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Abstract

Finite element method is an efficient method for solving ordinary and partial differential
cquaiions in both lincar and nonlinear cases that arise in different branches of applied
scicnces such as heat transfor, Muid flow, solid mechanies, quantum mechanics. All kinds
of problems such as inifial and boundary value problems and eigenvalue problems are
solved by using finite clement method. In all these cases algebraic polvnomial or

Lagrange mterpolation funclion is used to approximate the field variable.

In our present study we have replaced the Lagranpe interpolation function by the
Hyperbolic interpelations namely sine and tangent hyperbolic interpolation in solving an
eigenvatue problem by finite element method. The result shows that eigenvalues obtained
by using sine and tangent hyperbolic interpolation agree well with those of Lagrange

inlerpolation.
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Chapter |
INTRODUCTION

1.1 General

Finite efement method is one of the best numerical methods for solving a wide varicty
of practical problems in the field of applied science and enginecring. U has its
superiorily other methods because of its ability to solve problems concerning domain
with irregular geometry and helervgencous composition. Various problems such as Ileat
Transf{er [1], Nonlincar [2], Transient {3] and Figenvalue Problens |[4-6] are solved by
using finite element method. Because of the close similarity between the equations of
eigenvalue and boundary value problems the steps involved in (he construction of their
finite clement models arc entirely analogous, Galerkin weighted residual procedure is

used to deduse the finite clement model of cigenvalue problem,

Differcntial eigenvalue problems are then reduced {o algebraic eigenvalue problems by
means of the finile element approximation. For most of the problems 4 and £ will be
syminetric matrices of order # and X is a column vector with n components called the
eigenvector. If the physical problem is the free vibration analysis of a structure A will
be the stiffness matrix # will be mass matrix and X is the square of natrual [requency
and X is the mode shape of the vibrating structure. The eipenvalue problem can be
written as {4 — AB)X = 0. There are various methods of solving algebraic eigenvalue

problem such as Jacobi method, Power method, subspace iteration method cte. In

solving our problem Jacobi method has been used.

In this meihod the real symmetric matrix A is reduced 1o a diagonal matrix by a series of

orthogonal  transformation 5, &,----------- in 2x2 subspaccs. When the

diagonalization is completed the cigenvalues are located on the diagonal and the

orthogonal matrix of eigenveetors is obtained as the product of all orthogonal

transformation,

Here will be considered the solution of the eigenvalue problem

—ii xzd_w —E = Ay which was solved by Ramachan et al [6], in a
ca\” ) x



L]

different manner. In general Lagrange interpolation and Hermite interpolations are uscd
in solving the problem by finite clement method. Lagrange interpolation is uscd in
solving secoud order problem and Hermite is used in fourth order problem. Rammohan
et al used Lagrange interpolation. It has been replaced by Hyperbolic interpolation and
is solved the problem to find the eigenvalues. Numerical calculation will be performed

by using FORTRAN programming language.

1.2 Objectives of the Work

The main object of this study is to find the effect in the solution of the eigenvalue
problem |6] by finite element mcthod if the hyperbolic interpolation is used instead of
Lagrange interpolation. Remmehan ct al [6] calculated the eigenvalues using linear
clement and Lagrange interpolation. We shall find the cigenvalues {or quadratic and

cubic clement using Lagrange interpolation.

Eigenvalues will be calculated for the lincar, quadratic element using hyperbolic
interpolation. instead of Lagrange interpolation and comparc the resulls with those
obtamed by Lagrange interpolation to observe the cffect of hyperbolic interpolation on

the solution of cigenvalue problem. '

1.3 Review of the Earlier Works

The conception of finite element method has come from the idea of removing the
difficultics faced by weighted residual meihods where the approximation function is
derived from intuitive idea and the body is considered as a whole body. In the finite
element method the body is discretized into sub-domains and the systematic function is

derived for each sub-domain.

The use of piecewise-continuous functions defined over a sub-domain to approximate
an unknown function can be found in the work of Courant [7], who used an assemblage
of tangnlar elements and the principle of minimum iolal potential energy o study the
St. Venant torsion problem. in 1943. Although certain key features of the finite elenent
method can be found in the works of Hrenikoff [8] and Courant [7], its formal
presentalion is attributed to Argyris and Kelsey [9] and Tumer, Clongh, Martin and
Topp [10]. The tenn *finite clement’ was first uscd by Clough [11] in 1960, in tus paper
titled, “The Finite Element Method in Plane Stress Analysis.” After its introduction it



has continually developed and improved. Since its inceplion the literature on finite
element application has grown exponentially. While in early days the contributors have

been almost engineers, loday a large of themn comes from the field of mathemutics.

Various {ypes of problems such as Hyperbolic Problems [12] solid mechanics [13] are
solved by using [inite element method. Tnitial value problems and boundary value
problems having Dirichlet, Neumann and mixed boundary conditions are solved by this

mcthod.

Most boundary valuc problems have an associated eigenproblem. The two are closely
reluted both in physical meaning and mathematical cxpression. Most boundary value
problems have an associated eigenproblem. The two arc closely related, both in physical

meaning and mathematical expression.

‘There are presently several methods that arc appropriate for lhe medium to large
generalized eigenproblems that occur in finite clement application. They take full
advanlage of the symmetric, positive definite, banded properties of the stiffness and
mass matrices. One or more of the following methods will be found in most commereial
finile element programs that solve eigenproblem [14].

Gieneralized Jacobi method

Householder method

Givens method

Lanczos method [15]

AR e

Subspace iteration method [16]

The first mcthod is bascd on the classical Jacobi method [1846] for the stundard
eigenproblem. It was modified during 1960s to handle the generalized eigenproblem.
The modification is referred to as the generelized Jacobi method. The algonthm
(Converging for a wide range of problems) is one of the easiest to understand and code.
The generalized Jacobi method calculates the entire eigensystem (ie. all eigenvalues
and eigenvector) and therefore by itself, would be appropriate only [or small problem.
In order to exiend ils usefulness to large problems, it is first necessary to roduce the
large eigenproblems t¢ a much smaller eig:cnpmblm by eleminating the values of

dcpendent variable associated with higher eigenvalues.




The resulting smaller problem models only the lowest eigenvalues and cormresponding
eigenvectors. An algorithm that performs such a reduction is sometimes called an
eigenvalue economizer. The most widely used one at present is the Guyan reduction
[17) |

Dilferent sclution technigues to solve the eigenproblems are illustrated in details in [18]

and [19].

Rammohan et al [6] solved the eigenvalue problem to calculate the emergy levels of
quantum mechanical system by {inite clement method. This method provided a
convenient procedure for the calculation of energy cigenvalues of the quantum
mechanical system. They investigated the levels of accuracy that can be attained in the
method of {inite clemenls using verious approximations. They illustrated 1t by
considering two examples which formed a convenient basis for describing the
calculation technique. One of (hem is the radial cquation for hydrogen atom for
spherically symmetric states and the other is simple hammonic Oscillator in one
dimension. These two illustrative examples provide guidelines in the calculation of
energy cipenvalues of the hydrogen atom in an arbitrary spatially uniferm magnetic

field, a problem not solvable by analytical means.
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- _ Chapter 2

WEIGHTED-RESIDUAL METHODS

Weighted Residual Methods and Rayley-Ritz method play an important role for the
mathematical development of finite clement method. The weighted residual methods are

discussed here.
Suppose a dilferential equation 15 1o be solved is

Au=fn 2 (2.1
where 4 15 the operator 7

The function u is not only required to saisfy the equation, it is also required 1o satisfy
some boundary candilions,

In the Weighted method the sclution u is approximated as

4y =Yg+, (22)
¢y and ¢, are function of X and c,'s are paramcters. ¢, is required to satisfy all
specified boundary conditions and ¢ . are required to satisfy homogeneous form of all
boundary conditions of the problem.
Substitution of the approximate solution «,, inlo the lefi-hand side of equation (2.1}
gives a funclion f, = A(x,) that, in gcnc_"ral, is not equal to the specified function f. The

difference A(w,Y— 1, called the residual of the approximation is nonzero,

I

R=alu)- f=4 Zc;@jmﬂ -

The remdual R i5 & funclion of position as well as of the paramcters ¢y, In the
Weighted residual method as the name suggests the paramelers ¢ ;5 are determined by
requiring the residual R to vanish in the weighted integral sense,

[ (i, s =0 i=1,2,3, . ,n (2.3)

£

where w,'s are Lhe wewght functions and € is 2 one-dimensional fomain, which in

geacrad, ere not the same as the approximation function ¢, The set fw,} must be a

| 2l



licearly independent set, otherwise, the equations provided by equation (2 3) will not be

linearly independent and hence will not be solvable.
Jwldla,)- =0
[T e, +6,)- =0
[waY ¢ ,dx = w7 - aley e
s[1wa(g, ) e, = w(f - A(g.))

Some of the weighted residual methods are

1. The Petrov-Galerkin Method

The weighted residual is known as Petrov-Galerkin method whenw, = @,. When the

operator A is linear, equation (2.3) can be simplified to the form

5] wraﬁm}i - ol - A s o4

3 Adc =F
E e i =123 it

Note that the coefficient matrix |Aj 1s not symmetric:

A, = Ier(gﬁJ}ir + 4,
£l

2. The Galerkin Method

Tor the choice of weight function w equal to the approximate functiong, the

Weighted-residual method . better known as Galerkin method

Now, w=g (2.5)
i.e. weight function = trial function

Z[I eﬁ.A(sﬂ;}ir}J = [y - 4l

sl

ZAUCJ.=F,

= i=123. ..}

whers

Ar; = _[;f’,ff(?;}irv F.= I@’}. U - A(’i’n}}jx



Once again we note that A, isnot symmetric.
If the equation permits, and one wishes, the differcniiation can be iransferred from the
solution ¥ to the weight function w= $,,and on thereby obiains the weak form to relax

the continuity requirements onl {he approximation fynctions and nclude the specified
natural boundary conditions of the problem.

With equation {2.5), cquation {2.3) yields

Ilﬁr(I}R(IjCJ e =0} i=1,2, el (2.6)
%]

Obviously, the Galerkin method is quite powerful since it can be appiied 10 physical

problems that do not have atl alternative variational formulation

3 The Least Bquare Method

1o this method we determing the parameters ¢, by minimizing the integral of the square

of the residual.
8 ¢ 2
E ELR (I,CI)ETI
Choosing W, =§ (2.7}

4
S the equation (2.3) takes the form
aR

jac R(x,gj)dx=ﬂ C =L 2.3, et (2.8)
%] I

In arder to evaluate the choice, consider the following quantity §;
7= R(x,e, 600 e )X (2.9)
Since we integrate w. .10 ¥, it follows that the quantity I depends on the parameters

c,” only, ie. 1 =1c,eq, ¢,,). From equation (2.9) it is concluded that

o _ jR-a—IE {2.10)
6{71 G ac}

An evaluation of equation (2.9) shows that [ is the squate of the errur, 1., the residual,
intcgrated over the repion of interest. A comparison equation (2.8) amal {2.10) reveals
that

of
el 2.11
7.4 @11

!



i.¢. our choice of wciglht function given by equation (2.7} implies that f is stationary. AS
the residual I, and thus also the quantity [, can be made arbitrarily large, 1 is concluded
that the stationary of [ as expressed through gquation (211} is 2 minimum.
Consequently, the choice of weight funchon piven by equation (2.7} implies that the
square of the efor is 2 minimum; hence the terminology of the lcast-squarcs method.

The Least-squarc method always results in a symmetric in a symmetric coelficient

matrix, which is clearly an advantage in numerical calculations.

i‘i[“{"}[““[éﬁ*ﬁ; "“:'f‘n]-'fldx =0

\Z[j»ﬁw, ), 4lg, )a&}J = [ Alg Y - Al e

=Min

ZA!IEJ = Fl

=

Here, [(A“ -7 )]: R
A(}:C;‘.ﬁ'j +¢u]"f =R
aR

W, =—
&‘I

4. The Collocation Method
In the Collocation method, we seek an approximate solution in the form of equation

{2.11) by requiring the residusl in the equation 0 be identically zerc at selceled points

x, in domain Q.

f.ﬂ, R(xi’cf}zﬂ:l j:lr 2: 31”"”1 H

W=y, =0lx- x, }=PDirac delia Jfunction
In this method the weight function w is chosen based on Dirac’s dehia function.

