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Abstract

The thermal-dIffusion and diffusion-thermo effects on Magnetohydrodynamics (MAD)

heat and mass transfer boundary layer flow have been studied numerically. The

governing equations are then made dImensionless by I.lsing I.lsual similarity

transformations. The dimensionless equations are solved numcneally by applying

Nachtsheim-Swlgert shooting iteration techmque along with Rungc-Kmta sixth order

integration method.

A two-dimensional steady MHD combined free-forced convedion and mass transfer flow

past a semi-infmlte vertical plate is investigated. The effects of magnelle parameter M,

thermal-diffusion parameter Sr (Soret numher) and diffusion-thermo parameter Df

(Dufol.lr numher) have been examined on the 110wfield of a hydrogen-air mixture as. a

non-chemical reactmg fluid pair. The analysis has shown that the 110w field is

appreciably influenced by the thermal-dIffusion and diffusion-thermo effects. In our

study we have also found that the present results are in excellent agreement with

Kafoussia~ (1990), when M == Df == Sr = O.
Next, the above effects have been analyzed on unsteady MHD free convection and mass

flow pa~t an mfinite vertical porous plate. Two eases are considered (I) Impulsively

started plate (ISP) and (ii) Uniformly accelerated plate (UAP). Similarity equal10ns of the

momentum, energy and concentration equations are derived by mtroducing a time

dependent length scale. The dimensionless velocity, temperature and concentration

profiles are shown graphically for different values of the parameters entenng into the

problem. The numerical valLlCsof the local skm-friction, local Kusselt number and local

Shelwood number are aho presented in tabular form.
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applied magnetic field
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Greek symbols

a
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temperature of the flow field

mean fluid temperature

temperature at the plate

temperature of the fluid at infinity

constant plate velocity

free stream velocity

velocity componenl~ 10 the x and y directions,

rcspccllvely

Cartesian coordinates

thermal di rrusi vily

coefficient of thermal expansion

coefficient of concentration expansion

electrical conductivity

density of the fluid inside the boundary layer

kinematic viscosity

dimensionless siml1anty variable

time dependenllength scale

dimensIOnless temperature

dimensionless concentration

skin-frichon
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General introduction and review of previous works '~t;~iliJ~~~~
Magnctohydrodynamics (MHD) is that branch of conlinLlrn mechanics, which deals wilh

the tlow of electrically conducting tluids ill electric and magnetic fields. Probably the

large~t advance towards an understanding of such phenomena comes from the field of

Astrophysics. Originally, :MHD included only the study of Slnetly mcompressible fluid.

but today the terminology is applied 10 studies of ionized gases as well. Othern~meshave

been !mggcsted. such as magnetoflUld-mcchanics or magneto-aerodynamics, but ongmal

nomenclature has persisted.

Muny natural phenomena and engineering problems are slJsceptible to MIlD analysi~. It

i~ useful in Astrophysics. Geophysicists cncounter MHD phenomena in the inter<lClions

of conduct1Og fluids and magnetic ficlds that are presented in and around heavenly

bodIes. Engmeers employ MHD prinCIples in the design of heat cxchangers, pumps and

t1owmctcrs, 10 space vehicle propulsion, control and re-entry, 10 crcating novel puwer

generallng systems, and in developing confinement schemes for controlled fusion,

The most important application of MHD IS 10 the generation of electrical power with the

flow of an electrical conducllng fluid through a transvene magnetic field. Recently,

experiments with iunized gases have been performed with the hope of producing power

on a large scale in stationary plants with large magnetic fields. Generation uf MHD

power on a smaller scale is of 10terest for spacc apphcallons.

In the :.tudies related to hcat transfer, considerable effect has been duected towards thc

convective modc, in which the relative motion of the t1uid provides an additlOnal

mechani~m for thc transfer of energy and of malenal, thc latter being a mure important

consideration in cases where mass tran:,fer, due to a concentration difference, occurs.

Convection is possible only in the presence of a fluid medium. When a fluid flows inside

a duct or over a solid body while temperatures of the fluid and the solid surrace are

different, heat transfer between the flUId and the sulid surfacc takcs place as 'a

conscquence of the motion of fluid relative to the surrace; this mechanism of heat transfer

is ealled convection. The convective modc of heat transfer is divided into two ba:.ic

processes. If thc fluid motion is artificially induccd say with a pump or a fan that forces

,
"



the fluid flow over the surface, the heat transfer is termed as forced convection. Such

problcms are very frequently encOlmtered 10 technology where the heat transfer to or

from a body is often dLteto an Imposed flow of a fluid at a different temperature from that

of the body. If the fluid motion is set up hy buoyancy effects rcsulung from den~lty

difference caused by temperature difference in the fluid, the heat transfer is said to be free

or natural convection. There are essentially three factors, which govern the natural

convecuon processes, namely the body force, the tcmperature variation in the flow field

and the fluid density variauon with temperature. Frce convection is the principal mode of

heat transfer from pipes, transmIssion lines, refrigerating coils, hot radIators and many

othcr practical situations 10 everyday life. But in many cases of practIcal interest, both

processes are important and hcat transfer is by mixed convection, in which neither mode

IS truly predominant. It IS expected that for large Reynolds numher (i.c. correspondingly

large flow velocities) and small Grashof numher, the influence of free convection on the

heat transfer can be neglceted. On the other hand, for large Grashof number and small

Reynolds number the free convection should be the dominating factor. In nature we face

such situation where foreed 'and free convectio'n IS of comparable order, the phenomena

may be termed as the mixed or combined convection flows. This type of combined

convection flow IS the main topics of this study with a special attention paid to local

similarity solution for a vertical flat plate.

Model studies of the free and mixed convection flows have earned reputations because of

their applications 10 geophysical, geothermal and nuclear engineering problems. Sparrow

et al. (1959), were the first investigator, who dealt with the combined forced and free

convective houndary layer flow about a vertical flat plate, Later Mon (1961) and Sparrow

and Minkowycz (1962) studied mixed convection flow in the boundary layer of a

micropolar fluid over a horizontal flat plate using a perturbation series in terms of the

buoyancy panlmeter, TheIr investigations presented formulae for calculating the shear

stress and heat transfer rate in the mixed flow regime.

Cheng (1977) investigated the combined free and forced convection boundary layer flow

along an inclined surface emhedded in porous media. 11was found that when both the

wall temperature distrihution of the plate and the velocity parallel to the plate outside of



the boundary layer vary accordmg to the some power function of distance, i. e. .x"(where

A == constant), then the similarity solutions eXIst.

Hassanien (1977) studied the combined forced and free convection in boundary layer

flow of a micropolar fluid over a horizontal plate, In his work similarity solutions are

ohtaincd for the case of a wall temperature that is inversely proportional to the square

root of the distance from the leading edge.

The problem of mixed convection boundary layer flow along a vertical surface in the

ahsencc of magnetic field has been discussed in some details by Merkin (1969), Wilks

(J974). Hunt and Wilks (1980), Gryzagoridus (1975), Carey and Gcbahart (1982), Raju

et al. (1984) and Harris et al. (l999). Hunt and Wilks (l980) mtroduccd a group of

continuous transformations for computatIOns of the boundary layer equations between

simllanty regimes for mixed convection flow. In the case of similarity regimes Hunt and

Wilks (1980) recognized ~ (= Gr . where Gr is the local Grashof number and Re is the
R,'

local Reynolds number) as the governing parameter for the flow from venical plate.

Porced convection exists as a limit when ~ goes to zero which occurs at the leading edge,

and the free convection limit can be reachcd at large value:. of ~. PeTIurbation solutions

have been developed in both cases, since both the forced convection and free convection

limits admit similanty solutions.

Extensive studies have also been earned out on MHO free and mixed convection flows

by many researchers. Steady hydromagnetic free convection flow past heated venlCal flat

plate has been considered hy Gupta (1961), Poots (1961), Osterle and Young (1961),

Sparrow and Cess (1961), Lykoudis (1962), Cramer (1963) and Riley (1964). Gupta

(1961) and Lykoudis(1962) have studied the simllarity solutions by a&:.uming that the

magnetic field varies inversely a~ the fourth root of the height above the bottom edge of

the plate. They have used the approxunate momentum integral technique for solutions of

ba:.ic equations. Their rcsults are therefore of very limited applications, since for very

low and very high Prandtl number the viscous and therrnal boundary layers are unequaL

u.ter Nam1a and Mohanty (1970) employed the same method to solve the hydromagnetic

free convection of high and low Prandtl numbers due to practIcal applications, since for

liquid metah the Prandtl number is always smaiL Lykoudis (1962) has considered a third



degree polynomial for the tcmperatwe distribution in the entire boundary layer, while

Gupta (1961) has considered a third degree velocity profiles which contains a second

order zero at the OLlteredge of the boundary Jayer. Sparrow and Cess (1961) ha~e

congldcrcd the case uf a constant magnetic field, and have used a perturbation scheme,

taking the non-magnetic case as the first approximation. Their reslJlts are applicable in

the immediate neighborhood of the leading edge and for weak magnetic fields. Cramer

(1963) studied the infll.lcnce of magnetic field on the laminar free convection flow of

liqUId metals over a vertical flat plate and between two parallel plate,. He obtained an

analj1ical solution for liquid metals. Riley (1964) has coru;idereu a uniform magnetic

field and has integrated the boundary layer equallons over a single boundary layer

thickness. Effects of transversely applied magnetic field on free convcction of an

electrically conducting fll.lid past a semi-infinite plate arc studied by Cobble (I979),Wilb

(1976) and Wilks and Hunt (1984). MHD mixed convection flow investigated by many

researchers such as YI.l (1965), Gardner and 1.0 (1975), Hossain and Ahmed (1990) and

AI-Khawaja (1999). YI.l(1965) showed the stabilizing effect on combined forced and free

convection channel flows similar to the case of honzontal layer heatcd from below.

