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INDEX,OJ<' SYMBOLS.,

- thc vertex set of a graph G

- the edge sct of a graph G

- respectively denote the path, cycle and complete

graph urn verticcs.

- complete hipartite graph.

- set of all vertices adjacent to u

- the closed neighborhood or a vertex u,

that is, {u}uN(u)

- the length of the shortest path from u to v,

set of all verlices v in (jwith d(u , v) = 2,
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- !he greatest integer not exceeding x

- thc least integer not less than x

- 5ubgraph induced by a subset S 01'\'(0)
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- maximum d~gree of G

- domination number 01"G
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- the independent domination number of G
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- nonbondag~ number of a graph G

Vit



Acknowledgements

I take this great opportunity to express my profound gratitude and appreciation to my
supervisor Dr. l\ild.Elias. His generous help, guidance, constant encouragement and
indefatigable assistance were available to me at all stages or my research work. I am
highly grate1'ul to him for his earnest feeling and help in malters concerning my
research work.

J express my deep regards to my re~pectable teacher, Dr. Md, Mustafa Kamal
Chowdhury. Professor and Head, nepartment of Mathematics, Bangladesh
University of Engineering and Technology for providing me help, advice and
necessary research facilities.

I also expre5S my gratitude to my teachers i\fr, Md, A. K. Hazra, Mr. Md.
ObaycduItah and Or, Md. Alxlul Maleque of the Department of Mathematics,
Bangladesh University of Engineering and Technology for their cooperation and
help during my research work.

J would like to thank. Prof. Dr. Md, Shahabuddin, Depanment of Related Subjects,
Ahsanullah Universiry of Science & Technology for his valuable advice and also the
colIeub'Uesof illYdepartment for their cooperatIOnduring my research work.

Finally r wish to express my thanks to Mr. Khandker Farid Uddin Ahmed who has
given help for the successful completion of this work.,

VIII



ABSTRACT

A set D of vertices in a graph G = (V, E) is a dominating set of (j if every vertex in

V-D is adjacent to some vertex in D. The domination number of G i, the minimum

cardinality taken over all minimal dominating sets in G and is denoted by y(G). The

nonbondage number of a graph G is the maximum cardinality among all sets of

edges X <;; E(G) such iliat y(G~X)=y(G) and it is denoted by bll(G).IIIth~ same way,

we call define total dominalJon number, eonnect~d domination number, global

domination number and total global domination number of graphs. DilTerent types of

methods arc available depending on types of the problems. Some exact values for the

nonhondage number of graphs arc found. Upper bounds are ohtained for nonbondage

number of a graph and the exact values ure determined for s~v~ral c1asse<;of graphs.

\Ve have illustrated with examples some various results for the connected

domillation number of graphs of standard graphs with better explanation.The exact

values of connected domination nnmber and global domination number for somc

standard graphs are calculated with the help of methods used by Kulli,

Shampathkumar, Janakiram etc, We hav~ abo establi,hed some theorems relaled

with the total global domination number of graph"

In order to minimize the direct communication links among the transmitting stations

under communication networks where maximum number of links that should be

dropped to aeeompli,h this task is the nonboodage of a graph.

In th~ similar way we can also apply eonnect~d domination number and total global

domination number in various 'ways.
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CHAPTER ONE

INTRODUCTION

The theory of dominating sets, introduced formally by Ore [27] and Berge [5], b

currently reeeh'ing much attention in the literature of graph theory. Berge ~alled

the domination as external &labilityand domination number as coefficient of

extema(stahility. Ore introduced the word domination in his famous book 'Theory

of Graphs' published in 1962.This concept lived almost in hibernation until 1975

when E, J. Co~kayne and S. T. Hedelniemi [13] published their paper 'Towards a

theory of Domination in Graphs' which appeared in 'Networks' in 1977. This

paper brought to light new ideas and potentiality of being applied in variety of

areas. A well known problem involving dominating sets (often called the five

queen's problem) i&to determine the smallest number of queen's which can be

placed on a chessboard so that eve!) square is dominated by at least one queen.

Thc evolution of domination in graphs has been supported by hundreds of

researchers. Hedetniemi wrote, "It has been said, " fear i" to domination as love is

to dominion". I have often wondered if we should have changed this term

domination, but we accepted Ore's terminology. I can't help thinking that we

would have sent a more positivc message to researchers in this field had we

changed Ore's terminology to the domination number of a graph". S.T.Hedetniemi

and R.Laskar attributed the following factors to the growth in the number of

domination papers [20]:

a) the diversity of the applications to hoth real-world and other mathematical

covering' or 'location' problems,



h) the wide variety of domination parameters that can he defined,
".-~- -".~,~

c) the NP-complcteness of the basic dominatioo problem, its close natural'

rclationships to other NP-complete problems, and the ~ubsequent ioterest In

finding polynomial time solutions to domination problems in spel:ial classes of

graphs.

Application of domination in communkatiOIlnetworks have been discussed hy C.

L. Liu [25], P. J. Slater [34J. There are, numerous papers on various aspects of

domination theory.

The domination theory has gained due to the inspiring contributions by eminent

graph thcorists as C. nerge, E. J. Cockayne, S.T. Hcdetniemi, R. C. La~kar,R. B.

Allan, P. J. Slater, E. Sampathkumar, V. R. Kulli ctc.

in the second chapter, we have discussed about the nonbondage number of graphs.

We have extended some proofs of the theorcm given in [22]. Some upper as \\'ell

as lower bounds for nonbondage number of graphs have been obtained. Some

exact values are also obtained in this chapter.

Chapter three deal~ with the l:onneeted domination numbcr of graphs. In this

chapter, we have found some upper and lower bounds for connected graphs. Some

exact values are also found.

In the final chapter, the conccpt of total global domination number has been

introduced. Some alternate proofs of totul global domination number for some

standard graphs have been obtained.

Now we present the basic definitions and notations which are used in the

sub,equent chapters. For any undefined terms. we refer F. Harary [I III

Weconsider only finite undirccted graphs with neither loops nor multiple edges.

2
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Graph:

A graph G consists of a set V ofver!iees and a collection E (not necessary a set) of

unordered pairs of vertices called edges. A graph is symbolically represented as

G = (V, E) .The order of a graph is the number of its vertices. and it size is the

number of jts edges .If u and v are two vertices of a graph and jf the unordered

pair {u, v} is an edge denoted hy e. we &aythat e joined u and v or that it is lliI

edge between u and v. In this cases, the vertices u and v arc said !o he incident on

e and e is incident to hoth u and v. Two or more edges that join some pair of

distinct vertices arc called parallel edge..•.An edge represented by an unordered

pair jn which the two elements are not distind is known as a loop. A graph with no

loops is a multigraph. A graph with at least one loop is a pseudograph. A simple

graph is a graph with no parallel edges and loops.

Isolated vertex, end ,'ertex and support:

A vertex of a graph G is called an isolated vertex of G jf it has degree zero. A

vertex of degree 1 is called an end vertex or pendent vertex. Any vertex \\'hieh is

adjacent to a pendant vertex is known as a support.

Adjacent vertices, neighborhood sets:

Two vertices joined hy an edge are said to be adjacent or neighhor,;. The set of all

neighbors of a fixed vertex u of a graph G is called the neighborhood set of u and

is denoted by N(u).

Tbe open neighborhood of u is

N(u)= {v E V: u, v E I}

lliIdthe closed neighborbood of u is

N[u'l = {u} uN(u).

For a &etS of vertices, the open neighborhood ofS is defined by

N(S) = UN(u) .
.,,,
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Subgraphs

Let G be a graph with vertex set V(G) and edge set E(G), Then a graph H is called

a subgraph of G if VCR) <;;; V(G) and E(H) <;;; E(G). In this case, G is called the

super graph ofH.

G

Fignre-l.I

H is a subgraph orG and G is the super graph ofH.

Proper suhgraDh:

II

lfB c G but V(H) ~ V(G) or E(R) ~E(G), then H is called a proper subgraph of

G. From the figure J.1, we see that H is the proper sub graph of G.

Spanning suhgrapb:

Let G be a graph. lbenll is called a spanning subgraph ofG ifH has exactly the

same vertex set as G. From the figure-I. I, H is a spanning sub graph of G.

Induced sllbgrapb:

Let U be a non-emply subset oflhe vertex set VofG. Then the subgraph G[U] of

G induced by U is a graph having vertex. sci U and edge set consisting of those

edges orG that have both ends in U.