Slx - x. ). This function is defincd as

w if x=1x

Ly Y= 212
5 ) {{} otherwise (212)

Iﬁ(x—xf}ix=1 (2.13)

-




where x, is a given fixed value. Alternatively due to equation (2.12), it may be wrien

equatiorn {2.13) as
iﬁ[x-xr)d)::l : (2.14)

wherex; and X/ denote x -values sightly larger than and smaller x,, respeetively
In the point collocation methed, the weight function ¥ is chosen such that
w =[ﬁ(x—xl)ﬁ{x~x1)---+--§{x—xﬂ]] (2.13)
whare W= W W, Wayenee W, are known functions of x .
The fixed points X;, Xz, %a are chosen arbitrarily within the region ¢ =¥ = b and are

called collocation points. In order to illustrate the consequence of this choice of weight

function, it 18 evaluated

]
Iw.:ﬁ: -0 which becomes

b _
jﬁ{x—x,)ﬂdx:ﬁ P=12,.,0 (2.16}

-3

As Dirac’s dejta function 5 zero unless x = ¥, we have

-
1

B LY

Ic‘i(x - x, ]R(x,cf]rt =xi+( Slx - xl)fi(x,c,}ir = R(r,cj)j §(x —x, Jdx = R(x,c}) (2.17)

da X

That is, the point collocation forces the residual R (x,c r] to be zero al the collocation

points.

Hlusiration
Let us illustrate the above methods by considering an example

Here will be shown the various weighted residual differ in how the weight function W is
chosen, Obviously, the specific choice of the weight funclion influences the values of
{he parameters ¢1,¢z, """ which arc to be detcrmined.

d'u ;
X = 0
ddx w(0)=0. u'fi)=1
The cxact solution is given by
)= 2eos{l-x)=snx 1 o
cos!

Tor 4 weighted residual method & and ¢, should satisfy the following conditions:

-
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¢,(0)= 0 4 {1)=1 (satisfy the actual bc.)

4.(0)}=0 @ (1)=0 (satisfy the homogeneous form of actual be)

We take n=2. Let the functions satisfying the above conditions be
g (x)=x &= :r:l(Jt'z - 2)’ B, = x(:'c1 - 3]

the residual in this approximation 1s

R= _[{Hc,i i“:’)—{&u +Zc=¢‘1+ x?

= —.f:]l(lltlr1 +xt - 4)— ‘51[’53 + 3:::)-% ¥t-x

Petrov-Galerkin Method
Let the weight function be

4
w=y, =¢ W, =X

1 1
Then J'gfjfdx =0 and _[x”' REde=0
i}

L]

38711 17817 29 472 5 1

g t——Cy t = =0 —e +=c,+—=0

50000 ' 5000 100 5150 8 7 42

g, = 96406 _ 4 omd724 €= _ 3699 _5.0862468
4289985 _ 4289985

The solution i8 #,; =@, +C# G

—1.258740 x—0.04494438 & —0.0862468 x* +0.0224724 x

The Galerkin Mcthod

The weight function in this casc 15

W= =Jc2(x2 —2) W= =::;(x2 -3)

] |

[ ~2)Rde =0, [xls? -3 Rele =0
1] i}

o4 20 8 121 68 13

"-_ﬂ1+_-c1+‘_=ﬂ —-I::l"'_cz__':ﬂ
Tos ' 24 1105, i5 '35 60

3113 _ 2B 408406958

O, =T £, ==
1067116 = 0.00291720 266779
Mg 1} 2522087 x—0.0058344 x* ~0.08406958 x” +0.00291 72x*
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The Least Square Method

Taking w = w - OK W= R
We have,
L 1
[-(oc +x* - 4)R =0 [~ +3x) rax =0
[+ i}
161 67 1 67 152 17
—f —cy;—==0 — =yt — =
15 12417 24735 1 60
o = B8 5036357 gy =—ooo 2 - 008861223
3881993 385199302

1, =12658366x —0.072714x" —0.0886122x" + 0.036357x"

The Collocation Methodl

Choosing the points x =1 and x =2 25 the collocation points, we evaluate the residuals

at these poinis and set them equal to zero:

R[%zﬂ], 233 1B, _2_,

1 T Ae T
81 277 9
2
}{—]:ﬂ, Eﬂ.+Eﬂz +E:{]
3 g1 27 9
¢, = i?’ﬁ_ = 0.0384615 ¢, = _5130 = -0.107466
47736 and =~ 47736

The solution is given by :
M, =1 372398 x - 0.0769230x% - 0.107466 x* +0.0384615
Comparison of the Weighted-residual and exact solutions of the boundary value

d%u o \
problem P —u+x =0, #(0)=0, (=1
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Table 2.1: Comparison of the results of different Weighted-residual methods with exact

solution
Solution, u(x) B
x M Moo g M, q e
0.0 0,0000 0.0000 {0 0000 (.0000 0.0000
0.1 0.1262 0.1233 {0.1248 01258 0.1314
0.2 0.2513 {0.2493 0.2495 {1.2496 02606
0.3 0.3742 0.3714 03729 0.3711 03872
0.4 0.4543 04914 0.4946 0.4900 0.5108
0.5 0.6112 0.6088 0.6143 0.6059 {.6309
0.6 0.7244 07233 0.7311 07189 0.7470
0.7 0.8340 0.8343 0.8455 0.8289 {.8603
0.8 0.9402 0.9433 0.9561 0.9357 0,96%4
0.9 1.0433 1.04383 1.0628 }.0396 1.0747
1.0 1.1442 11500 1.1652 1.1408 1.1764

DiMiculties in Weighted-residual Methods:
From the above discussion of dilferent Weighted-residual method it is clear that one is
to find an approximation function for the whole domain, that satisfics the boundary

conditions. The difficultly is that there is no definite procedure of finding ihe

approximation function. One is just 10 suppose it.

‘['he finite clement method overcomes the difficulty ol the Weighted-residual methods

by providing a systematic procedure for derivation of approximation function over sub-

regions of the domain. The function is # = Zu, , @, where u, arc the nodal values of

the function and ¢, are the Lagrange interpolation function

So finile element method is a pieccwise application of Weighted-residual methods in
which the approximation function is an algebraic polynomial that are obtained from

interpolation theory.



Chapter 2

WEIGHTED-RESIDUAL METHODS

Weighted Residual Methods and Rayley-Ritz method play an important role for the
mathematical development of finite clement method. The weighled residual methods are
discussed herc.

Suppose a differential cquation is 1o be solved is

Au=fin (2.1)
where 4 15 the operaior
The function u is not only required to satisfy the equation, it is also required to satisly
some boundary conditions.

In the Weighted method the sotution u is approximated as

w, =L, + &y (2.2)
¢, and ¢, are function of X and ¢'s arc parameters. ¢, is required to satisly all
specified boundary conditions and ¢, are required to satisfy homogencous form of all

boundary conditions of the problem.

Substitution of the approximate solution u, into the lefl-hand side of cquation (2.1)
gives a function f, = A(x,) that, in gencral, is not equal io the specified function f The

difference A{x,)— f, called the residual of the approximation is nonzero'

R :A(u"]-fzr{z“chﬁj +¢D}—f¢0.

The residual R is a function of position as well as of the parameters ¢s. In the

Weighted residual method as the name suggests the paramelers ¢85 are determined by

requiring the residual R to vanish in the weighted integral sense.

jw‘-(x)ﬁ(x,ﬂj}ir =0 i=1,2 3y wrrriy D (2.3)

2

where w,’s are the weight Functions and € is a one-dimensional dowmain, which in

general, are not the samc as the approximation function ¢ . The sct fw ) must be a

f
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_Gemaexy) L (on)Eo ) LR SN
(x; — X3 )z, — x3) (Il'xﬂ(xz—xz] Ll A, b

=Ny + Ny + M,

where N, = (x—x (T — X3}
(x) —Xx)(x —%3)

(x—x)(x = %)

N, =
: (xz—xi)':xz'xz]

N, = (I_lex_xz}

(x5~ ey - %)

Shape functions are given in the following figure.

N2
" ho ,
[ Ll Ll F)
L . M /S
G ab ™ i . T
" E . 7
LY & - y
. S \.\ /
w A
0.& w R
X ¥
d * ;.' L
-
o.4 |'J_.l’ \\\ .’"r’ "
."l . z" \I".
L4 "\\ ” 4 b
’ -
/ Sae L \
R \
ol e 7
.~ .2 L% Halr [ - 1
l -------- —_—— i mwm -

Fig. 3.2: Shapc functions for quadratic element

For cubic elemenl

_,(I IZXI szx x,,] y+ (I xlI-T Ixx-" I4:'
( -erxl-rz)(xl—xJ I ‘lexz'xal-"z‘H)

(I I]Xx szx x,) (I*I.)(I—xz}{r—xa)

(e gy g LM PN SN CAREN

=N pn+tM¥y + Nt Ny




Fig. 3.3: Shape functions for cubic element

xr=x xX=xr
L &
Fig. 3.4: Nodal numbers of the linear element

For (he purpose of numerical integration using Gauss’s quadrature formula and o
convert to the limits of integration from x = xto x = X; to the limits
F=—1taé=1

Fig. 1 represents a lincar element

xl+I1 +I1_I1 -

Substitulion is x = &
2 2
N =BT and Ny=——
¥y X |
X +xy XX, ¥ 4+Xx, X;—X
hirl = ";..rl =
¥~ 4 Xz — %
_1(n-x)-¢) _1(m-x)i+e)
2 xX-n . 2 x;-x
1 1
=E(l'§] =E{1+¢) ................................ (3.1.1b)
................................. f3.1.12) ,
& —& —
xX=1I X=Xz I =X

Fig. 3.5: Nodal numbers of the quadratic elcment,

xr+x, X —X <+
[ s ]rfandx:!:t' X
2 2 2

(x =%, X —x;)

(%, —x; {x— %)

Subslituling X =

N, =
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X +E, Xy - +x +x —x
St W Sl hAL h TS ey,
2 2 2 2 2

[Il _5 ;ij )(xl _Ia}

P,
5 L 3 3 1

Similarly,
N, ={t-£1+£)=1-¢° (3.1.2h)
Ny =%r§(l+§] (3.1.2¢)

For cubic element

N, =—%(‘—§{%+§I§—§] (3.1.3)

il )
Ny =+ EN 5{3 f] o (3.1.3b)
N, =%(1+§)(1-§G+§J {3.1.3c)
XS Y LN
N, = 15(3“5][3 g](1+§) (3.1.3d)
r=xm X =x; X =13 X=Xy

»— *——» ®

Fig. 3.6: Nodal numbers of the cubic element.

3.2 Hyperbolic Interpolation
Hyperbolic interpolation is

~ sinh{x — x; )sinh(x = x3}-----sinh{(x—x,)
4 sinh{x, — x, }sinh{x; —x;)---+-sinh(x, —.rn)y!

sinh(x — x,)sinh{x — x;)------sinh(x - x,) e
sinh(x, —x;)sinh{x; —xy} Yz
sinh{x — x, ysinh{x = x5} sinh{x —x,_;}
sinh(x, — x;)sinh(x, —¥; - --sinh(x, —x,,_l]y "

Because hyperbolic interpolation has the property of shape function it has becn selected

it as a new shape function

)

‘e



For lincar element
_ sinh{x, - x)
o sinh{rz —xl]
slnh(x —le
A ——
sinh(x, - x,)

Shape functions are given in the following figure.

