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Abstract

The thermal-cdiffusion and diffusion-thermo cffects on Magnetohydrodynamics (MHD)
heat and mass transfer boundary layer flow have been studied numerically. The
governing equations are lhen made dimensionless by using usual similarity
transformations. The dimensionless equations are solved numcncally by applying
Nachtsheim-Swiger shooting ileration techmque along with Runge-Kutta sixth ormder
integration method.

A (wo-dimensional steady MHD combined free-forced convection and mass transfer flow
past a semi-infinite vertical plate is investigated. The effects of magnetic parameter M,
thennal—diffus‘;iﬂn parameter S7 {Soret number) and diffusion-thermo parameter Df
{Dulour number) have been examined on the flow field of a hydrogen-air mixture as a
non-chemical reacting fluid pair. The analysis has shown that the flow field is
appreciably influenced by the thermal-diffusion and diffusion-thermo ecffects. In our
siwly we have also found that the present results are in excellent agreement with
Kafloussias {(1990), when M =Df=5r=0.

Next, the above cffccts have been unalyzed on unstcady MELD free convection and mass
Now past an infinite verlical porous plate. Two cases are considered (I) Impulsively
started plate (ISP} and (ii) Uniformly accelerated plate (UAP). Similanty equations of the
momenturm, energy and concentration cquations are derived by wntroducing a time
dependent length scale. The dimensionless velocity, tomperature and comcentration
profiles are shown graphically for different values of the paramelers entering into the
problem. The numerical values of the local skin-faction, local Kusselt number and local

Sherwood number are also prescnted in tabular form.



Nomenclature
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applied magnetic field

species concentration

specific heat at constant pressure
concentration susceptibility
¢comcentration at the plate

species concentration at infinity
Dufour number

mass diffusivity

dimensionless strecam function
dimensionless longitudinal velocities
acceleration due to gravity

local temperature Grashof number
local mass Grashof number
thermal-diffusion ratio

magnetic parameler

Nusselt number

Prandtl number

Schmidt number

Soret number

Sherwood number
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Greek symbols

£

T T

ternperature of the flow field
mean fluid lemperature

lemperature at the plate

temperature of the fluid at infinity

constant platc velocity

free stream velocity

velocity components 1in the x and ¥ dimcions,
respectively

Cartesian coondinates

thermal dilfusivity

coctlicient of thermal expansion

coefficient of concentration expansion
electrical conductivity

density of the fluid inside the boundary layer
kinematic viscosity

dimensionlcss similanty variable

time dependent length scale

dimensionless temperature

dimensionless concentration

skin-friction
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« Chapter-1 3

General introduction and revicw of previous works )
Magnctohydrodynamics (MHD) is that branch of continum mechanics, which deals with
the fiow of electrically conducting fluids in electric and magnetic fields. Probably the
largest advance towards an understanding of such phenomena comces from the field of
Astrophysics. Orginally, MHD included only the study of stnctly incompressible Huid.
but today the terminology is applied to studics of ionized gases as well. Other numes have
been suggested. such as magnetofluid-mechanics or magneto-acrodynamics, but ongtnal
nomenclaturc has persisted.

Many natural phenomena and engineering problems are susceptible to MHD analysis. It
is useful in Astrophysics. Geophysicists encounter MHD phenomena in the interactions
of conducting fluids and magnetic ticlds that are presemied in and around heaventy
hodies. Engineers employ MHD principles in the design of heat cxchangers, pumps and
tflowmeters, 10 space vehicle propulsion, control and re-emtry, 1n creating novel power
generafing systems, and in developing confinement schemes lor controlled fusion.

The most imporant application of MHD 15 1n the generation of electrical power with the
flow of an electrical conducting fluid through a transverse magnetic field. Recently,
cxperiments with ionized gases have been performed with the hope of producing power
on a large scale in stationary plants with large magnetic fields. Generation of MHD
power on a smaller scale is of mnterest for space applications.

In the studies relaled to heat transfer, considerable eiffect has been duected towards the
convective mode, in which the relalive motion of the fluid provides an additonal
mechanism for the transfer of energy and of matenal, the latter being a more impxTant
consideration in cases where mass trunsfer, due to a conecntration difference, occurs.
Convection is possible only in the presence of a fluid medium. When & fluid flows inside
a duct or over a solid body while lemperatures of the fluid and the solid surface are
different, heat transfer between the flud and the solid surface takes place us 4
conscquence of the motion of {luid retative to the surface; this mechanism of heat ansfer
is called convection. The convective mode of heat transfer is divided into two basic

processes. If the fluid motion is artificially induced say with a pump or a fan that forces




the fluid flow over the surface, the heat transfer is termed as forced convection. Such
problems are very frequently encountered m technology where the heat trnsler to or
from a body is often dus to an 1mposed flow of a fluid at a different temperature from that
of the body. If the fluid motien is set up by buoyancy effects resulung from density
difference caused by temperature difference in the fluid, the heat transfer is said to be free
or natural convection. Therc are essentially three factors, which govern the natural
convcetion processes, namely the body force, the temperature variation in the flow held
and the fluid density variation with temperature. Frce convection is the prncipal mode of
heat transfer from pipes, transmussion lines, refrigerating coils, bot radiators and many
other practical situations in everyday life, But in many cases ol pracncal interest, both
processes are important and heat transfer is by mixed convection, in which neither mode
15 truly predominant. It 1s expected that for large Reynolds number {i.c. cemmespondingly
large flow velocities) and small Grashof number, the influence of free convection on the
heat transfer can be neglected. Cn the other hand, for large Grashof number and small
Recynolds number the free convection should be the dominating factor. Tn nature we face
such situation where forced and free convection 15 of comparable onder, the phenomena
may be termed as the mixed or combined convection flews. This type of combinec{
conveclion flow 15 the main topics of this study with a special attention paid (o local
similanty solution for a verical flat plate.

Maodel studies of the free and mixed convection flows have eamed reputations because of
their applications in geophysical, geothermal and nuclear engineering problems. Sparrow
et al. (1959), were the first investigator, who dealt with the combined forced and free
convective houndary layer flow about a vertical flat plate. Later Mon {1961} and Sparrow
and Minkowycz (1962) siudied mixed convection fow in the boundary layer of a
micropolar fluid over a horizontal flat plate using a perturbation series in terms of the
buoyancy parameler. Their investigations presented formulae for caleulating the shear
stress and heat transfer rate in the mixed flow regime.

Cheng (1977) investigated the combined free and forced convection boundary layer flow
along an inclined surface embedded in porous media. 1t was found that when both the

wall temnperature distribution of the plate and the velocity parallel to the plate outside of



the boundary layer vary according to the some power function of distance, 1. e. x* (where
A = constant), then the similarity solutions exist.

Hassanien {1977} studied the combined forced and free convection in boundary layer
Now of a micropolar Nuid over a horizontal plate. In his work similarity solutions are
obtained for the case of a wall emperature that is inversely proporticnal to the square
root of the distance from the leading edge.

The problem of mixed convection boundary layer flow along a verdeal surface in the
absence of magnetic field has been discussed in some details by Merkin (1969), Wilks
(1974). Hunt and Wilks (1980), Gryzagoridus (1975), Carey and Gebahart (1982), Raju
et al. (1984) and Harris et al. {1999). Hunt and Wilks (1980) wnrroduced a group of
continuous transformations or computations of the boundary layer equations between
similanty regimes for mixed convection flow. In the case of similarty regimes Hunt and

Gr

~E where Gr is the local Grashof number and Re is the
c

Wilks (1980} recognized C (=

local Reyrolds number) as the govemning parameler for the flow from vertical plate.
Forced convection exists as a limit when C goes to zero which oceurs al the leading edge,
and the free convection limit can be reached at large values of . Perturbation solutions
have been developed in both cases, since both the forced convection and free convection
limits admit similanty solutions.

