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INDEX . OF SYMBOLS -

Vi) - the veriex set of a graph G
E(G) - the edgpe set of a graph G
P.C K, - respectively denote the path. ¢ycle and complete

graph of n vertices.

K, - complete bipartie praph.
N{u) - set of all vertices adjucent to u
Nlu] - the closed neighborhood ol a vertex u,
that 1s, fuhUN(U)
(1, v) - the length of the shortest path from u to v.
N.(1) - set of all vertices v in G with d(u, vI= 2,
diam{G) - the digmeter of a connected praph G
[x] - the greatest infeger not excecding x
|*] - - the least integer not less than x
{5 - subgraph induced by a subset 8 of V(G)
G - the complement of a graph G
B - the number of clements of a set §
(F—v - the graph obtained [tom G by removing a vertex v
G-e - the graph oblained from G by removing a vertex ¢
G+e - the graph obtained from G by adding vertex ¢
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a, (7} - vertex covenng number ol G.

a,{(5) - edge covering number of (3.
A (G ' - the vertex independent number of G
if(s) - the edge independent number of G
5({) - mimmuin degree of G
MG) - maximum degree of G
¥ - dominahon number o G
¥4 - total domination nurnber of G
&y, (G) - the connected domination number of G
7 () : - the independent domination number of
70 - global domination number of
¥l ) - total glabal domination number of G
B{G) - bondage number of a graph G

b, ({7 - nonbondage number of a graph G
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ABSTRACT

A set D of vertices in a graph G = {V, E) is a dominating set of G if every vertex in
V-D is adjacent to some vertex in D The domination number of G is the minimum
cardinality taken over all minimal dominating sets in G and is denoted by ¥(G}). The
nonbondage number of a graph G is the maximum cardimality among all sets of
edges X < B(G) such that y{G-X) =+(G) and it 1s denoted by b,(G). In the same way,
we can define total domination number, connected domination number, global
domination number and total glebal demination number of graphs. Different types of
meihods arc available depending on iypes of the problems. Some cxact values for the
nonbondage number of graphs arc found. Upper bounds are obtained for nonbondage
nuniber of a graph and the exact values are determined for several classes of graphs.
We have illustrated with examples some varlous results for the connected
domination number of graphs of standard graphs with better explanation.The exact
values of connceted domination number and global domination number for some
standard graphs are calculated with the help of methods used by Kulli,
Shampathkumar, Janakiram etc. We have also establishcd some theorems related
with the total global domination number of graphs.

In order to minimize the dircet communication links among the transmitling stations
under communication networks where maximum number of links that should be
dropped to accomplish this task is the nonbondage of a graph.

In the similar way we can also apply comnected domination number and total global

domination number in various ways.



CHAPTER ONE

INTRODUCTITON

The theory of dominating sets, intreduced formally by Ore |27] and Berge [5]. is
currently receiving much attention in the litcrature of graph theory. Berge called
lhe domination as cxternal stability and dominalion number as coefficient of
external siability. Ore introduced the word domination in his famous book “Theory
of Graphs’ published in 1962, This concepi lived almost in hibernation until 1975
when E. J. Cockayne and S. 1. Hedetniemi ilﬁ] published their paper *“Towards a
ltheory of Domination in Graphs® which appeared in ‘Nctworks® in 1977, This
paper brought to light new ideas and potentiality of being applied in variety of
areas. A well known problem involving dominating sels (often called the five
queen’s problem} is 1o determine the sinallest number of queen’s which can be
placed on a chessboard so that every square is dominated by at lcast one queen.
The cvolution of domination in graphs has been supported by hundreds of
rescarchers. Pledetniemi wrote, “It has been said, © fear is to domination as love is
to dominion”. 1 have oftcn wondered if we should have changed this term
domination, but we accepted Ore’s terminology. 1 can’t help thinking that we
wonld have sent a more positive message to researchers in this ficld had we
changed Ore’s terminology to the domination number of a graph™. S.T.Hedetniemi
and R.Laskar attributed the following factors to the prowth in the number of
dominalion papers [20]:

a) the diversily of the applications to both real-world and other malthematical

covering' or ‘localion' problems,



b} the wide variety of rlmninatimz parameters thﬂ&lﬂ._ be defined,

¢} the NP-complcteness of the basic domination problem, its close natural
rclationships to other NP-complete problems. and the subscquent interest in
finding polynomial time solutions to domination problemns in special classes of
graphs.

Application of domination in comtnnnication networks have been discussed by C.
L. Liu [25], P. J. Slater |34]. There are numerous papers on varfous aspects of
domination thgory.

The domination theory has pained due to the inspiring coniributions by eminent
graph theorists as C. Berge, E. ). Cockayne, 8.T. Hedetniemi, R. C. Laskar, R. B.
Allan, P.J. Slater, E. Sampathkumar, V. R. Kulli etc,

In the sccond chapter, we have discussed about the nonbondage number of graphs.
We have extended some proofs of the theorcm given in [22]. Some upper as well
as lower bounds for nonbondage nnmber of graphs have been oblained. Some
exact valnes are also obtained in this chapter.

Chapter three deals with the connccted domination number of graphs. In this
chapter, we have found some upper aud lower bounds for connected graphs. Somg
exact values are also found.

In the final chapter, the concept of lotal global Llﬂmilnation numbcr has been
introduced. Some alternate proofs of loial global domination numher for some
standard graphs have been obtaingd.

Now we present the basic definifions and notations which are used in the
subsequent chapters, For any nmidefined terms. we refer T, Harary [18].

We consider only finite undirccted graphs with neither loops nor multiple edges.

L ]



A graph G consists ol aset ¥V c:-f verlices and a collection E (not necessary a set) of
unordered pairs of vertices called cdges. A graph is symbolically represcnted as
G = (V, E} .The order of a graph is the nmmber of ils vertices. and it size is the
number of its edges .If u and v are two vertices of a graph and if the unordered
pair {u, v} 1s an edgc denoted by c. we say that ¢ joined u and v or that it is an
cdge between u and v. In this cases. the vertices u and v are said io be incident an
¢ and e is incident to both u and v. Two or mare cdges that join some pair of
distinct verlices arc called parallcl edges. An cdge represented by an unordered
pair in which the two elements are not distinel is known as a loop, A graph with no
loops 1s a multigraph. A graph with at least one loop is a pseudograph. A simple
graph is a graph with no parallel edges and loops.

Isolated vertex, end vertex and support:

A verlex of a graph G is called an isolated vertex of G if it has degree zero. A
vertex ol degree 1 is called an end veriex or pendent vertex. Any verlex which is
adjacent o 3 pendant vertex is known as a support.

Adjacent vertices, neichborhood sets:

Two vertices joined by an cdge are said to be adjacent or neighbors, The set of all
neighbors of a fixed vertex v of a graph G is called the neighborhood set of u and
ts denoted by N{u).
The open neighborhood of u is

Nuy={ve V:u,veE}
and the closed neighborhood of u is

N[u| = {u} v N{u).
For a set § of vertices, the open neighhorhood of § is defined by

N(S) = | V@),

RN



Subgraphs
Let G be a graph with vertex set V(G and edge set E(G), Then a graph H 15 called

a subgraph of G if V(H) C V(G) and E(H) < E(G}. In this case, G is called the
super graph of H.

G 1
Figurg-1.1
H is a subgraph o G and G is Lhe super graph of H.
Proper subgraph:
I'H < G but V{H) = V(G) or E(H) #E((), then H is called a proper subgraph of
G. From the figure 1.1, we see that H is the proper sub graph of G.
Spanning subgraph:

Let G be a graph. Then 11 is called & spanning subgraph of G if H has exactly the
same veriex set as (. From Lhe figure-1.1, H is a spanning sub grapb of G.

