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ABSTRACT

The purpose of this work is to discuss the problems of phase shift analysIs and to

construct a method for resohing these problems by U5lllg the zeros of scattering

amplitude, in par\lcular, this work traces Yukawa potential whIch desCribes nucleon-

nucleon scattenng First, the phase shifts and the differential cross-sectIOns are

computed and then compared wllh those of the Born results The comparison shows a

fair agreement between the two methods wh,ch results 111 fedmg tree to compute the

zeros of scattenng amplitude The zero trajectories arc then displayed graphically in

the momentum transfer plane A study of the nature oflhe lero trajectories show that

the ambiguities of phase shift analysis are reduced to some extent for weak potential

5lrengths.
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Introduction

Phase shift analysis has been found a well-known problem of recent years. In the past

it was often assumed that if the measurements were accurately made, the phase shifts

could also be accurately determined 50that in case of perfect measurements a unique

scattenng amplitude mIght be expected, In case of purely elast1c scattenng for

spinless particles at an energy where no other processes than clastic scattering IS

allowed, Martin [I} shows that It ISpossible to deduce sufficient condiuons on the

differential cl'Oss-scctionsfor it to correspond to a unique amplitude, However, the

conditions being extremely restrictive it holds only for zcro scattering energy in most

pJact1calcases, Phase shift analysis have been studied by ehrlchton [2], Gersten [3-

5], 13owcock [6-8], Hohler [9] and others and the possibilihes of resolving the

ambigunies ansing in phase sh,ft analYSIShavc also been Stud'Cd by them from

different angles, Gersten [4J discussed the posSlbdlhesof reconstructing the scattering

amphtude fairly accurately With the aid of the zeros of the differential cross-sectlon

and has shown that the treatment of the ambigmlJes in pha5e shift analyslSis greatly

simplified if one considers the complex zeros in the cosme of the scattering angle

plane These leros can save to parameterize the differential cross-section or the

scattering amplitude as the case may be. Barrelet [10] showed how the scattering

amplitude could be parameterized in terms of their zeros and pomted out that these

zeros move along smooth trajectories as the scattering energy ISvarIed It has also

been seen [8J that the smoothness of the zero trajectories may be a useful cntenon for

selecting from among several acceptable amplitudes,

In this work we give emphasis on mathematical formulation and numerical techmques

in formulating the scattering amphtude and in obtaining its zeros, Then making use of

the complex zeros of the scattering amplitude we propose a method for reducing the

problem of phase shift analysis The work is designed in the following fashIOn
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In chapter one, we give a brief review of the scattering of spllliess particles using the

method of partial waves, We also explain a high energy approximation method, the

Born approximation.

In chapter lwo, we choose a simple model of potential scattering WhlChdescribes

scattering of nuclear particles without taking into account the efIect of spin. Having a

brief discussion on phase shifts we first calculate the phase shifts for the model

potentlal and the differentlal cross-sections using the method of partlal waves. To

check the rehabilit)' of our results we compare both the phase shifts and the

dlfferentlal cross-sections obtained from the parllal wave melhod wllh those obtained

from lhe Born approxImation method.

In chapter three, we have a detailed discussion on phase shift analysIs for pOlential

scattering. We choose a model for a particular potential scallenng and find the

complex "ems of lhe cross-seCllonm the complex cosO- plane. The behavlOUfof the

zero trajectories lS lhen studied in the complex momentum transfer planc. Finally, we

rllSCUSSthe ambiguitles, which arises in the phase shift analysis for this parllcular

potcntial Then following Gersten [4J, we deSIgna melhod ",h'ch may resolve these

amblgUlllesand hence reduce the problem of phase shift analysis.
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Chapter-1

Theory of Scattering

In thIs chapter we discuss the simplest collision problem: the theory of non-relahvlslic

~ca!tering of two particles which interact through a potenhal V(r) depending only on

their relalJve coorcilllates, First, \'>,estudy the method of partial wave analysis to

derJvc expressions for the scattering amplitude and the differential cross-section A

deta,led discussion on the boundary conditions have been done for solvmg the

Schodmgcr wave equntlOn Then we go Oil to study the mtegral equation m scattering

theory wh,ch IS followed to derive the <;caUenng amplitude in the Born approximation

method as un expansIOn III different order Bom amphtude.

1.1 The partial wave analysis

We know that the scattering <lmplitLlde and the differential cross section can be found

from the asymptohc behavlOur of the stationary scattering wave functlOn \Vhen the

potential is central l.e. depends only on the magnitude r of the vector r, the

Schr6dmger wave equation may be ~epurated m sphencal polar coordinates and a

simple connection between the radial solutions and the asymptollc form of the

stationary scattermg wave function may be found. This procedure IS called the

method of partial waves

Let us consider the non-relativistic scattenng of a spinless particle of rna,s m by a

potenhal V(r). The time-dependent Sehr6dmger equation of the system [11]

(- ~: V~+V(r,l) jw(r, I)= Evr(r,l) (11)

admits stahonary state solutions of the form:
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where the wave function vCr) is a solution of the time-independent Schr6dinger

equation

and the energy E of the partlCle has the definite value

p' h'k' mv'
E=-=-=-

2m 2m 2

(1.2)

(1.3)

Here p; = hk, '" mv. is the initial momentum of the particle, k; Its inltla! wave vector

and "; its mitia! velocity and the magnltudes of these vectors are given by p, k and l'

rcspectively.

We shall assumc that the potential VCr) tcnds to zero faster than r-1 a.> r ----700. We

may then look for a partlculur solution of equation (1.2) which we shall call the

stationary ,callel Ing wave function This function satisfics the asymptotic boundary

condition

(1.4)

Here A IS Independent of r and the angles 8 and ~ with our choice of the polar

z-axis alcmg the dll'ection of the Incident wave vector k,.

We may easLiy verify that for any function !(O,ljil the expression (14) satisfies

equation (12) asymptotically through terms of order IIr In the region where VCr)

can be neglected, provided that the potential VCr) vanishes faster than r-1 as r ----7a:;

Let us now consider the potentia! VCr) to be spherically symmetne or central so that

VCr) '" VCr) Introducing the spherical polar coordinates with thc z-axIs along the

inCIdent dlrection we find the Schr6dinger time-independent equation (1.2) for the

stationary scattering wave functIOn vCr) in the following form:

4 •



(1.6)

__"_'[~l ~a(" ~8'J+_l __ ,_J (sin B-'-J+__ l __ "_']'I'(r) +V(r)\If(r) = c\If(r)
2m r' Or ar ,'sin08e [)(} r'sin'B2,p'

(1 ,5)

COllSldermg the orbital angular momentum operator L = r x p we see that the operatur

"square oithe orbital angular momentum" can be expres~ed as

- , , , ,[ 1 a ( _ all a']L.=L,+L,+L.=-h -_~-::- sme~ +-,~--~
,- smOo8 Co) SIIl'OC,p'

Using the commutation relations [L',L]=O and LxL=ih'L we can find the

eigenfunctIOns which are common to the operators L' and one of the components of

L These arc the spherical hurmonics rim (B,Ij;) such that

(1 ,7)

(1 ,8)

where I and m are called respectively the orbltal angular momentum quantum number

and the magnetic quantum number.

We now return to the Hamiltonian h'.oJ')H=--V"+ (r
2m '

whleh can be expressed with

the help of equations (1.5) and (1 ,6) as

h'[le(,,) L']H 0=-- ~~ , ~ --- +V{r)
2m r' or or h2r2

so that

ll!, L']=[H, L,]=O

(1 9)

(1.1 0)

Because the operators H, L' and L, all commute, we ean look for eigenfucntions

common to these three operators. We may tbereforc expand the scattcnng wave

function 'f' in partial waves correspondmg to gIven values oftbc quantum numbers I

and m as

'f/(k, r) =L LCJ~(k)R,~(k, r )Y,,.,(e,rjJ)
1=0 m=_'

5

(1.11 )



Here we have explicitly displayed the dependence of the funclJon 'II, of the radial

functions Rim and of the expanslOn coeiflclents e'm on the wave number

k == (2mE)'" In. Using the expansion (1,11) in the Schrodinger equation (1,5) and

makmg usc of equatlOns (1.7) and (19) we obtain for every radial functlOn the

equation

"[ld(,d) 1(1<1'] ,-- -, - ,. - - -- Ri(k,r)+V(r)N,(k,r) =- FR,(k,r)
2m r d, dr r'

(1,12)

Here we have written N,(k,r) instead of R,~(k,r) since there 1Sno dependence on

the magnehc quantum number nl. It is convenient tuuse the llew function

u,(k,r) =- rRI(k,r)

and introduce the reduced potcnllal

U(r) =- 2mV(r)lh'

The new radml equahon ",h'Ch we obtain from equation (I 12) lS then

(I ,13)

(Ll4)

r
Od' +k'
dr'

/(1+1)

"
U(r>},(k,r) == 0 (1.15)

In order to solve equation (1 15) for the radial wave functions 11" It lS neces~ary to

speclfy the boundary conditions which must be satlsfied by these functions Bdole

we do this, however, let us first examme the soluhons of equation (1,15) for U(r) =- 0,

namely

[
d' 1 /(1+1)]-, +k - , y,(k,r)=-O
d, , (Ll6)

where we have replaced u,(k,r) by y,(k,r) so that equation (1.16) is simply the
radial equahon for a free particle, Changing vanablcs to p =- kr and defining the
function fi(P) =- y, I P we see that the analogue of equation (1.12) without lllterac(ion
potentIal reads

[~+~~+ [1- /(/~ 1)]]f'(P) =- 0 (Ll7)
dp' pdp p.

which is the "spherical Bessel differentlal equation", Particular solutions of this

equation which are often used in scattering theory are the spherical Bessel function
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J" the spherical Neumann function nJ and the sphcncal Hankel functions h,l') and

him The general solution of equation (1.17) is then a linear combmallon of two

linearly independent particular solutIOns. Since the pairs of functions (", n,) and

(h,o), hI")) arc linearly independent solutions of equatlOn 0.16), we may write the

general solution y, of equation 0.17) as

y, (k, r ) = kr[D,(1)(k )hill (kr) + lJT") (k )h,' ') (kr) ]

(Ll8)

(I 19)

where the two palrs of"integrahon constants" (C,o), Ci')) and (D;'), D,P)) may still, of

course, depend on k. The examinallon of thc beha\'JQur of the spherical Bessel

function j,(p) as P -) 0 shows that this funcllon IS regular at the origin. \vhere it is

proportlOnal to p'. The other funetlons n" h,O) and h?) have a pole of order (l +1) at

p = 0 and are called uregular solutions of equation (1 17). By analogy, a function

I',(k,r) which is gi"en (up to a k-dcpendent multlplicall\'e factor) by

v,(k,rj-rj,(kr) (1.20)

is called a regular solution of equation (1.16), We nOle that it vanishes at the origin,
namely "I(k,O) = 0. More precisely, we have

vJ(k,r) - r"] (1.21),.,
Solution~ of equation (I 16) whleh fail to vanish at r = 0, for example m,(kr) ,

rhi') (kr) or rh,('-J(rk) are called irregular solutions of that equation.

