-
.,
L

- - B

Phase Shift Analysis for Nuclear Scatte;‘ing

A Dhissertation Submitted in Partial fulfillment of the
requirements lor the award of the degree

of

ST RN

’Et\- fg‘gif-ﬂﬂ J;Jz

“ ‘. A el s -

Master of Philosophy
in Maffiemeatios

&y

ZAHEDA KHANAM
Registration no. 940M01F, Session 1993-94-95
Department of Mathematics
Bagpgladesh University of Engineering and Technology
Dhaka- K0

Supervised & approved

By

-

DR. NILUFAR FARIIAT HHOSSAIN
Associate Professor
Department of Mathematics
BUET, Dhaka-10{0

T

333

Bangladesh University of Enginecring and Technology, Dhaka-1000



The Thesis Entitled

Phase Shift Analysis for Nuclear Scattering

Submitted By

ZAHEDA KHANAM

Registration no. 8409001F, Session 1993-84-85, a fulllime student of M. Phil

(Mathematics) has been accepted as satisfactory in parlial fulfillment for the

(1)

(i)

(iii)

(1)

Degree of
Master of Philosophy in Mathematics
on May 24, 2001.

Board of Examiners

Dr. Nilufar Farhat Hossain
Assoclate Professor, _ %}
Depariment of Mathematics, Supervisor

BUET. Dhaka-1000,

Head
Depaniment of Mathematics, R ;
BUET, Dhaka- 1000, embcgéz Wix Lo

Md. Obayedullah

Assistant Professar, _ ﬂ“"{% o5 0/
Depariment of Mathematies, Member Lo

BUET, Dhaka-1000.

Dr. Amal Halder A
Professor, ©g4.a8.01
Depariment of Mathematies, Member
Univeraity of Dhaka, {External}

Dhaka-1000,

1



Acknowledgement

] take thus great opportunity (o express my profound gratitude and appreciation to the
supervisor of this dissertation Dr Nilufar Farhat Hossain, Assoctate Professor,
Department af Mathematics. BUET, Dhaka-1000, Bangladesh. Her generous help,
euidance, constant encouragement and indefatigable assistance were made available
to e at all stages of my research wark, 1 am hnghly prateful to her for her eamnest

fecling and help in matters concerning my research affairs

1 express my deep regards to my respectable teacher A. K. Hazra, Head of the
Department of Mathematics, BUET for providing me Gimely help, advice and

necessary research facilities

I wish to express my hearifelt gratitude to Profl Dr. Md Zakerullah. Prof. Dr. 1d.
Mustafa Kamal Chowdhury and Mr. Md. dMamrul Alam Sarker, Department of
Mathematics and all the teachers of this deparment, BUET for their cooperation and

help during my research work



ABSTRACT

The purpose of this work is to discuss the problems of phase shift analysis and to
construct a methed for resolving these problems by using the zeros of scattering
amplitude. 1n particular, this work traces Yukawa potential which describes nucleon-
nucleon scattering First, the phase shifts and the dilferential cross-sections are
computed and then compared with those of the Born resulis The comparison shows a
fair agrecment between the two methods which results 1in feeling free to compute the
zeros of scattening amplilude The zero rajectorics are then displayed graphically in
the momentum transfer plane A study of the nature of the zero trajectories show that
the ambiguities of phase shifi analysis are reduced to some extent for weak potential

strengths.
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Introduction

Phase shifi analysis has been found a well-known problem of recent years. In the past
it was often assumed that if the measurements were accurately made, the phase shifts
could also be accurately determined so that in case of perfect measurcments a unique
scattersing amplitude might be expected. In case of purely elastic scattering for
spinless particles at an energy where no other processes than elasue scattering s
allowed, Martin [1} shows that it 15 possible to deduce sufficient conditions on the
differential cross-sections for it to correspond to a unique amplitude. However, the
conditions being extremely resirictive it holds only for zero scattering energy in most
practical cases, Phase shift analysis have been studied by Chrichton [2], Gersten [3-
5], Bowcock [6-8], Hohler [9] and others and the possibifittes of resolving the
ambiguities arising in phase shift analysis have also been studied by them from
different angles. Gersten [4] discussed the possitnlities of reconstructing the scattering
amplitude fairly accurately with the aid of lhe zeros of the differential cross-section
and has shown lhat the treatment of the ambiguities in phase shift analysisas greally
simplified if one considers the complex zeros in the cosine of the scattering angle
plane These zeros can save to paramelerize the differential cross-section or the
scattering amplitude as the case may be. Barrelet [10] showed how the scattering
amplitude could be parameterized in terms of their zeros and pointed out that these
zeros move along smooth trajectories as the scattering energy 15 vaned It has also
been seen [8] that the smoothness of the zero trajectories may be a useful criterion for

selecling from among several acceptable amplitudes.

In this work we give emphasis on mathemaucal formulation and numerical techmques
in formulating the scattering amplitude and in obtaining its zeros, Then making use of
the complex zeros of the scattering amplitude we propose & method for reducing the

problem of phase shifi analysis The work is designed in the following fashion



In chapter one, we give a brief review of the scattering of spinless particles using the
method of parual waves. We elso explain a high energy approximation method. the

Born approximation.

In chapter lwo, we choose a simple model of potential scattering which describes
scattering of nuclear particles without laking into account the cffcet of spin. Having a
brief discussion on phase shifis we first calculate the phase shifts for the model
potential and the differential cross-sections ustng the method of partial waves. To
check the reliability of our results we compare both the phase shifts and the
differential cross-sections obtained from the partial wave method wath those obtained

from the Born approximation method.

In chapter three, we have a delailed discussion on phase shifi analysis for potential
scattering. We choosc a model for a particular potential scaltering and find the
complex zeros of the ¢ross-section in the complex cos? - plane. The behaviour of the
zern trajectories 1s then studied 1o the complex momentum transfer plane. Finally, we
discuss the ambiguities, which anses in the phase shifi analysis for this particular
potential Then following Gersten [4], we design a method which may resolve these

ambigmbies and hence reduce the problem of phase shifi analysis.



Chapter -1
- Theory of Scattering

In this chapter we discuss the simplest collision problem: the theory of non-relativistic
scaltering of two parlicles which interact through a potential F{r) depending only on
their relative coordinates. First, we study the mcthod of parbal wave analysis to
derive expressions for the scattering amplitude and the differcntial cross-section A
deiatled discussion on the boundary conditions have been done for selving the
Schédmger wave equation Then we go on to study the integral equation in scatiering

theory whnich 1s followed to derive the scallering amplitude in the Born approximation

. mecthod as an expansion 1o different order Born amphitude.

1.1 The partial wave analysis

We know that the scattering amplilude and the differential cross section can be found
from the asymptotic behaviour of the stalionary scattering wave function When the
potential is central 1e depends only on the magmtude r of the vector r, the
Schrédinger wave cquation may be separated in sphenical polar coordinates and a

simple connection between the radial solutions and the asymptotic form of the
stationary scattering wave function may be found. This procedure 15 called the
method of parhial waves

Let us consider the nou-relativistic scattering of a spinless particle of mass m by a

potential ¥'{r). The ime-dependent Schrédinger equation of the system [11]

[— i?f + V{r?r)]wl[r, {) = Byir.1) (1)
im

admits stationary state solutions of the form:



p(r, 7y =p(r)e ™"
where the wave function w(r) is a solution of the time-independent Schrédinger

eguation

[- v +V(rJJw(r) = Ep(r) (1.2)

and the energy & of the particle has the definite value

_ I’S _ Rik: 3 mv?
m 2m 2

E

(1.3)

Here p, =ik = mv, 15 the initial momentum of the parlicie, k. its imhal wave vector
and v; its nitial velocity and the magmitudes of these vectors are given by p, k and v
respectively.

We shall assume that the potenual ¥{r) tends to zero faster than 7' as r — w0, We

may then look for a particular solution of equation (1.2) which we shall call the
stationary scattering wave function This function satisfies the asymptotic boundary
condition

15¥

ip’(r]T)A[E‘(p{{k,.r)ﬂ")‘r{ﬂ,ﬁ‘} ¢ J {(1.4)

-
Here A 1s independent of » and the angles 8 and ¢ with our choice of the polar
z-uxis along the direction of the incident wave vector k.

We may easily verify that for any function f(f,¢) the expression (14) satisfics
equation (1 2) asympiotically through terms of order 1/r 1n the region where ¥(r)

can be neglected, provided that the potenttal F(r} vanishes faster than #™ as r 5

Let us now consider the potential ¥ (r) to be spherically symmetric or central so that
F(ry=V(r) Introducing the spherical polar coordinales with the z-awis along the

incident direction we find the Schrddinger time-independent equation (1.2} for the

stationary scattering wave function w{r)in the following form:




18,8 1 g . 5) 1 at 1
mvel e Kl s lsin— |+ ————— VW) = B
{ ? &[r J rising aa[ 26) risnia gt p(e) + ¥ (1) (r) = Ey(r)

(1.5)

Considering the orbital angular momentum operator 1, =r xp we see that the operator

“square of the orbital anguiar momentum™ can be expressed as

LE_LZ 4 T _ 2 1 é : i 1 az 1.6
=0 + 124} =—h'| ——-—]sind +— {1.6)
o sin ) 56 a8, sin* o &gt

Using the commulation relations [L*,1.]=0 and LxL=/L we can find the
etgenfunctions which are commuon to the operators L* and one of the components of
L These arc the spherical harmomes ¥, (8, ¢) such that

I3¥,, (0, §) = i + DA™Y, (8, §) (1.7)
and

LY. (0. ¢)=mhl, (8, d} (1.8)

where [ and #t are called respectively the orbital angular momentum quantum nuniber

and the magnetic quantum number.

