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Abstract

Ihe prosent disscrmation deals pvith the problem  of two-dimensional  steady
Magnetohydrodynamic laminar free comvective flow across a horizontal cylinder with
adiabatic surface. The governing cquations are transformed to non-lincar ordinary
differential cquations by using the suitable substitution. These equations are then solved

numerically using implicit finite difference method known as Keller box scheme,

The results are presented in terms of local skin friction, surface te-mpemmre distribution.
the velocity profile and temperature profile. Ltfects of the physical quantitics for fluid
having different Prandtl numbers have been studied for the cases of isothermal and
adiabatic part of the surfacc. The dimensionfess skin friction co-efticient, the surface
temperature distribution. the velocity distribulion and the temperature profile over the
whole boundary laver are shown graphically by using the software TECHPLOT [or
different valies of the magnetic parameter Af and the Prandt] number Fr. Conduction.
comveetion and Joule heaung elfects on Magnetohivdrodyuamue flow from a verncal (lat

plate have also been studied.
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B;} or Hﬂ

: Reterence length, v/ g
: Coupling parameter

: Velocity component in the x-direction
: Velocity component in the v-direction
: Distance alonp the surface

: Distance normal to the surtace

: Applied magnetic field

: Revnolds nhumber

: Prandil number

: Orashof number

. Mlagnetic parameter

; Joule heating parameter

Nomenclature

. Specitic heat at constant pressure
: Local skin friction

: Dimensionless stream function

. Dimensionlcss temperature
 Acceleration due to gravity

: Thennal conductivity of the fluid
. Fluid pressurc

: Surface heat flux

. Diameter of the cylinder

: ‘[emperatare in,the boundary layer
: Temperature al the surface

: Temperatre of the ambient fluid
. Plate lemperature

: Plate thickness

I N T

: Tength of the plate
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Greek symbols

- Co-clficient of thermal expansion

: Stream function

: Dimensionless simifarity variable

: Density of the fluid inside the boundary layer
;. Viscosity of the fluid

; Kincmatic viscosily

: Thermal conductivily

: Thermal conductivity of the ambicent solid

: Thermal conductivity of the ambient fluid

: Dimensionless temperature

. Electrical conductivity

: Skin friction

: Angle formed by the adiabatic surface at the axis of the

cylinder.
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lChapter 1

Introduction

1.1 {verview

Fluid dynamics i1s ome of the oldest branches of applied mathematics. It is also the branch
in which some of the mosl significant advances have been made during the last lfty
years, These advances have been motivated by exciting development in science and
technology and facilitsted by growth of computer capabilitics and developments of

sophisticated mathematical techniques.

An important contribution o the (lnd dynamics is the concept of boundary-laver
introduced by L. Frandtl{1904). The comcept of houndary layer iz the conscquence of the
fact that flows ar high Reynolds numbers can be divided into two uncqually spaced
regions. A very thin layer (called boundary-layer) in the vicinity (of the ohject) in which
the viscous effects dominate, must be taken inlo account, and [or the bulk of the flow

region, the viseostty can be neplected and the flow corresponds to the inviscid outer {low,

Although the boundary laver is very thin. i plays a very umporiant role i the ffuid
dvnamics Boundary-layer theory has hecome an essential study now a days in analyzing
the complex behaviors of real fluids. This concept can be utilized to simplify the Navier-
Stokes’ cquations to such an extent that the viscous effects of [low parameters are
gvaluated, and these are vsuable in many practical problems viz. the drag on ships and
missiles. the efficiency of compressors and turbines in jet engings, the effectiveness of air

intakes {or tam and twrbojets and so on.

Lhe three distinet modes of heat transfer, namely conduction. convection and radiation
must be considered. In reality, the combined effects of these three modes of heat transfer

contrel temperature distribution in 2 mediun. "



Conduetion oceurs it energy exchange takes place from the region of high temperature to
that of low temperature by the kinetic motion or dircet impact of molecules, as in the case
ol {luid at rest. and by the doift of clectrons, as in the casc of metals. The radiation cnergy
emitted by 2 body 13 transmitted in the space in the form of clectromapnetic waves.
Energy 15 emmitled from a material duc to its temperature level, being larper for a larger
lemperature, and 18 then transmitted to another surface, which may be vacuum or a
mediun, which may absorb, reflect or transmut the radiation depending on the nature and
extent of the medium. Considerable effort has been direeted at the convective mode of
heat transfer. [n this mode. relative motlimn of the Tuid provides an addiional mechanism
for enerpy transfer. A study of convective heal wransler involves the mechamsm of
conduction and, scmetimes, those of Tadiation processes as well. This makes the study ol

convective mode a very complicated ong.

The convective mode of heat transler s divided imto two basic processes 11 the monon of
the fluid arises due to an external agent such as the externally imposed flow of a fluid
over a heated object, the process is termed as forced convection. The fuid Mlow may be
the resalt of a fan, a blowcer, the wind or the motion of the heated object itself. 1f the heat
tranafer to or from a body occurs duc to an imposed flow of a fluid at a temperature

different from that of the body, problems of forced convection encounters in technology.

Hthe externally induced {low 15 provided and flows ansing nalurally solely due 1o the
cffect of the differences in densily, cansed by temperature or concentration differences in
the body force held{such as gravitational lield) then these types of (low are called ‘lree
convection® or cnatural convection” flows, The density difference causcs buovancy
elfecls and these effects aet as “driving forces” due to which the flow is penerated. Henece
frec convection 1s the process of heat transter, which oceurs due o movement of the fluid

panicles by density diflerences associated with temperature di(Terence 10 a 1luid.

The motion of an electrically eonducting Mwd, like mercury, under @ magnehic {ield, in
general. gives nise to indueed cleetric currents on which meehameal furces are exerted by

the magnetic field. On the other hand, the induced electne curents also produce induce

K]



magnetic field. Thus there is a two-way interaction between lhe flow field and the
magnetic {ield, the magnetic ficld exerts force on the fluid by producing induced currents,
and the induced cuments change the original magnetic ficld. Thercfore, the
hydromagnetic flows ( the Hows of elecirically conducting fluids in the presence of a
magnctic ficld) are more comiplex than the ordinary hydrodynanic flows. Mathematically
alsn, the hydromagnetic equations have three non-linear terms while in hydrodynamics
we have only one. The number of governing equations are also increased The study of

hydromagnetic flows is called magnetolivdiodynamics (MHTD).

Two developed branches of physics, namely electromagnetic theory and flud dynames
interact Lo produce hydromapnetics and therefore the field of hydromagneties is much

richer than both the parent branches.

hMagnetohydrodynamies (MHD?} is that branch of continuuim mechanics. which deals wilh
the flow of eleclically conducting fuids in clectric and magnetic fields, Frobably the
largest advance towards understanding of such phenomena comes from the lield of
Aslrophysics. Onginally, MHD 1ncluded only the study of strietly incompressible fluid,
but todasy the terminelogs 15 applied to study lonized gases as well. Other names have
been suggested, such as magnetotluid-mechanics or magneto-aerodynaniics, but original

nomenclature has persisted.

Many natural phenomena and engineering problems are susceptible to MHD analysis. It
is uselul o astrophysics. (ieophysicists encounter MHD phenomena in the interactions of
conducting fluids magnetic ficlds that are presented in and arcund heavenly bodies.
Lngineers employ MED principles in the design of heat exchangers. pumps and
flowmeters, in space vehicle propulsion. control and re-entry. in creating novel power

generating sysiems, and 1n developing conlinement schemes for controtled fusion.



1.2 Literatore Heview

Many rescarchers investigated the ellects of MHD free and {forced conveetion flow both
cxperimentally and theoretically bul lew works were devoled to adiabantce surfaces.
Lauciana[19] in 1983 investigated the laminar free convection around honzontal cyhnder
The author considered the cyvlinder surface partly isolhermal and panly adiabatic. Kushn
and Goldstein | 17] determined the numerical solution of the Navier-Stokes’s equations
on laminar natural convective flow about a horizontal isothermal circular cvlinder.
Farouk and Gueen | 18] investigated the natural convection from a horizontal cylinder.
herkin ]14] studicd free convection boundary layer flow on an isothermal horizontal
circular evlinder. In all the aforementioned eases analyses established on fice convection

horizontal cylinder based on different conditions.