7



1.2 The boundary conditions

In this section, we will examine the boundary conditions ",ith the help of the radial

equation (1 15) which we must Impose upon the radial functions u,(k,r),

On the basis of the above discussion we would expect that outside the range 'a' oithe

potential we may use equation (1 18) to express u,(k,r) as

u,(k,r) == kr[e,t'J (k)j, (kr) +Ci'l(k)/1,(kr)], r» a (1 22)

Let us assum~ that r 1<;so large that the terms U(r) and 1(/+ I)/r' may be neglec(ed

in equatlOll (1 15) An "asymptotic" solutlOn IS then obviously of the form e"". More

prcclsely, we may \\,n(e for large r

u, (k,r) == F, (k,r)ei'k; (1.23)

where F,.(k,r) is a slowly varying funct10n of r, SubstItuting cquatlOn (1 23) 1I1to

equation (1 15) we find that

F' 2'kf"~:!:_,__, == W ('l
r" F ', ,

where ",e have set W,(r)=U(r)+l(l:l),

(l 24)

d h F,_dFi dan we ave \,'rltten I - - "
d,

r;"
SLIlce the functlOn.r, IS slowly varying, we may drop the term 1Jl

F,

equation (1.24) and write
-I- 2ikF'
- F '-W,(r),sothatforlarger,

Therefore, If

(1 25)

(1,26)

where M IS some constant and E is greater than zero, we deduce from equation (1 25)

that the function F; 15independent of r for r --+ "", Thus, If the condition (1 26) IS

sa\lsfied, the general solution ofequatlon (1,15) for large r is given by

8



(1.27)

where B,Ill(k) and B?J(k) are independent or r Using the fact that

, , .'l~-'ni, ,
h,i"(x)~_ie _

H" r

(1 28a)

(I 28b)

wc may also rewrite equation (1.27) in the form of equations (1, IR)or (1 19).

Thll~we have, m accordance wllh equahon (1 22)

/l,(k, r) ~ kJ'[CP)(k)j, (kr) +C,c'\k )n, (kr) 1,
H'

11, (kJ) ~ kr[Dil) (k )h'p)(kr) +Dim (k )h,<'J (kr) 1.-
From equallons (l 28a), wc obtam the boundary condition for large r

u,(kJ) -} A, (k) ,in [kr -In / 2 +0, (k)],-..,
with

(I 29)

(1 30)

(131)

(1 32a)

(134)

__ C,")(k)
lano,(k) - C,(LJ(k) (1.32b)

We note that equallons (1 13), (1,29) and (l 32b) also Imply that we may write

H.,(k,r) -) A,(k)u,(kr)-tanS,(k)i],(kr)] (1.33),~,

wbere A/(k) is independent of r, We note thaI the quantities 0" which are called the

phase shifts, display the influence of the interaction. Indced, in the absence of

interaction, the regular solution l',(k,r) of the radial equatIOn (1,16) (i.e. the analogue

of equation (115) for U(r)=O) is Just givcn by 1',(k,r)-rj,(kr) as shown in

equation (1.20) so that

l'/k,r) - sin(kr-ln/2)
H'

9



UPOll comparison of equations (1.31) and (I 34) we see that the interaction is clearly

responsible for the presence of the phase shifts 8,. It is also convenient to express the

boundary condition for 1I,(k,r) as r -4 00 in the form of equation (I 27) or (1.30), I.e.

in terms of radially incomlllg exp(-ikr) and outgoing exp(lkr) waves. Upon

comparison with equatlon (l ,31) we may write for example

!I,(k,r) -4A,(k)[-(_)ie-'" +.'1) (k)e'" 1
H"

with A, (k) = Ai (k)/I e-,J,:'l (-)' 12i , while the coeftlcient of the outgOlllg wave is givcn

by

(I 35)

and IS called an S-matnx element.

Let uS now examine the boundary condition wh,ch must be satisficd by the radial

function !I,(k,r) at thc origin r = 0, Th,S boundary eondltlOn is determlned by the

requirement that all thc possible physlcal states are described by a complete,

onhogonal set of wave functions. A detailed examlllation of this equation shows that

t>vophysically allowed solutions lI,(k,r) and 1l,(k',I) must satisfy the condition

lim f !I,(k,r )~!I;(k',r) -11; (k', r)~II, (k, r») 00
'401. dr dr

(1.36)

For a large class of potentials the above requirement may be simplified as follows.

Let us assume that near the origin the interactlOn has thc form

(l,37)

where p IS an integer such that p ~ -1. We then expand the solution u, in the vicinity

ofr=Oas

u,=r'(co+c,r+ ..), C,'I'O (1.38)

Upon substitutIOn of equation, (J .37) and (I 38) in the radial equallon (1,15) we find

by looking at the coefficient of the lowest power of r (Ie.r'.') that the quantity s

must satlsfy the indicial cquation

s(s-1)-I(1+1)=0

10

(1.39)



so that s '" / + I or s '" -I, The chOlce s = -I corresponds to megular solutions which

do not satisfy the condition (1,36). The othcr choice s = 1+1 corrosponds to regular

solutions wInch are phy~ically allowed These solullons are therefore such that the

condition 0.36) simplifi es to

With

'~LlI,(k,r) - r
'_'0

(1.40)

(141)

(1.42)

We now consider the case for whiGh the potcntial is more smgular than r-' at the

origin, If the intcraction i~ repulsive ncar r = 0, there is no special difficulty and 'We

may continue to Impose the simple condition (1.40) since obVIOusly R,(k,O) = a in

this case On the other hand, If the potentia! I, attractive m the neighbourhood of the

origm the nature of the singulanty is important.

1.3 Scattering amplitude and differential cross-section

\Ve recall that the asymptotic form of the scattering waye function If(k,r) IS glvcn by

equation (1.4), Le.,

q!(k,I') ,_,,, lA(k{eXP(IkJ)+ j(k,O_~)exp~kr) ]

where ",e have displayed explicitly the k-dependence of all the quanllties. Choosing

the z-axis along the direction oik" so that, exp(ik, ,r) = exp(ikrcosB) ISmdcpcndent

of the azimuthal angle <jlwe obtam the well known formula

exp(lkJ r) = exp(ib) '" L:(21+ l)i' l,(kr)?, (co<;l1)
'=0

(1.43)

whICh is the partial wave expanslOn ofthc plane waveexp(ikz) where P, (cose) are

the Legendre polynomials

[ 4" ]'"p'(cose) '" -- f,,(e)21 +] ,

11
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Using equations (1 43) and (1.28a) we may rewrite equation (1.42) in the following

form'

'f(k,r)-H-.~)A(k{~ ~,[4n(21+ l)r'il

x exp(/(kr - tin)} - exp{-I(kr -til,) y (0 ~)5 + f(' 0 ~)e'h]
2ikr 1m ,'1' m,O ,,'1', (l.45)

On th~ other hand, we may also consider the partial wave expansiotl (l, 11) for large r

Using the facl that Rim (k,r) '" R, (k,r) = ,-'U, (k,') together with equatiotl (1.31) we

oblmn the lelation
~ -, 1

.,(k,") --7) L: LClm (k)A,(k)-[exp{i(kr - fIn +0,)
, •.•• ~ 1=0 m=_1 2,r

(1.46)

(1.47)

Upon comparison of the coefficients of the mcommg spherical waves m equatioll5

(1.45) and (1.46) we ha\'e

C'm(k) == k~:~;) [4n(2/ -1.1)]';' ,I expO 0, )0 ~ 0

By matching the coeffiClents of the outg01ng spherical waves, and using equatlOns

(1 47) and (l 44) we find that the scattering amplitude is independent of ~ and givcn

by

This equation can also be rewritten in the form

•
f(k,B) == L: (21+ l)a, (k)P, (cos a)

1=0

wherc the parllal wave amplitudes rIJ (k) are such that

(1.48)

(149)

(1,50)

Thus the knowledge of the phase sh)fts enables us to obtain the scattering amplitude

12
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The dliTerential scattering cross section is given by

do (k, 0) '" I/(k,e)I' '" -.!,ff (2/ + 1)(21'+ l)exp{i[o,(k) _ 0,. (k)]}
dO. k '_01'=0

x sin 0, (k) sin 0" (k)P' (cosO).?" (cos8)

The total cross section is then obtained as

which becomes

u""(k) = 4~ i:: (21,. I)sin' 0) (k) = i:0 ..(k)
k 1.0 1=0

where each partial wave cross section 0,(k) is given by

(1.51)

(l 52)

(1.53)

(1.54)

Wc nole that the m<l}amum contribution of each partial wa\'e to the total cross section

is given by

o,"""(k)= ;~ (2/+1)

which occurs when

(J.55)

(J 56)

On the contrary, when o,(k) '" 11", there i~ no contribution to the scattering from that

;,'k'
partial wave at the energy E = 2m

It is apparent from the aho\'e formulae that the method of partial waves lS most useful

when only a small number of partial waves contribute to the scattenng ThiS situation

anses at low incident energies More preClseJy, If 'a' is the range of the potential and

k the wave number of the particle, only those partial waves will be important for
which

Ida

13
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We note that the first and most important muximum of the free radial wave function

h(kr) occurs approximately at ro =! I k , while for small r the function j, is small

and increases as r' , Therefore, If a«! I k, the function J, will be very small in the

scattering region and the corresponding phase shift 0, will be negligible. We may

then cut off the part1alwave series approximately at !m~'" ka Thus, jf ka < 1 we need

only ealculate a small number of phuse shifts in order to obtaUl the sealtermg

amplitude.