Induced subgraph:

Let U be a non-emply subset of ibe vertex sei V of G. Then the subgraph G{U] of
G 1uduced by U is a graph having vertex. set U and edge set consisting of those
edpes of G that have both ends in U,

Similarly let F he a non-enpty subset of the edge set E of G. Then the Subgraph G
[F] of G induced by F is a graph whose verex sel is the set of ends of edges in F

and whose edge sctis F.

v =] V)
€ € £3
Vg Vg ¥z
Va
ex " €y =
vy T Vg
¥z 7 ¥y ]
Gl F]
Gl
G 4

Figure-1.2 , G[U] and G[F] for U={v,vsv4vsvs} and F = lejcsepeqren)



Yertex deleted and edge deieted subgraph:
Let ueV{(). Then the mduced subgraph < V(G) ~ {v} > denoted by G- u is a

subgraph of (3 obtained by the removal of u.
If ¢ € E(G).then the spanning subgraph of G wilh edge sct E(G)- {e}denoted by
G - ¢ is the subgraph of G obtained by the removal of e.

For the graph G of Figure-1.3, the followings are the vertex deleted and edge

deleted subgraphs.

L e.l

¥3 ¥y

{1)(-U {(2) G-F
Figure-1.3
(1) G-U, wherc U={vy, vs} and (2) G-F where I'= {e;, ¢4, &5

Figure (1) 1s a vertex delcted and (2) is a edge deleted subgraphs of G.
The minimnm and the maximum degrees of vertices of a graph G are denoted by
6(G) and A(G) respectively.

Complete rraph:

A simple graph G in which cach pair of distinet vertices is joined by an edge is
called a complete praph of G.

Thus, a graph G with p vertices is complete i’ it has as many edges as possible
provided that there are no loops and no parallel edgges.

If a complete praph G has p vertices v, vy, ....... vy, then

G={lvijvirvi=v 1ij=1,23,. ... . pi.

The complete graph of n vertices is denoted by K, .



3 cdges 6 edges

10 cdges

Figurc 1.4 The complete graphs on at most 3 vertices.

Nuil graph:

A graph of order n and size zero is called a null graph or totally disconnected

graph, and is denoted by K, . Thus E(K,)=4.

X, Uhe following are the examples of null graph upto the order five,
a

HK:* °
¢« @
Every vertex of a null graph is an isolated vertex, Further a graph of order n is

- - -
. 4) K,: .

) K:* @F:e OF:, .

a null graph if and only if it is a rcgular graph of regularity zero.

W,



Bipartite Graph:

An empty graph is a graph with no edges. A simple graph G is called bipactite if
its vertex set V can be partitioned into two disjoint non-emply subsets V,, and Vs
(le, Vi V3 =V and Vi » V; =) such that each edge of G has onc end in WV,
and one end in V; so that no edge in G connects cither lwo vertices in V|, or two

vertices in V; . The partition V =V, L V, is called a bipartition of G.

¥ 13

Vo Uz

V3 U3
Figure-1.5

Figure-1.5 is a Bipartite graph,where V,={v,v,,v3} and Va={uus,us}

Hamiltonian Graphs:

A Hamiltonian path in a graph G is a path which contains every veriex of G. A
Hamiltonian eyele {or Hainilionian circuil) in a graph G is a evele which contains

every veriex ol' G, A graph (315 called Hamnitlonian if it has a Hamiltonian cycle.

Iigure-1.6



I'rom the figure-1.6 , C= v vyvsvavsiy is a Hamiltonian cvcle and it conlains all the
verlices of’ Fig-1.6 , so figure-1.6 is a Hamiltonian cycle.

Complete Bipartite Graph:

A complete bipartitc graph is a simple bipartite graph G, with bipartition
V =V _V; in which cvery verlex in V. is joined to every vertex in Vs. If V, has m

verfices and V', has n vertices, such a graph is denoted by |

Ay | 2

Va4
¥ W3
Figure-1.7
The figurc-1.7 is a complete bipartite graph with bipartition V=V UV, where
Vi={viva}) and Vy={vo,vy,ve} .

Complement of a sraph:

The complement G ol a graph G is the graph with vertex set V (G) such thal any

bwo vertices are adjacent in & if and only if they are not adfacent in G,

Connected graph:

A praph G is said to be connected if every two vertices of G are cc;nnected.
Otherwise, G is a disconnected graph.

Lei Clu} denole the set of all vertices in G that are connected to u. Then the
subgraph of G induccd by u is called the connccted component containing u. A
maximal connected subgraph of G is a component of G. Thus, a disconnected

graph has at lcast two coinponents. The number of components of G is denoted by

o{G).



{a) G (MG
Figure-1.8

In Figure 1.8(a), G is a connected graph and in Figure 1.8(b), (' is a disconnected

graph.
Distance of two vertices:

The distance d(u, v) between two vertices u and v is the length of a shortest
distance u-v path in G. If there is no u - v paih in G. then we define diu, v} =0.

Second neijhborhood:

If v is a vertex of G, then we define the second neighborhood N, (viofvas

Nz (vi={u:u e V(G)and d(u, v} =2 in G}.
In view of this, we also write N (v) lor N{(v).
Walk in a graph:
Lel G be a graph. Then a walk in G is a finite sequence

W = v\ Viesve . Vi € Vi

whose terms arc alternately vertices and edges such that, for i = 1,2..... k, the edge
¢, has ends v, and v;.
The above walk W is a walk from origin v, to terminus vy.. The integer k, the

nuinber of edges in the walk, is called the length of W.



Figure-1.9

For example, in the graph G of Figure 1.9,
W = ue,verveswesveyw, is a walk of length 5 .

In other words, the number of edges in W s called the length of W. If the
sequence of W consists solely of onc vertex, i.e., W = v, then W is a trivial walk

with length 0.

Trail of a graph:

Hthe edges .85 v e, of the walk .
W= Vot Viesvy -mmmmmmeeee Vi 18KV

are all distingt. then W is called a trail.

In other words. a trail is a walk in which no edge is repeated. In the graph G of

Figure 1.9,
T = xeqwesveve,w,

is a trail of length 4,

10



Paths of a graph:

Lol B | - = P

If the vertices of a walk

W = Vol V182Va e, Vi B Vi

are all distinct, then W is called a path, A path with n vertices is denoted by I,
which has length n-1.

In other words, a path is a walk in which no veriex is repeated.

w
b

£

Figure-1.10

From the above graph we have a path P= vewesuesx . Thus, in a path no edge can
be repeated either, and so every path is a trail. The converse of this statemeni is

not lrue.

Cycle of 8 graph:

A non-trivial closed trail in a graph G is called 2 cycle if its origin and internal

vertices are distinet. In detail, the ¢losed trail
C=vVa. VoV
is a cycle if
(i) C has at least one edge and

(1} ¥ ¥1 oo, ¥y are all distinet,

11
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A cycle of length k, i.e., with k edges. is called a k -cycle is called odd or even
depending on whether k is odd or even. A 3-cycle is ofien called a triangle,
A cycle with n vertices is denoted by C,
Remark: A u-v walk is called closed or open according as u=v or u = v. The
YEItICES ¥),¥1y orevennn Vi 111 Lhe walk

W = V0 VIE2Vs v Vi € Ve
are called internal vertices. In the graph G of Figure 1.9, C = ve,wemuepv is a

cycle.

Acvclic eraph:

A graph (i is called acyclic if it has no cyvcle.
1 ¥ W
L

|

Figure-1.11

Figure 1.11 15 an acyclic graph.

Tree of graph:

Let GG be a graph. If G is a connected acvelic graph, then it is called a tree.

*» L 9
2 vertices
1 vertex
.
L ]
3 verlices 4 vertices
. * .
(]
: 5 vertices
5 verlices

Figure 1.12: Trees wiih utlgmst frve verlices.



A trce on n vertices is denoted by T, , which has exactly two pendent vertices.

Join of a graph:
Let Gy and G, be two graphs with vertex sets V) and V; and edge sets B, and E,

respoctively. Then their join G, + G; is a graph whose vertex set is V, U V; and

edge set Ej W E; = {uv: ueV, & veVv,).

u w
] W
£
Z
v
X X
.
G,
Gs Gl + (52

Figure-1.13

Wheel of o Graph:

A wheel is a graph oblained from a cycle by adding a new verlex and edges
Jeining it to all the vertices of the cycle.

A wheel with n vertices is denoted by W, and W, =K, + C.,,

Connectivity of a1 Graph:

The conncctivity k of a graph G is the minimum number of vertices whose
removal results in a disconnected or trivial graph, A graph (i is said to be n -

conngcted if k2 n.

13



Edge Connectivity:

e - e

The edge conncetivity A of & graph G is the minimum number of edges whose
removal results in a disconnected graph. A graph G is said (o be n—cd ge connected

it Azn.

