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‘" Abstraet *-

_ Gractte's method determines all the roots of univariate polynomials both real and complex,

repeated and non-repeated simultaneously. In this thesis, it 15 said that this stulement is net

universally true. It is shown that the method is valid if the al gehraic cqualions satisfy the

conditions,

(i} equations with »cro coellicient must have at leasl one pair of equidistant non-rero
coeflicient from the zcro coelliciont.

(i) any transformed equation ol a given equation with non-7cro coellicient muy have 7cro
cocfficients but these new cocfficients must satisly (i).

(i} all the coeflicients of non-lincar equation must not be unity.

GRAEFFE.BAS program |9] has becn modified in these lght and has been exlended for not

solvable equations.
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Chapter 1

Literature survey and objectives

1.1 Introduction
Accarding to Pan in 1997 [1], the elassical probtem of solving an ath degree univariate
poiynomial and its system has substantially influenced the development of mathematics
throughout centuries and still has several important applications to the theory and practice of

preseni-day computing of the computer age .

The sth degree nonhinear umivanale polynomial (algcbraic cquation of a single variable x) has
the form

K=2

Six)=a " +ax" +a x4 b, x+a, =0, g, %0 (1.1

This type of the equation arises in many occasions as

(1) auxiliary equation of higher order ODLE with constant coefticients,

(i)  characteristic equations of the mainx eigenvatue problems,

(i) in the arca of computer algebra and computing geometry (an active area of modern
research)

In general equation (1. 1) has » rools (2erps), which arc of following types:

(i) real and distinct roots

{ii)  rcal and cqual roots

(iti}  imapinary or complex roots and complex reols oceur it conjugate pair

{iv} combination of (i}, (ii) and {1ii).

Although problem of selving (1.1} was known to Sumerians (third millennium BC) for
particular values of &, all the above types of roots were not known 1o them. Afler centuries this
lvpes ol roots become apparcnt to the present gencration. Now a days many computational
problems ansing in the scicnecs, engincering. business management and statistics have been
lincarised and then solved by using tools from linear algebra, lincar programming. Such roots
involve the solution of (1.1) for smaller #. Computer algebra solves {1.1) for large 7. There are
available soflware in case of procision, crror bound etc. for this causes problems and thus

meotivation for further research on the design of elleclive algorithin for solving (1.1} ariscs.



Thus equation {1.1) 1etains its niajor role both #s a rescarch problem and u part af praciicad
computational tasks in the highly imporiant area of corputi ng called comprter aleefra. These

information aleng with others are embodied in Pan [1].

No general algebraic method is available for the solulion of cquation (1.13 except for very
special cases tike (a) quadratic (b) cubic and (c) quartic cquation, There are some numerical
procedurcs {methods) to determine real roots both distingt and cquai only such as

(i} Biseclion methad

(n}  lalsc-position method

(i1}  Newion-Raphson method

(v} Secant method

{v)  Muller's method

(vi}  Bairstow's method

(v} Gracile’s melhod of roots squaring

Graefle's method gives all the roots simultancously, both real and complex. This methed hus
not recetved much attention. Modern research based on computer has been carried out by Pan
[1] in 1997, Maiajovich [8] in 1999 and the references therein around the last part of 20®
century and the beginning of 21% century, The lack of popularity of Graclle's method e

embodicd in Malajovich [8] and in sec. 3.3,

This project 15 on Graefle’s method. Major work’s contained in chapter 3 which discusses
(i} the conditions for the appheability of the method in see. 3.2,
{1} the necessary modilication and extension of the softwarc GRAEIFE.BAS in sce. 3 4.

(in)  Modified GRATRFFE.BAS in sce. 3.5,



1.2 History of polynomial root finding and Gracffe's root squaring

Numerical root-finding for a univariate polynomial is a classical problem. The exact slarling
time of study of this problem is not known. B history reveals that Sumerians in the third 3.0
have the root inding knowledge. Its study still continues to present day. Readers are reforred
to Pan [1.2,3] and Barciss [4] and the relercnces thercin for past and recent progress 1n

polynomial mot-finding.

Polynomial roci-finding occupics its posilion in the present day computer alucbra and
compuling geometry. 1 is being widely applied in the sty of CNEINCCHng  scicnees

particularly in nctwork theory, control lincar systems and computer aided peomelric design.

Ihe basis of Graelle's method 'is the "roat squaring” process, Controversy prevails in the
designation ol the method on the issue of a Russian translaiion which cailed "Gracfie's
method™ as “Lobacevskii’s. This controversy has been diseussed in Houscholder |5] in details
and the references therein. Partial discussions are given i Hutchinson (6], Malajovich and
Zubelli [7]. According ta them, the method is due (o Germinal Dandelin {(1794-1837) in 1826.
although the fundamental idea goes back to Bdward Wuring (1734 -1798) in 1762. Dandehn's
paper was not widely circulated and the process goes under the name of Car] Heinrich Gracite
{1799 -1873} in 1837. The method was also suggrested independently by Nicholaus lvanovich
obacevskil in 1834, Later contributions were made by Johann Franz Encke (1791-1%65) in

184 1. Somehow or other the method is popularized under Grac(Te,

[.3 Literature survey

Literature reveals that study of root-finding of polyinomial in speeial cases beging in ancicni
limes of Sumerians and Babilonians., With the full fledged growlh of number sysiem. solution
of univariate polynomial finds its new ways of achievements and still it hus been going on
with the advancement ol computer, Some of early und recent wnformation on Craeffe's method
for the study of polynomial root-finding is bricfly presenled as part of (s thesis in the

following paragraphs.



In 1946. Bodewiny [10] stated many advantages of Gracfie’s method sueh as

(i) no first approximation need be known,

(it} approxunaution of af] roots are obtained simultancously.

{1it) not much laborious 1n companson for knowing a single root by any olher method,

{1v) main advantage o obluining complex rood.

{v) automalically separate close roots,

(vi) it gives multiple roots real and complex,

(vii) determines several pairs of complex roots with sume modulus.

Only disadvantage he mentioned, it is not oseful in corrceling a single rool as i other
methods. Next he discussed a soluton procedure on splitting the translormed equilion.
Discussing convergence process, he obscrved thal Graefte's method has greatest cffictency as
the error decrcases quadratically in cach subsequent transtormed new eguation. Finally he

discussed the position of roots with same modulug near a cirele in Argand/Gaussian planc

Bareiss 14| in 1958 presented at the meeting of Association of UL.5.A Alomic Energy
Commission ‘the resultant procedure” Jor finding stmultancously all seros of polynumiats with
real coelicients. The procedure relics on the modification of Gractte's method. Principles ol
the procedure are outlined He also present steps for designing the algorithm, His discussion
ended with u summary of history ot root squanpg method, lie derived & formula for

detcrmining the minimum number of root squating.

In 1994 Malajovich |11] investigated approatmate Newton iteration for seseral ¢ neralizationg
ol the Newton operater. He gencralized some of the tesuits developed by Shub and Smale in
1993 |reference 6 in [11]]. The results have been uscd to prove comple:aty theorem on palli-

following algorithms for solving systems of polynomial equations.

o 1996 Nelt and Reil [12] developed an efficient algorithm for the complex wots up o
specified precision of a univariate polynomial fx) of depree n with complex cuellicients wiil
norms less than 2, m is the smallest integer. Their algorithm requires no asstmption lor

separation of roots. This property makes it remarkable.



In 1997 Pan |1] describes the imporlance of the equation (1.1), early history of solving
polynomial equations, solving equation (1.1} by geomctric construction, comparcs seme
approaches lor solving equation 1.1} the divide and conquer approach to approximate
polynomial seros, balancing problem in splitting the polynomial, discuss the webnique of
avoiding approximation of the zeros of a higher order derivative, cites three applications ol

polynomial equation (1.1) by dilferent rescarcheis.

In 1999 Malajovich |8] develops a new variation of Gracffe iteration ol modern digital
computers, The algorithm is based on (i) classical Graelle ileration and Newton Diagrams {11)
chunges of scale (renormalization). It implemented successfully willh a purber of numerical
cxperiments, This method compotes both the moduli and the argument at all roots under

certain generic conditions.

[n 2000 Malyjovich and Zubceli [7] propesed and implemented a new version of the Graelte's
algorithms for finding all the reols of univariate complex polynomial. Renormalization idea is
used for the construction of the algorithm. They have introduced Newton diagram which 15 the

graph of convex function.

in 2000 Hazra and Loskor [14] contradicts the universal advanlages of GraclTe’s method about
giving the rools of alpebraic equation both real and eomplex mpr:tatcd and non-repeated
simultaneously slated by many authors like Hutchinson [6] in 1935, Cronvich [13] in 1939
Bodewing [10] in 1946, Kopal [16] in 1961, Scarborough [17] in 196G, Carnahan [18] in 1969,
Constantinides [9] in 1987 and Balagurusamy [19] in 1999 Finally the authors pointed oul the
conditions of validity of the Gracffe’s ot squaring method and sugyested an algorithm

modifying the BASIC so/tware designed by Constantinides [9].

In 2001 Pan |2] studied approximale polynomial GCDs (areatest common devisors) which are

imporiant both theoretically and practically in control lincar system, nctwork theory and

computer aided design.



In 20062 Pan [3] develops two algorittuns for approximation of all roots (zeros) af & univariate
polynomial. One of them computes a basie well isolated sero fres annulus oo the complex
plane. The other numerically splits input ath degree polynomial into two fuctors balanced in
degrees and with the zero sets separated by the basic annulus. The (irst alponthm  uscs

Graelfe's root squaring step recursively.

1.4 Objective

The main cbjective of this rescarch is to setup condition(s) for solvability of LIy Ariate
polynomial using Graeffe’s root squaring method in sec. 3.2. On the basis of thesc crieria
GRAFFFLEBAS program developed by Censtantinides [9] 15 1o be modified in see. 3.5, so that
(he program can identify the problems solvable by Graefie's method. The modified

GRALNIT.BAS 1s to be tested in solving few univaniate polynomals i sec 3.0,

In the meantime weaknesses of this method will he poinled oul and Tinally some upen

prollems in sec. 4.2 will be stated after conclusion.



Chapter 2

Graeffe’s  root-squaring method and GRAEFFE.BAS  program  of
Constantinides

2.1 Graelfe’s root-squaring method

A manual ay well as desk caleulator method of GraefTe™s root squaring methed is desernihed
here Jollowanyg a mainly Scarborough [17].