1k N -
-~
. _M S
\{/ .
0.8 - L -~
L™ -~
\ ”
- I
~ r
0.E} -~ .
[ -
" -~
[y
0.4 ‘,’ s
- -~
'l .
- -
0.2t - ~
i ~ .
- ™~
1, . . . . ™
a.2 {.4 d.6 0.8 1

Fig. 3.7: Hyperbolic shape functions for linear clement

X, T X,

2
sinh{% (xs —x, )}{1 —£)
sinh{x, —x;)

sinh{% (x, - x, ]}(1 -¢)

sinhix, —x,)

T X, —X
Substituting x= + 22 LE

N1=

Similarly, N, =

Taking x =0, x, =1

sinh - {1 - &)

Noe— 2
! sinh(1)

sinhl(1+§]

N, =——2 —
: sinh (1)

For Quadratic element

. sinh(x—=x, )sinh(x - x;)
N == "
sinh{x, —x, )Jsinh(x, —x;)

_ ginh{x -x, ]sinh(x ~X)
2 S].I'.I.h [l:z - Il }Slnh(}.'z '-le}

17

(3.2.1a)

(3.2.1b)
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sinh(x — x, ]sinh{x- —x,)
N, =

sinh{r3 —-x }(xj - IE}
Shape functions are given in the following figure.
_

Fig. 3.8: Hyperbolic shape functions for quadratic clement.

On substitution x=21"*+23 "= and. x, = N3 fives
2 2 2
sinh(x' +x, %% ‘:_xl + X, ]sinh{x‘ th o 5'11)
. 2 2 2 2 2
=
ﬁiﬂ.h[.‘:t1 _hth ]E‘.inh[m:1 ~%,)
sinl{"3 — % g] sinh{x?‘ LI 1)}
.o 2 >
1

sinh{%{x1 —xg}}sinh(rg -x)
sinh [[I3 ; 2 +¢')]} smh{ﬁ-;i (i- 5]}
s:mh{lE (x, —x, }}sinh{% (x; = 3 ]}
. sinh[x:” ;Il g]sinh{IE’ ;I' 1+ (5]}
sinh(x; - :cl)sinh{li (xs -xl)}

For x; =0, x;=2

Similarly, N, =

. sinh &sinh(¢ 1) :
N, = sinh{l)sinh(2) (3.2:28)
N = sinh(i + &)sinh(£ ~1) (3.2.2b)

27 sinh(l)sinh(-2)
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_ Sinh§5i1ﬂ1(1+§] _
" sinh(1)sinh(2) (3.2.2¢)

For cubic element

sinh(x — x, )sinh(x — x, )sinh{x - x,)
Ny == : :
sinh{x, ~ x, Jsinh(x, - x, }sinb{x, - x,)

sinh(x — x, }sinh{x — x; )sinh{x - x,)
sinhlx, —x, Jsinh{x; - x Ysinh(x, - x4 )

J"i'rz =

_ sinh{x —x, Ysinh(x - x; }sinh{x - x,)
7 sinh{x, - x4 )sinh(z; - x; Ysinh(x, - x,}

_ sinh(x — x, Jsinh(x — x, Jsinh(x - z,)
+” sinh(x, - x, )sinh(x, — x, Jsinh{x, - x;}

Shape funclions are given in the following figure.

Fig. 3.9: Hyperbolic shape functions for cubic element.

On substitution

_htT, -"4"‘15 ond 1 =2:r]+x4 =.1‘]+2.1'd
2 2 ? 3 7 3
sink X +X, x4—x,§ 2% +xy sigth ntxy x4 —r]‘: X +2x,
2 2 3 2 2 3
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sinh[h' +3x, — A% - ZI"J mh[?xlt +3x, —2x, ~dxy + a ;I'* §]s1nh[x' al B Bl ]

" sinh[ - Jsinh{g(xl —x, )} sinh(x, —x,) —
P e o

- B e
[l

T
X R e s ol
el
sirhd[ 275 Yo+ )l sinnd] 2 Yag 4 )sinba 2t 36 -1)

\

For x, =0, x4 =3
sinh{l BE+ 1)} sinh{l (3¢ - 1)} sinh{E - 1)}
2" 2 7
sinh(~1)sinh(~2)sinh(-3)

sinh {E (0+<£ ]} SIN h{]— (3¢ - l)} sinh{i {&- 1}}
N, = 2 2 2 (3.2.3b)
sinh(1) sinh{ -1} sinh{-2}

N]_:

(3.2.34)

sinh«P—(l ; g)}sinh{l@g ; 1)}sinh{3 (- 1)}
Ny = 2 . +2 ; 2 {3.2.3c)
ginh(2)sinh(l)sinh{-1)

K o1 !
smh{i {1+ r;")} smh{i (35 + 1)} smh{E (35 — l)}
sinh(3} sinh{2) sinh(1) '

N, = (32.3d)
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Shape functions for both Lagrange and Hyperbolic inlerpolations are given together for

comparison as lollows:

Shape functions for linear element are shown in figure 3.10; where f1, f2 denote the
hyperbelic shape funclions and gl, g2 denote the shape functions for Lagrange

interpolations respectively.

—_— fLl(x) 1 ﬂ
“ 2 .
£2(x) -
o_4 iy -
--—- al(x) T -
~ . Py
-——- gEGD 0.8p S -~
-
-
g.3 ’f -
- e
- e
0.2 - i
6.2 0.4 0.k o8& 1

Fig. 3.10: Lincar Lagrange and hyperbolic interpolation shape functions

Shape functions for quadratic element arc shown in figare 3.11; where f1, 12, f3 and g1,
g2, 3 are hyperbolic interpolation and Lagrange interpolation shape funclions

respoctively.

— £1(x)
— f£2(x:)
—_— E3(%)
--- gl(=l
--— gZ (%)
——— gE{=)

= = -
' ' 4

Fig. 3.11: Quadratic Lagrange and hyperbolic interpolation shape fupctions
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Shape functions for cubic elemcnt are shown in figure 3,12 where hl, h2, h3, hd and L1.
1.2, L3, L4 are hyperbolic interpolation and Lagrange interpolation shape functions

respectively.

hilgx)
h2(x)
L=l
L=
LYw)
Lz (=)
Lacgx)
LA(x)

EEENENN

Fig. 3.12: Cubic Lagrange and hyperbolic interpolation shape functions



Chapter 4
EIGENVALUE PROBLEMS

4.1 Finitc Elemcat Medel of an Eigenvalue Problem
Detcrmination of the values of the parameter 2 such that the equation
A (u}=AB (ur)
wherc A and B denote differential operators, has non trivial solutions u is called an
cigenvalue problem. The values of A are called eigenvalues and the associated
functions u are called eigenfunctions, For example, the equations
d? i d’
—Er—f=zu with A=— B=I
which arises in connection with the axial oscillations of a bar or the transverse
oseillations of a cable, conslitutes an eigenvalue problem. Here A denotes the square of

the frequency of vibration .

In general the delermination of the eigenvalues is ol engineering as well as
mathematical imporance, In structural problems, the eigen values dencte either natoral
frequencies or buckling loads. In quantum mechanics eigenvalues denote the energy
levels. In fluid mechanics and heat transfer, eigenvalue problems arise in connection
with the determination of the homogencous parts of the solution. In these cases
cigenvalues often denote amplitudes of the ourier components making up the solution.
Eigenvalues are also uscful in determining the stability characlenstics of temporal

schemes.

In this section finitc element models of eigenvalue problems will be developed.In view
of the closc similarity between the equations of eigenvalue and boundary value
problems. The steps involved in the construction of the (inite element models are
entirely analogous. Differential cigenvalue problems arc reduced to algcbraic
gigenvaluc problems by means of the [inite clement approximation. The methods of
solution of alpebraic eigenvalue problems are then used to solve for the eigenvalues and

eigenyectors.
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Figite element model of cigen value “problem: using Galerkin, Weighted Residual
method. Derivative of Finite element model for eigenvalue problem.is similar to these of

initial and boundary value problems.

Consider an eigenvalue problem
-i( dU)Jrﬂ.U 0 ' @.1.1)
dx\  dx

Where a is function of x or constant and A is the exgenvalac.

Owver a typical element £2°; a finile clement approximation of U in the form is
U=uN+u, N+ Noydeee +u N.=Yu N/’ (4.1.2)
=

where & denotes the element number ; #,,u4;, ....%, a¢ the nodal values of the vanable

U in the node numbers 1,2, .....0
To apply Weighted residual method multiply both sides of equation (4.1.1) by wand

integrating over the clement 7 which extends from r=1x, to x =X,

j“{-.j;( & ]+1U]dx 0

-[wa‘—fg] JrffIILE E{idHA]wde 0
dx dx dx

iy

J-@agﬁdx+w[:cd](a@-) w(xﬂ)(aig] +/1Twde=ﬂ
dx dx ax ). 2: 3 PR

:adw ﬂTU n 1
IE; a—[ﬁ—d): + E;J;w Uelx — “'(IA pl - wix, )Q" =0

4

e du all
g, =— a— S, = e
WTI g QI [ dx ]-‘:IA Q { dx }zz_‘tu

Using Galerkin approach and putling w = NN e N

“n o dNﬂ fe
ja%‘—(zu; dxj J+AiN:Eu;Nﬁdx-—EN,’ (xj)Q: =0
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J+ A N Tu'NTde -5 N (x)0; =0

4

/ dh'r £
: [guj ; ]mfw:zujwjdr—zwg(xjpf =0

dr i

The i -th algebraic equation can be written as

SKU 4 ATMu ~ Q=0 (=123...n) 4.13)
1=1
- . o e G i i
The intcrpolation property N (x[}=40, = i e is used 1o write
if i=/

N (5} =0

a ¢ dNE

K, = jad—NL--—fdx (4.1.4)
L dr dr

M, = N:Ndx (4.1.5)

Xa

Equations (4.1.3) can be expressed in terms of the co-e[licients K, »] and g as

Katt 4 Kt oot K+ (M + M3t + v M) = O
Ko+ Kol 4 oot Ko+ A{Mul + M+t M) = 0
KOt 4 Kot 4ot Ko+ A MO + Mot 4 A M) = O

In matrix notation, the linear algebraic eyuations (4.13) can be wrilien as
(& Jurp+ A Y} =12

In deriving the elcment equations, we isolated a typical elemcnt {the e-th) from the
mesh and developed its {inite element modcl. To solve the total problem, elements mnust
be put back into their original positions. In doing this before discretization, the
continuity of the primary variables and balance of Ihe secondary variables at the
connecting nodes between elements is imposed. Continuity of the pimary variables
refers here o the single valued nature of the solution; balance of secondary variabies
refers 1o the equilibrium of point sourccs at the junction of several elements. Thus

imposing the following two conditions carries out the assembly of elemnents:
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1. Continuity of primary variables at connceting nodes:

ut =" (4.1.6a}
the last nodal value of the clement 0 is (he same as ihe first nodal value of the
adjacent element

2. Balance of secondary variables at connecting nodes:

o+ =

o {[}Qo if no external point source is applied 4.1.65)

if an external point source of magnitude (4, 1s applied
In writing cquation (4.1.5), it is assumed (hat elemenls are connected in a sequence.