Similarly let F be a non-empty subset of the edge set E of G. lben the Subgrapb G

[FJ of G induced by .1' is a graph whose vertex sci is the set of ends of edges in F

and whose edge set is F.

"
G

Figure- J.2

, e,

" " ""
'" e, e, "

" " "" " " GlFJ
G[li]

4
GrUJ and G[F] lor U={VIY2Y4Vj vo) and F = {el.c3.e6.e7.ed



Vertex deleted and edge deleted subgraDh:

Let UEV(G). Then the induced subgraph < V(G) - {u} > denoted by G- U i, a

subgraph or G obtained by the remnval nfu.

Ifc E E(G),then the spanning subgraph ofG with edge set E(G)- {e}denoted by

G - e is the subgraph of G obtained by the removal of e.

For the graph G of Figure-1.3, the followings are the vertex deleted and edge

deleted subgraphs.

"G (l)Ci-V (2) G-F
Figure-I 3

(J) G-U , where U={ V2, V3} and (2) G-F where 1'= {el, C4, eo}

Figure (I) is a vertex deleted and (2) is a edge deleted subgraphs nfG.

The minimum and the maximum degrees of vertices of a graph G are denoted by

8(G) and I1(G) respcctively.

Complete graph:

A simple graph G in which cach pair of distinct vcrtices is joined by an edge is

called a complete graph ofG.

Thus, a graph G with p vertices is complete if it has as many edges as possible

provided that thcre are no loops and no parallel edgcs.

Ifa complete graph G has p vertices VI,V2, vp, then

G= {(v; ,V}): v, ;tv) ; ij = 1,2,3, p}.

-rbe complete graph of n vertices is denoted by Kn.

5



1 edge

• •
K,

3 edges

10 edges

Figure 1.4 "[be complete graphs on at most 5 vertices,

Null graph:

6 edges

A graph of order n and size zero is called a null graph or totally disconnected

graph, and i~ denoted by Kn, Thus E(Kn) ",,p.

K, '['he following arc the examples of null graph upto the order five,

(1) K, :. - - - ..(2)K,:. (3)K):_, _
.-- ,.

(4) K,: .' • (5) Ks: •
•
•• •

Every vertex of a null graph is an isolated vertex. Further a graph of order n IS

a null graph if and only if it is a regular graph of regularity zero.

6 •



Bipartite Graph:

An empty graph is a graph with no edge~. A simple graph G is called bipartite if

its vcrtex set V can bc partitioned into two disjoint non-emply subscts Vj, and V2

(i.e., VI v V2 = V and Vj n V2 =~)such that each edge of G has onc end in VI

and one end in V, so that no edgc in G connects either lwo vcrtices in VI, or t\VO

vcrtices in V2. The partition V = VI V V2 is called a biparlition ofG.

Figure-1.5

Figure-1.5 is a Bipartite graph,where VI={VI,V2,Vl}and V2={Uj,UbU.l}

Hamiltonian Graphs:

A Hamiltonian path in a graph G is a path which contains every vertcx of G. A

Hamiltonian cycle (or HamiHonian circui!) in a graph G is a cycle \'"hich contains

every vertex MG. A graph G is ealled Hamillonian if it has a Hamiltonian cycle.

VI e V2

I'igure-1.6

7



rrom the figure-I.6, C= V(V2VJV4VjV{i is a Hamiltonian cycle and it contains all the

vertice~of Fig-I.6 , so figure-I.6 is a Hamiltonian cycle.

Complete Bipartite Graph:

A complete bipartite graph is a simple bipartite graph G, with bipartition

V =V1vV2 in which every vertex in VI. is joined to every vertex in V2.IrV] has m

vertices and V2has n vertices, such a graph is denoted by Km.n _

VI l

Figure-J.7

The tigurc-1.7 is a complete bipartite graph with bipartition V=V]vV2, wht:re

V]={vl,v:d and V2={v2,v4,vsl.

Complement ofa graph:

1be complement G ora graph G is the graph with vertex set V (G) such that any

two vertices are adjacent in (; irand only if they are not adjacent in G.

Connected graph:

A graph G is said to be connected if every two vertices of G are eOlllleeted.

Otherwise, G is a disconnected graph.

Lei qu) denote the set of all vt:rticcs In G that arc connected to 11. Then the

~ubgraph of G induced by II is called the connected wmponcnt containing u. A

maximal connected subgraph of G is a l:omponcnt uf G. Thus, a disconnecled

graph has at least two wmponents. The number of componenls of G is denoted by

ro(G).

8



(a) G

.Figure-l.8
(h) G

<
TnFigure 1.8(a), G is a connected graph and in Figun: 1.8(b), G' is a disconnected

graph.

Distance of two ,'ertices:

The distance dell, v) bdween two vertices u and v is the length of a &hortest

distance ll-Vpath in G, If there is no u - v path in G. then we define d(lI, v) = O.

Second neijhborhood:

Ify is a vertex ofG, then we dcfme the ,econd neighhorhood Nz (v) ofy as

N2 (v) = {u: U E V(G) and d(lI, v) = 2 in G}.

In vie\\, of this, we also write N1 (v) for N(v).

Walk in a graph:

Ld G be a graph. Then a walk in G is a finite sequence

whose terms arc alternately vertices and edges such that, for i '"'1,2 k, [ht: edge

e, has ends Vj.b and V1.

The above walk W is a walk from origin v" to terminus \'k. The integer k, the

number of edges in the walk, is called the length of W.

9



Figure-1.9

For example, in the graph G of Figure 1.9,

In other words, the number of edges in W is called the length of W. If the

sequence of W consists solely of one vertex, i.e., W = vo,then W is a trivial walk

with length O.

Trail of a graph:

lfthe edges el,el, ek of the walk,

are all distinct. then W is called a trail.

In other words, a trail is a walk in which no edge is repeated. In the graph G of

Figure 1.9,

is a trail of length 4.

10



Paths ofa graph:

If the vertices of a \\'alk

are all distinct, then W is called a path, A path with n vertices is denoted by Pn

which has length n- I.

In other words, a path is a walk in which no vertex i~ repeated.
w

Figure-l.lO

From the above graph we have a path P= velwe2ue3x. Thus, in a path no edge can

be repealed either, and so every path is a trail. 1l1e converse of this statement is

not true.

Cycle of a graph:

A non-trivial clo~ed .trail in a graph G is called a cycle if its origin and internal"

vertices are distinct. In detail, the clo<;edtrail

is a cycle if

(i) C has at least one edge and

(.,1) .'( d ..VIY2 ,vn arc ill lstmct.

1 !



A cycle of length k, i.e" v.ith k edges. is called a k -eycle is called odd Of even

depending on whether k is odd or even. A 3-cyeJc is often called a lrianglc.

A cycle with n vertices is denoted by Cn.

Remark: A u-v walk is called closed or open according as u=v Of U •• v. The

vertices ""VI, ,Vk.1in the walk

are called internal vertices. In the graph G of hgure 1.9, C = ve~we"uclv is a

cycle.

Acyclic graph:

A graph G is called acyclic if it has no cycle.
u v w

,
Figure-l.l1

Figure 1.11 is an acyclic graph.

Tree of graph:

Let G bc a graph. If G is a connected acyclic graph, then it is called a tree .

•
I vertex

.•~-----•.
2 vertices

3 vertices

5 vertiecs

4 vertices

5 vertices

Figure 1.12: Trees with at most five vertices.
12



A tree on n vertices is denoted by T" , which has exactly two pendenl veniccs.

Join ofa graph:
Let 0] and O2 he two graphs with vencx sets V] and V) and edge sets E] and E2
respectively. Then their join O[ + G2 is a graph whose vertex set is VI U Y2 and

edge set EluE2={uv: u"'Y]&VEY2}.

ww

,

01 +G2

I'igure-1.l3

Wheel of a Graph:

A wheel is a graph obtained from a cycle by adding a new \'enex and edges
joining it to all the vertices of the cycle.

A wheelwith n verticb is denoted by W",and W"=K] + Cn+1
Connectivity of a Graph:

Ibe connectivity k of a graph G is the IllIllnTIumnumber of \'eniccs who~e

removal results in a disconnected {Jrtrivial graph. !\ graph G b said to be n _

connected if k ~ n.

