m,;tJ)'/m,\l1mtlF' must also be calculated, unless M is a diagonal, and the

transfonnation is applied to K. andM •.

Convergence is measured by comparing successive eigenvalue approximations aml by

testing if all off-diagonal elcmcnts are small enough; i.e., with I being the last iteration,

convergence has been achieved if

1
,1,(1+1) - A,(lli _
~ _~<10s. ; 12 "-\("') - ,,= , , ,,,

where
kin

;.(1) __ "_'
., - (I)'

m"
(5.25)



[
(m!"")' ]1,, <-.<

(1+1) (1+1) _10
m" mJl

alli.j;i<j
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(5.26)

The above discussion of the generalized Jacobi solution method has already indicated

in some way the advantage of the solution technique. First the transformation of th~

generalized cigenproblern to the standard form is avoided. 11lis is particularly

advantageous
(I) when the matrices are ill-conditioned, and (2) when the off-diagonal dements in K

and M arc already small or, equivalently when there are only a few nOll/.em olT-

diagonal elements. In the first case the direct solution ofKIjI = )..M'l' avoids the solution

of a standard eigenprob1cm of a matrix with a very large and very small elements. In

the second case the eigenproblem is already nearly solved, because the zeroing of small

or only a few off-diagonal elements in K and M will not result in a large change in the

diagonal clements of the matrices, the ratios of which are the eigenvalues. In addition

fast convergence can be expected when the oW-diagonal element~ are small.

5.2.3 Givens Method for Symmetric Matrices

It is to be noted that in the Jacobi's method, the elements which were annihilated by

plane rotation may not remain zero during subsequent rotations. Givens proposed an

algorithm using plane rotations which preserves thc zeroes in the oft:diagonal clement,

once they are created. Let A be a real symmetric matrix.

The Givens method uses the following steps:

(a) Reduce A to a tridiagonal form n, using plane rotations,

(b) form a Stunn sequencc for the characteristic equation of n, study the changcs ill

sign in the sequences and find thc cigenvailles, of n, which arc also the eigenvalucs of

A,
(c) find the cigenvectors ofB and then the eigenvectors of A

The reduction to a tridiagonal form is achieved by llSing thc orthogonal transformations

as in the Jacobi method. However, in this case to start with the subspace containing the

elementsQ
12
,a'l.a,l,u", Performing the plane rotation S,-'AS" using the orthogonal

matrix

,_[COS8 -Sln8]S, -
sin8 cos8

(5.27)

•
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Let the new matrix obtained be denoted by A' = la~J.
The angle () is now obtained by putting a;, = a;, = 0 and not by pulting a~ = 0 = u;,
as in Jacobi method. We find

a;, =_a"sin8+a"co58=O
or tanO=a"!a,,. (5.28)

With this value of Band performing the plane rotation, which produces zeroes in the

(3,1) and (1,3) positions. Then, to perform rotation in (2,4) subspace and to put

a;, = a~, = O. This would not affect zeroes that have been obtained earlier. Proceeding

in this manner, to put a;l =a;, =Dele. by performing rotations (2,5), ,(2,n)

subspaces. Then, we pass on to the elements a;. ,a;, "" .... ,a;" and make them zero by

performing rotations in (3,4),.. . ..,(3,11)subspaces. Finally, we produce the matrix

b, , 0,
" b, ,,
, b, ",

B~ (5.29)

0 C,_2 b
n
_. cn_.

C,_I b,

The number of plane rotations required to bring a matrix of order n to its tridiagonal

form is (1I-1Xn - 2);2. It is already known that A and B have the same eigenvalues.

If c, ""0 , i= 1,2 11-I, then the eigenvalues are distinct. Now, define

A-b, -c, o
-c, 2-~ -c,

o
-C._1 2-b._1 -C._I

-c,_, A.-b

Expanding by minors, the sequence Un} satisfies
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fa ",I f, =}.-b,

(5.30)

Note that f"

In = 0 is the characteristic equation.

!funy c, = 0, then the system degenerates as

Then, f, =' IAi - B[ = (characteristic equation.ofP)x(charactcristic equation ofQ)

If none of the c, ,c" ,en_
l
vanish, then if, J is a Sturm sequence. That is, if V(x)

denotes the number of changes in sign in the sequence for a given number x, then the

number of zeroes of in (a,b) is IV(a)- V(b~ (provided a or b is not a zero of f,). In

this way, one can approximately compute the eigenvalues and by repeated bisections,

one can improve these estimates.