The principle of the Graefie's method: Literatures reveal that Graefle’s root squaring 15 a
dircet method of obtaining all types of roots — real distinct. real equal and complex of a
univariale polynomial with rexl coeMeients and ol no mitalization, TU oranstons a polynonnal
p, (X} into another polynonual of same degree whose roots ure the squares of the roots of the
original polynonual. Dug W squaring, the roots of the transformed cquation will be spread apart
more widely than the original onc. The ronts of the transformed equation are sind o be
sepatated when the ratio of any root to the next Targer 1s negligible in comparison with unily.
This siluation 1s known as "1ools are separaled”. Process continues onti the rools are veally

separated. Finally rools are computed direcily from the cocfticicnts using Newlon's relations,

The root-squaring process: The transtormed equation is obtained by repeated application
ol a rool-squaring process. For fivst application of this process, given equation have been sl
an equation whose rools are the squares of those of the oripinal equation. This sceond equation
is then ransforned into a thitd equation whose roots are the square of those of the sceond and
therelore the fourth powers of those of the original cquation. The root-squaring process s

continugd until the rools of the sl transformed cquation arc completely separated.
Explanation of the method:
Iel the given cquation be

F(X)=ax" +ax™ Fax"t e +a,_x+a, =0 a, =0 2.1}
Then i1 x5, .x, be the roots of this cquation. the equivalent lorm is

Hat=a(x—x, Ny —x Ho—a e {x-x,3=0 (2.2)

-l



Thos (=1 fil—x) = (-1} a(—x—x J—x—x; f=x=x ) errrern {(—x—x =14

= (X +x Wx A X, Xl dy e (x+x }="0 (2.3)
Now multiplying (2.23 by (2.3), the result is
()" (=) () = 0" (7 = YxT =T e (x —x;)=0 (24)
Let (=D F{=x)}£(x) = ¢(y} and x* = yihen (2.4) beeomes
Py =ay (= W= 2= -y =0 (2:3)
'L he roots of this equation are x| xy,-eeeees Lx. which are the squares of the roots of the piven

ciualion (2.2). The cguation (2.5) can be described other way round as
Pyl = {“ﬂ 'IJ I‘u"-" "r" """" [\h erE fa (m"{;"‘-'ﬁ L«a"r}_"" X )[ yt+x, JJL
Y E {(rﬂ (q";—xl Iv";—xj] --------- [m"';—x” JHaﬁ(v";ht, I«..Ehrz ]“'[v";+xu J} {2.0)

= (=) F(NX) F(=3) by (2.2) and (2.3) 27

Lox) = {—l)"f(\-";‘}f(—-\,"';} deseribes the [est iteration {syuaring) ol the niethod.
Hence. on multiplying /(x) =40 by (=137 f{—x) an cquation whose roots are the squares of
those uof f(x} =0 15 oblained.
This multiplication maintains a simple routine which can be best (llustrated with lower degree
cquations. let a sixth-depree equation be
fiy=apn® +ax vax’ +ox +ax’ 4 ax+ta, =0
Then {—1)* 7{-x) = apx" —0,x”" +ax' —a,x +a,x" —a,x+a, =0

On multiplication by Ax),

' 2 2 i b 2 -
(=1 Fl=x}/(x) = a,x' - e a2t - = +a; i
+ 2unct, — dey i, + 2eroniy — 2er,4is
+ 2er,0, — 2en, + 2d.4a,,
+ 2er e,
2 2 2
- X 4a, =0
5 i) 218']
+ 20,00,

MNow lel o seventh degree cquation be,

7 T 5 4 1 a _
F(X)=a,x vax +ux +ax Fox o X +ax-a, =0



- T 7 5 1
Then (~13 fi-xy=ea,x’ —ax" +u,x" —ax" + a,x —an o —a, =0

Mulliplying, as before

R T T ST T R BT PSR
++ 2ty — e, + a1y, — 2th s
+ a0, =2, + 2,4k,
+ 2o, ~2uu,
—al | x" e jxXT-ar =0
+ 2,0, —~ et ity {21
— a0,

The equation shows that the law ol formation of the coeflicicnts in the squarcd cquation is the
same whether the degree of the given equation be even or odd. In practice the multiplication s

carried out with detached cocfficients as shown below:

o, o, &, i, iy g
o, - e — ity i, — i,
i, —uy ) —aji a -l
+ 2aitf, - 2a,4, + 2a,u, — ety + 2444,
- 2er ity — it e + 2ur, et =Deren, -
+ 2irgti, — ety + et e
+ 2at, i1, — ety
+ e gy
hu by by s Ay By oo
(2. 1)

The coclficients in the new equation {2,100 are the sums 5,.5,.5,

in the scheme above, The whole scheme is set up a follows:

. - b, ol the several cohsmns

1. The coefficients ol the original equation constitute the first rovw of the seheme,
2. The sceond comprises of the first row with alternate positive and negative siglts ¢, being
posilive,



Now the multiplication of these two rows are performed between two lines according to Lthe

fallowing #ufes under the fitst line:

3 The numbers in the top mw arc the squares of the coefficients directly above them, with
alternating signs — the second, fourth, sixth. ete. square numbers being negative.

4. The guantitics directly under these squared numbers are the doubled products of the
coefficients equally removed {tom the one dircetly overhead. the first being twice the
product of the two cocfficlents adracent to the one overhead, the second the doubled
product of the next two equally remaved cocfiicients. e,

5. The signs of the doubled products are changed alternately in going zlong the rows and
also in going down the columns, the sign of the first doubled product in cach row not

beinyg changed.

I'hic above discussions are concentrated to first squaring (first iteration). Let second iteration of

(2.6} transforms @{y) lo é(z}. Thus roots ¥, =x and z, = ¥’ =x' =(x’)*. Procceding in

. . - . . 2!
this way to & iterations, (he roots of the final transformed cquation are, therelore r, = x7 [19].
sith iteration formula:
A general formula (or smih iteration can be wrillen. et £ (x) denote the wiviniake polynomial

(1.1 or (2.2). f,(x} denotc the 1% iterate (2.7) L. the relation

A = A0 = [0 i),
similarly, the second weration
IRGERACEIACHET
Proceeding in this way. the mth itcration is

Lol = LW AR, k=0120mn =1 @211

Calculation of roots in three cases

Case 1: Roots all reul and unequal

The relations betwceen the roots x,,x,, %, -, and the coelNCICnts o oy dy e a, ol
ihc #th depree general unin anate polynomial

=3

J{{x-} - GDJ{” n Hlxn'-l + t, ¥ I IS ah__l_}: + arJ = ﬂ e

iy



. . u .
Newilon's first relation —- = —(x, b Xy + 2, +ooeereee +x, ) = sum ol rooks.
By

. . i ,
Newlon's sccond relation —2 = +{x,x, + x,x, +--) = sum o the products taken (wo at a time,
i
o

. . .
Newlon's third relation — = —{x,x,X, + x,x,%, ---} = sum of the products laken three at a time.
i
0

. :
Newlon's nth relation == (~1)" x %, % -+ -, = product of Lhe roots.
i
L

In the final transformed equation (i.c, mth iteration in which m is a positive inlegral power of 2
e, m=2" gisapositive integer)
b{:,(.xm]” ‘I'lbl (IM' }.'I‘-| et +£}”-|x.l|r _1‘}-}“ — ﬂ {2_12}

whose roots x".x),--x and coefficients b;,8,b, -5, are connected by the corresponding

tll

relations
f‘,l _]_Tm x'h’ Y.'.'I
| ] LT me " z i ]
_=—{_r] +}lj+ ......... .'}"I”)——II 1+_m+ _m+ ......... + — |,
i o X
M I.’-‘I
_]:I_;""Ix;"+x|""_x_:'r..-".-.‘=xi""x;? ]+%+_'1I+ ...... .
N ) IO &
Xy )
_-j'_ — (I:I Ir;I?ur:.l + x;"x;‘l_‘{:l -]1 _— } — xlllfvf;.lx:tll 1 + l:u + A I
}I:I Jr.'.l J
fr
v Mo T
Ilr——{‘-"l} Jtl .12 .1‘3 """ ' .I.'” .
M
xﬂ.l M
Now if the order of magnilude of the roots is |x|| ::-ixz > |J;1| = |x,], then the ratios ==, — elc.
X x
1 2

arc negligible in comparison with unity and can all be made as small as desived by making m

large cnough. Thus (he relations between the roots and the cocfficients in the Onal translormed

gquation are

b oMM hﬂl LI R | full
—_=— ~ =X, Xg, b_:_xlrz_r:}, ......... !.b_:(_lj 'r|x1x.1 ......... X,

i
hﬂ I 1] 1]



Dividing cach of these equations after the first by the preceding equation. we obtain

!}1 .I.'m b'l ] b.lr

= —xy o E Ky = —x are obluned,

hl hl bn-]

Hence from these and the equation
b
—L =-x, (2.13)
blﬁl

one obtains

boxp +h =0, bxy +b, =0, byxi+b, =00 _x'+b =0 (2.14)

‘Fhus the original equation has broken up into 7 simple eguations and the mth powered rools

can be found from them. Finally mth root of these gives the desired roots.

The number of rool syuaring to break up the original cquation mte linear fragments depends
upon (1) the ratios ol the roots of the given equation and {2) the number of sigmbicant figures
desired in the compuied rools, But it is not possible to determine how many tumes the root-
squaring process is needed bocause the rools and their ratios are not known m advance.  In the
root squaring process, the signs of the doubled products will not occur in regulur order because
the cocfficicnts in the given cquation are not in general all positive. In maoaual practice the
possihilities of muking a mistake in the sign are great and for avoiding this mistake one can use
some nolalions like a “¢™ aller each term in which (he sign is to be changed and an “n” aftcr
cach lerm where the sign is nof fo be changed. Furthermore. in the ransformed cquations the
cocVicients, which are large numbers, these coefficients may be wrilten as simple numbers,

multiplied by powers of 140,

Finally, by the repeated root-squaring process, one obluns transformed equation and - compute

all the rools of an cquation . Equations {2.14) can be combined (o a sigoal formula {19]

b

L W
1-1

I
r

(2.15)

r

-1 =1

":I"" b -
Thus (x, ) :—b—‘. Ko, x, = 2" th root ol [

L b,
= | ]—
1||'|"Ja_|
Carnahan { 18] introduces the symbol | 4, for the jth iteration of 4, and develops the terative

Formula



A= {—1)'[ AT (- 4, ,A,_I}, Dsi<n (2.16)

I-1

for coefficients in (2.12) where | A4 = ¢, the imtial valuc of A, etc.

Case [1. Complex Roots

The 100t squaring process breaks an cquation into a product of real linear and guadratic factors,
in the presence of complex roots. The real roots are found from linear fragments and Uhe
complex roots are found from quadratic [ragments, each quadratic factor corresponding 1o a
pair of complex roots. The presence of complex roots iy revealed in two ways:

(1 The doubled products de not all disappear from the first row and

{2 the signs of some of the coeflicients Muetuate as the transformations contunue,

The reason for these peculiartics arc explained below:

Let an cquation having two distinet real roots and two pairs of complex roots be

-t

X e re” xy. me'™ . e and let the order of their magnitude be

xl|>r, :-|x1|‘::r2_

Then the equation having these roois 1s
(x=xWx—re " Wx—rne ™ Wx—x)x - e’ Yx—re) =0 {2.1%)

‘The equation whose roots are the mth powers of the roots of this cquation is thercfore
=Xy =1y = e = Y e Wy - e =0 (219)
where y=x"

On performing the indicated multiplications in (2.19), then taking out the faclors

m_wm _m 2w lm_w 2w ot H
P AN S RS A S A S and neglecting the ratio
lll_J.ll Iﬂll r.’.ll IIH Ill.."I' M

o2 A0 2 2 L fornegligible in comparison with unity,

A X + " f I

Finally . ong abtams

f L 1 F AL 1 2
Y= x"yt 4+ 2 cosm Oy xRy Hx'n xly
m

= : 2
= 2xymay ) cosmbL p e x n Ty =1 (2200

Thus the given equation has been broken up into the fincar and guadratic fragmens



yr-xyt=0

"’} +2xn" cosmth ¥ —x"rPypt =0 2.21)
P2 gyt =0 -
xRl yt = 2x e X cosmiy + x) T = 1)
from which the original roots can be obiaincd.
The root-squaring process is applied 1o (2,19} onee more, as shown below
¥y y' ¥
mith power | | —x" 2x" " cos mé, x| r]‘h.u
1 — X" + 41" r,z”' cos® md, -5
+ax " cosm8, | —2X o +4x] " cos mO,
+ Ex.”'rl”’r_f' Az e cosml,
+ 2y e
2uith i - xf'” +4x37R " cos® mB, - xlz ;-I;‘”'
ey -2, m?‘ fm
¥’ y y
mihpower | g "y —2x,"5" 0" " cosmd, Xt
xR —dx P cosimBy | e
_ 4x|?-'-'l rld.wx;.u rzm COs Htﬁ'z 4 2 2u.- -'1m jI;Jl.-rllrr.l
+ AT XD cos mid,
Jmth wxn — 4y e cos® md, N S
FOWEr ¥ le m dmx-':.m FA,EP.Ir.I

Thus it is obscrved that all these products from the above table are neghigible except two in the

first row. The doubled product in the first row does not al disappear when the complex roots



L

are present. Sinee 2cos  — 1 = cos2@, the cocfficient of ! and y becomes 2x]"'r

and 2x™r " x;" e cos2m@, respeclively. Thus the last trans/ormed cquation is

Zor Im dii A o dm i

,
1—x™ +2x"'n"" cos2md, — x4

2 In 2 4
_ 2.1'1 rr.lr.djlrxj.llrzz.'.u Cﬂﬁzfﬂﬂz ¥ .1'1 Ilrri-#urx_?.lu rz me_ {'}

B eomTm il

i2.22)

'The equation {2.22) shows that each root squaring doubles the amplitude of the complex rools,

'IThe cosines cos 2m#, and cos2mf, Nucluates in value and cven in of these amplitudes signs.