1J



Edge CODnectivity:

The edge connectivity t. of a graph (j is the minimum number of edges whose

removal results in a disconnected graph. A graph G is said to be n~cdge connectcd

Matching of a Graph:

A subset M of edges of G, is called a matching if for any two cdges e and fin M,

thc !\vo end vertices of e are both diffcrent from the two end verticcs off.

"

Figure-1.J 4
In the graph GofFigure 1.14, M1= {CI.c21 and M, = {Cl, e3, e} are both matching.

Saturation:

Lei G be a graph and let v EO V(G). Then if\' is the end vertex of some edge in the

matching M, then v is said to be M - saturated and we say" M saturates V...

Otherwise, V is M - lUlsaturated. Thus, in Figurc 1.12, a, 11, e and e are all Mj-

saturated while f and d are both MI -unsaturated; every vertex of G is M,

saturated.

14



Perfect Matching:

If M is a matching in G such that every vertex of G is M -saturated. then M is

called a perfect matching. The matching M2= (el,eJ.e4) of Figure 1.12. is a perfect

matching.

Independent Sets:

1\ subset S of valices in a graph G is said to be an independent set of G if no two

vertices of S arc adjacent in G. An independent set is maximum if G has no

independent set Sl with ISII > lSI.

An independent set A maximum independent set

Figure 1.15 Independent set and maximum independent set.

A set S of edges of G is said to be independent if no two of the edges in S arc

adjacent.

Independent Number:

The maximum number of vertices in an independent set is called the independent

number ofG and is denoted by ]3~(G),

Edge Independent Number:

The maximum cardinality of an independent set of edges of 0 is called the edge

independent number of G and is denoted by ]31 (0), which is also called the

15



malching number or G. Thc mlnlnlUm matching number BI(O) of G, is-the

minimum munber of edges in a maximal independent edge sct.

An edge analogue of an independent set is a set of links no lwo of which are

adjacenl, Le., a matching.

Covering of a Graph:

A subset K of vertices in a graph G such that every edgc of G has at least one end

in K is called a covering or G .Thc number of vertices in a minimum covering of

G is called the covering number of G and is denoted by uo(G). The edge analogue

ofa covering is called an edge covering.

(I)

(2)

Figure-l.16

In .Fig-1.16, (1) A covering and (2) a maximum covering (Shown by the white

vertices)

An edge covering of a graph G is a subset L of edges of G such that each vertex of

G is an end of some edge in 1. The edge coverings do not always exist. The

16
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number of edges in a minimum edge eowring of G is denoted by UI(G). The

number ctl(G) is called the edge covering nwnber ofG,

Definition:

Ifx is a real numbeLI xland LxJ denote respectively the least integer notle~s than

x and the greatest integer not greater than x.

Now we present the following definitions of various types of domination in a

graph.

Dominating Set:

A set 0 cV is said to be a dominating set in G if every vertex in V _D is adjacent

to some vertex in D. "lbe domination number of G i~ the minimum cardinality

taken over all minimal dominating sets io G and is denoted bv y(G).

b

, d

Figure-I.17

In figure 1 17, D={ a,c} i~ a dominating set.

17



Independent Dominating Set:

A dominating set 0 ofa ~,'raphG is called an independent dominating set ofG ifD

is independent in G. The eardinalil} {lfthe smallest independent d{lminating set of

G is called the independent domination number (lfG and is denoted by y;(O).

" b ,

g

d

Figure-I.18,

Here D=f a,d} is an independent dominating set.

Total Dominating Set:

A dominating set 0 of a graph 0 without isolated vertices is called a total

dominating set of G if the subgraph G[O] induced by 0 has no isolated vertices.

The eardinali!y of the smallest tolal d{lminating set of 0 is called the total

domination number ofG and is denoted hy "fc(O).

Connected Dominating Set:

A dominating set D {If a connected graph G is called a connected dominating set

of G if O[D] is eonnec!ed. The cardinali!} of the smallest connected dominating

set of G is called the e{lnnccted domination number of G and is denoted by yJG).

For any connected graph G with Ll(G) < n - 1.

I 8



y(G),,; y, (G) ,,; yJG) .Total dominating ~ets were first delined and studied by

Coekayne. Dawes and Hedetniemi [16]. In addition to several new results

involving total domination.

Bondage Number:

The bondage numher beG) of a nonempty graph G is the minimum cardinality

among all sets of edges E for which

y(G -E) > Y (G).

Thus. the bondage number of G is the smallest number of edges where removal

will render every minimum dominating set in G a "nOll-dominating" set in the

resultant spanning subgraph.

Sinee the domination number of every spanning subgraph of a non-empty graph 0

is at least as great as y(G), the bondage number of a non-empty graph is \vell-

ddined.

CObondage Number;

The eobondage number eb(G) ofa graph G is the minimum cardinality among the

seb of edges X t;;;; P2 (V) - 13,where

P~(V)= {X<;;;V:IXI = 2}

such that y(G + X) < y(G). A Y - set is a minimum dominating set.

If we compare y(G) and y(H), when H is a spanning subgraph of G, it is immediate

that y(H) cannot be less than reG). Every connected graph G ha~ a spanning tree T

with y(G) '" yeT) and so, in general, a graph will have non-empty sets of edges

F c;;; E lor which y(G - 1') [(0). Such a ,et F will be l:alled an inessential set of

edges in G.
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Howcver, many graphs also posscss single edgcs e for which y(G-e) > y(G).

The bondage number beG) of a graph G is the minimum cardinality of a set of

edges of G ""'hose removal from G results in a graph with domination number
larger than that ofG.

J.F, Fink, M.S, Jacobson, L.t', Kinch and J. Roberts [8J, introduced the bondage

number b(G) of a graph G. In [8], Fink et a!. have obtained sharp bounds for b(G)

and the exact values of b(G) for several classes of graphs have also been

determined.

Nonbondage Number:

The nonbondage number of a graph G is the ma"imum cardinality among aJi sets

of edges X c E(G) such that y(G-X)= y(G) and it is denoted by bn(G).

Total Global Dominating Set and Total Global Domination Number:

A total dominating set T of G is a total global dominating set (t.g.d set) ifT is also

a total dominating set of G. 'lbe total global domination number y,g(G)of G is the

minimum cardinality ora t.g.d. sel.

V.R Kulli and B. Janakiram 122Jhave obtained the following theorem and

corollary of some standard graphs.

Theorem 1.1 For any graph G,

b,,(G)=q-p+y(G).

Theorem 1.2 :For any graph,

y(G)S;p-~(G).
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Corollary 1.1: For any graph G,

When !leO) is the maximum degree orG.

Theorem 1.3: For any sub-graph H ofG,

Lemma 1.1: For any connected graph G,

Where diam(G) i~the diameter ofG and rxlis the leas! positive integer not less
than x.

Corollary 1.2: IfG is a Hamiltonian graph.

then bn(G);:>:r~l.
Theorem 1.4: Let 0 he a unicyclic graph ify(G) = P

2

then h,,(G);:>:!l(G).

E.Sampathkumar and H.B. Walikar [31) have obtained the following

theorem, proposition and corollary of some standard graphs.

Proposition 1.1: for any connected b'TaphG.

'y(G)"; Cloo/G).

Proposition 1.2: Let G be any graph and H he any spanning subgraph ofG.1ben

every dominating set of H is also a dominating set of G, and consequently

y(G)"; y(H).

21
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Corollary 1.3: Let G be a connected graph and H be ,my connccted spanning

subgraph of G. Then every connected dominating Sel of H is also a connectcd

dominating sct ofG, and hence O:ooc(G)S;O:'lOC(H).

Propositions 1.3: For any connected graph G of order p;::3,

o:ooc(G)S;p-2 and the bound is best possible.

Lemma 1.2: For any connected graph G of order p with maximum degree 1\.,

Y(G)e:[-'--j Where [xl denotes the grcatest integer S;x.
Ml

Theorem 1.5: F(Jr any connected (p,q) graph G \\.ith maximum degrcc 1\.,

["'~ IJ S; O:ooo(G) S; 2q-p -------.------------ (1)

The lower bound in (I) is attaincd if and only ifG has a vertex of full degree (Le. a

vertex of degree p-l), and the upper bound is attained if and only ifG is a path.