Extensive studies have also been carried out on MHD frec and mixed convection flows
by many researchers. Steady hydromagnetic free convection flow past heated vertical flat
plate has been considered by Gupta (1961), Poots {1961}, Oslerle and Young (1961).
Sparrow and Cess (1961), Lykoudis {1962), Cramer (1963) and Riley (1964). Gupta
(1961) and Lykoudis{1962) have studied the simularity solutions by assuming that the
magnetic field varies inversely as the fourth root of the height above the bortom edge of
the plate. They have used the approximate momentumn integral technique for solutions of
basic equations. Their results are therefore of very limited applications, since for very
low and very high Prandt! number the viscous and thermal boundary layers are unequal.
Later Nunda and Mohanty (1970} employed the same method to solve the hydromagnetic
free convection of high and low Prandt! numbers due 10 practical applications, since for

liquid metals the Prandtl number is always small. Lykoudis (1962) has considered a third



degree polynomial for the temperature distribution in the entire boundary layer, while
Gupta (1961) has considered a third degree velocity profiles which contains a second
order zero at the ouler edge of the boundary layer. Sparrow and Cess (1961) have
considered the case of a constant magnetic field, and have used 4 perturbation scheme,
laking the non-magnetic case as the first approximation. Their results are applicable in
the immediate neighborhood of the leading edge and for weak magnetic fields. Cramer
(1963) studied the influence ot magnetic field on the laminar free convection flow of
liquid metals over a vertical flat plate und belween two parallel plates. He obtained an
analytical solution for liquid metals. Riley {1964) has considered a uniform magnelic
ficld and has integrated the boundary layer equartions over a single boundary layer
thickness. Effects of (ransversely applied magnetic ficld on free convection of an
elecrrically conducting [uid past a semi-infinile piate arc studied by Cobble {1979), Wilks
{1976) and Wilks and Hunt (1984}, MHD mixed convection flow invesligated by many
rescarehers such as Yu {1965), Gardner and Lo (1975), Hessain and Ahmed (1990} and
Al-Khawaja {1999). Yu (1965) showed the stabilizing cffect on combined forced and free
convection channel flows similar to the case of honzontal layer heated from below.
Grardner and Lo {1975) investigated the laminar problem using a perturbation method,
which produced some details of the secondary {low but his result, were limited to small
values of the Hartman number. Hossain and Ahmed {19%90) studied the combined forced
and free convection of an elecrrically conducting fluid past a vertical flat plate at which
the surlace heat flux was uniform and a magnetic ficld was applied parallel to the

direction normal to the plate. The equations governing the (low are solved numerically

using the method of superposition for small buoyancy parameter € =| —

is the Grashof number and Re, the Reynolds number.

The unsteady mixed convection flow past an infinite vertical isothermal plate of an
incompressible Muid 1s a physical situation, which is often expenenced, in the industrial
application. Some important contributions in this aspect have been given by Schneider
(19793, Tha (1991) and Sattar et al. (1997). Jha (1991} investigated the MHD unsteady

mixed conveclion [low through a porous medium. He, however, obtained the solutions by



employing Laplace transform technique and taking the value of the Prandtl number to be
equal to one. Latter Sattar et al. (1997) oblained an analytical sclution of an unsteady
flow through a porous medium taking a conslant heat source and & vanable suction
velocity. Unlike the work of Jha (1991}, the solutions have been obtained for different
Prandtl number.

The phenomenen of nawmral convection heat and mass trunsfer is also carried on MHD
flow by many investigators. Agrawal et al. (1977) have studied the combined buoyancy
effects on the thermal and mass diffusion on MHD natural convection flows. The effects
of mass transfer on free convective flow of an electrically conducting, viscous fluid past
an infinite porous plaie with constant suction and transversely applicd magnetic held
studicd by Haldavneker and Soundalgeker (1977). Latter Soundalgeker ct al. (1979) have
made an exact analysis of the cffects of mass transfer and the free convection current on
the MHD Stokes (Rayleigh) problem for the flow of an electrically conducting,
incompressible viscous fluid past an impulsively started vertical plate under the action of
a transversely applied magnetic ficld. The effects of natural convection and mass transfer
in a conducting Muid, when the fluid is subjected to a ransverse magnetic field
investigated by Georgantopolous ct al. (1981). In the ahove discussion, the velocity and
the skin friclion are studied for the effects of Grashof number Gr < 0 of the plate by free
convection cument, Gm(modified Grashof number), Sc(Schmidt number) and
M (magnetic paremeter). Georgantopolous and Nanousis (1980) have used the Laplace
transform technique 1o solve the problem of the effects of the mass transfer on free
convection Tlow of an electrically conducting viscous fluid past an impulsively started
infinite verucal limiting surfacc on the presence of transverse magnctic field.
Dimensionless velocity and skin-friction are oblained for the vanous values of Se, Pr
and M which are presented in graphical form. Raptis and Kafousios (1982) considered
the free convection and mass transfer steady hydromagnetic flow of an electrically
conducting viscous incompressible fluid through a porous medium, occupying a sermi-
jnfinite region of the space bounded by an infinile vertical and porous platc under the
aclion of a transverse magnetic field. The solutions of velocity, temperature,
concentration field and ratc of heat transfer are oblained for the cffects of dilferent

parameters. Further, Raptis and Trivanidis (1983) studied the unsteady case and solutions



of the governing equations of the flow are obtained with the power series. An analytical
study is performed to the effects of magnetic field on the free convection and mass
transfer flow through porous medwum by Jha and Prasad (1989). The solutions to the
problem are obtained by Laplace transform tlechnique. Later, the same method is
employed by Tha et al. {1994) lor the study of unsteady free convection and mass transfer
flow past an exponentially accelcrated infinite non-conducting vertical plate through a
porous medium in the presence of uniform (ransverse magnetic field.

In all the above studies, the diffusion-thermo and thermal-diffusion terms were neglected
from the cnergy and concentration equations respectively. When heat and mass trunsfer
occur simultaneously in a moving fluid, the relations between the fluxes and the driving
potentials are of more intricate nawre. It has been found that an energy flux can be
gencrated not only by lemperature gradients but also by composition gradients as well.
The energy flux caused by a composition gradient 15 called the Dufour or diffusion-
thermo effect. On the other hand, mass fluxes can also be crcated by temperature
gradients and this is the Soret or (hermal-diffusion effect. In general, the thermal-
diffusion and the diffusion thermo effects are of a smaller order of magnitude than the
effects described by Fourier’s or Fick’s laws and arc often neglected n heat and mass-
transfer processes. There are, however, exceptions. The thermal-diflusion effect, for
instance, has been wiilized for isotope separation, and in mixture between pases with very
light molecular weight (Ha, e} and of medium molecular weight (N2, air) the diffusion-
therme effect was found to be of 1 magnitude such that it cannot be neglected (Eckert and
Drake, 1972). In view of the imporiance of this diffusion-thermo effect, Jha and Singh
(1990) presented an analytical study for free convection and mass transfer flow for
infinite vertical plate moving impulsively in its own plane, taking into account the Soret
effect. The Laplace transformn technique was used to obtain the expressions for velocity
and skin-friction. Kafoussias (1992) studied the MHD free convection and mass transfer
flow, past an infinite verlical platc moving in its own plane, taken into account the
lherrnal—di flusion effect when (i) the boundary surface is impulsively moving n its own
plane {ISP) and (ii) it is unifermly accelerated {UAP). The problem was solved with the
help of Laplace transform method and analytical expressions were given for the velocity

field and for the skin-friction coctficients for the above mentioned cases. The effects of



varous dimensionless pammeters entering into the problem were discussed. Later
Kafoussias and Williams (1995} used a finite difference method to study the thermal-
diffusion and diffusion-thermo effects on mixed (free-forced) convection and mass
transfer  flow  with  temperature  dependent viscosity. The cffects of the
viscosityftemperature parameler T, . the thermal-diffusion parameter Sr (Sorct number)
and (he diffusion-thermo parameter Df {Dufour number) have been examined on the flow
field of a hydropen-air mixture as a non-chemical reacting fluid pair. Recently, Anghel el
al. (20007 investigated the Dufour and Soret effects on free convection boundary layer
over a vertical surface embedded in a porous medium using a double shooting method.
Typical velocity, lemperature and concentration profiles are presented for some values of
buoyancy ratio parameter N, Lewis number Le, Dufour number D and Serct number Sr.
Very recently, Adrian Postelnicu (2004) has studied the influence of a magnetic field on
heat and mass transfer by namral convection from vemical surfaces in porous media
considering Soret and Dufour effects. The problem is solved numerically using a fimie
difference method. Dimensionless velocity, temperature and concentration proftles are
presented graphically for various values of the magnetic number M and Lewis number
Le, and for fixed values of the Dufour number Df, Soret number Sr and buoyancy number
N.

Therefore the aim of this dissertation is to study further Magnetchydrodynamics heat and
mass transfer Qow including thermal-diffusion and diffusion-therme cffects which have
been of interest to the engineering community and to the investipators dealing with the
problems in Geophysics and Astrophysics.