Fur this reasen, the presence of complex wots shows [luctuation of signs, The comnplex roots

by solving the resulting quadratic equations for x™ and then extraction the #ih rool of Uw

results are obtained by means of De Moivre’s thcorem. Bul in this process the ambiguities off

signs in the mots arise and these cannot be easily removed. To obtan the complex roots

without ambigully as to signs some further relations between roots and coefficiems are denved

below.

Relations between the coefTicients of an algebraic equation and the reciprocals of ifs

Routs: In the gencral equation e, x” +a,x"™" +a,x" " 4 rveres ‘o, r+a, =0

let x =1/ p. The result. afer clearing of fractions, 1s

N o= 1 =
l‘.’;“_l‘l” +“”_l-}.l | +a,.-g}’l 2 +......+“JIJ;' +ﬂ2}1q +|f,l|}-'+a{:| = []'

Henee from the relations between rools and coefficients,

o,
—= ()

b

“.lr—!

= -}JI-}IZ .P. .}rl.}:: + ...... + .},].}13 + .

b

a M
._.l = (_]} -},II}_I]-}_I'J ......... u}r”;
I

"

or, since y=1/x,



1 N 1 . . 1,
'r'l x: x.lr 'u.'r
] I 1 i, -
—_— o —— ..+—+ ......... + = - -
XX, XX, b Xk, a, v (2.23)
l 1n ]
=(-1) F 4
Alxle --------- 'r” o

These relations between the coeflicients and the reciprocals of the roots will belp to avoud

ambiguitics of sign in the computabion of complex reots.

Casce 111 Roots real and numerically equal
[f onc of the double products will always remain in the first row and will be just hall the
squared term, then the root-squaring process can never break ap into lincar frapments. 'or this
reason the equation has two rools are muncrically equal.
Lect a third degree equation baving three real roots x, . x, . x, be

Ut axt ayxeba, =0 (2.24)
Then the equation whose roots arc the sth powers of (2.24) 1s

Ml

=3y -5 -2ty =0, where p=x",

J a
of  y =y )y G AR e x )y - = 0
M Ll " M
K xi .kf':.; _r_.,. "r:l.
or ¥ -—.1’;”{1+-——-m +—;I-Jy2 +J:,"‘x;”[l+ L 2Ly —xayxl =0 (2.25)
X
1 1 2 |

T

Now jel x, =x, aud et [Jr|| > |x2 | Then for sufficiently large values of m Lhe rahos = iy
|
negligible it comparison with unity and (2.25) reduces Lo

1 m..2 L L
¥y 2y y—x =40 (2 26)
The roots of the piven eguation have now been separaded as mwch as they can ever be but

applying the root-squaring process 10 (2.26) using only the cocfficients. we have.



mth power | | | — X! 2xlxy —x) x?"'
| _ x]lrr.' ¥ 4 " Iznr * zlm _ xt‘zu.lx;m
Im 2
+4x)"x7 - 2x"xy"
2f”th poOwWer I _ .3:12'” + 7 x]l m lem _ xlﬂm ¥ fm

It can be noticed that the first doubled product is nepligible in comparison with (he squared
term above it, whereas the second 1s of the same order of magnitude as the squared lerm above
and just half as large. Further, in the equation Lot the Zmth powers of the rouls all the
coeflicients except one are the squares of those in the preceding equation. T'his remaining one
is only hall' of the squarc of the comresponding cocfficient in the preceding cquation. These

peculiarities enable one to detect equal real roots inmedialely.,

2.2 GRAEFFE.BAS Program

Conslantinides [9] designed GRAEFFE. BAS program in BASIC programming language tor
1BM PC for solving univariate non-linear polynomial cquation using GraelTe's rool squaring
method. The program consists of a main program and 6 (31x) subroutines. The flow chart of the

main programt 15 consirucied as foflows:



Main program: [nput

(i) depree of polynomial

fii) EP3, Convergenee criteria
o (0.001. chanpeable by user

y

Factor coeflicient. into
mantissa and exponent

'

Print original cocffs.

Y

Graelle’s root squaring
heginning of iteration,
R=1. Changeable by user

Print slatus of coctts
fpure square or nen square)

v

Count the number
of puresguares

All coefls,
are pure
square

l Rools real distinet
@ cvaluate them and sum
Calcufate new s then usin
coeflicicnts Possibility of complex I &
oelhelent or repcated roots ¥, = E f=12--n
o] Reduce iteration counter l
Ir’ by one, ie. R=T - | Call subroutine  lor
+ checking sign of root
Yes l
Iind loeation af non i
] squares = NSQUARES Caleulate sum of
\l product of real rools
Possibility of repeated / using subrouting 2
or complex root Rl
No
’—P Print aldl roots +

Determine whelher coctfs.
arc pure square or not

hd

'
®

(iy If NSQUARES = 1. use sub-routine 4 Lo caleulate
one pair of complex or repeated rools.

{1} IFNSQUARES =2, branch o sub-routine 5
to calculate 2 puirs of complex or repeated roots
wilh difTerent moduli

(IO NSQUARES = 3 branch to sub-routine 6
to caleulate 2 pairs of coniplex or repeated roots
with identical moduh.

(I NSQUARES =3, Programe cannot be uscd.




Sequence of calling six subroutines by the main program and subroutines themsclves s shown

below:

MAINPTROGRAM

All transformed cocfls.

Qe e »gual

Subroutine 2 calculates sum
of products of real roots 2000

NSQUARES =1

Callg

i

NSQUARES =2

Calls Subroutine 1 [or

checking siens ol real

Subroultine 4 Jor
caleulating one pair
of complex or
rcpeated roots 4000

{Calls

Subroutine 5 for calculating

two pair of complex or
repeated roots with
different moduln 3000

Calls
*__

NSQUARES = 3

Subroutine 6 for calculating /

two pair ol complex or
repeated rools with

identical moduli 6000

Subrouating 3 checks validity of
complex roots by dircet
subshitution in artginal cgn.
Warning if conv. not satisficd
by comp. root 3000




2.3 Procedure for identifying roots in GRAEFFE.BAS

Duc o squaring, the square terms grow more rapidly than the sum of product terms in the

transformed polynomial. As a resull new coelficinets | A, arc purc squares of | A,. Howcver

presence of complex or repeated roots prevents these cocfficients from beconming pure sguarcs

i.c. some cocflicicms remain non-square. Thus GraelTe’s rool squarnng method proyides a very

powcetul procedure for identifying different calegories of rouls as lollows:

{a)
(b)

real and distinet roots carrespond 1o “all coelMeients, | 4, being pure squares™.
One pair of complex roots or repeated real motls correspond o “a nonsquare sorrounded

by lwo pure squares” in the form [9]

YA‘-J] l"d'u J‘A'--l

Pure square MNonsquare PPure square
= ' r < [ ) -
and the roots @ +if7 arc determined by solving @ + 4° = i L and Newlon’s first
el

. a o . . . .

relalion Y. x, = ——"- applicd to original polynomial. If # =0, then the two roots are
=1 144

"
real repeated.
Two pairs of complex roots or repeated 1eal roots with differert modul comrespond o
“two nonsquares cach s sorrounded by 1wo pure squares” as

A A A A A

[T [ L | L r iy, v -]

Puresquare Nonsquare  Pure square Puresquare  Nonsquare  Pure sguare

and the roots @, £iF_, o i, are determined by solving
] H T H -

2 2
al.z iﬂtl =mw

i It o i o .
and Newlon's lirst and sccond iclations Y x, = ——=L ¥ XX, =—=2 | d =5, =L

re=f 2 1=l 4

a L
.111.]'

then the (our roots are real repeated.

20



{d)

Two pairs of complex or repented real roots with idenrical moduli correspond 1o “lhree

neighbouring nonsquares serrmounded by two pure squares™ as

M A A ‘45—1 A ) ' A'.—3

5+l ! * ! P
[LLLLERTF]FI 1y PUTESLIARE

wr
Moanssquare s

and roots o +if,, ¥ =1,2,arc obtained by solving

RP=al+f] = FAM.
' 1|| r‘JIL:l

where £ is the common miadulus, and fiest 3 Newton’s refations

i i)

-1
r =
r=1 a,

hii 4]
. _ w7
Zxx, =

ra=1 a

ey "
an an-:’-
Loxxx =—

1) k-l '

1= el fl

irg, =0, s =12, the moos are real repeated.

2t



Chapter 3
Solvability conditions, weaknesses and modification

3.1 Observation

None of the researchers in the references discussed the {ollowing observalious exeepl a fow,
Their comments ahout the method reparding advanlages and disadvantages are correct o their
point of view.

(1) It is observed thal there are cquations, which are wof trans(ormable by root squaring inlo a
different one with non-sero cocfficicnts from where the roots of the onginal equation arc

calculated. It is found that the odd degree cquations set like

x +a=10,
¥ ia=0,
¢ (3.1}
r +a=0,
et 20+ 25 1 2x 41 =0

ete cannot be solved by the Graeffe’s root squaring method manually as well as using
ORALIILEBAS  of Constantinides [9]. All these cguations (3.1) transform to the form
x"+a=0,n=273157 alier lirst ileration and GRALFFE.DAS shows overllow at the stalement
1080 Of constantinides[9]. Tt is observed that

+x+b=0, ¥ +u=0 x +ax’ +h:{J,l

©o4axt +h=0, x'+2x° +2x1+2x+'2:{]J

cte. can be solved by both manual procedures and using progrant of Constantunices |9]. In this
case zero coefliclents revive and nonzero coefficients do not vanish. As a result final
trans[ormed equation in cach case provides solulion. Houscholder [21} passes a similar remark
for x" —1=0 in which all # roots have unit modulug and the Gracffe method fails lor such

gquations withoul deriving anv solvability condition. Simitlarly. Wilkinson 1227 called for



equation x° ~1 =0 well-condition zeros x = &1, because on squaring the transformed cguation

becomes x* —2x--1 =0 and deteriorates 1o coineident ill-conditioned root 1.
(1) Aclual computation reveals another lact that 4%, 6", 8", 10" clc, dnugn,:u nicm-linear
cquations with positive unit coctficients like

sTaxtwxirx+1=20 (3.3

will never stop the procedure becauge the coellicients of the Lansformwd cquation remain

unity ic. (=1 F(3/x) fF{=x) remaing invariant.