Theorem 1.6: Let G be a connccted graph of order p e: 4 such that both G and G

are connected.Then, Uooc(G) + au"" (G) S;p(p-3) (a) The bound is

attained if and only if G=P 4

V.R.Kulli and B.Janakiram[23[ has obtained the following theorem of

some standard graphs.

Theorem].7: A total dominating set r of G is a t.g.d. set if and only if for each

vertex VEV there exist" a vertex llET such that v is not adjacent to ll.

Theorem 1.8: Let G be a graph such thaI neither G nor G have an isolatcd

vertex. Then,

(i) y,g{G) = Ytg(G);

(ii) (ii) YI(G) S;Ytg(G);
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(iii) y~(G) ::;y,g(G)~

Theorem 1.9 : Let G be a graph which such that neither G nor Ci havc an isolated

vertex. Then Ylg(G) = P (p is thc number ofvcrtices of G)

if and only it G = r 4 (a path on 4 vertices) or mk2 or mk, where m2:2.

Tbeoreml.lO : Let G be a graph such that neilher G nor G havc an isolated

vertex and T be ay,-set ofG such that each x in 1has non-neighbor in T.lfthere

exists a vertex UEV-T which is adjacent only to verlices in T then,

2]
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CHAPTER TWO

THE NONBONDAGE NUMBER OF A GRAPH

This chapter deals with the m:mbondage number ofa graph. We have found some

cxact values of bn for any graph G and \','e havc given alternate proof of some

standard graphs tor nonbondage number of a graph.

Introduction:

Firs( we define the nonbondage number of a graph.

Definition:

A sel D ofa vertices in a graph G = (V.E) is a dominating set ofG if every vertex

in V\D is adjacenl to at leasl one \'crtex in D. The domination number ofG is the

minimum cardinalily of a dominating set ofG and we represent i( by y(G),

The nonbondage numba of a graph G is the maximum cardinality among all sets

of edges X <;;; £(G) such that y(G-X) = y(G) and it is denoted by h,,(G).

Example:

l.1f G is a path of four vertices then bll(G) = 1.

VI'hcnthe verticcs of a path is less than or equal to three, then hn(G) = O.

2. From the following graph wc have the domination number y(G) = I.

\'.1

Ifwe remove the edges e2and c, then the domination number has no change. Rut

if we remove any other edgc with the edges e2 and CJthen (he domination number
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is greater than one. lberefore, when X"-{el,el } then y(O-X) = y(O). Hcnce

bn(G) = 2.

There are various applications ofthc nonbondagc number of a graph .The one that

is discussed most often concerns communication networks ,This is an arrangement

of establishing a link between two or more sites come under some region. We

wish to select the smallest set of sites at which to set up transmitting stations so

that every site in the network that docs not have a transmitter should rcccive

communication by a direct communication link to one that does have a tran&mitter.

Let the sites represent the vertices of a graph and let the communication Iinb

between the sites represent the edges in the graph. By keeping the trlllsmitting

s!.ation fixed minimize the direct communication links in the network. The

maximum numher of such links that should be dropped to accomplish this task is

the nonbondagc number (Ifa graph.

We have illustrated already established proof with better explanation for

various standard graphs from [22] of \1, R. Kulli and B. Janakirllm with
examples.

Theorem 2.1:For any graph G,

bo(G)=q-p+y(O)

Where q is the number of edges and p is the number of vertices 01'0.

Proof: Let X be a y-Set of G. .For each vertex UEV\X, choose exactly one edge

which is incident to u and to a vertex in X. Let Ej be the set of all such edges.

Then clearly E-E1 is a bo-Set of G. Since number of cdge of E1 is equal to the

number ofvcrtice&UEV\X. So \\'e have number of cdge of

E1 = V - X= p-y(G).

25
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bn= number of edges ofE - number of edges ofEI = q- {p-y(G)}

=q-p"y(G). "

Example:

The above graph has ~even edges and six vertices and the domination number is

two, then nonbondage number bo(G) =- q - p + y(G} = 7 - 6 + 2 = 3.Ifwe remove

the edges el. e4, and eo from the graph then the domination number "",illnot

he changed.

Corollary I.U: For any graph G. bo(O) s; q - I'>.(G)

where li(G) is the maximum degree ofG.

Proof: Sinee 1'>.(0) is the maximum degree of G so to get the domination

number,we can take various dominating set~ . Among all the dominating sets to

get domination number, vertex of maximum degree lllUStbe included. Again for

eaeh vertex VE V\O, choose exaclly one edge which is incidenl 10 v and to a vertex

in dominating set D. Let E[ be the set of all such edge~. Thcn dearly E _ EI is a

nonbondage set ofG and li (G) S;number ofedge~ ofEI .

li(G):s;IE,1

Again, since hn =IEI-IE,I

bJ)S;q-I'>.(G) ISillce~\(G):s;IEdandq='EII lJ
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Example:
We have from the following graph,

the number of edges q = 5,the nonbondage number, bn(G) = 2 and the maximum

degree A(G) = 3.

Therefore, 2= 5-3

:. bn(G) = q - A(G).

Theorem 2.2: For any graph,
y(G);;;;p-A(G).

Proof: We have from the Theorem 2.1 and Corollary 2.2

q - p + "((G);;;; q - A (G)

or -p+ y(G);;;; -A(G)

or p-y(G)21'!.(G)

therefore, y(G},.;p- ,",(G). D

Theorem 2.3: For any sub-graph H ofG,

bnCH);;;; bn (G) .

1'roof: Sinee every nonbondage sct of H is also a nonbondagc sel of G. We know

bn(G) is the maximum cardinality among the all sets of edgcs X<;;;E such that

V (G-X) = V(O). Sinee H is the subset ofC so, botH);;;;b,,(G).D

Example: From the following graphs we have H is the sub graph of G.

G 27
H

Here bn(G) = 3 and b,,(H)= 2, therefore bn(H)<bn (G) .



Henee

Lemma 2.1: For any connected graph G,

Where diam(G) is [he diameter of G

Proof: We know the diameter of G is the max {d(u,v) : U,VEV}

LeI P, be the path of diam(G) +1 vertices

So k = diam(G) +1 ----------------- (a)

TIlen by Theorem 2.1 the nonbondagc number ofP, is

= - 1 + y(Pk)------------ [Since for any path p = q+ 11

Again we have from Theorem 2.14, y(l\) = r~1
bn(l'0=-1+ rfl

= -I+f d;a~G+l1[by(a)]

rdi"m(G)-'1bn(Pk)= 3 -----------------(b)

Since 1\ is the subgraph ofG so by [he Theorem 2.3 we have,

bn(Pk) ~ bn(G)

rdiam(U)-21Thcrefore, 3 ~b"(G) [from-b] 0



Example:
, " " v) " "

" ;

" e, v,
G

From the aboYe graph, \','e have dimn(G) ""2

Th' _d_i"_m~(_Gc)_-_2 2-2 0erelOre =--=
3 3

Here nonbondage number bn(G) = 3

Corollary 2.3.1: If G is a Hamiltonian graph,

then bLl(G)~r~l
Proof: A graph G is called Hamiltonian graph if it has a Hamiltonian eycle.Let Cp

be the Hamiltonian cycle fp is the number of vertex of C] therdbre Cp is the

spanniog subgraph ofG.

Since Cp is a subgraph oro so we have from the TheoremI2.3],

bo(Cp):-; bn (G) --------------._ (a)

Again by the Theorem 2.1, we have

bn(Cp) = q-p+ "f(Cr) [Since for any cyclc p = ql

:. bn(Cp) = "f(Cr) -------------------------(b)
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But we know from Theorem 2.14, y(Cp) = I~l
Henee bn(Cp)= f~-I rfrom (h)]

So from Ca) and (h) we have,

bn(G) 2 bn(Cp) = f;l
:. bo(G) 2 f;l 0

Example:

~o "
" "
~, <,

G

"

Case-J :Here the graph G is a Hamiltonian graph with 6 vertices and bo(G) = 5

Case-TI: If we remove the edges e) and es from the graph G then we have the

following graph Gl.

"
e, "
" "~



and this graph G1 is a Hamiltonian graph its nonbondage number b,,(Gll = 3,

Therefore, bo(GI) >1; 1
CasellI: If we remove the edges e7.e~and e9 from the graph G then we have the

following graph G2.

"

"

and this graph G2 is a Hamiltonian graph its nonbondage number b"(G2) = 2.