Grardner and 1.0 (1975) investigated the laminar problem using a perturbation method,

which produced some details of the secondary flow but his result, were hmited to small

values of the Hartman number. Hossain and Ahmed (1990) studied the combined forced

and free convection of an electrically conducting fluid past a vertical flat plate at which

the suttacc heat flux was uniform and a magnetic field was applied parallel to the

direction nonnal to the plate. The equations governing the flow are solved numerically

using the method of superposition for small huoyancy parameters'" [ Gr?J, where Gr
Re-

is the Grashof number and Re, the Reynolds number.

The unsteady mIxed convectiou flow past an infiuite vertical isothermal plate of an

lUcomprei>sible fluid IS a physical situation, which is often expcncnced, in the industrial

application. Some important contrihutions in this aspect havc been given hy Schneider

(1979), Jha (1991) and Sattar et a1. (1997). Jha (1991) lUvcstigated the MHD unsteady

mixed convection flow through a porous medium. He, however, obtained the solutions hy



employing Laplace transform technique and taking the value of the Prandtl number to be

equal to one. Latter Sattar et al. (1997) obtained an analytical solution of an unsteady

flow through a porous medium taking a constant heat source and a vanable suction

velocity. Unlike the work of Jha (1991), the solutions have been ohtmned for different

Prandtl number.

The phenomenon of natural convection heat and mass transfer is also carried on MHD

flow by many investigators. Agrawal et al. (1977) have studied the combllled buoyancy

effects on the thermal and mass diffusion on MHD natural convection flows. The effects

of mass transfer on free convective flow of an electrically conducting, viscous fluid past

an inflllite pornu!> plate with constant suction and transversely apphcd magnetic field

studied by Haldavneker and Soundalgeker (1977). Latter Soundalgeker ct a1. (1979) have

madc an exact analysis of the cffects of mass transfer and the free convection current on

the MHD Stokes (Rayleigh) problem for the flow of an electrically conducting,

incompressible viscolJs fluid past an impulsively startcd vertical plate undcr the action of

a transversely applied magnetIc held. The effects of natural convection and mass transfer
~

in a conductlng fluid, when thc fluid is subjected to a transverse magnetic field

investigated by Georgantopolous et a1. (1981). In the ahove discussion, thc velocity and

the skin friction are studied for the effects of Grashof number Gr< 0 of the plate by free

convection current, Gm (modified Grashof number), Sc (Schmidt number) and

M (magnetic parameter). Georgantopolous and Nanousls (1980) have used the Laplace

transform technique to solve the problem of the effects of the mass transfer on free

convection /low of an electrically eonductmg viscous fluid past an impulsively started

intinite vertlcal limiting surface on the presence of transverse magnetic field.

Dimensionless velocity and skin-frictlon are obtained for the vanous values of Sc, Pr

and M which are presente<.l in graphical form. Raptis and Kafousias (1982) conSIdered

the free convection and mass transfer steady hydromagnetic flow of an electrically

conducting viscolJs incompressible fluid through a pomus medium, occupying a semi-

infinite region of the space bounded by an infinite vertical and porous plate under the

action of a transverse magnetic field. The solutions of velocity, temperature,

concentration field and rate of heat transfer arc obtained for the effects of different

parameten;. FLlrther, Raptis and Trivanidis (1983) studied the unsteady case and solutlons



of the governmg equations of the flow are obtained with the power series. An analytical

study is performed to the effects of magnetic field on the free convection and mass

transfer flow through porous medmm by Jha and Prasad (1989). The soiutions to the

problem are obtained by Laplace transform technique. Later, the same method is

employed by Jha ct al. (1994) for the study of un:.teady free convection and mass transfer

flow past an exponentialiy accelerated infinite non-conducting vertical plate through a

porous medmm in the presence of uniform transverse magnetic field.

Tnail the above studies, the diffusion-thermo and thermal-diffusion terms were neglected

from the energy and concentratlon equations respectively. When heat and mass transfer

occur sImultaneously in a moving fluid, the relahons between the fluxes and the driving

potentials are of more intricate nature. It has been found that an energy flux can be

generated not only by temperature gradients but also by composition gradients as well.

The energy flux caused by a composition gradient IS called the Dufour or difrusion-

thermo effect. On the other hand, mass fluxes can also be created by temperature

gradients and this is the Soret or thermal-lilffusion effect. Tn general, the thermal-

diffusion and the diffusion thermo effects are of a smaller order of magnitude than the

effects described by Founer's or Fick's laws and arc often neglected In heat and mass-

transfer proce:.ses. There arc, however, exceptions. The thermal-diffusion effect, for

instance, has been utilized for isotope separation, and in mixture between gases with very

light molecular weight (H2, He) and of medium molecular weight (N2, air) the diffusion-

thermo effect ",as found to be of a magnitude such that it cannot be neglected (Eckert and

Drake, 1972). In view of the importance of this diftusion-thermo effect, Jha and Singh

(1990) presented an analytical study for free convection and mass transfer flow for

infmite vertical plate movmg impulsively in its own plane, taking into account the Soret

effec!. The Laplace transf01m technique was us;ed to obtain the e!lpreSSlOnsfor velocity

and skin-friction. Kafoussias (1992) studied the MfID free eonvectlon and mass transfer

flow, past an infinite vertical plate moving in its own pianc, taken into account the

thermal-diffusion effect when (i) the boundary surface is impulsively moving m its own

plane (lSP) and (ii) it is unifonniy accelerated (UAP). The problem was solved with the

help of Laplace transform method and analytical e~presslOns were given for the velocity

fIeld and for the skin-friction coefficients for the above mentioned case,. The effects of



various dimensionless parameters entering into the problem were discussed. Later

Kafoussias and Williams (1995) used a finite difference method to study the thennal-

dIffusion and diffusion-thermo effects on mixed (free-forced) convection and mass

transfer flow with temperature dependent viscosity. The cffects uf thc

viscosity/temperature parameter T" the thermal.diffusion parameter Sr (Sorct number)

and the diffusion-thermo parameter Dj(Dufour number) have been examined on the flow

field of a hydrogen-air mixture as a non-chemical reacting flmd pair. Recently, Anghel et

al. (2000) investigated the Dufour and Soret effects on free convection houndary layer

over a vertlcal sutface embedded in a porous medium usmg a double shooting method.

Typical velocity, temperature and concentration profllcs are presented for some values of

buoyancy ratio parameter N, leWIS number Le, Dufour number Df and Sorct number Sr,

Very recently, Adrian Postelnieu (2004) has studIed the influence of a magnetic field on

heat and mass transfer by natural convection from vertical :;urfaees in porou:; media

eon~ldering Soret and Dufour effects. The problem IS solved nwnerieally using a fimte

dIfference method. Dimensionless velocity, temperature and concentration profiles arc

presented graphically for various valoe:; of the magnetic number M and Lewis numher

Le, and for fixed values of the Dufour number Dj: Soret number Sr and buoyancy number

N

Therefore the aim of this digsertation is to study further Magnetohydrodynamics heat and

mass transfer flow includmg thermal-diffusion and diffusion-thenno effects which have

been of interest to the engineering commumty and to the investigators dealing with the

problems in Geophysics and Astrophysics.

In Chapter I available informatIOns regarding "MHD heat and mass transfer flows along

with vanous effect:. of phYSICal parameters are digcussed from both analytical and

numerical point of view. In Chapter 2 we have considered a steady two-dimensional

problem of MRD combmed (free-forced) convection and mass transfer flow past a scmi-

infinite vertical plate taking intu account the Dufour and Soret effects. In Chapter :3 an

unsteady MRD free convection and mass transfer flow along an infinite vertICal porou:.

flat plate with previous Dufour and Soret effects is conSIdered. The above two problems

have been solved numerically u~ing Nachtsheim-Swigert shooting iteration technique

with sixth-order Runge-Kutla method. The effecL~of vanous parameters entering into the

,

•



problems are discussed with the help of graphs and tables. In Chapter 4 we have

presented overall conclusions of the models studIed: Finally all references quoted in the

text can be found at the end ufthe thesis.



Cbapter-2

Steady MHO combined free-forced convection and mass transfer flow

past a semi-infinite vertical plate

Model studies of the forced and free convection or mixcd convedion flows have many

important applications in geophYSlcal, geothermal and nuclear engmecring problems.

Some of the earlier and recent works are due to Sparrow et aJ. (1959), Wilks (1973),

Chen et aL (1977) and Kafoussias et al. (1998). The effects of mass tranRfer on MHD free

and forced convection tlow have also bcen inve:.tigated by many researchers such as

Daskalakis et a1. (1989), Sattar and Alam (1995) and Rahman and Saltar (1999).

But in the above studies, the thermal-diffusion and diffusion-thermo effects were

neglected on the basis that they arc of a smaller order of magnitude than the effects

descnbed by Founer's and Fick's laws. However, exeepllons are observed therein. The

thelmal-diffusion effect, for instance, has been utilized for isotope separation, and in

mixture between gases with very light molecular weIght (l'h, He ) and of medium

molecular weight (N2 , air) Ihe diffusion-thermo effect wa:. found to be of order of

considerable magnitude such that it cannot be ignored (Eckert and Drake, 1972). In view

of the importance of this dIffusion-thermo effect, Jha and Singh (1990) studied the free

convection and mass transfer flow past an infinite vertical flat plale moving impulsively

in its own plane, taking into account the Sorel effects. Kafoussias (1992) studied the same

problem in the ca<;e of IvfiID flow. Later Kafoussias and Williams (1995) :.tudied

thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass

transfer boundary layer flow with temperature dependent viscosity. Therefore,

considering Ihermal--diffusion and diffusion-thermo effects we study the following steady

two-dimensional MHO combined free-forced convection and mass transfer flow past a

semi-infinite vertical tlat plate,



2.1 Governing equations of the flow:
Consider a steady combined frec-forced conveCllon and mass transfer flow of an

electrically conducting, non-magncllc fluid past a semi-infinite verllcal flat plate undcr

the innuencc of a transversely applied magnetic field. The flow is assumed to be in the x-

direction, which is taken along the plate in the upward direction and y-axis is nonnal to it.