The eigenvectors of B are then found. If these arc determined, then the eigenvectors of

A can be determined, since it is kno"," that if v and u arc the eigenvectors ofB and A

respectively, then u = Sv ; where S = S,S, .. ". ,Sj is the product of orthogonal matrices

used in the plane rotations. Neglect a particular equation (say i -th) and then solve the

remaining equations.This solution usually satisfies the equation that has been left.

Then, v is the eigenvector detemlined from these solutions and by putting a zero in the

i-th position. An advantage of the Givens method is that it takes only a finite number

or plane rotations «(n -IXn - 2)/2) to reduce A to its tridiagonal form.

5.2.4 Householder-QR-Inverse Iteration Solution

Another most imporlant transformation solution technique is the Householder-QR-

inverse iteration (HQRI) method, although this method is restricted to the solution of

the standard eigenproblem. There/ore, if the generalized eigenproblem K'I'=J",M'I' is
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considered, it must first be transformed into the standard form before the HQRl

solution technique can be used. This transfonnation is effective in only some case,. The

name "HQRl solmion method" stands for the following three solution steps:

1. Householder trun~formations afe employed to reduce the matrix K to a tridiagonal

form.

2. QR iteration yields all eigenvalues.

3. Using inverse iteration the required eigenvectors of the tridiagonal matrix arc

calculated. The vectors are transformed to obtain the eigenvectors afK.

A basic difference from the Jacobi solution method is that the matrix 13 first

transformed without iteration into a tridiagonal fonn. The matrix can then be used

effectively in the QR iterative solution, in which all eigenvalues are calculated. Finally

only those eigenvectors that are actually requested are evaluated.

5.2.4.1 The Householder Reduction

The Householder reduction to tridiagonal form involves n - 2 transformations of the

form of equation (5.7); i.e., usingK, = K , it Is calculated

K••, =P,'K,P.; k=1,2, ,n-2

where P, are Householder transformatIon matrices.

(5.31)

(5.32)

(5.33)

To show how the vectorw" that dcfines the matrix p. is calculated, considering the

case /r;= I, which is typical. First, partitioning K" P" and w, into submatrices as

follows:

P, ~[1~];o ~
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(5.34)

where KL,.r; and w, are of order n -1. In general case of step k, the corresponding

matrices of ordern-k. Performing the multiplications in (5.31), to obtain, using the

notation of (5.34)

,- ]k, P,
W K,,~ (5.35)

The condition is now that the first column and row of K1 to be n the form

k" ~ 0 ... 0
,

Kl = 0 (5.36)

"0

where x indicates a nonzero vlllue and

- -T -
K2 = P, KlIP' (5.37)

The form of K, in equation (5.36) is achieved by realizing that p, is a reflection matrix.

- -
Therefore, it can usedl'j to reflect the vector k, of K, in equation (5.34) into a vector

that has only its first component nonzero. Since the ienj,>1hof the new vector mu~t be

the length ofk" determining w] from the condition

where e, is a unit vector of dimension n -1; i.e" e; = [1 0 0 0], lind the + or-

sign can be selected to obtain the best numerical stability. Noting that it is only needed

to solve for a multiple of w, (i.e., the direction of the vector normal to the plane of

reflection is important, we obtain from equation (5.39) as a suitable value forw],

(5.39)
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where k
21

is element (2,\) ofK,.Withw,defined in equation (5.39), the lirst

Householder transformation, k == 1in equation (5.33) can be carried out, in the next

step, k = 2, it can be considered the matrix it, in equation (5.36) in the same way as it

is considered K, in equation (5.34) to (5.39) because the reduction of the first column

and row of R., does not aiTect the first column and row in £, .Thus, the general

algorithm for the transformation of K into tridiagonal form is established.

A disadvantage of the householder transformation is that the m<llrix bandwidth is

increased in the unreduced part of Kk+l" Hence in the reduction, essentially no

advantage can be taken of the handedness afK.

5.2.4.2 The QR Iteration
In the HQRI solution procedure, the QR iteration is required could be applied to the

tridiagonal matrix obtained by the Householder transformation of K. However, it

should be realized that the QR iteration could be applled to the original matrix K as

well, and that the transformation of K into tridiagonal form prior to the iteration is

merely carried out 10 improve the efficiency of the soiution. In the following it is

therefore considered how the iteration is applied to a general symmetric matrix K.