Therefore, bn(G2l = 1;1.
SQ,we have Irom the above three eases, bl\(G)2:1; 1.0
Theorem 2.4: Let G be a unicyelie graph ify(G) = i
then bL/G) 2:~(G).

Proof: We know bn(G) = q - p + y(G) rby Theorem 2.1 ]

= y(G) ISince for unicyclic graph p = qJ
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Therefore q = bn(G) + bnCG),

Supposc bn(G) < /';(G),

then q < b,(G) M (G) :s;bJl(G)-'-q-bn(G) [by cor:2J.l]

q < q a contradiction

Hence

Example:

b,,(G)e: /'; (G). 0

"

From the above graph wc have the domination number y(G)=2=~ '= P and it is a
2 2

unicyclic graph.

Here bn(G)=2 and /,;(G) = 2

Theretbrc biG) e: /'; (G).
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New developed theorems:

Lemma 2.2: For any cycle Cp,

Proof: Since for any cycle p = q

:. p-q=O

But we have from Theorem[2, 1]

bn(Cp) = q - p + y (Cp)

bn(Cp) = y (Cp) D

Example:

Co
From the aboYe graph we have 'I (CIi) = 2, bn(C6)=2

Lemma 2.3: For any Hamihonian graph G with p vertices [hen,

y (G);:>:4; _q, [where q is the number of edge of G]
Proof: We have from TheoremI2.1]

biG) = q - p -'-y(G)----------~----.-------------.--(a)

But we know when G is Hamiltonian then

bn(G);:>:I~l [fmm corollary 2.3, 1]
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:. bn(G) '2 P (b)
3

Therefore by (a) and (b),

Psq-p+y(G)
3

or pS3q-3p+3y(G)

or 4p:$ 3q + 3y(G)

ps%{q+Y(G)}

q+y(G)'2 4:

y(G)'2 4:_q 0

Example:

" " V2

" \'3

"
" "

""
"; " ,

We have from the above graph the dominalion number y(G)=4, vertices number

p=R and number of edges q = 10.

4p _4x8 2
--q---IO=-
3 3 3

Therefore, y (G) '2
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Theorem 2.5: For any unicycle graph 8.(G):s:; IJ..., whcn'(G) = P
2 2

Proof: We have from corollary 2.1.1, for any graph G

bn(G):s:;q - 8. (G) --.--------------- (a)

Wc know for any unicyclic graph p = q

Again bn(G)=q-p +y(G) (From thcorem[2.1])

=q-p+ P rwheny(O)=p]2 2

= p - p + E [Sincc G is unicyclic graph. so p =q]
2

~ P
2

b(G)=P=q
" 2 2

Hence q = bn(G) + bn(G) ---------------. (b)

Supposc bn(G) < 8. (G)

:. q < b,,(G) + 8. (G):s:;b,,(G) + g- bn(G) [from (a)]

:. q < q a contradiction

b,,(G) is not less than 8. (G).

Hence bn(G) ~ d (G)

d (G):s:;bn(G),;;q - d (0) -----[lrom (a)]

or d (0)';; q _d(G)

d(G):s:; ; 0

Theorem 2.6: An edge e = uv is in evcry bJlset nf G and 0 bc the any dnminating

set know orG, thcn either {u,v},;;; 0 Q!:. {u, v },;;;V\D.

Proof: We, the Iwnbondage number bn(G) ofa graph G is the maximum

cardinality among all sets of edges X,;;; E such that y (0 - X) = "fiG).
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Here, e = uv E h,,(G).

Suppose that u E y(G) = D and VE V\D,

Since u bclong& to the dominating set and \"adjacent to u so, when we remove the

edge e from G then u and \' are not adjacent. For this matter, the domination

numher will be increase from the previou~ domination number of G.

Therefore e € b,,(G).

SoJhe edge e '" {u,vj c: D or {u,vj cV\D ......•

Example: From the folJo\,,'ing graph,

G

we have the dominating ~et D '" {VI} and the set of nonbonduge number bn(G) is

{e2, e.l}. Here e2= {vJ,v,} c VID and C3'" {v, , V4}c: VID.

We have also ohtained the following theorem in addition to the nonbondall:e
ntlmber of graphs:

Theorem 2.7: 1fT be a Spanning tree ofa connected graph G then

y(T)2 y(G).

Proof: If we remove one or mnre edges frnm a connected graph G lHere the

vertices of G will be same] then the domination number or the reduced graph will

be equal or greater than the domination number of G. If there is no cycle in G then
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G will be disconneded when we remove any cdge IromG . In that place G '"T,

therefore y(T) = y(G) .---------------------- (1)

Again if G has one or more cycle then to gel T wc remove some edgc from G and

hcnce yeT)> y(G) .---------------------------------------------(2)

So, we have rrom (l) and (2)

y(T)~y(G). 0

Theorem 2.8: If TI ,T2 ,-------------------T" are [he spanning trce of a connected

graph of G then ,F(T I)= E(T2) = ----------------------. = E(Te).

Proof: If we rcmove anyone edge ofa cycle then this cycle will be a tree and [hi"

tree is called a spanning lree of that cyclc . Bul if we remove two or more edgcs

of a cycle then this cycle will be disconnecled graph. So in order to have a

spalUlingIree it is necessary to remove Ont:and only one cdge from a cycle.

Now, if G is a connecled graph and it has X sub-cycle then to have any

spanning tree from G, we must rcmove exactly X edge from G.

Therefore E(TI) = E(G) - X

E(T2)=E(G)-X

E(Tn) = E(G) - X

So, E(ll) = E(T1)= ---------------------__= E(T0). 0
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Theorem 2.9: For any path or any cyck with vertices k then,

Where C, is the cycle ofk vertices and Pkis the path ofk vertices.

Proof: We know, any vertex ofa path dominate maximum two vertices. So, the

domination number of Ph P2 and p] is 1 for each of the three paths. Again the

dominating number orp4, Ps and 1\ i~equal to 2 for each of the three paths. So we

see that when the number vertices of path become 1,2 and 3 then the domination

number of path is 1 in each cases. When the vertices number becomes 4,5 and 6

then the domination number of path is 2 and so on. Therefore. we see that when

the number of vertices is increased by 3. then in each cases the domination number

,,".illbe increased by I and the domination number wjJJ be the same when the

number of vertices orthe paths exits between the duration which range is three and

started II-mil 1 of the first duration.

We have clear idea of the above description from the following table:

Class of vertex number Domination number

of path. of the path.

1---3 -------------------------.-----------1

4 {)-.-------------------.-_ 2
7 9 nnn •••• nnnnnnn.n •• n__ 3
10 --]2 .__...n_____________________ 4

1] -- 15 ....• n ••••• 5

---- ------------- _-----_._--._--------------- .
..... --------------- ------- ------ .
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and so on . Here the range of cJllSStoS of vertices number of path is 3 and [he

domination number of the paths which number of vertices m allY one class is

samc.

Again rx1is the least positive integer not less then x.

lienee y(pk)=rkI31

Similarly we can show that Y(Ck)= 1k/31 [i

Example:

" e,
0, "

"
" "0" ,

; , v,
The above graphs has 8 vertices and 8 edges and the domination number is 3.

Again we have rk/31 = 18/31 = 3 = the domination number Y(l:k).

]9
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CHAPTER THREE

THE CONNECTED DOMINATION NUMBER OF A GRAPH

This chapter descrihes the connected domination numher of graphs and we give

the exact value of connected domination number. In this chapter, we find the

upper and lower bound of some connected graphs find comparing the connected

domination number with the domination number of some graphs.

Introduction:

I'irst \ve define the connected domination number and domination Dumber of a

graph.

Definition: A sub sel 0 of the vertex sd V(G) of a graph G is said to be

dominating set if every vertex of G not in D is adjacent to at least one vertex in D .

A dominating set D is said to be a connected dominating set if the suhgraph <0>

induce by D is connected in G .The minimum of the cardinalities oCthe conm:detl

dominating sets of G is called the connected domination number a.:.oc(G)of G.

Harary ([18]p.97),by rcgarding each vertex as covering itself and two vertices as

cover each other ifthey are adjacent, denote~by aoo(G) the minimum number of

vertices needed to coycr V(G).

Example:

Form the ahove graph we have morc than one connected dominating subgraph,

such as
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''\ v, v,

I,/ • •• " v,v, 'v " "
------------- and so on.