Sparrow and Cess |4 Investigated the effect of a magnetic field on free convection heat
transler Kuwken [10] studied MHL free comvection in a strong cross-field. [ossain et. al.
[22, 23] lovestigated MHD forced and free convection boundary layer flow neur the
leading edge. They also Investigated MHD forced and {rec convection boundary laver
Mo along a sertical porous plate. Wilks [13] studied MHD free convection about a
semi-infinite vertical plafe 1n a strong cross-Tlow. he authors analyscd the MHID natural

convestion Tlow also in various [elds.

Free convection around horizontal cvlinders has been extensively investizaled, both
analyically and nwmerically Littte bt attention has so far been pad o other thermal
conditions of noticcable practical interest. as arc thosc relative to panly isothermal and
parily adiabatic {it takes no heat from the fluid or heat is not being transformed to this

party cvlinders.

Free convection heat transfer due to the simultanecus action of buoyancy and induced
magnetic forces 1s very imporiant in some practical problems. The analysis is carried out

for laminar [ree convective [low across a honsontal evhinder with adiabatic surlace T



found that the free convection heat transfer to liquid metals may be significantly atlected

by the presence of 4 magnetic freld, but that other fields experience very small effects.

The hterature on convection heat transfer is over helming and ever growing, In recent
vears, with the avalabihly of mgh-speed and large-capacity digital computers, preat

advances have been made 1o the analysis of very complicated heat transfer problems.
The specific problem selected for study 1s the (fow and heat transfer in an clectrically

conducting fluid adjacent t a horizontal cybnder which 1s isothermal with an adiabatic

part.

[
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Figure-1; Geometry of the problem
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The configuration s petured an fGigure-1, where in particalar, the adabatic sector
corresponding to an angle 2@ 15 symunetric with respect to the vertical diameter, whereas,
the length of the relative arc is {, which could be reduced to zero in 50 restoring the fully

othermal supation

We shall investigate the magnelo-hyvdrodyvoamic boundary layer {low resultng from the
natural convection of a horizonral cylinder with adiabatic surface in an electrically

conducting {luid in the presence of the transverse magnetic field.
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The transformed non simnlar boundary layer equations sovermin g the flow lngether with

the boundary conditions hased on free comvection were solved numerically using the

Keller box (implicit limle differcnec) along with Newton's lineaization approximation

iecthod in the entire region staring from the upstream of the evlinder to the down stream

for some values ol the magnetic parameter A and the Prandil number P, We huove

stdied the effect of the parameters M. Py and ¢ o the velocity und temperature fields av

well as on the skin friction coellicient and the surlace rate ol heat transler

Detailed dervations of the governing equations for the flow and the method of solutions

along with Lhe results and discussions are presented in the next chapters

L3 Objectives

I he present work has the following objectives:

Ll

To studs the cficets of the physical quantities for fluid having differcnt Prandil
number for the cases of isothermal and adiabatic part of the surface, We also
study the elfecl ot the magnetic field on these physical quantities,

To ohtan the solution of the goverming equations. There are different (ypes of
numerical technique available depending on the types ol problem to be solved.
Finte diflerence method is one of the uportant methods both for programming
and rapid convergenee. Here we use Imile difference method modilied by Hossain
cl.al |22 23]

lo find the local shin riction. the surface rate of heal transfer and the velooy
profile and temperature prolile for Lthe ahove mentioned problem.

The results in terms of local skin friction, local rate of heat transfer. the velociy
and wmperature prodiles are shown  graphically by usmg  the  sottware

TECHPLOT.




1.4 Applications

The most important application ¢f MHTD 15 in the gencration of clectrical power with the
flow ol an clectrical conducting luid through a transverse magnctic ficld. Recently.
expeniments with ionized gases have been performed with the hope of producing power
on a large scale in stationary plants with large magnetic ficlds. Generation of MHD

power on a smaller scale s of interest for space applicalions.

The study of heat transfer is of great interesl wn many branches of science and
cnpineering. In designing heat exchangers such as boilers. condensers and radiators cte.
heat transfer analysis (s cssential for sizing such equipment. For example in the design of
nuclear-reactor cores a thorough heat transfer analysis is importanl for proper s1zing of
fuel clement to prevent bumout. [n acrospace technology, heat ransfer problems are
crucial because of weight lmitanoms and safety considerations. In heating and air
conditioning applications lor buildmgs a proper heat transfer analvsis is necessary to

estimate the amount of insulation needed 10 prevent cxeessive heat foses or gains.

In engincering, situations related w adiabatic surface deseribe about practical problem;
for example, in heat transler around metallic tubes partially covercd by snow or ice, or
around pipes where an internal laver of deposiled salt greatly decreases in some arcas of

cyvlinder.



Chapter 2

Magnetohydrodynamic laminar free convective

flow across a horizontal cylinder with adiabatic

surface.

In the Jollowing sections delailed derivations of the governing equations for the Now and

the method of solutions along with the results and discussions arc presented.

2.1 Governing equations of the [ow:

The starung point of the analysis is the basic consersvation laws of mass. monentunt and

cnergy. To obtan the mathematical statement of these laws, we utilize the well kiown

guverning cquations for free conveetion which arc added terms appropriate to the

magnetic ctfcers. Characterizing the induced magnetic Torce by & we write the boundary

laver cqualions eoverning the flow are:
A ] = E

| -
du o
Mass: —4—=10
i By
! o -0 L
Lot i [T [ oA
Momentun:  #—xv—=v= T T el - fw}mn[—
i v oy it
ar  ar _ @r
Eneriny H——tv— = —
r e v

with boundary conditions:
o

. | .
u=v=40,T=T, forisothermal part and L;— = (Horadiabaticpariul y =0
By

u—?ﬁ,T—}Tﬂ a5y =

{2.1)

(2.4

{24
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Figure 2: |he co-ovdinate system

;
Here 1 and v are the velocity componenis along the x and y direetion respectively. i the
femperature ol the lwd 1 the boundary laver, v is the acceleration due to gravity. v is the
kinemalic viscosily of the flad and B is the thermal expansion cocfficicnt. The plus and
nunus signs atlached w the buovaney Toree gff7-1.) in equation (2.2} apply to How due
o heaung and couling respeetively. Fluid propery variations have heen considered onty
e the extent of a density varation, which provides a buoyuncy lorge. For the encrygy

equation we negleeted the viscous dissipation, and the Joule beatng tetm

The mapnctic foree £ may, in the absence ol excess charges. he wrillen us

F=JxB . (2.5
where | and B arc respectively the current denstly and magnehc induchion vecturs
Further, when the external ¢leetric fleld is zero and (he mduced electne eld neghyible.
the current density is related by Ohm™s law as Toflows.

J-ofVx B) (2.67
where o denotes the electrical conductis ity of the 1luid. Next. under the condition that the
magnetic Reyoolds number is small, the induced magnactic ficld is negligible compared
with the apphed Meld. |his condition 1y vsually well satisfied in terrestrial applications,
cspecially 50 in (low- velocity) free convecton (lows. So. we can write

B=i.R, 2.9



Using equations (2.4), (2.5) and {2.6) we get the force component,
Fi=-cuB} (2.8

This term is introduced into the momentum cquation {2.2).

I'he specification of the boundary conditions is necessary to complete the statement of
the problem. At the surface. the veloeitics are zero to satisfy the ne slip conditions. In
addition. temperature conlinuity requires that tluid and solid share the samne temperature
for isothermal pant of the evlinder and temperature gradient is zero {or adiabalic part of
the cylinder. IPar from the surlace, the velocity approaches zere and the temperature
approaches that of surroundings, Formally, these conditions were stated in cquation (2.4).
[sing the cquations {2.5) to (2.8) with respect 1o our considerations into the basic

equations {2 1yand (2.3} we have the following lom:

Ay v
Mass LA (2.4
vy
a = ) 3 .B: 2
Momentum: % — + vor = Tef(T -7, )mn(—t] i TR ‘3_1:. (2.10h
oy Oy i -
T ar Tl
Energy: ua—+vL=afb— (2.11)

oy oy 2y
The appropriate boundary conditions to be satisfied by the above cquations arc:

. T . . )
u=v=0T=T, forisothcrmalpar and fg = Ofor adiabaticpartat ¥ =1 {2.12a)

a

u—=0,T—=1, asy—ow {2.12b)

2.2 Transformation of the governing equations:

Now we introduce the [ollowing group of transformations of co-ordinates from {x, »/ to

f, b coordinates syslem as
- & = x -
p==0r, {=— (2.13)
a

Tlere the vadable 115 the free convection similarity variable. On the other hand., £, which

is essentially a stretched x coordinate. is an index io the relative importance of the

10



magnetic forces. Next. new dependent variables fand 7 are defined as:

pr (e ) =véGr f(£.n) (2.14)
f{x.-T
&{gﬂ:;}:% {2.15)

where, the stream lunction g (x. ) satisfics the mass conservation equation

b v 7 3
L P 0. wand v definedas T{=i—w,‘li='—'ﬂ{‘ (2.16)
oy dy o

glﬁ(ru' -T'r.l) K]

Crp = e’ 18 the Grashof munber.