The name "QR iteration" derives from the notation used in the algorithm. Namely the

basic steps in the iteration is to decompose K in the form

K=QR

Where Q is an orthogonal and R is an upper triangular matrix, it is then formed

RQ=QTKQ

(5.40)

(5.41)

Therefore, by calculating RQ, it is in fact carried out a transformation of the form of

equation (5.6).

The factorization in equation (5.39) could be obtained by applying the Gram-Schmidt

process to the columns of K. In practice, it is more effective to reduce K into upper

triaugl.llar form using Jacobi rotation matrices; i.e., evaluating

(5.42)
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where the rotation matrix p/, is selected to zero element(J,i), Using CQrultion (5.41),

corre,ponding to equation (5.39) and (5.40). Using the notation K, '" K, to lorm

(5.43)

(5.44)

Where, then, disregarding that eigcnval11cs and eigenvectors may not be in the usual

order,

5.2.5 The Lanczos Transformation

The basic step of the Lanczos method-transform, in theory, our generalized

eigenproblem K,+,= J...MIjI,into a standard form with a tridiagonal coefilcicnt matrix.

Let us slUllmarize the steps of transformation,

Pick a slarting vector x and calculate

,
x =-", 'r

(5.45)

Let 130 =O;fori=1,2, ,n then calculatcfori=1,2, ,n,

(5.46)

-,,~
u, = x, ''''',

and if i""n, x, =x, -a,x, -/3,.,);,_1

(5.47)

(5.48)

(5.49)

(5.50)

Theoretically, the vectors x,, i= 1,2, .. " .. ,n, generated using equation (5.45) to (5.50)

are M- orthonormal

And the matrix X"=[x"x,, ..... ,xJ
(5.51)

(5.52)



satisfies the relationship

Satisfies the relationship

x' (MK-'M)x '=-T" ""
X'(MK-'M)x eT, ""
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(553)

(554)

Where
(5.55)

(556)

We can now relate the eigenvalues and vectors of 1~ to those of the problem

K"" '" J.MW. which can be written in the fonn

_,1MMK 1/''''- 'I''-
llsing the tran~formalion

I/' '" X if
and equation (551) and (5.53), we obtain trom equation (5.57)

T ,I! '" !..,If
"r ;t"

(5.57)

(558)

Hence, the eigcnvulucs of T,are the reciprocals of the eigenvalues or K\lI = !l.MW,the

eigenvectors of the two problems arc related as in equation (5.56).

5.2.6 Subspace Iteration Method
Another iterative methodwhich can be used to find the lowesl eigenvalues and the

-, ~
assodated eigenvectors or lhe general eigenvalue problem, [AX 1=;\ [B] X, is the

subspace iteration method, This method s very effective in finding the first few

eigenvalues and the corresponding eigenvectors of large eigenvalue problems whose

stiffness ([AJ) and mass ([E]) matrices have large bandwidths. The various steps of this

method are givcn below briefly.

Algorithm - ~ ~
Step I: Start with q initial iteration vC{;torsX" X 2' .... ".,X'I'

(\
- =wa,,

q>p,where pis the

number of eigenvalues and eigenvectors to bc calculated. Bath Wilson suggested a

. ,



52

value of q = min(2p, p + 8) or good convergence. Define the initial modal matrix [x"l

[x,J" Ix"x",X,] (5.59)

and set the iteration number as k = O.

Step 2: Use the following subspace iteration procedure to generate an improve modal

matrix [X ••J
(a) Find [X ••, ]from the relation

[Ajx",]" [EIX,]
(b) Compute [Ak+l]=[x ••J[Alxk+,l and

[B,.,J" Ix"JlnIx",]

(5.60)

(5.61)

(5.62)

(c) Solve for the eigenvalues and eigenvectors of the reduced system

IA••!ro..,]= IB,,,10••,lA ••,]
and obtain [Ak+ll and [Q•• ,].

(5.63)

(d) Find an improved approximation to the eigenvectors of the original system as

[Xl+' 1= [Xk+l wk+,l. (5.64)

Note;
(I) It is assumed that the iteration vectors converging to the exact eigenvectors

X-(<<",,) x-( •..",t) ",. he'd 1 f" ' [X ]1 '1 ... , areSOlo,;uUst C;lIst,sccon , ... ,coumnso <ue matnx ,.,.

(2) It is assumed that the vectors in[X~) are not orthogonal to one of the

required eigenvectors.