A uniform magnetic fIeld Bo is taken to be acted along thc y-axis. Initially it is assumed

that the plate and the fluid are at the same temperature T and thc concentration level

evcrywhere in the fluid is same, At time I>0, the plate temperature and concentration are

in:.tantly raised to T.,( >T_) and C.' ( >C_l, which are thereafter maintained constant,

whcre T, T.andT_ arc the temperat •.•re of the fluid inside the thermal boundary layer, the

platc temperature and thc fluid temperature in the free stream, respectively, whIle C, C.

and Coo are the corresponding concentrations. The flow confIguration and coordinate

system is shown in figure 2.1 .

••

c, "L 1
~ g

B••..• " i-- T~Coo

T, U,

o y

FIg. 2.1: Flow configuration and coordinate system.

w ••



The continUlty, momentum, energy and concentration equations for steady, viscous,

incompressible and eleclricul1y conducting flow arc respectively given by [CrJmer und

Pai (1973)]

V.q=O,

p(q. v)ij = -vp+ p.v2q +F +JXB,

(qs)r = dV'T+ DmkJ V'C,
e,er

(q.V!: =D"V2C+ D;~,V'T

(2.1)

(2,2)

(2.3)

(2.4)

Here q = q(ll, v) IS the velocity vector, F is the body force per unit volume which is

defined as - pg , the term Jx B is the force on the fluid per unit volume produced by the

interaction of current and magnetic field, P is the pressure force, p is the density of the

nuid, p. is the viscosity, g is the gravitational acceleration, T is the temperature inside the

boundary layer, a is the thermal diffusivity, D", is the ma~s dlffusivity, kr is the thermal

diffusion ratio, c, IS the concentration susceptibility, cp is the specific heat at a l:onstant

pressure, C 15the concentration of thc fluid inside the boundary layer, Tm is the mean

fluid temperature and V is the vector differential operator which is defined by

,(J • a
V=l -+1-

'ax "(Jy

where i, and iy are the unit vectors along x and y axes respectively.

When the external electric field is 7.ero and the induced electric field is negligible, the

current density J is related to the velocity by Ohm's law as follows

l=u(qxB),
whcreu denotes the clectrical condl.lctivity of the fluid.

"

(2.5)

.,
'..



Again, for small magnetic Reynolds number, the induced magnetic field IS negligible in

comparison with the applied magnetic field. So we can wnte

(2.6)

Hence the retardmg force per unit volume J x B acting along the x-axis takes the form

(2,7)

Under the Boussinesq approximation, the den:.ity p in the buoyancy term in equation

(2.2) is considered to vary with temperature and concentration whereas the density

appearing elsewhere in the~e equations is considered constant. We can then write

(2.8)

where poo IS the density outside the boundary layer, f3 is the coefficient of thermal

expansion and ~. is the coeffICient of expansion with concentration which are defined by

and

__I rap] , p
PaT- ,

(2,9)

(2.10)

Using the above relations into equation:; (2.1) - (2.4), the :;teady lammar two-dimenSIOnal

combined free-forced convectIOn and mass transfer tlow of a viscous incompressible and

electrically conducting 11uid with constant vIscosity past a semi-infinite vertical

impermeable 11at plate in pre_~enccof a uniformly dIstributed transverse magnetic held

take the following fonn:

-.



Ju+ilv=O
OX ily ,

au Ju il'u • U B~1I,-h-="-o +gf1(T-T~)+gf3 (e-e~)---,ax oy oy- P

aT aT J'T D k a'e"-+"-=a--+ "r ,
ax (!y (!y2 C,c" ay'

ae ile a"e D k a'T
uax+vay=D~ay'+ ;,,' ily"

where the variables and related quantities are defined in the Nomenclature,

The appropriate boundary condItIOns for the above problem are as follows:

u =O,v=O,T:T",e=e" at y=O,

as y...,; "" .

(2.11)

(2.12)

(2.13)

(2.14)

(2.15a)

(2.15h)

The last term on the right-hand side of the energy equation (2.13) and concentration

equation (2.14) signifies the Dufour or diffusion-thermo effect and the Soret or thermal-

diffusion effect, respectively_

We observe that the equations (2.11)-(2.14) together wIth the boundary conditions (2,15)

are non-linear partial dirferenllal equations_ Tn the following seCllon non-

dimension ali galion and similarity analysis of the problem arc discugsed in details.

2.2 Similarity analysis
To obtain similarity solutions we introduce the following glmilarity transformallOng:

(2.16)



From the conllnuity equation (2.1 J), we have

dv au
----ay ax
Integrating both sides of (2.17) with respect to y, we get

(2.17)

(2.1 8)

Then substituting the relations (2.16) and (2.18) into equations (2.12)-(2.14), we get the

following local similarity equations:

[,1., .+-ff +g, +g,t/J-Mf =0,
2

0' +~Pr /8' +PrD/rp'= 0,
2

rp' + ~Scfrp' + SrScBH = 0.
2

The transformed boundary conditions arc:

!=O,f'=O,O=l,rp=l at '1=0,

/'=1,8=0,(,9=0 as '1---'>=,

(2.19)

(2.20)

(2.21)

(2.22a)

(2.22b)

is the Dufour number,

where primes denote differentiation with respect to the variable 1). The dimensionless

parameters appeared into the above equations are defined as follows:

Pr = v is the Prandtl number,
a

"Sc = - is the Schmidt number,
D.

Re = U~x is the local Reynolds number,

"
CTB;x 1M 0 -~ is the DealMagnetic parameter,
pU.

Dk(r-TJSr = m T w IS the Soret number,
T",v(Cw -CJ

D/ = Dmkr(C., -C)
ccv(r-r)
, p .' -



Gr == g{3(T~- T_p'
"'

ISthe local temperature Grashof number,

Gm _ g{3'(C. -CJx'

"'
i~ the local mass Gnt,shof number,

G,
g, = Re2 is the temperature buoyancy parameter

and g = Gm ISthe mass buoyancy parameter.
, Re'

Skin-friction coefficient, Nusselt number and Sherwood number:

The parameters of engineering interest for the present problem are the local skin-friction

coefficient, local Nu~selt number and the local Sherwood number which indicate

physically wall shear stress, rate of heat transfer and rate of mass tran~tCr respectively.

Thc equation defining the wall skin-friction is

[a,,]r ==}! -
.' dY yo"

Hence the skin-friction coeffielent ISgiven by

C _ 2rw
f - pU~

,
or,Cf ==2(Ret;:j'"(O)

i.e., ~CJ(Re)+ = r(O)

(2.23)

(2.24)



Now the heat l1u~ (q~,)and the mass flux (M.) at the wall ure given by

qw=_k(ar] =_kAT~U~B'(O),oy }.o lIx

and M., =_D,,[~C] =-Dm1l.C~U-f(O),
uy ,=0 1IX

where1l.T=T.-T~ and !1C=Cw-C."

Hence the Nusselt number (Nu) and Sherwood number (Sh) are obtained as
,

Nu = xqw = -(Re),O'(O)
k M'

,
l.0., Nu(Re j", == --8'(0)

>eM 'Sh~ • --(R,)"'(O)
D"AC

,
i.e., Sh(Re)': =-4J'(O).

(2.25)

(2.26)

These coefficients are then obtained numerically and are sorted in table-2.! and table-2.2.

2.3 Method of Numerical Solution:
The systems of equation (2.19)-(2.21) together Wilh the boundary condiuons (2.22) are

non-linear and coupled. II is difficult to solve them analytically. Hence we adopt a

procedure \0 obtain the solution numencally. Here we usc the standard iniual"value

solver :.hooting method namely Nachtshcim-Swigert iteration technique (guessmg the

missing value) and Runge-Kutta Merson method, in collaboration with Runge-Kutla

shooting method.

In a shooung method, the missing (unspecified) initial condition at the initial point of the

interval is assumed, and the differential equahon is then integrated numerically as an

initial value problem to the terminal point. The accuracy of the assumed mi~sing initial

condition is then ehecked by comparing the calculated value of the dependent variable at

the terminal point with Its given value there. If a difference exists, another value of the

missmg initial condition must be aSSl.lmedand the proce~s is repeated. This process is

•••••



continued until the agreement between the calculated and the given condition at the

terminal point is within the specified degree of accuracy. For thiS type of iterallve

approach, one naturally inqUIres whether or not there is a systematic way of finding each

succeedmg (assumed) value of the missing initial condition.

The Nachtshelm-Swigert iterallon technique lhus needs to be discussed elaborately. Thc

boundary condition (2.22) a~sociated with the non-hnear ODEs (2.19)-(2.21) are thc

two-point asymptotic class. Two-point bound ••ry conditions have values of the dependent

variable specified at two different values of independent variable. Specification of an

asymplOllc boundary condillon Implies that the fIrst derivative (and higher derivatives of

the boundary layer equallons, if exi:;t) of lhe dcpendent variable approaches y.cro as the

outer specified value of the independent variable is approached.

The method of numerically integrating a two-point asymptotic boundary-value problem

of the boundary-layer type, the initial-val ue method is :;imilar to an initial-value problcm.