LeI us now return to (he partial wave expansions (LJ 1) of the scaUering Wa\'e

fUllelloll 'fI We note that the expressIOn for c'm(k) Ulcquation (1.47) implies that we

may rewfltc Ihe partial WOlVeexpanSlon (1.11) as

which after using (1.43) and in term, of the radial wave functions u, (k, r) becomes

where the fundions ",{k, r) exhIbit the asymptotic behaviour (J ,31), Hence

'" (k,r)--~) A(k)*' (2/ + l)i'e'"'sin(kr - tilr + ",) P,(cos$)
-r ;-,~ tt kr

(l,58)

(1,59)

and we see that the coelT1clenlS A,(k)have no lIlfluenee on the scattenng. They

merely fix the normalization of the radial funetions The following normalizations are

often used

u,(k,r)

so that

,->~) ~sin(kr-+!lr+o,)

11,(kJ) -,-.,~) i[sin(kr - tin") -I- cos(kr - ttll') tan ",)]

R,(k,r)'--H-_~' -~ sin(kr - +,Il'+0,),

Ri (k, r),-,-,_~)j, (kr) - tano,I1,(kr)
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1.4 The integral equation in scattering theory

I~et us rewrite the Schl'odinger wave equahon (1.2) 1ll terms of thc reduced potential

(1,]4)m;

[v 2 + k' ]\f/(r) = U (")'1'( •.) (I 62)

where the right hand ~ide is considered as an inhomogeneous term, The general

solution of thi s equation can be wl'ltten as [1 I]

\1-'(•. ) = <:p(,,) + f dr'C; (r,r')U (1")\1-'( r')

where <P(r) is a solution of the homogeneous equation

[V'+k'j<:p(r)=O

(1.63)

(I 64)

and G;(I",r') IS a G,een'g function correspondmg to the operator V' and the wa\e

number k. That lS

[V' +k' ]C; (r,r')" o(r -1'")

with the Green's function G; (r, •.') given by

•• , I exp(iklr - 1"'1)
G,(",")=-- I •.

41f r-rl

or in the integral representations

(1,65)

(1 66)

(I 67)

In the scattenng problem that we are conSidering, the function tt>(r)is ~imply the

mc,denl plane Wa\'e expUk,.r) = exp(tkz) with the z-axis chosell alollg k;. \Vc shall

denote thi~ plane wave by <D. (r)and 'normalize' It m such a way that.
•

Returmng to equation (1 63) and using eqllatlOn (1.68) we maywnte

'fer) = (21ft'" exp(ik,.r) + f dr'G; (•.,•.')U(r')\f/(r')

15
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(1.70)

This is known as the integral equation or Lippmann-Schwinger equation of potential

scattering It replaces the Schrodinger equatlon (1 ,2) plu~ the boundary condil1on

(I 4) which is incorporated in equahon (1,70) through the Green'5 function G; (r, r'),

Usmg equatIOn (1 66) it gives

-,,', 1 f ,exp(lklr-r'l)
\I'(r)0=(21r) , exp(lk,.r)-- dr I 'I U(r')\I'(r')

4" r-r

]t may be easily verified that the solution of the Lippmann-Schwinger equation (1 70)

has the correct asymptotlc hehavlour (1 4) The filst term on the nght of equation

(170) has already the required form, so that we only need to analyze the largc-r

beha",our of the mtegral

J 0=f dr' exp{iklr~r'It.(r')\if(r')
I' -, I

Sincc

I 'IF 2 ," "I (' ')'r-r == r - r.r +r ~r-rr +- rxr +"._,~ 2r

where r IS the umt vector along r, we may wntc

(1.71)

(1,72)

exp¥klr-r'l} exp(i/<1')exp(-Iki',r')[, r,r' ik (' ')' (")] (177)-----~ --------, +-+- rxr +v r ..Ir-r'l ,-+'" l' l' 21'

proVIded that r' and k remain fimte Now, for potentials ha\'ing a finite range 'a' the
, '

contnhutlon to the mtegral (l, 71) lS negligible when r becomes somewhat larger 'a',

since U(r') == 0 in that region, Let us set <'" == a as a crude estimate of the highest

value of r' to be conSIdered III equation (1.71). \Ve lIlay then use equation (1.73) to

deduce that for l' » a and r »ka' the Integral (1 71) ISgiven by

J - exp(lk1')fd ' ('k' ')U( ') (')- rexp-Ir.r r\ifr,
Hence, returning to the stationary scattering wave function (1 70) we have

16



!per) --+ (2rrr'" exp(ik, r)+ exp(lkr) x [-_l_Idr' exp( -ikr.r')U(r')v(r')] (1.74)
,-+~ r 4;r

where we have defined the fmal wave vector k, == ki which points in the direction of

the detector and has therefore spherical polar coordmatcs (k,e,,,,), It is worth noting

(hat our derivation of equation (174) does not apply to a potential which has an

mfinlte range

We now return to the boundary condlt1on (J 4) in which we choose A = (Z,rrJ
,"'

Thus we may \Wile

,[ eXP(ikrl]'f(r),~(2Jrr".exp(lk"r)+j(k,e,q,) r (1.75)

Comparing with equatIOn (1.74) we obtain the integral representation of the scattering

amplitude

f=
(2 r'!2

;r f dr' exp(-ik, .r')U (r')\I/(r')
4"

(J 76)

(J.n)

where we have introduced the plane waveW. correspondmg to the final wave vector,

k" namely

<1\, (r) = (2iTt'" exp(rk,.r)

17
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1.5 The Born approximation

In this section we shall express the Born series as a perturbation-type expansion of the

wave function or the scattering amplitude in powers of the jntera<.'tion potential \Ve

first attempt to solve the Lippmann-Schwringer equatlon (1.70) by i(eratlon, starting

"wab the plane wave <p., (r) = (2J[f" exp(/k,,'") as the zero order approximation, We

obtain in this way the sequence of functions

~/O(r)= <1\, (r)

If, (r) == <!Jk;(r) +f dr'C; (r, r')U(r')<!J~;(r')

If~(r) = (J1", (r) + f dr'Ct (r,r')U (r')lfl (r')

If nCr)= rtJk,(r) +f dr'Ct (r, r')U(r')If,_, (r') (1 79)

where G;(r.r') is tbe Green>s fundion, In case of a free partlcle, the 'value of the

Green's function is given by equation (I 66) and we have assumed that the interaction

potential is real and local. We may also wnte the function ~/" lITthe form

(1.80)
m=D

where

with

with

<Po(r) = we(r) = 1\ (r)

<!J,(r) == f dr'C; (r,r')U(r')<!Jk, (r') == f dr'Kj (r,r')<!Jk; (r')

K, (r,r') = G; (r,r')U(r')

Km (r ,r') = f dr"K, (r,r')Km_, (r",r'), m <:: 2

18
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The Born senes for the scattering wave funchon is obtained by Jetting n -7 00 in

equatlOn (l.80) We see from equations (1,81) to (1.84) that it is a perturbation senes

III powers of the potential. AssLiming that the sequence (1.79) converges towards the

exact solution lI/ of the scaUering problem, \ve may then write cquation (l 80) as

"
w(r)"'L<pm(r)

o,~'
(1.85)

Let us now conSider the integral representatlOn (1,77) of the scattering amplltude. If

we replacc III1tthe exact scaUenng wave fundion SUCCCSSIVelyby the functions of

the sequence (1 79) we obtain the correspondlng s~quel)ce

(l 86)

(1.87)

(l 88) ,.
The quantities !..,JH" ",f~o are called respectively the first Born approximation,

the second Born approximation, ---- nth Born approxllnalion to the scallenng

amplitude Using equation (1.69) and settlng } '"m +1 we may also wrlle equation

(1,88)as

•
lBo '" LI,]

}=[

where the expression lBI ISgiven by

" , I'fBi '" -27f < c1lk, Uit\l,,_1 >,

or using equations (I 81) to (1.84)

or more explicitly IIIthe coordlllate representation as
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(1,90)

(191)

(1,92)
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Thus the Born scattering amplitude lS useful io analyze the expressIOn of fH) m

momentum space also.

Using the integral representaiion of the Green's funclion in equatIOn (167) and

defining

we find that

< qjulq' >= (27rrJJdr exp{i(q' - q).r}u(r)

G~( ')=-(2 )-'1 idk,eXP{k'.(r-r')}" r,r :r ~Im ,.),
,'...,0 k -k -/£

I
<k}_,IUlkJ_, '> k' k' . <kJ_,IUlkJ_J '>- J-' +If:

(1,93)

(l 94)

(1.95)

(1.96)

The formulae (l 92) and (1.96) justJf'y the interpretation of the Green's function as a

propagator, while the quantities k" k".,.k J-l are called "inlennediale moment<l", We

see that the qU311tlty fBi contams} times the potential and U-l) times the free Green's

function Gci+) , We shml call ii the ierm of order) in the sum given by equatlon (1,89).

For example

(1,97)

(1,98)

so that

(1.99)
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If we analyze more dosely the first Born approximatlOn fIll we find that the matrix

element (1.86), evaluated in (he coordinate represcntati on, is given by

fBJ =-21T' «1\ jUlcll. > = __ 1 jdrexp{i(k
1
-kr).r}U(r)

, , 41!"

Let us now introducc the wavc vector tran~fer q which IS defined by

q=k,-k,

Returmng to equatloll (1 100), we see that

j~,(kJ)=- 4~fdreXP(iq.r)U(r)

(l 100)

(1101)

(1.102)

so that the first 130m scattering amplitude for a given direction (0, ~) is propotional to

the Fourier (rallsform of the potcntlal corresponding to the wave vector transferred

during the ~OJJ1SI011,The d,fferenhal cross sectIOn in the first Bom approximatlon IS

evidently given by

(1.103)

We shall now introduce the second Born approximation given by equation (1,99)

where the quantity JSl, is defined by the matrix element (I ,98) We sec that f&l may

be written more explicitly in the coordinate rcpresentatlOn as

~ 1 jfB, =-- drdr'exp(-ik,.r)
4K

and in the momentum space as

U(r )G~')(r, r')U (r}:<xp(ik I .r') (1.104)

The d1fferentlal cross-section 1llthe second Born approximatlOn is given by

(1,]05)

(1.106)

To derive the validlty of the first 80m approximation we write the exact scattering

wave function vCr) as
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Assuming that 1\".,(r)1 reaches its maximum value at the "cellter" r = 0 of the

potentIal, we require in order for our perturbation approach to be valid that

(l,108)

To obtain an estim"te of \",e(r), \ve return to equalJon (1.79) and assume that the

exact sealtenng wave functIOn \!fir) may be approxImated by the function \!f,(r)

Theil

I j exp(iklr - r'll
II' (r)"'--- d,' .. U(r')(l\ (r')
'" 4n Ir-r'l J

so that equat1011(l 108) may be written as

1 jd,eXP(lkr') ('(') (k 'J I- r , "r exp J ;.r «
4;r r

(Ll09)

(1110)

For a central potential of"~trengths" IUnl and range 'a', the angular integrations are

easily pcJformed and we find that

1",11 I--, ~xp(2ik{{)- 2/ka -I c I
4k"

