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Abstract

This thesis deals with pairwise compatibility graphs. Let T be an edge weighted tree, let

dT (u, v) be the sum of the weights of the edges on the path from u to v in T , and let dmin

and dmax be two non-negative real numbers. Then a pairwise compatibility graph of T for

dmin and dmax is a graph G = (V, E), where each vertex u′ ∈ V corresponds to a leaf u of T

and there is an edge (u′, v′) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax. A graph G is called

a pairwise compatibility graph (PCG) if there exists an edge weighted tree T and two non-

negative real numbers dmin and dmax such that G is a pairwise compatibility graph of T for dmin

and dmax. Pairwise compatibility graph is descended from phylogenetic tree which expresses

the evolutionary relationships among different species.

Pairwise compatibility graph is not only important for phylogeny applications, but has also

given rise to a number of interesting theoretical problems. Unfortunately, however, very few

significant results regarding this problem are known to date. Complete characterization of

this graph class is not known. It has not been possible yet to give an algorithm for recog-

nizing whether a given graph is pairwise compatibility graph or not. Moreover, the compu-

tational complexity of recognizing pairwise compatibility graphs is still unknown. This thesis

addresses different important and challenging theoretical problems regarding pairwise compat-

ibility graphs. We deal with the open question regarding whether or not all graphs are pairwise

compatibility graphs and settle the corresponding conjecture, which states that every graph is

a pairwise compatibility graph, in negative. We also recognize several well known large graph

classes as pairwise compatibility graphs. We introduce the new notion of improper PCG, and

show that every graph is an improper PCG. In addition, we also present an efficient heuristic

algorithm to construct an improper pairwise compatibility tree of any triangulated plane graph.

x



Chapter 1

Introduction

One of the biggest achievements in the quest for mystery of life is the complete sequencing of

human genome. Over the past few decades, major advances in genomic and other molecular

research technologies and developments in information technologies have combined to produce

an explosive amount of information related to molecular biology. This inundation of genomic

data has led to an absolute requirement for computerized techniques to store, organize, and

index the information and necessitated the use of specialized algorithms for their effective

visualization and analysis. The union between these two subjects is largely attributed to

the fact that, life itself is an information technology and an organism’s physiology is largely

determined by its genes, which at its most basic can be viewed as digital information. This

intersection point of information technology and molecular biology has given rise to a new era

of science – bioinformatics and computational biology .

Phylogeny is one of the most widely studied areas of bioinformatics and computational biol-

ogy. Scientific euphoria has recently centered on the reconstruction of evolutionary relationships

among different species. It is assumed and supported by evidences that all life currently on

earth is descended from a single common ancestor. Over a period of at least 3.8 billion years,

that single original ancestor has split repeatedly into new and independent lineages, i.e., species.

On occasion, some of these independent lineages have come back together to form yet other lin-

eages or to exchange genetic information. The evolutionary relationships among these species

1



2 CHAPTER 1. INTRODUCTION

are referred to as “Phylogeny”, and phylogenetic reconstruction is concerned with inferring

the phylogeny of groups of organisms. These relationships are expressed as a tree known as

phylogenetic tree. Figure 1.1 illustrates a phylogenetic tree. This example has been taken

from a presentation titled Introduction to Phylogenetic Estimation Algorithms [W09]. The tree

is rooted at the most recent common ancestor of the five existing species represented by five

leaves. Other internal nodes represent hypothesized or known ancestors. The common practice

today is to use biomolecular sequences as representatives of the species set; which is why the

nodes of this tree is labeled by DNA sequences. Other than the molecular sequences, morpho-

logical data (e.g., color, size, weight etc.), molecular markers (Single Nucleotide Polymorphism

(SNP ), haplotypes etc.), and gene order and content can be used as the representatives of

the species set. These are commonly known as character data. Pairwise compatibility graph

(PCG) (as defined in Section 1.1) is derived from phylogenetic trees which is an alternative way

of viewing evolutionary relationships. Dealing with a sampling problem in a phylogenetic tree

Kearney et al. introduced the concept of pairwise compatibility graphs [KMP03]. Although it

is relatively a new area of research, the blend of graph theory and computational biology has

attracted much attention from researchers.