3.2 Solvability conditions

The observations in sce. 3.1 leads condition ol solvability, In Graelfe's method. roots of the
eriginal cquation are obtained from the cocfficients of the last trans formed cquation. 17 sonw of
those intermediate coellicients between the {irst and the last one are zero. the rools muy bue
infinile or cven indeterminate, So, the first and foremost critenia of Graelle’s ool squaring
method 0 be successlul is that the coeflicients of the last transformed equation susf he non-
zero which 1 urn depends on some or all of ihe non-zero coetficients of the vriginal cquation,

I et the sth degree algebraic cquation be

-2

- £
aga” +a " day T e gt e ta, v ta, =00 G20

| he scheme of the process is as follows:

|-
L ]



Variable. x" i ¥ xF TR ¥ 1
+ - + (-1 {=n -1y
Cocfficienmts o, &, i, i, a,. i,
tq w gt} ey e (-0 ar e (-0, (=1)'a,
2a, 0, =2aa, e (-0 2a, a,., - (~1"2a,_,a,
+ 2d,u, (-0 2a,_a,,, e

2 Ay 1Ay Ay e N IA.lr—i 1A,
poweT

2'“'1}? mf{n j+|f‘1| ,+a’42 ...... r+IAé ...... Hljju_l MA”
nower

> & !
where HlAF={—1)‘[1A;+2}:{—l}'.JA*_,.IA,;_,.], O<k=znm £-120, kaisn
=]

iz o modification of what is given by Carnahan [18] and , 4, =«, . The equation suppose that
the root squaring process stops afier jfth squaring according 1o the stopping conditions
supecsted o the scheme.

The conditions of sobvability are discussed for the following two cascs:

CASE A. Equations with zero coefTicients
Let g, =0, O<k=n W , 4, =0 for 0 <k=n andforany J then the method will continue

indetinitely without satisfving any stopping conditions suggested in the references and so e

method fails, But if | A, = 0 ol some stages of 7 then the method is suecessful in giving rools,

letf=0s0

=1

¥
A, =(—1)*[a3 +23 (-1, .ui+;:|#ﬂ and a, =0

24



i
2y (- a4, 20
=l

le, @, =0 and «,,, =0
i.c. from the »ero coellicicnts &, =0, equidistant cocfficients 4, , and @, ;. are non-zero,
Once A, become non-zoro then the subseguent transformation will produce 4, 0. This

fact may be obscrved from the eyuation set (3.2) with zero cocfficient in sec.3.k. But if it

happens that |, A, =0, j > (1. then the sulvability conditions follow the next casc 1.

1+

CASE B. Equation with non-zero coeflicients
Let @, 20, 0<k<n. The case when 4, 20, />0 is of less interest ol discussion.
Because of such ease the method is guite successful but il it happens that |, 4, =0. j> 0

then the conditivns will be same as the followang.

[et

-1

)
A, =0, Ock=<n, alsoj=0 Then A, =(—l}k[af +22{—1)f.a§_,.a“;‘ =0

=1
&
D ap 23 (D" a0, =0
lx|
i.e. the coellicients of the second pewers of the roots in the wanslonmed equation are zero, 1Y
these cocfficients satisty, the conditions like CASE A then the given cquation is solvable under

this method otherwise not, Similarly in any slages of transtormation ,; 4, = 0 but satisfy the
conditions like CASE A then the given equation is solvable. Consider the cquation

a2t 20t 42 1 2x41=0
in set (3.1 for which |4, =0, 0<k <5 and which do not satisfy the cnteria in CASE AL So.
for this equation GraelTe"s method fails whereas the method is successful for the equation

2t 2y 4 2x4+2=0.



3.3 Weaknesses and recovery of Gracffe’s method

The most imporiant advantages of Graelle™s root squaring method mentioned in most of the
references are (1) the method gives all the roots — real. complex, eyual and uncqual. simple and
multiple; (ii) the method needs no inttial puess as in other method. Although Balagurusamy
[19]. Constantinide |2] mentioned some disadvantage of coclficient growth during ueration,
Malajovich and Zubelli |7] clearly and specitically point un the reasons for lack of populanty
of Graeffe's methed for a pretty long time, They stress two main weakness — (1) Coelhcient
growth, {ii} the mcihod returns the nmdu]i1 ol roots but not the actual roots. Specifically
reasons jor Graelte's root squaring method for lack of popularity are

(i} its traditicnal for leads to cxponents that easily exceed the maximum allowed by floating
point arithimatic:

(i) Chaotic behaviour of the arpuments of Lhe roois of itcrates,

To overcome the weakness (i), they introduce renommalization and to overcome weakness (D).
they differeptiate the Graclic iteration operator, {f(x) = (13 ,.I"(».E ¥4 (—w'?) fwhere d s the

degree of polynomial | and its effect is to square each root of £, [7].

Constaintinides |9] in his program alleviate serious limitation (i) above by the following 4

sleps.

fa) Coefticient of the original polynomial are separated into maniissa and exponent parts and
stored inlo two separate matrices. The ranges of mantissa vsed are £ 101

{by After cach iteration manligsas part of coefficiems are Lested. 11 their absolute values are
preater than 10 (less than 1) these values are divided by 10 (multiplied by 10) and the
corresponding exponents are increased {decreased) by i,

(¢} The upper of limil of exponent factor is chosen as 999 as maximum values of them may

be i.e.10x10"™"" which is not necessary for Graelle’s method. [f onc of the cxponen
{actors excced this limit, the ileration s {eminatcd and the roots are evalualed.
{d) Doth the matrices are treated together in the programme, so that exponent part of each

coclticient is always accounted lor.



Hacra and Loskor [14] observe that the alpebraie equation sct (3.1 1x not selvable manually s

well as GRAEFFE.BAS soflware in [9]. Thus they eonclude that

{iy ecquation with zero-coelficient must have at least onc pair of equidistant non-«ero
coeilicient from the zero-coefficicnt;

(i} any transformed equation of a given equation with non-zero cocfficient may have cero
coellicients but these new coefhcients must satisty {iy;

{iii} all the coeflicienis of non-linear albegraic equalion must not be unity:

{iv) GRALGFIFE.BAS needs modification in the light of (i}, (i) and (i),

They sugpest a testing procedure which identifies solvability of the equation. Thus soflwarc in

[9] has been modified for identifying those types of problems and actually identified with the

modified soliwane.

Miustration of (i}

Odd degree equations of lTorm x" +a =0 does not have a pair of cquidistant non-zewo
cocfficients from the zero coefficicnts as is seen from first ihree cqualions in {3.1); whetcns
cven depree equation of ihe lorm " +a =0 does have a pair of cguidistant non-zero
coellicient from the zero cocfficients as is secn from 2™ equation x' +a =10 in (3.2). Alse the
3" and 4" equations posscss a pair of non-zero coefficient from the zero cocfficient. Hence
these equations in {3.2) are solvable by both manually and using GRALTFTL.BAS soliwanc.
The last equation in (3.1} has no zero cocfficient bul has ihe coclticicnts o, = a, =1 and other

coellicients are cqual. This type transiomm to onc with zero coefficienis and posscises no

equidistant pair of non-zero ceefficients Irom the zero coellicients. Dut the last equalion o
(3.2) with a, # a, and other coefficients being cqual transforms int one with zero coefficionts
having at [cast a pair ol non-¢ero cocfficients from the zeto coelficients Hence this type is
solvable by Graefle's methad.

In other words, all the cquations in the set (3.1 reduee to the form x" +1=0 on the first
Heralion f{x)= fn(u";) fﬂ[—«,."';) and the zero-coefficient of the new transformed cquation

does not have a pair of nen-zero coefllicient Irom the zero coeffreients. That set (3.2) docs nol
have the above discussed problem and is solvable by Graeffe's root squaring micthad by bath

manually and using GRALITE.BAS software.



3.4 Modification of GRAEFFE.BAS

It is abscrved that there arc equations, which are not transformable by reot squaring inlo a new
onc with non-zere cocfiicients from wherne the roots of the original cquation are caleulated, Tty
found that lhe equations like

Y ra=0, ¥ +a=0, x+a=0, X +2x"+2+2x* +2x+1=0 (3.3)
etc. While running the problems with original program [9] shows "Overflow™ al statement

1080 : X{NR) = (AR, K-137/ A{ R, K3 )~ (1/ MOY*10 ~ ((TACT(R, K-1)- FACT{R.K)) / M),
To overcome this difficulty, we have to modify and extend the original program [9]. So we
introduced following stafements and generate a new subroutine 7. Slatement numbers in [9]
are 10.20.30. ..., 530. The medified statement numbers are filted in between, The following
arc the modilied slatements with new staiement numbers different from Lhe original statement
numbers. The new subroutine 7 {ollows next.
603 : IFABS{A(R,[))=0THEN GOTO 605 ELSE G(r10 610
605 - IFABS(A(R, =D )<> 0 AND ABS { A (R, I+1 )} < >0 TIIEN GOTO 1350

1075 IFCS(N-1)<=P8S ANDCE (1) <> IPS§ THEN GOTO 1110
1350: GOSUB 7000.
4065; 1 CH (K ) <>DPS§ AND CH (K } <> NS§ THEN GOLO 4170
5085 IFCS (K )y=<>P8§ ANDCH{K)<>NSF THEN GO0 5230
SUBROUTINE 7
7010 - FORT=N-1 10 1 STEP-I
7020 IF ABS (A(R.T) =0 TIIEN GO0 7030
7030 ¢ IF ABS(A (R.I-1) )<= 0 AND ABS(A (R, I+1) ) <> 0 THEN GO0 7050
7040 NEXT 1
7050 : FORK=t TON
7060 : IF X(K)+ XI(K)=0 TIEN GOTO 7090
7070 ¢ IF X(K)+ XI(K) <=0 TIHLEN GOTO 13350
7080 : WNEXT K
7090 : PRINT: PRINT ™ LQUATION IS NO'T SOLVADBLLE DY GRAEFFE'S ROOT

SQUARING MLETIIOD™

F1O0



The difficulty of the problems (3.3) cocfficients CH{N-1} and C$(1) do not show PURE
SQUARE. If C$(1} do not show PURE SQUARE then from siaiement 1070 and stalement
1110, we obtain K=0. which is oul of ranpe of K al statement 1051 S0 we introduce new
statement 1075 among them as {follows:
1050 FOR K= N TO 1 STEP -1
1070 : IFCS(K-1)< >P8§ THUEN K= K-1:G0TQ 1110
1074 : New slatement
1075 IFC${N-11=< > PSS ANDCS (1) <> P8§ : GOTO 1110
1110 NEXT K
Also some of the problems (3.1) such as x° +« = 0do not show PURESQUARE and NON
SQUARF. when K is N-1 to 1. In the original program it shows “overflow™ at slatemaent 4070
and statement 3090, So we introduce statement 4065 and statement 5085
among them as follows: .
4065 : IFCH (K y<>PS§ AND CF (K )-2> NS} THEN GO10 4170
4070 RIK) = (A (RK-D/ AR KDy ~ (/M) * 10 ~ ((FACT (R, K-1}) -
FACT(R. K+1) )}/ M
S085: JFCH( K)<=PSS ANDCS ( K) <> NS$ THEN GOTO 3230
5090 1 R (K)=(ABS(A(RK-1VAR K+ 7 (1/M)* 10 M(FACT(R. K-1}-FACT(R,K+1) )/ M
The propram [9] will be medificd identifying the inability of salving some ol the nosn-lincar
algehraic equations of the form (3.1). The modified GRAEFFEDAS is developed using the

follewing algonthm,

Algorithm

fdentify (the presence of any zero coefficicnts)

or {all the coctlicients are unily}

if (there is no puir of non zero coefficients fvom the zero coctficient)

or {all coeflicients arc unity)

then go to print “cquation is nol solvable by graeffe's rool squaring method™

Repeat the above steps for each subsequent new transformed coetticients.