Tn Chapter 1 available informations regarding MHD heat and mass transfer flows along
with vanous effects of physical parameters are discussed from both analytical and
numerical point of view. In Chapler 2 we have considered & steady two-dimensional
problem of MHAD combined {free-forced) convection and mass transfer flow past a semi-
infinite vertical plate taking into account the Dufour and Soret effects. In Chapter 3 an
unsteady MHD free convectien and mass transfer low along an infinite verucal porous
flat plate with previous Dufour and Soret effects is considered. The above two problems
have been solved numercally using Nachtsheim-Swigert shooting iteration technique

with sixth-order Runge-Kutta method. The effects of vartous parameters entering into the



problems are discussed with the help of graphs and tables. Tn Chapter 4 we have
presented overall conclusions of the models studied: Finally 1l refercnces quoted in the

text can be found at the end of the thesis.



Chapter-2
Steady MHD combined frec-forced convection and mass transfer flow

past a semi-infinite vertical plate

Model studies of the forced and free convection or mixed convection [lows have many
imporiant applications in geophysiwal, geothermal and nuclear engmncenng problems.
Some of the earlier and recent works are due to Spammow et al. (1959), Wilks {1973),
Chen et al. (1977) and Kafoussias et al. (1998). The effects of mass transfer on MHD free
and forced convection flow have also been investigated by many researchers such as
Daskalakis et al. (1989), Sattar and Alam (19953) and Rahman and Sattar (19949},

But in the above studies, the thermal-diffusion and diffusion-thermo effects were
neglected on the basis that they arc of a smaller order of magnitude than the effects
dcscribed by Fourier’s and Fick’s laws. However, exceptions are observed therein. The
thermal-diffusion etfect, for instance, has been utilized for isolope scparation, and in
mixture between gases with very light molecular weight (Hp, He ) and of medimm
molecular weight (N> , air) the diffusion-thermo effect wus found to be of order of
considerable magnitude such that it canmot be ignored (Eckert and Drake, 1972). In view
of the imporiance of this diffusion-thermo effect, Jha and Singh (1990) studied the free
convection and mass transfer flow past an infinite vertical {lat plate moving impulsively
in its own plane, taking into account the Soret eftcets. Kafoussias (1992) studied the same
problem in the casc of MHD [low. Later Kafoussias and Williams {1995) studied
thermal-diffusion and diffusion-thermo effects on mixed free-forved conveclive and mass
transfer boundary layer flow with temperature dependent viscosity. Therefore,
considering thermal-difTusion and diffusion-thermo effects we study the following steady
two-dimensional MHD combined free-forced convection and mass transfer flow past a

semi-infinile verlical flat plate.



2.1 Governing equations of the Mlow:

Consider # steady combined freeforced convection and mass transfer {low of an
electrically conducting, non-magnetic fluid past a semi-infinite verucal flat plate under
the infMuence of a transversely applied magnetic ficld. The flow is assumed to be in the x-
direction, which is taken along the plate in the upward direction and y-axis is normal to it.
A uniform magnetic field H,is taken to be acled along the y-axis. Initially it is assumed
that the plate and the fluid are at the same temperature I and the concentration level
everywhere in the fluid is same. Al time ¢ »0, the plate temperature and concentralion are

instantly raised to T_{ >7_) and C_( >C_), which are thereafler maintained constant,

where T, T and7_ arc the temperature of the fluid inside the thermal boundary layer, the

plate temperature and the fluid temperature in the free stream, respectively, while C, €,
and C. are the comesponding concentrations. The flow configuration and coordinate

system is shown in figure 2.1.

Fig. 2.1: Flow configuration and coordinate system.
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The continuity, momentum, encrgy and concentration equations for steady, viscous,
incompressible and electrically conducting Mow arc respectively given by [Cramer and

Pai (1973]]

V.5=0, (2.1

oGV =-VP+uViG+F+Ix8, 2.2)
. Dk

GV = VT +—==VIC, V)
L’.'_TL‘P

(GY)C =D V'C +”;—krv3r , 2.4

Here § =4(u,v) 15 the velocily vector, F is the body force per unit volume which is

defincd as — pgg . lhe term 7 % Bis the force on the fluid per unit volume produced by the
interaction of current und magnetic field, P is the pressure forve, p is the densily of the
Muid, g is the viscosity, g is the gravitational acceleration, T is the temperature inside the
boundary layer, « is the thermal diffusivity, Dy, is the mass diffusivity, kr ts the thermal
diffusion ratio, ¢, 1s the concentration susceptibility, ¢, is the specific heat at a constant
pressure, C 15 the concentration of the fluid mside the boundary layer, T, is the mean

fluid temperature and ¥V is lhe vector differential operator which is defined by

v-i, 2472
ox dy
where | , and i , are the unit vectors along x and y axes respectively.
When the external electric field is zero and the induced electric field is negligible, the

curcent density J is related to the velocity by Ohm’s law as follows

7=olg=B), (2.5)

where o denotes the clectrical conductivity of the fluid.

Hi
i



Apain, for small magnetic Reynolds numbcr, the induced magnetic field s negligible in

comparison with the applied magnetic ticld. So we cun wnite

-

B=1_8,. (2.6)

I

Hence the retarding force per unit volume J % B acting along the x-axis takes the form

IxB=-08u. 2.7

Under the Boussinesq approximation, the density g in the buoyancy term in equation
{2.2) is considered to vary with temperature and concentration whereas the density

appearing clsewhere in these cquations is considercd constant. We can then write

p=p.-pIr-1)-(C-CH (2.8)

where p. 1s the density outside the boundary layer, § is the coefficient of thermal

expansion and B” is the coefficient of expansion with concentration which are dcfined by

1 {dp
—— |2 = 2.0
::-m[a'rl: g 29)
and
_L(gp) g
p_,[acl g . {2.10)

Using the above relations into equations (2.1) — (2.4}, the steady laminar two-dimensional
combined free-forced convection and mass Iransfer flow of a viscous incompressible and
electrically conducting fluid with constant viscosity past a scmi-infinite vertical
immpermeable flat plate in presence of a uniformly distribuled transverse magnetic ficld

Lake the following form:

12 -



du v
+—=

—_ 0, 2.11
ox dy (210
2 2
WO 0 O BT T+ gpC—C - T 2.12)
ox dy  dy” p

T  or _ ¥T+mﬁrfc

HE vﬁy__aayz e P (2.13)
u%+ vg—f =D, a&;E + D;mk’ aﬂ;{ . {2.14}
where the variables and related quantities are defined in the Nomenclature.
The appropriate boundary conditions for the above problem are as follows:
y=0v=0T=7C=C_a y=0, i(2.15a)
u=0_T=T,,C=C_ a5 y—r oo, (2.15b)

The last term on the dghi-hand side of the emergy cquation {2.13) and concentration
equation (2.14) signifies the Dufour or diffusion-thermo effect and the Sorct or thermal-
dillusion effect, respectively.

We observe that the equations (2.11)-(2.14) together with the boundary conditions {2.15}
are non-lincar partial differential equations. In the following section non-

dimensionalisation and similarity analysis of the problem arc discussed in details.

2.2 Similarity analysis

To obtain similarity solutions we introduce the following similarity transformations:

i,
?] = }? I
vrx
w=U, fa)
T-T. ¢ (2.16)
oin)= -
b L
C-C.
¢m)_cw—cu

L3



From the continuity equation (2.11}, we have
d__ o (2.17)
dy dx

Integraling both sides of (2.17) with respect to v, we get

v= -%1’%11 [F(m)-n )l (2.18)

Then substituting the relations (2.16) and (2.18) into equations (2.12)-(2.14), we get the

following local similarity equations:

N ,
JTHo g g M =0, (2.19)
ﬂ'+%Pr £0°+Prfo” =0, (2.20)
0"+ %Scﬁ;’l’ + S5r8c8” = 0. {2213
The transformed boundary conditions arc:
£f=0f=00=1L¢=1a p=0, {2.22a)
f=L8=0¢=0 as Moo, (2.22b)

where primes denote differentiation with tespect Lo the variable 7. The di mensionless

parameters appeared into the above equations arc defined as follows:

Pr= v is the Prandll number,
i
(TR .
Sc = D—~ 18 the Schmidt number,
&g ox
Re=— is the local Reynolds number,
v
o Bix
M =200 g the local Magnetic parameter,
pu.
Dk -T
Sp=—_= T(T‘” “’) 1s the Soret number,
rul(c, -C.)

_D.k{C, -C.)