The continuity of primary variables u; =u" and bulance of secondary variables

Q: + @' for a mesh of linear clements is illustrated in fig. 4.1(a) and 4.1{b) .The
balance of secondary variables can be interpretatcd as the continuily of a% {not

dif* . . . du
a—i—) at the point common to elements L2 and Q"' (when no change in atZ s

imposed externally):

Ue+2

s
-
Fes———mme— ———=-

L
+}I‘"
r_,i_ H
2]

Fig. 4.1(a): Asscmbly of two linear Lagrange clements: continuiry of the primary
variables.

g e+l
0F M L s e
l QE‘ | 2

;O

Fig. 4.1{(b): Assembly of two linear Lagraﬁge clements: balance of ihe sccondary
variables
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(%) ()
- =|1d—
dx dx
£ r+l
[aiti] +[—a£ii1 =0
cdx ddx

Q0+ Q=0
The interelements continuity of the primary variables is imposed by renaming the two
vagables #° and ;"' at x=1x, as one snd the same, namely the valuc of u at the
global node N:
u, = uf” ={/,
where N=(n-1Je +1 is the global node number corresponding o node n of the clement

()" and node 1 of the element Q. For example for a mesh of lincar finite elements

(n=2), thus obtained as

u =,
Wy =u =Ly
2.3
Hz—ul'— 3

‘Hf = Ut:+1
To enforce balance of the secondary variables (f il is clear that set O, + ' can be

set cqual to zero or a specilied value (), only if therc is such expressions in given

equations. To obtain such expressions, the nth equation of the element 2° must be
added '

to the first equation of the element Q7' ;that is it is added as

e+l g+! _ yedl
and E Kijul” =0,

to give Z( Koy + Kff”jtﬂ )= (Q: ¥ Q{Hl): o
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[Here it is only written the first term of the two lefl hand side lcons of the cquation

{4.1.3) Lo avoid the large calculation. This term will be taken in the final equation. ]

This process reduccs the number of equations from 2E to E+1. The (irst equation of the
first element und the last equation of the last element wall remain unchanged. cxeept lor
renaming of the primary variables. The first term of the lefl hand side of equation

(4.1.3) can be wrillen in terms of the global nodal values as

e 3 e+l 4] e+l nl E’Tl E‘-I-I
(Kul.ul + Kpppiy e +Ku u) (Ku " + Ky H; + Ky, J

e+l o+l g+l
= (Kg Uy + KU+ + K::HUH+:1-I}+ (Kn* U pene, H KT Uy o+ K U."'f+2rr—2J
=(K Uy + Kyt +K:{n-|]“-‘rmni1) (KE +KE+I]U-.'+.-:-1
+ Kl?lu.'-'m Foeore K]T!Uﬁ- belin-1

where N=(n-1)e+1

For a mesh of E linear elements (n=2), thus oblained
KLU + Kty =0 (unchanged)
KU, +( K3 + K, pz +KhU; = o +OF

K:IUE +( Kizl + KI:LI. )U?r + K?‘I‘.U-i = Ql1 + Q:

KU, +( Ky +Kj; )UF +KpUe, = 0y + O

KiUp+ K&EU gy = Qf  (unchanged)
These are cailed assembled equations, They contain the sum of the co- efficicnts and
source term at nodes commen to two elements, The numbering of the global equations
corresponds o the numbering of the global primary degrecs of [recdom, /. This

correspondence carrics the symmetry of elements matrices to the global matrix. The

above equations can be expressed as malrix equation

. v
rKh Kiy Uy O
Kii Kéz*'xlzl Klzz 0 ty Qi"‘le
K3l K3+ X} Us )} o3 +@F I
0 K5 + K K || Ve 07 +Of
|_ K‘f] Kzgz_ U£+1, A Qlf' J

Thus from cquation (4.1,3) the assembled matrix eigenvaluc cquation is
KU+ AMU=40.
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4.2 Solution of Eigenvalue Problem Using Lagrange Interpolation
The eigenvalue problem solved by Rammohan et al (6] is
1 d 2 d W ) A I I
M R S =A
o cir( o It e

with domain having limit 0 to 20 taking 20 clemenis.

The sample eigenvalue problem discussed in the previous chapier was with constant
coefficient. 8¢ (he element stiffncss cquation was samc for ali elements. But for Lhis
case the coefficient is variable. So the element stilfness matrix will be different for
different elements.

Multiplying the equation by x* is thus obtained

d{ 2dy vl
LI (V% ik S P, ST 5
d.t:( cir) U U

Now multiply the equation by the weight function w and integrate from 0 to 20. An

integration by pans lends to the cquation.

20 dw d[ﬁ-’r 20
( x?——— - 2xwy Yox = | 2wy
20 88 2y e o

where (he boundary condition w{zﬂ = ﬂ)is applied.

Tor lincar clement, writing ¥ = Ny, + Ny, and considering the Galerkin approach

w=N and W= N,, the element stiffriess malrix can be writlen as

I lilh!r
k.= Iiiﬁ-;’—--—i—-ZerN, dx where §,j=1,2
Y £y dx d.r !
pA 2

:ir——-ii-dﬁ an £-=?-
2 d h

xp-x,=H =lcnglh of an element

Vrom equation (3.1.1} of chapter 3 the shapc functions are

R



b= |50 - D2 ()08 (w}] 4z =017

"L

gimilarly other clements of the matrix are ohlained 4s

-

k]z = k:l =—‘.5{}ﬁ
_ i Q 17 =500
Phus for clementy K5 =

500 17
Taking x,=0, x5=2 h=1

" 150 2.8

For element2 K¥ =

-2.8 1.17
Also taking cox, =19, X =20, A=l

(36775 -386.83
Por element 20 K = . 7
—386.83 367.17

1_I [T T TR IS A 11 |t 11 R .
1 1 1] T 1] i I 1 [ v
01 2 3 4 3 6 = § 9 10 11 12 13 18 15 16 7 1w 19 20

Fiz. 4.2: Discretization of the bedy into 20 linear ¢lements.

The eloments of the mass malrix are

L]
", = _[sz N }.n’x

4

L

X,+X e =X, o ]ar

m, = ﬂ\—d-z—“&-}'—'q-z—'ié'}h"h:ﬂrx
-1

|
l 1 o o 1 .
i =:[E“+-f:|? Efl—g}a(l—g}—z-df = {00333

Sunilarly, m = #5, =003, iz =0.2
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Thus for element 1 MY = {

533 383
383 1.033

Thus for clement 2 M I {

123,53 63383
Thus for element 20 M (20 8
63.383 130.03

The global stiffiess matrix K and the global mass matrix M will be a 21x21 matrix.

The matrix eigenvalue equation to be solved 18 Ky =AMy with

I

W=[W.= Yy toTroocrrtooew s Wies Wans qu.]

and 1= [jm Agyemmen seree e, A, 1901
The equation is solved by Jacobi method using FORTRAN programming and the

eigenvalues are obtained as follows.

Table-4.1: Eigenvalues obtained using 2-noded element

VA Az A Aq As As A7 Ay As Ao

12.929 | 11.565 | 10.787 | 9.724 8.522 |7.202 | 6.111 lS.{}B 4.051 | 3.199

Al ~ Az A1z Ard Ais A1 A7 Aig Ao An |

3 466 | 1.843 | 1.319 | 0.886 | 0.533 0235 | 0.048 | -0.093 | -0.23% | -0.942
L

This result is oblained by Rammohan et al [6]. Eigenvalues will now be found by using
quadratic and cubic element.

For quadratic element wriling, y = Ny + Naws + Naws. The clement stiffness matrix
is oblained as

dnN
= | [f%--;—Zﬂrledr where £,j=1,2,3

From equation (3.2.2) of chapler 3 the shape functions are
1
N, ==& -1,
Ll 5 &=
Ny=1-¢&°

Ny =250+ 8)
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2 N
- I(M+M§] ﬁﬂ_g[m_;_ﬂti‘iglyﬁ
4 2 2 F 2 2 s

d

ta | o
'-PI.?

Taking x, =0, xz =2 and =2
|

2
= j‘{[—} 5] [—%+§I*%+§]—2(1+§}£—_il-§ﬂ —5}}{—%5{1—5))}&: ~ 077

-1
Similarly the other elements of the matrix arc obtained as
ki =Ky, = —0.80
ki =ky =033
kyy = kyy =400
k,, =213
k=213

027 080 053
Thus forelement1 K% =]-080 213 -4.00
053 —400 2.13

Taking x,=2, x,=4, h=2

587 -933 213
For element 2 x=l-933 1920 -17.87
213 —17.87 13.07

Taking x, =18, xy =20, h=121

186.67 —461.60 62.93
For clement 10 K09 | 461,60 923.73 -512.80
6203 —512.80 43653

1 1
_ + X, — X
The mass matrix i8, m, = J‘[ﬂ_z_xﬁ.+_ﬁ_2_i) NN, gd‘:
-1

Taking x,=0, x,=2 and h=2
my = [0+ &) {%5(& - 1)}{%5(& —U}dﬁ =0.03

Similarly, m,, =my =—0.05
m, = my =—0.11

my, = My, =048
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my, =1.17

my, = 0.83
0.03 -005 -0.11

MYl _005 117 048

Thus for clement 1
~0.11 048 083

136 048 -0.64
M®=| 048 971 208

For element 2
~-0.64 208 376

R8.83 4315 -24.11

A | 4315 38517 5328

For element 10
—24.11 5328 104.03

The global stiffness matrix K and the plobal mass matrix M will be a 21x21 malrix.

The matrix eigenvalue equation 1o be solved is Ky = AMF with

w=[Wl: oy m0n ety Wios Wops I,Ef;;_]]
and i:[‘l]-.-’li!“"" Creree baens ,119,,12&]’

The equation is solved by Jacobi method using standard FORTRAN programming and

the eigenvalues are obtained as follows.
Table-4.2: Eigenvalues obtained using 3-nodcd element

A3 ‘ Aq As Ag Az ‘ Ay Ay A1
8681 | 7.049 5.56?‘4.52{1 3578 | 2.664

A A3
15.509 | 14.085 | 12.427 l 10.522

A4 Als Ais . A
0.798 | 0.483 | 0.229 \{}.{}35

Atz A Aap
0.099 | -0.249 | -0.990

A1 Az Ala
2183 1 1.634 | 1.179

For cubic element wriling, ¥ = N, + Ny, + Ny, + Ny, The elcment stiffness

matrix 13 can be written as
h

k .—_lj Xad¥s Fs"Fag SN, 2.4, .E_g[ﬂi+fﬂ___h§]}qy s
! 2 2 d& h o dx h 2 2 2

-l
From equation {3.1.3) of chapter 3 the shape functions are

|




34

v, -2 -6 3¢

w =D an-e3+4)

__8(Y Al
N, = 16(3%}(3 é](1+§)

Taking ¥, =0, x,=3 and A=3

]
q b 1 1 2? 1 a }3
po= 2G4 8P re? —188 1) == (987 —9&* & +1] p—d = 025
' _Hm{ £y (o7e” -188 1) M(: g :]’zrg
025 -099 1.12 =065
o | 099 409 -7.60 3.27
Thus for clement 1 K7 =
112 ~7.60 1330 -11.72

-0.65 327 -1172 1733

38793 -51462 15493 4075

or element Km- 14. 119288 -893.87 177.66
For 7 514.62 .
15493 -893.87 13.4095 543 .64

—-40.75 17766 -643.64 49773

L 2
The mass matrix is, m, = I[x” ;x" + 1 21"4 g] NN, %‘f‘f
-1

Taking x,=0, x,=3 and #=3
1 .
_ 31 z 1 a 3|3 _
my = :[{ﬁ{l + g) (gg ‘9§ —'-": +1) }Edé’ - {}ﬂ3

03 -06 012 0.10
For element 1 M = -06 112 -0.56 50
012 -0.56 450 119

0.0 —s50 119 154

. 6558 50.17 -~17.12 1118
Tor element 7 e s0.17 35873 -4779 2324

'‘or e =
—17.12 -47.79 402.58 6641

11.18 -2524 6641 B5.26
The global stiffness matrix K and the global mass matrix M will be a 21x21 matrix.