-

We now return to the Hamiltoman A = -5-—"\?3 +¥(r) which can bhe expressed with
m

the help of equations (1.3) and (1.6) as

L 3 L
He—x| ——| = |- + ¥ {r 19
Zm[rz r_':'r[r E?.VJ hzrzj| ) 4
50 that
(H#, If]=[H, L,)]=0 {1.10)

Because the operaloss A, I* and I, all commute, we can look for etgenfucntions
common to these three operators. We may thereforc cxpand the scattering wave
function w in parbial waves corresponding to given values of the quantum numbers {

and 1 ag

a4

wik,r)= Z Zcfm (KR, (k,r )Y, (8, ) (1.11)

=0 m=-1



Here we have explicitly displayed the dependence of the function w, of the radial
functions R, and of the expansion coelficents €, on the wave number
K= (Zh‘r‘.'E)“2 /. Using the expansion (1.11) in the Schrodinger equation (1.5) and

making us¢ of cquations (1.7) and {1 9) we obtain {or every radial function the

equation

R Ldf L dy W, _ Rk b2
zm[r? ° [r dr] a ]R‘(k,r}+V(r}Rl(k,r} FER (k. F) (1.12)

Here we have written X,(k,#) instead of (&, r) since there 1s no dependence on
- the magnetic quaniurm number 72, It 1s convenient to use the new function
u,(f,ry=rH (k,r) (1.13)

and introduce the reduced potential

L{r)=2mb{r)/h’ {1.14)
The new radial equation which we obtain from equation {1 12} 15 then
F—JH—M—IJ(:‘)}H!(;{,:‘}:@ (1.15)
dr* r

In order to selve equation {1.15) for the radial wave functions #,, 1t 18 necessary to
specify the boundary conditions which must be satisfied by these functions Befole
we do this, however, let us first examune the solutions of equation {1.15} for £/(r) =0,

namely

d? f(f+1)
’ﬁ*“‘ rz

}h(ﬁc.rhﬂ - (1.18)

where we have replaced u,(k,#) by y,(k,7) so that equation (1.16) is simply the
radial equation for a free particle. Chanping vanables to p=4r and defining the
function fi{o) =y, /p we see lhat the analogue of equation (1.12} without mteraction
potential reads

{iz+%%+[l—’r(;”ﬂﬁ(p)=ﬂ (1.17)

which 13 the “spherical Bessel differential eguation™ Particular solutions of this

equalion which are often used in scatlering theory are the spherical Bessel function



7, the spherical Neumann function », and the spherical Hankel functions 4" and
B The general solution of equation {1.17) is then a linear combmation of two
linearty independent particular solutiens. Since the pairs of functions (7,,m) and
[hf”', h}”) arc linearly independent solutions of equation {1.16), we may write the
general solution y, of equation {1.17) as

y (k)= el 0y Gy + € iom o) (118)
or

2B, )= B [DP A (k) + DB ey )] (1 19)
where the two paurs of “integration constants” (Uf”, C_,m) and (Df”, Dr[zl) may still, of
course, depend on 4 The examination of the behaviour of the spherical Bessel

function j,(p) as p — 0 shows that this function 1s regular at the origin. where 1t is
proportional to p'. The other functions n,, A and b have a pole of order (7 +1) at
p =0 and are called uregular solutions of equation (1 17). By analogy, a function
v, (k, ) which is given (up to a A-dependent multiplicative factor) by

v, Uk, 7) ~ £, (k) (1.20)

is called a regular solution of equation (1.16). We note that it vanishes at the origin,
namely v (k,0) = 0. More precisely, we have

v ik,7y ~ ™ (1.21)
rsll
Soluhions of cquation {1.16) which fail to vanish at » = 0, for example -m,(kr)j

rhi* (kr) or rh(rk) are called irregular solutions of that equation.



1.2 The boundary conditions

In this section, we will examine the boundary conditions with the help of the radial

equatton (1 15) which we must impose upon the radial functions w, (&, 7).

On the basis of the above discussion we would expect thal outside the range “a’ of the

potential we may use equation {1 18) to express u, (4,7} as
u,(k,r) = keCV () g, (k) + CP K, k)], ro>a (122)
Let us assume that # 15 so large that the terms £/(r) and {7/ +1)/7" may be neglecied

in equation (1 15) An “asymplotic” solution 1s then obviously of the form ¢** . More

precisely, we may wrile [or targe »
u, (e, ry = F (k,r)e'™ (1.23)
where F(k r) is a slowly varying function of r. Substtuting equation (1 23) mto

equation {1 15) we find that

FO2kE
. L= (r 124
i () (124)
fil+1 , i
where we have set W /(r}=0(r)+ (t) and we have wrilten F =d—! and
r o
, JIF} ) ) }Lu- .
= e Since the functien #, 1s slowly varying, we may drop the term FI in
¥ ;
: . 2EEF
equation (1.24) and write I. = =W (r}, so that for large »
|
F{k, #) = exp :tL.erI(r')dr'} (125)
2ik :
Therefore, 1f
lim|U () < ‘:’"{ (1.26)
EE T ¥

where M 15 some constant and & 1s greater than zero, we deduce from equation (1 25)

that the function £} 15 independent of » for # — oo, Thus, 1f the condition (1 26) s

satisfied, the general solution of equation (1.15) for large 7 15 given by



u,(k,ry = BE (k) + BO (k)e™ (1.27)

where B!V (k) and Bf¥(k) are independent or # Using the fact that

Fixt— -l-sin[r—-l-hrj, n{x) —}“J—CGS[I—'lfﬂ'J (1 28a}
X wpr; x 2 X=X x 2
P —J’I—l T
ertr—iln‘} . . L '3‘1 J
AT x) =i — hf j{x}x:}miT {1 28b}

we may alsa rewrite equation (1.27) 10 the form of equations (1.18) or (1 19).

Thus we have, in accordance walh equation (1 22)

1, (k,#) = kelCO () thr) + €O (oo, ()] (1 29)
or
i, (k.r) > kr|DP R Gy + D GO o) (1 30)
From equations (1 28a), we obtain the boundary condition for large ¥
w, (k7Y = A (K)sinkr — I 1248, (k)] {131)
with
W gyt L L@ e[ %
4 ={clwf + P w] (1 323)
and
C k)
tan &, (k) = ———= 1.32b

We note that equations {1 13), (1.29) and (1 32b) also imply that we may write
Ry(k,r) = 4,000, k) — tan 8, (), (4r)] (1.33)

where 4 (k) 15 independent of ». We note that the quantites &,, which are called the
phase shifts, display the influence of the interaction. Indecd, in the absence of
interaction, the regular solution v, (&, #} of the radial equation (1.18) (1.e. the analogue
of equation (113) for U{r)=0) is just given by v (&7} ~#/(Ar) as shown in
equation {1.20) so that

v, (&, r)r:msin(kr ~i7i2) {134)



Upon comparison of equations (1.31) and (1 34) we see that the interaclion is clearly
responstble for the presence of the phase shifts §,. It is also convenient to express the
boundary condition for #,(%,r} as » — oo 1n the form of cquatien {1 27) or (1.30}, 1.e.
in terms of radially incoming exp(—ik) and outgoing expfitr)waves. Upon
comparison with equation (1.31) we may write for example

u (k1) > A Y e 45, (ke ]

with 4, (k) = 4, (ky'e ™ *(=Y /21 while the coefficient of the ontgoing wave is given
by

S, (k)= "™ {1 35)
and 15 cafled an S-maltrix element.
Let us now examine the boundary condition which must be satisficd by the radial
function w,(k,r) at the origin #» = 0. This boundary condition is determined by the
requirement that all the pessible physical states are deseribed by a complete,
orthogonal set of wave functions. A detailed exarmination of this equation shows that

two physically atlowed solutions u, (k,r) and «,{&",?) must satisfy the condition

F—

Iim{ul{k,r)%u;{fr',r]—u:{ﬁ:’, r);{;;ul{k,r]} =0 (1.36)
For a large class of potentials the above requirement may Le simplilied as follows.
Let us assume that near the origin the interaction has the form
U{r)=rP{a, +ar+ap’ +--) (1.37}
where p 15 an integer such that p 2 —1. We then expand the solution o, in the vicinity
of r=0 as
u,=r'{c,+or+--), ¢, 20 {138)
Upon substitution of equations (1.37) and (1 38) in the radial equation (1.15) we find
by locking at the coefficient of the lowest power of 7 (je.r™) that the quantity s

must satisfy the indicial cquation

s(s—D)—-I+1)=0 (1.39)

10



so(hat s=/+) or s =—I The choice s=—/ corresponds to irregular solutions which
do not satisfy the condition (1.36). The other choice s=7+1 corresponds to regulat
solutions which are physically allowed These solutions are therefore such that the
condition (1.36) simplilies to

w,{k0)=0 (1.40)
with

u,(k,r]r:ﬁrm (141}

We now consider the case for which the potential is move singular than = at the

origin. If the intcraction is repulsive ncar # =0, there is no special difficulty and we

may continue to impose the simple condition (1.40) since obviously R, (,,0)=0 in

this case On the other hand, 1f the potential 15 atiractive mn the neighbourhood of the

origin the nature of the singularity is Important.

1.3 Scattering amplitude and differential cross-section

We recall thai the asymptotic form of the scattering wave function w(k,r}is given by

equation (1.4}, 1.e,,

gk, 1) ——— A(k]{exp(rki.r)+ f{k,ﬂ,qﬁ)m} (1.42)

J=2m r
where we have displayed explicitly the k-dependence of all the quantities. Choosing
the z-axis along the direction of k,, so that, exp(ik .r) =exp{(ilrcos#) 15 indcpendent

of the azimuthal angle ¢ we obtain the well known formula

exp(ik, ) = explikz) =i{ﬂ+l):'f 7, (k)P (eos ) (1.43)

=0

which is the partial wave expansion of the plane wave exp(/kz) where P (cosd) are

the l.egendre polynomials

AT
21+

Fi{cos@) = [ ] ¥, (&) (1.44)

11

K.



Using equations {1 43) and (1.28a) we may rewrite equation (1.42) in the following
{orm-

wik, 1) ———> Ak} i i[4;-r(2f+])]”2 3

J"Dm—!

exp{i(hr — 4 1m)} - exp{-ilir - L17)
x — Fu(6.0)5,0 + 1 (60,65 } (1.45)

On the other hand, we may also consider the partial wave expansion (1.1 1) for large
Using the facl that R, (k #) = R.(k.r)=7"u,(k,r) together with equation (1.31} we

oblain the ielation

() [rmm— i ZF,,,, ()4, (k)—[exp lilkr = 11m +8,)

=0 nr=—I

—expl-i(kr — L1x + )., 6,6) (1.46)
Upon comparison of the coefficients of the incommg sphenical waves m equations
{1.43) and {1.46) we have

_Al)

= (Ir)

[4(2 + 11 ¢ expli 6))8,, | (1.47)

By matching the coefficients of the outgmng spherical waves, and vaing eguahions
(147) and (1 44) we find that the scattering amplitude 1s independent of ¢ and given
by

fik, 8= ﬁg(znn[e"““ - 1].%(::0.«:3) (1.48)
This equation can also be rewritten in the form
fik, &)= i (28 + Der, (517 (cost?) (149)
par
whare the parual wave amplitudes a, (%) are such that
ay ) = — [8'5**” 1= —[S (h) - 1] ™™ 5in 5, (k) {1.50)

Thus the knowledge of the phase shifts enables us to obtain the scattering amplitude