Matching of a Graph:

A subset M of cdges of G, is called a matching if for any two cdges ¢ and fin M,

the two end vertices of e are both different from the two end vertices of £

b b
L= G
A C a C
£3
€3
d d
f 2 f £4 =]
M: i I"-’IE
Fipure-1.14

Inthe graph G of Figurc 1.14, M, = {c. ¢;} and M; = {c, e3, ¢} are both matching,

Saturation:

Lel G be a graph and let v € V(G). Then if v is the end vertex of sotnc edge in the
matching M, then v is said to be M - saturated and we say " M saiurates V. "
Otherwise, V is M - unsaturated. Thus, in Figure 1.12, a, b, ¢ and e are all M, -
salurated while f and d are both M, -unsaturaled; every verlex of G is M, -

saturated.

14



Perfect Matching:

If M is a matching in G such that every verex of G is M -saturated. then M is
called a perfeet matching. The matching M>= {¢,c5.e4} of Figure 1.12. is a perfeet

matching.

Independent Sets:

A subset § of verlices in a graph (3 is said to be an independent set of G if no two
vertices of § arc adfacent in G. An independent sct is maximum if G has no

indcpendent set 8 with |S] =S|,

An independent set A maximum independent set

Figure 1.15 Independent set and maximum independent set.

A sel S of edges of G is said to be independent if no iwo of the cdges in § arc

adjacenl.

Independent Nomber:

The maximum number of vertices iu an independent set is called the independent

number of G and is denoled by By (G).

Edge Independent Number:

The maximum cardinality of an indcpendeut set of cdges of (i is called the edge

independent number of G and is denoted by B, (G), which is also called the

15



maiching number of G. The minimum matching number BGY of G, is-the
minimum number ol edges in a maximal indcpendent edge sct,
An edge analogue of an independent set is a set of Jinks no iwo of which are

adjacent, 1.e., a matching.

Covering of a Graph:

A subset K of vertices in a graph (3 soch that every edge of G has at least one end
in K 15 called a covering of G .The number of vertices in a minimum covering of
G 15 called the covering nomber of G and is denoted by ciy(G). The edge analopue

of a covering is called an edge covering,

(1)

(2}

Figure-1.16
In Fig-1.16, (1} A covering and (2) a maximum covering (Shown by the white
verlices)
An cdge covering of a graph G is & subsct L of edpes of G such that each verlex of

G is an cnd of some edge in L. The edge coverings do not always exist. The

16



nunber of edges in a minimum edge covering of G is denoted by oy(G). The

number {G) 18 called the cdge covering number of G,

Definition:

If x is a real number. [ x| and [ x| denote respectively the lcast inleger not less than
x and Lhe greatcst integer not greater than x.

Now we present the following definitions of various types of domination in a

graph.

Dominating Set:

Aset D C V is said to be a dominating sct in G if every vertex in V - D is adjacent
to some vertex in D. The domination number of G is lhe minimum cardinality

taken over all miniinal dominating sets in G and is denoted by ¥{G).

-]
o

Ly ]
=

Figure-1.17

In figure 1.17, D={a,c} is a dominating set.

17



Independent Dominating Set:

A dominating set D of a graph G is called an independent dominaiing set of G if D
is independent in G. The cardinality of the smallest independent dominating set of

( is called the independent domination number of G and is denoted by y,{G).

a b ¢
L

Figure-1.18,

Here D={a,d} is an indepcndent dominating sct.

Total Dominating Set:

A dominating set D of a praph G wilhout isolated verlices is called a tolal
dominating set of G if the subgraph G[D] induced by D has no isolated vertices,
The cardinality of the smallest total dominating set of G js called the total

domination number of G and is denoted by v{G).

Connected Dominating Set:

A dominaling set D of a connected graph G is called a connccted dominating sct
of G if G[ID] is connecied. The cardinalily of the smallest connected dominating

set of G is called the connected domination number of G and is denoted by 7(G).

FFor any connected graph G with A(G)<n - 1.

I8



G 1 (G) £ v{G) Total dominating sets were first defined and studied by
Cockayne. Dawes and Hedetniemi [16]. In addition to several new resulis

involving total domination.

Bondage Number:

The bondage number b{G) of a nonempty graph G is the minimum cardinality
among all scts of edges E for which

WG -E) > ¥ (G).
Thus. the bondage number of G is the smallest nnmber of edges where removal
will render every ninimum domninating sct in G a "non-dominating" set in the
resultant spanning subgraph.
Since the domination number of every spanning subgraph of a non-cmpty graph G
is at least as great as y(G), the bondage number of a non-empty graph is  well-

defined.

Cobondage Number:

The cobondage numbcr cb(G) of a graph G is the minimum cardinality among the

sels of edges X < P> (V) - E, where

PoVy= {Hc Vi [X|j=12}
such that (G + X} <v(G). A v - set is 2 minimum dominaling set.
If we compare () and y(H), when H is a spanning subgraph of G, it is immediate
that y(H) cannol be Iess than ¥((3). Fvery conuectled graph G has a spanning tree T
with ¥(G) = w(T) and so, in general, a graph will have non-empty sels of edges

F < E for which y(G - F) =¢(G). Such a set F will be called an inessential sct of

edges in G.

19



However, many graphs also possess single edges e for which (G-e) = v(G).

The bondage number b(G) of a graph G is the minimum cardinality of a sct of
edges of G whose removal from G results in a graph with domination number
larger than that of G.

I.F. Fink, M.8. Jucobson, L.F. Kinch and J. Roberts [8], introduced the bondage
number b(G) of a graph G. In [8], Fink et al. have obtained sharp bounds for hG)
and the exact valucs of b{(3) for several classes of graphs have also been

determined,

Nonbondage Number:

The nonbondage number of a graph G is the maximum cardinality among all sets

of edges X = E(G) such that y(G-X)= y(G) and it is denoted by ba.(G).

Total Glebal Dominating Set and Teotat Globzl Domination Number:

A total dominating set T of G is a total global dominating set (t.g.d set) il T is also
a total dominating set of G. The total global domination number ¥l () of G is the

miniuum cardinality of a t.g.d. sei.

Y.R Kulli and B. Janakiram |22] have obtained the following theorem and

corollary of some standard graphs.

Theorem 1.1 For any graph G,

bu(G) = q - p+7(G).
Theorem 1.2 :For any graph,
WG =p-A{G).
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Corollary 1.1; For any graph G,
bu(G) = q - A(G)
When A{G) is the maximum degree of G.
Theorem 1.3: For any sub-graph H of G,
b.{H}=b, (G).

Lemma 1.1: For any connecied graph G,

rfﬁﬂm_gi?%_i']g ba(G}

Where diam(G) is the diameter of G and [ x | is the leasi positive inleger not less

than x.

Corollary 1.2: If G is a [amiltonian graph.

then b.(G) > E]

Theorem 1.4: Lei G be a unicyclic graph if v(G) = g

then b,(G) = A(G),

E.Sampathkumar and H.B. Walikar [31] have obtained the following
theorem, proposition and coroliary of some standard graphs.
Proposition 1.1: For any connected graph G,
HG)E 0 G). ‘
Proposition 1.2: Let G be any graph and H be any spanning subgraph of G. Then

every dominating set of H is also a dominating set ol G, and consequently

(G} £ y(H).
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Corollary 1.3: Lel G be a connected graph and H be any connccted spanning
subgraph of G. Then every connected dominating set of H is also a connected

dominating sct of G, and hence 1, (G) < a,. (H).
Propositions 1.3: For any connected graph G ol order pz 3,
Zoacl G} = p-2 and the bound is best possible,
Lemma 1.2: For any connected graph G of order p with maximum degree A,

W)z {ﬁ-} Where [x] denotes the greatest inieger < x.
+

Theorem 1.5: For any connected (p.g) graph (i with maximum degree A,

{ﬁ]ﬁ Looe(€3) € 2-p womrmene 1)

The lower bound in (1} is attained if and ouly if G has a verlex of full degree (1.e. a

vertex of degree p-1), and the upper bound is attained if and only if G is a path.