N
Using the above transformation in equations (2.10) and (211} we get the non-

dimensional equations of momentum and energy equalions as

' - 2 i ] ~
s . .2 slng aqa ;. af ar
Sl i = ;E?— l“; =g[,f’5—§—f“fﬁ—§J {2.17)
Wirip
. L A
Lorijg=dr-gd 2 18)
ol /T -
I'r [ oo
. .
where, Prandil number Pr = k3 =
i o

And the boundary conditions in (2,12} become-

f= ¥ _y ;
aly)
& =1 forisothermal partyand ; af n =10} (2.19a)
—G—ﬂ— =0 { far adiabatic part)
an
g =0 and
a7 (5 1} —» 0 (2.19h})
(7w ()

11



2.3 The important dimensionless parameters related to the problem:

The governing equations of the had Now are discussed at the previous sections in this
chapter. These cquations contain a number of vanables [1s difficult to stedy the effect
ol each variable on the process. Moreover these equations arc nonlincar. "There is no
general method to find the solution of these nonlinear equations. ln order 1o bring cut the
essential leatures of flow, it is necessary to [ind important dimensionless parameters,
which charactense the flow. These parameters are very useful i the analvsis of
experimental results. Some non-dimensional parameters related to our problems are

r
discussed below:;

Revnolds number R,

Reynolds number is the most important non-dimensional parameter of the finid dynamics
of a vizcous tluid, It represents the ratio of the inertia foree and the viscous force. It s

dennted by R..

R = Incriia foree
e
Viscous foree

Mhlass « Acceleration

Shear siress » Oross seetional arca
Volume x Density x (Velocity/time)

Shear stress x Cross sectional area

_ Cross scetionalarca x Lincar dimension x Density x (Velocity/time)

Shear stress < Cross secltional area
_pPil Vi

wVL v
where, ¥, L. p and o denote the characteristic velocity, the characteristic length. the

density and the coelficient of viseosity of the fluid flow respectively. Here v = £ is the
o
kinematics viscosity. This resull implies that viscous forees are dominant for small
Hevnolds numbers and inenia forces are dominant for large Reynolds numbers. The
Revnolds number was used as the criterion 10 determung the change from laminar to

turbulent fow.



Prandt]l number P,

Prandtl gave an important number known as Prandtl number. The Prandtl number is a

dimensionless parameter of a convective system lhat characlerizes the regime of

convection. It {s the ratio of viscous force to the thermal force und 15 defined as follows:
_ Viscousloree

r Thermal [oree

Kincmatic viscosity

Thermal diffusivity
_ Mo v

Kipl, &
The Prandtl number is large when thermal conductivity s small and viseosity is large.
and small when viscosity is small and thermal conductivity is larpe. For small value of v

a thin region will be alfected by viscosity, which is known as houndary laver region. For

the small salue ofx/ pC . a thin region will be effected by heat conduction which s

known as the thermal boundary layer. Prandtl number also gives the relative importance
ol wiscons dissipation (o (he thermal dissipation. Thus it represenis the rclative
importance of momentum and energy (eansport by the diffusion process Usually for

pases Irxl, the transfor of monmenium and cnergy by the diffusion process s
comparable. For oils, Priy1, hence the momentum diffusion 1 much greater than the

energy dilTusion; but for liquid metals, F'r{{ | and ihe solution is reversed.

Grashof nomber G,

I'he Grashof number gives the relative imporance of buovancy lorce 1o the viscous

Toreey and 15 delined as

_gpr(r-1,)

iy

1%
where ¢ 15 (he acceleration due to gravity. L the charactenstic fength of the problem, £

frp

the coefficient of volume expansion, and ¥ —7; is the excess wemperature of the fluid
over the reference temperalure T, . This number is of great importance and plays a

similar tole in [ree convection as does the Reyvoolds number in forced convection. A



critica] value of the Grashof number 15 used to incicate transition from laminar o

turbulent Mow in free convection.

Magnetic Parameter M

The magnetic parameter is oblained from the ratie of the magnetic lorce w the nertia

loree and 13 defined as

MzgﬁL
f2 10N

If this is of the arder one then the magnehe [oree is imporant and the flow is to be
considered as hydromagnetic Mow. If it is very much less than onc, them the flow can be
taken as hydrodynamic. For small value of M. the motion is hardly affected by the

magnetic field and [or large value of A4, the motion is targely controlled by the magnetic
field.
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Chapter 3

Method of Solution

3.1 Finite dilference mecthod

To get the solutions of the diflerential equations {2.17) and (2.18) along with the
boundary condition (2.19a) and (2.19h), we shall cmploy a most practical. an efficient
and accurate solution technique, known as implicit finite difference method logether with
Kellor-box elimination lechnique which is well documented and widely used by Keller

(1978) and Cebeci (1 984) and recently by Hossan( 19492},

T'o apply the alorementioned method, we [irst convert the cquations (2.17) and (2.18) into
the following system of first order difierential cquations with dependent variables

(&), v(E) and p(&,) along with the boundary condition £2.19a) and (2.19b) as

= (3.1
TRY (3.2}
# =p (3.3)

Liguations {2.17) and (2 18) ransform to

vk g fi - pant + g — po = ﬁ(u%—v%w {3.4)
(2(; fzg/.
1, (80 &
—pn + = g — — = 35
R f_-t P Faé) {3.3)
Where
: .!Bi
p=lpo=l p= sing and p, = od Iﬂ {3.6)
4 .
vizrep
L5



The boundary conditions are:

flr=u=0
8 =i (fir isothermal part)and
7= co =0 { for adichetic part)
2n ]
U= f—f =0 gt
v
ff— 0

s =0

W

(3.72)

(3.7b)

We now consider the net rectangle on the (. 1) plane shown m the figure (3.1) and

denote the net points by

E'=E" ok where n=12... N}

=0 7, =1, +H, where f=12,...J

{3 8)

Here 'n’ and j' are just sequence of numbers on the {£. » j planc , k, and h,are the

variable mesh widths,

kn
| - - . p
o Py 1
I Sy,
Moz |- - - - Qo — -0
T-1 T 3
En-] J_r.-l-'“ﬁ F:_"

Figure 3.1: Net rectangle of the difference approximation for the Box scheme.
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¥

We approximale (he quantities (f. u. v, p} at the ponts (&', 7, } of the net by(f.u) v},
2 which we call nct function . We alse employ (he notation g for the quanuties

midway between net points shown in figure (3.1) and for any net function as

§ = (548 (3.92)
1 _ )
7,-12 =§(?L- — ) 3.9h)
o, %(fﬁ” +0,"") (3.9¢)
M ]' n ]
01y =5 (6 +8]) (3.9d)

Now we write the diflference equations that arc to approximate the three lirst ovder
ordinary differential equations (3.13-(3.3) according to Box mecthed by considering one
mesh rectangle. We start by writing the finite difference approximation of the ahove three
equations using central difference guotients and average about the mid-point (£%,7,_:. )
of the segment P P2 shown in the {igure (3.1) and the finite difference approximations Lo
the two first order differential equations (3.43-(3.5) are wniten for the mid point
(£"4 7,2 } of the rectangle Py P:PaPy. This procedure yiclds.

f_l n n I _”I;—I+u:'r (3 1[}}
1S _.fj-|):“_f—|.-'?‘“—2_" '
B i Y=y Yty 310
K (u_,u _u‘rvl)_v;—]-'ﬂ“T
n + n
HA (878" )= p, ﬁ_’r"f"—zp' (3.12)
n ” =l .lr—l
v, =V, ¥, =V n-li2 neki2
; i + ."F + (.F};ﬁju 1;2 (pzu ] P{p H).' b2 -
i E ) . f,., fr_] (313j
P e aotpa | M —H aeler | Femiz =S 0
—{p ) =& ”{”: 112 {%JJE}_E.J_II:E{ME—I'ZH
R ;’f" 2 .y
,)F[ “hi - ]+(F.;‘p}-li
' ’ {3.14)

é;n I3 ”"’.'2 Jﬁ r=l t?'?-nlfz __pu:-l-'z f;l—L.-'z_.fl,h—;l.-z
-3 S ‘ k,, =142 f‘rf.,