Step 3: If ).~.) wd ;1.\1+l)denotethe approximations to the ;-th eigenvalues in the

(5.65)-i=1,2, ,p

iterations k -1 and k respectively, we assume convergence of the process whenever

the following criteria are satisfied:

2("]) - 2Ik)[• • < ~
;1.(1+1) - c.,

where (; = 10--'. It is to be noted that although the iteration is performed withq

vectors (q> p), the convergence is measurcq only on the approximations predicted for

the p smallest eigenvalues.



Chapter 6

SOLUTION OF EIGENVALUE PROBLEM BY USING HYPERBOLIC

INTERPOLATION

6.1 Element Stiffness Matrix Fonnu\ation

Rammohan ct al [6] solved the eigenvalue problem - ~ (x2
'::: )- 2Xlf :0 ),;xlV' using

Lagrange interpolation. Sine hyperbolic interpolation will be used in place ofLagmnge

interpolation. From equation 3.2.\ of chapter 3,the shape functions used in this case are

Now

Takingxj=O, xB=\ and h=\

1 COSh!(l-/-!)COSh!(l-qi_!)
k _ 1(1+')' 2 "\ 2 2 "\ 2
II - "4 ~ sinh(l).sinh(l)-,

== 0.11

Similarly

So for element 1 the stiffness matrix is

For element 2

Also for element 20

k'l == .-0.05

K(l) =[ 0.11 -0.42]
-0.42 -0.05

K(2) = [1.17 - 2.35]
- 2.35 1.30

K(2U) =[ 319.97 -326.20]
-326.20 325.39
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6.1.1 Assembly of Element Stiffness to Form Global Matrix

For one linear element approximation ftmction is, If' = N,tPt + Nl '+'{, where e is the

element number. Substitution of the finite element approximation and using Galcrkin

method in which the weight function is equal to the shape function gives us the fmile

element model of the eigenvalue equation.

The stiffness matrix is obtained as K'if/' ='- ~'if'

StilIness matrix for the element 1

Stiffness matrix for element 2

where
[

k" k"
K '"' k" k"

k" k"

k" ]k" is the global stiffness matrix.

k"
Now the relation between the clements of global stiffness matrix and element stiffness

matrix has been shown.

k
ll
=O.l1, k,,=k!il=-0.42, k,,=O

k,,=O

Now it has been shown that how the global stiffness matrix can be assembled directly

from the clement stiffness matrix. The body is shown in the figure 6.1

(I)
o
1 [1]

(2) (1)
Q

2 [2]

(2)
o
3

Figure 6.1: Local and global nodal point numbering

•



[il arctheelementmunbcr

(i) are the node number of the element

are the global node number of the element

Element [Il is related with global node no. 1 and 2.

Element I2l is related with the global node no, 2 and 3.

For the element I
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1

For element 2

2 3

Hence the global stiffness matrix will be a 3x3 matrix.

[

k" '" ,,,] ['I:) 'i:) 0] [011
K = k

21
k" k" = kj~l kl~+.k!;l k,(:i = - 0.42

kk' 0
'

)1) ,II) 0
" " " ""

This is a square symmetric matrix.

6.2 Formulation of Element Mass Matrix

'"m'l = Jx' N,N,dx
"

Taking xA=O, xn=l and h=1

mil =0.02

- 0.42
1.12
-2.35

o ]-2.35
1.30

Similarly, m" =mlL =0.03 moo =0.17

Thus for element 1 M(I) =[0.02 0.03]
0.03 0.17

•



Fordement 2 M{l)=[0.39 0,25]
0.25 0.83

,"""' , [94.99For element 20 Vi' 42.00

Now, the element mass matrix is

42.00]
100.72
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6.2.1 Assembly of Element Mass Matrix

For the mass matrix M' element stiffness matrices are given below:

For the element I

1 2

[m'" m

l

']" "MII)=
miLl mil)
" "

2 3

[ m
l
" m"']" "M('i =

m(J) mil)
" "

(I) ,
Ill" =m~~)= 0.03, kll=O1Ill]= Ill\] = 0.02 ,

Ill" = ml'?= 0.03 , m" =m~ + 1Il,1;)= 0.17 + 0.39 = 0.56 m _ml')_ 28, ,,-,,--.

m,,=O, Ill" =ml~)=0.25 , Ill" =mgl =0.83
Hence the global mass matrix is

[m" m" ][ In
mil)

o ][002 0.Q3 O~5]Ill]) mIL "
M= Ill" m" I" mil) +ml') mii) = 0.03 0.56

IIll, = Ill" l' "

mOl m." m" 0 mil) ml') 0 0.25 0.83
" "

Assemble oflwo linear elements has been shown below.