But The connected dominating sub graph which contained

the minimum number of vertices is, •"
Therefore the connected domination number ctooJG) = 2 (Le., the number of

vertices of minimum conneded dominating subgraph of G.).

S. T. Hedetniemi suggested a new parameter in domination theory as follows:

A dominating set D is a connected dominating set if it induces a connected

subgraph in G, Since a dominating set must contain at least one vertex from every

component of G . it follows that a conneckd dominating set exists for a graph G

if and only if G is connected.

The minimum of the cardinalities of the connected dominating sets of G is termed

as the connected domination number of G, amI is denoted aooc(G) .The

connected dominalion number of some standard graphs can be easily tilUnd, and

are given as Ibllows:

(ii) uooc(K p +G) =1, for any graph G.

(i ii) 1
1,if either m or n=1a (K )-ooc m,n - 2 if >2,I m,n_ .
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(iv) IXOOcCCp)==P-2.

(v) For any tree T of order p, O'ooc(T) ==p -e. Where e is the number of

pendent vertices (i.e., vertices of degree I) in T.

(vi) O'ooc(Pk)==K-2.

when Pk is a path ofk vertices. k ~ 3.

(vii) For every complete bipartite graph, domination number and connected

domination number are same and is equal or less than two.

viii) For every complete graph the domination number ==connected domination

number== L

"G

"

(ix) A complement of any complete bipartite graph that will be t\vo complete

graph which are disjoint. So the complement of any complete bipartite

graph has no connected dominating set and its domination number is two.

Example:

Here G be a complete bipartite graph and G i, a complement of G. We scc that

G has no connec!ed dominating set and ib dominalion number is two,

Connected dominating set has been used widely in mulli-hop adhoc net\vorks

(M<\NET) by numerous routing. broadcast and collision avoidance protocols.
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Although computing minimum conncctcd dominating sct is known to bc NP-hard,

many protocols have been proposed to construct a sub-optimal dominating seL

JlO\\'ever, these prutm;o!s are either too l:omplil:ated, needing non-local

information, or not adaptive to topology charge.

We have illustrated already established proof witb better explanation for

various standard grapbs from [31] of E. Sampathkumar and H. B. Walikar

with examples.

Proposition 3.1: For any connected graph G,

Proof: since any conneded dominating set of any connected graph is also a

dominating set so y(O)::; aooc(G). Conver:'>e1y,any dominating set may be or not

connected dominating set. Hence only y(G) ::;a 00,(0) is true.

Example:
v,

e,

G
We havc from the abovc graph G the domination number of it is lv.'o but its

connected domination number is three, Therefhre, 'f(G)$a",,,,(G).

Proposition 3.2: LeI 0 be any graph and H be any spanning subgraph 01'0. Then

evcry dominating sct of H is also a dominating set of 0, and consequently

y(G)::; y(H).
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Proof: Since B be a spanning subgraph of G so the all vertices of H are equal to

the all vertices of G and the number of edge ofB is equal or less than the number

of edge ofG. Therefore every dominating set ofH is abo a dominating set ofG.

Now, Tfthe numher of edge ofB is equal to the number of edge of G then

y(H) = y(G) ------------- --(1)

But if the number of edge of H is less than the number of edge of G then,

y(G) ~ y(lI) ------------- --(2)

So we have from (I) and (2) lor any spanning subgraph I-Iof G, y(G) ~ y(H). [i

Corollary 3.2.1: Let G be a eonneded graph and H be any connected spanning

subgraph of G. Then every connected dominating set of H is also a connected

dominating set ofG, and hence ~.>c(G):$~~" (H).

}'roof: Since H spanning subgraph of G so all the vertices of B is also the all

vertices of G and all thc cdgcs of H is also the edges of G bul E(H) ~ E(G).

Therefore, since connected dominating set ofH is dominate all the vertices ofH so

it also dominate all the vertices of G. Hence any connected dominating set of H is

also a connected dominating set of G_nut the inverse of it is not truc. Because if

we remove some edge of G to get H the numbcr of vertices of connected

dominating set of H is greater than the number of vertice~ of connected

dominating set ofG. Therefore, u"ocCG):$u"", (H).D

Propositions 3.3: For any connected graph G of order p~ 3

a-(G):$ p-2

and tbe bound is best possible.

}'roof: Since G is connected, by a weBknown result, G mu,l have a spanning tree

T. Taking H =T then we get
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cr."" (G) S;ct",,/H) , by corollary3.2.1

But we know for any tree H of order p,

Uooc (Ii) = poe , where e is the number of pendant vertex

cto,,,(G)S;poe

Sinee e 2.2 for any tree, hence aM/G)::; p-2. 0

Lemma 3.1: For any connected graph of order P with maximum degree 8,

y (0)2: [L\: 1] ------------------(a)

Where [xl denotes the greatest integer S;x. The bound (a) is attained if and only if

there exists a minimum dominating set (i.e., a dominating set of cardinality

ctoo(G»)0 of 0 satisfying the following three conditions.

C I, D is independent.

C2. For any vertex u EV - D there exists a unique verkx v'" D such that

N(u) n 0 = {V}, where N(x) denotes the set of vertices adjacent to x.

C3. d(U)=8, for every u"'o.

Theorem 3.1: For any connected graph 0 with maximum degree 8,

[L\~J::;u.,oc(O)::; 2q-p ---(1), where q is the number of edges and p is the

number of vertices ofO.

The lower bound in (I) is allained if amJ only if 0 has a vertex oHull degree (i.e. a

vertex of degree p- J), and the upper bound is attained if and only ifG is a path.

Proof: We know for any connected graph G

"f (0) S;aoo,(G) ,by the proposition 3.1 -----------(2)
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Again we have from lemma 3.1, for any connected graph of order p with

maximum degree LI.,

y(G) ~ [",: I] -----------------------(3)
So we have from (2) and (3)

IToo,(G):::y(G)::: [t..~1]
ITo", (G)::: [--E..-]MI

Again we know for any connected graph of order p:::3,

.'. IToo,:;:;p-2, by proposition 3.3

= 2(p-l )-p, since for any conneded graph, q :::pol

s;2q-p

IToo,:;; 2q-p

We shall now show that (:(00< (G) = 2q-p if and only if G is a path.

We know, for any tree T of order p, IT""" (T) = poe, \\'here e is the number of

pendant vertexes (i.e .. a vertex of order 1).

Since G is a palh so it has exacl1y 1\\'0pendenl vertices.

There/ore, ITooc(G) = p-2

=2 (p-l)-p

= 2q-p, since G is a path so p-l =q

Uooc(G) = 2q-p.

Conversely, suppose that Uooe (G) = 2q-p. Then, sincc G is connected so,
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IToo,(0).'0: p-2, by proposition 33

.. 2q-p.'O:p-2

q.'O:p-l.

Since G is connected, we then sec that q = p-l; hence G must be a tree. But, we

know for any tree a""" (G) = poe. If e > 2, we get

u....,c (0) = poe. < p-2 = 2q-p

aoo, (G) < 2q-p, a e<mlradic!ion.

Thus.e ~ 2. But since G is a tree so, e;:: 2 hence e = 2, This proves that 0 must be

a path. O.

Theorem 3.2: Let G be a connected graph of order p ;? 4 such that both G and (G)

are eonnec!ed. Then aoo,(G) + aooJG) ~ pep - 3) (a)

The bound is attained if and only ifG = P4.

Proof: Since G and G arc both connected. Hence hy the Theorem 3.1 we have,

Where q and q denote the number of edges in 0 and G re~peclively. Thus

aM' (0) + aooe(G ) $ 2q-p+2 q-p

=2(q+ q)-2p

= 2(~)-2P=p(p-3)

It remains to show that the equality (a) holds iCand only ifO=P4
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Thus rroocCG)+ aooc(G) =2 + 2 = 4 = 4(4-3) = p(p-3)

aoo' (0) + a,,", ((i ) = p(p-3).

Conversely, ifthe equality holds in (a). We should have

ctooc(0) = 2q-p and cto''' (G ) = 2q -po So, 0 and G are paths, by theorem 3.1.

Since G is a path So q = p-l again G is also a path so q = p-l.

:. u.,oc (0) + 0:.,.", (G ) ={2(p-l )-p J+(2(p-1 )-p J =2p-4 ----(b)

Since we consider the equality in (a) hold so

cto",(O) + ctooc(G) = p(p-3).

or, 2p - 4 = p(p-3)[by (h)]

or p2_Sp+4=O

p = 4 or 1. But p '" 1 since p2:4 given

Therefore, p = 4.