Thus it is necessary to estimate as many boundary conditions at the :;orface as were

(previously) given at infinity. The governing differential equallons are then integrated

with these assumed surface boundary conditions. If the required outer boundary condition

IS satisfied, a solution has been achieved. However, this is not generally the case. Hence,

a method must be devised to estimate logICally the new surface boundary conditions for

the next trial integrahon. Asymptotic boundary value problems such as thoi>egoverning

the boundary-layer equations are further comphcated by the fact that the outer boundary

condition is specified at infinity. In the trial integration infinity is numerically

approXImated by some large value of the independent variable. There is no a priori

general method of estimating these value~. Selccting too small a maximum value for tnc

independent variable may nOI allow tne solotion to a~ymptotically converge to the

required accuracy. Selecting large a value may result in divergcnce of the trial intcgration

or in slow convcrgence of surface boundary conditions. Selecting too large a value of the

independent variable is expensive III terms of computer time,

Nacht~heim-Swigert (1965) developed an iteration method 10 overcome tbese difficulties.

EKtension of the Nachtsheim-Swigelt iteration scheme to the system of equation (2.19)-

(2.21) and the boundary conditions (2.22) is straightforward. In equation (2.22) there are

-



three asymptotic bOllndaT)' conditions and hence three unknown surface conditions

/'(018'(0) and ~'(O).
WIthin the context of the initial-value method and Nachtsheim-Swlgert iter-Ition

technique the outer boundary conditIOns may be functionally represented as

f'(,~J=f'U'(O ),'(0),;'(0 ))='" (2.27)

9(,,,.)= 9U'(0 )"(0 ),'(0))= 5" (2,28)

'(O"J = ,U'(O )9'(0),'(0 ))= 8" (2.29)

with the a,ymptotic convergence criteria given hy

r(o_)= f'U'(O)e'(o),,'(0))='"

8'(,_)= ''(t'(O )9'(0 \8'(0)) = 8"
8'(,",) = ,'(;'(0)9'(0)8'(0))= 5"

(2.30)

(2.31)

(2.32)

Choosing r(0)=g,,8'(0)=g, alld ~'(O)=gJ alld expanding in a first-order Taylor's

series after using cquatiolls (2.27)-(2.32) yields

, , aj' at' Jr 'f (1/"",,)=fc(11~" )+aAgj ;-a-Ag, +a-t..g, = (i"
g, g, g,

af/ ae ae
0(11,,,",)=ec('1"",)+ at..s, +JAg, +a-Ag, = 8"g, g, g,

J4J Jr/J ar/J
,p('1,,,,,)= ~c(1/"",,)+aAg, +a-As, +aAg, = D"

g, g, g,

.. arararf (1/"",,)=fA11=, )+at..gj +aAg, +aAg, == D"g, g, g,

(2.33)

(2.34)

(2,35)

(2,36)

(2.37)

(2.38)a~' a,p' J,p'
,p'('1 •..,,)= (Il~(1/,"",)+-.:;-6g, + ",I'!.g, ;- ""Ag, = 8"

ug, "g, og,

whcre subscript 'C' indicates the value of the function at 1/"~,determined from the trial

integration.

'"



Solution of these equations in a least-squares sense requires determining the minimum

value of

E = ~2 +0' +8' +82 +0' +8'U,"4l'

withrespeetto 15,,152 and 15,-

Now differentiating E with respect to I?, yields

8, dO, +0, ~8,+8,d8, +0. ~8.+8,08, +8,dO. =0
aI?, - dg, dg, og, dg, aI?,

(2.39)

Similarly differentiating E with respect to g, and g" we obtain respectively

8 ao] ~ a8, 8 ab, 8 d8, '" a8, 8 dO._O, -+0,-+ ,-+ ,-+0,-+ ,--ag, dg, a!h ag, ago ag,

[[arJ' rae]' [a'J' [arJ' [ao'J' [a,,]']or, ag, + ago + ag, + ag, + aI?, + ag2 /lg,

(2.40)



8 (jli, +0 CIS,+,5 ao, +0 aD. +8 as, +0 ,JO, ",0'a '" '" 'a 'a '0I?, ",1(, ug, g, g, ug,

[far]' rae]' [a,]' far]' rae']' ['''J']or, ag, + ag, + ;)g., + ag, + ali, + iJg, IJ.g,

We can write equations (2.40)-(2.42) in a system of linear equatIOns as follows:

Here

[[arJ' [ae]' [a,]' [arJ' [ae']' [WJ']
all '" dg, + d8, + iJg, + ag] + ilg, + dg, '

af' af' ao ae rJrpar{! (){'aj' ,HI' (le' (If (Jr/!'
" ~--+--+--+--+--+--" ag, ilg, Jg2og, ag, ilg, dg, Jg, ag, dg, ag, dg, '

af' at' ao ae d,p at/> at' aj' ;)0' cilt af ,N'" ~--+--+--+--+--+--
jJ ug, ag, ag, ilg, ag, agj iJg, Jg, Clg,iJg, ag, i.lg, '

ill' Jt' ao ae J,p at/> af' aj' ae' iJe' arfJ' "J1l'" ~--+--+--+--+--+--2] iJg, i:lg, ag, (lg, ag, aKj iJg, rlg, iJg, iJg, a"2 og, '

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)



iJf' iJj' ae ae iJot> arjl iJr iJr ae' ae' i)of>' arjl'
a'1 =--+--+--+--+--+ --,- all"lall", iJg, ago ag, iJg, ag, ag, ag, ag, aKJ iJg,

af' at' ao de iJl{J arjl ar ar ao' ile' a~' af, ~--+--+--+--+--+--Jl iJg, ag, ilg, dg, ag.•dg, Jg, Jg, aK, dKl ag) ilgJ '

at' at' iJe ao J~iJl{J ilr ar Je' ao' d~'iJq>', ~--+--+--+--+--+ --" aKJ iJg, ag, ag, iJg, ago dK, iJg, ag) ag, Jg, ago '

Now solving the equations (2.43)-(2.45) by using Cramer's rule, we have

b _detAL _delA, d
g, - detA ,bii, - detA :m

del A,
bii,= delA

where

""a", a" '" b, (a"a" - a"a,,1 )+bo (a,2a" - aua,,)+ b, (a,2a" - aOla,,),
b, a"

detA,=b,

b, a" a"

'" b,
detA, '" a" "

'" "
a'l
a" = h, (all a" - a"a,,)+ b, (a, ,a" - a"all )+ b.1(a" a13- all a" ),

""



"" '" b,

detA) '" "" 'n b,

'n a" b,

"" '" (I"

detA= '" "u "",
"" a" ""

Then we obtain the mis~mg (unspecified) values g" '12and 83 as

"1 =8, +68"
8, =g2 +8g2'

g," g, +8g,_

Thus adopting the numerical technique aforementioned, the solution of the equations

(2.19)-(2.21) with boundary condiuons (2.22) are ohtained together with sixth-order

implicit Runge-Kutta Initial value solver and determine the velocity, temperature and

concentration as 3 function of the coordinate 'I. In the process of integration the skin-

fnetion coefficient 1'(0), heat transfer rate -e'(o) and mass transfer rate -41'(0) are

also calculated.



2.4 Results and Discussion

The RyMcmof non-linear ordinary differential equations (2.19).(2.21) together wIth the

boundary conditions (2.22) have been solved numerically by using sixth order Runge.

Kulla shooting method. Numerical computations have heen carried out for different

values of magnetic parameter M and for fixed values of Prandtl number Pr, SchmIdt

number Sc. The value of Prandl! number Pr is taken equal to 0,71 that corresponds

physically to air. The value of Schmidt number Sc = 0.22 has been chosen to represent

hydrogen at approx. Tm= 2SQC and I atm. The values of Soret number Sr and Dufour

number Df are chosen m such a way that their product is constant according to their

definition provided that the mean temperature T", IS kept constant as well. The

dimensionless parameter g =' G~ is used to represent the free, forced and combined, Re.

(free-forced) convection regimes. The ca:;e g,«l corresponds to pure forced convection,

g,=1 corresponds to combined free.forced convection and g.,»l correspondR to pure free

convection. A:. the local mass Grashof number Gr is a measure of the buoyancy force:.

(due not temperature but to concentration differences) to the viscous force:;, the

dimcnslOnless parameter g, has the same meaning a, the parameter g,. The dimenslOnle:;s

parameter g, takes the values 0.1, 1 and 10 which correspond to three different flow

regimes as already mentioned above. The corresponding parameter &: takes the values

0.05,0.10 and 0.20.

First, to verify the proper treatment of the problem, the present solution for M = DJ= Sr =

o has been compared with that of Kafoussias (1990), sec Fig.2.2 and Table 2.1. It can be

seen from the Fig.2.2 and Table 2.1 that present results are in excellent agreement with

Kafoussia~ (1990).

Now within the above-mentioned now parameters, the resulL~are displayed in Figs. 2.3-

2.11, for the velocity, temperature and concentration profiles. In F1g.2.3, velocity protiles

are shown for dIfferent values of g, and g,. We observe that velocity increases WIth the

increase of Ii,. This increment IS greater for higher values of Ii" and in the case of pure

foreed convection (g,«1). The velocity reaches maximum inside the boundary layer for

pure free convection (g,=lO, g,=0.20). The variations of temperature and concentrallon



fields for different valucs of g. and g" are dIsplayed in Figs. 2.4 and 2.5, respectively. As

would be expected, both fields exhihit the same behavior. The influence of g, on the

temperature and concentration field is not so much evident for higher values of 15,.