The matrix eigenvalue equation to be solved is Ky = AMy wilh

w:[if'l"rh Wj!‘ IEEEEE] EEEER ..,+.., ng? :'U'zu, {Jr‘r]|]

and A=[A, Ay, ceorer e ......j;{lg,gqn]'
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The equation is solved by Jacobi method using FORTRAN programming and the

eigenvalues are obtained as follows.
Table-4.3: Eigenvalues obtained using 4-noded element

Al Az Az As As A A As Ao A
21 205 1 18.987 | 16.012 12,085 | 10.383 | 8.354 | 5.897 4,896 | 4.058 | 32.87

AN A1z A3 Arg Ais Ae | A7 A3 Ao Azo Az1
2624 | 2056 | 1.567 | 1.153 0.7%6 | 0.476 | 0226 | 0.034 0100 | <0250 | 0998




Chapter 5
SOLUTION METHODS FOR EIGENPROBLEMS

5.1 Preliminaties to the Solution of Eigenproblems
The purpese of (his chapter is to Jescribe the actual solution procedures used to solve
the eigenproblemns of intercst. Before presenting the algorithms, some important basic
considerations for the solution of eigenproblems will be discussed in this chapter. The
simples! problems encountered is the standard cigenproblem,

Ky=hy - (5.1)
Where K is the stiffness matrix of a single finile element or of an elermnent assemblage.
Wo recall that K has order n and half- bandwidth m (i.c., the fotal bandwidtl is 2m+1)
and K is a posilive scmidefinite or positive definite. Bandcdness means that all elements
peyond the bandwidth of the matrix are zcro. Because K is symmertric, we can state (his
condilion as

a, =0 for j=itm,
where 2m, +1 is the bandwidth of K. If the half-bandwidth of a matrix i5 zero, we

have nonzero elements only on the diagonal of (he matrix. For example, the idenlity
matrix is a diagonal marrix. There are n eigenvalues and corresponding eigenvectors
satisfying equation {5.1). The -th eigenpair is denoted as (4.4, ), where the eigenvalucs
are ordercd according to their magnimdes:
0sA 24, %4,, 54, (5.2}
The solution for p -eigenpairs can be written

Ky = yA (5.3)

Where W is an ax pmatrix with its column cqual to the p-eigenvalues and
corresponding cigenvectors and A isa px p diagonal matrix listing the corresponding

eigenvalues. As an example eguation equation(5.3) may represent the solution to the

lowest p-cigenvalues and corresponding  eigenvcelors of K, in which case
W=y i e ,WP! and A= diag(ﬁ, ), i=12,.......p. We recall that if K is positive

definite, A >0, i=12,......5 and if K is positive semidelinitc,&, 20,
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i=12,...... ., where the numbers of zero eigenvalues is equal o the number of rigid

modes in ihe sysiems.
A very frequently considered eigenvalue problem is Lhe one to be solved in vibration
mode superposition analysis. In this case we consider the generalized eigenvaluc
problem,

Ky=AMy .4
where K and M are, respectively, the stiffness matrix and mass mairix of the finite

element assemblage. The eigenvalnes Zand eigenvectors g, are ihe free vibration
frequencies (radiens/second) squared, w’, and corresponding modc shape veclors,

respectively. The mass matrix may be banded, in which case its half-bandwidth m,, is
equal to m, or M may be diagonal with m, 2(;ie., some diagonal elements may

possibly be zero. In general a banded mass mairix is positive semidefinite.

A variety of eigensystem solution methods have been developed and are reported in
lilerature. Most of the lechnigues have been devised for rather general matrices.
[However, in finite element analysis we are concerned with the solution of the specilie
eigenvalue problems summarized above, in which each of the matrices have specific
properies such as being banded, positive definite and so on. The eigensystem solation
aligorithm should take advaniage of these properties in order to make a more econotnical

solution possible.
5.2 Solution Methods for Figenproblems
The solution methods that are considered here first can be subdivided into four groups,

corresponding to which basic property is used as ihe basis of the solution algorithm.

The vector iteration metheds make up the first group, in which the basic properies used

is that
Ky, =AMy,
The {ransformaticn methods make up the second group, using and
YIKY =4 (5.3)
YIMY =1 (5.6)
where W =[y.¥,,.......¥, ] and A=diag (4), i=12......,n. The sclution meihods

of the third group are polynomial iteralion techniques (hat operale on the fact that



p(i,:l=ﬂ'
wherec p{A ) =del(K - AM)
The solution methods of fourlh group employ the Sturm sequence property of the
characteristic polynomials

r(A) =det(X - AM)
pm(i':’}) =det(K'["]' —l{r}'M':’}); r=12,. ... -1
Where p!” (A‘.H) is the characteristic polynomial of the r-th associated constraint

problem comresponding to EKy=AMwy.
Before presenting the solution techniques of interest, a few basic additional poinls
should be noted. It is important to realizc that all sclution methods must be iterative in

namire because, basically, solving the eigenvalue problem Ky=AMys is equivalent to

caleulating the roots of the polynomial p{A), which has order equal to the order of K

and M. Since there are for the general case no explicit formulas available for the

calculation of the roots of p{4) when the order of pis larger than 4, an ilerative

solution method has 1o be used. However, before jteration 1s started, we may choose to
transform the matrices K and M into a form that allows a more economical solution of

the required eigensystem.

Two general types of mcthods, namely transformation and itcrative methods are
available for solving cigenvalue problems. The wransformation methods such as Jacobi,
Givens and Householder schemes are proferable when all the eigenvalues and
eigenvectors are required. The iterative methods such as the power method are
preferable when few eigenvalues and elgenvectors are required.

The transformation method comprises a group of eigensystem solution procedures that
employ the basic properties of eigenvectors in the matrix .

To solve the gencralized problem Ky=AMuw, Mzl using standard Jacobi method, it
would be necessary to first transform the problem inio the siandard form. However, ihis
transformation can be dispensed with by using a generalized Jacobi solution method
that operates directly on K and M. The algorithm proceeds as summarized in equation
{5.1) 1o (5.6).
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It is pointed cut in section 5.2 that the transformation methods comprise 2 group of
eigensystem golution proccdurcs that employ the basic properties of the eigenvectors in
the matrix ‘¥,

¥ KY¥=A {5.4.1}

¥ MP=I {5.4.2)
Since the matrix ¥, of order nxn, which diagonalizes K and M in the way given in
equation {5.4.1) and {5.4.2) is unique, we can iry to construct it by iteration. The basic
scheine is to reduce K and M to diagonal form using successive pre- and post
multiplication by matrices #] and P, respectively, where & =1,2,...... Specilically, if

itis defincd K| = K and M, = M, it can be formed

K,= HFK|H |
K= PZTKZPZ
: (5.7)
Kin= Pkf LT
M, = ﬂ? M £ ﬁ
M, =P M.P,
Similarly, : > {5.8)

Mk+1 = PkTMJrRE

P, are selecled to bring K, and M, closer lo diagonal form. Then for a proper
procedure we apparently necd to have
K,,,—>A and M,,,—>f a5 &k —» o0
m which case, with { being the last iteration
WY=pP...0 (5.9)
In practice, it is not neccssary that M, | converges to I and X,,, to A, but they only
need Lo converge to diagonal [oom, Namely if.

K, —diag(K ) M, —)dfag(M,)as k—w

{1+1]

‘P:ﬂPz......deag'[ 1 ] (5.11)
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5.2.1 The Jacobi Method
The basic Jacobi solufion method bas been developed for the solution of standard
eigenvalue problems (M being the identity matrix), and it will be considered in this
gection. The mcthod was proposed over a cCniury ago and has becn used cxtensively. A
major advaniage of the procedure is its simplicity and stability. Since the eigenvector
properties in equation (5.1) and (5.2) (with M = T} are applicable to all symmetric
matrices K wilh no restriction on the eigenvalues, the Jacobi method can be used to
calculate negative, zeTo, or positive eigenvalucs.
Considering (he standard eigenvalue problem

Ky=hy (5.12)

Where [K] is a symmetric matrix.

Mecthod

The method is based on a theorem in linear algebra which states that a real symmelric
matrix [K] has oniy real eigenvalues and that there exist a real orthogonal matrix [P]
such that [P']]r [K1[P] is diagonal. The diagonal elements arc the eigenvalues and the

columns of the matrix [Pj are the eigenvectors.

in the Jacobi mcthod, the matrix [P] is obtained as a product ol several “rotaiion”

matrices of the form ]
fih

fth eolumn
‘1o -
1
cosd —sind ilh
[7]= .
sin & cos# - Jjihrow
I L

where all elements other than those appearing in columns gnd rows jand jare
identical with those of (he identity matrix [I]. If the sine and cosine enlries appear in
positions (.1}, (. 7), (/.i)and (J, ), then the corresponding elements of (AT [K][R]

can be compuied as
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k, =k, cos’ 6+ 2k, sinfcosd +k, sin’ &
k, =k, =k, ~, Jin0cos 6+ k, lcos™ 6 —sin’ ¢) (5.14)
k, =k, sin’6-2k, sinfcosf+k, cos” &

If & is chosen as

tan 28 = 2k, /{k” —k, ),—

==

i3
<f<= 515
2 (5.15)

then, it makes &, =&, =0. Thus each step of the Jacobi method reduces a pair of ofl-

diagonal elemcnts 10 zero. Unforlunately, in the next step, while the method reduces a
new pair of zeroes, it introduccs nonzero contributions 1o formerly zero posilions.
[Towever, successive malrices intoduce nonzero conlributions Lo formerly zero

positions,

(21 [RT&YRIR], (BT [B] [A) (K)RYBNAL -

converge to the required diagona! form and the desired matrix [P] (whose columns give

{he cigenvectors) would then be given by

[Pl=[z]1ia]A] (5.16)
The minimum number of rotations required to bring K info a diagonal form 13
n(n—1)/2. A disadvantage of the Jacobi method is that the clements annihilated by a

plane rotation may not necessarily remain zero during subsequent transformations.

522 The Generalized Jacobi Method

To solve the generalized problem Ky=AMy, M1, using standard Jacobi method, it
would be necessary to first transform the problem inlo the standard [orm. However, this
transformation can be dispensed with by using a generalized Jacobi solution method
that operates directly on K and M. The algorithm proceeds as summarized in equation
(5.1) to (5.6) and is a natural extension of the stundard Jacohi solution scheme; ie., the
generalized method reduces 1o the scheme presented for the problem Ky=Ay when M
is an idenlity matrix.

Referring 1o the diseussion in the previous seclion, in the generalized Jacobi iteration

and using the following matrix F :
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P= 1 (5.17)

] 1]
where, lhe constanls & andy arc selacted in such a way os 1o reduce to zero

simultancously elements (j, j) inK, and M, . Therefore the values of @ and y are

function of the elements kéﬂ, kf,“},kl'[;}, m:f‘}', m'*! and mEf], where the supcrscript
{k) indicates that the k-th iweration is considered. Performing the multiplications
PIK, P, and BT M, P, and using the condition that ki’“ﬂ and mf*'}shall, we oblain Lhe

following two cquations for & andy:

ok + (1 ay e+ Al =0 | (5.18)
and am™ +(1+ ay]mi“ym&f}' =0 (539

KKk

W " ) k)
m, m, m,

(ic., the submatrices considered arc scalar niultiples, which may be teparded to be a

 / ki"}',ln general, to solve for @ and y [rom

(rivial case), weuse =0 and y=-%,

cquation (5,18) and (5.19}, it can be defined

0 = 0l _ 0

- T W

F = kO - U (5.20)
9~ )

The relations for & and 7 are used and have primarily been developed for the case of

M being a positive full or banded mass matrix. In that case {and, in fact, also under less

restrictive conditions), we have

E_[H E{*}
:r=—f; a=—% (5.21)

The value of ¥ necded to obtain & and y is then to be delcrmined using
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£ oy [E9Y , piop w
=T+wgn[.ﬁ: ) = | +RE, (5.22)

TwN
[‘%} +ER >0

and hence r is always nonzero. In addition, det £, # 0, which indecd is the necessary
condition for the algonihm to work.

The generalized Jacobi solution procedure has been used a great deal in the subspace
iteration method and when a consislent mass idealization is employed, Assume that M

is a diagonal mass matrix, M =#1 andm, > 0, in which casc we employ in equation

(5.19)

) = —m®B gl = —-ﬁiﬁkﬂ“ (5.23)
And otherwisc equations (5.16) to (5.21) are used as beforc. However, 1f M= I, the
relation n
equation (5.18) yields@ = -y, and it is recognized that F, in equation (5.18) is
multiple of the rotation mairix defined equation (5.12) In addition, it should bc
mentioned that the solution procedure can be adapted lo solve the problem Ky = Ay
when M is a diagonal matrix with some
zero diagonal clements.
The complete solntion process is analogous Lo the Jacobi iteration in the solution of the

problem Ky = Aw. The differences arc that now a mass coupling facior

[(mf,”) /m':” ':”}y must also be calculated, unless A is a diagonal, and the

transformation is applied w0 K, and M, .