So, when G and G are equal to 1'4 then the equality in (a) hold. This completes

the proof.CJ

New developed theorem:

Theorem 3.3: For any connected graph G,

y(G)~k(G). Where keG) is denoted the vertex covering number or G.

Proof: We know the domination number y(O) is the number of vertices of

smallest vertex set D of G such that every vertex of G\D is incidenl at leas! one

vertex ofD. While, a vertex covering of a graph 0 is a subset k of vertex set V of

G such that every edge of G is incident with at least one vertex in k . A covering k

is called minimum if there is no covering k' of G with Ik'i < k .Then the number
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of vertices of k is called the covering number of G which is denoted by keG) in_.~ ~ -
this chapter.

let vI, V2,VJbe any three vertices of connected graph 0 and el={vl,V2l, C2={Vl,V)}

and e3={V,,"I}' "then V1dominate the verlices V2and v] .So VI is thc minimum

dominating set of G ,

:. y(G)= L------------------( a)

Rut VI is not thc cnd point of all thc edges ofG,(vl is not the end point of e2) ~o to

gct a minimum covering set we include anyone vertex "",ilh VI i,e. {V1Y2}or

{VI,"3}is a minimum covering sd ofO.

Theretore, k(G)=2.-------------------------(b).

Otherwisc, iftherc is no cdgc e2 in G then {VI} is the minimum dominating set

and also minimum vcrtex covering set of G.

Therefore lor this case k(G)=I-----------------(c).

So, we have from (a),(b) and (c), y(G):::;k(G). 0

Kumple:

"
fig-l Fig-2

We have Ii-omthe Fig-I, y(G)=k(G) = 2 and from the Fig-2 , y(G) = I but

keG) = 2,so in Fig-2 y(O)<k(G). Hencc for all simple connected graph, we show

lhal y(G):S;k(0).
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CHAPTER FOUR

TOTAL GLOBAL DOMINATION NUMBER OF A GRAPH

A lolal dominating set l' ofa graph G=(V,E) is a tolal global Jominating set (t.g,~

set) ifT is also a tolal dominating set of G . The total global dominating number

YLg(G) of G is the minimum cardinality of a t.g.d set. In this chapter, we exhibit
,

inequalities involving variations on domination number, total domination number

and lotal global domination number.

Introduction:

The graph G considered here have order p and siLe q (i,e, p vertices and q edges)

and both G and their complement G have no isolates.

Now we define Dominating set, Total Dominating set and Total Global

Dominating set of a graph.

Dominllting set: A set D of vertices in a graph G = (V, E) is a dominating set of G

if every vertex in V-D is adjacent to some vertex in D. The domination number

y(G) of G is the minimum cardinality of a dominating set.

Example:
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From the above graph we have the vertices VI and VI dominate lhe all vertices of

the graph G, So {VI,v2}is a dominating sel ofG and this dominating set is the

minimum dominating set of all dominating sets of G . So, the domination numher

ofGisy(G)=2.

Total Dominating set: A total dominating set T of G is a dominating set such that

the induced subgraph <T> has no isolale~.The lolal domination number y,(G) of G

is the minimum cardinality of a total dominating sel,

Total Global Dominating set: A total dominating set T of G is a total global

dominating set (t.g.d set) if T is abo a lota! dominating set of G . The total gloha!

domination number Ylg(O)of 0 is lhe minimum cardinality of a t.g.d. set.

We note that 1(0) and .(g(G)arc defined for any G while 1,(0) is only defined for

G with Ii (G) 21 and y",(O) is only defined for G wilh 8 (G) 21 and 8 (G) 21,

where 8 (G) is the minimum degree ofG.

A y, - ~el is a minimum total dominating set. Similarly a ¥g- set and a y'g-set arc

defined.

We have illustrated already estahlished proof with better explanation for

various standard graphs from (23] of V. R. Kulli and B. Janakiram with

examples.

Theorem 4.1: A total dominating set T of G is a l.g,d. sel if and only if for each

verlex VEV there exists a vertex UET such that v is not adjacent to u.
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Proof: Since for each vertex VEV !here exist a vertex uET such that v is not

adjacent to u. Again the all vertex of T belong to V. Therefore we can say that, for

every vertex ofT, has a non adjacent vertex in T.

Conversely, let there exist a vertex wET such that it has no nonadjacent vertex in

T. But we know T will be a lolal global dominating set of G if T also a total

dominating set of G . Since the vertex w has no nonadjacenl vertex in T. So, in

lotal dominating set of G (i.e this total dominating set is T] ha~ no any adjacent

vertex ofw. Therefore w will be isolated. Bu" by definition of total dominating set

there is no isolaled vertex, so ifT will be total dominating set then there must be a

non adjacenl vertex ofw in T. So we "'Tite that a total dominating set T ofG will

be a tolal global dominating set il1'for each VET lhere exisls a vertex u ET, such

that v is not adjacent to u. 0

Example: ~,
• "•

G

"• '"• "•

G

We have, from the graph G the vertex set T= {V2,V],Vj,V6 lis a dominaling set and

this dominating set h!L~no isolaled vertex so T is a total dominating set.We also
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see that for everv vertex of G , there exist a nonadjacent vertex in T.so T is a total- -

global dominating set .Exactly we see that T is a total dominating set of G .

Theorem 4.2: Let G be a graph sueh that neither G nor G have an isolated vertex.

Then,

(i) y,g(G) = y,'; G):

(ii) Yl(G) :s; y,g(G);

(iv) {y,(G) + "{,(G )}/l :s;"{'Il(G):S; y,(O) + y,( G).

(i) y,g(G) = YI1:( G );

Proat: By definition we have y,(G) will be YI~(G)ifit also total domination number

of G . Suppose that y,(G) is a total global dominating number then we have. y,(G)

= y,(G ) = y,g(G) --------(1)

Similarly"ft{G ) will be "{,g( G ) if it also total domination number of G [since the

complement of G is G]

Therefore we ean write

y,(G ) = y,(O) = y,g(G ) ------------(2)

So we have from (1) and (2)

y,g(G)= y,g( G) D
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(iih'lG) "':;Ytg(G);

proof: We know the total domination numher y,(O) is the minimum cardinality of

the total dominating set.

Therefore;y,(G)<;number o!' element of each total dominating set

But we know that any total dominating set orG \\,ill be total global dominating set

irit also a total duminating set of G _Let T = y,(O) is the minimum cardinality of

the total dominating set. so, if Ihis T = r,(G) is also a lolal dominating set of

G then y,(G)=ylg(G)----( I) and the number of element of allYother lotal

dominating set is greater then r,(G), So. if any total dominating set orthe olher Ld,

set nfG is also a Ld. set of G then YI(G)< "fcg(O)------.---- (2)

So, we have from (1) and (2), y,(O) ,.;'Ytg(G) 0

(iii) Yg(G) "':;ytg(G);

Proo!': We know a dominating set of G will he a global dominating set if it is also

a dominating set of G .

So, ')'g(G) must he a dominating set ofG. But we know '(0) <;1,(G) [For any

connected graph. here G and G arc connected graph]

'Yg(O) ,.; y,( G) -----.--------------- (4)

Therefore by (ii) and (4) we have,

¥g(G) <;1,(0) <;YIg(O)

... 'Yg(G) ,..:;r<J:0) 0
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(iv) {y,(G) +Yt(G )}/2 s:YtlG) s:y,(G) + y,( G ).

Proof: We have from (ii) Yt(G)s: y,iG)------------------ (1)

Therefore Yt( G ) s: y,g( G )------------------ (2)

But from 0) we havc YIg(G)= Ytg( G)

:. By (2) and (i) we can write Y,(G) s: Ytg(G) --------.-- (3)

:. by (l) + (3) we have

y,(O) + y,( G) 5:Ylg(G)+Y,g(O)= 2Ytg(G)

{y,(G) +y,(G )}/2 S:Ytg(O) LJ

Theorem 4.3: Let G be a graph which such tbat neither G nor G have an isolated

vertex. Then "!tiC!) = P (p is the number of vertices of 0)

if and only it 0 = 1'4 (a path on 4 vertices) or mk2 or rnk, \vhere m~2.