The element stiffness equation K(ll If =).M(I) If for element 1is

[
0.11 - 0.42] ['Pill] [0.02 - 0.03] ['fiLl')]
-0.42 -0.05 't'jJl =}. 0.03 0.17 'l'j1)

Similarly, the dement stiffness equation K(l) ~I =' ,l,M(,JI/f for element 2 is

[
1.17 - 235][,¥?I]d [0.39 0.25]['l',ll)]
_235 1.30 'l'fl 0.25 0.83 'l';'l

,
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The global stiffness equation Kill = 1cM'{Ifor two linear elements

[
0.11 - 0.42 0] [",] [0.02 0.03 0] [.,]
-0.42 1.12 -2.35 If, =2 0.03 0.56 0.25 If,

o _ 2.35 1.30 If.', - 0 0.25 0.83 If,

Now the boundary conditions are imposed on the problem. Here \11(1)=0 reqll1res

If, ""O.
On substitution the above condition the global stiffness equation takes the form

[
0.11 -0.42 0 ][",] [0.02003 0]["']
-0.42 1.12 -2.35 'f, =): 0.03 0.56 0.25 If,

o _ 2.35 1.30 0 0 0.25 0.83 0

The above assembled equations arc solved by Gauss elimination method or by lillY other,
solver
Therefore, the eigenvalue problem reduces to two equations

O.llW, -0.421Jf) =2(O.02V', +O.03IfJ

and -0.42'11, +1.12~/, =}.{O.03V, +0.56W,)

Then solving the above two equations the values of ,t are obtained as

A[ = -0.466

A.,=11.068

The global stiffness matrix K) and Ml for 20 clements will be a 21x21 matrix. The

matrix eigenvalue equation to be solved by Jacobian method is

K,If=AM,if
lbe equation is solved by using computer programming to find thc eigenvalues which

arc given the following table

Table- 6.1 Eigenvalues obtained using 2-noded element

A, A, A, ), " " )., )., )4 )'"
13.701 11.350 10.727 9.832 8.771 7.643 6.519 5.452 4.470 3589

)" )" )n ;.1' ;i.], )n )" ;.1& An ,1.10

2.813 2.141 1.568 ).087 0.693 0.3'79 0.143 -0.016 -0.185 -1.142



58

• 6.3 Stiffness lind Mass Matrh for Quadratic Element

For quadratic element, writing

I{/ = N,I//, + N,l{/l + N,If.,
The shape function in this case are given by equation (3.2.2) in chapter 3

N _ sinh r; sinh(; -1)
1 - sinh(-1)sinh(-2)

N _sinh(l+;)sinh(q-l)
~ - sinh(l)sinh(-l)

N _ sinh q sinh(l +?)
3 - sinh(2)sinh(1)

Thus the e1cment stiffness is obtained as

"[dNdN Jklj =1 x' dx" ~-2xN,NJ dx

Taking ,>:,,=0, xn=2 and h=2

k
ll

= S\(l+t)'[SiDh<,"COSh(';-I) + COShS'~inh{r;-l)]'
_, ~ sinh(-1)sinh(-2) sinh(-1)sinh(-2)

sinhssinh(; -l)sinh; sinh{q-I) 1h-2(1+;)-~-~~~-~~~~ -d;=O.16
sinh(-l)sinh( -2)slnh(-i)sinh (-2) 2

-523.14

1059.42
589.90[

450,45
K(IO) = -523.14

61.94

[

0.16 -0.66 0.36]
K(l) = 0.66 2.33 -4.49

0.36 -4.49 2.10

[

675 -9.88 1.81]
K(2) = -9.88 2.212 20.70

1.81 20.70 16.88

6194 ]
- 589.90
516.32

For element 2

For element 10

Thus ror element I
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6.3.1 Assemble ofElcment Stiffness Matrix to Form Global Matrix

Now the relation between the dements of global stiffness matrix and element stiffness

matrix by taking two quadratic elements has been shovm below

kll = k,(:) =1.66, k" = k,(;J= 0.66, kLJ= k,(\'= 0.36, kl4 = 0, k" = 0

k" =kj\l =0.36,

k ,
'""-,,, k - k'",,- " ' k,,=O, k,,=O,

k,,=O

k,,=O,k,,=kjii=-9.88, k..,=kW=2.212, k,,=kj;J=20.70, k,,=O,

k'1=kjil=L81, k,,=kj;l=20.70, k,,=kj;1=16.88

Now it has been shown how the global stiffness matrix can be assembled directly from

the element stiffne~s matrix. The body is shown in the figure 6.2

(I) (2) (3) (I) (2) (3)
0 0 0 0 0

I 2 3 4 5

[1] [2]
Figure 6.2: Local and global nodal point numberin~

[iJ are the element number

(i) are the node munber of the element

are the global node number of the dement

Element [1] is related with global node no. 1,2 and 3.