TAGCCCA

AGCACTTTAGCCCT

AGGGCAT TAGACTT AGCACAA AGCGCTT

AAGGCCT

AAGACTT

3 million years

AGGGCAT

TGGACTT

1 million years

2 million years

today

Figure 1.1: A phylogenetic tree [W09].

Since the inception of pairwise compatibility graphs, several interesting problems have been

posed in front of us, and hitherto most of these problems have remained unsolved. Among
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the others, identifying different graph classes as pairwise compatibility graphs is an important

concern. Although overlapping of pairwise compatibility graphs with many well-known graph

classes like chordal graphs and complete graphs is quite apparent; slight progresses have been

made on establishing concrete relationships between pairwise compatibility graphs and other

known graph classes. Phillips has shown that every graph of five vertices or less is a PCG [P02]

and Yanhaona et al. have shown that all cycles, cycles with a single chord, and cactus graphs

are PCGs [YHR09]. Seeing the exponentially increasing number of possible tree topologies for

large graphs, the proponents of PCGs conceived that all graphs are PCGs [KMP03]. In this

thesis we refute the conjecture by showing that not all undirected graphs are PCGs. We have

found that the placement of a vertex of a graph as a leaf in an edge weighted tree imposes

constraints on the placements of the remaining vertices, and as a result, in some cases, it

becomes infeasible to have a tree that generates the graph as a PCG, even when there may

exist an exponential number of tree topologies for the given number of graph vertices.

Graph roots and powers have been studied extensively in graph theory. A graph G′ =

(V ′, E ′) is a k-root of a graph G = (V, E) if V ′ = V and there is an edge (u, v) ∈ E if and only

if the length of the shortest path from u to v in G′ is at most k. G is called the k-power of

G′ [LKJ00]. A special case of graph power is tree power, which requires G′ to be a tree. Given a

graph G = (V, E), the tree k-root problem asks to construct a tree T on V such that (u, v) ∈ E

if and only if dT (u, v) ≤ k. Tree power graphs and their extensions (Steiner k-power graphs,

phylogenetic k-power graphs, etc.) are by definition similar to pairwise compatibility graphs.

However, the exact relationship of these graph classes with pairwise compatibility graphs was

unknown. In this thesis, we have also investigated the possibility of the existence of such a

relationship, and have discovered that tree power graphs and some of their extensions are in fact

pairwise compatibility graphs. Such a relationship may serve the purpose of not only unifying

related graph classes but also utilizing the method of tree constructions for one graph class in

another.

In the rest of this chapter, we provide the necessary background and objectives for this study

on pairwise compatibility graphs. In Section 1.1 we describe the pairwise compatibility graphs.
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We discuss the applications of phylogenies in Section 1.2. We continue in Section 1.3 with a

discussion of the application of pairwise compatibility graphs. We devote Section 1.4 for the

literature review, and we detail the objective of this thesis in Section 1.5. Finally, Section 1.6

is a summary of this work and Section 1.7 is the description of the organization of this thesis.

1.1 Pairwise Compatibility Graphs

Let T be an edge weighted tree and let dmin and dmax be two non-negative real numbers such

that dmin ≤ dmax. A pairwise compatibility graph of T for dmin and dmax is a graph G = (V, E),

where each vertex u′ ∈ V represents a leaf u of T and there is an edge (u′, v′) ∈ E if and

only if the distance between u and v in T lies within the range from dmin to dmax. T is called

the pairwise compatibility tree of G. We denote a pairwise compatibility graph of T for dmin

and dmax by PCG(T, dmin, dmax). A graph G is a pairwise compatibility graph (PCG) if there

exists an edge weighted tree T and two non-negative real numbers dmin and dmax such that

G = PCG(T, dmin, dmax). Figure 1.2(a) depicts an edge weighted tree T and Fig. 1.2(b) depicts

a pairwise compatibility graph G of T for dmin = 4 and dmax = 7; there is an edge between a′

and b′ in G since in T the distance between a and b is six, but G does not contain the edge

(a′, c′) since in T the distance between a and c is eight, which is larger than seven. It is quite

apparent that a single edge weighted tree may have many pairwise compatibility graphs for

different values of dmin and dmax. Likewise, a single pairwise compatibility graph may have

many trees of different topologies as its pairwise compatibility trees. For example, the graph

in Fig. 1.2(b) is a PCG of the tree in Fig. 1.2(a) for dmin = 4 and dmax = 7, and it is also a

PCG of the tree in Fig. 1.2(c) for dmin = 5 and dmax = 6.