3.5 Modificed GRAEFFE.BAS

10
20
30
40
5()
00
Gl
100
1Y
120

140
150

160
| 170
180
190
200
210
220
230
244
250
260
270
280
290
300

FRINT I EFEE IS EEEE IS EL S AL E-EEL AL EE LS E L EE AL EEE-EE LRI R L

PRINT * * £
PRINT = * GRALFFE'S ROOT-SQUARING METHOD ™
PRINT = * e
PRINT * * {Modified GRAEFEL . BAS) ¥

PRINT Farprnp g g P PP T L PR E LT R EI R E TR LR S LT T TR
PRINT © ###FFtatdsmmbaonhdsdsbtdtdpb kbbb b d s 1 S5 511 bk dhm

AEEEE L EELE EEELLALELELL L LY Y1 FRUDMM EXE SRR ELE L L L L L LR L kN

' Define the polynomial

PRINT * DEGREL OF POLYNOMIAL™ ; (INPUT N

DIM  A{20, N), C#N), SUM(N) FACT{20, N). LC(N), R(N). X{N}). XI(NL
ROOTS(N)

[ORK= NTO 0 STEP -1

PRINT * COEFFICIENT ™ ; K :

INPUT A(0. K)

NEXTK

PRINT * GIVE THE CONVERGUENCE VALUE OF F™ ; D INPUT LPS
'Extract factor of 1en and reduce cocfficients by this Tactor.

' In order to be able to handle very larpe numbers.

' Keep account of factors, and increase or decrease accerdingly.

FORK= N 10 (0 STCP -1

[FAQ@ K)=0 GOTO 300

FACT (0, K) = INT(LOG (ABS (A (0, K)))/LOG(10})

A K= A0 K (105 FACT (LK ))

NEXTK

30



310 PRINT: PRINT = ROOT SQUARING PROCESS -7

j0

330 ' Print the original coeificicnts with the factors.

340

350 PRINT:PRINT = ¢ :FOR K=NTOOSTEP-]1 :PRINT" A "1:NEXT K PRINT
Jan 1-*0}{1{= W TO {+ STEP -1 : PRINT™ r 7y Ky cNEXTK :PRINT

370 PRINT USING “## 7 R,

380 FORK= N TO § STEP -1

390  PRINT USING “##HEA#E", A0, 1) PRINTAL™ :PRINT TSING “##f " FACT{0.K}L
400 NEXT K

410  PRINT

420 !

430 ' Beminning ol major iteration
440

430 TORR=1 TO 20

460  PRINT USING “##% " I:

470

480 ¢ Caleulale new cocfficients

490 ¢

500 FORI=N TO 0 STEP -1

510 FACT(R,1)=2* FACT(R-1.T})

520 SUM(1)=0

530 FOR L=1TO1

540 IF(1-L)<0 OR {I+L)>N THEN GOIO 590
350 TA=FACT(R-1,1+L}+ FACT(R-1,1-L}
560 FB=FACT (R, [}-FA

570 1F B> 20 GOTO 390

580 SUM{1)= SUM{T}+2* -1}"L*A(R-LI+LY*A{R-1,I-L}/(10*FB)
590 NEXT L

600 A(R,D=A(R-1,0)"2+SUM(I)

a2 " Mew statemenis



603
605
606
610
620
634)
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
$00
810
820
830
840
850
860

870

IF ABS(A(RLI)) =0 THEN GOTO 605 ELSE GOTO 610

IF ABS(A(R, I-1)}) == 0 AND ABS(A(R, [1-1)) <=0 THEN GOTO 1345

IF ABS{ARL D 10THEN AR, T FAMR, I Y10 FACT (RIFFACTIR I+ 1.0OTO 610
IF ABS(A{ R. 1 13<1 THEN A (R, 1) = A (R, I1)* 10 FACT{R. h=1IACT (R. 1} -1
PRINT USING “#H #8477, AL Do PRINT “E™PRINT USING =& 7 FACT{R. 1)
IF ABS (FACT(R.1})> 999 THEN GOTC 880

NEX'T |

" Check whether cocfficients are pure squarcs

PS$ = “ PURE SQUARE™ : NS§ = “non-square” '

CH(N)=P8$ : C5(0)=P5%

FOR I=N-1 TO | 5TEP -1

IF SUM ([)=0GOTO 750

W= {A(R-1, 1}*2)/SUM(1)

IF ABS (W)= 1000 THEN C3${1)=P8§ ELSE C${1)=NS§

NEXT |

PRINT

SQUARES =0

FORI=N TG 0 5TEP -1

IF C$¢1)=DI8% THEN SQAURLS = SQUARES + 1

NEXT 1

NSQUARES = N+ 1 - 5QUARES

I SQUARES = N+ 1 THEN GOTO 900

NEXID R

' lind of major ileration.

PRINT:PRINT “ITCRATIONS EXCELDLED. POSSIBILITY OF COMPLEX OR
REPEATLED ROOTS .”

GOTO 890

A2



8§80

890
GO0
oL
920
930
944}
950
960
970
980
990
1000
1010
1020
10306
10440
1050
L 060
1070
1074
1073
1076
1080
1090
1100
1EI0
1120
1130
1140

PRINT : PRINT ™ FACTOR EXCEEDS 999 . POSSIBILITY OF COMPLLX OR
REPEATED ROOTS.”

R=R-I
PRINT : PRINT = THE COEFFICIENTS ARL : 7 : PRINT
PRINT = ™;: FOR I=N TOOSTEP -1 : PRINTCS(1):™, 7 ; NEXT: PRINT

t

' Find location of non-squares

FOR K= N TG 0 STEP -1
IF C$(K)<>PS$ THEN LC(K)=K
NEXT K

' Gvaluate the real moots and the sum of these roots.

M=2"K

PRINT :PRINT “THE NUMBER COF SQUARING :r=" ;R *TIIE POWER:m ="; M
PRINT : PRINT * CALCULATION OF ROOTS = 7

SUMRT =0

FOR K=N 10 1 STCP -1

NR=N+1-K

IF CR (K —-1)<> PS$% THEN K=K -1 GOTO 1110

" New statement

IF CH{N-1) <= PSE AND C¥(1) <= PS§ TIHEN GOTO 111

X (NRY=(A(R, K=1IVA (LK )~ (UM ¥ 10~ ({ FACT (RK-D)-FACTIR. KX 3}/ M)
GOSUR 1500 " Check the sipn of the mwot

SUMRIL = SUMRT + X ({ NR)

NEXT K

' Calculating the sum of the product of the real roots

GOSUR 2000



1150 ' Branch 1o subroutine for complex or repeated roots

1160 ONNSQUARES GOSULB 4000, 5000, 6000

1170 IF NSQUARES = 3 THLEN PRINT “ ***PROGRAM CAN NOT DETERMINE
MORE THAN TWO PAIRS OF COMPLLX ROOTS *#*~

1180 'Print all the roots

1190 PRINT :PRINI *THLE"; N; “ROOTS ARL 7

1200 FOR K=1 TG N

1210 YY =1000

1220 IF ABS{X(K3*YY)» 32000 THEN YY =YY / 10 GOTO 1220

1230 [F X{K)=0THENGOTO 1260

1240 TFABS(X{(K)Y*YY)<I000 THENYY =YY * 10 : GOTO 1240

1250 X{K)= CINT{X{K)*YY)}/YY

1260 ¥YY = 1000

1270 [FABS(XI(E Y YY) > 32000 THEN YY =YY /10 : GOTG 127

1280 IF XI{K)y=0 THEN GOTO 131¢

1290 IFABS({XI{K)}*¥YY)<100 THEN YY =YY * 10 : GOTOI2%0

1300 XI{K)=CINT (XI{K)*YY)/YY

1310 PRINT TAB {20} ; X({K);

1320 IFXI{TK )y =0 TIHEN PRINT ~+" XI{K}:"17

1330 1F X1{K) <0 THEN PRINT “="; — XI(K}; “i"

1340 NLEXT K

1345 GOSUB 7000 “New statenment

1350 END

1360 '

[500 " *#sdFssrtd Subhroutine 1 : Checking sign of real ropts ¥r##fsres

1510

1520 TFUP=A(O.O* (10" FACT (0,0} ) : FUN= A{0, 03 * (10 ~TACT (0,0} }

1530 TFORI=N 10O 1 STEP -1

1540 FUP =FUP+ A {0, 1)1* (10~ FACT (0,1))* X (NR) "1

1550 FUN= FUN+A (0, T)*( 10~ FACT (0,1))* (=X (NR))I ™}

1560 NEXT 1T



1570
1580
1580

[600
1610
1620
1630
2000
2010
2020
2030
2044
2050
2060
2070
2080
2090
000
3010
3020
3030
3040
3050
3060
3070
3080
3094
3100
3110
3120

PRINT-PRINT ™ FUNCTION WITII POSITIVE VALUE QF{" ;X (NR}; =" FUP
PRINT " FUNCTION WITH NEGAITIVL VALUL OF(" : X(INR) ")y ="; FIIN
[F ABS {l-'LJP]-I = BPS AN ABS (FUN) > EPS THEN PRINT “ 1 WARNING :
CONVERGENCE NOT SAUISFILD BY REAL ROOGT **

" choose root which pives lowest value of function

IF ABS (TUN) < ABS (FUP) THEN X{NR}= —X{NR)

RETURN

"% Subroutine 2 : Calculation of the suwn of the product of the real rocts*.
PRODRT =0

FOR K=1 TO N-1

FOR KK= K+1 TO N

PRODRT =TPRODRT +X(K) * X (KK}

NEXT KK

NEX1 K

RETURN

"#% Subroutine 3 : Cheeking coniplex roots ¥k ki
FOR KK=0 TO N : SUMI{KK} =0 : NEXT KK
FOR KK = ¢ TO N ; SUMC(KK)=0 : NEXT KK
SUMC (0} =1

FOR I= 1 TO N+t

SUMC{1)=1I

FOR KK=2 TO N

SUMC (KK) = SUMC (KK) + SUMC (KK-1}

NEXT KK

FOR I= { TO N+l

SUMI {1)=SUMI(J)+ A(0, I=1+1*(10°FACT (0, 1-1+3 )Y*(ALPILAAI—1)*STIMC (1)
NEXT I

35



3240
3250
3260
3270
40060
4010
4020

H)30
4140
4050
4060
4070
4080
4090
4100
4110
4120

NEXT |
SUMIL = 0

FOR =1 TO N STEP 2

SUMIT = SUMIT+ (BLIAA 1) * (SUMI(I)* (=13~ ((1-1)/2)