(1111)

For low energies (ka -,lo 0) thIs condition becomes IUola' 12« I. Remembcling that a

,quare ",ell bmds a particle ",hen IUnla' f20> ~;r' '" I. We venfy that the flr,t Rom
. ,

approximatIon IS valid at low ellergies only ifthc potentialls very 'weak'. At high

en~rgle<;, the condition givell in equallon (1111) yield, 11/01"::""«1. Hence the ftrst
2k

Rom approxlmallon IS correct for .,uff,clCn!ly large lIlcomillg energles.
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(2.1 a)

Chapter - 2

Phase shifts and differential cross-sections
for a Yukawa potential

This chapter concerns with the numerical computation of phase shifts and dJf'ferential

cro~s-sect1ons for a partlcuJar potential ~caltenng \\'e first have a short review on

phase Sh,fts and then we choose a Yukawa potential describing nucleon-nucleon

<;cattenngwhere we have neglected the effect of spin for simplicity_\Vc find the

phase shjfts for th,s potential scattenng usmg the method of partlal waves and to

check the correctness of the lesults we compare them w1th those obtained from the

first Born approximation method Having reproduced the phase shifts correctly we go

on to find the scattering amphtudes and hence the cro~s-sectlOnsnumerically using

the method of partial ",aves The differential cros<;-sectionsare also ~akulated from

the first and the second order Rom approximations and then compared with those

obtained from the partial wave method

2.1 The phase shifts

We havc shown in section 1 3 that the knowledge of the phase shifts allows one to

obtain the scattering amplitude by means of the important rclatlon (l.48). In this

section we shall study these phase 5h,fls1rlmore detail.

Let us flfst establish some general relationships between the phase shifts and the

mterachon potential For this purpose, we consider the scatlering by two reduced

potentials U(r) and V(r). with respective radial equatlOns:

l;',+k' -/(/r: 1) -u(r)},(r) '"0
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[
d', +k' _1(1+ 1) -U(r)];;,(r) = 0
d,. T'

(2.1b)

(2.2a)

We shall assume that the funcllons 11,(1') and u,(r) are "normali:led" according to

equation (1.60b), namely

ill(r) --+ ~[:;inl(kr-~ltrl+cnS[kr-ll7rJtanoi]
,-+""k 2) 2

U, (rl _,l["Sin[kr -ll1fJ~+CO{kr_lhrJ tan6,]
'-."k 2 2

The Wronskian of the two solUllons u, and ii, is defined as

w (u"u,) 0= u,u; - II;U,

(2.2b)

(2.3)

".here the prime denotes a derivative ""th respect to the variable T. From equation

(2.1) we obtain

d -
dr W (u,,1I,) 0;0 -eU -U)u,u,

Upon mtegration over the variable r Hl the lnlerval Ca,b), we deduce that

(24)

(2.5)

(26)

choosing a = 0 <lnd b = Xl and remembering that 1l; (0) = iii (0) = 0 we find wlth the

help of cquatlOilS (2 2) that

tatlOj - tan 5:, == -k 50'" dril, (r)[U (r) - If (1')JUI(1') (2.7)

- ,
provided that U(r) and Ue'l tend to zero faster than r- when r-+"O, We also

require that the potentials U(r) and [J(r) should not be more smgular than r-l at the

origm , since u,,(r)- r as r -+ O. For the particular case U == 0 we deduce tram

equation (2.7) the important Integral representation

(" ,tanSI ==-k 0 dr Mkr)U(r)R;(r) r

24
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where the radIal funclion R, (r) is normalized accordmg to equallon (1,61 b),

To study the behaviour of the phase shifts for large I we see that an increase m the

value of I (for fixed k) tends to diminish the importance of a given potcntlal of finite

range hecause of the centrifugal barrier term 1(/.1' f)k' appearing in the radial equation

(1.15). Thus we expect that the phase shifts S,(k) will tend to zcro (modulo 1r) as

1--+if; (for fixed k) Another way of investigating the behaviour of the phase shifts

for f'»ka is to use the integral represcntallon (2,8), Indeed, for a potenllal of finite

range, ",e ha\'e already shown that the radial funchon R, will differ little from the

corresponding free wave j, when I'>ka, Henee 'Wemay write

(2.9)

I

The quantity (tan <5,')Bl is called the first Born approximation to tan S"

To have an actual computation of the phase shifts we havc to solve the radial

equations (1,12) or (1,15) numerically subject to the boundary conditions discussed in

seCl10n1.2. In particular, the solution obtained inside the range of the potential must

go over smoothly to the "asymptotic" solulion, valid outsldc the range of thc

Lnteraction.

\Vhen the potential has a strict finite range, i e vanishes for r > a, one can divide the

domain ofthc variable r mto an internal region (r < a) and an external region (r>a)

Thc boundary conditions at r = a are thcn that both R, and tiN, I tir [or u, and duldr]

be continuous at r = a. Now the exterior solution may be writtcn as

(210)

Thus, ifwc denote hy

the value of the loganthmic derivative of the mterior soluhon R,{k,r)at r = a,

we find that

25
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1,(k) = klJ;(lea) - tan",(k)/1; (lea)]
jl (lea) - tan "I (k )/1[(lea)

'(k) [dJ,(X)]where we have defined J, a "" ~--,
dx >e=k,

Hencc

tanS (k)= kj;(ka)-y,(kH(ka)
I 1m;(lea)-r,(k)Il,(lea)

~d

(2.12)

(2.13)

If the potent,al does not vani~h identically beyond a certain value of r, but has

. nevertheless a rangc 'a', onc chooses a distance d:: a at which the mflllence of the

potcntial is ncgligiblc The valuc of thc loganthmlc derivative of the mterior solution

lS then matched at r= d wlth that of the exterior (free) solution so that in this ease

tanS, (k) = kj;(kd)-YI(k)it(kd)
kn;(kd) - Y[(k )n, (kd)

(2.14)

(215)

It is clear that m performmg calculations of tillS type we must check that thc phase

shifts so obtained are insCJlsitlve to any lllcrease 1ll the quanta)' d In ",hat follows, we

,hall as,ume for simplicity that d = a The potentials havUlg a strict fimte range and

those havmg a "range" wlil then be treated on the same footing.

2.2 Phase shifts for a Yukawa potential

We now turn to thc actual computatlOll of the phase shifts for a Yukawa potential

e-"c
U(r)=-Uo- ,

where tJ, ISthe potetlllal strength and 'a' lS the range of the potential. Using this

Yukawa potential in the expression (2 9), we get the Born pha<;e shifts III the

followmg form:

(2 16)
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We evaluate tillS integral numerically by uSlIlg Rhomberg method. The computer

program is so written that it reads the potcntial parameters U" upper and lower

bounds on k and t11enevaluates the integral giving the values of tan OBI for different

values of 'and k.

To find the phase shift, in partial wave method we sce that the radial equation for thc

Yukawa potential given in (2.15) becomes

[ d', + k' _ /(1 ~ 1) + U, e-". ]RJk ,r) "= 0dr r r
(2.17)

. Since it is not possible to solve this cquation analyllcally we solve th,~ numerically.

\Ve follow the shooting method to have a numerical ,olution of thiS integral equation

by using the boundary eonditlOns

(2 18a)

(2ISb)

where the phase shift tanoE,' calculated from the flf,t Born appl'OXimatlon may be

used for 01 in the asymptotic form of R/(k,r) in equatlon (2 18b).

Smee Ihls potential does not vanish identically beyond a certain value of r, we choose

a distance d:: a. We now find the ph<lse shifts by using the expreSSlOnfor tan iii
given in equallon (2 14) We also check the ill5ensitivity of the phase shifts to any

increase in the quantity d

Our computer progrwn ;tarts by reading the potenllal parameters, upper and lower

bounds on k from a data file The program then Wives equation (2.17) for Rj(k,r)and

then It calculates Ii by using equation (2 11) for a fixed k and dlfferent , The

program also calculates the Bes,el and Neumann functions jj(lm) and n/(ka) and

theIr derivatives for fixed k and different ,. Using the formula for phase shifts

tanb"/k) gIven in equation (2 14) the program calculates the partial wave phase

shIfts 0p"" for dIfferent values of I.
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In Tables (2 1-2.3) we have compared the first Born resllits for tana, with the exact

ones, that is, from partial wave method obtained by integrating numerically the radial

equation (2 17) and usmg equation (2 14) for six attractive Yukawa potentials (2.15)

having a unit 'range' a = lim and ~trength potentials U,= 0 001, 0 005, 1.0, 5,0, \0,0,

10.0 jm-L respecllve1y. The comparison lS made for various values of I and for a

wave number k= 5 jm-' which corre~ponds to a sufficiently large energy 3,5 GEV,
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Table - 2.1

Comparison of phase shifts 6, from partial wave (PW) method and from the
first Born approximation (FHA) for the YLlkawa potenlial (2.15) with
"range" a = 1,0 fin and wave nLlmber k = 5 Ofm-'. The notalion 2308(-4)

means 2,308 x 10-4 .

-, -,
If, =OOOlfm Uo = 0.005fm

" ,
0/ (f'W) <l,(ERA) <l,(PW) <l/(FBA)-

0 2.308(-4) 2.329(-4) 1.154(-3) L165(-3), 1.355(-4) 1.380{-4) 6,770(-4) 6,900(-4)

2 9.JRO(-5) 9. J72{-5) 4,58~(-4) 4 5~6(-4)

2 6.575(-5) 6.573(-5) 3286(-4) 3286(-4)

4 4.851(-5) 4,848(-.,) 2.425(-4) 2.424(-4)

j 3.647(-5) 3,646(-5) U23(-4) 1.823(-4)

j 2.777(-5) 2776(-5) 1,388(-4) 1.388(-4)

2 2135(-5) 2135(-5) 1067(-4) 1067(-4)

8 1652{-5) 1653(-5) 8266(-5) 8,267(-5)

0 J ,n6(-5) J,2R~(-5) 6.438(-5) 6.439(-5)

W J (lO6(-5) J 006(-5) 5037(-5) 5032{-5)

" 7893(-6) 7917(.6) 3956(-5) 3959(-5)

n 6,212(-6) 6240(-6) 3 J17(-5) 3 120(-5)

B 4901(-6) 4933(-6) 2.463(-5) 2.466(-5)

" 3,873(-6) 3,907(-6) 1.950(-5) J,954(-5)

B 3065(.6) 3100(-6) 1.547(-5) 1.550(-5)

16 2428(-6) 2466(-6) 1.230(-5) 1.233(-5)

n J n4(.6) J 966(-6) 9.785(-6) 9.831(-6)

" 1524(-6) L568(-6) 7.795(-6) 7.842(-6)

89 1.206(-6) L252(-6) 6.217(-6) 6.259(-6)

20 9.540(-7) LOOl(-6) 4.961(-6) 5.003(-6)
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Table - 2.2

Compurison of phase shifts OJ from partial wave (rW) method and from the

first Bom approxImation (FDA) for the Yukawa potential (2.15) wIth

"range" a = 1.0 fin and wave nllmbcr k = 5 0 fm-, , The notation 2.381 (-1)

means2381 x 10.1.