Theorem 1.6: Let G be a conngeted graph of order p = 4 such that both G and G

are commected. Then , e (G} + Gope (G ) S p(p-3Y oovvveeeenen. {a) The bound is
atlained if and only if G=P,

Y.R.Kulli and B.Janakiram|23| has obtained the following theorem of

some standard graphs.

Theorem 1.7: A total domiuating sct I of G is a t.g.d. set il and only if for each

verteX veV Lhere exists a vertex u=T such that v is not adjacent to u.

Theorem 1.8: Let G be u graph such that ncither G nor G have an isolated

vertex. Then,
1} 1dG) =y G X;

(i) () %G <ydG)
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(iii) YolG) = ye{G):

(iv) (G + (G2 <4e(B) 2 (G) + (T ).
Theorem 1.9 : Let G be a graph which such that ueither G nor G have an isolated
vertex. Then y,,(G) = p { p is the number of vertices of G
il and only it G = P4 (a path on 4 vertices) or mk; or mk, where m22,
Theorem1.10 Let (i be a graph such that neither G nor G have an isolaled
veriex and T be a y-set of G such that each x in T has non-neighbor in T. If there
exists @ verlex ue V-T which is adjacent only to vertices in T then ,

(G = n(G) + 2.
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CHAPTER TWO
THE NONBONDAGE NUMBER OF A GRAPH

This chapler deals with (he nonbondage nnmber of a praph. We have found some
cxact values of by, for any graph G and we have given alternate proof of some
standard graphs for nonbondage number of a graph.
Introduction:
First we define the nonbondage number of a praph.
Delinition:
A set D of a vertices in a graph G = (V.E) is a dominating sct of G if CVCTY vertex
in ViDJ is adjacent to at least one vertex in D, The domination number of (i is the
minimum cardinality of a dominating set of G and we represent i by (G,
The nonbondage number of a graph G is (he maximum cardinality among all sets
ol edges X < E(G) snch thal v{G-X) = () and it is denoted by h{G}.
Example:
LIT G 15 a path of four vertices then b,((3) = 1.

When the vertices of a path is less than or equal to three, then by(G) = 0.

2. From the [ollowing graph we have the domination number wWGy=1.

¥y €| ¥a
=" =>]
h% =1 ¥y

If we remove the edges ey and e; then the domination number has no change. But

if we remove any other edge with the cdges €, and ¢, then the domination number
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is greater than onc. Therefore, when X={e, .e; } then WG-X) = +{(3). Hence
b{(G) = 2.

‘Therc are various applications of the nonbondage number of a graph .Thec one that
is discussed most ofien concerns communication networks This is an arrangement
of establishing a link between iwo or more sites come under some region. We
wish 1o seiect the smallest set of sites at which to set up fransmitting stations so
that every site in the network that docs notl have a transmitter should reccive
communication by a direct communication link to one that does have a transmitter.
Let the sites represent the vertices of a graph and let the communication links
between Lhe sites represent the edges in the graph. By keeping the fransmitting
slation fixed iniimize the direct communication links in the network., The
maximum number of such links that should be dropped to accomplish this task is
the nonbondage number of a graph.

We have illustrated already established proof with better explanation for
varions standard graphs from [22] of V. R. Kulli and B. Janakiram with
examples.

Theorem 2.1: For any graph G,

b((i)=q-p+¥{G)
Wherc q 1s the number of edges and p is the number of vertices ol G.
Proof: Let X be a v-Set of G. For each verlex ueV\X, choose cxaclly one cdge
which 15 incideni to u and to a veriex in X. Let E| be the set of all such edges,
Then clearly E-E, is a b,-Set of G. Sinee number of cdge of T, is equal to the
number of vertices ue VX, So we have nuinber of cdge of

Ei =V - X=p-yQ).
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by = nomber of edges of F — number of edges of E, = g- {p-v{G)}

=q-ptyG) O

Example: Vi ¢ o

=]
Cq

C3 Y3

£5°

Va iz

The above graph has seven edges and six vertices and the domination number is

two,then nonbondage number b(G)=q - p + y(G} =7 - 6 + 2 = 3.If we remove
the edges e ey .and g from the graph then the domination number will not
be changed .
Corollary 2.1.1: For any graph G . by{G) < q - A(G)
where A{G} is the maximum degree of G,
Proof: Since A(() is the maximum degree of G so to get the domination
number,we can take various dominating sets . Among all the dominating sets to
get domination number, vertex of maximum degree must be included, Again lor
each vertex ve VAD, choosc cxactly one cdge which is incident to v and to a vertex
in dominating set D. Let E| be the set of all such edges. Then clearly T - E; is a
nonbondage set of G and A (G) < number of edges of E, .
AG) <|£)]
Again, since b, =|E|—|E|]

by<q-A(G) |Since AMG) <

£ and g=|£[] 1
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Example;
We have from the following pgraph,

¥ C Vs

the nunber of edges g = 5,the nonbondage number, b (G) = 2 and the maxijmum
degree A{(G) =3,
Therefore, 2= 5-3

2 b(G) =g - A(G).

Theorem 2.2: For any graph,
Gl p-A(G).
Proof: We have from the Theorem 2.1 and Corollary 2.2

q-p+1(Gy=q-A(G)
or —p+ ¥{G)< - A(G)
or p-v(G}=A(G)
therefore , WGy <p- A{G). O
Theorem 2.3: For any sub-graph H of (3,
ba(H} = b, {G) .

Proof: Since every nonbondage set of H is also a nonbondage sel of G. We know
b.(G) 15 the maximum cardinalily among the all scts of edges XcE such that
V (G-X) = V{G). Since H is the snbset of G so, b(H}< b(G).O

Example: From the [ollowing graphs we have [ is the sub graph of G.

¥l =] v Y3 vy v e ¥a
=r
€3
24 =y, eq C; €2
Cg
. =1 ¥
Vg Cy Vi ¥y b f
H
G 27

Here by(G) =3 and b,(H1) =2, therefore by(H)<b, (G).



Lemma 2.1: For any connected graph G,
di -2 .
[ famgﬂ) < b (G3)

Where diam(G) 1s the diameter of G
Proof: We know the diameter of G is the max {d(u,v) : v,ye V)

Let P, be the path of diam(G) +1 vertices

S0 k = diam(G) +1 {a)
Then by Theorem 2.1 the nonbondage number of Py, is
ba {Pi) = g-p+ (Py).

= - | + §(Py)--=--------- [Since for any path p = g+1]

Again we have from Theoremn 2.14, v(I,) = lrﬂ
2

Hence by (P =- 1+ [g—l

= —H{@ﬂ} [by (a))
- buP = Ff“’m'f)_ﬂ (b)

Since I, is the subgraph of G so by the Theorem 2.3 we have,
ba(Fi) < by(Ci)

Thercfore, [@m(;) —2

-‘ = b, (G) [from-b] O
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Example:

¥ ]} Vi V3 24 Va

=r)

¥ < ¥s

Irom the above graph, we have diam((G) =2

=[

Therefore dmm{?] -2_2-2

3 3
Herc nonbondage number b {G) =3

, [ diam{(7) -2

< b, ((F).
3 ]‘i A67)

Corollary 2.3.1: If G 15 a ITamiltonian graph,

then b,(G)> [ ﬂ

Proof: A graph G is called Hamiltonian graph if' it has a Hamiltonian cyele.Let Cp
be the lamiltonian cycle [p is the number of vertex of C] therefore C, is the
spanning subgraph of (3.
Since C,, is a subgraph ol G so we have from the Theorem|2.3],

Ba(Cp) € By ((G) =rmmemmemseave ()
Again by the Theorem 2.1, we have

b{Cp) = g-pt+ ¥{(C,) [Since for any cycle p = q]

0 B(Cy) = HCp) srmmsrmreemenemenenn(b)
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But we know from Theorem 2.14, 4(C,) = [gw

Hence b(C,) = I- ?h’ [frein (h)]
5o from {a) and (b) we have ,
be(G) 2 by(Cy) = H

- balG) 2 E] 0

Example:

Ca ‘a
G
Case-I : Here the graph G is a Hamiltonian graph with 6 vertices and b,(G) =5

and E} -2}2.

So. b,,(G)::-_fw .

Case-IL: If we remove the edges ¢; and e3 from the graph G then we have the

following graph G|




and this graph (i, is a Hamiltonian graph its nonbondage number b,{G,} = 3.

o 2[5

Therefore, b,(G)) :{gw .