17



Now from the equation {3.13) we get

o N !
l[1i "f"}+l(w] 13{{!3' BV i B it

2 2\\ hf

__[(M Vet ()L, 4 {ur 8Y 1+ (00¥ 7, |

_%{(JUJH}T—L.'Z +(P4”)I:::.-1 }:ﬁ‘fﬂa’; (”F.-I-l.-z + “Ti'z )(”I::—l"z _7‘;:1]-'2]

__'gtll:('; Lt |”][ ff—uz 'fﬂ|1z)
=¢*f’!j O = v AT 0 = g Y U s + (2 Y0 (AT
_[:PzJI;-|-'2{”EJI.I-1;2 ~(p; ¥ ol 1'[“ ) Ay 1"”-| 'z (H};—uz +1{ )J;_:fzﬂ:l |I‘

=(r) —EE{I‘I}jIE {7y )-m (2} -|z'_'5"nt(“ J';H “z};u

H-1;2
- S
_(Jﬁ’};-uz ,ll.'2 f;]'l_ -|;¢f,|rp+{ﬁ),lzrs Hhere a, = Jk

Ll

o B D Y Y = Ry Y, T, Y
+ p )n-—l.'" {ﬂ}:-l '2 _U? :":-uz “;—l'ﬂ =“-I.u|[ {H } ‘1 "'1“_,. 122 Jrﬁlr 141 V;r__:.-z ..”.|,.-2
Y- (2 Y (A T+ (2 T (e }T-}u_ B v v

_(p3 }-’1 | I:-_:'u'l s +(‘” }.II :q”::_;l,-z

= h_](V”_FII-I—I}-!_{(pl)”-]'z-"'a } OB 12 {(F‘ Vi ¥, }{”2}:432
(P Y2 (0) gy — (P ) e+, (Y fll J{jl-l 2 Vﬂ—l'*fr:]fz
A — Y L () z+(p1>’;-lu':n )

- h:' { ‘FJ —1’,-1 P‘—ff"aj (H}HF}H (p,), 41”; |‘-'

= B - )+ KT e FAY =P 4, Ju®)
TS U2 VRIS (-0 LRE 0- 0 LT R S (R N VRS S
=L sa, {{ﬁ-)j-:..z—:;n“:l",t ;

L= (P Y (A — (e (8 T+ A7 (7 =)D

+{p, }” :r=(9), e L% r:.'1 “j 1] ‘2

= (v v }+J{{P; Ty +a”}(fv"]':_, E [ Viaz ¥, }(“2}: -i12
2 Y (B ~{Pa )i O+, ("'?I.l iz = Vian J'N] y=R7 -| 1
LN 153 L = Y
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Since p, = p (£), 80 we may write the above equation as
h;l (vy =¥l }"'{'[Fl Y J"Hn} (¥ {U;’z ), } ”2}“-”2
+pa Y (000 '(Fa]w“:-n +a,{v -U'-j.url-wz e f m] “':f 12

(3.16)

Agan from the cquation (3.14) we get

T 3 h-b n=|

]. .ID_I'_pI—] .I!T?,l _Jn_.- | A=+l
+ + 2 ‘5
EPF\‘ .itl.l h {PIJII?}_,I 173

n H-1
_Ll'_ﬂ 101 Hn 102 IE:}.I-|-'2_I§|-'—1-'2 _pv‘—l..-"l’ f.' s JI'T'
=2 | Hpani 3 142 1 k;.—

1 - " w 1 - "= = n=1il sl |
= Fh,l (.p.. —F.a :H'th] '[F,- I _.I"J'.._tI I+ (F; }f_::'rz (ffﬂ;-uz +{p )..-:fi {,P:'} —| 2

4 ¥

KUy D WOy = O Y= (P 4 P Ky~ 0}

Jl’

] - [H in M= M bl M Ll n-
= 'Fh,nl (F'; - I+ .},u—ll"i (Y= UJ |.I 2 +{J’ra|{{'1'{€)l.-—|"2 M ez H;-|I.r1

r

+H) 0 Ulﬁ?—m"’f’:‘-u*f{ G Piafjaalta, %Uj”} -112 (“m, I 1}

IR E

o | . n-lia n-
Where, M, = }—JhJ =P Y0 (ﬁ?h_:

l n “ K "
Fh {P P,. !}+[{}'—}1)_,u :::1+ﬂf }(f.ln)..—l-'z_ap':“f;:'.r_];z
r (3.17

=, { ”;—l-"-' a7, ez ﬁ”j-z "'FH—| ‘2 J‘”H _J”:::.'l f 2 1= T”-:llz )
T:?'IIJ' = ’H:I-l s T, [(ﬁ’}; pea — (e |rz¢

The boundary conditions hecome
Fr=0 wy =0 87 =1{for isothermal purt) py =0{ for adiabatic part) (3.18)
W=0 07 =0

If we assume S 677 v, 87, pt7 to be known for G577, equations ( 3.10) to

{312y and {3.15) = {3.18 ) form a system of 3] + 5 non linear equations for the solutions
of the 51+ S unknowns /7, ). v}.07.p7 3,1 = 01,2 . .J These non lincar system of
algebraic cquations are to be linearized by Newlon’s Quassy lincarization methed . We
define the iterates | /), w7, 07,87 p7 1,1= 01,2 .. .N with imual values cqual those at
the previeus x-station, which are usually the best initial guess availables. For the higher
lterates we set
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fj(lll'l :f{n'l +8 ff[.lj {3.19}

ufls;h —u[”+§u{'r {3.20}

U G ,Pin {3.21)
i

H(HH =gtr} +§|5|'[' {3.22)
n 1J_ﬁ£a1+ép{r] {3 23)

an we substirute the right hand sides of the above equations in place of [, u) . v},

A7 and p! in equations {3 10) to (3.17) and (3.18) and omitting the terms that arc
quadranc n & /) .6 w8V, 00, and 8 pwe get the equations (3.10) to (3.12 ) in the

Iollpwing form:

{3.24)
-850 {au“’+ Full y=(r),
Where (7}, —f”j fj"" +hu'? {3.25)

h .

Su {a‘.l (51.1!{” ?_.' {5 11J-Er]_l_ 51};’_Jl]={r'4)|r (3.26)
(ry), =2 =7+ R (3.27)
501 -58") - (5 P+ 8 Pl =), (3.28)
Where {r, ), =r::r§'* —0" +h pt - (3.29)

] i fl n 1 1 o 1l

B O 48w = =5y oy Y e, Y+ SO

- L{Pz) aez T, H” L+ S ){:jui}""“"?)';-m {('Q;'[;ll  FHAY, 1}
—{p)" {”:J-Jlxz +5”i.«r-j|.fz t+a, '[Jr;[ﬂ s +8 f“} }V:::.-z -, (VT-JM +& V‘r:_]i,'z }f,“_hllxg

_nr-l
=R =l

20



= h s o -8 v+ {{F’I Viasz ¥ g, }

{Efvnf;h LSS DA+ 1 00 v }
_]i(f-’ iz TE, }{{”1 [:_:I|.-: +—{ﬁ[’u2]{;] +5{u:’]3?1}
+EP1}I-..-:{“” =ty fﬂfﬁ?}”’wtﬂl‘” }"{pql{ o {ﬁu“‘m w"))

+ o H e U +5{ﬁf}”+¢‘f{i‘.}}}—{ Fia v+ mv“+5* }}H R,

=(5,), SV +(s5,), 6V +(5,), 8.0 + (8, 810 +s), "

+(5,), .-fiu“’ +{5,), 90 i?:“ +(5,3, 46 ‘I,’jl +{'Tuj,g‘jf?; +{5143, 5,{1:,_[ {(3.30)
_(rij,l
. o (PI};—UI i, ﬂ(,. T
Where {5}, =14, +# a f o} (3.31)
S P, L, ] o \ s
(33]j=[—hjl+—l% J{_{—Ea’n J-—lt'z} {3.30)
+ ) . .
(qu))l (WJ—;Z_VT’I .}.la’h vj:lIJE (J.Jj)
{J”J}ll.:—l."2+an 1 ] | 3 -|4
(54),-:'[ 5 ST Ve (3.34)
(55}3_ {(F--)f 1z T, }“ b “’1}% (3.35)
. u} (P2 336
(5‘6]j= -4, Lz +a,} u, —-*2—] {3.36)
(5:),=(py)" /2 (3.37)
(5], =(p, )" {2 (3.38)
(8y),=0 (3.39)
(55),=0 ' (3.40)
(), =R 7 (o =) () e IR |
+({Pz} RYPR L) BUS }f 1z T ,‘_u_n th —f, L z"f i1t (3.41)