In the realm of pairwise compatibility graphs, two fundamental problems are the “tree con-

struction problem” and the “pairwise compatibility graph recognition problem”. Given a PCG

G, the tree construction problem asks to construct an edge weighted tree T , such that G is a

pairwise compatibility graph of T for suitable dmin and dmax.
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Figure 1.2: (a) An edge weighted tree T1, (b) a pairwise compatibility graph G, and (c) an edge

weighted tree T2.

Problem Pairwise Compatibility Tree Construction

Input A graph G = (V, E).

Output A tree T and distance limit, dmin and dmax, such that each vertex

of G corresponds to a leaf of T and there is an edge (u, v) ∈ E if

and only if distance between the two leaves of T corresponding to

u and v is within the given limit.

The pairwise compatibility graph recognition problem seeks the answer – whether or not a given

graph is a PCG.

Knowing that not all graphs are PCGs (see Chapter 3) we venture to relax the notion of

pairwise compatibility graphs that leads to a new notion which we call “improper PCG”. A

graph G is an improper PCG if the corresponding pairwise compatibility tree can be constructed

by allowing multiple existences of the same leaf; we call these extra leaves redundancies.
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1.2 Applications of Phylogenies

In this section, we give a brief overview of phylogeny and its applications from [LW05].

Phylogenies are reconstructed on the basis of character data, where a “character” is any

feature of an organism that can have different states. A typical biological example of a char-

acter is a nucleotide position in a DNA sequence, with the character state being the particular

nucleotide (A, G, C, T ) in occupying that position. From a mathematical standpoint, a char-

acter is just a function that maps the set of taxa to its set of states. Molecular phylogenetics

research is concerned not only with the evolutionary history of different organisms, but also

with how the different characters evolve in the course of that history.

The uses of phylogenies, beyond elucidating the evolutionary relationships of biological

species, are many and growing; here we highlight the most common uses and some of the most

intriguing ones.

The most common use of phylogeny is for comparative study [BM91, HP91]. A comparative

study is one where a particular question is addressed by comparing how certain biological

characters have evolved in different lineages in the context of a phylogeny. This information is

used to infer important aspects of the evolution of those characters.

A second common use of phylogenies is to test biogeographic hypothesis. Biogeography is

concerned with the geographical distribution of organisms, extant and extinct. For example, a

researcher may be interested in whether a particular species have colonized a set of islands a

single time or repeatedly. This can be assessed by determining whether all of the species on the

island arose from a single most recent mainland common ancestor or whether they are multiple

independent mainland species.

One can also use a phylogeny to attempt to infer the amino acid sequence of extinct proteins.

This putative extinct proteins can then be synthesized or an artificial gene coding for them can

be produced, and the functional characteristics of the proteins that are of interest can be tested.

In a more practical vein, phylogenies can be used to track the evolution of diseases, which

can, in turn, be used to design drugs and vaccines that are more likely to be effective against

the currently dominant strains. The most prominent example of this use is the flu vaccine,
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which is altered from year to year as medical experts work to keep track of the influenza types

most likely to dominate in a given flu season [BBSCF99].

Finally, phylogenies have even been used in criminal cases, most famously, in a case where a

doctor in Louisiana was accused of having deliberately infected his girlfriend with HIV [MMLPGH02].

The phylogenetic evidence featured prominently in the trial and the doctor was ultimately con-

victed of attempted second degree murder.

In summary, phylogenies are useful in any endeavor where the historical and hierarchical

structure of the evolution of species can be used to infer the history of the point of interest.

1.3 Applications of PCGs

Pairwise compatibility graphs have many applications in phylogenetic reconstruction which is

the reconstruction process of evolutionary relationship of a set of species from biological data

[JP04, L02]. We have already discussed the uses of phylogenies. As its origin suggests, pairwise

compatibility graphs can be used in parallel with, or at least to support, the phylogeny.

But the most intriguing potential of PCG lies in solving the “clique problem”. Kearney

et al. showed that “the clique problem” is polynomially solvable for pairwise compatibility

graphs if the pairwise compatibility tree construction problem can be solved in polynomial

time [KMP03]. A clique in a graph is a set of pairwise adjacent vertices, or in other words, an

“induced subgraph” which is a “complete graph”. In the graph G of Figure 1.3, vertices a, b, c

and d form a clique, because each has an edge to all the others. The size (number of vertices

in the clique) of this clique is four. The clique problem is the problem of determining whether

a graph contains a clique of at least a given size k. It is a well known NP -complete problem.