Caselll: If we remnove the cdges ¢; eg and e from the graph (G then we have the

[ollowing graph G,

V) €

Ce

¥s

s

Vs

and this graph Gy 1s a Hamiltonian graph its nonbondage number bo(G,) = 2.

SR

Therefore, b (G;) = ’-g_’ .

5o,we have lrom the above three cases, b,(G)2 [gw O

Theorem 2.4: Let G be a unicyclic graph it W(G) = g

then b, (G} = A(G).
Proof: We know by(G) = q — p + ¥{G) [by Theorem 2.1 |

= ¥(G) |Since for vnicyelic graph p = y|
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_ P
2

[

Therefore q = b,(G) + b {(,

Suppose b{G) < A(G),

then g < b, (G} +4 (G) < b(G)+q- by(G) [by cor:2.3.1]
g < q a confradiction

Hence , b (G zA(G). O

Example:
s £ 7
=
4 e
L] [
\_r‘i EJ- \"FJ-

From the above graph wc have the domination nuimber "f(G}=2=g =—§ and it is a

unicyclic graph.
Here b(G)=2 and A(G)=2

Therefore b{G) = A (G} .
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New developed theorems:

Lemma 2.2: For any cycle C,,

NG = b {Gy)

Proof: Since for any cycle p=q

Sop-q=0

But we have from Theorem[2.1]
bn(cp) =4q-p + T (Cp)
b€ = (G O

Example:

From the above graph we have v {Cg) = 2, b(Cy} =2

¥ (Ca) =by{Ce) .

Lemma 2.3: For any Hamillonian graph G with p vertices (hen,
v{G) = % ~g , [where g is the number of edge of G

Proof: We have from Theorem|2.1]

brf{G) = q = p = Y(G)mmmmmmmmme e (a)

But we know when G is Hamiltonian then

b (G) > [ﬂ [from corollary 2.3.1]
3
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5 b(GY 2 % (b)
Therefore by (a) and (b),
£59-p+(G)
of  p<3g-3pt3rG)
or 4p < 3g+ 3v(G)
3
P {aH(G)}

q+1(G) = %ﬁ

4
7@z Zf-g O

Example:

We have from the above graph the domination nomber {(G)=4, verlices number

p=8 and number ol edges g = 10.

Therefore, v (G) = %‘E -q.



Theorem 2.5: For any unicycle graph A(G) < g, when {G) =

2 [

Proof: We have from corollary 2.1.1, for any graph G
bo{G) € q - A (G) --ermrermneamecme (1)
We know for any unicycelic graph p=g
Again b,(G)=q—p +¥(G) (From theorem[2.1])

=q-p+ g [when T(G)=§]

=p-p+ g [Since G is unicyclic graph, so p =q]
= £
2
b L p — q
ba(G)=L£ =4
(1) 5 =
Hence g = by(G) + b,{G) ---{h)
Suppose by((3) < A (G)

@< by{G) + A(G) £ by(G) + g- by(G) [from (a)]

S q<g a contradiction
b,(G) is not less than A (G).
Hence b,(G) = A (G)
AG) =by(()=q-A(G) - [from {a}]

or A{GQ)=q-AG)

mmg% O

Theorem 2.6: An edge € = uv is in every b, set of G and D be the any dominaling
set know ol G, then either {uv} D or {u, v }cV\D.

Proof. We, the nonbondage number b,(G) of a graph G is the maximum

cardinality among all sets of edpes X < E such thaty (G - X) = Q).
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Herc, e = uv € b(G).
Suppose thatn € Y(G) =D and ve VD,
Since n belongs to the dominaling sct and v adjacent (o u so, when we remove the
edge e fromn G then u and v are not adjacent. For this matier, the domination
number will be increase from the previous domination number of G.
Therefore ¢ £ h(G).

So.the edge e = {u,v} = D or {u,v} =ViD.S

Example: From the following graph,

¥ £ V3
= £s €2
Vg €3 ¥3
G

we have the dominating set D= {v,} and the sel of nonbondage number b (G) is
{e;. &1} Here ey = {vo.vy) © ViD and 5= I3, v VD,

We have also obtained the following theorem in addition to the nonboendage
number of graphs:

Theorem 2.7: If T be a Spanning trce of a connecled graph (3 then

D2 y(G).
Proofl: If we remove one or mmore edges from a connected graph G |Here the
vertices of G will be same] then the domination number of the reduced graph will

be equal or greater than the domination number of G. If there is no cycle in G then
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G will be disconnecied when we remove any edge lrom G . In that place G =T,
therefore W{T) = p(G) -emmmmmes oo e (1)

Again if' G has one or more cycle then to get T we remove some edge from G and

henece (T = ¥ G) .-- {(2)
S0, we have (rom {1} and (2)
w2 y(G). O

Theorem 2.8: I T| Ty ,~-memmmmme e T, are the spanning ree of a connected
graph of G then \F{T )= E{T2) = cmemomme e = E{T,).
Proof: II'we remove any one edge of a cycle then this cvele will be a tree and ihis
tree 1s called a spanning tree of that cycle . But if we remove two or more edges
of a cycle then this cycle will be disconnected graph. So in order to have a
spanning lree it is necessary to remove one and only one cdge from a cycle,
Now , if G is a connected graph and it has X sub-cycle then to have any
spanning irec  fromn G, we must remove exactly X edge from G.
Thercfore E(T)=E{(G}-X

E(T:)=E(G)-X

E(THJ = E(G) -X

Sa, T(T)) = F(Ty) = --- —=T(T). 0



Theorem 2.9: For any path or any cvcle with vertices k then

v(ew or y(p) =% ]
Where ¢, is the evele of k vertices and py is the path of k vertices.
Proof: We know, any verlex of a path dominate maximum wo vertices. So, the
domination nunber of Py, P; and Py is 1 for each of the three paths. Again the
dominating number of Py, P and I% is equal to 2 for each of the three paths. So we
see that when the number vertices of path become 1,2 and 3 then the domination
number of path is | in each cases. When the vertices number becomes 4, 5 and 6
then the domination number of path is 2 and so on. Therefore. we see that when
the number of vertices is increased by 3. then in each cases the domination numbecr
will be increased by | and the doinination number will be the same when the
nunber of verlices of the paths exits between the duration which range is three and
started Irom 1 of the first duration.

We have clear idca of the above description from he following table:

Class of verlex numnber Domination number
of path. of the path .

1 3 e 1

4% - - 2
et TP —— 3

1 R T 4

13715 S 5
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and so on . Here the range of classes of vertices number of path is 3 and the

domination number of the paths which number of vertices in any one class is
same.

Again [x]is the least positive integer not less then x.

Hence v (py)=Ik/3]
Similarly we can show that y{c,) =[k/3 10

Example:

The above graphs has & vertices and 8 edges and the domination number is 3.

Again we have [k/31=[8/3= 3 = the demination number Wy ).
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CHAPTER THREE
THE CONNECTED DOMINATION NUMBER OF A GRAPH

This chapter describes the connected domination number of praphs and we give
the exact value of connected domination number. In this chapter, we find the
upper and lower bound of some connected praphs and comparing the connected
domimation number with the domination number of some graphs.

Introduction:

First we define the connected domination number and domination number of &
graph.

Definition: A sub set D of the verlex sel V(G) of a graph G is said io be
dominating set if every vertex of G not in D is adjacent to at lcast one vertex in D .
A dominating set D is said (o be a connected dominating set if the subgraph <D
induce by D is connected in G . The minimum of the cardinalities ol the connecied
dominating sets of G is called the connected domination number ¢,.(G) of G.
Harary ([18]p.97),by rcparding cach vertex as covering ilself and two vertices as
cover each other if they are adjacent, denotes by «oo{G) the minimum number of

vertices necded to cover V{G).

YVWVS ot 4

Vs Vg

Example;

Form the above graph we have morc than onc connccied downinating subgraph,

such as

4



A . S

Vo g ¥ . Wy

-—-~-------—- and so on .

But The connected dominating sub graph which contained

the minimmm number of verices is, :“'? ‘?E

Therefore the connected domination nnmber o, (G} = 2 (i.e., the number of
verlices of minimum connecled dominating subgraph of G.).