Convergence is measured by comparing succcssive eigenvalue approximations and by
testing if all off-diagenal elcments are small enough; i.c., with / being the last iteration,
convorgence has been achieved if

*j-r{Mj _ Ar{a}i

Ar{m}

<107%; i=12,.....,nm (5.24)

[r {1+l
wherc PJ”*L A = Ll

oL ) {m} {3.25}



( kﬁm‘] )2 /2 [mgm})l 2

and <107%; <1077 allijii<y (5.26)

[1+1}; (141}
kK

{ m:[lm}mi:ﬂl

The above discussion of the generalized Jacobi solution method has already indicated
in some way the advantage of the solution tcehnigue. First the transtformation of the
gencralized cigepproblem to the standard form is avoided. This is particularly
advantageous

(1) when the matrices are ill-conditioned, and (2) when the off-diagonal clements in K
and M arc already small or, equivalenlly when there are only a few nonverc oil-
diagonal elements. In the {irst case the direct solution of Ky = A My avoids the solufion
of a standard eipenproblem of a matrix with a very large and very small elemcnts. In
the second case the eigenproblem is already nearly solved, because the zeroing of small
or only a few off-diagonal elements in K and M will not result in a large change in the
diagonal clements of the matrices, the ratios of which are the cigenvalues. In addition

fast convergence can be expected when the off-diagonal elemenis are small.

5.2.3 Givens Method for Symmetric Matrices

It is to be noted that in the Jacobi's method, the elcments which werc annjhilated by
plane rotalion may not remain zcro during subsequent rotations. Givens proposed an
algorithm using plane rotations which preserves the zeroes in the oif-diagonal element,
once they are created. Let A be a real symmetric ALY,

The Givens method uses the following steps:

(a) Reduce A to a tridiagonal form B, using plane rotalions,

(b) form a Sturm sequence for the characteristic equation of B, study the changes in
sign in the sequences and find the cigenvalues, of B, which arc also the eigenvalues ol
A,

(¢} find the cigenvectors of B and then the eigenvectors of A

The reduction to a tridiagonal form is achieved by using the orthogonal transformations

as in (he Jacobi method. [Towever, in this case lo start with the subspace containing the
elements a,,. @5, @5, dy. Performing (e plane rotation S¢ '4S,, using the orhogonal

matrix

5 = [ms ¢ —sin H} 527

sing  cosf
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1.ct the pew matrix obtained be denoted by A" = [a; ]
The angle @ is now obtained by putling g}, = a;, = 0:and pot by pulting a5, =0=aj,
us in Jacobi method, We find

al, =—da,sinf+a,cosd =0

or lané=a,/aq,. (5.28)

With this value of @and performing the plane rotation, which produces zcroes in the
{3,1) and (1,3) positions. Then, to perform rotation in {2,4) subspace and to put
o', = a, =0. This would not affect zeroes tliat have been obtained earlier. Proceeding
in this manner, to put af, =a}, = Oetc. by performing rotations {2,5) a2,

subspaces. Then, we pass on to (he elements @3, @3;,.......¢3, and make them zero by

performing rotations in (3,4),........,(3,0) subspaces. Finally, we produce the matrix
S 0 ]
g b oo
e, by e
B= (5.29)
0 cn—l r=l Cpm
L Cr:—l bﬂ _

The number of plane rotalions required to bring a malrix of order n to its iridiagonal

formis  {n—-1){n—2)/2. It is already known that A and B have the same eigenvalues.

[fe, =0, i=12.....n-1, then the eigenvalues are distinct. Now, define

fo=W -8
A=-b -G 0
- A-b
= H
-, A-b. -6
— A-b

n-1

Expanding by minors, the sequence {fﬂ} satisfies
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fﬂ =1 .ﬁ =A-bk

1o=(a-611,- . f.. 25r<n. (5.30)

Note that f,
£, =0 is the characleristic equalicn.

Ifany c, =0, then the system degenerates as

3 F O
=0 o
Then, £, = |Af - 8| = (characteristic equation of P)x(characteristic equation of Q)

If none of the €, ,C,se0er..a,, vanish, then {f,} is a Sturm sequence. That is, if V' (x)
denotes the number of changes in sign in the sequence for a given numberx, then the
number of zeroes of in {a,b) is 1V{a]-V(E:} (provided a or bisnota zerool ). In

this way, cne can approximately compute the eigenvalues and by repeated bisections,

one can improve Lhese estimales.

The eipenvectors of B are then found. 1f these arc determined, then the eigenvectors of
A can be determined, since it is known that if v and u are the eigenveclors of B and A

respectively, then u=5v; where $=5,8,..... .8,is the product of orthogonal matrices

used in the plane rotations. Neglect a particular equation (say i-th) and then solve the
remaining equations. This solution usually salisfies the equation that has been lell.
Then, v is the eigenvector determined from these solutions and by pulting a zero in the
i -th position. An advantage of the Givens method is that it takes only a finitc number

of plane rotations {(n- 1)r-2) 2) 10 reduce A to its tridiagonal form.
5.2.4 Householder-QR-Inverse Iterativn Solution

Another most imporiant transformation solution technique is the Houscholder-QR-
inverse iteration (HQRI) mcthod, although this method is restricted to the solution of

the standard eigenproblem, Therefore, if the generalized gigenproblem Ky=AMy is
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considered, it must first be transformed into the standard form before the HQRI
solution (echnique can be used. This transformation is effective in only some cases. The
name “HQRI solution method™ stands for the following three solution steps:

1. Householder transformations are employed lo reduce the matrix K to a (ridiagonal
form.

2. QR iteration yields all eigenvalucs.

3. Using inverse iteration the required cigenveclors of the tridiagonal matrix arc

caleulated. The vectors are transformed to oblain the eigenveclors of K.

A basic difference from the Jacobi solution method is that the matrix is first
iransformed without ileration into a tridiagonal fonm. The matrix ¢an then bc used
effectively in the QR iterative solulion, in which all eigenvalues are calculated. Finally

only those cigenvectors that are actually requested are evaluated.
5.2.4.1 The Householder Reduction

‘T'he Householder reduction o tridiagonal form involves #—2 rransformations of the

form of equation (5.7); i.e., using K = K , it is calculated
K., =P KP;, k=1,2,....,n=2 (531)

where P, are Householder transformation matrices.

P, =1-Ow,w! _ (5.32)
2
6=— (5.33)
'I-l’k H"k

To show how the vectorw, , that defines the matrix P, is celculated, considening the
case k =1, which is typical. First, partitioning X,. ., and w, inlo submatrices as

follows:
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A K

where X,. 7, and W, are of order »n—1. In general case of step &, the comesponding

marrices of orders— & . Performing the multiplications in (5.31), to oblain, using the

notation of  (5.34)

- _
K, =[_‘T‘;' _f‘ P;,_] (5.35)
Fi rt1 lul Kli‘ﬂl

The condition is now that the first column and row of K, to be n the form

k, x 0 Q
X
K,=| 0 (5.36}
: Z,
L {} .

where = indicates a nonzero value and
fz = ETK]IF] (5'3?)

The form of fz in equation {5.36) is achieved by realizing that F; is a reflection matrix,

Therefore, it can used I_’, o reflect the vector &, of 1‘?1 in equalion (5.34) into a veclor
that has only ils first component nonzero. Since the lenglh of the new vector must be

the length of &,, determining W, frem the condition
(1 —oww! e, = £k, e, (5.38)

where ¢, is a unmit veclor of dimension »—1; i.e, e{r =[1 0 0.... 0], and the + or —
sigh can be selected to obtain the best numerical stability. Noting that it is only needed

to solve for a mulliple of w {i.e., the direction of the veclor normal to the plane of

reflection is imporiant, we obtain from equalion {5.39) as a suitable value forw,,

W, =k, + sign{k, J&|, e (5.39)
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where k,, is element (2,1) of K|.WithW,defined in equation (5.39), the [irst
Householder transformation, k =1in equation (5.33) can be carried out, in thc next
step, & = 2, it can be considered Lhe matrix !_?2 in cquation (5.36) in the same way as it
is considered K, in equation (5.34) to (5.39) because the reduction of the first column
and row of K,does not alfect the first column and row in K, Thus, the general

algorithm for the transformation of K into tridiagonal form is cstablished.

A disadvantage of the houscholder transformation is that the matrix bandwidth is
increased in the unrcduced part of K. Hence in the reduction, csseniially no

advantage can be taken of the bandedness of K.

5.2.4.2 The QR Tteration

In the HQRI solution procedure, the QR iteration is required could be applied to the
tridiagonal matrix obtained by the Householder transformation of K. However, il
should be realized that the QR iteration could be applied to the oripinal matrix K as
well, and ihat the transformation of K into tridiagona! form prior to the iteration is
merely carried out o improve the efficiency of the solution. In the following it is
therefure cousidercd how the iteration is applied (o a general symmetric matrix K.

The name “OR iteration” derives from he notation used n the algorithm. Namely the

basic steps in the ileration is to decompose K in the form
K =0R (5.40)
Where () is an orthogonal and R is an upper triangular malrix, it is then formed
RO=0"KQ | (5.41)

Therefore, by calculating RQ, it is in fact carried out a transformation of the form of

equation (5.6).

The factorization in equation (5.39) could be obtained by applying the Gram-Schmidt
process to the columns of K. In practice, it is more effective to reduce K into upper
triangular form using Jacobi rotation matrices; i.e., evaluating

P.'I"

w7

BB K=R (5.42)
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where the rotation matrix }jTr is selected W zero elemant( j,i). Using equation (5.41),

cormesponding to equalion (5.39) and (5.40). Using the notation X, =X, to [orm
Ke=0.& (5.43)
Kon=RG (5.44)

Where, then, disregarding that eigenvalues and eigenvectors may not be in the usual

prder,

K#H-_)A and 'QH"':Q}_|Q£. — ' as k —» oo

5.2.5 The Lanczos Transformation

The basic step of the Lanczos mcthod transform, in theory, our generalized
eigenproblem Ky = AMy, inio 2 standard form wilh a tridiagonal coeflicient matrix.
Let us summarize Lhe steps of irnsformation.
Pick a starting vecior ¥ and calculate

x

X, = ;; y= (x" Mr}% (5.45)

Let g4, =0;fori=12,.......»n then calculate fori =1,2,.......1,

Kx, = Mx,
(5.46)
o, = I, My, (5.47)
and if i+ n, X =X -ar-f.x, - (5.48)

_{=t %
B =Mz} (5.49)
EJ-

IH] = E (5*5{])

Theoretically, the vectors x,, #i=L2........1% penerated using equation (5.45) 10 (5.50)
are M- orthonoermal
x My, =4, (5.51)

And the malrix 1{”=[xl,x1,,.....,xn] {5.52}
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satisfies the relationship X7 (MK ~'M W, =T, (5.53)
Satisfics the rlationship X! (METM)X, =T, (5.54)
|fo1 B, ]
5 a B
Where T, = (5.55)
-11,,_; ﬂn—l
L ﬁn =] Exﬂ _

We can now relate the eigenvalues and veclors of T, to those of the problem

Ky = AMy, which can be written in the form

MKy = %-M;.:r ‘ (5.56)
using the transformation
and equation (5.51) and (5.53), we obtain from eqnation {3.57)
AR
T yf =— - 5.58
7= (558)

Hence, the eigenvalues of T,are the reciprocals of the eigenvaiues of Ky = 1My, the

eigenvectors of the two problems arc related as in cquation (5.56).

5.2.6 Subspacc Iteration Mcthod

Another iterative methodwhich can be used to find the lowest eigenvalues and the

—

associated eigenvectors ol the general eigenvalue problem, [AE’ ]=A[B]X, is the
subspace ileration method, This method s very eflective in finding the first [ew
cigenvalnes and lhe corresponding ecigenvectors of large eipenvalue problems whos;:
stiffness ([A]) and mass {[B]) malrices have large bandwidths. The varions sleps of this

methed are given below briefly.