12



The dilferentral scattering cross section is given by

2 4,6 <11k, 0 =5 231+ Deplls (0~ 6, ()

tel I'=0
x8in &, (k) sin &, (k)5 (cos @) F, (cosh) {1.51}

The total cross section is then obtained as
T (k) =27 L”-j_;(k, )sin 8 4o (152)
which becomes

o, (k)= %?i (214-1)sin* &, (k) = if’: 3] (1.53)

Tad

where each partial wave cross section o, (%} 15 grven by
o, (k)= i—f(y + Dsin? &, (k) (1.54)

We nole that the maximum contribution of each partial wave to the total cross section

15 given by
[{NF ke 4‘1?
a, {k}zk—z(ﬂﬂ} (1.35)
which occurs when
Ef(fr):(n%r%-}r, n=0+14£2.. (1 36)

On the contrary, when &,(k) = nxr | there is no contribution to the scattering from that

R
2m

partial wave at the cnergy £ =

It1s apparent from the above formulac that the method of partial waves 15 most usefu]
when only a small number of partial waves contribute to the scattering  This situation
arises at low incident energies More premsely,' if “a’ 1s the range of the potential and
k the wave number of the particle, only those partial waves will be imporiant for

which
{<ka (1.57)



We note that the {irst and most important maximum of the free radial wave function

4;{#r) occurs approximately at r, ={/k, while for small » the function j; is small

and increases as r', Therefore, if @ <<I/k, the function 4, will be very small in the
scattering region and the corresponding phase shift 4, will be nceligible. We may
then cut off the partial wave series approximately at /= &g Thus, if 4o <1 we need
only caleulale a small number of phase shifis in order to obtain the scattering
amplitude,

Let us now return to the partial wave expansions (1.11) of the scattering wave
" function w We note that the expression for ¢, (4) 1n cquation (1.47} implies that we
may rewritc the partial wave expansion {1.11}) as

VLD sonp ik 148, (0)

wik.r)= A{ff)‘z e

which after using {1.43) and in terms of the radial wave functions u,(&,7) becomes

2+, k)

ik r)= A(I{]z p (k) . —- 2 P (cosd) (1.58)

where the functions » {k,#) exhibit the asymptotic behaviour {1.31). Hence

sin(kr — L{m +8,}
AT

v (6T AY (2 + e

Faund)

P {cosd) (1.59)

and we see that the coelficients A, (4)have no influence on the scatiering. They

merely fix the normalization of the radial functions The following normalizations are

oficn used
) ue{k,r]T-i—sin(kT—'ﬂfr +5,) (1 608)
i ou ) Tr%[sin{kr - Lim) b cos(ke - Ln)tan 8,)] (1.60b)
so that
R!(k,r}Tésiﬂ(h—%fﬁ+§l], {1.61a)
OF Rk, ry—— j, (k) —tand (k) (1.61b}

14



1.4 The integral equation in scattering theory

Let us rewrite the Schrodinger wave equation {1.2) m terms of the reduced potential
(1.14) as

[‘?1 +kz]w(r} = U {ry(r) (1 62)
where the nght hand side 15 considered as an inhomogeneous term. The general

solution of this equation can be written as [11]

plry= )+ (G, (e UG (e) (1.63)
where Ofr) 1s a solution of the homogeneous equation

[P +at]oay =0 (1 64)
and €7, (r,r'y 15 a Green’s function corresponding to the operator V? and the wane
number &, Thai 1s

[V +4%3G; (r, 7y =8 —17) (1.65)
with the Green’s function G (r,r") piven by

| exp(iklr —r)

Go{r ey = - ~ (1 66}
dr r-r
or in Lhe integral representations
S - cexp{k’.(r~r7j}
Gy (r,¢')=~27)” lm [k PR (167)

In the scattering problem that we are considening, the function @{r}i1s simply lhe
meident plane wave exp(ik,.r) =explskz) with the z-axis chosen along k,. W shall
denote this plane wave by ®, (r)and ‘normahze’ it i such a way that.

D, (1) = (27)7 " explik,.r) {1.68)
Returning to equation (1 63) and using equation (1.68) we may write

yrir) = (27)° exp(ik,.r) + ja’r’GJ {r e Y e’y {1 69
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This is known as Lhe integral equation or [ippmaon-Schwinger equation of potential

scaitering It replaces the Schrodinger equation (1.2) plus the boundary condition
(1 4 which is incorporated in equation {1.70) through the Green’s function G/ (r,r").
Using equation {1 66) it gives

:]-:|r - r’|)
-

It may be easily venified that the solution of the Lippmann-Schwinger equation (1 70)

w(r) = (2r)™? exp{fkj.r)—-i; far Gl U w(r) (1.70)

has the correct asymptotic behaviour {1 4) The {ust term on the rght of equation
(1 70) has alrcady the required form, so that we only need to analyze the larpe-#

behaviour of the integral

expykir—r'
J =jdr*w;(r')w(r') (1.71)
Since
|r—r1=Jr’ —2rx’ +r” jr—f'r'+él—r(f‘x r'y 4+ (1.72)

where r 13 the unit vector along r, we may writc

oxp ke -1} 5 exp(fhlﬂxpi"ﬁ'rr)x[l+£+£(Fxr’}1 +v(r'2)] (1.73)

|r — r'| [ ¥ ¥ 2?‘

provided that »' and k remain finile Now, for potentials having a finite range ‘@’ the
contribution to the nlegral (1.71) 18 negligible when 7' becomes somewhat larger ‘a’,
since [7(r")=0 in that region, Let us set ¥ =4 as a crude estimate of the highest
value of ' to be constdered in equation (1.71). We tnay then use equation {1.73) to

deduce that for 7 »> a and ¥ >>ka’ the integral (1 71) 1s given by
J = SR} [ de" exp(~ikE.e" ) (r Yy (')
r

Hence, returning to the stationary scattering wave funchion {1 70) we have
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wir) o (277" exp(ik, r}+w
F—m r

>< [—H]—Jdr' exp{—ikr_r'jU(r’)w(r’)] (1.74)
47
where we have defined the final wave vector kK, = AT which points in the direction of

the detector and has therefore spherical polar coordinales (k,8,¢}. It is worlh noting

that our derivation of equation (1 74) does not apply to a potenual which has an

mhmie range

We now return to the boundary condition (1 4) in which we choose 4 = (27}

Thus we may wnte

() o (27)° ”‘[Exp(fk 1)+ S k,6,6) e"p{”‘”} (1.75)
Comparing with equation (1.74) we obtain the integral representation of the scattering
amplitude
F=- {2”)-m Jdr exp{—K,.r Y {rwir’) (1 76)
or
J="27"<®, Uy > (1.77)

where we have introduced the plane wave (Du, corresponding to the final wave vector

k., namely

O, (¥) = (2x)7" exp(rk,.1) {1 78)

17



1.5 The Born approximation

In this section we shall express the Born series as a perlurbation-type expansion of the
wave function o1 the scattering amplitude in powers of the interacthion potential We

first attempt to solve the Lippmann-Schwringer equation (1.70) by iteration, starling
with the plane wave ®, (r)=(27)7"" exp{rk,.r) as the zero order approximation. We
obtain in this way the sequence of funclions

g (r) = G, {r)

v (r) =Dy (r}+ [ dr'GY (e W (D, (1)

o (r) =, (1) + [ drGy (re Wy, ()

v, (1) =B, )+ [dr'Gy (e, /U, (1) (179)
where & (r.r’) is the Green’s function, In case of a free particle, the value of the

Green’s function 15 given by equation {1 64) and we have assumed that the interaction

potential 1s real and local. We may also write the function i, 1 the form

v, () = Zm (r) (1.80)
where
Bo(r) =, (r)==0, (r) {l 81)
Gy (r) = [ar'Gy (r,r YW ), (1) = [arK (r,e Y, (r')
with
K (r.r') =Gy (rrYU(r") - (182)
and
(1) = [dr'K, (1P, (1), m22 - (1.83)
with
K (rop)= Idr"K] (r,r) X, _ (rr", mz2 (1 84)

18



The Born senes fur the scattering wave function is obtained by letting 7 — w in
equation (1.80) We see from equations (1.81) to {1.84) that it is a perturbation series
in powers of the potential. Assuming that the sequence (1.79) converges towards the
cxact solution y of the scatiening problem, we may then wrilc cquation (1 80) as
piry =2 @, (1) {1.8%)
m=(]
l.et us now consider the Integral representation (1.77) of the scattering amplitude, If

we replace 1n it the exact scatiering wave funclion  successively by the functions of

the sequence (1 79) we obtain the corresponding sequence

Jo =2n" <@, VO, > (1 86)
S =27 <@ [Ulw, > (1.87)
foo =207 <D Ul > (188)

The quantities f,, f,.,-. f.. are called respectively the first Born approximation,
the second Born apprecamation, -—- nth Bomn approximation o the scattering
amnplitude Using equation (1.69) and setting s =m+1 we may alse write equation

(1.88) as
Tn=Y 7, (189)

where the expression 5 18 given by
Jo=—2m <@, |i®, = j2) {1.90}
ar using equations (1 81) to {1.84)

Jo ==22% <0 UG - GIU|®

W (191)
or more explicitly 1n the coordinate representation as

_ 1 _ s
Fo == [ o, expleile, UGG )

Ul[rl}-~G§'JI[ri_],r}]Ul[rJ)f:xp(ik, r ) (1.92)

12



Thus the Born scattering amplitude 1s useflul io analyze the expression of fb? n

maomentum space also.

Uming the integral representation of the Green's funclion in equation (1 67) and

defining
<qlla’ >= 2y [drexpfiiq’ — q).rfU(r) (1.93)
we find that
Gy (r 'y =—(271) Eﬂ:j-dk' e;p{f;::;)} (194)
and
S =Fm="2w" <@, |U|D, >=-27" <k ||k, > (1.95)

- . 1
=2 |k, dk,--adk _ <k ik B »>—F"757——
J{B_,l j 1 M 1=l r1 | -1 ;{__k‘;_l -{vj:,!;,‘

1 . .
<k UK, > T <K Uk, >
J=i ”
1 r
..-{k,zltr_,-"|k1 }mikd{ﬂkl s (196)

The formulae (1 92) and (1.96) justify the interpretaton of the Green’s function as a

propagator, while the quantities k; k;,---k _; are called “intermediale momenta™. We

o~

see that the quantity 7, % containsy times the potential and (j-1) times the free Green’s

function G, We shall call it the term of arder j in the sum given by equation (1.89).