5. T. Hedetniemi suggested a new parameter in domination theory as tollows:

A dominating sei D 15 a connected dominating sct if it induces a connecled
snbgraph in G, Since a dominating set must conlain at least one veriex from every
component of G . it follows that a connecied dominating set cxists for a graph G
il and only if G is connected.

The minimnm of the cardinalitics of the connected dominaling sets of G is termed

as the connccted domination number of G, and is denoted a,,.(G).The
connected domnination number of some standard graphs can be easily found. and
are given as lollows:

(i) JGGC(KP) =1.

{ii) aﬂoc(Kp +{) =1, for any graph G.

1,if either m or n=1

(iii) %oc{xm,n):{ 2,if mn>2.
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(v)  For any tree T of order p,;,.{T)=p—c. Where e is the number of

pendent verlices (i.e., vertices ol degree 1) in 1.

(V) @ppe(Pyy=K-2.

when Py is a path ol k verlices. k 2 3.

(vil) For every complete bipartitc graph, domination nnmber and connected

domination number are smne and 1s equal or less than two.

vii) For every complete graph the domination number = connected domination
number = 1.

(1x) A complement of any complete bipartitc graph that will bc two complctc
graph which are disjoint. So the complement of any compleie bipartite
graph has no connected dominating sct and its domination number is two.

Example: )
¥ Y2 ¥ 2

G - Vi V5

“|

Here G be a complete bipartite graph and ¢ is a complement of G, We sce that
7 has no connecled dominating set and its dominalion nuinber 1s 1wo,

Connected dominating set has been used widely in mmuli-hop adhoc networks

(MANET) by numcrous routing. broadcast and collision avoidance protocols.

42



Although computing minimum connected dominating sct is known to be NP-hard,
many protocols have been proposed to construct a sub-oplimal dominating set
TTowever, these protocols are eilher 1oo complicated, needing non-local
information, or not adaptive to topology charge.

We have illustrated already established proof with better explanation for
various standard graphs from [31] of E. Sampathkumar and H, B. Walikar
with examples.

Proposition 3.1: For any connected graph G,

YG)E Otooel G).
Proof: since any connecled dominating set of any connected graph is also a
dominating set 80 1{G) = 0, (G). Conversely, any dominaling set iay beg or not
connected dominating set. Hence only 1((3) €0t 50{ G) 15 lrue.

Example:

v e Vs

L5

€4 €3
‘."

G
We have from the above graph G the domination number of il 15 two bul ils

connected domination number 15 three. Therefore, WG)<a ,.(G).

Proposition 3.2: Let G be any graph and H be any spanning subgraph of G. Then

every dominating sct of H is also 2 dominating set of . and conseguently

7(G) = y(H):
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Proof: Since H be a spanning subgraph of (i so the all vertices of H are ¢qual to
the all vertices of G and the number of edge of H is equal or less than the number
of edge of G. Therefore every dominating set of H 13 also a dominating set of G.
Now, It the numher of edge of 1 is equal to the number of edgc of G then

Y(H) = Y(G) worserememnem (1)
Bot if the number of ¢cdge of H is less than the number of edge of G then.
F(GY € I womemmemmneas +o(2)
So we have [rown (1) and (2) lor any spanning subgraph H of G, W(GY = y(H). O
Corolfary 3.2.1: Let G be a connecied praph and I1 be any connected spanning
subgraph of G. Then every connected dominating set ol H 15 also a connected
dominating set of G, and hence ¢,,..(G) £ o, (H).
Proof: Smce H spanning subgraph ol G so all the vertices of [1 is also the all
vertices of G and all the cdges of H is also the edges of G bul E{H) < E(G).
Therefore, since connected dominating sct of H is dominate all the vertices of H so
it also dominate all the vertices of G. Hence any connected dominating sct of H is
also a connected dominating set of G. But the inverse of it is not true. Because if
we remove some edge of G to get H the number of vertices of connected
dominating set of H is greater than the number of vertices ol connected
dominaling set ol G. Therelore, Qe O} = e (HLO

Propositions 3.3: For any connected graph G of order p= 3

Ogoe G} < p-2
and the bound is best possible.
Proof: Since G is connected, by a well known result, G musi have a spanning trec

T. Taking H =T then we get
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Tye (U) = @, {H) |, by corollary3.2.1
But we know for any trec H of order p,
Uooe (H) = p-, where ¢ is the number of pendant veriex
o (7] = p-2
Since e > 2 for any tree, hence o, () < p-2. O

Lemma 3.1: For any connccted graph of order P with maximum degree A,

v (G2 [ ;: J ------- (a)

Where [X] denotes the preatest integer < x. The bound (a) is attained if and only if
lhere exists a2 minimnm dominating set (1.e., a dominating sct of cardinality
oo GY) D ol (3 satisfving the following three conditions.
C1.  Disindependent.
C2.  Foruny veriex u e V — D there exists a unique verlex ve 1) such that

N{u) m 2= {V}, wherc N(x) denoles the set of veriices adjacent to x.
C3.  d{u)=A, forevery ueD.

Theorem 3.1: For any connected graph GG with maximum dcpree A,

{QLEHJ < Olge(3) £ 2¢-p ---(1), where q is the number of edges and p is the

nuinber of verlices of G.

The lower bound in (1) is attained i’ and only it G has a vertex of full degree (ie. a
vericx of degree p-1), and the upper bound is attained if and only it G is a path.
Proof: We know for any connecled graph G

T(G) £ 04, {7} ,by the proposition 3.1 ——mmmmemeee {2}
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Again we have from lemma 3.1, for any connected graph ol order p with

maximum degree A,

T(G)EL'L;J -------- (3)

So we have from (2) and (3)

Goge (G) 2%(G) 2 [ﬁ}

L (G)z[ P }

Again we know for any connected graph of order p23,
. Qg € p-2, by proposition 3.3
= 2(p-1)-p, since lor any connecled graph, g = p-1
=2q-p
Loue S 2P
We shall now show that o, (G} = 2q-p if and only if G is a path.

We know, for any tree T of order p, a,. (T) = p-&. where e is the number of
pendant verlexes (1.e.. a veriex of order 1).
Since G is a path so 11 has exacty two pendent vertices.
Therelore, a,,. (G)=p-2
=2(p-lrp
= 2q-p, since { is a path so p-1 =g
" Cloae (G) = 29-p.

Conversely, suppose that o, (G} = 2q-p. Then, since G is connceted so,
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foee ((3) £ p-2, by proposition 3.3

L e -

t

S 29-p=p-2

q=p-l.

Since (3 is connected, we then sce that g = p-1; hence G must be a tree. Bul ,we
know for any lrec o, (G) = p-e. [Te > 2, we get
Loac {(1) = p-e. <p-2 = 2q-p

Olyoe (G) < 20-p, 4 contradiction.
Thus-e £ 2. But since G 15 a tree 50, ¢ 2 2 henee € = 2. This proves that G must he
a path. .
Thenrem 3.2: Let (G be a connected graph of order p = 4 such that both G and (G)

are connecled. Then oy, (G)+ (G EP(P=3) ceeeiininnn.n. {a)

The bound is attained if and only if G =Py,

Prool: Since G and G arc both connceted. Hence by the Theorem 3.1 we have,
Qe (G} € 2g-p and Gle (G) < 27 -p.

Where q and § dcnotc the number of edges in G and  respectively. Thus
o (G} + Otooc (G ) < 29-p+2F -p

=2{q+gq)-2p
= 2[5} -2p =pip-3)

Ly (G) e P [a) = P(P'E]
It rcmains to show that the equality {a) holds il and only iI'G=Py

fG= Pd: lhen Uone {G) = age (5) =2
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Thus tege (G} + Cage (G} =2 +2 =4 =4(4-3) = p(p-3)
Lo (G) + Lo (G ) = p(p-3).
Converscly, if the equality holds in (a). We should have
O () = 2g-p and @y (G )= 2F-p. So, G and G are paths, by theorem 3.1.
Siuce G is a path So q =p-1 again G is also a path so § =p-1.
- Ot (G) + Ot (G ) ={2(p-1)-PH{2(p-1)-p} =2p-4 ----(b)
Since we consider the equality In (#) hold so
Otooe (G) + Ctne (G ) = pip-3)-
or,  2p=4=p(p-3}[by (b)]
or p’-5p+4=0
p=4or 1. Butp=1since pz 4 given
Therefore, p=4.
So, when G and G are equal to Py then the equality in {a) held. This completes
the proof.C]

New developed theorem:

Theorem 3.3; For any connected graph (i,

W (N=k((3). Where k(G) is denoted the vertex covering number of G.