The corresponding “optimization problem”, the maximum clique problem, is to find the largest

clique in a graph [CLRS03]. The clique problem is a classical problem in graph theory which

finds important applications in different domains. It is a well known NP -complete problem that

arises from many applications areas [PX94]. In many applications, the underlying problem can

be formulated as a maximum clique problem while in some other applications, a subproblem
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b d
e

fa c

Figure 1.3: Example of a clique.

of the solution procedure consists of finding a maximum clique. It has applications in coding

theory, geometry of tiling, problems arising from fault diagnosis, computer vision and pattern

recognition [BBPP99]. Thus, the pairwise compatibility graph recognition problem and the

pairwise compatibility tree construction problem have great potential from the view point of

research and practitioner purpose.

PCG can be also associated with problems in distributed computing. PCG model the

situation where a collection of processors is connected by a tree network and the processors

representing the leaves of the tree network (T ) are in consideration for a particular computation.

A communication step is the amount of time required for a processor to pass information to

a neighbor. Each communication step is represented by an edge of weight one. Then the

pairwise compatibility graph G = (T, dmin, dmax) represents the possible flow of information

among the processors in consideration during k communication steps where dmin ≤ k ≤ dmax.

This application of PCG is motivated from the association of graph powers in distributed

computing [L92].

1.4 Literature Review

The problems associated with PCG have not yet been extensively studied. Since their inception,

pairwise compatibility graphs have raised several interesting problems, and most of these prob-

lems have remained unsolved. Among the other problems, identifying different graph classes
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as pairwise compatibility graphs is an important concern. Although overlapping of pairwise

compatibility graphs with many well-known graph classes like complete graphs is quite appar-

ent; slight progresses have been made on establishing concrete relationships between pairwise

compatibility graphs and other known graph classes. The complete characterization of PCG is

not known yet. This implies that the smallest graph class that encompasses all of the pairwise

compatibility graphs is not known at all. It is known that every graph of five vertices or less is

a PCG [P02]. However, no result on the PCG recognition problem for arbitrary large graphs

is known. Not many well known classes of graphs can be characterized as PCG yet. Kearney

et al. showed that nearly every problem on PCGs remained unsolved and posed some open

problems [KMP03].

But most recently some structural properties of pairwise compatibility graphs have been

unveiled. Tozammel and Yanhaona in their undergraduate thesis determined the relationship

between pairwise compatibility graphs and chordal graphs [YH07]. They also proved that

chordal graphs are pairwise compatibility graphs in a restricted case. They showed that number

of nontrivial component is not affected when value of dmax is set to certain large value and only

dmin is varied to construct different PCGs. They solved the open problem, whether any (or

every) cycle of length greater than five is a pairwise compatibility graph, given by Kearney

et al. [KMP03]. They prove that, all chordless cycles and single chord cycles are pairwise

compatibility graphs. They gave a linear-time algorithm for constructing trees from chordless

cycles and single chord cycles.

The most important question about PCG is whether every graph is a PCG; in other

words, is there always a pairwise compatibility tree T for any arbitrary graph G? Seeing the

exponentially increasing number of possible tree topologies for large graphs, the proponents

of PCGs conceived that all undirected graphs are PCGs [KMP03]. But this question is still

unresolved.
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1.5 Objective of This Thesis

For any class of graphs, recognition is a fundamental problem. But in the present context, no

examination of PCGs would be complete unless the question “Is every graph G a PCG?” is

addressed. We have already mentioned that this question is still open although it is conjectured

that all undirected graphs are PCGs. In this research we address the open question and give

a negative answer by showing that not all undirected graphs are PCGs.

Discovering that not all graphs are pairwise compatibility graphs, we venture to identify

which graph classes are PCGs and which are not. In this connection, we address some very

important graph classes and establish their relationships with PCG. We show that tree power

graphs and two of its extensions namely, phylogenetic k-power graphs and Steiner k-power

graphs are PCGs. While proving that not all graphs are PCGs, we discover that not all

bipartite graphs are PCGs. Then we try to find some restricted classes of bipartite graphs

that are PCGs. Motivated by our experiences that constructing a pairwise compatibility tree

is quite complex a task and, in some cases, impossible (which we will prove in Chapter 3), we

introduce some flexibility in the concept of PCGs that turns into a new notion which we call

improper PCG.