-, Uo=5.0jm
-,

Vo ,,1,Dfm

I (;,(1'W) J,(FBA) O,(PW) 0, (FlJA)

, 2381(-1) 2,329(-1) 2.534 1 165, 1.377(-1) l.3~0(-1) S 631(-1) 6900(-1)

2 9,n3(-2) 9.172(-2) 5.200(-1) 4.586(-1)

2 ~.fi29(-2) 6573(-2) 3547(-1) 3,28~(-1)

, 4 ~82(-2) 4848(-2) 2,552(-1) 2.424{-1), 3665(-2) 3640(-2) 1.890(-1) 1.823(-1)

6 2788(-2) 2.77~(-2) 1426(-1) 1388(-1)

2 2.142(-2) 2135(-2) 1090(-1) l.O~7(-I)

8 1658(-2) 1653(-2) R.397(-2) R,267(-2)

, 1291(-2) 1.2S~(-2) 6,519(-2) 6.439(-2)

'0 L01O(-2) 1,006(-2) 5088(-2) 5032(-2)

II 7929(-3) 7,917(-3) 3990(-2) 3959(-2)

12 6247(-3) 6.240(-3) 3.140(-2) 3.120(-2)

12 4.936(-3) 4.933(-3) 2478(-2) 2.466(-2)

II 3.910(-3) 3907(-3) 1.961(-2) 1.954(-2)

15 3 104(-3) 3 100(-3) 1.556(-2) 1.550(-2)

to 2.46S(-3) 2.466(-3) 1237(-2) 1.233(-2)

" 1.966(-3) 1966(-3) 9848(-3) 9831(.3)

'8 1568(-3) 1568(-3) H54(-3) 7,842(-3)

" 1252(-3) 1.252(-3) 6,272(-3) ~.259(-3)

20 1.002(-3) 1001(-3) 5,015(-3) 5,003(-3)
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Table - 2.3

Comparison of phase shifts 6, from partial wave (PW) method and from the
first Born approximation (FBA) for the Yukawa potenllal (2 is) with
"range" a = 1,0 fin and wave number k = 5.0jm-] The notation 1.077(+1)
means I 077 x 10.

-, Uo =20.0jm-
lU, =lO,Ofln,

ii, (1'11') ii, (J'1:lA) ii,(1'W) 0; (FilA)

0 - I 038 2329 2209 4 658

1078(+1) 1.380 -9.232(-2) 2760

2 1.557 9.172(-1) -1.551 1.834

3 8,548(-1) 6.573(-1) 1.970(+1) I 315

3 5.664(-1) 4.848(-1) 1 955 9696(-1)

5 4031(-1) 3646(-1) 1 046 7292(-1)

G 2975(-1) 2776(-1) 6897(-1) 5553(-1), 2,243(_1) 2,135(_1) 4,917(.1) 4.270(_1)

G 1.715(-1) 1653(-1) 3.644(-1) 3.307(-J)

0 1.324(-1) 1.288(-1) 2.761(-1) 2576(-1)

10 1.030(-1) 1.0O~(-I) 2,ln(-I} 2,013(_1)

11 8,05J(-2) 7,917(_2) 1,64~(-I) 1,583(-1)

U 6323(-2) 6240(-2) 1286(-1) 1.248(-1)

13 4,984(-2) 4933(-2) LOlO(-I) 9.865(-2)

14 3.940(-2) 3.907(-2) 7.957(-2) 7815(-2)

IS 3 12J(-2} 3.]()0(-2) 6 2~4(-2) 6,200(_2)

IG 2481(-2) 2466(-2) 4991(-2) 4933(-2)

17 1.974(-2) 1.966(-2) 3,967(-2) 3.933(-2)

13 1.574(-2) 1568(-2) 3.160(-2) 3.137(_2)

19 L256(-2) 1252("2) 2.520(-2) 2.504(-2)

20 1.004(-2) 1.001(-2) 2014(-2) 2001(-2)
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We observe that for weak potential strengths Ua= 0,001, 0.00Sftn-1 the first Born

values are very accurate even for the lowest partlal waves. We nole that for the case

Uo = I.Ofm-1 for which the I(lola 12k = 1/10, the exact values of the phase shIfts agree
with the Born values satisfactorily both for small and large values of the partial

waves. For the stronger coupling cases U,= 50, ]0,0, and 200.fin-1for which

IU,lal2k '" 1/2,1, and 2 respec!lvely the first Born phase shIfts and the exact phase

shifts disagree for the lowe.~t [-values, but become progressively close together as [

increases. In fact, for I = ]0, we see that the first Born and the exact results already

agree very well which is in accordance with the discussion for the ease!» ka in the

prevIous sections.

2.3 Differential cross-sections for a Yukawa potential

2.3.1 Born approximation method

Using the expreSSlOnsin equation (I 102) we obtain the scattering amplitude from the

first Born approximatlOll for the Yukawa potenllal (2 15) a,

Introducing spherical polar coordinates we get

ISl = Uo 12"dcjll"aBsmGI"'drexp(iq.r) e-rl"r
4ilOO "

Pelforming the il1t~grat1onsover the angular \'ariables we obtain

f (Jo I'd -,'" ()B1 =-- re sm qr
q "

Evaluating the integral in (2.21) we finally get

(2.19)

(2.20)

(221)

f Uo
0'- a'+q' where a=1/a
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Now we go on to find the scattering amplitude from the second Born approximation

for the Yukawa potentiaL We rewrite equation (1.105) as

lff2"2Jr'Jd,,<k,iUi"> , \ . <KIUik,>
" -k -IE

Using the definition of < qlulq' > gIVen in equation (J ,93) and the result

(2,23)

fdrl;xp(iq.r)e-W Ir

we can write

4,
a' + q'

\\,here we have used U (r) ,,-Uoe-"" I r = -[] ,e-'u! r, (1! a = a) for the Yuka,,'a

potential Therefore

(2.24)

Let us now consider Dal,tz integrals [12J of the type

1
J~)a,p;k,k,;k)= JdK , , \ ' ')'0 'j"k -k' -iEla' +1,-k,1 '+I,-k,1'

(m,n==J,2, ,.,) (125)

and the Feynman integral representations

1 (m+n-l)! 1 Im-l(l_I)"-\
amb" == (m_I)I(n_l)lfGdl[al+b(I_l)]rn+n

If we set

(2.26)

a=a' +i,,-k,I' and

We can show that
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where

so thal

r'=a't+ ,B'(l-t)+t(l-i)ik, -kJ

A=tk; +(l-t)k,

(2.28)

(229)

1 1 (m+n-l)! 1 1"'.'(1_1)""

afflb" = Ca' +I" - kJ r(f1' +I" - k,I')" - Cm -1)!Cn -I)! So dt(f' + I" -.\ I' )'"'''
(2.30)

Now,ifwesctm=n=l and a=jJ we obtain

----~_l--_-~o_r dt l_~
(a' +I,,-k.l')(a' +1,,-k,I') 0 (r' +1"- AI')'

where

f'=a'+(I-t')q', q=k,-kr

so I"; now becomes

(2 31)

(2 32)

(233)

Apart from one dimenslOnal integral on the 1 variable, the calculation of

1" ,,(a,/3; k p k,;k) therefore reduces to the evaluation of Integrals oithe type

J
L,(k,C, A) = JdK , , '

(K-k'-iE)(C'+jK-AI )
Let us start form the simple case s = 1 for which

(2.34)

(2.35)

We take A as the Z-axiSof sphencal co-ordmates (1(,8. ,<D,) in I( space. Performing

the integratIOn over the azimuthal angle <D. ,we find that
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n . '" K
l

L,=2~1 dO,,,oO,1 d«)( ) (236)
o 0 Kl_k2_1E r2+K2+A2_2KAcose~

Evaluatrng the above integral we obtain

L (kT A)= 11,' 10[k+A+ifJ
L .' A g k-A+if

To find L, (k, f, A) we differentiate (2,35) with respect to r and get

d 1 I-l,(k,f,.\)=-2f d" --2fL,(k,f,A)
df (K'-k'-iE)(r'+I,,-AI')'

so that

1 d ,,'
L;(k,f,A)=---~(k,f,A)=- 2 1 1
- 2fdr r(k -f -A +2ikr)

Thus

- U~I' Ifll, =-2 0 dl-r-(k-'-_-r-'-_-A-'-+-2,-k-r-)

Since

r'+N=a'+(t-t')q'+llk;+(1-I)krl ==k'+a'

Therefore j~,now becomes

To evaluate the above integral we write in the fnllo\~ing form:

- UglJd a~+2ikf
fB~ =2: 0 I r(a' +4k~rO!)

u' 1 alII=-' 1dl------+Ulkil dl-----
2 0 r(a4 +4k'r') " 0 (a' +4klrl)

== I, + I,

where

(2,37)

(2.38)

(239)

(2.40)

(2.41)

,

,
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Evaluating [he integrals /, and /, we get

U'J= 0 tan-L aq
1 q~a4+4k'a' +k'q' 2~a4+4k'a' +k'q'

lug I ~a4+4k2a2+eq2 +kqI,=-_~~~~~~~og~~~~~~~~_-
2q~a4+4klal +klql ~a4+4klal +k'q2 -kq

So that the scattering amplitude from the second Born approxImation fmully takes the

f"llowmg form:

r ug 1 -J aqJm = -~~~~~~~~,~ -~~~~~~~~
g~a4+4ea2 +k1,/ 2)a' +4ea2 +k1ql

, [.~a4+4k'a'+k2q' +kq])+ -dog ~~~~~~~~_-
2 ~a" +4k'a' +k'q' -kg

(2.42)

tan-' aiJ.
2Ja4 + 4k'a' + k'q'

Separatmg [he real and imaginary parts of Jm we obtain the real part of Jjj, (k,q) <!.s

. U'
RefB,(k,q)= qJa' +4k:a' +k'q'

U
'( 'J"" 1 ( 'J"")o a -LaiJ. a~- 1+-- t~ - 1+-- -

qak "a'k' 2ak a'k' '
a' =4a' +q'