In Fig.2.6, the effects of magnetic pammetcr M for differenl values of g, are shown. From

this figure we sec that the increase of magnetic field leads to the decrease Ihe velocity

field indicaling that the magnetic field retards the flow field. On the other hand, in

Figs.2.7 and 2.8 we see that an increase III the magnetic fwld leads 10rise the temperature

and concentration distributions respcctlvely both.

The innuence of Sorel number Sr and Dufour numhcr Dfon Ihe velocity, temperature and

concentmllOn profiles are shown III Figs. 2.9, 2.10 and 2.11 respectively. From Fig. 2.9,

we see that quantitatively, when 1/ '" 2 and Sr deereases from 2 to 0.4 (or pfincreases

from 0.03 to 0.15) there IS 0.33% increase in the velocity valuc, wherea~ the

corregponding increase is 3.64% when Sr decreagcs from 0.4 to 0.1. From Fig. 2.10,

when 'I == 3 and Sr decreases from 2 to 0.4 (or Dfincreascs from 0,03 to 0.15) there is

10.53% Increase in the temperature value, whereag the cOITespo~ing Increase is 32.19%

when Sr decreascs from 0.4 to 0.1. From Fig. 2.11, whcn 1)'" 3 and Sr decreases from 2

to 0.4 (or Dfincreases from 0.03 to 0.15) there is 38.22% denease in the concentration

value, whereas the corresponding decrease is 10.14% when Sr decreases from 0.4 100.1.

Flllally, table 2.2 shows the numerical values of local skin-friction coefficients, local

Nussdt number and Sherwood number for some values of the pammetern M, Sr and Df

when g, '" 1. From this table it is evident that for fixed g,. Sr and Vf; Cf, Nu and Sit

decrease as M increases. Final1y we see that the local Nussdillumber increses, while the

local Sherwood number decreases as Dfdecreases and Sr increases.



•

0.;

• •"Fig.2.2: Comparison of velocIty profiles for different value:; of g,.

Tllble 2.1: Comparison of skin-friction and local Nussclt number for M == Df" S, == O.

g. g, Kafoussias(1990) Present Kafoussias(1990) Present

Skin-friellon Skin-friction Nusselt number Nusselt number

0.10 0,05 0.5538 0.5538 0.3296 0.3296

0.10 0.10 0.6317 0.6315 0.3404 0.3404

0.10 0.20 0.7776 0.7772 0.3589 0.3589

1.00 0.05 1.4452 1.4451 0.4129 0.4129

1.00 0.10 1.5007 1.5001 0.4179 004178

1.00 0.20 1.6096 1.6081 0.4274 0,4272

10.0 0.05 6.8389 6.8385 0.6449 0.6450

10.0 0.10 6.8715 6.8712 0,6461 0.6463

10.0 0.20 6.9366 6.9356 0.6487 0.6488
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Fig.2.3: Velocity pro[j]e~ for different values of g, and &.
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Fig.2,4: Tempemture profiles for different values of g. and go'



Fig.2.5: Concentration profiles for different values of g, and £,c.
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Of = 0.03 and g, = 0,05

M =0.02

M =O.(l6

M=O.lO

•
Fig.2.7: Temperature profiles for different values of M.
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Fig.2.9: Velocity profiles for different values of Sr and Df
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Fig.2.lO: Temperature profiles for different values of Sr and DI
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Pr = 0.71, Sc = 0.22. g, = 1.0,
g" = 0.05 and M = 0.01

Curve Sf Df

1 2.0 0.03
2 0.4 0.15
3 0.1 O.UO

, .,
Concentration proftles for different values of Sr and Df.

Table 2.2: Numerical values of skin-friction coefficients, Nusselt number and Shenvood
number for Pr = 0.71, Sc = 0.22, g,:= 1.0 and g, = 0.05.

M S, Df C, No Sh

0,02 2.0 0.03 1.4222 0.4086 0.1465

0.06 2.0 0.03 1.3671 0.3978 0.1440

0.10 2.0 0.03 1.3069 0.3869 0.1388

0.02 2.0 am 1.4222 0.4086 0,1465

0.02 0.40 0.15 1.4260 0.4012 0.2538

0,02 0.10 0.60 1.4650 0.3830 0.2545



Chapter-3

Unsteady MHD free convection and mass transfer now past an infinite

vertical porous plate

The flow of an incompressible viscous fluid, past an impulsively started mfinite

horizontal plate, was studied firsl by Stokes (1856) and it is also known as Reyleigh's

problem. Because of the significance of this problem in tluid mechanics and

aerodynamics, many author:. have extended the above problem for different cases,

Soundalgeker (1977) studied the free convection flow past an impulSIVely started infinite

vertical plate, when it is cooled or heated by free convection currents. Kafoussias and

Daskalakis (1986) studied the hydromagnetic free convection flow of a VISCOUS

incompressible and eleclrically conducting flUIdpast an infinite vertical porous flat plate,

which is moving in its own plane Impulsively or umformly-accelerated. The governing

equations of the flow were solved by finite difference method when the Prandtl number

Pr is equal to 0.71 and 7. The effecl~ of mass trausfer on MHD free convectiou flow have

also been investigated by many researchers, some of them are Haldavnekar and

Soundalgeker (1977), Ralunan and Sattar (1999) and Mahmud et a1. (200l).

In the above studies, some of the cases the thennal-diffusion (Soret) and diffusion-

thermo (Dufour) effects on the flow field have not been considered. In Chapter 2 we have

studied the thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects for a two-

dimensional steady motion. In this Chapter we further investigate these effects on an

unsteady MHD free convection and mass transfer flow past an infinite vertical porous

piate. Two cases are considered; (I) Impulsively slarted plate (ISP) moving in its own

plane, and (II) Uniformly accelerated plate (UAP). Similarity equations of the

momentum, energy and concentration equations are derived by introduemg a time

dependent scaling factor. The suction velocity is taken to be inversely proportional to the

above scale factor. Finally the transformed nou-Iinear ordinary differential equations,

which arc locaJiy simtlar, have been solved numerically usiug Nachtsheim-Swigcrt

shooting iteration technique with Runge-KUlta sixth-order integration method.



3.1 Governing equations of the flow:
We consider a model of unsteady MHD free convection and mass tramrer now of an

electrically conducting incompressible viscous t1uid, along an infmite vertical porous flat

plate_ The x-axis is taken on the infinite plate, and parallel to the free-stream velocity

which is vertical and the y-axIs is taken normal to the plate. A magnetic field of uniform

strength IS applied transversely to the direction of the now. Initially the plate and the fluid

are at same temperature T~in a stationary condition with concentration level C_ at all

points. But at time I > 0, the plate starts with a velocity (HI) in its own plane, its

temperature is raised to Tw and the concentration level at the plate is raised to Cw_ The

physical configuration considered here is shown in the following figure 3.1.

"

0

>1<J 0 1Co Co
0 g

Bo • To

To 0

io y

U(r)

Fig. 3.1: Flow configuration and coordinate system _



(3.1 )

Since the plate is conSldered to be of mfinite extent, all derivatives with respect to x

vanish. Then under the usual Boussinesq approximation the basic equallons relevant to

the problem are:

'"_eOiJy ,

au au a'u • (J B~u-:;-+v-
a
eVa' +g{3(T-L)+g{3 (C-C_)---,

vi y Y P

aT aT [J'T V" kr a'c_+»_ea __+~~~'_
al (ly iJ},2 c,c

p
ay"

ac ac a'c v k a'T_+»_eD --+ ' ,
at ay " (ly' I'm ily'

where the variables and related quantities are defined in the Nomenclature.

The initial and boundary conditions for the above problcm are:

fort:$O: u=v=O,T=T_.C=C_ forally

for r> 0:

u =U(r)" UoF~")v =V(I),T =T~,C = Cwat y =0

(3.2)

(3.3)

(3.4)

(3.5)

(3.6a)

(3.fib)

The above problem is solved for two different values of n signifying two different cases,

e.g., when the flat plate is impulsively started, moving in its own plane (n = 0 or ISP)

and when it is unifOimly accelerated (n " 1 or UAP),

3.2Mathematical formulations:

Case Ii Impulsively started plate (lSP)

In this cai>esetting n = 0 and considering F(I) = I [Alarn (1995)], we gel II = Uo from

equation (3,6a). Now in order to obtain similarity solutions to the problem considered, we

introduce a time dependent length scale 8 as

8=8~),I>O. (3.7)



In terms of thIs length scak, a convenient solution of the equation (3.1) is considered to

be in the following form:

(3.8)

where Vo is the suctlon parameter.

In order to non-dimensionalise the equations (3.2)-(3.4) we introduce the followmg

dimensionless quantities:

(local Grashof number),

,I,)~C-G- ,
c -C, -

Wlc -c Wu = Uo! (11), Gm = g W - (local Modified Grashof number),
, vU,

I T-T Dk(C-C)81/)- -,Df- mT(. -)(Dufournumber),
T.-L c,cpuTw-T_

D k IT,,-T)Sf - '" r , ~ (Soret number),
V1:'(C~-C)

v (JB'8'
Sc = -(Schmidt number), M '" Q (Magnetic parameter),

Do. vp

vPr = - (Prandtl number).
a

In view of (3.8) and (3.9), equatlOns (3.2) - (3.4) become

r' ['''] , ,, +1/ -- f, +v.f, +Gr8 +Gmt/'-MJ; =0
v d,

_.I 0 d8\, -voO' =_1 86 +Dfl/J'
"~vdtr Pr

("S}, ",'_1 ",' S,'-, -- -Va'!' --, + ,
Udt Sc

where primes denote differentiation with respccllO 11.