Proof: We know thc domination nmumber () is the pnumber of verlices of
smallest vertex set I of G such that every veriex ol G'D is iucident at least one
vertex of D, While, a vertex covering of a graph G is a subset k of vertex set V of
(5 such that every edge of G is incident with at lcast onc veriex in k . A covering k

is called minimum if there is no covering &' of G with [4'] < k .Then the number
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of vertices of k is called the covering number of G which is denoted by k(G) in

! — L

this chapter.
Let v, v, v1 be any three vertices of connecled graph (7 and e;={v| vz}, c;={vyVv1}
and e;={v;v(}. lhen v, dominate the veriices v; and vy .50 v is the minimum
dominaling set of G,

S G 1 {a)

Bnt v is not the end point of all the cdges of G.(v, 15 not the end point ol €;) 0 to

gct a minimum covering set  we include any one verlex wilh vy i.e. {viv:} or
{vi v} 1s a minimum covering sel of G.

Theretore, k{(G)=2 ~-mmmmmmmmmmmemeeececeaas (h).

Otherwisc , if there is no cdge e; in G then {v,} is the minimum dominating set
and also minimum vertcx covering set of G.

Therefore lor this case K(G)=1-mmmmmmmmemmmnee- 193

50, we have from (a),(b) and (¢}, &)= k{(G). O

. ¥ ¥ L Vv
Example: . . 2
\.“.1 1.,'-'3 ¥a
Fig-1 Fig-2

We have from the Fig-1, y{G)}=k(G) =2 and from the Fig-2 , y((G) =1 but

k(G) = 2,50 in Fig-2 y((i)<k((3). Hence for all simplc connccted graph, we show

thal {(G)<k ().

49



CHAPTER FOUR
TOTAL GLOBAL DOMINATION NUMBER OF A GRAPH

A tolal dominating set T of a graph G=(V.I} is a tolal global dominating set (t.g.d
set) if T is also a total dominating sct of G . The total global dominating nuinber
1,(G) of G is the minimum cardinality of a t.g.d set. In this chapter, we exhibit
incqualities involving varlations on dnminatioh numbcr, total domination number
and lotal global domination number.

Introduction:

The graph G considered here bave order p and sice q (1.e, p vertices and g edges}
and both (i and their complement & have no isolates.

Now we deline Dominaling set, Tolal Dominating sct and Total Clobal
Dominating set of a graph.

Dominating set: A set D of vertices in a graph G =(V, E} is a dominating set of G
il everylf verlex in V-D i3 adjacent to some vertex in D). The domination number
y(G) of G is the minimum cardinality of a dominating set.

Example:
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Fromn the above graph we have the vertices v, and v; dominate the all vertices of
the graph G. 80 {v,v;} is a dominating sel of G and Lhis dominating sct is the
minimum dominating set of all dwninating sets of G . So, the domination number
of G isy{G)=2.

Total Dominating set: A tolal dominating set T of G is a dominating set such that
the induced subgraph <T> has no isolates. The total domination number y{G) of G
is the minimum cardinality of a total dominating sel.

Total Global Dominating set : A tolal dominating set T of G is a wlal global
dominating set {t.g.d set) if T is also a lolal dominating sct of G . The total global
domination number ¥,,(G) of G is the minimum cardinality of a t.g.d. sct.

We note that v(G) and y,(G) arc defined for any G while 1{() 15 only defined for
(¢ with 8 (G) 21 and y,(G) is only defined for G with & (G) =1 and & (G )z,
where & {G) is the minimum degree of .

A v - set is a minimum total dominating set. Similarly a y,- set and a y,- sct arc
defined.

We have illustrated already established proof with better explanation for
various standard graphs from [23] of V. R. Kulli and B. Janakiram with
examples.

Theorem 4.1: A total dominating set T of G is a t.g.d. sel if and only if for cach

verlex ve ¥ there exists a vertex ue T such that v 1s not adjacent to u.
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Proof: Sincc for each vertex veV there exist a vertex ueT such that v is not
adjacent to n, Again the all vertex of T belong to V. Therefore we can say that, for
gvery vertex ol T, has a non adjacent veriex in T.

Conversely, lel there exist a vertex weT such that it has no nonadjacent vertex in
T. But we¢ know T will be a lolal plobal dominating set of G if T also a total
dominating set of G . Since the vertex w has no nonadjacent vertex in . So, in
iotal downinating set of G [i.c this total dominating set is T] has no any adjacent
vertex of w. Therefore w will be isolated. But by definition of total dominating set
there is no isolaled vertex, so if T will be total dominating set then there must be a
non adjacent vertex of w in T. So we write that a total dominating set T of G will
be a total global dominating set 11T for each v there exists a vertex u €T, such
that v is not adjacent to u, [

Example:

¥
.

,..
L
-
.-
-
.
Ll

h

-

o,

We have , from the graph G the vertex set T= {v.,v3,vs5,vs }15 a dominaling set and

this dominating set has no isolaled vertex so T 1s a total dominating set. We also



see that for every vermiex of GG, there exist a nonadjacent vertex in T.so T is a tolal
global dominating set .Exactly we see that T is a total dominating set of G .
Theorem 4.2: Let G be a graph such that neither G nor @ have an isolated verlex.

Then,

(i) 11o(G) = ¥ G )t

(ii) G) S 1(G);

(i) G} =1 (G);

(iv} 1r(G) + 7l G 32 = TLg(G) <y{G)+ Tt(a ).

) 1(GY=18(G )
Proof; By definition we have 1,(G) will be (G} it it also total domination number

of & . Suppose that v(G) is a total global dominating number then we have . y(G)
= (G ) =1 Q) ——--r=(1)

Similarly y{ G ) will be y,,{ G } if it also total domination number of G [since the

complemeni of G is G)

Therefore we can writc

WG )= 1(G) = 1l G } -=ommmmm-o- (2)

So we have from {1} and (2)

'ﬁ’tg(G) = ?tg(a) u
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(ii) ¥{G) <yn(G)

proof: We know the total domination number 7,(G) is the minimum cardinality of
the total dominating set.

Therefore,y{G)<number ol element of cach total dominating sct

But we know that any total dominating sct of G will be total global dominating set
if it also a total dominating sct of G . Let | =%(G) is the minimum cardinality of
the total dominating sct. so, i (his T =,{G) is also a tolal dominating set of

& then 1{G)y=y,,(G)----(1) and the number of element of any other total
dominating set is greater then v(G). So. if any total dominating sct of the other t.d,
set of G is also a t.d. set of G then %(G) < v ((F) --------—-- {2}

So, we have from (1) and {2}, w(G) €v.{G) O

(i) 716 <7y(G);

Proof : We know a dominating set of G will he a global dominating set il'it is also
a dominating set of G .

So, 1{G) must be a dominating sct of (G. But we know (G) < v{G) [For any
connected graph, here G and G arc connected graph]

Ye(G) = 7(G) - {4)

Therefore by {i1) und {4) we have,
7elG) £ 1(G) £ 7l G)

- 16 <vG) D
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(iv) {r(G) +1d G2 < Tiulls) £ G+ 1l G).

Proof : We have from (ii) 1(G) £ ,,(G)mmmmmmmmmmme {1

Therefore vi(G ) € (G Y-mmmrmmmmmmmmmmmem (2)
Bt from (i) we have 1,(G) = 1,(G )
. By (2) and (i) we can writc 1 G ) < 1,g(G) -—------==- {3)
. by (1) + (3) we have
G +17(G ) €1 G)+ 1(G) = 2, (G)

11 Gy + vW(G)}2 < Y €3} L

Thearem 4.3: Lot G be a graph which such that neither G nor G have an isolated
vertex. Then y,,{(3) = p ( p is thc number of verlices of G)

if and only it (i = I4 (a path on 4 vertices) or mky or mk, where m22.