—{{F:}._u_- B =0, }nuinl 2}

Here the coed(icients {5;) ; and (5, } ;. which arc zcro in this case, are included here for

the scnerality,
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Similarly by using the equations (3.19) to (3.23} in the equation (3.17) we gel the
following lorm: |

(1), 6 pl +(t,), & M), E ) B ) SRS NI
) { ) Jr .|| h

{3.42)
(), Futl rl, SOV + (), SOV (), SV (), v =(n),
Lo (e ate, o0
Whese (), = 4, 1 +#§— "= @ fl5n (3.43)
'}FI_| 2

(t), =—Plh;' Jmiite, [ e, (3.44)

(pYate, o 1 . 3
(£),= #;——pﬂ 'y Ea” FJ-:;z (3.4%)

( l}j_:ﬁ & (r 1
{#,};= —z—p‘+2a pJJ«_. (3 40)
(), ==200+ 2,07 (.47
(4], :_% :—]! + %aw 8.5 (3.48)
(), ==l —a (3.49)
(t), =—%uf_], lza,,;j:,',‘ (3.501
(Fg}, =10 (3.51)
(£y),=0 (3.52)

()i +a,
(‘FJ-]; :"F_r—'ll-"' - P h { l:'“| ]—|I|2._|Lf =12

' 3.53
T, {(HE'IJ'; Friaa —1 1 & U—Ip'ﬁ_E:I—_Lln”i--h.'z] {J J}
+ﬂ' ‘IIJrL;]sz:-fju‘, F:J—I]-'E .-ll:ll.fZ}
The boundary conditions (3.18}) become
S =0, Su) =0.88"=0"8p, =0
Jg a 0 By (3.54)

Syt =0.567 =0

Which just express the requirement for the boundary conditions to remain during the
iteration process.

Now the svstem of linear equations {3.24) - (3.300. (3.41), {342} and (3.53) together with
the boundary conditions (3.54) ¢an be writlen in a block matrix from a coefficient matnx,
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which are selved by modified "Keller Box® methods especially introduced by Keller
{1978). Later. this method has beon used most efficiently by Cebeer and Bradshow
{1984) and recently by [Tossain (1992) . Hossain et all. (1994}, raking the initial iteration
ta be given by convergent solution até =& . Resulls are shown in graphical form by

using the numerical values obtained Irom the above technique.

The solutions of the above equations (2.16) and (2.17) together with the boundary
conditions {2.18) enable us to calculate the skin [hetion T and the rate of heat transfer
at the surface in the boundary layer from the following relations:

= ! 2
r:p[fg’i] =Gt 0) (3.55)
£y 4= if
iy I S
0= _k[ﬁ_) =—k =Gt 0 {E0) (3.56)
oy il ¢
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3.2 Results and discussion

In the present problem we have investigated the solutions of the nonsimilar boundary
laver equarions goverming the laminar free convective (low across a horizontal eylinder

with adiabatic surlace 1o the presence ol 2 ransverse magnetic ficld.

Numctical values of the local skin fnction coelfieient and the rate ol heat transler Jor
selected values of magnetic parameter M (=0.0, 0.2, 0.5, 0.8, 1.0} for the [luids having
Prandtl number #v (=10, (.73, 0.2) with 2¢ as adiabatic surface of the cylinder me
obtained. Here ¢=0" indicates thut the total surface of the cylinder is isothermal. The
vilues of the Prandtl number Pr are taken to (73 thal corresponds physically the air and
1.0 corresponding (o electrolvie solutions such as salt water and 0.2 have becu wsed

theoetically,

Here we have determined ibe calues of the functions  f (£4) and (&} and their
derivaltves for dillerend values of the Prandtl number Prand the magnetic parameter A4
So, we may caleulale the numerical values of the rale of heat transfer 7 £0) and the
velocity gradient £ " (&3} al the surface thal are imporlant [Tom the physical poant ol

VIEw.

The local skin friclion coefTicient /(Z, §) and the rale o heat transier (5, ) respectively
are shown graphically for different values of the Prandtl nomber £r (= 100 173, 0.2) 1m0
fig.3.2 and fig.3.3 respectively when the value of the magnetic parameter A =0.2. From
fie.3.2 it is clear that fluid having large Prandtl nuwmber has a lower local skin friction
cocfficient /%, 0). Again from the graphs in fig.3.3 we observe that the [luid having

large Prandtl number has higher rate of heat transier # (& .

Figsa.3.4 and fig.3.5 deal with the ¢ffeet of the magnetic paramicter M= 0.0, 0.2, 0.5, 0 8,
1.0% for different values of the controlling paramcter and £r=0.73. on the local skin
friction coeflicient /%, 0} and the surface rate of heat transfer £ (£, ) respectively.
From fig3.4, it can be seen that 1f the magnetic parameter increases the local skin friction g,

cocfficicnt /{5, Oy of the Nuid decreazes. On the other hand fiom fig. 3.5 we observe that
24
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the rate of heat transfor @ (£0) decreases for the fnid having large magnetic

parameter AL

We have also shown velocity profile /£ ¢4 5 and temperature profile # (£ ) graphically
for dillerent values of M. Pr and ¢ as stated above. Doth figs.3.6 and 3.7 arc picrured for
the Nuid having Prandtl numbers Pr{=1.0. 0.73, 0.2). where magnetic parameter M=0.2
and » =30". We may decide from fig.3.6 and 3.7 that the velocity profile and emperature

profile arc getting lower for higher values Prandt numbers.

From fig.3.8. it is ohserved that increase in the value of the magnetic parameter 44=0.0,
0.2. 0.5, 0.8. 1.0) when other controlling parameter Pr={.73 leads to decrease the value of
the velocity profile £ 7% 5), which indicates that the magnetic parameter M relards the
fluid motion. Again fig.3.9 shows that the ingreasc in the magnetic parameter M leads to

increase of the temperature profile £ (8 7).

An iniercsting change is seen n velocity profile f (& n)in 11g.3.10. Here we sce velocity
profile f (& n) decreases for the increased value ol ¢ (= 0% 30", 60", 90" 135" and 180"
and it is truc for a centain value of 5. Aler that value of , velocity prolile £ ¢ n)is seen
to increase for increasing value of @. From g3 Il we obhserve that, the temperature

profile €& ) increases as @ INCTEARCS,

The values of the skin friction and the rate of heatl dransfer have been presented in
Table 3.7 and Table 32  From Table 3.1, it can be seen that the values of the skin
friction coelMicient and the rate of heat transfer decrease for increasing values of magnetic

parameter .
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Again from "Table 3.2, it can be observed that increasing values of Prandil number Pr
leads to decrease the values of the skin friction coefficients and o incrcase the rate of

heat transfer.

Numerical values of velocity profilc and temperature prolile are alse presented in
Table 3.3, Table 3.4 and 'lable 3.5, It can be seen from Table 3 3 that incrcasing values of
Magnelic parameter M retards velocity profile and accelerate temperature profile. Sumne
resulls ohiained for increasing values of @ Again {from Table 3.3 it can be observed that
both the velocity profile and temperature profile decrcase for the increasing values of

Prandtl number Fr.

3.3 Conclusion

Mapnetohydrodynamic (MHD) bvmnar {ree convective flow across a horizontal cylinder
with adiabatic surface has been investigated introducing suitable translormabions.
Numerncal solutions of the cquations govemning the flow are obtained by using the
imphicud finite dilferenee method together with the Keller Box scheme. From ihe presemt

investigation, the tollowing conelusions may be drawn:

1 The skin fnction coeflicient, the rate of heat transfer and the velocity profile decrease
for increasing value of the magnetic parameter.
2. It is also seen that increased value of the magnetic parameter 3 leads to incrcase the

temperature profile.
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3 it has been obaerved that the skin friction cocfficient, the temperature profile and the
vilocity profile decrease for the Muid having large Prandtl number ¥ bur the rate of
heat transter imcredse [or e ﬂllléi Iaving large Prandil number Pr

4 Velooity prolide decreases 1 we increase the angle ol the adiababe surface of the
cvlinder and it is true for a certain value of n. After that value of n, velooily prolile
may be increased for increasing angle of adiabatic surface of the cylinder. The

temperature profile increases as the angle of the adiabatic surface increascs,

TABLE 3.1

Numerical values of the local skin Frichon and the 1ate of heat transter for different

values ul magnetic parameter M with Pr=0.73.