1.6 Summary of Results

In this thesis, we address the most important open problem regarding pairwise compatibility

graphs, and also address the pairwise compatibility tree construction and pairwise compatibility

graph recognition problems. The main results of this thesis are as follows.

1. We solve the open problem regarding whether or not every graph is a PCG by showing

that not all graphs are PCGs. (See Section 3.1 for details.)

2. We recognize two subclasses of bipartite graphs as pairwise compatibility graphs. We

develop linear-time algorithms for constructing the pairwise compatibility tree for any
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graph of those classes. (See Section 3.2 for details.)

3. We show that all tree power graphs and two of their extensions are PCGs. We present a

linear-time algorithm for finding the pairwise compatibility tree of a tree power graph G

from its tree root T . (See Chapter 4 for details.)

4. We introduce a new notion called improper PCG and show that every graph is an im-

proper PCG. We also present an efficient heuristic algorithm to construct an “improper

pairwise compatibility tree” for triangulated plane graphs. (See Chapter 5 for details.)

1.7 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we discuss the relevant ideas

and necessary definitions from graph theory and algorithm theory to understand our research

work. Chapter 3 describes the solution of the open problem regarding whether every graph is

a PCG, and recognize two subclasses of bipartite graphs as PCGs. Chapter 4 deals with the

relationships of tree power graphs and its extensions with PCG. We propose a new notion

called improper PCGs in Chapter 5. Finally, We conclude in Chapter 6 with some future

directions.



Chapter 2

Preliminaries

In this chapter we define some basic terminology of graph theory and algorithm theory. Defi-

nitions that are not included in this chapter will be introduced as they are needed. We start,

in Section 2.1, by giving some definitions of standard graph-theoretical terms used throughout

the remainder of this thesis. In Section 2.2 we define different terms related to planar graphs.

We devote Section 2.3 to define power graphs and some of their variations. The notion of time

complexity is discussed in Section 2.4.

2.1 Basic Terminology

In this section we give definitions of some theoretical terms used throughout the remainder of

this thesis. Interested readers are referred to detailed texts of the literature [W03, NR04].

2.1.1 Graphs

A graph G is a structure (V, E) which consists of a finite set of vertices V and a finite set

of edges E; each edge is an unordered pair of vertices. The sets of vertices and edges of G

are denoted by V (G) and E(G) respectively. Fig. 2.1 depicts a graph G where each vertex in

V (G) = {v1, v2, . . . , v7} is drawn as a small dark circle and each edge in E(G) = {e1, e2, . . . , e10}

12
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v1

v2

v3

v4

v5

v6

v7

Figure 2.1: A graph with seven vertices and ten edges.

is drawn by a line segment. An edge connecting vertices u and v in V is denoted by (u, v). If

(u, v) ∈ E, then two vertices u and v are said to be adjacent in G; edge (u, v) is then said to be

incident to vertices u and v. The degree of a vertex v in G, denoted by deg(v), is the number

of edges incident to it in G.

A graph is called a simple graph if there is no “loop” or “multiple edges” between any two

vertices in G. Multiple edges join the same pair of vertices, while a loop joins a vertex to itself.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete graph

a b

c

d

e

Figure 2.2: A complete graph with five vertices.

with n vertices is denoted by Kn. Figure 2.2 is an example of a complete graph with five

vertices. An independent set {u, v, w, · · · , z} of G is a set of pairwise non-adjacent vertices.

A graph G is k-partite if V (G) can be expressed as the union of k independent sets. When

k = 2 it is called a bipartite graph. A complete k-partite graph is a simple graph such that two
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1

1

2
2

3
3

4

Figure 2.3: A complete bipartite graph.

vertices are adjacent if and only if they are in different partite sets. Figure 2.3 is an example

of complete two partite (bipartite) graph.

2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E; we

then write G′ ⊆ G. If G′ contains all the edges of G that join two vertices in V ′, then G′ is

said to be the subgraph induced by V ′, and is denoted by G[V ′]. Fig. 2.4 depicts a subgraph of

G in Fig. 2.1 induced by {v1, v2, v3, v4, v6, v7}.

v1

v2

v3

v4

v6

v7

Figure 2.4: A vertex induced subgraph.