Proof: Any connected graph G has a connected complemeni 1if [or each veriex of
G has a nonadjacent veriex in (G. Becanse, if a verlex ue( has no nonadjacent
verlex in G then this veriex u will be isolated in & and for this matter G will be
disconnected. So, for connected G u must has a nonadjacent verlex in G,

Now, for py there is no total dominating set and y(P;) = 2, S0, in total dominating
set of Py has all vertices of P, and each veriex of y,(P;) has no nonadjacent vertex

in v,(P;). Therefore w(P>) will not be tolal global dominating sct by theorem 4.1.



Again the number of vertex of the total dominating set of P; will 2 or 3. But by
theorem 4.1 the both two L d. set will not be t. g. d. set.
Now, the number of vertices of the t.d. set of P, will be 2,3, or 4. But by thcorem
1, the first two t.d. sct will be not Lpg.d. set and (he Jast onc will be Lg.d. set
because for every vertex of il has a non adjacent vertex in it,
Therefore y,.(I*4) = 4 = p = number of vertices of P.
Again, the number of vertices of L.d. set of I*s which will be t.g.d. sel are 4 and 5.
But v,(Ps) will be minimum ot all t.g.d. set.
80, 1,o(’s) = 4 <5 = number of vettex of Ps.
Similarly we can proof that v,,(P;) <n=pwhenn >4,
So, we have for only Py,

YulPe} = p.
Again, in toial dominating sct, has no isolaled vertex and each vertex of mk; or

mk, (n>2) has only one adjacent vertex. So all vertices of mka or mk, will be
included in t. d. set of mky or mk,. Since mz2, So, of every vertex of t .d. sct of

mk, or mk, has a non adjacent vertex in this t.d. set. Hence by theorem 4.1, this
total dominating set will be total global dominating sel.

Hence v,,{G) = p when G is mk; or mk, and m22,

But when m=1 then mK; will be a path p; and we see from the above,lhat Lhere is
no total global dominating set.

Hence y,(Gy=p if and only if G=p, or mk; or mk, when mz22.0)
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Theorem 4.4: Let G be a graph such that neither G nor G have an isolated vertex
and T be a y-set of G such that each vertex X in T has non-neighbor in T. If there
exists a wverlex ueV-T which is adjacent only to verlices in [,
then 1,,{G) = 1,(G) + 2.

Proof: Since each vertex x<T has a non-neighbor in T and T is a y-set of G. S0, T
has minimum 4 vertices. Because we know in (olal dominating sct has no isolated
vertex. Again iff T has two or three verlices then of cach vertex of T has no
nonadjacent vertex in T. So T has minimum four vertices,

Case 1: If V-T = {u}, then there exists a vertex veT such thal v is not adjacent to
u. Because if u is adjacent to all vertices ol T then the nuinber of vertices o'l will
be two it is contradiction since T has minimum [our vertices. S0, must u has a
nonadjacent vertex iu T.

Therefore for each vertex veV there cxists a verlex ue’l such that v is nol

adjacent to u. Hence by theorem 4.1, T is a total global downinating sct of G.

S0, 1e < Y{G) + 2 [Since T=1(G)] - (1)

Case II: If V-T # {u}, then there exists a vertex veV-T. This u and v are not
adjacent to all vertices of T. If u and v are adjacent to all vertices of T then the
number of vcrti_cf:s of T will be 2 |if u adjacent 1o v] or 3 [it'u is not adjacent to v].
Tt is impossible since T has minimum 4 vertices.

Hence To{u,v} is a total plobal dominating set ( by theorcm 4.1 }.

S0, 1(GY=T+2
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or T G) = Y{G) + 2 mmmmmmmmmmer o (2)
So, we have from {1} and (2)
"I'Lg{'[j] < wGy+2 O

New developed theorem :

Theorem 4.5:A total downinaling set T of G is a tolal global dominating set of G if
for each vertex v = T there exist a vertex ue I such that v is not adjacent to u.
Proof: We know (he all vertices of T is also the verlices of Vihere V is the vertex
set of G).Again we have from Lhe theorcm 4.1, A total dominating set T of G is a
Lg.d. set if and only if for cach vertex ve V there exists a vertex ue T such thal v is
not adjacent to v.Since any vertex of T is also the vertex of V so, A total
dominating sct T of G is a tolal global dominating sct of G if for each verex veT
there exist a vertex ue T such that v is not adjacent to u.0

Theorem 4.6: A total dominating set T will be a tolal global dominating set Lhen
the number of vertices of T2 4.

Proof: We know from the theorem 4.5 that a total dominating set T of G is a total
global dominating sct if and only if for cach vertex ve T Lhere exist a vertex ne 'l
snch that v is not adjacenl 1o v. Since T is a t.d.set so T has at least two vertices
which are adjacent. So by theorcm 4.5 it is not t.g.d set. If T has three vertices then
they are connected because T has no isolated vertex. So there is one vertex which
has no nonadjacent vertex is T. S$o by theorem 4.5 . T is not a Lg.d.set. So the

t.d.set T will be t.g.d.set if and only il number of vertices of T24.
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Casel: Since T is a total giobal dominating set so by definition of t.d. selthe .
induced subgraph <T> has no isolated vertex.Hence the vertex nnmber of I is
greater than one.

Case2: Let T has two vertices. Since the induced subgraph <> has no isolated
vertex so the two vertices are adjacent to each other. But we know from the
theorcm 4.5 ,a tolal dominating sct T is a total global dominating sct if and only if
for each verlex ve T there exist a vertex ue 1 such that v is not adjacent to u,which
is coniradiction ,So, (he number of vertex of T is greater than two.

Cased: Let T has Lhree vertices which arc u, v and w. Since the induced subgraph
<T> has no isolaled veriex so, any onc of the three vertices is not isolated vertex.
Again, let u is not adjacent to v then w is must adjacent to v and u otherwise (here
exist a isolated vertex, Which is contradicts the theorcm 4.5.Hence,the nunher of
vertices of T is preater than three.But, il I has 4 vertices then wc can easily sec
that any vertex of T has a nonadjacent vertex in T,

Therefore, we say that from the above three cases, the number of vertices of
T=4.0

Theorem 4.7: Any connected graph G has a connected complemnent if cach
vertex of G has at least onc non adjacent vertex in G and at fcast one verlex in G
which has at least two non adjacent vertex in G. Whenp > 3,

Proofl: Case(1): Letl any vertex u of G, which has no nonadjacent vertex in G.
Therefore u has not any adjacent vertex in G . Hence u will be isolated vettex in

7 and G will be disconnected.
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Case{2):Apain, any connected graph |p>3] has at least one vertex which order is
two, Now, if G has no any vertex which has at lcast two non adjacent veriex then
in G there is no any vertex which has order two. So, G will be disconnected.

Therefore we have [romn the above two cascs, any connected graph (G has a
connected complement if each verlex ol G has at least one nonadjacent veriex in G
and at lcast one verlex in &G which has at least two non adjacent vertex in (G. When

p=3.
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CONCLUSION

This thesis is devoted to the domination theory in various aspects in graphs. The
concept of dominating sets introduced by Ore and Berge currently receives more
attention in Graph Theory. The domination theory has gained due to the inspiring
contributions by eminent graph theorists as E. J. Cockayne, S. 1. Hedeniemi, R. C.
Laskar, P. I, Slater, E. Sampathkumar, ¥. R. Kulli, B, Janakiram elc.

In the first chapter, we have presented (he necessary graph theorctic definitions
and carlier works on the domination theory,

In the second chapter. we have obtained a relation between the domination number
of cycles with the nonbondage number of cycles. By using various relations of
nonbondage number of graphs we have also established some relations among the
domination number, dogrees of varicus graphs and trees of spanning subgraphs.
We have also extended some graphs by illustration for some standard graphs.

The concept of connccted domination number has been introduced in chapter
three. In this chapier we have compared some graphs between the connected
domination nuinber & the domination number of graphs |

For example: #{(7) < «r, . (G) . Also we have found out some bounds for connected

graphs.

The fourth chapter deals with the total global dmnination number of graphs. We
have exhibited the various relations among domination number tota! domination
number, global domination nnmber and total global doinination number of graphs.
In future, one can proceed about connected domination number. global domination

number and total global domination nnmber of graphs by using algorithms .
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