~[U: _ U;a' +---J[5"L(I- a' + ...J_ ...]
qak 2qa'k' 2ak 2a'k'

U'a
_ 0 + terms containing higher powers of k-'
2a'k' ~

= A(q)/k" +.
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and the Imaginary part of !",(k,q) as

_ U' ~a'+4k'a2 +k'q' +kq
1m! (k q)'=' 0 log~~~~~~~-

B2' 2q~a'+4k'a'+k'q' ~a4+4k'a'+k'q' -kq

= (J; [1+~]-11110 (,Ja'+a'/k'+qL, a'=4a'+q'
2qak a'k' g a'+a4/e_q' '

U'[a'] -,"_~_o_ 1--,-, +". [2Iog{q+(a"+a Ik")'.}
2qak 2a.k

-log{(a' -q')+a4 Ik'll

~_u_; [1--"'-.c+'J[21ag\Q+Jll+ ": - +] I2qak 2a'k" 2a k"

-log(a'-q')+logJ]+ , ~4 ; )]1 k.(a' -'1-)

On expanSion of logarithmic senes followed by simplification, we have

1m10' (k,q)"' _'_l~_[I_.a.'. + ".,,] [flog(a + '1)'+ ,a' - , .j']
." 2qak 2a'k' l ak"(q+a)

-{IOg(n' -q')+ (<I' ~;')kl- --J

[
U~ I (a+Q)']1 ' - h' h fk"~ - og~~~ -+termsconta,olng 19erpowers0
2qa (a'-g') k ~

=B(q)/k + , (2.44)

and we see that for large k the differentlal cross-section m the second Born

approxlmahon takes the form,

[
de) ~[f ( )+ A(q»)' + E'(q)
dO. p,q k' k'

"'ortoorder k-'

(2 45)

(2.46)[dO) [dO) 1 _- ~ - +-, [2flll(q)A(q)+B-(q)]
dO B' dO. Bl k"

where the functions A(q) and B(q) only depend on q and we have neglected terms

of hIgher order in k-1 •
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partial wave method using the relatlOn

2.3.2 Partial wave method

To find the scattering amplitude for the Yukawa potential (2 15) from the partial wave

method we use the formula derived in equation (1.48). We take the upper bound of I

as I"",,, '" 25 and write a computer program which reads the upper and lower bounds

on 8 and then calculates the Legender polynomials P'(cos8) for different I and 8.

The program is so wntten that it reads upper and [ower bounds on k also Using the

calculated values of the phase sh,fts ,\(k)obtained from the partIal WOlVemethod for

dIfferent k, the program then computes the scattering amphtude f(k,8) for different

values of k and 8 We then calculate the differential cros5-sections both from the

de -
tin =If(k,Sfand from the Flom

approxunahon method by using the relation gIven in equatlon (1, J 06)

In order to check the accuracy of our results we compare the differential cross-

section~ from the parhal wave method wIth those of the first and the second Born

(dcr' (dO'approxImations l-J Olnd -J obtallied respeclJvely from equations (1103) and
dn BL tin E'

(1.106) and using equations (222) and (2.42). The comparison are shown in the

Tables (24-28) for an attractive YukawR potenllal of unit range a = 1Ofm and

having f,ve d,fferent potenhal strength~ U" = 0,001, ° I, 0 5, 1.0 and 5.0fm-'. The

results are shown for three dIfferent values of the wave number

k = 1.0, 2.5, 5.0fm-L and for various scattering angles.

. '.:
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Differential scattenng
(f(r) '" _U,e-;/O Ir wIth

1.OOOxlO'" .

Table - 2.4

cross sectIOn
U" = O,OOljm"l,

fo;
The

the Yukawa potential
notation 1,000(-6) mcans

k

'.0

25

5,0

e
(degrees)

o
;0
00

90
>20
150

o
30
60

90
'20
'SO
,eo
o
30

60
90
'20
'SO
"0

First Born
approximation

1.00n(-6)

6220(-7)

2.500(.7)

111l(-7)

6250(-S)

4,466{-8)

400n(-X)

LOOO{-n)

139S(-7)

1902(-S}

5,-tS7(-9)

2564(-9)

I 690(-9}

L479{-9)

1.000(-6)

1687(-8)

1479(-9)

3.X45(-10)

1.731(-10)

1.125(-10)

9,803(-1l)

;9

Second Rom
approximation
1000(-6)

6,222H)

2501(-7)

1.112(-7)

6 253(-~)

4,46X(-8)

4.1J02(-8)

1000(-6)

1.398(-7)

1903(-8)

5.488{-9)

2.564(-9)

1,690(-9)

1480(-9)

I 000(-6)

1687(-~)

1,47~(-9)

3845(-10)

L731(-10)

1.125(-10)

9803(-11)

C=ct
1060(-6)

6.221(-7)

2498(-7)

),I09{-7)

6.224(-8)

4.439(-8)

3,~56(-8)

1.017(-6)

1,3~5(-7)

1.891(-8)

5,416(-9)

2,510(-9)

1,645(-9)

1.427(-9}

9.521(-7)

1559(-8)

1.364(-9)

3455(-10)

1463(-10)

8,810(-11)

5 S24{-1l)

•



Table - 2.5

Differentlal scattering cross
U(r)=-Uoe-;i"/r with UD =

1.OOOx]O.'.

seuion
O,ljm-'

foc
The

the Yl.Ikawa potential
notatlOn I 000(-2) meilllS

LO

2.5

3.0

k e
(dewecs)

o
;0

60
90

120

k90

180

o
30
60
90
no
150

'"0
o
30

60

90
no
150

'"0

First Bom
approxmmtlOn
1000(_2)

6220(-3)

2,500(_3)

1111(-3)

6,250(-4)

4466(-4)

3.l00(-4}

1,000(-2)

Un(-3)

1.902(_4)

5.487(-5)

2564(-5)

1 WO(-5)

1.479(-5)

1.000{-2}

1.687(-4)

1.479(-5)

3845(_6)

1731{-6)

1.125(-6)

9,803(-7)

40

Second Born
approximation
1.021(-2)

6374(_3)

2.586(-3)

1161(_3)

6578(-4)

4.722(-4)

4235(-4)

1004{-2)

1.409(-3)

1,926(-4)

5571(_5)

2.607(-5)

I 720(-5)

l.506{-5)

1.001(-2)

1.693{-4)

1486(-5)

3.865(-6)

1741(_6)

1131(-6)

9.861(-7)

Exact
1.020(-2)

6,368(-3)

2582(-3)

1.158(-3)

6.560(-4)

4.707(-4}

4.221(-4)

I 003(_2)

1.274(-3)

1.678(-4)

4,800{.5)

2236(_5)

1.472(-5)

1286{-5)

9.672(-3)

1.689(-4)

1520{_5)

3.961{-6}

1.720(-6)

1.057(-6)

7,014(-7)



Table - 2_6

Dlfferential ~cattering cross section for
U(r)=-U,,,,-,/ojr with Uo = 05 (m-'. Tbe
2,500,,10-' ,

the Yukawa potentlal
notation 2.500(-1) means

I 0

25

5.n

k e
(degrees)

o
30
60
90
120

150

leo

o
30

o
20
60
90
120

150

IkO

First Bart)
approximation
1500(-1)

1555(-1)

6150(-2)

2778(-2)

1562(-2)

I 116(-2)

1000(-2)

2500(-1)

3.495(-2)

4,756(-3)

1.372(-3)

h,409(-4)

4,225(-4)

3,698(-4)

2500(-1)

4218(-3)

3,69X(-4)

9612(.5)

4328(-5)

2811(.5)

2.451(-5)

4]

Second Born
approximation
2,781{-1)

1.770(-J)

7.516(-2)

3 54~(-2)

2,097(-2)

1.545(-2)

1.399(-2)

2554(-1)

3,660(-2)

5,187(-3)

1.545(-3)

7376(-4)

4.924(-4)

4.328(-4)

2.514{-1)

4.318{-3)

3.857{-4)

1,015(-4)

4.610{-5)

3,00M{-5)

2,626(-5)

Exact
2726(-1)

1727(-1)

7,259(-2)

3389(-2)

1985(-2)

1.454(-2)

1.314(-2)

2536(-1)

3600(-2)

4998(-3)

1458(-3)

6,854(-4)

4530(-4)

3,965(-4)

2.417(-1)

3,976(-3)

3576(-4)

9317(-5)

4035(-5)

2468(-5)

1600(-5)



Table-2.7

Differential scattering cross section
U(r)=-Uoc-'iojr w,th Vo = 10 Im-'.
6,220x I 0-'

for the Yukawa potential
The notation 6.220(-1) means

k

10

25

5.0

o
(degree,)

o
30

'"'0
120

150

180

o
20

'"90
120

150

180

o
20

60
90
120

150

ISO

First Born
~pproxllnatlOn
I 000

6.220(-1)

2500(-l)

1.111(-l)

6250(-2)

4.466(-2)

4.000(-2)

1.000

1398(-1)

1.902(-2)

5.487(-3)

2564(-3)

1690(-3)

1.479(-3)

1,000

1.687(-2)

1.479(-3)

3.845(-4)

1731(-4)

U25(-4)

9803(-5)

42

Second Born
approxllnanon
1 250

8 ]73("1)

3.703(-1)

1.880(-1)

1 177(-l)

8,987(-2)

8231(-2)

1.048

1.560(-1)

2381(-2)

7,54R(-3)

3.761(-3)

2.571(-3)

2,278(-3)

1.012

l.800(-2)

1.681(-3)

4.566(-4)

2115(-4)

1396(-4)

Ll23{-4)

Exact
U37

7.310(-])

3.207{-I)

1.588(-1)

9837(-2)

7491(-2)

6.860(-2)

1 019

1.461(-1)

2,073(-2)

h,154(-3)

2.923(-3)

1.942(-3)

1703(-3)

9,71](-]}

1.720(-2)

U62(-3)

4.083(-4)

1 783(-4)

I 104(-4)

7.636(-5)



Table - 2.8

Differential scattenng cross section
U(r)=-U,f,,'o/r with U~ = 50fin-'-
2500xlO.

for the Yllkawa potential
The notation 2,500(+1) means

k

I.()

e
(degrees)

9

;0

'0
90
,"0
150

180

9

39

60
90
no
150

180

o
39

'0

'"129
1;9

180

first Born
approximation
2.500(+1)

1.555(+1)

6.250

2.778

1.562

Lll6

I 000

2,5()0(+1)

3.495

4756(-1)

1.372(-1)

6.409(-2)

4225(-2)

3698(-2)

2500(+1)

4.118(-1)

3.698(-2)

9.612(-3)

4328(-3)

2811(-3)

1451{-3)

43

Second Born
approximation
8.125(+1)

6.308(+1)

4.032(+1)

2,752(+1)

2,08~(+1)

1.76H(+1)

1.672(+1)

3582(+1)

8.550

2.413

l.073

6.372(-1)

4,748(-1)

4.317(-1)

2778(-'-1)

8829(-1)

1368(-1)

4,744(-2)

2.500(-1)

1.761(-2)

1.574(-2)

Exact
1.136(-'-])

5.495

1.015

6,H74(-I)

J ,706

2,76H

3, 1 ~~

1913(+1)

2378

3,~91(-1)

1620("1)

9.929(-2)

7.731(-2)

7.J61(-2)

2.232(+1)

3.730(-1)

3685(-2)

1.()08(-2)

4 74~(-3)

3.248(-3)

3.389(-3)



In Tables (24--2.7) we see that the exact valucs of the differential cross-sections

obtallied from the partial wave method agree satisfactorily with those of the Born

results for the weak potential strengths Uu= 0.001, 0 I, 0 5, and 1,0jm_l as expectood

So we are free enough to proceed further with these computations for scattenng
amplitude and hence for differential cross-sec,1:ion.