Df - is the Dufour number,
c\,rcy'u(ﬂ. -T.)
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—T ¥
Gr = M 15 the local lemperature Grashof number,
e

gpric, -c W
,U2

(e = is the local mass Grashol number,

Gr .
g, =— is the temperature buoyancy parameter
Gm
and g, = R 15 the mass buoyancy parameler.

H
=

Skin-friction coeflicient, Nusselt number and Sherwood number:

The parameters of engincering interest for the present problem are the local skin-friction

cocfficient, local Nusselt number and the local Sherwood number which indicate

physically wall shear stress, rate of heat transfer and rate of mass Lransfer respectively.

The cquation defining the wall skin-friction is

=pl, /U—“ F70) (2.23)
vx

Hence the skin-friction coelficient 1s given by

27

L

C. =
o pul

or,C, = z(Re)‘% /7o)

ie., %cj (Rc]% = £7{0) (2.24)
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Now the heat Mux { ¢, } and the mass {lux { M, ) at the wall are given by

gw=—{g£} =—hﬂj§1F@L

day ] vx

and M, = -D,”[?EJ =-D_AC ﬂﬂtnp’(n).
dy |, Ux

where AT =T -7, and AC=C, —-C_.

Hence the Nusselt number { N« } and Sherwood number { Sk ) are obtained as

Ny =-—2v = —(Re]liﬂ'[ﬂ)

kAT
e, Nu(Re)T = -670) (2.25)
and
M, i
Sh=pac (Re)29(0)
ie., Sh{Re)‘xf =—¢'(0). (2.26)

These coelficients are then obLained numerically and are sorted in table-2.1 and table-2.2.

2.3 Method of Numerical Solulion:

The systems of equation (2.19)-(2.21} together with the boundary conditions (2.22) are
non-linear and coupled. Tt is difficult to solve them analytically. Hence we adopt a
procedure to obtain the solution numencally. Here we use the standard ininal-value
solver shooting method namely Nachisheim-Swigert iteration technique (gucssing the
missing value) and Runge-Kutta Merson method, in coilaboration with Runge-Kutta
shooting method.

In a shooting method, the missing (unspecified) initial condition at the initial point of the
inlerval is assumed, and the differential equation is then inlegrated numerically as an
initial value problem to the terminal point. The accuracy of the assumed missing initial
condition is then checked by comparing the calculated value of the dependent variuble at
the terminal point with 1ts given value there. If a difference exists, another value of the

missing initial condition must be assumed and the process is repeated. This process iy

L&



continued until the agrecment between the calculated and the given condition at the
terminal point is within the specified degrec of accuracy. For this type of iterauve
approach, one naturally inguires whether or not there is a systematic way of finding each
succeeding (assumed) value of the missing initial condition.

The Nachtsheim-Swigert ileration technique thus needs to be discussed claborately. The
boundary condition (2.22) associated with the non-linear ODEs (2.19)-(2.21) are the
two-point asymptotic cluss. Two-point boundury conditions have values of the dependent
varable specified at two different values of independent variable. Specification of an
asymptotic boundary condition smplies that the first derivative (and higher denvatives of
the boundary layer equations, if exist) of the dependent variable approaches vero as the
onter specified value of the independent variable is approached.

The method of numerically integrating a two-peint asymptotic boundary-value problem
of the boundary-layer type, the initial-value method is similar to an initial-value problem.
Thus it is necessary to estimale as many boundary conditions at the surface as were
{previously) given at infinity. The governing differential equations are then integrated
with these assumead surface boundary conditions. I the required outer boundary condition
1s satisfied, a solution has been achieved. However, Lhis is not generally the case. Hence,
a method must be devised to estimate logically the new surface boundary conditions for
the next troal integration. Asymptotic boundary value problems such as those governing
the boundary-layer equarions are further complicated by the fact that the outer boundary
condition is specified at infinity. T the trial inlegration infinity is numerically
approximated by some large value of the independent varjuble. There is no a pron
general method of estimating these values. Selecting (oo small a maximnm value for the
independent variable may nol allow the solution to asymptotically converge to the
required accuracy. Selecting large a value may result in divergence of the trial integration
or in slow convergence of surface boundary conditions, Selecting too lurge a valne of the
independent variable is expensive in tcrmas of compuler time.

Nachtsheim-Swigert (1965) developed an iteration method to overcome these difficulties.
Extension of the Nachtsheim-Swigert iteration scheme to the system of cquation (2.19}-
{2.21) and the boundary conditions (2.22) is straightforward. In equation (2.22) there are

17



three asymptotic boundary conditions and hence three unknown surface conditions

"0} 0°0) and ¢'(D).
Within the coniext of the inilial-value method and Nachtsheim-Swigert iteration

technique the outer boundary condinons may be functionally represented as

F )= 1701 0) ¢ )=, (2.27)
81, }=0(F"(0)570)90)=5,, (2.28)
oln... )= (1" (0}0°(0) 0 (0))=6,, (2.29)
with the asymptotic convergence criteria given by

F )= (000 0) 00D =45, (2.30)
0 (o =04 (01070}0°(0)) = &4, (231)
¢ (. )= 97 (018°0),¢°0)) = 5. (2.32)

Choosing f7{0)=g,,0/(0}= g, and ¢'(0}=g, and expanding in a first-order Taylor’s

series after using cquations {2.27)-(2.32) yields

, ) 3 3
f (?]ﬂm)zfc (?]mmc) 'Lé‘gl af "&32 a; ﬁg:‘ _-E'-la (2.33]
]
a8 36
O 1= O (R A +——Ags +—.ﬁ33 =3, (2.34)
dx, Jg, g,
¢ a¢ 3¢
—o. o8 2,
e )= O (s I+ 3 8 5 o, (2.35)
. . 3 P
S )= FE0., J; +a_“‘5‘3'2 J; Ag,=6,, (2,36
1 3
, , 30" a0’
ﬂ(ﬂmm):ﬂ'(,{nm)-[-d—ﬂg!+?_Hﬁg2 +—ﬂ-'5-83 =35: (23?)
d3, g, dg,
, , ’ 3 do’
ol =00l )+ 2% ag, + 3 g, + % ag, = 6, (2.38)
g, de, 93+

where subscript ‘C” indicates the value of the function at #,,, determined from the trial

inlegration.
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Solution of these equations in a least-squares sense requires determining the minimum

value of

E=8>+8,; +8;+82 +8; +8; {2.39)
with respectto g8, and g5 -

Now differentiating E with respect to g, yields

%9, +4, '?'51 +4, 99, +4, ?54 +8 9
o2, 98, g, dg, 9%, g,

or, f;+aiﬁ S ﬁgz-i-ﬁ—&g f + 8, +dﬂ Ag, + 96 Ag., + &33}
agz 08 aS’l g, g,

0,3 B0 2L L Lo
984

8,

ad
og,

1

¢ +—Ag, +—
[C g, i aﬂz aS g, g5 dg,
, o8’ 96’ 28 a0 09 acn’ EY o0
+| B+ —Ag, +——Ag, +—A g +—Ag +— —Ag
[ ‘ Jg, 5 08, ‘ 0g 5 £ ]aﬁl ( ° dg, 1 aSz a.fj. 1]831
3 20 Y (oY (o8 fag'Y
ar, f + + ¢ + f + + _'p A,
g, aéh g, a8, o2, Je,
(3", 36 98 a9 dp Of" " 90°96" o afﬂ
+| - + + + + Ag
| g, dg, 0%, dg, 5‘32 g, 0%, 9 0%, 9% Om,0m |
(3" of 20 90 L2098 o7 m 2673607 0 E}¢l’:|
+ + —+ Ag s
| dg; dg,  dg; 98, Etr: dg, ﬂgq g, 5‘33 dg, dg, dg,
ﬂ' . H! , r
{fc &I, 8 'p+fr af 7 50 a‘”] (2.40)
I8, agl g, a&' g,

Similarly differentiating E with respect to g, and g, we obtain respectively

a8, 28 . dd L
+8, 245, —+§, —==0
g, Jg. dg, 4332 535’2 ﬁagz

o[ (22 (] o] (3

{E}f Y, 9038 A a9 o7y 36738 0" 3 }%
g, dg, Og, O, 0Og 08, Og 08, Ok dg; dg, 0%,
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{_ﬂf o 90 28 09 9¢ " " 9 99 , 29 89 ]ﬁg}
0g, dg, dg, 9g. dg, de, dg, 0g. dg, 9%, dg; dg,