Algorithm f‘ﬂr
o o - - 4
Step 1: Start with q initial ileration vectors X2 Xyyerm Xy, §> p,where p is the

number of eigenvalues and eigenvectors Lo be calenlaled, Bath Wilson suggested a
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value of g = min(2p, p+ 8) or good convergence. Define ihe initial modal malrix [X u]
as

[Xu]=[f1,fp""",fq] (5.59)
and set the iteration number as & =0.
Step 2: Use the following subspace iteration procedure to generale an improve maodal
matrx [T m]-

(a) Find [f M]frum the relation

[‘41‘?**1]= [Bl‘?k] 1 {(5.60)
(b) Compute [Ak+1] = [J? k4] ]T [“i]:f k! ] and (5.61)
18, )= [T [ 217 (5.62)

(c) Solve for the eigenvalues and eigenveciors of the reduced system

299 fo N EF: 09 (0 Y (5.63)

and obtain [4,,,] and [Qu.] '
{d) Find an improved approximation to the eigenvectors of the oripinal syslem as

[X.hl ] = [fm IQkH ] (5.64)
Note:
{1y 1t is assumed that the ileration vectors converging to (he cxaoct cigenvectors
Xf“““-",)?;”“’] ..., are stored as the first, sccond, ..., columns of the  matrix [x..].
(2) It is assumecd that the vectors in[xX,] ere not orthogonal to one of the
required etgenvectors.
Step 3: If A% and ,1',:“11‘dcnute the approximations to the i-th eigenvalues in the
iterations k-1 and & respectively, we assume COnNVErgence of the process whencver

the following crilena are satisfied:

,ILM} _ l[k]l

T <E =12 p (3.65}-
i)

where £ =107, It is to be noted that although the iteration is performed withg

vectors {g > p), the convergence is measured only on (he approximations predicted for

the p smallest eigenvalues.



Chapter 6
SOLUTION OF EIGENVALUE PROBLEM BY USING HYPERBOLIC
INTERPOLATION

6.1 Elernent Stiffness Matrix Formulation
— . d 7 ﬂrﬁff _ - .
Rammohan ct al [6] solved the eigenvalue problem = ral 2x = Ax"y using

Lagrange interpolatien. Sine hyperbolic interpolation will be used in place of Lagrange
interpolation. From equation 3.2.1 of chapter 3,the shape functions used in this casc are
sinh%(l—{) . sinh%(1+§)

VST L e Ny = :
sinh(1} simh(1)

2 ahf
k, = I [f%-ﬁ-—lxﬁh’j]dx

_1 | ]zcmh [1 g{ —]cosh (- ;{——] sinh%(l—g]sinh-;-(l—g)_

k= 1+ —-2-—1+
" ] ( d sinh(1) smh(l} ( sinh(1)- sinh(l)
={.1}

Similarly ky =k, =042 , Ky = —0.05
Qo for element 1 the stiflpess matrix 18 KW=

-042 —-0.05

1.17 235

For element 2 K@ =

-235 130

319,97 32620
Also for element 20 g2 _-[ ]

| -32620 325.39
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6.1.1 Assembly of Element Stilfness to Form Global Matrix
For one lincar element approximation function is, y* = N + N P, where ¢ is the
elemnent number. Substitution of the finite element approximation and using Galerkin
method in which the weight function is equal (o the shape function gives us the finile
element model of the eigenvalue equation.
W ] [0 ][
=1
U 1 A R
The stiffness matrix is obtained as K “* = AM*y*
Stiffness matrix for the clement 1
S
k'{l] =
2
Stiffness matrix for element 2

S

g =
@
k'l'l k'l?. k'IS
where K=|k, ks ks isihe global stiffncss matrix.
kll kJZ k]-:'l

Now the relation between the clements of global stiffness matrix and elemcnt stifiness

malrix has been shown.
k=011, ko =k =-042, k;=0
K, =k0 =042, ky =&Y+ =2005+117 =112, Ky =k =235
ky =0 k, =k =011 ky, =k =235 ky = k3 =130

Now it has been shown that how the global stilfncss matrix can be asscmbled directly

from the clement stiffness matrix. The body is shown in the figure 6.1

A C v
| (1] 2 [2] 3

Figure 6.1: Local and global nodal point numbering



[i] arc the element number

(i) are the node number of the element

; mre the global node number of the element
Element [I] is related with global node no. 1 and 2.
Clement [2] is related with the global node no. 2 and 3.

For the element 1

1 2
T
JADN.
S
For element 2
2 3
T
Ii'c'[E]' =

TI

1{ence (he plobal stiflness matrix will be a 3x3 matrix.

K, Kk k][R KD 0 0.1 -042 0
K=lb, ky kyl=|H) KD+ &P =|-042 112 =233
ko ky kel O & RD 0 -235 130

This is a square symmelric matrix.

6.2 Formulation of Element Mass Matrix

i, = IFIIINrN;dx

1 i
X,+Xz X,—% f
my=H( R Ag] N,NJ}Edg

=1

Taking x,=0, x,=1 and A=1
m, =0.02

Similarly, m,, =m, =0.03 m,, =0.17

0,02 0.03
Thus for element 1 JriL - 0
0.03 017

55
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o 0.39 025
For element 2 MU= )
0.25 083
94.99  42.00
For element 20 M =
42.00 100,72

Now, (he element mass matrix is

6.2.1 Assembly of Element Mass Matrix

For the mass malrix M ° element siffiess malrices are given below:
g

For the element 1

1 2

)l
M i _

o

2 3

i
M{E] _

T

m,=mil =002 , m,=mly =003, k;=0
my = ml) =0.03 , my, =mY +mP =017 +039=056, iy = mt =-2.8
my =0, my, =ma =025, my= miZ) =0.83

Hence the global mass matrix is

m, om, m,| (=Y omb 0 [002 003 0
M=|m, my my|=|ml m@+m) md =003 056 025
My M My Q mg] mg? 0 025 083

Assemble of two linear elements has been shown below.

The element stiffness cqualion K Wy =AM Uty for element lis

011 -042][pM _,[002- 0.03] [
-0.42 -005 't-]-féj} - 003 017 1[_12(1}

Similarly, the clement stiffness equation X @y =AM ) y for clement 2 is

117 235" _ 039 025 gl
—235 130 [[¢@] (025 083wy
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Here ¥V =y, it =P =y, wl¥) =y,

The global stiffness equation Ky = &AMy for two linear elements

o1l -042 0 [w, 0.02 003 ¢ [,
_gd42 112 -235||y, [=4 003 056 0.25||w,
0 -235 130 ||lw,| -{ 0 025 083]]y,

Now the boundary conditions are imposed on the problem. Here (1}=0 requires

wy =0.
On substitution the above condition (he global stiffness equation takes the form
0.11 -042 0 ¥ 002 003 0 ||
042 102 -235||w, =4 1003 056 025)|w,
1] -235 130 | 0 Q0 025 0830

The above assembled egnations are solved by Gauss elimination mecthad or by any other
solver €
Therefore, the eigenvalue problem reduces to two eqguations
0.1y, — 042y, =2{0.02¢/, +0.03y,)

and —042y, +1.121, =2{0.03y, +0.56y,}
Then solving the ubove two equations the valucs of A are cbiained as

A = =0.466

A, =11.068 _
The global stiffness matrix Xy and M for 20 clements will be & 21x21 matrix. The
matrix eigenvalue cquation to be solved by Jacobian methed is

Ry=AM7

The equation is solved by using computer programming to find the eipenvalues which

are given Lhe following lable

Table- 6.1 Eigenvalues obtained using 2-noded element
Ta | &2 | & | A 4| 4| & A & |

13.701 | 11350 | 10,727 | 9.832 | 8.771 | 7.643 6.519]5.452 4.470 | 3589

An A1z Ava A4 Ais Als A7 Als Ao Ao
2.813 | 2.141 | 1,568 | 1.087 0.693 | 0,379 | 0,143 | -D.016 0185 | -1.142
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6.3 Stilfncss and Mass Matrix for Quadratic Element
For quadratic element, writing
= N, + Ny, + Ny,
The shape function in this case are given by equaticn (3.2.2) in chapter 3
_ sinh &sinh{g —1)
17 sinh{—1) sinh(~2)

_ sinh(l + £)sinh(£ 1)
277 ginh(1ysinh{~1)

_ gsinh & sinh(l + &)
37 ginh(2) sinh(1)

Thus the elcment stiffpess is obtained as

i aN an
k= | [f —dr—’-—Eri—ZxN,Ndex

2 e
k- ’H(IH;IB L XB T X g.,-] daw, _ff_‘}jﬁ‘ﬁ_z[xd"‘xﬂ e Ta ;!Jﬁr NJ}Ed;"

Teking x,=0, x,=2 and h=2

k= }{(Hﬂi[sinhfmsh(g—l] . cosh Esinh{£ -1) ]2

sinh(~1)sinh(-2)  sinh{-1)sinh (-2)

=1

2(148) sinh &sinh (£ —1)sinh &sinh (£ ~1) }%tff ol

sinh{~-1) sinh(~2}sinh{-1}sinh (—2)

0.16 -0.66 0.36
Thus lor element 1 K% ={066 233 —449
036 —4.49 210

675 -90.8% 1.81
For element 2 FO =|_988 2212 20.70
1.81 2070 16.88

45045 -=523.14 61.94
For element 10 K00 - _523.14 1059.42 - 589.90
6104 58090 51632
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6.3.1 Assemhle of Element Stiffness Matrix to Form Glohal Matrix
Now the relation between the clemenis of global sliffness matrix and element sliifness

ratrix by taking two quadratic elements has been shown below
k, =kY =166, k,=ki =066, k; =k =036, k,=0, k=0
k, =k =066, kp=k=233, ky=k=-449, ku=0, k=0
k, =k 2036, ky =k =—449, ky=k§+ k2 =210+ 6.75 =8.85
k, =2, k, =k, k, =0, k=0,
ko= =088, k, =kT =2212, ky =k{)=2070, k=0, Ky =0,
hy = kS =181, iy, =kB =2070, ki =& =16.88

Now it has been shown how the global stiffness matrix can be assembled directly from

the element stiffiess matrix. The body is shown in the figure 6.2

(1 (2) 3) (1) (2) (3)

0 ., e e —C

1 2 3 4 5
[1] 12]

Figure 6.2: Local and global nodal peint numbering
[i{] are the element number
(i) are the node number of the element -
i are the global node number of the element
Element [i] is related with global node no. 1,2 and 3.
Element [2] is related with the global node no. 3, 4, and 5.