The Tables also show that except at the lowest value of k the second 130m

approximation offers a little improvement over the first 130mvalues, The reaSOnfor

this may bc found by returning to equation (2.46) and noting that this formula does

not provide all the corrCCllonsof ordcr k-' to the first Born cross section, In f'lct II

may be Ihe real part of the third order term jB' of the Born series wh,ch gives a

contnbution of order k-' to the scattenng amplitude and therefore also to the

dlfTerential cross-section \Ve note that the Importance of this missing term with

respect 10the eontributlOncoming from Re jj)2 should Increase wlth the strength IU"I
of the potential. ThiS is ilJu~trated in Table 2.8, which corresponds to the choice

Uo = 5Ojm-' of tfle potential strength, The second Born results are seen to be

disastrous in Table 2 8 while they are mueh bettcl' in Tables 2.4, 2.5 and 2.6.
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Chapter- 3

Zeros of the Scattering Amplitnde
and Phase Shift Analysis

In thIs chapter, we first have a detailed review of phase shift analysis and the possible

ambiguities in ca:;", of purely elastic a~ well as inelastic scaltering proce,ses We then

present a mathemallcal model which greatly facilitates the computation of complex

zeros of the scattering amplitude The model deals with an attractIve Yuka\,'a

potenllal describing spin-independent scattering, The beh'lviour of the zero

tralcctorics is then studied in the complex momentum transfer plane. Finally, we

d,<;CU<;Sthe applicatlOll of the zeros of scattering amphtude in resol\.ing the prob<lble

aYnbiguities arising m the construction of the scattering amplitude for tlllS Yukawa

palential and design a methad which may be used to reduce the problem of phase

shift anuly,is,

3.1 Phase shift analysis

The expression for lhe scattenng amphtllde in pallial wave analYSIS derived in

equalion (I 4~) may be rewnUen in the following form

I 'f ($) '"-L:( 2/ + 1)[.1,-ljf: (cos fl)
2,k 1=0

(3 I)

where ",e have truncated the infinlte <;ene~ al 'r' $lnCe only (hose partial waves are

s'gnJl,cllilt for wh,ch f:,,: ka, Below the inelast,c threshold, for pure elastic <;cattermg,

the elastic unitarity relalloll requires 1.)',1'" Ie'"'' I = 1 gl'flng the real phase shifts S,. In

the inelasllc region unitarit} is less powerful and ~Imply requires IS,I ~ I gi\'mg

complex phasc shifts 5, w1th Imo, ""0 _Hence we have S, '"e''''' '" "",,,,',"d,, 0 ~" ~ 1,
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where the quant1ty "is often callcd the 'inelasticlty' factor. The scattenng amplitude

then becomes

(3.2)

We note that the specIal case q, '" 1(Im 5/ = 0) corresponds to the pure clast1c

scattering glvcn in equatIOn(3 I).

The problem of phase shIft analysis deals with the technique of deducing information

on partial wave amplitudes from dlffcrential cro%-sectlOn measurements in scattering

proccsses. Since the scattenng amphtudcf(8) lS a eomplex number and the

differential cross-section du/dn=lf(B)I',s real, suftlcicnt mformatlOn does not

exist to fix j (B) and so anlbiglllties arise

If we change thc sign of the real part of the phase shIfts, the scattering amplitude

f(cosB) IS changed to -F(cosO). Thus. lf the signs of all the real parts of the

phase shifts are changed, the scattermg amplitude is changcd to its negative complex

conjugate; thus lts phasc IS changed, but its absolute value lS unchanged This is

known as trivial ambiguity For pure elastic potential scattering (real phase sbifts) of

spinless particles It wa~ assumed that the only ambiguity is the tnvial ambigUIty that

ISthe sunultancous change of the sign of all phase shIfts

Chrichton [2} shows that there are some exceptions to the above statement. One

readily sees that tor S -wave only and for S - and P -waves only, the phase shifts are

determined Llniquelyexcept for [he trivial ambiguity. But for the case whcn the only

non-vanishing phase shIfts are for S, P and D waves, the phase shifts are not

unique. By crude search method, Chrichton found that for each valuc of 0,thcrc

exists two phase shIfts 00 and 0] -- such that a different set of phase shIfts

(0;,0;,0,) exists which gives the same f (B). The amphtudes of Chrichton contained

only S,P and D waves and may be written in the form of polynomials in cosO

which are related by the complex conjugation of one root Then ambiguous phase
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shifts were constructed WIth S, P ,D and F waves and then with S,P, D, F and G

waves. In all these cases the eqmvalent amphtudes are formed by replacing one or

more zeros of an amplitude in the complex cose plane by Its complex conjugate. In

fact, the expression in equation (3. 1) being composed of a sum of polynomials is itself

a polynomial of degree L in eose. We may, therefore, choose to wnte the amplitude

as a product over its zeros z,

,
f( cose) = A[ n (cose - z,),=1 (3.3)

Gersten [3] first noted that this cross-section will he unalTected If we replace any of

the roots z, by its wmplex conjugate. W~ can make thes~ changes 1Il 2' possible

ways, as long as we do not bother about umtanly, except for the highest partial wave

where 1tfIxes sin' 0/ \Vith brevity we may call these as Chrichton ambiguity.

Bowcock and Burkardt [6] argue that for pure elastic scattering, wh<lt~ver be the value

of L, there will be, at most, two pOSSible umtary amphtudes. They slart by assuming

that there arc N unitary amplitudes, out of the poss1ble 2', wh1eh means that there 1S

N number of F" where r~=(SI-l)/2i

k=I,2,3, .. ,N

liVe denote them by F,', where

For pure elashe scattering, since, F, =e,5, sino, and j.r-;I'= sin' 8, we can write,

, I 'I'1m.r-; =F, , where k=I,2, ..,N and I=O,I, ...,!.-] (34)

The hIghest power of cose in the amplitude in equation (3.3) is L and the overall

coeffiCIent of COgLe IS clearly proportional to F,. Expandmg ;>,(cose) in equahon

(3. I) in powers of cosB we find the coefficients of cosl e and then U51llgthe relation

~ = e,5, sin 0, and equahon (3.3), the scattering umplitude for purely elastic scattenng

can be expressed a~

I (2L)' ,f(cosB)=-,(ZL+l)e'Stsin8L ' " n(cosB-z)
2L(L1)"=' .
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For a fixed L, It depends on (2L+l) vanables -- 6", the real parts of the L zeros,

and the modulo of their lmaginnry pnrts -- each amplitude being a different funetlOn

of those variables because of the sIgn changes from the complex conjugation Now

for each of the soluhons equation (3.4) provide a total of NLconstraints, ]f these

equallons are independent and there is to be a solution, there must not be more

equations than vanables, so NL,; 2L+] ~ N,; 2, since N is all integer So, whcn

we are dealmg with the ,cattenllg of spinless particles at an energy, where no other

processes than elastic scattering is allowed, there is a two-fold ambiguity. ThIS is

quite apart from and IIIaddition to the so-called trivial ambiguity, whleh Just lllvolves

reverSlng the sign of all phase shifts

ln the complex potential scattering, that is, for complex phase shifts, the complex

conjugation of the zeros do not end to a two-fold ambiguity as in the case of real

potential scattering. The expresslOn m equatIOn(3.3) Implies that

f(O)= 1(0)11 (cosil-z,)
,=1 (I-z,)

(3,6)

For real cosO, the rcplacement of one or more I, by their complex conjugates wlll

result in the same differential cross-section, dol dD.= If (e)I' and the same 1(0),

For fixed I. thesc are the only ambigulties in determining the phase shlfis (whIch are

of course, related to z,) from dujdD. The number of these ambiguities including the

unchanged funCllon in equation (3,0) is 2L, SO, we arrivc at the result that all

scattering amplitudes of the same form as in equation (3.6), which correspond to the

same dujdD. and the same 1(0) can be obtaincd from the 2" functlons

1~(8) = 1 (O)TIcase - z, (m)
.=, I-z,(m) m=O,1,2,. ,2L_l (3,7)

where m is an inde:<labeling the 2'. different possibilities, z, (m) standing tor I, or

Its complex conjugate z:. Again du/ dD.=11(e)I' and the opltcal theorem

k
1m 1(0)=-u,01 (3.8)4.
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permits us to calculate Re/(O) apart from sign, Also, we observe that if we change

the sign of Re /(0) m equatlOn (3.6), we still have the same value of the differential

cross-sectIOn I{(O)I' and the total cross-section u"" Here wc mark that all the

posslbihties of obtaining frn(B) according to equatlOn (3,7) with reverscd sign of

Ref(O) are contained in the functions obtained by equatlOn (3.7), with the

add,tlonal transformation,

Such a transformation results In changing the sign of all the rcal pmis of the phase

ShlftS, ",h,ch is the same as in the casc of trivial mnblgcllties. Therefore, the 2"

posslhdlties of constructing f( 8) arising trom the complex conjugation of the 7,eros

must be multLphed by 2 agmn. ailo\vmg for thc m'o possible Signs of Rc f(O) There

are no add,tlonal ambiguities other than those found here and their total number IS