The corresponding boundary conditions for t:> 0 are obtained as:

f,=I,e=l,l/J=l atl1=O

fi",O,e",O,I/J=o aS1/-Jo=

(3.9)

(3,10)

(3.11)

(3.12)

(3.13a)

(3.13b)



(3.14)

Now the equations (3.10) _ (3.12) are locally similar except the term [6 dO], where t
v d'

appears explicitly. Thus the local similarity condItion requires that (~ ~) in the

equations (3.10)" (3.12) must be a constant quantity.

lknee following the works of Hasimolo (1957), Sattar and Hossain (1992), Sattar (1993)

and Saltar and Maleque (1000), one can try a class of l>olUllOnsof the equations (3.10)-

(3.12) by assuming that

[' d']-- =it(aconstant).
v d,

Integrating (3.14) we have

(3.15)

where the constant of integration Ii>determined through the condition that 8 = 0 when

t = O. From (3.15) choosing ..1.'" 2, the length scale 8(t) = 2,fV1 which exactly

corresponds to the usual scaling factor for various unsteady boundary layer flows

[Schlichtmg (1968)]. Smceo is a scalmg factor as well as a similanty parameter, any

value of A in (3.14) would not change the nature of the solutions e~cept that the seale

would be different.

Now introducing (3.14) [with 11.=2]in the equations (J.W) - (3.12) respectively, we

obtain the following dImensionless ordinary differential eqllations which are locally

similar.

1:+(211 + Vo )/,' +GTO + GmrJi- MI, = 0

O' +Pr(211 + Va 'fJ' +PI DjrJ1' = 0

rJi'+ Se(211+vo,r + SeSr06 = 0

Subject to the above formulation the boundary conditions follow from (3.13)

I,=l,O=I,rJi=1 atl1=O

f, =O,8=O,rJi=O as 11--+""

(3.16)

(3.17)

(3.18)

(3.19a)

(3.19b)



Case IIi Uniformly accelerated plate (DAP)

In thIS case selling ,I == I we gel u" UnF(I) from equation (3.6). As in case I we consider

the same similarity parameter Ii as represented by (3.7) and the same solution (3.8) of the

equation (3.1).

Now for rea,ons of similality, the plate velocity IStaken [Alam (1995)J to be

U(I) == Va F(t)

where F(t) is taken to be equallo S,', with S, ==..£.., such thaI i:J == °0 at t" 10,'.
We now introdl.lee the following dimensionless quantiues:

(3.20)

(3.21)

Now i>ubSlituting the relations (3.7), (3.8) and (3.20) - (3.21) into equations (3.2), (3.3)

and (3.4) and introducing the following dimensionless parameters:

v v lJ'B:S2 D k (1' T)
P S. M __ '_ S m r" -r==;;, ~==Dm' == vp r TmU(Cw-C~)'

VI - D.,kr(Cw -CJ ,Gr gfJ(T. -T_W , Om _ ~/:r(C"-c}5'
c,cpv(T,,-TJ vUo vU"

we obtain the followmg ordinary differential equations:

.t::+( ~ ~~)rtl{: - 2/.1+"01: + Gr8 + Gm4' - M.t:, == 0

~Sd'r' il,_le, DC'- -- -Vol' -- + ,4',
vdt Pr

~
i5dS}, ,_1"'65."- -- -vol!'--I" + r .
vdl Sc

(3.22)

(3.23)

(3.24)



Subject to the abovc equations (3.22) - (3.24) the boundary conditions (3.6) become

f,=1,8=1,4I=1 atl]=O

fa =0,8"'0,<11=0 as I]-J-OO

Now folluwing the arguments in case I.we respeellve1y have

f:+(21] + vo)f~ +Gr8 +Gm<1l-(4+M)j~ = 0

8~ + Pr(21] + va)Y + Pr Df4l~= 0

I/I~+ Se(21] + Vo '»'+ SeSr8~ =0

(3.25a)

(3.25b)

(3.26)

(3.27)

(3.28)

where primes denote differentiation with respect to 1).The abovc equations thus describe

the haSlS of our problem for case II. The solutions uf which are now sought subject to the

boundary conditions (3.25).

Now it IS important to caleulate the phYSICalquantities of the primary interest, which are

the iocal wall shear stress, local surface heal flu}; and the local surface mass flux

respectively from the following definitlOns:

q., =-k(~:L;
M~=-1~~1~.

(3.29)

(3.30)

(3,31)

The dimensionless local wall shear stress, local surface heat flux and the local surface

mass flux for impulsively started plate respecllvcJy obtained as

T.O = ((0),
"Uo

q.,o _ -0'(0)
k(k~-TJ- "

Mo' 'I)D(C. -CJ --rf> ° ,

(3.32)

(3.33)

(3,34)

•



Hence the dImensionless ~km-friction coefficient, Nus:;elt number and Sherwood number

for impulsively :;tarted plate are given by

2, ( i"f'l) V,8C.=------"';-=2Re~ ° ,where Re,'" --,
" pU; v

M8 'I)Sh,=(' )--i/JO.
D C.'-C~

and for the accelerated plate we have the followings

_ 2T~ 2 1'1) _Uo'jc, ---0 = ,0, where Re, - --,
• pU- Re88. v

and

Sh" M .,8 - -i/J'(O).
, v(c, -CJ

(3.35)

(3.36)

(3,37)

(3.38)

(3.39)

(3.40)

Thus the dimensionless values of the local skin-friellon coefficient, Nusselt number and

Sherwood number for implJlsive as well as accelerated plate are ohtained from the

process of numerical calclJlation~ and are sorted in Tables-3.1-3.4.

3.3 Method of Solution
The non-linear ordinary differential equations (3.16)-(3.18) for case 1 and (3.22)-(3,24)

for case II with respective boundary condillons have been solved by employing sixth

order Runge _ Kulla method along with the Nachtsheim - Swigert (1965) shooting

iteration technique. The solution procedure has been di~eussed in details in Chapter-2 and

therefore any further dIscussion is discarded here. The numerical resu1t~ obtained are

presented in the followmg section.



3.4 Results and Discussion
For the purpose of discussing the effects of various paramelers on the /low behaviour

ncar the plate, numerical calculations have been earried out for dIfferent arbitrary values

of suction parameter Vo,magnetic parameter M and for fixed values of Prandtl number Pr,

SchmIdt number Sc, Grashof number Gr and modified Grashof numher Gm. The value of

Prandtl number Pr IS taken equal to 0,71 that corresponds physically to air. The value of

Schmidt number Sc = 0.22 has been chosen to represent hydrogen at approx. T1" = 25°C

and 1 atm. The values of Grashof number Gr and modified Grashof number Gm arc taken

to be both positive and negative, since these values reprei>ent respectively coohng and

heating of the plate. Finally, the values of Sorct number Sr and Dufour number Dfare

chosen in such a way that their product is constant.

Case-I: The velocity, temperature and concentration profiles are shown graphically in

figs. 3.2-3.9 for both cooling and heating of impulsively started plate. In Fig. 3.2 the

effects of magnetic and suction parameters arc shown for eoohng of the plate. It is seen

from this figure that as the magnetic parameter increases the velocity decrease:; which

indicates that the magnetic field retards the fluid motion. The same effect on the velocity

profiles IS also observed for lficreasing values of the suction parameter, which is u:;ual1y

expected. In Fig. 3.3 the effects of magnetic and suction parameters are shown for

heallng of the plate. But in this case the velocity is just rever:;ed in compari:;on with

cooling of the plate,

The effect~ of Soret and Dufour number:; on the velocity field for cooling and heating of

the plate are :;hown in Figs, 3.4 and 3.5 respectively. We observe that for coolmg of the

plate, Quantitmively when I] = 0.5 and Sr decreai>es from 2 10 0.4 (or Dj'increases from

0.03 to 0.15) there is 22.47% decrease in the velOCItyvalue, whereas the corre~ponding

decrease, when Sr decreases from 0.4 to 0.1, is 3,25%. Bul compared (0 the case of

cooling of the plate, opposite effects i:; observed m the case of heating of the plate.

The temperatliTe profiles are shown in Figs. 3.6 and 3,7 for cooling of the plate, From

Fig. 3.6 we see that the temperature decreases with the increase of suction parameter.

From Fig. 3.7,whcn I] = 0.5 and Sr decreai>es from 2 to 0,4 {or Djillcreases from 0.03 to



0.15) there is 50,82% increase in the tempcrature value, whereas the cOlTesponding

increase, when Sr decreases from 0.4 to 0.1, IS 15.42%.

In FIg. 3,8 and 3.9, the eoncentratlOn profiles are shown for cooling of the plate. It is

observed from Fig. 3.8 that the concentration increases with the increase of suction

parameter close to the wall (appro:\.. TI::; 0.60) whereas for 1/ ~ 0.60, the concentration

decreases with increase of suction parameter. In Fig. 3.9, the effects of Soret and Dlifour

numbers on the concentration profiles are shown. It is seen from this figure that for TI= I

and Sr decreases from 2 to 0.4 (or Dfincreases from 0,03 to 0.15) there is 35.96%

decrease in the concentration value, whereas the corresponding decrease is 7.09% when

Sr decreases from 0.4 to 0.1.

In Tables 3.1 and 3,2, numerical values of the skin-friction coefficients. Nlisselt number

and Sherwood number are given for impulsively started plate (both cooling and heatmg).

From Table 3.1, It appears that for cooling of the plate both l11eskm-friction coefficients

and Sherwood number decrease with the increase of Va and M. On the other hand, the

Nusselt number increases with the increase of Vo but it decrases with the increase of M.

Table 3.2 indIcates that for cooling of the plate the skin-friction coefficients and Nusselt

number increase with the increase of Soret nnmber, whereas the Sherwood number

decreases WIth the increase of Soret number. But compared to the case of cooling of the

plate, opposite effects is observed in the casc of heating of thc plate.