{f{. 9 +8, d +¢C l"t'+j[: 9" +18; II'Er+4;!|‘f a¢] {(241)
a2 a E]g—_._ a.’_‘-'z

o db ad. db 1) o
L4 S, 48, 24 8, 46, L =0
dg, ? dg, ? Jg, ¢ ag, " dg, ° Jg,

a2 - : 2 w2 o2 P2
or, of | (99, _aq& + oF" ) . 90" ?'p Ag,
dg, g g, g, g5 a5,
[af of’ 36 30 2o B¢ S L 80°96”  3¢’ 3¢ ]ﬁ&
dg, dg, dg, dg, dg, dg;  dg, dg; dg, 08, dg, dg,

]:&f 3,98 80 99 96 " " 30°30" 39 20 }igz
Az, g, 0g, 08, dg, 0gs g, 08, 9,08, dg, Og;

[fc L0204 a" " i af gg oL a‘“"']- 2.42)
dgs

33

We can write equations (2.40)-(2.42) in a system of linear equations as follows:

a,Ag, to,ie, +apdg, = b, {2.43)
@y 88, + g, +auAg, =b,, (2.44)
(245

iy Apry + a3, A8, T, AR = by

Here

(Y NEAFCAWE AP 3¢’y
| B, 33; 2% | | ag, dg,
oo, 0 00 3 b9 T 26°36 3p"

dg; 9g, 331 dg, 9g,0z, Ug,dg, 0%, I, Bgz g,
_ O 0000, 39 9 O 00736 3¢’ ¢
dg, 9§, 39;*3 dg, 3.5:3 dg, g, dg, 833 0g, 333 g,
ATy B030 39 3¢ o YT 06700 B3¢' 3¢
~ dg, 3, ﬁ‘gz dg, aSz dg, dg, g, 332 dg, 98, dg,

12—

13

2]
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B L REAER ]

¥ o 9030 00 Bo YT 3036 ¢ 3

ot = dg, dg, Og,dg, Og, 08, agq dg, og,d¢, de,dg, '
T 2036 29 09 YT, 30°36° 09 3¢
" 3g, g, Og, 9z, Og, 98, 0%, 5, 38, Oy 3, %,
o O 9900 20 3 YY" 3000, 30’ 3¢’

dg; 08, "3, ox, ﬂga 2% ¢, 9, 9%, 0g, 0% 8.

N AREAWE AN AN AL
Hji_“ags] +[a'g§] +[a§3] +(ﬂg3] [381] (331]]

blz_fc f raﬂ"":'c ¢+fc ar +H' 0 ¢"" ¢:|’
g, dg, 9%, og,

f’ aﬂ +¢E §¢ +fc f’ aﬂ’ f M},

and

, af’ of d aﬂ
bi == {f[" a‘; +HC a 'Iﬁ{‘ a + fC af ¢C a; il
3 3

Now sclving the equations (2.43)-(2.45) by using Cramer’s rule, we have

det A det A det A,
ﬂ = L ' , = ——1- :]_nd_ =
BT et A ¥ detA A, det A
wherg
b, a; @

detA, =|b, a, a,|=hlana, —a,a,; )+ b laga; —a,u,, )+ b (ayay, — ittty ),

LN

a, B oy

detA; =|a,, & ay =b1(”31“21 _azla33)+ b:(“naaz -‘-'73!‘713)"' by (ﬂzl“m 'ﬂuaza)s

33

21



@, 4 b
detA; =gy dy by =b1(“2;“:+1 "azlﬂzz)"' bz(“m“:z _ﬂuﬂz.z)"'b:s(auﬂﬂ _"ﬂ?.]atz}!

dy Gy By

o
detA=|a; ay 6xz= ﬂu[ﬂzzaz} 'aza‘“a:)"‘ﬂm (ﬂazam UL }"' ‘131(‘112“13 _f-"zzf-'fn}'

3 iz fly

Then we obtain the missing (unspecified) valucs gy, g2 and g as

g =8, TAg.
g, =&, +Ag,,
£y = gy + AL,

Thus adopting the numerical lechnique aforementioned, the solution of the equations
(2.103-(2.21) with boundary condittons (2.22) are obtained together with sixth-order
implicit Runge-Kutta initial value solver and determine the velocity, lemperature and
concentration as a function of the coordinate 1. In the process of integration the skin-
frction coefficient f“{0), heat transfer rate —6(0) and mass transfer rate —¢'{0) are

also calculated.
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2.4 Results and Discussion

The system of non-linear ordinary differential equations (2.19)-(2.21) together with the
boundary conditions {2.22) have been solved numerically by using sixth order Runge-
Kutta shooting method. Numerical computations have becn carried out lor differcnt
values of magnetic parameter M and for fixed values of Prandtl number Pr, Schrmidt
numbcer Sc. The value of Prandtl number Pr is taken cqual to 0.71 that corresponds
physicatly to air. The value of Schmidt number S¢ = 0.22 has been chosen to represent
hydrogen at approx. Ty = 25°C and 1 atm. The values of Soret number Sr and Dufour
number Df are chosen mn such a way that their product is constant according to their

definition provided (hat the mecan temperature T, 1s kept censtant as well. The

. . Gr . i
dimensionless parameler g, =F is used Lo represent the free, forced and combined
=

(free-forced) conveclion regimes. The case g<<1 comesponds to pure forved convection,
e.=I corresponds (o combined free-forced convection and g>>1 corresponds to pure free
convection. As the local mass Grashef number Gr is a measure of the buoyancy forces
(duc not temperature but to concentration differences) to the viscous forces, the
dimensionless parameler g. has the same meaning as the parameter g;. The dimensionless
parameler g lakes the vafues 0.1, 1 and 10 which comespond to three different llow
regimes as already mentioned above. The corresponding parameter g takes the values
0.05, 0.1{ and 0.20.

First, to verify the proper treaument of the problem, the present solution for M = Dy=§r =
0 has been compared with that of Kafoussias (1990), sce Fig.2.2 and Table 2.1. 1t can be
seen from the Fig.2.2 and Table 2.1 that present rcsults are in excellent agreement with
Kaloussias (1990).

Now within the above-mentioned flow parameters, the resulls are displayed in Figs. 2.3-
2.11, for the velocity, temperature and concentration profiles. Tn Fig.2.3, velocity profiles
are shown for different values of g; and g.. We observe that vclocity increases with the
increase of g.. This increment 1s greater for higher values of g. and in the case of pure
forced convection (ge<<1). The velocity reaches maximum inside the boundary layer for

pure free convection (g=10, g.=0.20). The variations of lemperature and concentration

23



ficlds for different values of g, und g, are displayed in Figs. 2.4 and 2.5, respectively. As
would be expected, both fields exhibit the same behavior. The influence of g. on the

temperature and concentration field is not so much evident for higher values of g

In Fig.2.6, the effects of magnetic parameter M for different values of g, are shown. From
this figure we sec that the increase of magnetic field leads to the decrease the velocity
field indicating that the magnetic ficld retards the flow lield. Om the other hand, in
Figs.2.7 and 2.8 we see that an increase 1n the magnetic ficld leads to rise the temperature
and coneentration distributions respectively both.

The influence of Soret number Sr and Dufour number Df on the velocity, temperature and
concentration profiles are shown in Figs. 2.9, 2.10 and 2.11 respectively. From Fig. 2.9,
we see Ihat quantitatively, when 71 = 2 and Sr decreases from 2 0 0.4 (or Df increases
from 0.03 to 0.15) there 18 0.33% increase in the velocily value, whereas the
corresponding increase is 3.64% when Sr decreascs from 0.4 10 0.1. From Fig. 2.10,
when 17 =3 and §r decreases from 2 to 0.4 (or Nf increases from 0.03 to 0.15) there is
10.53% wncrease in the lemperature value, whereas the corresponging increase is 32.19%
when Sr decreases from 0.4 to 0.1. From Fig. 2.11, when =13 and Sr decreases from 2
to 0.4 {or Df increases from 0.03 to 0.15) there is 38.22% decrease in the concentration
value, whereas the corresponding decrease is 10.14% when Sr decreases from 0.4 to 0.1.
Finally, table 2.2 shows the numerical values of local skin-friction coefficients, local
Nusselt number and Sherwood number for some values of the parameters M, S+ and Df
when g, = 1. From this table it is evident that for fixed g;, Sr and Of ; Cr, Nu and Sh
decrease as M increases. Finally we see Lhat the local Nusselt number increses, while the

local Sherwood number decreases as Df decreases and Sr increases.
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Fig.2.2: Comparison of velocity profiles for different values of g