Element [2] is related with the global node no. 3, 4, and 5.

Henee the global stiffness for 2 clements will be a 5 ><5matrix.

k" k" k" k" k" k(l) k(l) k(l) 0 0
" " "

'" k" '" k" k" k (I) k{ll k(l) 0 0
" .ll "Ko k" '" k" k" k" 0 k(') k(L) k(L) + k(2) k(l) k(l)

" " " II " "
'" k" '" k" k" 0 0 k(') k{'l k(')

" " "
k" k" k" k" '" 0 0 k(l) k(l) k (,)

" " ).'

0.16 - 0.66 0.36 0 0

0.66 2.33 -4.49 0 0

0.36 - 4.49 8.85 -9.88 1.81

0 0 -9.88 2.212 20.70

0 0 1.81 20.70 16.88
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This is a square symmetric matrix, -'-,

Similarly, global mass matrix can be obtained as

"
m& '" JX'N,NJdx

"

[

88.84 43.12
M(lO) '" 43.12 385.22

-24.10 53,26

we get m" '" 0.03

Thus for element I

For element 2

Forelcment 10

[

003
U{l) = 0.00

-0.03

[

1.03
M(l) =' 0.68

-0.25

0.00

1.25
0.33

0.68
10.52
1.67

-O.OJ]
033
0.58

- 0.25]
1.67

2.69

_24.10]
53.26
104.04

Similarly, the assembled mass matrix for the first two will become:

m{l) m('1 m(.1) 0 0 m(l) mil) mlJi 0 0

" " " " " "
m(l) m(l) mil) 0 0 mil) mil) m(ll 0 0

" n " " " "M~mil) mil) m{l) +mi'l ml'l m('l ~m(l) miL) miL) + ml'l ('J m(2)

" " " ]I " " " " ," II m" "
0 0 mil) m{'l mW 0 0 m{21 mW mgJ

" " "
0 0 mt'l ml,J ('I 0 0 ml,J mi') m{2)

" " m" " " "
0.03 0,00 -0.03 0 0

0.00 1.25 0.33 0 0

0.03 OJ3 \.06 0.68 - 0.25

0 0 0.68 10.52 1.67

0 0 - 0.25 1.67 2.69

The global stiffness matrix K[ and Afl ""ill be a 21x21 matrix, The matrix eigenvalue

equation to be solved by Jacobian method is

K,If '" XM,If
The equation is solved by using standard computer programming to find the eigenvalues

which are given in the follo'>'.ing table

•••
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Tllb\c- 6.2: Eigenvalues obtained using 3-noded clement

A, " A, " " '. " " " '"~
18.711 17.709 16.083 14.903 12.021 J 0.059 8.314 6.844 5.72\ 4.093

'" ,1.12 An ,,, ).15 }.16 An An A" A"

2.440 1.972 1.468 1.013 0.629 0.320 0.083 0.079 _0.232 .0.979

6.4 Formulation of Element Stiffness and Mass Matrh Using Tangent
H)'perbolic Interpolation

(a) Stiffness and Mass Matrix for Linear Element

Tangent hyperbolic interpolation has been also used to calculate the eigenvalues. The

shape functions in this case for linear element are,
umh-(l-q)

N _ 2
I - tanh(l),

ianh-(l +;)
N _ 2

2 - tanh(l)

~
","'-IH' -'J""''-IH' -')k_'l(I+) 2 \22 '\2

ll- _,"4 ~ tanhh(t).tanh(t)