For example

Joo = fa =270 <@ U, > (1.97)
and

foy = 27" <0, UGIUID, > (1.98)
50 that

Jon =I5 =Tt fn (1.99)
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If we analyze more closely the first Bom approximation f,, we find that the mauix

element (1.86), evaluated in ihe coordinate representation, s given by
. |
fa =—=ant <, ]:|'£I|t’.flkI = —4—_[dr exp{f(ki —kf).r}U(r) {1 100}
T

Let us now introduce the wave vector transfer q which 15 defined by
q=k, —k, (1 101)

Returming to equation (1 100), we see that
For(k.8) == [ drexp(iqryU(r) (1.102)
dr

so that the first Born scaitering amplitude for a given direction (0, 4} is propotional to
the Fourier transform of the potential corresponding to the wave vector transferred
during the collision, The differential cross section in the first Born approximabion 1s

evidenily given by

We shall now introduce the second Born approximation given by equation {1.59)
where the quantity f;,, is defined by the matrix element (1.98) We sec that 7, may

be written more explicitly in the coordinate representation as
- ]_ r ] !
Fuz = —-4—jdrdr’exp(—£k, X)) LG (r, e (e Jexp(ik .r') {1.104)
s
and in the momentum space as

; i 1
iz = =25 [ i <k Ui > T <Mk, > (1.105)

The differential cross-section 1n the second Born Epproximation is given by

(%]m =|fr:1|2 :lfm +.f_—az|2 (I-IGG)

To derive the validity of the first Bomn approximalion we write the exact scaltering

wave function y(r) as
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yir)= @, () +y, () (1 107)
Assuming that ‘#f..:{l‘}| reaches its maximum value at the “center” r = 0 of the
potential, we require in order for our periurbation approach to be valid that

o, (0)] <<|®,, ()| = (2m) ™" (1.108)
To oblain an estimate of w_{r), we relurn to cquation {1.79) and assumc that the

exact scallering wave function wir) may be approxumated by the function w,(r)

Then
I exp(iklr -1’} .
AL . i i (1.109)
41 [r—r'| !
so that equation {1 108) may be written as
1 ; Yoo
—Jdr'ﬁ}—(hfm—){; (r'Yexp(rk,.r') << (1110)
A ¥

For a central potential of “strengths” |Un| and range ‘a’, the angular integrations are

gasily performed and we find that
Mlcxp(ﬁkﬂ) —2;ka—l| <o | (1111)
4k*
For low energies (Ao — 0)this condition becomes |U[.,|a2 {7 << |, Remembenng that a
. - 1 . .
square well binds a particle when |Un|a"r’2,:=g;'r‘ =1, We venfy that the first Born
approximation 18 valid at low energies only if the potential 15 very “weak’. At high
iy . : . a .
energies, the condition given in equation {1 F11) yields ]Un|-ﬂ—~:=:1_ Hence the first

RBorn approximation 1s correct for suffictently large incoming energes.
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Chapter — 2

Phase shifts and differential cross-sections
for a Yukawa potential

‘I'his chapter concerns with the numerical computation of phase shifts and differential
cross-sections for a particular potential scatterng We first have a short review on
phase smifts and then we choose a Yukawa potential describing nucleon-nucleon
scattering where we have neglected ihe effect of spin for simplicity. We find the
phase shifts for this potential scatlening using the melhod of partial waves and to
check the correctness of the results we compare them with those obtamed from the
first Born approximation melhod Having reproduced the phase shifts correctly we go
on to find the scatfering amphtudes and hence the cross-sections numerically using
the melhod of partial waves The differential cross-sections are also calculated from
the first and the second order Bom approximations and then compared with thosc

obtained from the parlial wave methed

2.1 The phase shifts

We have shown ip section 13 that the knowledge of the phase shifts allows one to
abtam the scattering amplitude by means of the important relauon {1.48). In this
section we shall study these phase shifts in more detail.

Let us first establish some general relationships between the phase shifts and the

mteraction potential For this purpose, we consider the scattering by two reduced

potentials L/{r} and U(r), wilh respective radial equations:

1

{'&;{‘i‘kl _ I“r-t- 1) _U(r]}ur(r) =0 (213}
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Fi TR +1]
edr® e

T )} (=0 (2.1b)

We shall assume that the functtons »,(r) and &,(r) are “normalized” according to

equation (1.60b}, namely

i
4;(r) o ! sinlkr—-l—ffr)+cns[kr—lhrJ tand, (2.2a)
revm k z J 2
_ 1| b0 | -
i, (r) => —|sin kr——hrJ + oy fr— {7 |tand, {2.2b)
o k 2 2

The Wronskian of the two solutions u, and #, 1s detined as
Wi, 7)) =uhk —ui, {2.3)

where the prime denotes a derivative wilh respect to the variable . From equation

{2.1) we obtain
B —u 70— (U - uit,=0 (2 4)

or
d
—W(u,,u ,)m—(U—Ujuu (2.5)
dr
Upen mtegration over the variable 7 in the inlerval (a, b}, we deduce that
— oo —
[, @), =~ dr &, (U () - T () uelr) (2 6)

choosing @ =0 and b»=w=and remembering that #,(0) =i, () = 3 we hnd wiih the

help of equations {2 2} that

tan &, —tan &, = —kj: dr i, (r)[ff'(r) - ET{P)]H: () (2.7)
provided that {/{r) and &7 (¥} tend to zero faster than r~" when r = =. We also
require that the potentials I/{¥)and {J(r) should not be more singular than +™*at the

oripin , stnee u, (P}~ ¥ as r— 0. For the particular case 7 =0 we deduce from

equalion (2.7) the imporiant integral representation

tan &, ==k [ dr J, (W)U (PR, (r) 7 (2.8)
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i

where the radial funclion R, {r)is normalized according to equation (1.61b).

To study the behaviour of the phase shifts for large [ we see that an increase in the
value of ¢ (for fixed &) tends to diminish the imporiance of a given potential of Ninite
range hecause of the centrifugal barrier term 7+ /)4 appearing in the radial equation

{1.15) . Thus we expect that the phase shifts §,{&) will tend to zero {modulo ) as

{ = = (for fixed k) Anocther way of investigating the behaviour of the phase shifts

for I=>ka 18 to use the integral represcntation (2.8), Indeed, for a potential of finite

range, we have already shown that the radial function &, will differ little from the

corresponding free wave J, when /=>ka. Hence we may write
tand; =(tand,)g = _kj: drl U (rpe?, o> ka (2.9

The quantity (tand, )z, is called the first Born approximation to tand, |

Ta have an actual computation of the phase shifts we have to solve the radial
equations {1.12) or {1.15) numerically subject 10 the boundary conditions discussed in
section 1.2, In pariscular, the solution obtained inside the range of the potential must
go over smoothly to the “asymptotic”™ sclubion, valid outside the range of the
interaction,

When the potential has a strict finite range, 1 e vanishes for # > @, one can divide the
domain of the variable » into an internal region (¥ < @) and an external region {(¥>a}

The houndary condiions at # = a are then that both R, and dX, /dr [or w, and duddy]

be continuaus at » = a. Now the exterior solution may be written as
R, (k,ry = A, B/, (k) — tan 8,1, (k)] (2 10)

Thus, if we denote by

L[ dR,
?’;(‘C){RI [dr ﬂ 211

the value of the logarithmic derivative of the mterior solution £, (& rjat r=a,

we Tind that
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k71 (ka) ~ an &, (kynj (ko)

ky= 2.12
7 = = tan, (R ) (2.12)
where we have defined ) (ka) = [M] and  n(ka) = [G'HJ (x)}
EJII r=ka d.l? x=ka
Hence
s, 1y = 0 =1,0) 1 ko) o1

ke, (kaa) =y (k) (kea)

If the potential does not vamish 1denbically bevond a certain value of 7, but has

. neverthelcss a range “a’, one chooses a distance & 2@ at which the mfluence of the

potential is negligible The value of the loganthmic denivative of the interior solution
18 then malched al » = & wath that of the extenor (free) solution so that in this case

ki (kd) =y, (k) ji (%)

a0y ) = ey 7y )

(2.14)

It 15 clear that m performing caleutaltons of this type we must check that the phase
shifts so obtained are insensitive to any increase in the quantity ¢ Tn what follows, we
shall assume for simplicity that & = @ The potentials having a strict finite range and

those having a “range” will then be treated on the same footing.

2.2 Phase shifis for a Yukawa potential

We now turn to Lhe actual computation of the phase shifts for a Yukawa potential

-ria

&

Uir)=-u, (215)

where [f, 13 the potential strength and “a’ 15 the range of the potential. Using this

Yukawa potential in the expression (29), we get the Born phase shifts m the

following form:

tan 8, = kU [ dr g, (k)] re~e (2 16)
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We evaluate this integral numencally by using Rhomberg method. The computer
program 1s so written that it reads the potential parameters {/ , upper and lower
bounds on £ and then evaluates the integral giving the values of tan$,, for different

values of {and £.
To find the phase shifts in partial wave method we sce that the radial equation for the

Yukawa potenhal given n {2.15) becomes

[i+k2—f(ff1)+a'ﬂe }Rf(k,rkﬂ .17
dr” re ¥

" Since 1t is not possible to solve this equation analytically we selve this numerically.

We follow the shooting method to have a numerical solution of this integral equation

by using the boundary conditions

B {k.r) ~ﬂr’ (2 18a)
1. 1

R {k,¥) > —sin| kr— =i + 5, (2 18b)
r—o A7 \ 2

where the phase shift tand,, calculated from the first Borm approximabon may be
used for &, in the asymptotic form of R, (4.7} in equation {2 18b).
Since this potential does not vamsh wdentically beyond a certain value of , we choose

a distance d >a. We now find the phase shifts by using the expression for tan &,

given 1n equation (2 14) We also check the insensitivity of the phase shifts to any
increase in the quantity o

Our computer program starts by reading the potential parameters, upper and lower

bounds on £ from a data file The program then solves equation (2.17) for R, (%,#}and
then 1t calculates y; by using equation {2 11} for a fixed & and different / The
program also calculates the Bessel and Neumann functions j,(ka) and n,{kz) and
their dervatives for fixed # and different / Using the formula for phase shifts
tand, (k) given in equation (2 14) the program calculates the parlial wave phase

shifts 5;»-# for different values of 1,
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In Tables (2 1-2.3) we have compared the first Born results for tand, with the exact

ones, that is, from partial wave method obtained by integrating numerically the radial
equation (2 17) and using equation (2 14) for six attractive Yukawa potentials (2.15)

having a unit ‘range’” a = 1fm and strength potentials {/,= 0 001, 0003, 1.0, 5.0, 10.0,
200 fm™ respectrvely. The comparison 18 made for varous values of 7 and for a

wave number £=5 fm™! which corresponds to a sufficiently large conergy 3.5 GEY.
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Table—-2.1

Comparison of phase shifts 9, from partial wave (PW) method and from the
first Born approximation (FBA) for the Yukawa potenual (2.15) with
“rangze” a = 1.0 fin and wave number & =5 0w The notation 2 308(-4)
means 2308 x 107