Table 2.1: Comparison of skin-friction and local Nussclt number [or M = Df=8r=0.

o 2, Kafoussias(1990) Present Kafoussias(19%0) Present
Skin-friction Skin-friction | Nusselt number Nusselt number
0.10 | 0.05 0.5538 0.5538 0.3296 {13296
0.10 | 0.10 (L6317 0.6315 .3404 0.3404
.10 1 0.20 0.7776 0.7772 {.3589 (L3589
100 | OS5 1.4452 1.4451 0.4129 0.4129
1.OG | .10 1.5007 1.5001 .4179 0.4178
1.0g | 0.20 1.6096 1.6081 0.4274 04272
100 | 0.05 6.8389 6.8385 0.6449 0.6450
10.0 | 0.10 6.8715 6.8712 0.6461 0.6463
0.0 | 020 6.9360 6.9356 0.6487 0.6488
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Fig.2.3: Velocity profiles for differem valucs of g, and .
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Fipg.2.4: Temperature profiles for different values of g and g.
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Fig.2.6: Velocity profiles for different values of M.
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Fig.2.7: Temperaturc profiles for different values of M.
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Fig.2.10: Temperature profiles for different values of Srand Df.
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Fig.2.11: Concentration profiles for different values of Sr and 2.

Tahle 2.2: Numerical values of skin-friction coefficients, Nusselt number and Sherwood
number for Pr=0.71, S¢ =022, g, = 1.0 and g, = 0.05.

M Sr Df Cr N Sk
002 |20 0.03 1.4222 04086 | 0.1465
0.06 |20 0.03 1.3671 0.3978 | 0.1440
010 | 2.0 0.03 1.3069 0.3869 | 0.1388%
002 |20 0.03 14222 04086 | 0.1465
002 |0.40 0.15 1.4260 04012 | 0.2538
002 |0.10 0.60 1.4650 03830 | 0.2545
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Chapter-3
Unsteady MHD free convection and mass transfer [low past an inlinite

vertical porous plate

The flow of an incompressible viscous [luid, past an impulsively started nfinite
horizontal plale, was studied first by Stokes (1856) and it is also known as Reyleigh’s
problem. Because of the significance of this problem in fluid mechanics and
acrodynamics, many authors have cxtended (he above problem for different cases.
Soundalgeker (1977) studied the free convection Mow past an impulstvely started inlinite
vertical plate, when it is cooled or healed by frec convection currents. Kafloussias and
Daskalakis (1986) studied the hydromagnetic free convection flow ol a viscous
incompressible and elecirically conducting {lutd past an infinite vertical porous flat plate,
which is moving in its own plane impulsively or uniformly-accelerated. The gOVCITINE
equations of the flow were solved by finite difference method when the Prandd number
Pris equal to 0.71 and 7. The elfects of mass transfer on MHD free convection [low have
also been investigated by many researchers, some of them arc Haldavnekar and
Soundalgeker {1977), Rauhman and Sattar (1999} and Mahmud et al. {2001}

In the above studics, some of the cases the thermal-diffusion {Sorct) and dittusion-
thermo (Dufour) cffects on the flow field have not been considered. In Chapter 2 we have
studied the thermal-diffusion (Sorct) and diffusion-thermo (Dufour) cffects for a two-
dimensional steady motion. In (his Chapter we [urther investigate these effects on an
unsteady MHD free convection and mass transfer Now past an infinile vertical porous
plate. Two cascs are considered; (1) Impulsively started plate (ISP) moviug in its own
plane, and (I} Uniformly acceleraled plate (UAP). Similarity equations of the
momentum, energy and concentration equations are derived by introducing a time
dependent scaling factor. The suction velocity is tuken to be inversely proportional 10 the
above scale factor. Finally the uansformed non-linear ordinary differcntial equations,
which arc locally simular, have been solved numerically using Nachtsheim-Swiger

shooting iteration technique with Runge-Kutta sixth-order integration method.
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3.1 Governing equations of the flow:

We consider a model of unsteady MHD free convection and mass (ransfer flow of an
electrically conducting incompressible viscous fluid, along an infinile vertical porous flat
plate. The x-axis is Luken on the infinite plate, and parailel to the free-stream velocity
which is vertical and the y-axis is taken normal to the plate. A magnetic field of uniform
strength is applied transversely to the direction of the {low. Initially the plate and the {luid
are at same temmperature T in a stationary condition with concentration level Ce. at all
points. But at lime ¢ > O, the plate starts with a velocity Urt) in its own plane, ifs
temperature is raised to T, and the concentration level ai the plate is raised to C,. The
physical configuration considered here is shown in the following figure 3.1.

j‘r 1,,

Vi) 4—— o
Chw Co

]

Bg—» Tw
T,

0 ¥
£it)

Fig. 3.1: Flow configaration and coordinate system .

32



Since the plate is considered to be of mfinite extent, all derivatives with respect to x
vanish. Then under the usual Boussinesq approximation the basic equations relevant to

the problem are:

dy
—=0, {3.1)
dy

2 2
a—”+va—”=ua—§+gﬁ(T—TM}+gﬁ'(C“C_,)—UB"”, (3.2)
gty v’ p

3T 9T 9T D, k. 9°C
+y—_= +

E % ¥4 > e, 5 (3.3
Lo, zf = 3: , 3.4)
where the variables and related quantities are defined in the Nomenclature.
The initial and boundary conditions for the above problem are:
forf=0: u=v=0T=7T_,C=C_foraly (3.5)
for 1> (x
w=U)=UFl v =) T =T,,C=C,aty=0 (3.6a)
u=0v=0,T=T_,C=C_ asy—ee {3.6b)

The ahove problem is solved for two different values of n signifying two different cases,

e.g., when the Mai plate i3 impulsively stared, moving in its own plane ( n = 0 or ISP)

and when it is uniformly accelerated ( # = 1 or UAP).

3.2 Mathematical formulations:
Case I Impulsively started plate (ISF)

In this case setting # = 0 and considening F({) = 1 [Alam {1995)], we get # = Uy from
equation (3.6a). Now in order to obtain similarity solutions to the problem considered, we

introduce & time dependent length scale § as

§=56{),t>0. (3.7
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In terms of this length scale, a convenient solution of the equation {3.1) is considered to
be in the following form:

v=1t)=—v, E,

)

where v, is the suction parameter.

(3.8)

In order to non-dimensicnalise the equations {3.2)-(3.4) we introduce the following
dimensionless quantities:

_¥ _ g, -T. P’
7?—5 - Gr= v,

(local Grashof number),

w=0,f (n), Gm gﬁ (Cf_}U C.p” (local Modified Grashof number),

1]

'r T, Dk {C -C.)
= ,Ppf =81l _» = four number),
(ﬂ) -T. 4 £ -::PU(TW—T“) (D )
c-C. kT, -T.)
= , Sr= I Sorel number
o= ¢ m(c - )(m )
v _ o B:§°
Sc =D—{Schm1dt number), M = {Magnctic parameter),
v
= — (Prandtl number}. (3.9)
04
In view of {3.8) and (3.9), equations (3.2) - (3.4) become
ﬁ'+ﬂ[£—}f +, [+ Gro + Gm¢—Mf, = {3.10)
S8 dd 1
v 0= —87+ Dfp” 3.11
r{u dr}g "o Pr & ( )
-1 §ds g =L 5B {3.12)
v dr Sc

where primes denote differentiation with respeet to 1.

The corresponding boundary conditions for ¢ > 0 arc oblained as:

f=16=1¢=1 at =1 (3.13a)
f,=00=0,¢4=0 as7 e {3.13b)
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Now the equations (3.10) - (3.12) are locally similar except the term {E—fff—} where ¢
U

appears explicily. Thus the local similarity condition requires that (_Ea) in the
v

equations (3.10) - (3.12) must be a constunt quantity.

Hence lollowing the works of Hasimoto {1957), Sattur and Hossain {1992), Satiar (1993)
and Sattar and Maleque (2000), one can (ry a class of solutions of the equations (3.10) -
(3.12) by assuming that

[E ﬂ] = A (a constant}. (3.14)
v dr

Integrating (3.14} we have

=241 (3.15)

where the constant of integration is determined through the condition that § =0 when
t=0. From (3.15) choosing A = 2, the length scale 5(3?]=2 vt which exactly

corresponds to the usual scaling factor for various unsteady boundary layer flows
{Schlichting {1968)]. Sinced is a scahng factor as well as a similanty parameter, any
value of A in (3.14) would not change the nature of the soluticns except that the scalc
would be different.