2'-'. We now go on to find the zeros of the scattenng amplitude for a part1cular

potential and study the significance of the ",eros m philSe shift analysis

3.2 Zeros of the scattering amplitude for a Yukawa Potential

\Ve choose the Yubwa potential as glvcn m equatIon (2.15) as our model of potential

scattering and find the zeros, The scattenng amplitude as an eXpanSlOn in partial

waves derived in equahon (1.48) may be rewritten as

f(k,O)= i(2/+1)P'(cosB)
'=0 k(coto,-I)

(3,9)

Those partial waves WIll be significant which satisfy the condition /--c.<-:ka so that we

may truncate the infmite series In the above equation at I = r, L being t!nite and \Hite

f(k,O) =t (21+1)P' (cosO)
'=0 k(COto,-i)

49

(3.10)



Since z = cosO permits analytic contull1ation into the complex z - plane, we can find

sollltlon for equation (3.10) such that
,

j(k,z) =Lu,(k)P'(z) = 0,.,
""here

k 21+1
u/( )= k(coto,-I)

The Rodrigue's formula for Legendre polynomial is gIven by

Al<;oexpanding (z' - 1)"we obtain

["-J" (z' - 1)" '" i:.: n
l
(-l)"-'fi (2r - k)z"-'

dz ,=orl(n-r)1 '=0

So P, (z) no\v takes the form

We note that
.-,
n(2r-k)=O for2r:O;n-[
hO

Accordlllgly, this leads to the new expression

where the lower summation takes the values

(3 ll)

(3,12)

(31J)

(3,14)

(3,J5)

(3 16)

(317)

r::n!2 for even n,

r=(n+l)/2 for odd n
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Thus we can fmally write down the coefficients of z" in equation (3 9) both for even

m and odd m in the following forms:

Ni' 1L a,,----,.-p{k+m/2,2k) m evcn,
komi' 2

(3.20)

(3,21)
h',~ IL a,..\---;:Np(k+{m+I)/2,2k-l) m odd,

'=lm.L)/' 2

It should be noted that the above expressions are calculated for even 1'1'which IS the

total numher of zeros of the complex polynomial.

We have already computed the phase shifts rSJ(k) for the Yukawa potential (2 15) by

uSlllg partial wave melhod and compared with those obtained from the Born

approxlmatlOn method, In order to calculate numencal zeros of f(k, z) m equation

(3.11) we wnle a computer program which calculates the arrays for a,. (k) and

fi(r,n). We then compute the numerical values of the coefficients of 2
m gIven m

equations (320) and (3.21) parametenzed by the array k A NAG-roUllllC IS thCll

called which returns the complex zeros z, for wluch the scattcnng amplitude vanishe<;

identlcally and at least Nicnty 7.ero tlajectories are calculated, The sorting of the zeros

is thcn done in such a way that for each value of k, the program selects SlX smallest

absolntc values out of twenty k paramelenzed zeros. Then it caleulates all the

dIfferent ways of selecting four Humbers out of SIX. By mmilmzing the sums of the

absolute values of the differences between the k -th and the k + 1- th points for each

permutations possible, the first four zero trajectories closcst to the ongin arc selected

011 the premises of continuity, Following Hohler [9] we work with -'I' which is

equivalent to the Mandelstam [12] variable '/' III the ~.- channel

_'I' =t=-2k'(I-z) (3.22)

For the range of the momentum 1 0 '!; k '!; 5.0jm-l the firsl four zero trajectones as a

function of k are shown in figures 1-4 for different potenhal strengths Uu=I.50, 5.0

and 15,Ojm-'-
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Numbering is done accordlllg to the proximity to the physical reglOn Izl" 1, ; =co:;8,
The figures show that all the four zero trajectories converge towards the origm at low

energies. Also we observe that as the potential strength lIlcreases the first and third

zero trajectories becomc more squeezed while the second and fourth trajectories

become more extended In figure-5 wc observe that for weak potential strengths

lio = 0 001 and 0.005/m-
L each of the fIrst and second zero trajectories appear in a

way, which indicates that the zeros in one trajectory are just the complex conjugates

of the zeros in the other one The thJrd and fourth zero trajectories also behave 11kc

the first two trajectories for the same weak potenllal strengths, whIch are ~hown in

figure-6 For higher potential strengths U, " 5,0and 15 0 fm-' the first and second zero

trajectones are shown in figure- 7 while the third and fOUl1htrajectones are ~hown in

figure-8 The figures ;how that for higher potentml strengths thc zeros in eIther of the

first or second trajectories are no more the complex conjugates of the other and same

is the case with the third and fourth zero trajectones,

We now apply the zeros of the scattenng amplitude to construct a method ""hch can

b~ used for resolving the probable ambiguities of phase shjft analYSIS.



3.3 Application of the Zcros of Scattering Amplitude in phase
shifts analysis

We lIOWdiscuss a method which makes an extensive use and appllcahon of the zeros

of scattering amplitude for resolvlllg the amhiguihes IIIphase shift analysis in the case

of elastic scattcnng with nO absorption trom the Yukawa potential The phase shifis

ti, cuiclilated for this potential from the partial wave method discussed III sectlon-2 2

can he used to compute the scattcrmg matrix elements S, = e'"'' Using these values

of .'I! III equation (3 1), the complex roots of 1(8) III the complex cosO-plane can be

calculated for a fIxed value of L, say, L = 6, Now the calculated values of SJ can

also be used III equation (3.1), to obtain Ihe lIumerical value, uf th~ scatl~ring

amplitudes /(8) foJ' at least fifiy one valu~, of 8=(1[/50)/ including 1(0) for

8 = 0 which fixes 1m/(0) through the optic<l1 theo,em gIven in equation (3 8) The

dLfferential cro,~-secllons du/drl are th~n computed for all values of 8 as stated

above along with total cross-section a,,,, Then we approxImate the numerical values

of da/dO by a polynomial of degree, ,ay, L=4 following tbe method of least

squares Since da /drl c>0, we must con,truct the polynomials, which cannot assume
negative vailles in the physLcal domain The lcast square f,t is to be Jone in a wav

such that /(0) for 0",0 comcldeswltil 1(0) calculated from the polynomial fit to

the llumerical val lieS of du/drl at 8=0. \Ve then find the complex zeros z,

(i"'1,2,3,4) of the fitted polynomial and their ~omplex conjugates z," and then

according to equallon (37). the 2' '" 16 possible amplitudes 1m(A) "an be

constructed whi~h are all polynomials in co~e of degree L. Now the amplitude 1m (8)

can also be expanded mto Legendre polynomials m the followmg form,

1 'f.(B) ~ -. L( 21+1)[S, (m) -IJ P,(co; 'i
21k '=(1
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where 11/'" 0 case ISthe mitial scattering amplItude given by equatlon (3 I). The right

hand side of equation (3 23) can be expre~.,>edin the form of polynomials in cosO of

degree L

(3.24)

where the coefficients C, contains S,(III) The above relation bemg an Identity

allow, us to equate the coefficients of equal powers of cos (J and hence to rmd the

S - matrix elemen!> S, (m). The pos,lble ~ombmations of the complex zeros z, and

their complex conjugates z,' may be ordered In the following way. We start with the

zeros =, (I'" 1,2,3,4) and mark thi, combination with the number 1234 Then we take

the complex conjugate of =, and combine wIth the remammg z, (i '" 2,3,4) and mark

this combll1atioll wIth the number 1234 In tlllS way, the complex conjugation of any

onc zero ISdenoted by a 'bar' on the re<;peehve number ['or example, 1234 represents

thc combmatmn of and z: In thl, way, all the pusslble 2' '" 16matnx

elements IS,. (111)1 fOT' I '" 0, I,2, ..4 may be obtamed.

Further additional sets of the matrix elements SJ(III) and hence the phase ,hifts

5!(m) are obtained by changing the sign of the real parts of /(0) m equation (3 7)

For all sets of phase shifts obtamed, the total eross-seCll{ln remains unchanged,

because do/dO", If (e)I' ISunchanged We note that all the ambiguuus phase shifts

are not physically acceptable. Since for an absorptive scattering center the umtaflty

conditIOn reqUires 1\1 s I ".hde for pure elastic scattering the umtarity cond,l'on

requires ISII'" I. by checking \vith the condition IS,I almost nearly equal to unity for
I", 0,1,2, ..4 we can sli'! out the unacceptable sets and reconstmci the scattering

amplItude and hence reduce the problems of phase shift analysIs.

62



Conclusion

In chapter one, we have reviewed the necessary backgrounds of spin-mdependent

scattering theory, We have di<,cussed the partial wave analysis and thc Born

approximation theory in detail along wlth tbe formlLlatlOn of the ,cattering amphtude

and the differential ~m~S sectIOn

In chapter two, we have cho,en a Yukawa potential as the model potential and found

the phase shifts and djtrerenti,.1 crOS;-8ections both from the partial wave method anti

from thc Born approximation method for different potential strengths We have seen

that the results of the phase ,hifts obtallled from the panial wave mdhod agree most

satisfactorily with those of the fir,t Born results for weaker potenllal strengths and

Ialge momentllm as expected The differential cross-sections obtained from the partial

Wa\'e method also agree well wlth th{)~e obtained form the Born approximatIOn

method But the results abo indicate that we need to consider the third order Born

approximatIOn also. for bcttcr agreemcnt.

In ~hapter tnree, we first bave a detaded di,cussion on phase shift analysis and also on

the probable ambiguitie, of phase shjft analysis where we ha\-e marked that the zeros

of the scattcrmg amplitude plays a significant role ';\le then find the zero trajectorJC5

for [he Yukawa potentn;l, We approximately truncate the infinite series of the partlal

v,-ave expansIOn of the scattcnng amphtude sallsfymg 1>::--ku At least twenty ~ero,

of the amplitude have been evaluated In the complex momentum trOinsfer plane We

then examlile the behavlour of the first four 7ero trajectones closest to the physlGal

legion for a variety of potentlal strengths, We observe that for higher potcnllal

strengths all the four zcro traJcetories stal1 moving from the ongin and spread out as

the momentum k mcrease5 from ~ew and they vary smoothly with the energy_
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We also observe that for weak potential strengths the zeros in the first and second

trajectories are ju,t the complex conjugates of each other and the same hold, for the

third and f0U11hzero trajectones. Therefore we may conclude that the ambigunies due

to the complex conjugation of the zeros are resolved at lea~t to some extent for weak

potenhal strengths. However, fOi higher potential strengths the above conclusion doc,

not hold and we remain with ailihe possible ambiguilles. Laslly, we have proposed a

method for reducing these Olmbiguitieswhich makes me of the zeros of seattel ing

amphtude

Our next work would be to apply and follow the method as designed here fnr

recon,truding the ,;cattcring amplitude and hence re,olvmg the probable Olmbiguities

Ln phase ,hitt analysis
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