NEXT |

SUMIIZ =0

FORI[= 2 TO N STEP 2

SUMII2 = SUMII2 + { BETA * 1) * (SUMI{ 1)} * (=137 (1/2)

NLXT |

SUMALL = SUMI(®) + SUMII + SUMII2

IF ABS ( SUMALL ) < 3PS THEN RETURN

PRINT** WARNING:CONYERGENCE NOT SATISFIED BY COMPLEX ROOH*”
PRINT *+ VALUE OF FUNCTION = ~ ; SUMALL; =" ; EPS ; **"
RE1URN

VakanE Sybroutine 4 1 One pair of complex or repeated roots ¥EH¥*

PRINT: PRIN! “CALCULATION II' ONE PAIR OF COMPLEX OK REPEATLED
ROOTS:™

ALPHA =((—A( 0. N=1)/ A0, N) * 10 ~FACT (0, N=1)=-FACT (. N})-SUMRT )/ 2

FOR K= N 'TO 158TLP -1

NR=N+1-K

IFLC (K= 0 THEN GOT(O 417

R{ K} =(A (R K=1VA(R, K+1D A (/M) * 10~ ((FACT(R, K—1-FACT(R. K+1)) M}
BETA= SQR{ABS(R(K)-AILTHA~2})

'Check [or repeated roots

PRINI * CHLCK FOR REPEATED ROOTS: ™

X{ NR}=SQR [ R(K) ): GOSLB 1500

IF ABS(FUP) > EPS AND ADBS (FUN) > EPS THEN PRINT » * ROOTS ARE
COMPLEX ¥ : GOTO 4160



4130

4144

4150

4160
4170
4180
4190
4200
4210
4220
5000
5010
5020
3030

5040
2050
5060
5070
5080
5085
5090
5100
3110
5120
3150

I ABS(FUP} < LIPS AND ABS{FUN) < LPS THEN PRINT * ** ROOTS ARE REAL
AND REPEATED BUT OF OPPOSITE SIGN**": X{NR-1}= - X{NR)

IF ARS(FUPY < EPS AND ABS(FUN} > EPS THEN PRINT * ** ROOTS ARE REAL
AND T'HE SAME SIGN**" X(NR=1}=X{NK})

IF ABS (FUP) > EPS AND ABS(FUN) < EPS THEN PRINT = ** ROOTS ARL
REAL AND REFEATED AND QF TIIE SAME SIGN**": X{NR-1)=X{NK}

GOTO 4210

NEXT K

' Check convergence with complex roots

GOSUB 3000

X(NI = ALPHA : XI(NR)=-BETA : X(NK-1)= ALPIA : XI{NR-1)=DBITA
RETUIN

r

' Subroutine 3 T'wo pair ol complex or repeated toots with different modui:”

RSUM =10

PRINT: PRINT “TWO PAIRS OF COMPLEX OR REPEATED ROOTS WITH
DIFFERENT MODULL™ ‘

B =( (A(0, N=13/ A0, N) } * 10~ (FACT (0, N—1) ~ FACT(O,N ) } +8UMRT ) / 2
PRINT “CHLCK FOR REPCATED ROOTS:”

FOR K= NTO 18TEP -1

NR=N+1-K

IF LC(K) = 0 THEN GOTO 5230

IF CH(K) < PS§ AND CH(K) <> N8$ GOTO 5230 " New stalement
R{K)={ABS(A(RK-1 VAR, K+ 1) (1/My* 10 NFACT (R K-1)-FACT(I, IKA-1)/M)
REUM =RSUM+R{K)

" Check for repealed rools

X (NR} = SQR { R { K )} : GOSUB 1500

I ABS (FUP) > EPS AND ABS (FUN} = EPS THEN PRINT = * ROOTS ARL
COMPLEX *": GOTO 5230

=

LY



3140

5150

5160

S170
S180
5190
5200
5210
5220
5230
5240

5250
52060
3270
3280
5290
5300

3320
5330
5340
5350

5360

5370

IF ABS (FUP} < EPS AND ABS (FUN) < EPS THEN PRINT * #* ROOTS ARE
REAL AND REPEATED BUT QF OPPOSITE SIGN**™; X(NR-1} = -X{NR}
IF ABS (FUP) < EPS AND ABS (FUN) > EPS 'THEN PRINT “** ROOTS ARE
REAL AND REPEATED AND OF TIIE SAME SIGN#*™ X{NR-1}=X(NR)

IF ABS (FUP) > GPS AND ABS (FUN) -2 EPS THEN PRINT *** ROOTS ARE REAL
AND REPEALLED AND OF THE SAME SIGN**": X(NR—1)= X({NR)

“Cancel the nonsquare corrcsponding to the repeated pair
"and pote the subroutine for one pair of roots
LC(EK)y=10
SUMR'T = SUMRT + X{NR) + X{NR-1)
GOSUB 4000
GOYTQ 5400
NEXT K
C = { {A(D, N-2WA (. W) * 10~ PACT (0, N=-2) —FACT(O, N 3 ) + 2 * D * SUMRT
- PRODRT -RSUM } /4
ALPHAl =(-B+SQR{ABS{D"2-4*())})/2
ALPHAZ =-B - ALPIIAI
COUNT =0
FOR K= N TO | STEP -1
NR=N+1-K
IF LC{K)=0 THEN GOT( 5390
COUNT = COUNT + 1
IF COUNT =1 THEN BLTAl = SQR{ ABS (R (K} - ALPHAT "2} )
' Check convergence with complex roots
ALPHA = ALPHAL: BETA =BETAIL: GOSUD 3000
[ ABS {(SUMALL) > EPS THEN PRINT = * SWADP THE VALLIL OF ALPIA]
AND ALPHA2 AND TRY AGAIN *7: SWAP ALPHAL, ALPHAZ2: GOTO 5270
1 COUNT =1 THEN X(NR)= ALPHAT: XI{NR) = -BETAL: X (NR-1) = ALPHAL :
XI(NR-1} = BI'TA1
I[F COUNT =2 THEN BETAZ2 = SQR(ADS (R (K) - ALPHA2~ 2 })



3380

5390
5400
5410
6000
6010
an2{)
o030
6040
6050
6001
a7
GOR0

6090
6100
6110
6120
6130
6140
6150
6160

6170
6180

o190

6200

IF COUNT =2 THEN X(NR) = ALPHA2: XI(NR) = -BLTA2: X(NR-1)= ALPI1AZ:
XI(NR—1) = BETA2

NEXT K
REITURN

1

" Subrouting 6 : Twa pairs of complex or repeated roots with identical modul

' Check for neighboring nensquares

W=y

FOR K= N TO 1 STEP -1

IFLCK) <> 0 AND LC{K-1) <> 0 THEN W =1

NEXT K

IF W=0 THEN GOTO 6520

PRINT: PRINT “TWO PAIRS OF COMPLEX OR REPEATLD ROOTS WITTH
IDENTICAL MODULL™

P={NSQUARES +1}/2

B= (A0, N-1}A(0NI}*10~(FACT0, N-1) —FACT (LN ) }+SUMRT)/2
RSUN =0

PRINT"  CHECK FOR REPEATED ROOTS:"

FORK=N TO | 5TEP -1

NR=N+1-K

I} LCK) =0 THEN GOTO 6230

R(K) = (A (R, K+1-2 * P}/ A (R, K+1 1) 1/ (P*M) ) * 10 M(FACT (R, K+I-2%P )
—FACTR, K+13 )/ (P*M) )

RSUM = RSUM + P * R{K)

X(NR)=8QR{IVK) 3: GOSUB 1500

IF ABS (TUP) > EPS AND ADBS (FUN) > EPS THEN PRINT * * ROOTS ARE
COMPLEX *:GOTO 6240

IF ABS (FUP)<CPS AND ABS (FUN) < EPS THEN PRINT * #* ROOTS ARE REAL
AND REPEATED BUT OF OPPOSITE SIGN**": X(NR-1}= — X{NR}: GOTO 6380

3%



6210

6220

6230
6240

06250

(260
6270
6280
6240
6300
0310
6320
6330
6340
6330
6360
0370
6380
6390
6400
6410
6420
0430
6440
6450

IF ABS (FUP) < EPS AND ABS (FUN3 > EPS THEN PRINT ** * ROOTS ARE REAL
AND REPEATED AND OF THE SAME SIGN**: GOTO 6240

IF ABS (FUP} = EPS AND ABS (FUN} < EPS THEN PRINT * * ROOTS ARE REAL
AND REPEATED AND O THL SAME SIGN**": (GOT() 6240

NEXT K

' Repeated rools ol same sign or complex roots

C =({ A{. N=-2}/ A{0, N * 10 " (FACT (0, N=2} =FACI {0, N})2*D3* SUMRT -
PRODRT - RSUM 1/ 4

ALPHAl =(-B+SQR{ABS(B~24*C)H))/2

ALPHAZ =-R = AlLLPHAI

FOR K= N TO1 81LEP -1

NR=N+1-K

IF LC{K) =0 THEN G{¥10) 6360

BETAl = SQR{ABS (R(K} - ALPHA1 ~2))

X(NR) = ALPHAL: XI{NR)=-DETA1: X{NR-1}=ALPHAL: XI(NR-1)=BETAL
BETAZ= SQR{ ABS { R{K) - ALPHA2"27)

XINRA2=ALPHAZ: XIINR+2)=—DETAZ:X{(NR+1} = ALPHAZ  XI{NER+1)= BRTAZ
GOTO 6370

NEXT K

RIFTURN

' Repeated roots of opposile sign or complex roots with zero real part

COUNT =}

AlLPHAZ2=-B

FOR K= N TO1 STEP -1

NR=N+1-K

IF LC(K)} =0 THEN GOTO 6500

BETAZ = SQR (ABS (R(K) -ALPHA2 ~ 2} }

ALPHA = AIPHA2: BLETA = DBETA2: GOSUB 3000

441}



6460

6470

6480
6490
6500
G310
6520

6530
006
011
7021
7031
7041
7050
7060
7070
7080
7090

7100

U ABS(SUMALLY=EPS THEN PRINT*SWADP TUHE VALLLE OF ALPHAZ AND
BETAZ AND TRY AGAIN* ™ SWAP ﬁLPHﬁlHEThZ COUNT= COUNT+I.
GOTO 6450

X(NRA2)=ALPHAZ: XINR+2)=—BETAZ:X(NR+1} = ALPHAZ: XI{(NR+1)=DETAZ
IF BETAZ2 =0 AND COUNT > 0 THEN X{NR+2}=ALPHAZ: X{NR+1}=-ALPHAZ
GOTO 6510

NEXT K

RETURN

PRINT = ** PROGRAM CANNOT DLETERMINE MORE THEN TW0O PAIRS OF
COMPLEX ROOTS *+~

RETURN

*Subroutine 7: * for not solvable ™

FORI1=N-1 TO | STEP -1

iF ABS (A(R, 1) } = 0 THEN GOTG 7030

1 ABS(A (R, [-133<>0 AND ABS{A (R, 1+1}) <=0 THEN GOTO 7050

NEXT |

FORK=1TON

IF X({K)+ XI{(K)=0 THEN GOTG 70%(

IF X(K)+ XI{K) <=0 TIIEN GOTO 1350

NEXT K

PRINT: PRINT = EQUATION IS NOT SOLVAELE BY GRAEFFE'S ROOT
SQUARING METIHOD”
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HFEERREE O GRABEEE'S ROOT - SQUARING MITLIOD #5¥ sk xkbbks bkt £+