Now introducing (3.14)} [with A=2] in the cquations (3.10% - (3.12) rcspectively, we

obtain the following dimensionless ordinary differential equations which are locally

similar. )

ST n v )+ GrO+ Gme—Mf, =0 (3.16)

6%+ Pr{2n +v, " +PrDfp" =0 (3.17

¢+ Se(2n +v, )’ + ScSr8" =0 (3.18)

Subject to the above formulation the boundary couditions follow from (3.13}

f =L6=L¢=1 arn=0 (3.19a)

£, =08=0,pg=0 asqg—ee (3.19b)
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Case II; Uniformly accelerated plate (UAP}

In this case selting # = 1 we gel u = Up Fir) from equation (3.6). As in case I we consider
the same similarity parameter & as represented by (3.7) and the sume solution (3.8} of the
equation (3.1},
Now for reasons of similarity, the plate velocily 1s taken [Alam (1995)] to be
Uii) = Up Fit) {3.200
where F#) is taken to be equal to 87, with 8, = : ,suchthat § =8, at £ =¢,.

o

We now introduce the following dimensionless guantiies:

_r

n=3

IAGE —-—U”I},
. (3.21)
T-T

g(n) = -

(1) T 1.’
C-C.

o=

Now substituting the relations (3.7), (3.8) and (3.20) — (3.21) into equations (3.2}, (3.3)

and (3.4) and intreducing the following dimensionless parameters:

2pd n
P[:E',Si.:— M_UB{I"S ,Sr=Dmk.f‘(Iw Tm]1
d b vp T,v(C, -C.)

m

Ds(CoC) g, LY g, A CCY

Dy =
Y= U(T -T.) uis, ulr,

we obtain the following ordinary differential equations:

f:+[§ do }[ f —2f, ]+1uf +Gr+CGmp—Mf, = (3.22)

,{Eﬂ}; :_.9 + Dfe”, (3.23)
v d

,{E‘f_}p o= 0" 510". (3.24)
v 4
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Subject to the above equations (3.22) — (3.24) the boundary conditions (3.6 become

f,=18=19=1 an=0 (3.25a)
f£,=008=00=0 as e (3.25b)
Now following the arguments in case 1. we respectively have

Fr(2n+v, )+ GrB+Gmo -4+ M)f, =0 (3.26)
8% +Pr(2n +v, B +PrDfp" =0 {3.27)
&" + Sc(2n +v, '+ 5eS5r0" =0 (3.28)

where primes denole differentiation with respect to 7. The above equations thus describe
{he basis of our problem for case II. The solutions of which are now sought subject to the
boundary conditions {3.25).

Now it 1s important to calculate the physical quantities of the primary intercst, which are
the local wall shear stress, local surface heat flux and the local surface mass {lux

respectively from the fellowing delinitions:

r = [.@E] , (3.29)

d. =—-’C('ai:] , (3.30)
_'|.'=FI

M, =—D{a—c} . (3.31)
Y |,

The dimensionless local wall shear stress, local surface heat {lux and the local surface

mass Mux for impulsively started plate respectively obtained as

7.8
L= £0), {(3.32)
L, ( )
4,0 .
_ vt - 3.
£ -T.) ©) (3.33)
M A e
pic, ~C.) ¢'0). G349
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Hence the dimensionless skin-friction coefficient, Nusselt number and Sherwood number
for impulsively starled platc are given by
Ugd

27 A
C, = p{;,f* = 2(Re; ) f(0), where Re; = ~ {3.35)
Nu =— 9% _ (o), (3.36)
©OHT-TL)
and
Sh = Mo —¢’{0) (3.37)
* plc,-c.) ' '
and for the accelerated plate we huve the followings
2, 2 , Ued
C, = TR 7'{0), where Re; = ; : (3.38)
4.0 ,
Ny =—% _ _g7(0), 3.39
H, Ic(TW —T_) (D) { }
and
M5
Sh =——2" - =—4'{0}. 3.40
n D(Cw -Cu) _¢ ( ) ( }

Thus the dimensionless values of the local skin-friction coefficient, Nusselt number and
Sherwood number for impulsive as well as accelerated plate are obtained from the

process of numerical calculations and are sorted in Tables-3.1-3.4.

3.3 Method of Solution

The non-linear ordinary dilferential equations (3.16)-(3.18) for casc 1 and (3.22)-(3.24)
for case 1 with respective boundary cenditions have been solved by employing sixth
order Runge - Kutla method along with the Nachisheim - Swigerl {1965) shooting
iteration technique. The solution procedure has been discussed in details in Chapter-2 and
therefore any further discussion is discarded here. The numerical results obtained are

presented in the following section.
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3.4 Results and Discussion |

For the purpose of discussing the effects of various purameters on the Tlow behaviour
near the plate, numerical calculations have been carried out for different arbitrary values
of suction parameter vy, magnelic parameter M and for fixed values of Prandti number Pr,
Schmidt number Se, Grashof number Gr and modified Grashof number Gim. The value of
Prandt] number Pr 15 taken equal to 0.71 that corresponds physically to air. The value of
Schmidt number S¢ = 0.22 has been chosen Lo represent hydrogen at approx. Tm = 25°C
and 1 atm. The values of Grashof number Gr and modified Grashof number Gm arc taken
to be both positive and negative, since (hese values represent respectively cooling and
heating of the plate. Finally, the values of Sorct number Sr and Dufour number Df are

chosen in such a way that their product is constant.

Case-I: The velocity, temperature and concenrration profiles are shown graphically in
figs. 3.2-3.9 for both cooling and heating of impulsively started plate. Tn Fig. 3.2 the
effects of magnetic and suction parameters are shown for cooling of the plate. It is seen
from this figure that as the magnelic paramcter increases the velocily decrcases which
indicates that the magnelic field retards the fluid motion. The same effect on the velocity
profiles 1s alse observed for increasing values of the suction parameter, which is usually
expected. In Fig. 3.3 the effects of magnetic and suction parameters are shown for
heating of the plate. But in (his case the velocity is just reversed in comparisen with
cooling of the plate.

The effects of Soret and Dufour numbers on the velocity field for cooling and heating of
the platc are shown in Figs. 3.4 and 3.5 respectively. We observe that for cooling of the
plate, Quantitatively when 1 = 0.5 and Sr decreases from 2 to 0.4 (or D increases from
0.03 to 0.15) there is 22.47% decrcase in the velocity value, whereas the comesponding
decrease, when Sr decreases from 0.4 (o 0.1, is 3.25%. But compared to the case of
cooling of (he plate, opposite effects is observed in the case ol heating of the plate.

The temperature profiles are shown in Figs. 3.6 and 3.7 for cooling of the plate. From
Fig. 3.6 we see that the lemperature decreases with the increasc of suction parameler.

From Fig. 3.7,when i = 0.5 and S decreases from 2 to 0.4 {or Df increases from .03 o
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0.15) there is 50.82% incroase in the temperature value, whereas the corresponding

increase, when Sr decreascs from 0.4 10 0.1, 15 15.42%,

In Fig. 3.8 and 3.9, the concentration profiles are shown for cooling of the plate. It is
observed from Fig. 3.8 that the concenrration increases with the increase of suction
parameter close to the wall (approx. % £ 0.60) whereas for 7 2 0.60, the concenlration
decreases with increase of suction parameter. In Fig. 3.9, the effects of Soret and Dufour
numbers on the concentration profiles are shown. It is seen from this figure that for =1
and Sr decreases from 2 to 0.4 {or Df increases from 0.03 to 0.15) there is 35.96%
decrcase in the concentration value, whereas the corresponding decrease is 7.09% when

Srdecreases from 0.4 to 0.1.