We often construct new graphs from old ones by deleting some vertices or edges. If v is a

vertex of a given graph G = (V, E), then G − v is the subgraph of G obtained by deleting the

vertex v and all the edges incident to v. More generally, if V ′ is a subset of V , then G − V ′ is
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the subgraph of G obtained by deleting the vertices in V ′ and all the edges incident to them.

Then G−V ′ is a subgraph of G induced by V −V ′. Similarly, if e is an edge of a G, then G−e

is the subgraph of G obtained by deleting the edge e. More generally, if E ′ ⊆ E, then G − E ′

is the subgraph of G obtained by deleting the edges in E ′.

2.1.3 Connectivity

A graph G is a connected graph if for every pair {u, v} of distinct vertices there is a path

between u and v. A graph which is not connected is called a disconnected graph. A connected

component of a graph is a maximal connected subgraph. The graph in Fig. 2.5(a) is a connected

graph since there is a path for every pair of distinct vertices of the graph. On the other hand

the graph in Fig. 2.5(b) is a disconnected graph since there is no path between v1 and v2. The

graph in Fig. 2.5(b) has two connected components G1 and G2 indicated by dotted lines.

(a) (b)

v1
v1 v2 v2 v3

v3

v4
v4

v5

v5

v6
v6

Figure 2.5: (a) A connected graph G and (b) a disconneted graph with two connected compo-

nents G1 and G2.

2.1.4 Paths and Cycles

A v0, vl walk , v0, e1, v1, . . . , vl−1, el, vl, in G is an alternating sequence of vertices and edges

of G, beginning and ending with a vertex, in which each edge is incident to the two vertices

immediately preceding and following it. If the vertices v0, v1, . . . , vl are distinct (except possibly

v0, vl), then the walk is called a path and usually denoted either by the sequence of vertices



16 CHAPTER 2. PRELIMINARIES

v0, v1, . . . , vl or by the sequence of edges e1, e2, . . . , el. We denote a path from u to v by Puv,

i.e, Puv = w0, w1, · · · , wn is a sequence of distinct vertices in V such that u = w0, v = wn and

(wi−1, wi) ∈ E for every 1 ≤ i ≤ n. A sub-path of Puv is a subsequence Pwjwk
= wj , wj+1, ..., wk

for some 0 ≤ j < k ≤ n. An internal vertex of Puv is any vertex other than u and v that is

in Puv. The length of the path Puv, denoted by luv, is l, one less than the number of vertices

on the path. A path or walk is closed if v0 = vl. A closed path containing at least one edge is

called a cycle.

2.1.5 Trees

A tree is a connected graph containing no cycle. Figure 2.6 is an example of a tree. The

vertices in a tree are usually called nodes . A rooted tree is a tree in which one of the nodes is

distinguished from the others. The distinguished node is called the root of the tree. The root

of a tree is generally drawn at the top. In Figure 2.6, the root is v1. Every node u other than

the root is connected by an edge to some other node p called the parent of u. We also call u

a child of p. We draw the parent of a node above that node. For example, in Figure 2.6, v1 is

the parent of v2, v3 and v4, while v2 is the parent of v5 and v6; v2, v3 and v4 are children of v1,

while v5 and v6 are children of v2. A leaf is a node of a tree that has no children. An internal

node is a node that has one or more children. Thus every node of a tree is either a leaf or an

internal node. In Figure 2.6, the leaves are v4, v5, v6, v7 and v8, and the nodes v1, v2 and v3

are internal nodes.

v1 v2

v3

v4 v5

u3

u1

u2

Figure 2.6: Illustration of a tree.
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A tree T is weighted if each edge is assigned a number as the weight of the edge; we denote

the weight of an edge (u, v) by weight(u, v). A subtree induced by a set of leaves of T is the

minimal subtree of T which contains those leaves. Figure 2.7 illustrates a tree T with six leaves

u, v, w, x, y and z, where the edges of the subtree of T induced by u, v and w is drawn by thick

lines. We denote by Tuvw the subtree of a tree induced by three leaves u, v and w. One can

observe that Tuvw has exactly one vertex of degree 3. We call the vertex of degree 3 in Tuvw the

core of Tuvw. The vertex o is the core of Tuvw in Fig. 2.7. The distance between two vertices u

and v in T , denoted by dT (u, v), is the sum of the weights of the edges on Puv. A caterpillar

v

y

o

x
z

w

u

Figure 2.7: Demonstration of a leaf induced subtree.

is a tree in which a single path (the spine) is incident to or contains every edge. A star is a

tree where every leaf has a common neighbour which we call the base of the star. In this paper

every tree we consider is a weighted tree. We use the convention that if an edge of a tree has

no number assigned to it then its default weight is one.