LA EELEEEEE L E L Ll s (GMEFFEBﬁS) EEE RS LR SRR ISR R L EIEEE LY

DEGRILE OF POLYNOMIAL 5

COLFFICIENT 5 I8 1

COLFFICIENT 4 18 -3

COLFFICIENT 3 I8 -13

COEFFICIENT 2 15 85

COFFFICIENT 1 I8 -26

COEFFICIENT 0 I8 -120

GIVE THE CONVIERGENCE VALULR OI' F=0.002

ROOT-SQUARING PROCLESS:

R A A A A A A
r 5 r 4 r 3 r 2 t ] r 0

0 1O00E 0 -5.000C 0 -1.500E 1 8500 1 2 GDOE ] -1.2008 2
1 10.000C -1 S5.000F 0 10230E 2 76450E 2 21.076E 3 144001 3
7 10D00E -1 97900E 1 24773E 4 16Y9E 6 224025 7 20730k 7
1 10000C -1 46298FE 4 28712 9 175315 13 430730 15 42.998E 15
4 10.000C-1 15693810 66212E 19 282354F 27  18489E 32 18.488E 32
5 10.000E -1 23302121 42954E 40 79587E 55 341820 65 341820, 05
6 10,000 -1 S54210E43 18447E B2 63.5340L 112 11 684E132  11.684E 1532
7 10O00E -1 293881588  34.028FE 165 401195 220 13.6052E 2063 13.652E 2065
THLE COEFFICIENTS ARE:

PURE SQUARE. PURE SQUARE, PURE SQUARE . PURLE SQUARE, PURE SQUARE,
PURE SQUARYE

THE NUMBLER OF SQUARING: ¢=7

THE POWER:

m=128



CALCULATION OF ROOTS:

FUNCTION WITH POSSITIVE VALUE OF (5} = 1.6021731:-04
FUNCTION WITH NEGATIVE VALUE [5  (5)=-2240.001
FIINCTION WITH POSSITIVE VALUE OF (4) = -80.00003
FUNCTION WITH NEGATIVE VALUL IS {4) = 1939801 E-04
CFUNCTION WITH POSSITIVE VALUE OF (3) = 1.523879L-05
FUNCTION WITH NEGATIVE VALUE IS (3) =480
FUNCTION WITH POSSITIVE YALUE OF (2} =1478195E-05
FUNCTION WITH NEGATIVE VALUL IS (2)=280.0001
FUNCTION WITH POSSITIVE VALUE OF (§)=-80
FUNCTION WiTH NEGATIVE VALUER IS (1) =-8.38306%9E-06

THE 5 ROOTS ARL:



Cxample (12

FhkbrprRakF Rk Ee® GRAPPTES ROOT - SQUF‘\RING METEIL THtamsasd b bt 1 2w 51

PETEEFE T IR E L LI E-L L LE L L L] {GMFFE;bUAS) IEEFEEEERTEIEE TN REN LR L IR I

DEGRELE OF POLYNOMIAL 5

COEFFICIENT
COEFFICIENT
COEFFICIENT
COLIFYICIENT
COLTTICIENT
COEVPICIENT

Py

{

I
15
15
[
I8
15

|
-10
42
102
145
-100

GIVE THE CONVERGENCE VALUL OF  F=0.01

ROOT-SQUARING PROCESS:

R A
ro3
0 1.000LE 0
10.000F -1
10.000E -1
1HL.I0E -1
10.000LE -1
10.000E -1
10 000FE -1
10.000E -1
10.000E -1

10.000F, -1

B+ B = R

A A A A A

4 r 3 r2 v 1 0

-Lonoe 1 42008 1 -lL020L 2 14501 2 -10001< 2

LoO0E 1 LAOQF i 0.224F 3 (0.025E 3 100000 3
22.800E I -57.220k

)

35278 5 -40894E 5 100000 7

63.428E 3 -13.626F 7 12.318C 10 -33.8121 12 1000018 15
42 957E 8 2R322E 14 17776k 20 432121 25 10.000F 31
184475 18 -72495F 29 15.712F 41 -16879F 52 10.000C 63
4.029E 37 -54 139 59 39.046E 82 -29 349EI04  10000F [T
11.580F 76 -23.643E 121 18.874E 166 -0947SEZLO 10 (00F 255
134080 153 12.188F 243 S0.8511 332 105325422 100001511

175815 307 12.183E 486 288331 665 00 7411843 10 Q00KE1023

FACTOR LXCEEDS 999, POSSIBLITY OF COMPLEX OR REPLATIED ROGTS,

THE COLFFICIENTS ARE:
PURE SQUARE, PURE SQUARE. NON SQUARE , NON SQUARL. NON SQUARIE,

44



THE NUMBLR OF SQUARING: r=8 THE POWLEER: m— 236

CALCULATION OF ROQTS:
FUNCTION WITH POSSIUVE VALUE OF (4.000002) = 1.125336E-04
FUNCTION WITH NEGATIVE VALUE IS (4.000002) = -8584.013

TWO PAIRS OF COMPLEX OR REFEATED ROO LS WITH IDENTICAL MODULL:

CHECK FOR REPEATLD ROOTS:

FUNCTICON WITH POSSITIVE VALUE OF (2.236068) = -[0.29418
FUNCTION WITH NEGATIVEVALUE IS {2.236068) = -1709.705
+*WARNING : CONVERGENCE NO'T SATISTIED BY REAL ROOT*
*ROOTS ARE COMPLEX*

* THE S ROO1S ARE:
4
2+ 1i
2-1i
1+21
1-21
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#******t*t***ﬂ;#** GI'LAEFFE]S R()()I - SQUARH\JG P,',-IETH(JD EEEEE L E-E LR R R LR

EEEEEELEPEETEEL S L EL B, (GR&EFFEDAS) EEEE LR EIR IS EEE AL LR LA £ LR L L Lo

DEGREE OF POLYNOMIAL 5
COEFFICIENT 5 I5 1}
COLFFICIENT 415 0
COEFFICIENT 3 15 O
COUFFICIENT 215 0
COLFFICIENT IS 0
COFFFICIENT 015 1

GIVE THE CONVERGENCE VALLUE OF

ROOT-SQUARING PROCLSS:
E A A A
r 5 ro 4 r 3
0 1000E O 0000E O (OGDOE
1 10000E -1 0000E -1 0.003E
2 10.000FE -1 0.000E -3 0.000F
3 10.000C -1 0.000E -7 (.0OOC
4  10.000E -1 Q.000k -15  0.000E
5 10000 -1 0.000k -31 0.000C
6 10.000C -1 0.000E -63  0.000C
7 10.000F -1 0000E-127  0.000E
8 10.000E -1 0.000E-255 {(.000L
g 10000 -1 QO0ME-511 0.000E
0 10000E -1 G.000E%-1023

[ =0.001
A
r 2
¢ O000C 0
-1 0.000E -1
-3 0.000E -3
-7 DOE WY

-15 0 0.000E -15
31 0,000 -31
-63  0O000F -63

-127  0.0001E -127
-255  000GE <253
-511 00001 -511

A
r |
0.000E 0O
00060 -]
(0.000FE -3
0.000E -7
0.000L -15
0.000E -31
0.000L -63
0.000% -127
{1LODOL -255
0.000E -511

A

r 0
10001
10000k
10.000E
10.000F
10.000E
10.000L
10.000E
10.000F
10.000F
10.0081-
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FACTOR LXCEEDS 999, POSSIBILITY OF COMPLEX OR REPEATED ROUTS.

THE COCFFICIENTS ARL:
PURE SQUARE | . . . X PURE SQUARE

THE NUMBER OF SQUARING: r= 9 TIIE POWER: m =512

CALCULATION OF ROOTS:
THE & ROOTS ARE:
0
4
0
0
{}
FQUATION IS NOT SOLVABLE BY GRAFFFE'S ROOT 5QUARING METIHOD



FEERPEERTREIREREE (IR ATPETS ROOT - SQUARING METHOD ¥¥skdsdwhaht bbbt sy

L EEEEEEELEEEEEEL L EE LEE DL (GMLI‘I‘EBAS) LEEEEEEE R EE-EEEEL-EEEEEELEERELEESLE]

BEGREE OF FOLYNOMIAL 4

COEFFICIENT 4 18
COEFFICIENT 3 IS
COEFFICIENT 2 18
COEFFICIENT 1 I8
COEFFICIENT O IS5

GIVE THE CONVERGENCE VALUE OF TI'=0.0001

1
0
0
0

1

ROOT-SQUARING PROCESS:

R A
r 4
0 LOQOE 0
1 10.000E -1
2 10.000E -1
3 10,0005 -1
4 10.000E -1
5 10.000E -1
) 10.000E -]
7 10.000E -1
g 10.000E -1
9 100006 -1
10 HLonoE -1
i1 10.000E -1
12 10,0005 -1
i3 10.000E -1
14 16.000L -1
15 10.000FE -1
16 10.000E -1
17 10.000E -1
18 10.000E -1
1% 10.000E -1
2 10.000LE -1

A

ro 3

0.000E
1.000F
-40.000E
40.000E
40.000E
4LO00E
40.C00E
40.000E
4.000L
40.000E
40.000E
40,0605
4G.000E
40.0001
40.000F
40.000E
40,0001
40.000E
40.000E
40.000L
40.000F

A
r

{L.DOOL
20.060E
60.000L
60.000C
60.000L
60.000E
60.000%
60.000E
60.0G0E
60.0005
&0.0001
60.000L
60.000E
40.000F
60,000
G0.000F
60.000E
a0.000L
60.0001
60.000E
6L 000

G
-]
-1

A
T

0.000E
00001
-40.000E
40.000E
40,000
4000012
40.000E
40.000E
40.0001
40.000E
40.0001
40.000E
40.000F
40LO00E
40.000E
40.0001
4(.000L
40.000E
40.000E
40.000L
4{.000E

-1

A

r 0

(L0001

10.000E
10.000L
LLO00E
10000
10.0000C
(0.000E
100008
10.000E
[0.000E
10.000F
H{LOUOL
10.000FE
10.000L
100008
10.000L
10.000E
10.000L
10,000
10.000F
10.000L

-1
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ITERATIONS EXCELDED. POSSIBILITY OF COMPLEX OR REFEATED ROOTS.

THE COEFFICIENTS ARE:
PURE SQUARE , NON SQUARE, NON SQUARE . NON SQUARLE, PURE SQUARE

THE NUMBER OF SQUARING: r= 20} THLE POWER: m= 1048570

CALCULATION OF ROOTS:

TWO PAIRS OF COMPLEX OR REPLATED ROOTS WITH IDENTICAL MODULL
CHECK FOR REPEATED ROOTS

FINCTION WITH POSITIVE VALUE OF (13=12

FUNCTION WITH NEGATIVE VALUE IS (13=12

*WARNING: CONVERGENCE NO'T SATISFIED BY REAL ROOT?