•'.
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Table 3.1: Numerical values of skin-liiction coefficients, Nt!i>seltnt!mber and Sherwood
number for Pr =0.71, Sr =2.0, Df =0.03 and Sc =0,22.

G, Gm M "" C, NUi Shi

-2 10 0.2 0.5 -10.227144 1.940148 -0.082728

-, -10 0.2 1.0 10.793929 2.944274 -0,452290

, -10 0.2 1.5 -11.256771 4.445256 -1.040100

2 -10 1.0 1.5 _10.518761 4.445252 -1.040102

-2 -10 3.0 1.5 9.395594 4.445239 -1.040107

,2 ,10 0.2 0.5 7.156127 1.940148 -0,082728

,2 ,10 0.2 1.0 6,998597 2.944274 -0.452290

" ,10 02 1.5 6.686176 4.445256 -1.040100

" ,10 1.0 1.5 5.505187 4.445252 -1.040102

,2 <)0 3.0 1.5 3.435226 4.445239 -1.040107

Table 3.2: Numencal values of skm-friction coefficients, Nt!sselt number and
Sherwood number for P,= 0.71, vo=O.5, M =0.2 and Sc=0.22.

G, Gm S, Df C, NUi Sh,

,2 ,10 2.0 om 7,205083 1.934014 0,087042

" ,10 0.4 0.15 5.775135 1.517723 0,495844

,2 ,10 o. , 0.60 5.581905 1.364413 0.575167

-2 -10 2.0 0.03 10.276100 1.934014 0.087042

2 -10 0.' 0,15 -8.846151 1.517723 0.495844

-2 10 0.1 0.60 -8.652921 1.364413 0.575167

•



Case-II
Figg, 3.10-3.17 show the variations of velocity, temperature and concentrallon profiles

due to accelerated motlOn of the plate when it is cooled and healed by free convection

currents fC:.pectively. From Fig.3.10 it ig observed that the velocity deCrea5Cgwith the

mcrcage of both parameterg Va and M, Tn Fig.3.11 the heating effectg of the plale on the

velocity profiles are shown. As in the case of impulsively Marted plate (case-I), when the

accelerated plate is hemg heated by free convection currents, a rever:.e type of flow

occurs in companson to that of the cooling of the plate for different valueg of Vo and M.

In Figs. 3.12 and 3.13 the effects of Soret and Dufour nnmbers on the velOCItyfield are

shown for cooling and heating of the plate. Comparing FIgs. 3.4 and 3.5 WIth Figs. 3.12

and 3.13 respecllvc1y, the same effectg on the velocity profiles are also observed for

increasing values of Dufour numbers.

Figs. 3.14 _ 3.15 gbow the vanationg of temperature profiles for different valueg of Vo, Sr

and DI The effects of these parameters on the temperature profiles are simIlar to those of

the impulsively started plate.

Figs. 3.16 - 3.17 show the variallons of concentration profiles for different values of vo,

Sr amI DI The effect of suction parameter on the concentration profiles is similar to that

of the impulSIvely started plate. But the influence of Soret and Dufour number on the

concentration field is 18.91% less than that of the impulsively started plate.

From the Tables 3.3 _ 3.4, we ohserve that the effects of the vanous parameters on the

local skin-frietlOn coefficients, rate of heat tnlllgfer and rate of mass transfer are similar to

those of case-I. But, finally, it is seen fmm both the cases that the wall shear stresg has a

larger effect in case of impulsively started plate as compared to the uniformly accelerated

plate.
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Table 3.3: Numerical values of skin.friction coefficients, Nl.lsse1tnumber and
Sherwood number for Pr '" 0,71, Sr ==2.0, Df == 0.03 and Sc == 0.22.

G, Gm M ., C," N" Sho

.2 .10 02 0.5 -7.848545 1.940135 -0,082743

.2 .10 0.2 1.0 -8.442502 2.944255 -0.452304

2 .10 0.2 15 -9.003997 4.445230 1.040112

.2 .10 1.0 IS -8.812949 4.445223 -1.040115

.2 .10 3.0 1.5 -8.495821 4.445206 -1.040122

+2 +10 0.2 0.5 2.678352 1.940135 -0.082743

+2 +10 0.2 1.0 2.653647 2.944255 -0.452304

+2 +10 0.2 1.5 2.552066 4.445230 -1.040112

+2 +10 1.0 1.5 2.056558 4.445223 1.040115

+2 +10 3.0 1.5 1.041530 4.445206 _1.040122

Table 3.4: Numerical values of skin-friction coefficicn!s, Nusselt number and
Sherwood number for Pr == 0.71,1'0==0.5, M == 0.2 and Sc ==0.22.

G, Gm S, Df C," N" Sha

+2 +10 20 0.03 2.694813 1.934002 0.087057

+2 +10 04 0.15 2.010203 1.517713 0.495823

+2 +10 0.1 0.60 1.924497 1.364407 0.575145

2 .10 20 0.03 -7.865007 1.934002 0.087057

.2 10 04 0.15 -7.180397 1.517713 0.495823

2 .10 01 0.60 -7.094691 1.364407 0.575145



Chapter-4

Conclusions
Magnetohydrodynamics (MHO) heat and mass transfer flow of a visco •.•s incompressible

fluid past a vertical flat plate have been studied applying d,ffcrent (steady and unsteady)

flow conditions. Two types of convection, free convection and combined (free-forced)

convection have been considered. The thermal-dirr •.•sion and diff •.•sion-thermo effects

have been studied extensively in each flow conditions.

Using usual similarity transformations, the governing equations have been transformed

into non-linear ordinary differential equations. The similarity solutions are obtained

numerically by usmg Nachtsheim-Swigert shooting iteration techniq •.•e with Runge-K •.•ua

SIxth-order integration method. Since no experimental results of the corresponding

studies are available, so the obtained numerical results arc compared with that of

established results. As for example, qualitative agreement of our results wIth Kafoussias

(1990) is excellent.

All of the models studied in this dissertation show a decreasing effect on velocity,

temperature and concentration profiles as the suction parameter increases. On the other

hand, the magnetic parameter shows decreasing effects on velocity profiles and

increasing effect on temperature as well as concentration profl1es. The presented analysis

has also shown that the flow field is appreciably influenced by the Soret and Dufour

effects. Therefore, we can conclude that for fl •.•ids with medium molecular weight (H2,

air), the thermal-diffusion and diffusion-thermo effects sho •.•ld not be neglected.

•



References
Anghel, M .. Takhar, H, S, and Pop, 1. (2000) ''Dufour and Soret effects on free

convection boundary layer over a vertical surface embedded in a porous medium."

Studia Univernitalls Babes-Bolyai, Mathematica, XLV, 11-21.

Agrawal, H. L., Ram, P. C. and Singh, S. S. (1977) "Hydromagnetic natural convection

flows resi.llting from the combined buoyancy effect:; of thermal and mass diffuslOn." Acta

Phys. Acad, Sci. Hung, 42, 49.

Alam, M. M. (1995) "MHD heat and mass transfer flow with thermal-diffusion." Ph. D.

Thesis, Umvcrsity of Dhaka, Bangladesh.

Al-Khawaja, M. J., Agarwal, R. K. and Gardner, R. A. (1999) " Numerical study of

magneto-fluid mechanics combined free and foreed convection heal transfer." In\. J. Heal

and Mass Transfer, 42, 467-475.

Chen, T. S., Sparrow, E, M. and Mi.lcoglu, A. (1977) "Mixed convection in bOi.lndary

layer flow on a horizontal plate." ASME J. Heal Transfer, 99, 66-71.

Cobb1c, M. H., (1979) "Free convection with mass transfer i.lnder the influence of a

magnellc field." Non linear Analysis, 3, 135.

Cnlmer, K. R., (1963) "Several magnetohydrodynamie free convection solutions." ASME

Journal of Heat Transfer, 85, 35-40.

Cramer, K. R. and Pai, S, 1., (1973) "Magneto fluid dynamics for engineers and applied

physicists, McGnlw Hill, New York.

Carey, V. P., and Gebhart, B. (1982) "Transport at a large down stream distance in mIxed

convection flow adlacent to a vertical flux surface." Tnt. J. Heat and Mass Transfer, 25,

255.

Daskalakis, J., Kafoussias, N, G" Lewkowicz, A. and Williams E. W. (1989) "Similarity

solution for free and forced conveclion hydrodynamic flow over a horizontal semi-

infinite plate through a non-homogeneous porous medium." Astrophys. Space SCI., lSi.

217-226.

Eckert, E. R. G. and Drake, R. M. (1972) Analysis of Heat and Mass Transfer, McGraw-

Hill, New York.

Gardner, R. A. and Lu, Y. T. (1975) "Combined free and forced convection heat transfer

in magneto fluid mechamc pipe flow," AlGIE, 73 (164), 133.

•



Gryzagoridus, J. (1975) "Combined free and forced conveCllon from an isothermal

vertical plate." Int. J. Heat and Ma~s Transfer, 18,911.

Georgantopolos, G. A., Koullias, J, Goundas, C. L. and Couragenis, C. (1981) Astrophys.

Space Sci., 74, 359.

Gupta, A. S. (1961) "steady and transient free convection of an electncally conducting

fluid from a vertical plate in the presence of magnetic field." App!. Sci. Res., 9A, 319-

333.

Hasimoto, H. (1957) "Boundary layer growth on a flat plate with suction or injection." J.

Phys. Soc. Japan, 12,68 - 72.

Haldavneker, D. D. and Soundalgeker, V. M. (1977) "Effects of mass transfer on free

conveCllon flow of an electrically conducting, viscous fluid past an infinite porous plate

with constant suction and transversely applied magnetic field." Acta Phys. Aead. SCl.