7, =0001fm " U, =0.005/m”
{ & (PW) 8§, (FBA) 8, (P 8,(FBA)
0 2.308(-4) 2.329{-4) 1.154{-3) 1.165(-1}
1 1.355(-4) 1.380(-4) 6.770(d) 6.900(-4)
2 9. 1840(-5) §.172(-5) 4. 58%(-1) 4 386{-4)
3 6.575(-3) 6.573(-5) 3 286(-4) 3 286(-4}
4 4 851(-5) 4 $48(-5) 2.425(-d) 2.424(-4)
3 3.647(-5) 3.646(-5) 1.823({-4) 1.823(-4}
6 2.777(-5) 2 776(-5) 1.388(-1) [.388(-4)
7 2 135{-5) 2 135(-5) 1 067(-4) 1 067(-4)
g 1 652{-5) 1 653{-5) 8 266(-5) 8.267(-5)
g ] 286(-5) 1.288(-5) £.438(-5) f.430{-5)
10 1 008(-5) 1 006(-5) 5 037(-5) 5 032(-5)
11 7 893(-6) 7 917(-6) 3 956{-5) 3 059(-5)
12 6.212{-6) & 240(-6) 3117{-%) 3 120(-5)
13 4 901(-6) 4 933(-6) 2.463(-5) 2 466(-5)
14 3.873{-6) 3.907(-6) 1.050{-5} 1.954(-3)
15 3 065(-6) 3 100(-6) 1.547(-5) 1.550(-5)
13 2 428(-6) 2 466(-6) 1.230(-5) 1.233(-5)
17 1 924(-5) 1 966(-6) 9.785(-6) 9.831{-6)
1% 1 524(-6) 1.568(-6) 7.795(-6) 7.842(-6)
19 1.206{-6) 1.252{-6) 6.217(-6) 6.250{-6)
20 9.540(-7) 1.001{-6) 4.961{-6) 5.003(-6)
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Table — 2.2

Comparison of phase shifts &, from partial wave (PW) method and from the
first Born approximation (FBA) for the Yukawa potential (2.15) wath
“range” a = 1.0 fin and wave number k=3 04, The notation 2.381¢-1)
means 2 381 x 107

U, =10fm" U, =50fm"

! 8, (W) &, (FBA) 5, (PW) 8, (FHA)
0 2 381(-1) 2.329(-1) 7,534 1165

| 1.377H-1) 1.380-1) 8 631(-1) 6 900(-1)
2 9,283(-2) 9.172(-2} 5.200(-1) 4.586(-1)
g! 6.629(-2) 6 573(-2) 3 547(-1) 1.286(-1}
4 4 $82(-2) 4 848(-2) 2.552(-1} 2.424{-1)
5 3 665(-2) 3 646{-2} 1.8050(-1) 1.823(-1)
6 2 788(-2) 2.776(-2) 1426(-1) 1388(-1}
7 2.142(-2) 2 135(-2) 1 090(-1} 1.067(-1)
& 1658(-2) 1 653(-2) %.397(-2) %.267(-2)
9 1291(-2} 1.288(-2} 6.519(-2) 6.439{-2)
10 1.010{-2) 1,006(-2) 5 088(-2) 5032(-2)
Vi 7 92-3) 7.917(-3) 3 990(-2) 3 059(-2)
12 6 247(-3) 6.240({-3} 3.140(-2) 3.120{-2)
13 4,036(-3) 4.933(-3) 2 478(-2) 2 466(-2)
14 1.910(-3) 3 907(-3) 1.961(-2) 1.954(-2)
15 3 104({-3) 3 100{-3) 1.536(-2) 1.550(-2)
16 2.463(-3) 2 466(-3) 1237%-2) 1.233(-2)
17 1.966(-3) } 966{-3) 9 848(-3) 9 831(-3)
1% 1 568({-3) 1 568(-3) 7.854(-3) 7.842(-3)
19 1252(-3) 1.252{-3) 6.272(-3) 6.256(-3)
20 1.0602(-3) 1 001{-3) 5,01 5(-3) 5.003(-3)
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Table—-2.3

Comparison of phase shifts 4, from partial wave (PW) method and from the
first Born approximation (FBA) for the Yukawa potential (2 15) with
“range” @ = 1.0 fit and wave number k =5.0fm" The notalion 1.077(+1)
means 1 077 x 10.

U, =100 /i U, =200 /m"

! 5, (PW) 8, (FBA) 5, (P} 8, (FRA)
0 - 1033 2329 2200 4 658

1 1 078(+1) 1.380 -9.232(-2) 2 760

2 1.557 9.172(-1) -1.551 1.834

3 8.343(-1) 6.573(-1) 1.9TO(+1) 1315

4 5.664(-1) 4.848(-1) 1955 9 696(-1)
5 4 031(-1) 3 646(-1) 1046 7 292(-1)
6 2 975(-1) 2776(-1) & 897(-1) 5 353(-1)
7 2.243(-1) 2.135(-1) 4,917(-1) 4.270{-1)
8 1.715¢-1) | 653(-1) 3.644(-1) 3.307(-1)
Y 1.324(-1) 1.288(-1) 2.761(-1) 2 376(-1)
10 1.030¢-1) 1,006(-1) 2.122(-1} 2.013(-1)
11 8.031(-2) 7.917(-2) 1.6d6(-1) 1.583(-1)
12 6 323(-2) 6 240(-2) 1 286(-1) 1.248(-1)
13 4.984(-2) 4 933(-2) 1.010(-1) 9.863(-2)
14 3.940(-2) 3.907(-2) 7.957(-2) 7 815(-2)
15 3 123(-2) 3.100(-2) 6 294(-2) £,200{-2)
16 2 481(-2) 2 466{-2) 4 991(-2) 4 933(-2)
17 1.974(-2) 1.966(-2) 3.967(-2) 3.933(-2)
1% 1.574(-2) 1 568(-2) 3.160(-2) 3.137(-2)
19 1.256{-2) 1 252(-2) 2.520(-2) 2.504(-2)
20 1.004(-2) 1.001(-2) 2014(-2) 2 001(-2)
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We observe that for weak potential strengths Z7;= 0.001, 0.005 fm™ the first Born
values are very accurate even for the lowest partial waves. We nole that for Lhe case
{7, = 1.0 /m™ for which the [/ |a/2k =1/10, the exact values of the phase shifts agree
with the Bom values salisfactorily both for small and large values of the parial
waves. For the stronger coupling cases ;= 50, 10.0, and 200 fm™ for which
[/ |a/2k =1/2,1, and 2 respectively the first Bom phase shifts and the exact phase

shifts disagree for the lowest Fvalues, but become progressively close together as {
increases. In fact, for I = 10, we see that the first Born and the exact results already
agree very well which is in accordance with the discussion for the case / >> &z in the

Previous sections.

2.3 Differential cross-sections for a Yukawa potential

2.3.1 Born approximation method

Using the expressiens in equation {1 102} we obtain the scattering amplitude from the

first Born approximation for the Yukawa potential (2 15) as

r'a

1 , e
fa =—fdrexp(;q.r} U,— (2.19}
i ¥
Introducing spherical polar coardinates we get
_Un an ﬂde Dmd . =rim
Jo = E;["-l-u nbfo sin fu rexp{iq.c) e r (2.20)
Performing the integrations over the angular vanables we obtain
Un &= wria
I, ‘:_""j dre”" " si(gr) (221
g o
Evaluating the integral in (2.21) we finally get
U,
Jo=——F . where & =l/a (2.22)
a +4g
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Now we go on to find the scattering amplitude from the second Born approximation

for the Yukawa potential. We rewrite equation (1.105) as

foy = zgrzjdn <k Uk > —-1——— < k[l/|k, = (2.23)
Kk —k*—1€

Using the definition of < q‘U ]q’ > g@iven in equation (1.93) and the result

4
a’+qg’

j'dr expliq.rye™ fr=
we can write

<k U]k :::if—uﬁ— L —
207 @t r—K,|
u, I

cil-:|UHk|::-= T -
P +|h—kl|

where we have used U (r)=-1 e fr=-1] ™" {r, (1/a=a) for the Yukawa

potential Therefore

1

fo. = (2 U, | - - 2.24
Jra=0270) '[ h(ri—kz—fe)(a:+H|c—]cf|')[a?+|rc—k'1‘] (224
Let us now consider Daliiz integrals [12] of the ype
1
I (e, gk k)= dk— T —
e e e e Tl e
I H=1,2, o oe e ) (1 25)
and the Feynman integral representations
m—L n—1
i (m+n-1} jld: "1 (2.26)

" (m-Din=D1 [a+h(L=DT"
[f we set

a=a’ +]I{—|-I:|r and b-—“ﬁ1+l|{-kr]2
We can show that

[a{+b(l—r}]={az+1K-klll)f+(ﬂ?+|p:—k[[2)(1—1‘):1"1+|1-t—.r'tf (2.27)
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wherc

I =a’t+ F -0+ (1~ 0k, -k, [ (2.28)
and
A=tk +(1-1k, (229
so that
1 1 __(m+a-1) J-1 " "1 =y
a™b” (al+||c—k|]2]"’(ﬁz+|1-c—k,|2)" (tm=1)l{n—1)l0 {I‘2+|H:—.*\ |:)"'”‘
(2.30)
Now, fwesctm=n=1and &=/ we obtain
1 I J—— @30)
(@ +[e~k e’ +k-k [y 7" (T +| - Ay
where
F=a*+(t-1)¢" |, q=k, -k, (2 32)
S0 f 42 10W becomes
_ " 1
Jor=Qr' YUl [t [ dx (233)

(c* =K' —ie}I* + e — A’
Apart from one dimenstonal integral on the ¢ variable, the calculation of

[, fa. B, kK, ;&) therefore reduces to the evalnation of imtegrals of the type

I

Lk T,A)=dx - (2.34)
j (.Irl—kz —a:'nE)(l"2 +|H-—1\'2)
Let us starl form the simple case s =1 for which
1
L (kT ,A)=[dx (2.35)