M=02 k1=00.5 heI=1.0}
FED | CEH | FEDH | FEOH | 760 | 0ED
10,0000 13902 036124 | 0.12923 334180 | 011542 | 031432

Values of £

30,0000 (h407H1 {(.35692 | 037601 (h33722 | 033505 | 0.309603

S.0000 U.64116 034855 | 0.588%9 | 0352810 | (0.52233 | 029938

700000 0.81966 (0.33538 | 074834 | 031429 | (.65384% | 028508

G0.0000 (.92638 (0.31781 | 083766 | 029547 [ 072822 | 026487

110.000 (0.94856 029517 | 0.84475 { Q27108 | 072072 | .23857

130,000 (0 B7T759 026658 | 076167 | 0.23994 | 0.62994 | 0.20484

15,00 (70737 (R22996 | 058301 | 019935 | 045362 | (.16054

160.000 (0.58213 20708 | 045504 | Q17332 | 033257 | 013188

1770.000 0.42537 17383 | 029389 | 013987 | 018676 | 0.0944]
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TARLE 3.2
Numerical values of the local skin incton and the rale of heat lransfer for various values
of Prandtl number Prowith =02 _

Vilues of Pr=(.2 Pr=0.73 Pr=1 0

£ e | R0 | M0 | FE0 | S0 | )

10 00060 0.16124 | 021713 013992 0360124 | (113407 I (.40512
30,0000 0.47029 (.21468 .40781 035092 | 035070 ’ 0.40022
50,0000 0.74045 0.20075 (.64116 034835 | 0.61407 | G.3904%
00000 0.948%() 0.20236 0.81966 0.33538 | (.78400 | 037577
9{LOGU0 (07662 019239 .52638 0L31781 | O.BB398 | 0.35579
110.000 110936 0.17964 ) 94856 023517 | 081120 | (L303%9

30,000 103781 0.16375 087759 026638 | 073053 | 0.26808
150 000 (.856005 . 14388 70737 0.22996 | (L3375 | 0022246
160,000 (.72149 013184 038213 020708 | 0.43349 | (L19266
170.000 {(1.534110 011738 042537 (17883 | 0.27898 | (115405

TABLE 3.3
Mumnerical values of the velocity profile and the temperature prolile lor dillerenl values
of magmnetic paramcter M with £r=0.73 and ga=3[]['.
Values M=0.2 M=0.3 M=1.0

ofn g | Em Fg ) (&) Fr&my |
L16068 § 011312 | 0.94270 (10349 0.94386 09108 | 0.95029
049805 | 028035 | 0.82288 (123306 0 B3262 021806 | 0.840628
U881 | 037822 | O nAR825 (134397 0.70512 B28620 | {1.728R5
143822 | 040129 | 0.51237 11.3360K) 53740 {.20821 0572592
248059 ) 028592 | 025870 0.25615 (0.28835 021744 | 033279
347023 | 0153862 | 011946 {1.13353 0.14337 0.13061 | 0.18197
483720 | 0.055%90 | 0.03661 {1.05602 {1.0495] .03537 | 0.07306
503870 | 0.04695 | 0.03029 0.04775 0.04182 0006329 | 004836
392876 | 0.01992 | 001216 0.02220 0.01883 002518 | 003252
6.97092 | 0.00347 | 000267 {00747 {00588 0.01047 | 0.01335
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TABLE 3.4

Nurerical yalues of the velocity profile und the temperalure profile for different values

of adiabatic surface 2e with Pr=0.73 and M=0.2.

Values p=30" o=60" p=90"

ofn | fr&a) | B Fie.m A&y | S | B
10008 | 011312 | 0.94270 0.1028% {1.94502 0.08675 | 0.04857
(0.49865 | .280353 | 0.82288 | (.23785 0.83003 022138 | 084217
(.88811 | 037822 | 0.68825 {33279 (70048 031058 | 0.72137
143822 | (b40120 | 0.51257 {1.38226 0.5300% (.34838 | 0.56048
248059 | 0.28592 | 0.25870 (.28378 0L.27802 (h27786 | 0.31322
347923 | (L13862 | 0.11946 16380 013389 (17169 | 0.16180
483720 | 005596 | 0.0366] 0.06115 (0 (14360 0.07040 | 0.05831
S03870 | 004095 | 003029 (03173 (1.03642 (.06044 | (0494
592876 | 0.01992 | 0.01216 002286 T0.01532 002850 | (102245
6.97092 | 0.00347 | D.00267 0.00660 0.00377 (0.00891 | 0.0064]

TABLE 3.5

Numerical values of the velocty profile and the temperature profile for vanous values of

Prandil number A while A=0.2 and ¢1=3DU,

Walues of Pr=0{.2 =073 Pr=1.00
M FEn B<. ) FEm | 0w | Frigyy | 8iEm

0.16068 {(.13220 0.96553 0.11312 £,94270 (LI0O7RD | (1.93357%
0.49865 0.33785 0.89330 {1.28035 | 0.82288 | 0.206470 | 0.80153
058811 047478 (0.8 1087 037822 | D.08825 035236 | 0.63178
1 43822 (134153 0.69766 0.40129 | 0.5125%7 (136554 (.46039
248059 46615 0.50311 028502 | 023870 | 024661 020300
3.47923 0.33567 (133203 13862 | 0.11946 | 012792 | 0.07975
4 83720 0.19225 0.20577 005596 | 0.030661 003986 | 01849
5.03870 0.17583 018924 004695 | 0.03029 | 0.03264 | 001448
5.92876 0.11667 £.12931 0.01952 00216 0.0119% | D.O0038R
697092 0.06961 0080497 0.00547 | 000267 | 0.00213 | -5.00086
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Chapter 4

Conduction, convection and Joule heating effects
on Magnetohydrodynamic flow from a vertical
flat plate

4,1 Introduction

In the traditional area of the convective heatl transfer between a solid wall and a fluid flow
the wall conduction resistance is usually neglected. i <. the wall 15 assumed (o be very
thin In this case it is usual to prescribe either the wall lemperature oF the wall heat flux
and a considerablé amount of research has done in order 1o understand the heat transfer
characterisiics ovér a wide range of fiow configurations and [luid properties. However
many real enginecring systems the wall conduction resistance cannot be neglected since
conduction i the wall is able to significantly affect the fluid {low and the ]‘Iﬂiltr transler
characteristics of the fiuid in the vicinity of the wall, In order 10 take account of physica)
realily. (here has been a tendency to move away {from considering mathematical problems
m which the bounding wall is censidered to be infinitely thin. Thus the conducton n
solid wall and the convection in the fluid should be determined simultanecusly This type
ol conveetive hear rransfer is referred to a conjugate heal transler process and 1l arlscs
due 1o the imite thickness of the wall, The phenomenon depends on several parameters.

Thercfore in many cascs this strong dependence does exist.

Heal transler from a heated wvertical plate provides probably one of the most basic
scenarios for natural convection problems. Variations of the problemy oceur frequently in
the literaturc. Froe convective steady hvdromagnctic Mow about a beated vertical flat
plate has becn considered by Gupta [1]. Poots [2]. Osterle and Yound [3], Sparrow and
Cess [4]. Lykoudis [6]. Cramer [8] and Riley [9]. The similarity solutions were studied
by Gupta [1] and Lykoudis [6] considering that the magnetic Deld dilfers inversely as the
fourth root of the height above the boumn edee of the plale, Allerwards Nanda and

Mohantv [11] made use of the similar technique w solve lhe hydromagnetic {ree
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convection of high and low Prandtl numbers because of realistic appheations, as for
liquid mctals, the Prandtl number is low. Riley[?] considered a unilorm magnetic held
and niegraled the boundary laver equations over a single boundary laver thickness.
Eilects ol transversely applied magnetic field on free convection of an elecincally
conducting fhnd past a sem-infinite plate were studied by Wilks [13]. Miyamoto et al.
18] have given an analysis of the relative importance of the parameters of the problem in
particular with telerence W coaxial heat conduction. Hossain and Ahmed [23] studicd the
MHD forced and free convection boundary layer flow near the leading cdge. Lhey also
investigated the comined lorced and free conveetion of an clectrically condueting fluid
past a verhical Mat plate at which the surface heat flux was uniform and magnetic field
was applied patallel 1o the direction normal to plate. The natural convection boundary
layver flow of an eleciocally conducting fluid up a hot vertical wall in the presence of a
strong magnetic field has been studied by several auwthors because of its application in

muclear engineering in connection wiilh the conling of reaclors

In all the above studies, the eflecls of the viscous and joule heating were neglected
because they are of the same order as well a5 neghgibly small, Bul Gebhart [ 3] has shown
that the viscous dissipation effect plays an imporiant role in natural convection in various
devices which are subjected to large deceleration or which operate at high rotative speeds
and alse in strong gravitational feld processes on large scales {on the planets} and in
geological processes. With this understanding Takhar and Soundalgekar [16] have
studied the effects of viscous and Joule heating on the problem posed by Sparrow and
Cess [4], using the seres expansion method of (ebhart]5|. In the present study the Joule
heating effects on Magnetohydrodynamic boundary laver flow and heat transfer resulting
from the coupling of natural convection along and conduction inside a vertical flat plate

will be investigated.