=OJO

So for elements 1

For element 2

Also for clement 20

kl1 = -0.36

K(l)=[ 0.30 -0.66]
-0.66 -0.36

K(2) =[ 2.43 -3.72]
-3.72 1.17

K(20) =[ 512.43 -484.28]
_ 484.28 500.52



Thus for element 1

For element 2

For element 20

M(I) = [0.07 0.09]
0.09 0.27

M(l) =[0.93 0.75].
0.75 1.53

M(2G) = [197.48 125.48]
125.48 205.27
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The global stiffness matrix Kl and Mj will be a 21x21 matrix. The matrix eigenvalue

equation to he solved by Jacobian method is

K,Iji = )'M,1ji

The equation is solved by using computer programming to find the eigenvalues which

are given the following table

Table _ 6.3: Eigcnvaluc~ obtained using 2-noded clement

A, A, " ,. " .c " .c .c 'w
12.946 12.289 11.126 9.713 8.246 6.853 5,600 4.511 3.585 2.808

An An An 'n A" }.lo A" A" A" A"
2.163 1.632 Ll97 0,844 0.563 0.644 0.182 0.073 -0.042 -0.509

(b) Stiffness and Mass Matrix for Quadratic Element

writing, V' = N,If, + N,II', + 1'1,11',. .

N,
The shape functions in this case arc

tanh <," lanhe; -I)
lanh(-l) tanh( -2)

N _ tanh(l +q) tanh(q - \)
2 tanh(1) tanh( -1)

N _ tanh c; tanh(l + c;)

J - tanh(2)mnh(l)

We get the element stiffuess as

"'[dNdN Jk ~J ,'_'. __'_2xNN dx
'1 dxdx 'J

",
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Taking xA 000, xB =2 Using and n=2

k" = 5((1 +~)l [tanh,;sech' (? -1) + sech':tanh(; -1)]'
_, lanh(-1)tanh(-2) tanh(-1)tanh(-2)

tmh "mm(, -I) tmh ,Imh(, -I) Ih
-2(1 +.g) tmh( -.I)'mh..(-2 .)umh(.-l)tmm.. (-2.) "2dq =1.26

[

1.26 0.81 0.62]
Thusforelemenll Kil)= 0.81 0.60 1.89

0.62 1.89 1.50

For element 10
[

499.01
K(lO) = _ 403.64

- 65.45

-403.64
841.06
282,79

-65.45]
282.79

527.79

From

And the mass matrices are

[

142.83 37.54 -75.87]
Forelem~nt10 MIlO) = 37.54 368.71 60.45

-75.87 60,45 167.96

The global stiffness matrix K, and M will be a 21x21 matrix. The matrix eigenvalue

equation to be solved by Jacobian method is, 1f.,if/ = }.M,!f
The equation is solved by using standard computer programming to find the eigenvalLles

which are given the following table

Table 6.4: Eigenvalues obtained using 3-DOdcd clement

" 1, ,t, }4 }, " " k }4 210

33.248 7.689 6.642 5.606 4.R21 4312 4.016 3.833 3.563 2.723

Au ).ll 210 A" ,1,1.1 '" ).17 Au ,1,19 A,"
1.733 1.636 1.483 1.306 1.113 0.935 0.797 0.694 0.503 -0.115

.-
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6.5 Concluding Remarks:
From table 6.1 it has been observed that in case of linear element the sine hyperbolic

interpolation the eigenvalues shows discrepancy in case of higher eigenvalues than that

of the lower values. But li:om table 6.2, it is seen that when quadratic elements arc used

then the sine hyperbolic interpolation gives the result where the eigenvalues afe highly

differ v,ith each other than that of the values obtained by using linear sine hyperbolic

interpolation functions in table 6.1.
From tab1c 6.3 it has been observed that in case of linear tangent hyperbolic

interpolation results shows less discrepancy than that of the eigenvalues obtained by

using linear sine hyperbolic interpolation. But on the other hand, it is seen from table

6,4 that the eigenvalues obtained from quadratic tangent hyperbolic interpolation are

highly dilfcr by their valucs in case of higher eigenvalues than the lower values. It is

also noticed that in case of quadratic sine hyperbolic interpolation the results shows less

discrepancy than those obtained by using quadratic tangent hyperbolic interpolation.



Chapter 7
RESULTS DISCUSSION AND CONCLUSION

Rammohan ct al calculated the eigenvalue using Lagrange interpolation for the domain

o to 20 taking 20 elcments having length I for each element.

Eigenvalues are here calculated using quadratic Lagrange element for the same domain.

Eigenvalues here are also calculated taking-linear and quadratic element using sine

hyperbolic and tangent hyperbolic interpolation. The results are shown below in the

tabular form for comparison with the Lagrange interpolation.

Table 7.J: Eigenvalues obtained by using Lagrange and sine h)'perbolic
interpolation for linear element taking 20 elements having length t for eaeh
element.