Henee the global stiffncss for 2 clements will be a 5 %5 malrix.

ko ko kg ke k] JED EP K 00
'I"'ll 'k11 kl] Jk‘!-l kIS kyl} k;‘]l} k%} ﬂ D
K'__ k.‘ﬂ kjl kSS k}# k]-s = ‘i";il] k%] kigj'l-kl[‘lﬂ kl{zﬂ kIE:}
ko ko ko ke kg| |00 B & &P
._kSI ksz k.ﬂ ks-! ksi_ L 0 0 k%} ki? k?[li}_

(0.16 -066 036 0 T
066 233 -449 0 0
=036 -449 885 -983 18]
0 0 -98% 2212 2070
0 0 181 2070 1688
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This is a square symmelric matrix. ..., L -

Similarly, global mass matrix ¢an be oblained as

m, = IIINrNJﬂ

A

in 1 _ 2
From  my = |x'NNdr= j{["* ¥ I g] Nlivj}f’idg
-1

2 2

we get  m,, =0.03

003 000 —0403
Thus for element 1 MU= 0.00 125 033
-0.03 033 058

103 0.68 -025
For elemenl 2 M® =] 068 1052 1.67
—025 167 269

3384 43,12 -24.10
Tor element 10 MU0 ol 4312 38522 5326
—24.10 5326 10404

Similarly, thc assembled mass matrix for the first two will become:

e T L A
mO ml om0 0| |m om0 0
Mm@ mD m@em® m@ m@ =\l m ml e i
0 0 mi! mi2} mid) 0 0 mg} mgﬁj mil)
0 0 Mﬁ] m{}) m;j']_ Lo 0 mgj iy mf}]_

[0.03 000 -003 ¢ 0
000 125 033 0 0
=003 033 1.06 068 -025
0 0 068 1052 167
0 0 -025 167 269 |

The global stiffness matrix K, and M, will be a 21x21 matrix, The matrix elgenvalue

equation to be solved by Jacobian method is
llr_(.ﬁr‘:"; = AM W
The equation is solved by using standard computer programming to find the eigenvalues

which are given in the following table
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Table- 6.2: Eigenvalucs obtained using 3-noded clement

A1 A2 Az Aq

"

As

A P»‘r‘is

39‘?“»10

18.71) | 17.705 | 16.083 | 14.903 | 12.021

10.059 8.314‘6.844 5.?21.4.{193

\ An Az A3 A4

Ats Als

Ayt Az

A1g ‘ Ago \
|

0.620 | 0.320 | 0.083 ) -0.079 \ 0232 ~ .0.979

‘2.44{} 1972 | 1.468 1 1.013

6.4 Formulation of Element Stiffness and Mass Matrix Using Tangent

Hyperbolic Interpolation

(a) Stiffness and Mass Matrix for Linear Element

Tangeni hyperbolic interpolation has been also used to coleulate the eigenvalues. The

shape funetions in Lhis case for linear element are

1 |
tanh—i[l—rf]la"haﬁ—?} :

lﬂnh]—(l - &)
N. - 2
tanh(1)
lﬂ.ﬂhl(l +&)
Ny=— 2 —
tanth(l}
1 1 Bl 1
| sechz—(l—rf{——]sechﬂ—[l—cf{—_)
1 2 2 2 2 1
k = —il s |
=130
kll =k1! =-n'66 k!l - -ﬂ.?-ﬂ
030 =06
So for elements 1 KM= 3 6
—0.66 =036
243 -3
For element 2 K9 7
=317 117
512,43 —484.28
Also for clement 20 K% =
-484.28 500.52
fu
m, = J‘IIN‘Nde
1 | ]
‘ tanh—-(1—£) tenh (148}
= |(+¢g) : L gz =007
LA I( f) tanh h[l) tanh[l) 2 &

tanh{1)- tanhi]}

7%
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0.07 00
Thus for elecment | M= 0 ?
009 0.27

0.93 0.75
For element 2 M = ]
075 1.53

For element 20 (20 _ {197-48 125-43}

125.48 205.27
The global stiffness matrix X, and M, will be a 21x21 matrix. The malrix eigenvalue
equation Lo be solved by Jacobian method is

K@ =AMy
The equation is solved by using computer programming to find the eigenvalues which
are given the following table
Table — 6.3: Eigenvalues obtained using 2-noded clement
A Az A3 A4 As Ag A7 Az Aa Ao

12046 1 12280 | 11.126 | 9.713 | 8.246 | 6.853 | 5,600 | 4.511 | 3.585 | 2.808

An Az Az Axg A1s A | Aum A1z Ag Axp
1163 [ 1.63211.197 | 0.844 | 0.563 0644 | 0.182 | 0.073 | -0.042 0,500

(b) Stiffncss and Mass Matrix for Quadratic Flement
writing, i = Ny, + Moy, + Ny

The shape functions in this case arc
_ tanh £ tanh{$ —1)
L™ (anh(—1) tanh{-2)

_ tanh(l + £) tanh(¢ - 1)
2 tanh(1) tanh(~1)

r

_tanh £ tanh(] + £)
*7 tanh(2) tanh(l)

!

We get Lhe element stiffness as

(< [ 2.2
dx dx

Fa

~2xN,N, ]:ix

: ~ 2 dN _
kﬁ“x”xhxﬂ X4 g aN, d& AN, df fxytxp X x}.j(:NINJr ﬁdg
) 2 2 2 2
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Taking x, =0, =x,=2 Usingand #h=2

k“ - I‘[I(]-H:}z [tar'l'l‘fSth{cf—l] + Sach]'ftﬂﬂh(é_l)ir

anh (~1)tanh (-2) * tanh(~1)tanh{-2)

tanh £ tanh (& 1) tanh £ tanh (£ 1)
—2(1+§)mﬂh{_ 1) tanh {—2) tanh {1} tanh{- 2)} ="

126 D81 062
Thus forelement 1 £™ =|0.81 0.60 1.89
0.62 1.89 1.50

499.01 -403.64 -6545
For element 10 K- _403.64 841.06 282.79
— 6545 28279 52779

And the mass matrices are

!
_ T2 X, +x, X,—x, H
From  m, = [ NN dx = J’{[ TR g] N,Nj}ga’f

T4

[ 015 —-035 —039
Thus forclement 1 M™=[—035 139 086
—030 086 1,50

[142.83 3754 -—75.87
For element 10 MU 2| 1754 36871 60.45
[~ 75.87 6045 167.96

The global stifMness mairix Xy and M; will be a 21x21 matrix. The matrix eigenvalue

cquation to be solved by Jacobian method is, Eli;? =AMy
The equation is solved by using siandard compuler programming to find the eigenvalues
which are given Lhe following table
Table 6.4: Ligenvalues obtained using 3-noded clement
A1 Az Az Aq A Ag Az Ay Az A1
33248 | 7.689 | 6.642 | 5.606 [ 4.821 [4.312 | 4.016 | 3.833 | 3.563 | 2.723

A1l Az A1z A4 Ars Als A17 Arg Alg Az
1733 | 1636 ) 1483 | 1306 11131 0.935 | Q0.797 [ 0.694 0.503 | -0.115
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6.5 Concluding Remarks:

From tablc 6.1 it has been obscrved that in case of linear element the sinc hyperbolic
interpolation the eigenvalues shows discrepancy in case of higher eigenvalues than that
of the lower values. But from table 6.2, it is seen that when quadratic elements are used
then the sine hyperbolic interpolation gives the result where the eigenvalues are highly
differ with each other than that of the values obtained by using linear sine hyperbolic
interpolation functions in table 6.1.

From table 6.3 it has been observed that in case of lincar tangent hyperbolic
intcrpolation results shows less discrepancy than that of the eigenvalues obtained by
using lincar sinc hyperbolic interpolation. But on the other hand, it is seen from table
6.4 that the eigenvalues obtained from quadratic tangent hyperbolic interpolation are
highly differ by their values in case of highér eigenvalues than the lower values. It 13
also noticed that in case ol quadratic sine hyperbolic interpolation the results shows less

discrepancy than thosc obtained by using quadratic tangent hyperbolic interpolation.



Chapter 7
RESULTS DISCUSSION AND CONCLUSION

Rammohan ct al calculated the cigenvalue using Lagrange interpolation for the domain

0 to 20 taking 20 elcrents having length 1 for each element.

Eigenvalues are here calculaled using quadratic Lagrange element for the same domain.
Eigenvalues here are also calculated taking: linear and quadratic element using sine
hyperbolic and tangent hyperbolic interpolation. The results are shown below in Lhe

tabular form for comparison with the Lagrange interpolation.

Table 7.1: Eipgenvalues obtained by wusing Lagrange and sine hyperbolic
interpolation for lincar element taking 20 elements having length 1 for cach
element, -

Eigenvalues Linear Lagrange Lincar sink
Al 12.929 13.701
Az 11.565 11.350
A3 10,787 10.727
Ag 9.724 9,832
As 8.522 8.771
Ag 7.292 7.643
Az 6.111 6.519
Ag 5.023 5.452
A 4.051 4.470
Arg 3.199 3.589
A1 2.466 2.813
Az 1.843 2.141
Aus 1319 1.568
Ays 0.886 1.087
Als (.533 0.693
Alg 0.225 0,379
A7 0.048 0.143
Alg -0.093 -0.016
Ao -0.238 -0.185
Aai -0.942 -1.142
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Table 7.2: Eipenvalues obtained by using Lagrange and sine hyperbolic
interpolation for quadratic element taking 10 clements having length 2 for cach
¢lement.

Eigenvalues Quadratic Lagrange Quadratic sinf
A 15.509 18.711
Az 14.085 17.709
As 12.427 16.083
Aa 10.522 14.002
As 8681 12.021
As 7.049 10.059
As 5.667 2.314
Az 4.520 6.844
As 3.578 5.721
Ao 2.664 4.093
At 2.183 2.440
Axz 1.634. 1.972
Az 1.179 1,468
Ala 0.793 1.013
Ars 0.483 0.629
Mg 0.225 0.320
A1 0.035 (.083
Az -0.099 -0.07%
Ao -0.245 -(1.232
Azp -0.9590 -0.979
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Table 7.3: Ligenvalues obtained by usihg Laprange and tangent hyperbolic
interpolatien for linear element taking 20 clements having length 1 for cach
element.

o’

| Eigenvalues Linear Lagrange Linear tank |
A 12.929 12.946
Az 11.565 12.289
Aa 10.787 11.126
A4 9.724 9.713
As 8.522 8.246
Ag 7.292 6.853
A7 6.111 5.600
Ag 5.023 4,511
Ay 4.051 3.585
Aro 3.199 2.808
A1 2.466 2.163
Az 1.843 1.632
A3 1.319 1.197
A4 0.386 0.844
A3 {0.533 0.563
Mg 0.223 0.344
A1z 0.048 0,182
Aus -0.093 0.073
Alg -0.238 -0.042
Az -0.942 -0.509 |
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Table 7.4: Eigenvalues obtaincd by using Lagrange and tangent hyperbolic
interpolation for guadratic ¢lerment taking 10 elements having length 2 for cach
element.

Eigenvalues Quadratic Lagrange | Quadratric tank
A1 15.509 17.713
A 14.085 12.604
A 12.427 10.763
Ag 10.522 8.875
As 8.681 7.285
As 7.049 6.010
A 5.667 4.985
Az 4.520 4.150
Ag 3.578 3.462
Ao 2.664 2.891
Al 2.183 2,296
Az 1.634 1.821]
Az 1.179 1.438
Ala {(.798 1.094
Als {(0.483 0.496
A1g 0.229 0,935
A1z 0.035 0.233
A1z -0.099 0.020
A -(,249 -0.138
Azg -0.990 -0.513

The eipenvalue problem has been solved for-different hyperbolic interpolation such as
sine and Tangent. These are calculated for same rcgion iaking different length of
clements 1 and 2 for linear and quadratic ¢lements having number of elements 20 and
10 respeclively. So that number of nodes remain same and number of eigenvalucs
remain same.

Table-7.1 shows that in case of linear element the Lagrange and sine hyperbolic

interpolation the eigenvalues shows a good agreement.

Table-7.2 shows thal when quadralic elements are used for the Laprange and sine
hyperbolic interpolation the result shows discrepancy in case of higher cigenvalues than
the lower ones. It is also sccn thal for quadratic sine hyperbolic inlerpolation the

agreement is good in case of lower eigenvalues than those of higher eigenvalnes,
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Tahle-7.3 it is seen that in cose of Lagrange interpolation used for linear element, the

result shows betler agreement for the higher cigenvalues than the lower values.

Table-7.4 shows that for quadrtic tangent inferpolation resulls shows discrepancy in
case of higher cigenvalues than the lower ones and the ngrecment is better in the later
case. It is also noticeable that eigenvalues oblained by quadralic sine hyperbolic
interpolation show beller covergency in case of lower eigenvalues than (hose of lower

eigenvalues obtained from quadratic langent hyperbolic intcrpolation.

From the discussion it is clear that the effect of hyperbelic interpolation in the solution
of eigenvalue problem is not good in case of qnadratic tangent hyperbolic compared to
the linear sine hyperbolic, quadratic sine hyperbolic nnd linear tangent hypetbolic

interpolation functions.
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