The trans[ormed non similar boundary layer equations governing the flow together with
the boundary conditions based on conduction and convection were solved numercally
using the Keller box {implicit linite difference} alonp with Newten's lincarization

approximation method in the entire region startiug lrom the lower part of the plate to the
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down stream for some values of the magnetic parameter A, the joule heating parameter J
and the Prandtl number P+, The ciTect of the parameters M, J and £7 on the velocity and
temperatire fields as well as on the skin friction cocfficient and surface temperature

distribmution have been sludied

In the following scctions detailed dervations of the governing equations for the llow and
heat trapsfer and the method of solutions along with the results and discussions are
presented. All the investigations for the fluid with lowe Prandil number appropriates for

the liquid metals are carried out.
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4.2 Governing equations of the flow:

We consider the steady two dimensional Jaminar free convection boundary layer flow of
a viscous incompressible and electrically condoeting fluid along a side of a vemical flat
plate of thickness “b* insulated on the edges and with iemperature 1, maintained on the
ather side in the presence of a unifrmly distnibuted transverse magnetic ficld. ‘The flow
conliguration and the coordinates system are shown in Fig 4.1 The cquations governing

the low are as follows:

x
A
I
Wper //i M rterface
A ace
mli t
T=T, |{ k ‘ E
e || [ Teo) ’
ace -]
n&" -3

Fig4 : Physical configuration and coordinates systern

eI

—t+—=0 4.1

& 5 (4.1}
o o nl So=

7 O e, - TE @.2)
£ gy iy

_Ar _ar x0T edfl

i—tv—= — t ¥ {4.3)
X voope, @ pe,

{he appropriate boundary conditions to be satisficd by the above equations are

R=0,7=0 at F=0 | (4.4)

F20,ToT as ¥ o«
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The couphng conditions require that the wemperalure and the heat flux be continuous at
ihe solid-Auid interface and al ihe interface following Mivamoto [1] one can assumc that

kAT [ ar (4.5)
T

where &, and £y are the thermal conductivily of the solid and the fluid respectively.  The
temperature 7,10 the solid as given by A. Posst and M. Lupo [21] is

1 =T (F0)-{T, -T(E00¥ ik (4.6)
where T (¥,0}is the unknown temperature at the mterlace o be determined from the
solutions of the equatons, ‘

We observe that the equations {4.1) - (4.3} wogether with the boundary conditions (4.4) -
(4.5) are non-hnear partial diffcrential equations. In the following sections the solution

methods of these equalions are discussed details.

4.3 Transformation of the governing equations

Fquanons (4.1} — (4.3) may now be nundimensionalized by using the following

dimensionless dependent and independent variables:

T 1 - L= - -7
x:l-}:iff;"‘E:L—dzu:‘r’:iddV, = 30
L b L :l'_,;,—r,
. (4.7)
vV
L= gl:j td:ﬁ(T&_Im)

As the problem of natural convection, its parabolic characier, has no characteristic length,
L has been defined in terms of v and g, which are the intninsic properties of the system,
The reference length along the ‘v’ direction has been maodilied by a lactor 4" in order o

eliminale this quantity from the dimensionless equations and the boundary condibons.
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The magneto hydrodynamic field in the {lmd 5 govemed by the boundary layer
eguations, which in the non-dinmensional forn oblained by introducing the dimensionless

vanables deseribed in (4.7} may be written as

et Tlya
—+—=0 (48)
dr &y

- = 2
ufh¢f24m=i§+ﬂ (4.9)
o iy dy

a0 o8 180 (4.10)

=t _fl

H—+1 =
de  p Doy

)

.
Where Af = M o
il

K

——- lhe dimensionless magnetic parameter, P, = . lhe Prandi]

|
aHiva?
pe (L -T, )

number and Jf= . the dimensionless joule heating parameter.

The comresponding boundary conditions (4.4) - (4.6) ke the following form:
ol
u=v=0, 8- f=p— at y=0 {4.11a)
By
w=yfh v— () asy— % (4.11h}
. . . - II("l:f." A rh 154
where p is the conjupate conduction parameler given by p= [—— [ 7 d”
o0

Here the coupling parameter 'p’ govemns the desenibed problem The order of magnitude

Ky

h . . h )
of ‘p' depends actually on — and . 4" being the order of unity The term — attaing
i

\ -

.
values mueh greater than one because of L being small. [n case of air, —L becomes
K

)

very small when the serlical plate 15 lighly condoctive 1e x> > | and fur maienals,

e
D[—rw = 0.1 such ay glass. Therefore mn dif(erent cases "p' 15 dilTereni bul not always a
i

v
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small number. In the present investigation we have considered p = 1 which is accepted

for E Gfo[x—f] .
L £,

To solve (he cquations (4.8) — (4.13) subject 1o the boundary conditions (4.11). the
iullowing transformations were inlroduced for the low reguom starting [rom up stream to
down siream.

w=2t e oL = I+ oYY, B L+ )T R (g0 {4.12)

Here # is the dimensionless similaity variable andys s the stream function which

-

- , . oy ol .
saliglies the equation of continuity where u=g, v=——= - and A(g,x) 15 lhe
! ary

dimensionless femperature.
Substituting (4 12) into cquations (4.9} and (4.10) we get. aller some algehra the

following trans (ormed non-dimensional equations.

- 16+ 15x% - 6+ 5x . 265 110 e ( rﬁf" wa)r\l
4 - —My 1+ x +h=x [ ——-f"— 4.13
/ 2001+ x)y™ 10{1 + x) / ( e / oy ! £ (413}
I ,, lo+15x 1 : 208 ot { 2h B
—Hs B — h+Je {1l x oy f'——h‘—] 1.
220+ sl [l 2T [ e oe) M9
In the above equations the primes denote dillerennation wilh respect o7y .
The boundary conditions {3.11) then takes the following form
Fai= L M=0 0 M =1+ +x"" 1+ " hix.0 )
(413}

Sxo)=0.4"(x, 2)=10
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4.4 Joule heating parameter

In electronics, and in physics more broadly. Joule beating or chmic heating refers to the
increase 10 temperature of a conducter as a result of resistance to an electrical current
Nowing through it

Al an atomic lesel, Joule heating is the result of moving electrons colliding with atoms in
a conducior, where upon momentum is transferred to the atom, increasing its kinelic
eneryy . Joule heating 13 named for fames Prescott Joule, the first to anticulate what is
now Joule's law, relating the amount of heat released from an electrical resistor o its

resistance and the charge passed through it. ln our problem we got a dimensionless

|
o Hivd?

——— . which is Joule heating parameter.
pe (T, =T,)

parameter J=

4.4 Method of Solution:

‘Lo pet the solutions of the parabolic differential equations (4.13) and {4.14} along with
the boundary condition (4,15}, we shall cmploy implicit finite difference method together
with Keller- bov elimination lechnigue which 15 well documented and widely used by
Kcller and Cebeel (1971% and meently by Hoszain (1992), Since a good description of
this method has been discussed in details in Chapter-3. further discussion is disregarded

here, The numenical resulty ohtamed are presented in the [ollowing section.
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4.5 Results and discussion

In this chapter we have investigated the problem of the steady two dimensional Taninar
fice convection boundary laver flow of a viscous incompressible and clectrically
conducting fluid along a side of a vertical Hat platv:a of thickness ‘b’ insulated on the
edges with temperature 1, maintained on the other side in the presence of a uniformly

distributed transverse magnetic ficld .

Skin frictions and surface tempelature distiibutions are obtained lor the Huid having
Prandtl number Pr = 0.73. 2.55, 4.40 the joule heating parameter J =001, 0.05.0.1. 0.2
and the magnetic parameter M =0.01, (.20, 0.30. 0.80.

ITwe know the values of the functions  f(#, x), & (4, x) and their derivatives for different
salues ol the Prandl] number Proand the magnetie parameter M. we may caleulate the
numencal values ol the surlace temperature 7 (), %) and the velooity gradient /"0 x) al

the surface that are important from the physical point of view.