(-2 —i E)[I“2 + ]k ~ ﬁ[z)
We take A as the z-axis of spherical co-ordinates (’faﬁx ,fbx) in & space. Performing

the integration over the azimuthal angle @ _ | we find that

34



2
M

Ey =
Ly =2 db, sinf, | dx (2.36)
S S v =y
Evaluating the above integral we obtain
i’ k+A+iT
Lk A)= | 2,37
Lk, } A Ug[ﬁ:—hﬂl‘} ( )
To find L, (k,T", A) we differentiate (2.35) with respect to I"and get
d 1
<1k, T, A) =-2T fde—— _ — =T L,(%,T,A)
dl’ (& k% e} + |k - A[D?
so that
1 4 7’
LT Ay=—-——=L kT A)=— 2.38
’ )= arah ) C(k? =% = A% + 20T (23%)
Thus
- Uﬂ: 1 i
L PR : 239
T 2 In [ -T - A" +2:4T) (239)
Since
T+ A =2+ -1 +|ik, +(1-0k | =k*+a’
Therefore _}?'Hz now becomes
Fo. = Us [ L (2.40)
B2 b r(e? - 2u) '
To evaluatc the above integral we write in the following lorm:
. Ui, o +2iT
fEI = . j’gdr 4 ir—2
2 Ti{a" +4&°T7)
Us : 1
= ':'jld 4& —+ U} zjldf——-—d —
2% Ta" +45°T7) U (e +4kT)
={ +1, (2.41)
where
Us ? 1
L= d——2 —— ad L, =Uln| dt——
2 7 T(a* +4k°TY) @t +AETT)
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Evaluating Lhe integrals [ and 7, we get

s i oxf
I = 4 :D : P tan” 4 2 2 2.1
g\/a +dk‘a’ +k'g ZJH +45%x" +k7g
T \!a‘*~|u4}c2a'2+ﬁc2qr2 +kg

fy = ——————===log
2gfa’t +akiat +ktgt el vaktet kgt ~ kg
So that the scattenng amplitude from the second Born approximation finally takes the

following form -

- 12
Je2 = . = tan”’ -
ga® +4ka? + i1y Wea' +akla? kg

) 4+4k2 '2+k2 2 +k
+Lilog Ja i B | (2.42)
2 \fa’1+4k2ﬁ2+k1g1—kq

Separating the real and imaginary parts of _}7‘33 we obtain the real part of _}7‘ Ak, q)as

- [ ort
Re [ (k)= —————tmm————tan”
Tnlk.9) ga' +4kat + kg’ Ech" +dk*a’ + kg’

Uz a’4 =147 Crg a-d' -Irz
= l[”, zng tan ™ 7 k[1+ 2k¢] . a =da’+ g’
ga a a o’k

2 4 [
L7 U R P - P
gakl  2a'k* dak 2a°k?

REN A a’ P
gak 2qa’k’ 2akl 2a'k’

1

e .. ; -
= —""_ 1 terms conlaining higher powers of &~

2a’k’

= Algyk* +....... (2.43)
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and the imaginary parl of 7, {(k,q)as

e Ja +4k’a’ + kg + kg
2(;\/&“ +Aka’ + kg .Jcr PTNCE g —kg

:U§®+tf]m1%“f+awf+qyl

Imfsz(ks‘?) =

: L gt =dot+ gt
2qakl  a'k° at+at ikt - 1

i ot 12
= 1- 21 + vt kY
Qqak[ T j[ oglg+{a’ +a’/k7 )Y

~logf{a® —¢ ) +a*1k7}]

2 4 h! I 4
= b p— —+ || 2log q+a(l+ az —+ ..
gak 2a°K° {7 2%

Ef4
—Ivﬁg(a1 —q2]+lng{1+T,—}
Kla'—q’)

On expansion of logarithmic series followed by simplification, we bave

# o | . o \
= o I .
I Jos (ko) = 2qak [l 2a°k’ ] h oglatq) k(g +a) H

SN M
_{lr::g{a 4:jr}+{qz_q2}k1 }

={ log 2+ 4"

og - + terms containing higher powers of k™
2ga (e’ —q°) |k

':r-.l

=B{g) k+...... (2.44)

and we see that for large & the differential cross-section wn the second Born

approximation takes the form.

da A(q) Bg(ﬂi’}
(ﬂdﬂ]m (fm {g)+ ] pE {2 45)
ar to order £
[—‘f"] [d”j L2, (@A) + B (g)] (2.46)
&), \d), &

where the functions A4{g) and B{g} only depend on g and we have ncglected terms

of higher order in &~
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2.3.2 Partial wave method

To find the scattering amphtude for the Yukawa potential (2 13) from the partial wave
method we use the formula derived in equation (1.48). We take the upper bound of 7

as [ =25 and write a computer program which reads the upper and lower bounds
on & and then calculales the Legender polynomials P {cos#} for diflerent / and &

The program is so written that it reads upper and [ower bounds an & also Using the

calculated values of the phase stufts &, () obtained from the partial wave method for
different k, the program then computes the scattering amplitude F(k, &) for ditferent

values of £ and & Wc then calculate the dilTerential cross-seclions both from the
partial wave method using the relation %zlf{kﬁ]:zand fiom the Bom

apprevamation method by using the relation given in equation (1,106}

In order to check the accuracy of our results we compare the differential cross-

sections from the partial wave mcthod with those of the first and the second Born

*

. fde da’ .
approximations [—J and —J obtained respectively from equations (1 103) and
m F=1 ﬂ B2

(1.106) and using equations (2 22) and {2.42). The comparison are shown in the

Tables (24-2 8) for an attractive Yukawa potential of unit range a=10fr and
having five different potential strengths &/, =0.001 01,05 1.0 and 5.0/m™, The
results are shown for three different wvalues of the wave nomber

k=10, 2.5 5.0 fm " and {or various scattering angles.
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Table—-2.4

Differential scatlening cross section for the Yukawa potential
()= -Ue”'" fr with Uy = 0.001fm™". The notation 1.000(-6) mcans
1.000x10% .

4 & First Bom Second Bor
{deprees) approximation approximaiion Exact

g §.000H-6) 1 O00(-6) 1 060(-63)

30 6 220(-7) £.222(-7} 6.221(-7)

60 2.500(-T) 2 5301(-7) 2 498(-7)

1.0 40 3 LT 1U12(-7) 1. 109(-T)
124 fy 250(-%} 6 253(-¥} 6.224(-8}

130 4 466{-8) 4. 4a48(-8) 4. 439(-8)

180 4 O0KE-8) 4,002(-8) 3.956(-8)

0 1.000{-5) 1 DO0(-4) 1.01Fi-6)

a0 1 398{-7) 1.398(-7) 1.395{-7)

60 1 902(-R} 1 903{-%) 1.891{-#}

25 on 5ART(-9) 5.488{-) 5416(-9)
120 2 564(-9) 2.564(-9) 2510(-59)

150 1 65iH-4) 1.690(-9) 1.6453(-9)

150 1.475(-3) 1 480(-%} 1.427(-9}

0 1.000{-5) L GO0{-6) 9.521(-7)

30 1 687(-8) 1 687(-8) 1 559(-8)

&0 1 479(-%) 1.479(-%) 1.364{-%)
3.0 40 CO3 A1) 3 B45(-1) 3 455{-10)
120 l_'}"-31(-1£]]| 1.731(-10) 1 463(-10)
150 1.125(-10) 1.125(-10) 2.810¢-11)
180 0803(-11) 9 803(-11) 5 R24¢-11)
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Table - 2.5

Differential  scatlering cross  section for the Yukawa polential
Ury=-U,e™fr with Uy = 0.1 The notation 1 000(-2) means
1,000x107.

b & First Bom Second Bom
{degrecs) apprgximation approxumation Exact

{0 1 000{-2) 1.021(-2) 1.020(-2)

a0 6.220(-3) 6 374(-3) £.368({-3)

60 2.500(-3) 2.586(-3) 2 582(-3)

1.0 G} 1 111H-3) 1 161{-3) 1.138(-3)
120 6.250{-4) § 578(-d) £.560(4)

150 4 466(-d) 4.722{-4) 4,707-4)

1810 3.100{-4) 4 235{-4) 4.221(-4)

0 i.000{-2) 1 004{-2) 1 003(-2)

30 1.398(-3) 1.4089(-3) 1.274{-3)

60 1og2{-4) 1.926{-1) 1.678(-4)

25 a0 5.487(-5) 5 571(-5) 4.800(-3)
120 2 364{-5) 2.607(-5) 2 236(-3)

150 | éB{-5) 1 720{-5) 1.472(-3)

[80 1.479(-5 [.306(-5) 1 286{-3)

0 1.000{-2) 1.001¢-2) 9.672(-1

30 1.687{-4) 1.693{-4) 1.689(1)

60 1.479¢-5) I 486(-5) 1 5204-5)

5.0 an 3 B45{-6) 3 R65(-A) 3.961(-6}
120 1 731{-6) 1 741¢{-6) 1.720(-6)

150 1.125(-t) 1 131{-6) L057{-6)

180 9.803(-7) 9.361(-7} FO14{-T)
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Table- 2.6

Differential  scattering  cross  section for the Yukawa potential
Ury==U,efr with Uy = 05 fmr’". The notation 2.500(-1) mcans
2.500x107" .

Fs & First Born Second Bom
{degrees) approximation approximation Exact
i 2 500(-1) 2.78¢{-1) 2 726(-1)
30 1 555(-1) 1.770(-1) 1 727¢-1)
68 6 250(-1) 1.516(-2) 7.259(-2)
10 90 2778(-1) 3 5449(-2) 3 389(-2)
120 1 562(-2) 2.097(-2) 1 985¢-1)
130 1 F16(-2) 1.545(-2) 1.454¢-2)
140 1 0G0¢-2) 1.399¢-2) 1.314{-2)
¢ 2 500(-1) 2 534(-1) 2 53s{-1)
30 349503 3.660(-2) 3 600(-2)
60 4.756(-3) 5.187(-3) 4 998(-3)
23 90 1.372(-3) 1.545(-3) ! 458(-3)
120 f.409(-4} 7 378(-4) 6, 854(-d4}
150 4.225(-4) 4.924{-4} 4 530(4)
180 3.698(-4) 4.328(-4) 3.965(-4)
0 2 500{-1) 2.514{-1) 2.417-1)
30 4 218(-3) 4.318{-3) 3.976(-3)
60 3.6948(-4) 3.857{-4) 3 576(-4)
5.0 90 9 612(-5) 1.015(-4) 9 317(-5)
120 4 328(-5) 4.610{-5) 4 035{-5)
150 2 811(-5) 3.008{-3) 2 468(-5)
180 2.451(-5) 2.626({-3) 1 600(-5)
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Table — 2.7

Differential scattering cross section for the Yukawa potential
Uiry=-1e""fr wih Uy = 10 fm™" The notation 6.220(-1) means
6.220%10"

k f? First Bomn Second Bom
{deprecs) approximation APPTOX1ULALION Exact

0 1 000 1250 1.137
30 6.220(-1} 8 173(-1) 7.310(-1)
B0 2 500¢-1) 3.703(-1) 3.207-1)
1.0 S0 PILIG-1) 1.880(-1) 1.588(-1)
126 & 2500-2) 1 177-1) O R3IT(-2)
150 4 466(-2) 5.987-1) 7 491(-2}
180 4.000(-2) g 231{-2) 6.860(-2)