Hung, 43, (34), 243.

Hams, S. D., Ingham, D. B. and Pop, r., (1999) "Unsteady mixed convection boumdary

layer flow on a vertical surface in a porou~ medIUm." Int. J. Heat and Mass Transfer, 42,

357-372.

Hossain, M. A. and Ahmed, M. (1990) "MHD forced and free convection boudary layer

now ncar the leading edge." lnt. J. Heat and Mass Transfer, 33, 571-375.

Hrmsanien, L A. (1997) "Combined forced and free convection in boundary layer flow of

a micropolar fluid over a horizontal platen ZAMP , 48(4), 571.

Hunt, R. and Wilh, G. (1980) "On the behaviour of the laminar boundary layer equations

of mixed convection near a point of zero skin fricllon." J. Fluid Mech.,101, 377.

Jaluna, Y. (1980) "Natural convection heal and mass trasfer" Vol. 5. Pergamon Press.

Oxford, UK.

Jlla, B. K. and Singh, A. K. (1990) "Sorct effects on free-convection and mass transfer

flow in the stokes problem for an inf,mte vertical plate." Astrophys. Space Sci .. 173, 251-

255.

Jha, B. K. (1991) "MHD unsteady mixed convection flow through a porous medium."

Astrophys. Space Sci., 175, 101.

Jha, B. K. and Prasad, R. (1989) "Effect of magnetic field on the free convection and

mass transfer flow through a porous medium." Astrophys. Space Sci., 161, 195-200.



Iha, B. K. and Prasad, R. and Rai, 5, (1994) "MHD free convection and mass transfer

flow past an exponentially acclerJted vertical plate through a porous medium." J. Energy,

Heat and Mass Tnmsfer, 16, 173.

Kafoussias, N. G., Nanousis, N. D. and Gcorgantopoulos, G, A. (1979) "Free convection

effects on the Stokes problem [or an lllfinite vertical limiting surface with constant

suction." Astrophys. Space Sci., 64a, 391-399.

Kafoussias, N. G. (1990) "weal similarity solution for combined free-forced convective

and mass transfer tlow past a semi-infimte vertical plate." Int, J. Energy Research., 14,

305-309,

Kafous:,ias, N. G. (1992) "Jv11-ID thcrmal-diffusion effccts on free-convective and mass

transfer flow ovcr an infinite vertIcal moving plate." Astrophys. Space SCI., 192, 11-19.

Kafoussias, N, G. and Williams, E. W. (1995) "Thermal-diffusion and diffusion-thermo

effects on mixed free-forced convective and mass transfer boundary layer flow with

temperature dependent viscosity", In!. J. Engn. Sci., 13(9),1369-1384.

Kafoussias, N. G., Rees, D. A. S. and Daskalakis, J. E. (1998) "Numerical study of the

combined free-forced convective laminar boundary layer flow past a vertical isothermal

flat plate with temperature dependent viscosity." Acta Mechanica, 127,39-50.

Lloyd, J. R. and Sparrow, E. M. (1970) "Combined forced and free convection flow on

vertical surfaces." Int. J. Heat and Mass Transfer, 13,434-438.

Lykoudis, P. S. (1962) "Natural convection of an electrically conducting fluid in the

presence ofa magnetic field." Int. J. Heat and Mass Transfer, 5, 23-34.

Alam, M. M., Sattar, M. A. and Rahman, M. M. (2001) "Similarity solUMn of steady

MHD free conveCllon and mass transfer flow with thermal-diffusion and largc suction in

a rotating system." Dhaka Univ. J, Sci., 49(2),147-153,

Merkin, J. H, (1969) "The effcct of buoyancy forces on the boundary layer flow over a

scmi-infinite verticai flat plate in a uniform frec stream." J. Ruid Mech., 35, 439.

Merkin, J. H, (1980) "Mixed convection houndary layer flows on a vertical surface in a

saturated porous medlUm," J, Engg. Math., 14,301.

Mori, Y. (1961) "Buoyancy effects in forced laminer convection flow over a horizontal

plate." ASl'vfE J. Heat Transfer, 83,479.



Nachtsheim, p, R. and Swigert, P. (l965) "Satisfaction of the asymptollc boundary

conditions in numerical solution of the system of non-linear equations of houndary layer

type." NASA TN- D3004.

Nanda, R. S. and Mohanty, H. K (1970) "Hydromagnetic free convection for high and

low Prandtl numbers." J. Phy;. Soc. Japan, 29(6),1608-1618.

Osterle, J. F. and Young, F.J. (1961) "Natural conveCllon between heated vertical plate

in a horizontal magnetic fields" J. FIU1dMech., 11(4), 512,

Pai, S. 1. (1962) "Magnetogasdynamics and Plasma Dynamics." Spnnger Verlag, New

York.

Poots, G. (1961) "Luniner natuml convection flow in magneto hydrodynamics." Int. J.

Heat and Mass Transfer, 3(1),1-25.

Cheng, P. (1977) "Combined free and forced convection flow about incliued surfaces in

poro<.lSmClila," Int. J. Heat and Mass Transfer, 20, 807.

Postelnicu, A. (2004) "Influence of a magnetic field on heal and mass transfer by nalural

conVCCllonfrom vertical surfaces in pOfO<.lSmedIa considering Soret and Dufour effects."

Int. J. Heat aud Mass Transfer, 47, 1467-1472,

Rahman, M. M. and Sattar, M. A. (1999) "MHO free conveCllon and mass transfer flow

with oscillatory plate velocity and conMant heat source in a rotating frame of reference",

Dhaka UniY. J. Sci., 47(1), 63-73.

Raju, M. S., Liu, X. Q. and Law, C. K. (1984) "A formulation of combmed forced and

free convection past horizontal and vertical surface." lnt. J. Heat and .Mass Transfer,

27(12),2215-2224.

Raptis, A. and Kafoussias, N. G. (1982) "Magneto hydrodynamic free convective Dow

and mass transfer thro<.lghporous medlUm bounded by an infinite vcrllcal porous plate

with constant heat flux." Can. J. Phys., 60, 1725-1729.

Rapli~, A. and Tzivanidis, G. (1983) Astrophys. Space Sci., 92(2), 311.

Riley, N. (1964) ".Magneto hydrodynamic free convection." J. Fluid Mech" 18, 577.

Stokes, G. G. (1856) "on the effect of the internal friction of fluids on thc motion of

pendulums." Trans. Cambro Phil. Soc. 9, 8-106.



Sattar, M. A. and Hossain, M. M. (1992) "Unsteady hydromagnetic free convection flow

with Hail current and mass transfer along on accelerated porous plate with time

dependent temperature and concentration." Can. J. Phys., 70, 369-374.

Satlar, M. A. (1993) "Unstcady hydromagnellc free convectIOn flow with Hali current

mass transfcr and variabie suction through a porous mediLlm ncar an infinite vertical

porous plate with constant hcat flux." Int. J. Encrgy Res., 17, i-4.

Saltar, M. A. and Alam, M. M. (1995) "MHD free convective heat and mass transfcr flow

with Hail current and constant heat flux through a porous medium." Indian J. Pure App!.

Math. 26(2), 157.

Sattar, M. A., Samad, M. A. and Kalim, M. H. (1997) "Unsteady MHD forced and free

conveCllon fJow through a porous medium with constant heat source and variable

suction." Dhaka UOlv.I. Sci., 45(2), 205.

Sattar, M. A. and Malequc, M. A. (2000) "Unsteady MHD natural convection flow along

an accelerated porous plate with Hall current and mass transfer in a rotating porolJS

medium", J. Energy, Heat and Mass Transfer, 22, 67-72.

Schlichting, H. (1968) Boundary Layer Theory, 6'h Edn, McGraw-Hill, New York.

Shercliff, J. A.(1965) A textbook of Magnetohydrodynamics" Pergamon press, New

York.

Schneider, W. (1979) "A similarity solution for combined forced and free convection

flow over a horizontal plate." Int. J. Heat and Mass Transfer, 22, 1401.

Soundalgeker, V. M, (1977) "Free convection effects on the Stokes problem for an

infinite vertical plate." AS:ME J. Heat Transfer, 99,499-501.

Sparrow, E. M. and Cess, R. D. (1961) 'The effect of magnetic field on free convection

heat transfer." In!. J. Heat and Mass Tnmsfer, 3, 267.

Sparrow, E. M., Eichorn, R. and Gregg, J. L. (1959) "Combmed forced and free

convection in a boundary layer flow." Phys. Fluids 2, 319-328.

Sparrow, E. M. and Gregg, J. L. (1959) "Buoyancy effects in forced convection flow and

heat transfer, ASME J. App!. Mech., 83, 133.

Sparrow, E. M. and Minkowcz, J. W. (1962) "Buoyancy effects on horizontal boudary

layer flow and heat transfer." Int. J. Heat and Mass Transfer, 5, 505.



Wilks, G. (1973) "Combined forced and free convection flow on vertical surface." Int. J.

Heat and Mass Tran,fer, 16, 1958-1964.

Wilks, G. (1974) "The flow of a uniform stream over a semi-infinite vertical flat plate

with uniform surface heat flux." Int. J. Heat and Mass Transfer, 17,743.

Wilks, G. (1976) "Magnetohydrodynamic, free convection about a semi-mfinite vertical

plate m a strong cross field." ZAMP, 27, 621-631.

Wilks, G. and Hunt, R. (1984) "Magnetobydrodynamic free convectlOn flow about a

semi-infinite plate where the surface beat flux is uniform." ZA,\1P., 35, 34.

Yu, C. P. (1965) "Combined forced and free convection cbannel flows in

Magnetobydrodynamics." ALAA. J. 3, 1184-1186.

'"


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067