Numerical values of the velocily gradient £ {0, x) and the surface temperature 8 (U, x)
are depicted graphically in Fig.d.1 (o 4.6 respectively against the axial distance x in the
interval [0.20]. In Tig.4.1 and Tig.4.2, the shear stress coefficient /77 (7, ¥ and the surface
lemperature & {{,x) are shown graphically for different values of the Prandt]l number £+
{(=0.73. 2,55, 4.40) when value of the magnetic parameter M is (1 8 and the joule healing
parameler J = 0.2, In Fig 4 5 and Fig.d 4, the shear stress coefhicent f7 (8, ) and the
surface tomperature & (0% are shown praphicaily for different values of the mapnetic
parameter M{=0.07, 0.20. .50, 0.80) when salue of the Pr is 4.40 and the joule heating
parameler | =002, Similarly in Fig4.5 and Frg.4.6, the shear stress coeflicient f ¥ (0, 1)
and the surface temperature 7 (€ x) are shown graphically Tor dilferent values of the joule
heating parameter J=0.01, 0.05, 0.1, 0.2) when value of the Pr is 4.40 and the magnztic

paramcter . A=0.2.

From Tig. 4.1, it is shown that the shear stress coefficlent f(f, x) decreases

monotomeatly with the increase of the Prandt]! number Pr (=073, 2 35, 4,40} and from
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the Fig.4.2, the same resull is obscrved on the surface temperature distribution due (o
increase of the value of the Prandtl number when the value of the magnetic parameler A

is (L% and the value of the joule heating parameter J= (.2,

From Fig. 4.3, it is shown that the skin friction coefficient § ™ (,x} decrcuses with the
increase of the magnctic parameter A (=0.01. 0.2, (0.5, {1.8} and from the I'ig.4.4, opposiie
restlt is observed on the surface temperature distribution due o ncrease of the value of
the magnetic parameter M when the value of the Prandtl number i1s 4.40 and the value of

the joule healing parameter J = 0.02.

From Fig. 4.5, it is observed that increase in the vilue of the joule heating parameter J
leads to increase the valuce of the skin Mction coefficient £ " {0.x) which is usually
cxpected. Again Fig.4.6 shows that the increase of the joule heating parameter J leads to

increase the surface teniperature distnbution 7 {f.x),

Nlumencal vatues of the velocity profile /' (#.x) and the temperature prafile # {#. x) are
depicted graphically in Fig.4.7 10 4.12 respectively against the axial distance 4 Fig. 4.7
depicts the velocity profile for different values of the Prandtt number Pr (= 0.05, 0.73,
.07 while the magnetic purumeter 44=(L8. and the joule heating paramcter /=2,
Corresponding distbution of the wmperature profile @ (x, x) in the fluids 15 shown o
Fig. 4.8 From Fig. 4.7, 1l is scen that If the Prandil number increases. the velocity profile
of the Muid decreases. We also observe from Fig.4.8 that the temperare profiic

decreases within the boundary layer duc to increase of the Prandtl number Pr.

In Fig 4.9 and Tig.4.10, the velocity profile /" (# x) and the temperature profile & (¥, x}
are shown graphically for different values of thc magnetic parameter 3 (=0.2. (L3
0.8.1.00 when value of the #r is 0.73 and the joule heating parameter, J=0.3 From Fig.
4.9 it ix scen that il the magnetic parametcr increases, the velocity profile of the Auid
decreascs. We also observe from Fig.4.10 that the temperature profifc increases within

the boundary layer due to increase of the magnetic paramcter M.
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Fig 4 11 and Fig.4 12 deal with the effeet of the joule heating parameter S (= 0.2, 1.5, 0.8.
1.0 {or Prandil number Pr =10.73 and for the magnenc parameter A = (.8 on (he velocity
profiie ffx. x) und lhe lemperature profile & (4. v). From Fig. 4.11. 10158 revealed that the
velocity profile /' (p x) increases very small with the increase ol the joule healing
parameter J which indicates that joule heating increases the fluid motion. Small
increment 15 shown from Fig 4.12 on the temperature prafile @ {x, x) for tnereasing values

af /.

Mumierical values of the skin [mclion and the surface temperature distribution have been
presented in Table 4.1 for dilferent values of joule heating porameter J. It is observed thal
both the skin friction and the surface temperature distribution increase for the increasing
values of joule heating paramcter. Again the values of the velocity profile and the
temperature profile for different values of joule heating parameter J arc also presented in
Table 4.2, Tt is seen that both the velocity profile and the temperature profile increase lor

the increasing values of Joule heating parameter.

4.6 Conclusion

We have studied the effects of joule heating parameter JJ and magnetic parameter A lor
different Prandtl number £+ on the magneto-hydrodynamic (MHD) natural convection
boundary laver flow from a verncal flal plalc by introducing a new class of
iransformations. U'he transformed non-similar boundary laver equations poverning the
flow together with the boundary conditions hased on conduction and convection were
solved numerically using impheit hmte dillerence methoed together with Keller box
scheme, The coupled eflect of natural convection and conduction required that the
temperature and the heat flux he conlinpous at the nterface. From the present
mvestigaton. the [ollowing conclusions may be drawn:

1 The skin Inetion coelficient and the velocily distnbution jucrease for inereasing value
ol the joule heating parameter J.

2. Increased value of the joule heating parameter J leads to increase the surface

temperature distribution as well as the temperature distribution.
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3. It has been ohserved that the skin friction cocfficient, the surface temperature
distnbutien, the temperature distnbution over the whole boundary layer and the velocity
distribution decrease with ihe tnerease of the Prandt] numbier Pr.

4, Tinally it follows that both the skin Inehon coelficient and the velocity distribubion
decrease with the increase of the mapnetic parameter A The surface temperature
distribution and the temperature distribution over the whaole boundary layer merease with

the increase of the mapnetic parameter A4,
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TABLE 4.1: Numercal vatues of the local skin friction and the surface temperature

distribution for dillerent values of Joule heating parameter./ while e =073 and A=(.2.

Values =101 S=0.10 J=0.20

of x PRy f1 {(1,x} FRCURS! {7 {0.x) F{0x) £ (0.x)
1.0265 0.7020 0.7525 | 0.7091 0.7573 | 0.7171 0.7628
20369 (.8404 0.7859% | 0.8617 0.7977 | 0.8864 0.8116
3.0049 0.9266 0.8044 | 0.9662 0.823% | 1.0032 {0.8480
4.02i9 (0 9949 (0.8182 | 1.0577 0.8467 | 1.1350 {(.8838
51425 1.0549 (.8297 | 1.1480 0.8693 | 1.2008 0.9239
6.0502 1.0938 {18374 | 1.2168 0.886% | 1.37060 (L0583
7.1132 11377 {18450 1.2951] 0.9071 1.5098 1.0017
8.0285 1.1698 (8508 | 1.361R 09246 | 1.6321 11425
0.0596 1.2024 {.8566 143714 (1.9448 1.7791 1030
100179 | 1.2302 0.8615 | 1.5087 0.9642 | 1.9260 1.1449

TABLE 4.2: Numerical values of Lhe velocity profile and the temperatare prafile lor

differcnt values of Joule heating parameter Jwlhile Pr=0.73 and AM={1.2.

Values J=0.2 J=0.5 J=1.0
ofr [/ x| 0r® | LD | 0w | 7 nd | 80
0.3438 03113 (.7199 (1.3234 07517 03445 08102
1058534 104338 | O58(5 {1.4509 0.6203 0.4804 0.6916
1 3831 (3.4480 0.4495 0.46350 0.4888 0.4930 0.5601
20827 | 04023 | 0.3400 0.4162 0.3743 0.4384 0.434%
25896 | 03314 | 0.2480 0.3405 0.2743 0.3544 0.3154
J.068% | 0.2603 0.1751 0.2654 0.1978 02721 02285
34792 (2044 1331 {12066 (31461 (L2087 01666
41056 0.1344) 0.0820 01354 0.0887 01311 0.0984
50387 | 0.0635 | 0.0368 0.0615 0.0387 0.0577 0.0407
6.1741 0.0194 | 0.0107 (0181 0.0108 00159 0.0106
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Chapter 5

Further Recommendation

l'he present studies may be extended further,

1. By using perturbation method or finite volume method to solve the
Soveming equations.

2. By showing the ellect ol viscous dissipation in encrgy equation.
3. By considering the temperature dependent thermal conductivity and

the temperature dependent viscosity, instead of taking constant
thermal conductivity and viscosily.
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