0 1.000 1.043 1015
30 1 398(-1) 1.560{-1) 1.461¢(-1}
6l 1.902(-2) 2381(¢-1) 2.073(-2)
23 G 5.487(-3) 7.5348({-3} £, 154(-3)
120 2 364(-3} 3.761(-3) 2.923(-3)
150) 1 650(-3} 2.571(-3) 1.942{-3)
130 1.47%{-3) 2278(-3) 1 703{-3)
{ 1001} 1.2 9711(-1}
30 1.687{-2) 1.800¢-2) 1.7204-2)
60 1.47%-3) 1.681(-3) 1.562{-3)
3.0 a0 3.845(-4) 4.560{) 4.083(d)
120 1 731{-4) 2115(-4) 1 783(-4)
150 1.125(-4) 1 396(-4} 1 104(-4)
180 9 803(-3} 1.223{-3) 7.636(-3)
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Table—-2.8

Differential  scattering cross  section for the Yukawa potential
Ulry=-Ue™/r with Uy = 50 fis”'. The notation 2.500{+1) means
2 500x10.

k f Fitst Born Second Born
{degrees) approximation approximation Exact
0 2.500(+1) 3.125(+1) L136(+]1)
30 1.533(+D) 6.308(+1) 5495
] 6.250 4.032(+1) 1015
Lo 50 2778 2.752(+1) 6.874(-1)
120 1.562 2.088(+1) 1.706
150 i116 1.768(+1) 2,768
180 1 000 1.672(+1) 3199
) 2.500(+1) 3 5R2(+1) 1 913(+1)
20 3.495 3.550 2378
64 4 736(-1) 2413 3Y91{-1)
25 %) - L3TH-N) 1.073 1 620(-1)
120 6.409{-2} 6.372(-1) 9.529(-2)
150 4 225(-2) 4 748(-1) 7.731(-2)
180 3 698(-2} 4317(-1 1.161{-2)
0 2 300(+1) 2 T78(+1} 2.232(+1)
30 4.218(-1) B R2%(-1) 3.7300-1)
&0 3.698({-2} 1 368(-1) 3 685{-2)
50 e 9.612(-3) 4,744(-2) 1.008{-2)
120 4 328(-3} 2.500(-2) 4 749(-3)
150 2 811{-3) 1.761(-2) 3.248(-3)
180} 2 451{-3) 1.574(-2) 3.389(-3)
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In Tables (2 4--2.7) we see that the exact values of (he differential cross-sections

obtained from the partial wave method agree satisfactorily with those of the Bam
results for the weak potential sirengths ¥/,= 0.001,01,05, and 1.0 fin”’ as expected
So we are free enough to proceed further with these computations for scatiering
amplitude and hence for differential cross-section.

The Tables also show that except at the lowest value of % the second Born
approximation offers a little improvement over the first Born values. The reason for
this may be found by returning to equation (2.46) and noting ihat this formula does
not provide all the corrections of order &7 to (he first Bormn cross section, In fact 11
may be ihe real part of the third order term fa; uf the Born series which gives g
contribution of order &7 to the scattering amplitude and therefore also to the
dilferential cross-section We note that the imporiance of this missing term with
respect Lo the contribution coming from Re 7, should increase with the strength {7, |
of the potential. This is illustrated in Table 2.8, which corresponds to the choice
7, =50/m™ of the potential strength. The sccond Born resulis are seen to be

disastrous in Table 2 8 whilc they are much better i Tables 2.4, 2.5 and 2.6.
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Chapter-3

Zeros of the Scattering Amplitude
and Phase Shift Analysis

In this chapter, we first have a detailed review of phase shift analysis and the possible
ambiguities in case of purely elastic as well ag inelastic seattenng processes We then

present a mathematical model which greatly facilitates the computation of complex
zeros of the scattering amplitude The model deals with an attractive Yukawa
potential describing  spin-independent scattering, The behaviour of the =zero
tratectorics 1s then studied in the complex momentumn transler plane. Fimally, we
discuss the application of the zeros of scattering amplitude in resolving the probable
ambiguwities arisimg n the construction of the scattering amplitude for this Yukawa
potential and design a method which may be used to reduce the problem of phase

shift analyss,
3.1 Phase shift analysis

The expression for ihe scaltering amplitede i partial wave analysis derived in
equation {1 48) may be rewritten in the following form
l )
f(ﬁ)=ﬂz{2£+l)[.‘a‘,—1]};(ms§] (31)
L
where we have truncated the mfinite seres al 'L’ since only those partial waves are
significant for which { < kg, Below the inelastic threshold, for pure elastic scattering,

the elastic vnitarity relation requires |H1|:]ez’ﬁ' | =1 sving the real phase shifts &,. In

the inelastic region unitarity 15 less powerful and simply requires

S]<1 giving

complex phase shifts &, with Im8, 2 0. Hence we have §, =¢™ =ge™%, 02g, 21,
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where the quantity &, is ofien called the 'inelasticity' factor. The scatlering amplitude

then becomes

f(cnsﬁ*}=2:—_ki[21+1)(gfez‘“ﬁf —]]ﬂ{cnsﬁ') (3.2)

Imf}
We nole that the special case gr-—-l(lrn 8, :ﬂ) corresponds to the pure elashe

scattering given in equation (3 1),

The problem of phase shifl analysis deals with the technique of deducing information

on partial wave amplitudes from differential cross-section measurements n scattering

processes. Since the scatlermg amphtude f {E) 18 a complex number and the
differential cross-section dcr/ r:fﬂ=| f (E]rm real, sufficient information does not

exist to fix f {6} and so ambiguities arise

if we change the sign of the real part of the phase shifts, the scatiering amplitude
f(cos®) 15 changed to —f"(cos#). Thus. if the signs of all the real parts of the
phase shifts are changed, the scattering amplitude 1s changed to its negative complex
conjugate; thus 1ts phasc 15 changed, but its absolute value s unchanged This is
known as trivial ambiguity For pure elastic potential scatiering (real phase shifis) of
spinless pariicles 1t was assumed that the only ambiguity is the trivial ambigmity that
15 the stmultaneous change of the sign of all phase shfis

Chrichton [2] shows that ithere are some exceptions to the above statement. One
readily sees that for S -wave only and for §- and P -waves only, the phase shifts are
determined uniquely except for the trivial ambiguity. But for the case when the only
non-vanishing phase shifts are for §, P and D waves, the phase shills are not

upique. By crude search method, Chrichton found that for each value of &, there

exists two phase shifts §,and & -- such that a different sel of phase shifts
(8,.8,,8,) exists which gives the same /{#). The amphtudes of Chrichton contained

only §,Pand D waves and may be writlen in the form of polynomials in cos#

which are related by the complex conjugation of one root Then ambiguous phase
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shifts were constructed with §,F D and F' waves and then with §,. P, D Fand G
waves. In all these cases the equivalent amplitudes are formed by replacing one or
more zeros of an amplitude 1n the complex cosd plane by 1ls complex conjugate. In
fact, the expression 1n equation (3.1} being composed of a sum of polynomials is itself
a polynomiel of degree L in cos@ . We may, therefore, choose to write the amplitude

as a product over 1ts Zeros z,

I

Sfcos@)= ALE[C{JSH—EI) (3.3)
(ersten [3] first noted that this cross-section will he unafTected 1f we replace any of
the roots z by its complex conjugate. We can make these changes in 2’ possible
ways, as long as we do not bother about unitaruy, except for the highest partial wave
where 1t fixes sin® 5, With brevity we may call these as Chrichton ambiguity.
Bowcock and Burkardt [6] argue that for pure elastic scaitering, whatever be the value
of L, there will be, at most, two possible unitary amplitudes. They start by assuiming
that there are N unitary amplitudes, out of the pessible 27, which means that there 15
N number of F,, where F={$,-1)/2i We denote them by F', where
k=123 N

. . L 2 Loz .
For pure elastic scaftering, since, £, =¢" sind, and ]f,| =sin” &, we can write,

m £ =|F]

!

where =12, N and /=01_.7-1 (3 4)

T

The highesi power of cos® in the amphtude in equation (3.3} 15 I and the overall
coefficient of cos®# 1s clearly proportional to F,. Expanding # (cos6) in equation
{3.1) in powers of cosf we find the coelficients of cos’ ¢ and then using the relation
F, =¢ gin §, and equation (3.3), the scattering amplitude for purely elaslic scattering

can be expressed as

(22) N{cos@-2z,) {3 5)

§ F
f{cosé) :E(ELH)ES" siné, " (Ll]z )
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For a fixed L, it depends on {2L+1) vanables — &,, the real parts of the L zeros,

and the modulo of their imaginary parts -- each amplitude being a different function
of those variables because of the sign changes from the complex conjugation Now
for each of the solutions egnalion (3.4) provide a total of NI constraints. If these
equations are independent and ihere 15 to be a solulion, there must not be more
cquations than variables, so NL=27+1 = N =2, since & is an integer So, when
we are dealing with the scattering of spinless parlicles at an energy, W!'I.ETL;.‘. na other
processes than elastic scattering is allowed, there is a two-fold ambiguity. This is
quite aparl from and 1n addition to the so-called trivial ambiguity, which just involves
reversing the sign of all phase shilts

In the complex potential scattering, that is, for complex phase shifis, the complex
conjugation of the zeros do not end to a two-fold ambiguity as in the case of real
potential scattering. The expression i equation {3.3) implies that

f(ﬂ)= f(":')]fil (COSE}—ZE)

—— 3.6
- (l_zr) @9

For real cosf?, the replacement of one or more z, by their complex comjugates will

result in the same differential cross-section, dcr/dﬂ:|f [E}r and the same /(0}.