* ROOTS ARE COMPLEX *

THE 4 ROOTS ARE:
0707+ 070711
0.7071 - 0.7071 1
-0071+ 07071
-.7071 - 07071 0
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Enample:05
EE R LRI R ] GMEFI;E'S ROO'—[' _ SQUAR]N(] hg]]i [‘IiD'[-J tdrhd F ek dodkdbd Bk

FETTEEESPELE L L EE EE L LEE L {GMEFE..LBAS) P P P P E R AR LR

DEGREE OF POLYNOMIAL 3

COEFFICIENT 3 I8 1

COFFFICIENT 2 I8 0

COLFFICIENT 1 15 0

COEFFICIENT 015 1

GIVE THE CONVERGENCLE VALUE O F=12

ROOT-SQUARING PROCESS:

R A A A A
r 3 r 2 r 1 roo 4

0 1.LOOOE 0} 0O00E O 0.000E 0 1.000T. ¥
1 10,000 -] Q000 -1 0.000E -1 g 00agE -1
2 10G.000E -] 0000 -3 0.000C -3 10.000L -1
3 10.000E -1 0.000L -7 0000 -7 10.000: -1
4 1000015 -1 (hbOOOE -13 (OO -15 100006 -1
5 10.000E -1 00001 -31 0.000E -31 10,0001 -1
£ 10.000E -1 0000E -63 00001 -63 10.00GF -1
7 10.000FE -1 0.000L -127 0.000F -127 (000 -1
L 10.000E -1 0.000E 235 0.000H: -255 10000 -]
9 L0000 -1 {LOGOE -511 0,000 -511 10.000FE -1
10 10.000E -] 0.0001-%-1023

FACTOR EXCEEDS 999 . POSSIBILITY OF COMPLEX OR REPEATED ROOTS

THE COEFFICIENTS ARL:
PURL SQUARE , . LPURE SQUARE

an



THE NUMBER OF SQUARING: r= 9 THE POWLER: m=212

CALCULATION GF ROOTS:
T'WO PAIRS OF COMPLEX OR REPEATED ROOTS WITH DIFFERENT MODULL
CHECK FOR REPEATED R{X}I5:

THE 3 ROOTS ARE:
0
0
0
CQUATION IS NOT SOLVADLE BY GRAEFFE'S ROOT SQUARING METHOGD
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Fxample:(06
#;t*****#*******# GMEF]"E'S RUD"" - SQU;&I{!NG I\.‘.’IE!HOD FETE FEREIEE Lk ks

EFETIELE A L L LR L (["Ii{hEFi_‘.‘bHﬂSj PETFEEEELEE LT E NN L L TE LR LR

DEGREE QO POLYNOMIAL 3
COELFICIENT 515 |

COLVFICIENT 4 IS
COELFICIENT 3 I8
COEFFICIENT 2 I8 2
COFFFICIENT 1 I8 2
COCFFICIEND 0 15 1

GIVE THLE CONVERGLNCE VALUL OF  F ={.0001

ROOT-SQUARING PROCLESS:.

R A A A

r 5 r 4 r 3
0 1.000E 0O Z2.000E 0O 20006 0O
| 10000 -1 0.000E -1 GLODOE -1
2 10.000C -1 Q.000C -3 0.000E -3
3 10.000F -1 0.000F -7 GQ00LE -7
4 10,0001 -1 0000E -15  OQ.DME -15
5 10,0001 -1 00005 -31 0.000F 31
6 10.000K -1 00001 -63  {(LOOOE -03
7 10.000E-1 0.000E-127  0.000k =127
g 100001 -1 0.000L-255  0.000F -255
9 10.000E-1  0.000E-511  0.000E-311
10 10.000E -1 0.000E%-1023

A
roo2
2000 0
00000 -1
0000k -3
0.000L -7
(LO00E  -03
0.000E 3]
GOO0E -03
0.000C -127
{.000k =255
0.000L —511

A
roo
2000E 0O
LOOOE -1
DAOD0E -3
00008 -7
Q.000E -in
0000E 31
0000k 63
(LOOOE -127
O O0GL -255
0.000E -511

A

r 0
1.000F
10000
i 0.000E
10.000F,
10,0001
[LODOLE
10.0MC
10,6000
10.000E
10.0008F

FACTOR EXCEEDS 999 . POSSIBILITY OF COMPLEX OR REPEATED ROCGTS.



THE COLFFICIENTS ARL:
PURE SQUARE, NON SQUARE, NON SQUARE, NON SQUARE. NON 5QUART,
PURE SQUARE

THE NUMBER OF SQUARING: 1= 9 THE POWER: m=512

CALCULATION OF ROOTS:
THE 5 ROOTS ARE:
0
0}
H
Q)
0
EQUATION IS NOT SOLVABLE BY GRAEFFT'S ROOT SQUARING METHOD
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$HeererpRbtrates GRAGFFE'S ROOT - SQUARING METHOD SRtk | ok

EEEE SRR LSRR LEL L L LR L L (GRﬁEIl.hUAS) FRMHKNERF Rk bk k] b kA kR Rk Rk &

DEGREE OF POLYNOMIAL 4
COEFFICIENT 4 18 1
COCFFICIENT 3 1S 7
COEFFICIENT 2 I8 12
COCFFICIENT | 18 -4
COCFFICIENT 0 18 -16
GIVE THE CONVERGENCE VALUL OF  F = 0.0001

ROOT-SQUARING PROCESS:

R A A A
r 4 r 3 ro 2

0 FOOOE O 70008 0O 1.200E 1
I 10.000E -1 25000 O 16.800E 1
2 10.000E -1 28500 1 873605 2
3 10,000 -1 66.049E 3 33.686E O
4 10.000E -1 42.951E 8 562961 13
5 10.000E -1 18.447E 18 15.8461 28
6 10.000E -1 34.0281F 37 12.555E 37
7 10.000E -1 11.579E 76 78.818[ 114
8 10,0001 -1 13.408F 153 31.072C 230
G 10.0600E -1 17.9771% 307 48341E 461

10 16.000E -1 32.316E 615 11.749 924

A

r
-4.060%
40.000E
73.984E
43.286L
18.447EL 18
34.028E 37
1L579E 76
13.408F 153
17.977E 307
32.318E 615

= e~

10.445E%1232

A

r 0
-L6noLE
256001 1
65536 3
42 950 8
18.447E I8
34028 7
11579 6
13.408C 153
17.977E307
32318Eai5

—_
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FACTOR EXCEEDS 999, POSKSIBILITY OF COMPLLX OR REPEATRD ROOTS

THE COEFFICIENTS ARL:
PURE SQUARE . PURE SQUARE, NON SQUARE . PURE SQUARLE, PURE SQUARE

THE NUMBER QF SQUARING: r= 9 THE POWLER: m=312

CALCULATION OF ROOTS:

FUNCTION WITH POSITIVE VALUE OF (4) — 863 9999
FUNCTION WITL NEGATIVE VALUE IS (4)=-2.536743L-07
FUNCTION WITH POSITIVE VALUE OF (1} =4.768372L-07
FUNCTION WITH NEGATIVE VALUE IS (1) =-6

ONL PAIR (OF COMPLEX OR REPLEATED ROOTS:

CHECK FOR REPEA LD ROOTS:

SUNCIION WITH POSITIVE VALLUE QF {2) =96

FUNCTION WITH NEGATIVE VALULJS (2} = 1.907349L-06

* ROOTS ARE REAL AND REPEATED AND OF THE SAME SIGN 7

THE 4 ROOTS ARIL:



Lxample: 08

EEEE R L R LR L GR;"“'IFFI"}_'-IS I{DDT _ SQ[L“\]{[NU E\,-IETI]HD LEE R R I i fh ok p tE

EEEEEEE LR ELE L L LR T L {GRJ‘!\ILFFEBJ&LS} EET TP EETEEEE S AR EELE LNILER B R

DEGRER OF PFOLYNOMIAL 4

COLFFICIFNT
COLLFLICIENT
COLITICIENT
COEFFICILNT
COEFFICIENT

GIVE THE CONVERGENCE VALUL OF

4

I8
It
Iis
5
S

l
-8
42

40
125

ROOT-SQUARING PROCESS:

R A

r 4
() 1.000E
] 10.000E
2 10.000E
3 15.000E
4 10,0005
5 10.0001%
O 10.000L
7 10.000L
8 10LO00E
9 10,0001

FACTOR EXCEEDS

A

r 3
-S.000E 0
-20.000FE 0O
-10.680E 2
32.861E 4
19,630 10
-79.553E 20
-10.209E 44
45451F &8
33.865E 177
-13.749L% 357

r P
4200 |
F3.400E ]
40.601F 4
13224 10
23.283L 2t
542101 43
203871 H8
86.360E 177
T4 580E 356
556215714

F=0.0001

-3.0005 1
-41.000H 2
-01.275F 5
~16.670C 13
16,7508 20
-10.6521. 55
-23379L 110
-88.107L 222
33.899E 446
18.8300 593

A

T (}
1.2500 2
13,625
24.414E 7
S9.605E 15
355278 32
[2.622]. 66
L5931 133
253798 167
64.411E 535
41 488L% 1072

HP |

959G, POSSIBILITY OF COMPLEX OR REPEAIED ROOTS.

THE COEFFICIENTS ARL:
PURE SQUARLE, NON SQUARE. PURE SQUARE, NON 5QUARE. PURL SOUARL.

ah



THE NUMBER OF SQUARING: 1= 8§ THE POWLER: m =256

CALCULATION OF ROOTS:

TWO PAIRS OF COMPLEX OR REPEATED RCOTS WITH DIFFLERENT MODUT L

CHECK FOR REPEATED ROOTS:

FUNCTION WITI POSITIVE YALUE OF (5) = 399.9994

FUNCTION WITHI NEGATIVEVALUF OF (5) = 3199999

* WARNING : CONVERGENCE NOT SATISFIED BY REAL ROO1 4
* ROCTS ARE COMPLEX ¥

FUNCTION WITH POSITIVE VALUF OF (2.236068) = 91.67185
FUNCTION WITH NEGATIVEVALULE OF {2.236(68) = 628.5282

* WARNING ; CONVLRGENCE NO T SATISFIED BY REAL ROOT *
* ROOTS ARE COMPLEX *

THE 4 ROOTS ARE:
34
3-4i
1--21

1 -2
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Chapter 4
Conclusion and open problems

4,1 Conclusion

Literature survey of the past and the recent has been carried out. Classical nethod of Gracffe's
rool squaring method has been discussed. Some problems not solvable manually and using
ORAFFFE.DBAS soliware [9] have been discovered under observations. The weaknesses of the

method and their recoverics have been discussed.

On the observations in sec. 3.1 the following solvability conditions of Gracile’s root squanny

method has been derived 1 sec. 3.2

(i} equation wilh rcro-coelficient must have at leust onc pair of cquidistant non-7ero
coethcient from the wero-coelficient;

(i) any transformed equation of a given equation with non-zero cocflicient may have zcro
cotfTicients but these new coefficients must satisty {i);

{iii} afl the coefficients of non-tincar albegraic cquation must not be unily:

{iv) GRARFFL.BAS nceds moditication in the light of (1). (ii) and (1)

Under these solvability conditions GRAEFFE.BAS soltware [9] has heen modificd and

subrouting 7 has been developed and extended the software to identily he polynomials which

are nol solvable by this software. Vinally some open problems in scc. 4.2 have been put

forward lor further research of both computer science and apphed mathemilics.

4.2 Open problems

Although Graeflc's root squaring finds ils way m the first part of twentieth century, stll it

heeds more study. So, some open problems are cited for further rescarch and suudy

(i) Development of a general software capable ol solving any higher orvder umivanaie
potynomial having different types of roots repeated any nunber ol times.

(il) Barciss [4] resultant procedure and his ALGOL 60 may be studied 1o solve the equations
set (3.17.

(i) Open problems of Nefl and Reil [12], Pan |1.2], Demmel [13] arc pood rescarch

problems for both compuler science and applied mathenatics.
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