In Tables 3.1 and 3.2, numerical values of the skin-friction coefficients. Nusselt number
and Sherwood pumber are given for impulsively staried plate (both cooling and heating).
From Table 3.1, 1t appears that for cooling of the plate both the skin-friction coefficients
and Sherwood number decrease with the increasc of vp and M. On the other hand, the
Nussalt number increases with the increase of vy but it decrases with the increase of M.
Table 3.2 indicates that for cooling of the plate the skin-friction coefficients and Nusselt
number increase with the increase of Soret number, whereas the Sherwoed number
decreases with the increase of Soret number. But compared to the case of cooling of the

plate, opposile effects is obscrved in the case of heating of the plate.
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Gr=2,Gm=10. Pr=0.71,5r =2,
D03 and 5c=0.22

Fig.3.2: velocity profiles due to cooling of impulsively started

plate for differenl values of vg and b.
]

Gr=-2, Gm=-10, Pr=0.71,8r =2,
D 1=0.03 and Sc =0.22
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Fig.3.3: velocity profiles due to heating of impulsively started
plate for different values of vg and b.
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Gr=72,Gm=10, v, =05, Pr=07l,
: Sc=022and M =02
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Fig.3.4: velacity profiles due to cooling of impulsively stared

plate for different values of Sr and Df.
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Fig3.3: velocity profiles due to heating of impulsively started

plate for differcat values of St and DA,
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Fig.3.6: Temperaturc profiles for ditferent values of vo.
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Fig.3.7: Temperature profiles for differcnt values of Srand Df.
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1.3

1.2

1.1E (r=2, Gm=1{, Pr=071, M =0.2,
Sr=2,5=0.22and D f=0.03

Fig.3.8: Concentration proliles for different values of vo.

| Gr=2,Cm=10, v, =05 Pr=0.71.
Se=022and M =02

Fig.3.9: Concentration profiles for different valucs of Sr and Df



Table 3.1: Numerical values of skin-friction coeflicients, Nusselt number and Sherwood
number for  Pr=0.71, $r=2.0, Df =0.03 und Sc =0.22.

Gr | Gm | M Vg Cs N Sk

2 |- (o2 | 05 ] -10227144 1940143 -0.082728
-2 |-10 |02 | 1.0 | -10.793529 2944274 -0.452290
2 [-10 |02 | L5 | -11.256771 4.445256 -1.040100
2 |- 10 | L5 | -10.51876l 4445252 -1.040102
2 |-10 130 | 1.5 93585394 4.445239 -1.040107
+2 | +10 |02 | 0.5 | 7.136127 1.5401438 -0.082728
+2 | 410 |02 | LD | 6998597 2.944274 -0.452290
+2 | +10 |02 | L5 ) 6686176 4445256 -1.040100
+2 | +10 | L0 | 1.5 | 5.505187 4445252 -1.040102
+2 | +10 3.0 | 1.5 | 3.435226 4.445239 -1.040107

Table 3.2: Numencal values of skin-friction coefticients, Nusselt number and
Sherwoox] number for Pr=0.71, v;=0.5, M =0.2 and Sc =0.22.

oGy om Sr Df Cy MNu; Sh;

+2 +10 | 20 | 0.03 | 7205083 1.934014 | 0.087042
+2 +10 | .4 0.15 5775135 1.517723 0.495844
+2 +10 |01 .60 5.581905 1.364413 0.575167
-2 10 (20 [003 [-10276100 | 1.934014 | 0.087042
-2 -10 |04 [015 |-8.846151 1.517723 0.495844
-2 -0 [0 | 060 | -8.652021 1364413 | 0.575167
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Case-11

Figs. 3.10-3.17 show thc variations of velocity, temperature and concentration profiles
due to accelerated motion of the plate when it is cooled and heated by free convection
currents respectively. From Fig.3.10 it is observed that the velocity decreases with the
wnerease of both parameters vp and M. In Fig.3.11 the heating cffects of the platc on the
velocity profiles are shown. As in the case of impulsively stared plate (case-T), when the
accelerated plate is being healed by free convection currents, a reverse type of fow
occurs in companson to that of the cooling of the plate for different values of vy and M.
In Figs. 3.12 and 3.13 the effects of Soret and Dufoyr numbers on the velocity field are
shown for cooling and heating of the ptate. Comparing Figs. 3.4 and 3.5 with Figs. 3.12
and 3.13 respectively, the same effects on the velocity profiles are also obscrved for
increasing values of Dufour numbers.

Figs. 3.14 - 3.15 show the variations of temperuture profilcs for different values of vy, 57
and Df. The effects of these parameters on the temperature profiles are similar to those of
the impulsively stared plate.

Figs. 3.16 - 3.17 show the variations of concentration profiles for different values of vy,
Srand Df. The effect of suction parameter on the concentration profiles is similar to that
of the impulsively started plate. But the influence of Seret and Dufour number on the
concentration field is 18.91% less than that of the impulsively started plate.

From the Tables 3.3 - 3.4, we ohscrve that the effects of the various parameters on the
local skin-friction coeflicients, ratc of heat transler and rate of mass transfer are similar to
those of case-1. But, linally, it is seen from both the cases (hat the wall shear stress has a
larger effect in case of impulsively started plate as compared to the uniformly accelerated

plate.
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Fig.3.10: velocity profiles due o cooling of uniformiy accelerated

plate for different values of vp and M.
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Df=0.03 and 5c =0.22
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Fig.3.11: velocity profiles due to heating of uniformly accelcrated

plate for different values of v, and M.
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Fig.3.12: velocity profiles due to cooling of uniformiy accelerated

plate for different values of Sr and Df.
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L Om=10,Pr=0.71, 5r=12,

0.8 Gr=2
022, DF =003 and M =02

™

L=
—

oa
[y ]

0.8

0.7 Carve v

0.8

=

s
——
L o W

a
h
o AU LS LN L LR L

o o
b

=
=

=) I..IIII.IIII-.

L=

1.5

Fig.3.14: Temperature profiles for different values of vo.
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Fig.3.15: Temperature profiles for different values of Sr and Df.
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Table 3.3: Mumerical values of skin-friction cocfficients, Nusselt number and
Sherwood number for Pr=0.71, Sr= 2.0, Df=0.03 and Sc¢ = 0.22.

Gr |[Gm (M |w Cr Ny sh,

20 -1 |02 | 6.5 | -7.848545 1.940135 -0.082743
22 [-10 |02 | 1.0 | -8.442502 2.944255 -0.452304
20| -10 |02 | L3 | -9.003997 4.445230 -1.040112
2 |-10 |10 | 13| -8.812949 4.445223 -1.040115
-2 |-10 |30 | L5 | -8.495821 4445206 -1.040122
+2 [ +10 |02 | 0.5 | 2678332 1.940135 -0.082743
+2 |0 |02 | 1.0 | 2.033647 2.844255 -0.452304
+2 | +10 |02 | 1.5 | 2552066 4.445230 -1.040112
+2 | 410 |10 | 1.5 | 20506558 4.445223 -1.040115
+2 |+10 |30 | L5 | 1.041530 4445206 -1.040122

Talle 3.4: Numerical values of skin-friction coetficicnts, Nusselt number and
Sherwood number for Pr=0.71,v3=05, M =02 and Sc = 0.22.

Gr Gm | Sr oy Cha Nu, Sh,
+2 +10 | 2.0 1003 | 2.094813 1.934002 | 0.087057
+2 +10 (04 | 015 | 2010203 1.517713 | (495823
+2 +10 |01 (.60 1.924497 1364407 0.375145
-2 -0 200|003 | -7T.8065007 1.934002 | 0.087057
-2 -0 |04 (015 | 7180397 1517713 | 0495823
-2 -10 (01 060 | -7.094691 1.364407 | 0.575145
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Chapter-4

Conclusions
Magnetohydrodynamics (MHD) heat and mass transfer Mow of a viscous incompressible

fluid past a vertical Tlat plate have been studied applying diffcrent (steady and unsteady)
flow conditions. Two types of convectien, free convection and combined (fres-forced)
convection have been considered. The thermal-diffusion and diffusion-thermo effects
have been studicd extensively in each flow conditions.

Using usual similarity transformations, the goveming equations have been transformed
into non-linear ordinary differential cquations. The similarity solutions are obtained
nurnerically by ustng Nachtsheim-Swigert shooling iteration technique with Runge-Kulia
sixth-order integration method. Since no experimental results of the corresponding
studies are available, so the obtained numerical resulls arc compared with that of
established results. As for example, qualitative agreement of our resulls with Kafoussias
(1990) is excellent.

All of the models studied in (his disseration show a decreasing effect on velocity,
temperature and concentration profiles as the suction paramcter increases. On the other
hand, the magnctic parameter shows decreasing effects on velocity profiles and
increasing effect on temperature as well as concentration protiles. The presented analysis
has also shown that the fow Reld is appreciably influenced by the Soret and Dufour
effects. Therefore, we can conclude that for Muids with medium molecular weight (Ho,

air), the thermal-diffusion and diffusion-thermo effects should not be neglected.
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