For [ixed /. thesc aic the only ambiguities in determining the phase shifts (which are

of course, related to z,) from do/dQ)  The number of these ambiguities including the

unchanged function in equation (3.6) is 2°. So, we arrive at the result that all

scattering amplitudes of the same form as in equation (3.6), which correspond to the

same do/dQ) and the same £ (0} can be obtained from the 2" functions

L cos@ -z (m)

fm(5)=f(u)ﬂw, m=0,12, . ,2" -1 (3.7)

wherc mis an index labeling the 2" different possibilities, z,(m} standing for z or

11s complex conjugate z . Again .::-:’cr/ dQl= |f (E }|2 and the optical theorem

m f(n):ﬁ% (3.8)
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permits us to calculate Re /{0) apart from sign. Also, we observe that if we clange

the sign of Re f (ID) 1n equation {3.6), we still have the same value of the differential

cross-section |f (EI')|2 and the total cross-section o, Here wc mark that all the
possibilthes of oblaining £, (#) according o equation (3.7) with reversed sign of
Re /{0) are contained in the Functions obtained by equation (3.7), with the
additional transformation.
fu(0) > =17(0)

Such a transformation results in changing the sign of all the real paris of the phase
shifts, which 1s the same as in the case of tnvial ambigwties. Theretore, the 2°
possibihties of constructing f(#) arising from the complex conjugation of the zeros
must be multiplied by 2 agawn. allowing for the two possible signs of Re f(0) There

are no addional ambiguities other than those found here and their total nuimnber 15

2'7. We now go on to find the zeros of the scattering amplitude for a particular

potential and study the significance of the zeros in phase shift analvsis

3.2 Zeros of the scattering amplitude for a Yukawa Potential

We choose ihe Yukawa potential as given in equation (2.15) as our model of potential
scattering and find the zeros, The scattering amplitude as an expansion in partial
waves derived in equation (1.48) may be rewritlen as

S (2P (cos )
ﬂhm_; Kcold, —i)

(3.9)

Thosc parttal waves will be significant which satisfy the condition 7> <ka so that we

may truncate the infinite series 1n the above equation at ! = ., I being finite and write

= (241 (cos8)
ﬁhm_é k(col 5, 1)

(3.10)
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Since z=cosf permits analytic continuation into the complex z - plane, we can find

solution for equation (3.10) such that
L
flk,2)= 3 a (k)1 (z)=0
]
where

a( ) 28+1
“ k{cotd, —r)

The Rodrigue’s formula for Legendre potynomial is given by

P L] -

Alsa expanding {z° —1)" we obtain

{ ](z -y =3 r( S )l 1)“ﬁ(zr—k)z“

So P,(z) now takes the form

r=0 k=0

o H (1}"’ A-1 .
r{z)= EHErl{H =Kz

We note that
-1
(2r—k)=0 for 2r<mn-|
k=i
Accordingly, this leads to the new expression
N . ] r .
fe=Fa®s s 3 A
=0 2 F=ni2, 0t )z
where the lower summation takes the values
F=ni2 for evenn,

r={n+1)/2 foroddn

and

s =" Hop

r|(n _r)lk =5
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(311)

(3.12)

(3 13)

(3.14)

(3.15)

(3 16)

(317)

(3.18)

(3.19)



Thus we can finally write down the coefficients of z™ in equation (3 5) both for even

m and odd m in the following forms:

w2 ;

kz N ;Tﬁ{k+mf2~2k] m o even, (3.200
=m) Z

w2 ]

Y, agk_l—imﬁ(k+{m+l}/2,2k—l) m odd. (3.21)
k=[ml)f2

It should be noted that the above expressions are calculated for even N which s Lhe

total number of zeros of the complex polynomial.

We have already computed the phase shifls &,(k) for the Yukawa potential (2 13) by
nsing parlial wave method and compared wilh those obtained from the Born
approximation method, In order to calculate numerical zeros of fik, z) 1n equatioil

{3.11} we wrile a computer program which calculates the arrays for a. (k)and

B(r,n). We then compute the numerical values of the coeflicients of 27 given 1n
equations (3 20} and (3.21) parameterized by (he array & A NAG-routine s then
called which returns the complex zeros =z, for wiich the scattering amplitude vanishes
identically and at least bwenty zero tiajectories are calculated. The sorting of Lhe zeros
is then done in such a way that for each value of &, the program selects six smaliest
absolute values out of twenty &k paramelemzed zeros. Then it calculates all the
different ways of sclecting four numbers out of six. By minimizing the sums of the
absolute values of the differences between the &-th and the % +1- th points for each

permutations possible, the first four zero trajectories closest to the origin arc selected
on the premises of contmuity. Following Hohler [5] we work with —g* which is
equivalent to the Mandelstam [12] variable *t' i the 5 - channel

—q* =t =-2k"(1-2) (3.22)
For the range of the momentum 10 <k =5.0/m™ the first four zero trajectories as a

function of & are shown in figures 1-4 for different potential strengths U;=1.50, 5.0
and 15.0 fn™.
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Numbering is done according to the proximity to the physical region fz|<1, z=cosé.

The figures show that all the four zero trajectories converge lowards the origin at low
energies. Also we observe that as the potential strength increases the fiest and third
zero trajectories become more squeezed while the second and fourth trajectories
become more extended In figure-5 we observe that for weak potential strengths

{7, =0 001 and 0.005fm™ each of the furst and second zero trajectories appear in a

way, which Indicates that the zeros In one trajectory are just the complex conjugates
of the zeros in the other one  The thurd and fourth zero trajectories also behave like
the first two trajectorics for the same weak potential strenpths, which are shown in
ligure-6 For higher potential strengths 77, = 5.0and 15 0 fm' the first and second zero
trajectories are shown in figure- 7 while the third and fourth trajeciories are shown in
figure-8 The figures show that for higher polential strengths the zeros in etther of the
first or second trajectories are no more the camplex conjugates of the other and same
15 the case with the third and fourth zere trajeciones,

We now apply the zeros of the scattering amplitude to construct a method which can

be used for resolving the probable ambiguities of phasc shift analyss.



3.3 Application of the Zeros of Scattering Amplitude in phase
shifts analysis

We now discuss a method which makes an extensive vse and appheation of the zeros
of scallering amplitude for resolving the ambiguities i phase shift analysis in the case
of elaslic scatterning with no absorplion from the Yukawa potential The phasc shifts

& caleulated for this potential from the partial wave method discussed 1n section-2 2

rdy

¢an be used to compute the scattering matrix elements S, —e Using these valucs
of 5, 1n cquation (3 1), the complex roots of f{8} 1n the complex cos? -plane can be
calculated for a fixed value of I, say, L.=6. Now ihe calculated values of S, can
also be used 10 equation (3.1), to ubimm the numerical values of the scatlermg
amplitudes f(6) for at least fifty one values of & =(7/50) including f(0) for
& =0 which fixes Im f(0) through the optical theaiem given in cquation (3 8) The
differential cross-sections do/dQ) are then computed for all values of & as stated
above along with tolal eross-section ¢, Then we approximate the numerical values
of Jofd) by a polynomial of degree, say. L=4 following the method of least
squares Since de/d2» 0, we must construet the polynomials, which cannot assume
negative values in the physical domain  The least square fit 1s to be dove in a way

such that f{0) for #=0 comades with f{0) calculated from the polynomial fil to
the pumerical vatues of do/d2 at 9=0. We then find the complex zeros z,
(7=1,2,3,4) of the fitted polynomial and their complex conjugates z’ and then
according to equation {3 7). the 2'=16 possible amplitudes £ _{#) can be
constructed which are all polynomials in cos@ of degree £. Now the amplitude £, (6)

can also be expanded into Legendre polvnomials i the following form.

L

£.48) ZEET&"E(HH)[S! (m)- |]P,(cos ) (323)

=il

1

_in-’



wherc m =0 case 15 the nitial scattering amplitude given by equation (3 1). The right
hand side of equation {3 23) can be expressed in the form of polynomials in cos@ of

degree [
£ (8) =Y. C, (cosB) (3.24)
I=0

where the cocfficients ¢ contains S,(m) The above relation being an identity

allows us to equate the coefficients of equal powers of cos? and hence to Dind the

§ - matrix elements 5, {m). The possible combinations of the complex zeros z, and

i

their complex comugales =" may be ordered m the following way. We start with the

-

zeros I, (r=1,2, :.~,4) and mark this comnbination with the number 1234 Then we take
the complex conjugate of 2, and combine with the remainimg =, (r'= 2,3,4) and mark

this combination with the number 1234 In thus way, the complex conjugation of any
onc zero 18 denoted by a ‘bar' on the respective number For example, 1234 represents
the combmation of z,z, 7,2z, and z,” In this way, all the possible 2% =16 matrix

elements |‘5 {m)| for /=0,1,2,...4 may be obtamed.

Further additional sets of the matrix elements §,{m) and hence the phase shifis
& (m) are obtained by changing the sign of the real parts of f(0) m equation (3 7)
For all sets of phasc shifts obtained, the total cross-section remains unchanged,
because a’cr/a’fl: |f{£?]]2 13 unchanged We note that all the ambiguous phase shifts

are not physically acceptable. Since for an absorptive scattering center the unitanity

condition requires [S,|<i whnle for pure elaslic scattering the unutarity condition

requires |S,

=1. by checking with the condition ]S,| almost nearly equal to unity for
{=012,.4 we can sift out the unaceeptable sets and reconstruci the scaltering

amplitude and hence reduce the problems of phase shill analysis.

62



TGS D3I

Conclusion

In chapter ong, we have reviewed the necessary backerounds of spin-independent
scattering theory, We have discussed the partial wave analysis and the Born
approximation theory in detail along with the formulaton of the scattenng amplitude

and the differential cross section

In chapter two, we have chosen a Yukawa potential as the maode] potential and found
the phase shifts and differential cross-sections both from the partial wave method and
fromn the Born approximation methed for different potential strengths We have seen
that the results of the phase shifts obtained from the partial wave method agrec most
satisfactorily with those of the first Bomn results for weaker potental strengths and
large momentum as expected The differential cross-sections obtamed from the partial
wave method also agree well with thase obtamed form the Born approximation
method But the results also indicate that we need to consider the thud order Born

approximation also, for befler agreement.

In chapter three, we lirst have a detailed discussion on phase shift analysis and also on
the probable ambigmties of phase shif analysis where we have marked that the zeros
of the scattering ammplitude plays a significant role We then ind the zero trajectones
for the Yuokawa potential. We approximately truncate the infinite serics of the partal
wave expansion of the scattering amplitude satisfying { =5 ka At least lwenty zeros
of the amplitude have been evaluated 1n the complex momentumn trunsfer plane We
then examine the behawviour of the firsl four zero trajectones closest to the physical
tegion for a vanety of potential strengths, We observe that for higher potential
strengths all the four zero trajectories start moving from the ongin and spread out as

the momentum & increases from zero and they vary smoothly wilh the energy.
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We also observe ithat for weak potential surengihs the zeros in the first and second
irajectorics are just the complex conjugates of cach other and the same holds for the
third and fourth zero trajectones. Therefore we mmay conclude that the ambiguities due
to lhe complex conjugation of the zeros are resolved af least to some extent for weak
potential strengths, However, for higher potential strengihs the above conclusion does
not hold and we remain with all the possible ambiguities. Lastly, we have proposed a
methed for reducing these ambiguities which makes use of the zeros of scattering

amplitude
Our next work would be to apply and follow the method as designed here for

reconstructing the scattering amplitude and hence resclving the probable ambiguities

in phasc shift analysis
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