Proof: Any connected graph G has a connectcd complemenl if for each vertex of

G has a nonadjacent vertex in G. Because, if a vertex UEG has no nonadjacent

vertex in 0 then this vertex u will be isolated in G and for this matter G will bc

disconnected. So, for eonneetedG IImusl has a nonadjacent vertex in G.

Now, for PI there is no total dominating set and Yt(PI) = 2, So, in total dominating

set ofP2 has all vertices ofP2 and each vertex ofYL(P2) ha~ no nonadjacenl vertex

in y,(Pl). Therefore Yt(P2)will not be tolal global dominating set by theorem 4.1.
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Again the number ofvcrtex of the total dominating set ofP) will 2 or 3. But by

theorem 4.1 the both two t. d. set wi!!not be t. g. d. set.

Now, the number of vertices of the t.d, set ofP4 will be 2,3, or 4. But by theorem

I, the first two t.d. set will be not l.g,d. set and the last one will be Lg.d. set

because for every vertex of it has a non adjacent vertex in it,

Therefore Ytg(P4) = 4 = p = number of vertices OfP4'

Again, the number of vertices oft.d. set ofPj which will be t.g.d. sd are 4 and 5.

Rut y,g(Ps)will be minimum ofall t.g.d. set.

So, "(,g(l's) = 4 <5 = number of vertex ofPj.

Similarlywe can proofthatY,iPn) < n = p \vhen n > 4.

So,we have for only l'4,

Again, in total dominating set, has no isolated vertex and each vertex of mk2 or

mk) (m~2) has only onc adjacent vertex, So all vertices of mk2 or mk, will be

included in t, d. set of mk2 or mk,. Since md, So, of every vertex of t .d. set of

mk2 or mk, has a non adjacent vertex in this t.d. set. Hence by theorem 4.1, this

total dominating set will be total global dominating ~et.

Hence y,iG) = p when G is mk2or mk, and md.

But when m=] then mK2 will be a path P2and we see from the above,that there is

no total global dominating set.

Hence y,lG)=p ifand only ifG=P4 or mk2or mk, when m~2.o
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Theorem 4.4: Let a be a graph such that neither a nor G have an isolated vertex

and T be a y,-set of a such that each vertex x in T has non-neighbor in T.lfthere

exists a vertex uEV-T which IS adjacent only to verlil:es In

then y,g(G):::;y,(G)+ 2.

r,

Proof: Since each vertex xET has a non-neighbor in T and T is a y,-set of G. So, T

has minimum 4 verticb. Because we know in lolal dominating set has no isolated

vertex. Again if T has WIOor three vertices then of each vertex of T has no

nonadjacent vertex in T. So T has minimum four vertices.

Case 1: If'V-T= {u}, then there exists a vertex vET such thai v is not adjacent to

u. Because ifu is adjacent to all vertices ofT then the number ofvertil:es ofT will

be two it is contradiction since T has minimum four vertices. So, must u has a

nonadjacent vertex in T.

Therefore for eaeh vertex VEY thcrc exists a vertex UE"] such that v IS nol

adjacent to u. Hence by theorem 4.1, T is a total global dominating set ofG.

So,Ytg< y,(G)+ 2 [Sinee T= y,(G)J --------------------- (1)

Case 11:If Y-T "" {u}, then there exists a vertex vEV-T. This 1I and v are not

adjacent to all vertices of T. If 1I and v are adjacent to all vertices of T lhen the

number of vertices ofT will be 21ifu adjacent to v] or 3 [ifll b not adjacenlto v].

It is impossible since T has minimum 4 vertices.

Hence ru{u,v} is a total global dominating set ( by theorem 4.1 ).

So, Y<g(G)=T+2
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or Ytg(G) = y,(G) + 2 ------------------- (2)

So, we have from (I) and (2)

"fcg{G):S; YI(G)+2 0

New developed theorem:

Theorem 4.5:A total dominating set T of G is a total global dominating set of G if

for each vertex v EOT there exist a vertex UEOT such that v is not adjacent to u.

Proof: We kno\'.' !he all vertices of T is also the vertices of V(here V is the vertex

set of G).Again we have from the theorem 4.1, A total dominating set T ofG is a

t.g.d. sel ifand only if for each vertex VEV there exists a vertex uET such that v is

not adjacent to u.Sinee any vertex of T is abo the vertex of V so, A total

dominating sct T of G is a total global dominating set of G if for each vertex VEOT

there exisl a vertex UET such that v is not adjacent to u.o

Theorem 4.6: A total dominating set T will he a total global dominating set then

the number of vertices of T z 4.

Proof: We know from the theorem 4.5 that a total dominating set T of 0 is a 10tal

global dominating set if and only if for each vertex \' ET there exist a vertex tiE T

such that v is not adjacent to u. Since T is a 1.d.set so T has at least two vertices

\vhieh are adjacent. So by theorem 4.5 it is not Lg.d,set. 1fT ha,; three vertices then

they are connected because T has no isolated vertex. So there is one vertex which

has no nonadjacent vertex is T. So by theorem 4.5 . T is not a l.g.d.set. So the

t.d.set T will be t.g.d.set if and only if number of vertices ofTz4.
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Casel: Since T is a total global dominating set so by detlnition of t.d. sd,the_

induced subgraph <r> has no isolated vertex.Hcnce the vertex number of r is

greater than one.

Case2: Let T has two vcrtice~. Since the induced subgraph <T> has no isolated

vertex so the two vcrtice~ are adjacent to each other. But we know from the

lheorcm 4.5,a total dominating set T is a total global dominating set ifand only if

for each vertex VE T there exist a vertex liET such that v is not adjacent to lI,which

is contradiction .so, the number of vertex ofT is greater than two.

Case3: Let T has three vertices which arc u, v and w. Since the induced subgraph

<T> has no isolated vertex so, anyone of the three vertices is not isolated vertex.

Again, let u b not adjacent to v then w is must adjacent to " and u otherwise there

exist a isolated vertex.Which is contradicts the theorem 4.5.Hence,thc number of

vertices of T is greater than three.But, if r has 4 vertkes then we can easily sec

that any vertex ofT has a nonadjaccnt vertex in T.

11lereforc,we sav that from the above three cases, the number of vertices of

T?: 4.[i

Theorem 4.7: Any connected graph G has a connected complement if cach

vertex ofG has at least one non adjacent vertex in G and at least one vertex in G

which has at least two non adjacent vertex in G. When p > 3,

Proof: Casc(l): Let any vertex II of G, which has no nonadjacent vertex 1llG.

Therefore u has not any adjacent vertex in G . Hence u will be isolated vertex in

G and G will be disconnected.
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Case(2):Again, any connected graph lp> 3J has at least one vertex which order is

t\vo. Now, ifG has no any vertex which has at least t\vo non adjacent vertex then

in G there is no any vertex which has ordcr two. So, G will be disconnected.

Therefore we have from the above two cases, any connected graph G has a

connected complement if each ver!e" or G has alleast one nonadjaccnt vcrtex in G

and at lcast one ver!ex in G which has at least two non adjaccnt vertex in G. When

p > 3.
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CONCLUSION

This thesis is dev{ltcd to the domination theory in various aspecb in graphs. The

concept of dominating sels introduced b) Ore and Berge currently receives more

attention in Graph Theory. The domination theory has gained due to the inspiring

contribulion~ by eminent graph theorists as E, J. Cockaync, S. 'I. Hedeniemi, R. C.

Laskar, P. J, Slater, E. Sampalhkumar, V. R. Kulli, n. Janakirarn ele

In the first chapter, we have presented the necessary graph theoretic definitions

and earlier works on the domination theory.

In the second chapter. we have obtained a relation between the domination number

of cycles with the nonbondagc number of cycles. By using various relatiuns of

nonbondage number of graphs we have also established SQffiC relations among the

domination number, degrees or various graphs and trees of spanning subgraphs.

We havc also extended ~(mle graphs by illustration for some standard graphs.

The concept of connccted domination number has been introduced in chapter

three. In this chapter we have compared some graphs between the connected

domination number & thc domination numbcr of graphs,

For example: ,(G):::; UOI,,(G). Also wc have found out somc bOllnd~ for connected

graphs.

The fourth chapter dcals with thl;:total global domination number of graphs. We

have exhibited the various relations among domination number total domination

number, global domination number and total global domination number of graphs.

In futurc, one can proceed about connected domination numbcr. global domination

numbcr and total global domination number of graphs by using algorithms.
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