Eigenvalues Linear Lagrange Linear sinh

" 12.929 13,701

" 11.565 11.350

" 10,787 10.727

" 9.724 9.832

" 8.522 8.771

'. 7.292 7.643

A, 6,111 6.519

" 5.023 5.452,~ 4.051 4.470

,\'0 3.199 3.589

'" 2.466 2.813

'" 1.843 2.141

AU 1.319 1.568

'u 0.886 1.087

;.15 0.533 0.693

A" 0.225 0.379

'u 0.048 0.143

AU "0.093 -0.016

A" -0.238 -0.185

"" -0.942 -1.142
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Table 7.2: EigcP"lIiues obtained b~' using Lagrange and sine hyperbolic
interpolation for quadratic elemept taking 10 clements having length 2 for each
element.

Eigenvalues Quadratic Lagrange Quadratic sinh

2, 15.509 18.711

2, 14.085 17.709

2, 12.427 \6.083

"' 10.522 14.093

'" 8.681' 12,021

'" 7.049 10.059

2, 5,667 8.314

'" 4.520 6.844

"' 3578 5.721

2" 2,664 4.093

lil 2.183 2.440

2" 1.634- 1.972

2" 1.179 1.468

2" 0.798 1.013

2" 0.483 0.629

2" 0.229 0.320

2" 0.D35 0.083

2" -0,099 -0.079

"" -0.249 -0.232

"" -0.990 -0.979

••
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Table 7.3: Eigenvalues obtained by using Lagrange and tangent hyperbolic
interpolation for linear element taking 20 clements having length I for each
element.

Eigenvalues Linear Lagrange Linear tanh

2, 12.929 12.946

2, 11.565 12.289

2, 10.787 11.126

M 9.724 9.713

2, 8.522 8.246

M 7.292 6.853,., 6.111 5.600

M 5.023 4.511

M 4.051 3.585

2w 3.199 2.808

2" 2.466 2.163

}.12 1.843 1.632

2n 1.319 1.197

2" 0.886 0.844

}.jj 0.533 0.563

2" 0.225 0.344

2n 0.048" 0.182

2" -0.093 0.073

2" 0.238 -0.042

'm .0.942 -0.509
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Table 7.4: Eigenvalues obtained b}' using Lagrange and tangent hyperbolic
interpolation for quadratic clement taking 10 elements having length 2 for each
element.

Eigenvalues Quadratic Lagrange Quadratric tanll

2, 15.509 17.713
2, 14.085 12.604
2, 12.427 10.763

'"' 10.522 8.875

'" 8.681 7.285

" 7.049 6.010

", 5.667 4.985

" 4.520' 4.150

'" 3.578 3.462

"w 2.664 2.891

2" 2,183 2.296
2" 1.634 1.821
).1 J 1.179 1.438
).14 0.798 1.094
).15 O.48J 0.496

"" 0.229 0,935

"" 0.035 0.233

"" -0.099 0,020

"" -0.249 -0.138

"," -0.990 -0.513

The eigenvalue problem has been solved for-different hyperbolic interpolation such as

sine and Tangent. These are calculated for same region laking different length of

clements 1 illld 2 for linear and quadratic elements having number of elements 20 and

10 respectively. So that number of nodes remain same and number of eigenvalues

remain same.

Table-7.1 shows that in case of linear element the Lagrange and sme hyperbolic

interpolation the eigenvalues shows a good agreement.

Table-7.2 shows that when quadratic elements are used for the Lagrange and sine

hyperbolic interpolation the result shows discrepancy in case of higher eigenvalues (han

the lower ones. It is also seen that for quadratic sine hyperbolic interpolation the

agreement is good in case oflower eigenvalues than those of higher eigenvalues.
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Table-7.3 it i~seen that in case of Lagrange interpolation used for linear element, the

result shows better agreement for the higher eigenvalues than the lower values.

Table-7A shows thai for quadrniic tangent interpolation results shows discrepancy in

case of higher eigenvalues than the lower ones and the ab>TeCmentis better in the later

case. It is also noticeable that eigenvalues obtained by quadratic sine hyperbolic

interpolation show better covergency in case of lower eigenvalues than those of lower

eigenvalues obtained from quadratic tangent hyperbolic interpolation.

From the discussion it is clear that the effect of hyperbolic interpolation in the solution

of eigenvalue problem is not good in case of quadratic tangent hyperbolic compared to

the linear sine hyperbolic, quadratic sine hyperbolic and linear tangent hyperbolic

imerpolation functions.
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