2.2 Planar Graphs and Plane Graphs

In this section we give some definitions related to planar graphs used in the remainder of the

thesis. For readers interested in planar graphs we refer to [NC88].

A graph is a planar graph if it can be embedded in the plane so that no two edges intersect

geometrically except at a vertex to which they are both incident. Note that a planar graph

may have an exponential number of embeddings. Fig. 2.8 shows three planar embeddings of
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the same planar graph.

v1

v1v1

v2

v2v2

v3

v3v3

v4

v4

v4

v5

v5

v5

v6

v6

v6

v7

v7

v7

v8

v8v8

v9 v9

v9

Figure 2.8: Three planar embeddings of the same planar graph.

A plane graph is a planar graph with a fixed embedding. A plane graph divides the plane

into connected regions called faces . We call a plane graph triangulated plane graph if all of its

faces are triangles.

2.2.1 Dual Graphs

For a plane graph G, we often construct another graph G∗ called the (geometric) dual of G as

follows. A vertex v∗
i is placed in each face Fi of G; these are the vertices of G∗. Corresponding

to each edge e of G we draw an edge e∗ which crosses e (but no other edge of G and joins the

vertices v∗
i which lie in the faces Fi adjoining e; these are the edges of G∗. The construction is

illustrated in Fig. 2.9; the vertices vi are represented by small grey circles and the edges ei of

G are represented by solid lines, whereas the vertices v∗
i are represented by small white circles,

and the edges e∗ of G∗ by dotted lines. G∗ is not necessarily a simple graph even if G is simple.

Clearly the dual G∗ of a plane graph G is also plane. We call a dual graph inner dual if the
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outer face is not considered.

v1

v2

v3

v4

v5

Figure 2.9: A plane graph G and its dual G∗.

2.3 Graph Powers

A graph G′ = (V ′, E ′) is a k-root of a graph G = (V, E) if V ′ = V and there is an edge (u, v) ∈ E

if and only if the shortest path connecting u and v in G′ is at most k. Alternatively, G is called

the k-power of G′ [LKJ00]. The kth power of G is represented as Gk. Figure 2.10(b) illustrates

the 2-power graph of the graph G in Fig 2.10(a).

An special case of graph power is tree power which requires G′ to be a tree, i.e, a graph

G = (V, E) is said to have a tree power for a certain proximity threshold k if a tree T can be

constructed on V such that (u, v) ∈ E if and only if dT (u, v) ≤ k. Figure 2.11(b) illustrates the

2-root tree of the graph in Fig. 2.11(a).

“Phylogenetic k-power” and “Steiner k-power” graphs are extensions of tree power graphs.

A graph G = (V, E) is called a phylogenetic k-power graph if there exists a tree T such that

each leaf of T corresponds to a vertex of G and an edge (u, v) ∈ E if and only if the distance

between the two leaves of T corresponding to u and v, which we denote by dT (u, v), is less

than or equal to a chosen proximity threshold k; i.e., dT (u, v) ≤ k. Such a tree T is called the
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o

Figure 2.10: (a) A graph G, and (b) the 2-power graph of G.
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Figure 2.11: (a) A graph G, and (b) the 2-root tree T of G.
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k-root phylogeny of G and G is called the kth phylogenetic power of T . Phylogenetic k-power

graphs are also known as k-leaf power graphs [FMRST08, BL09]. Figure 2.12(a) demonstrates

the phylogenetic 2-power graph G of the tree T in Figure 2.12(b). We can see that T has four

leaves (a, c, e, g), and G has four vertices accordingly.

a

c

e

g

c

o

(b)

b

d

f

e

h
g

a

(a)

Figure 2.12: (a) A graph G, and (b) the 2-root phylogeny T of G.

In some cases, it is useful to allow the vertices in V to appear as internal nodes in the tree T

which leads to a new variant, where vertices of V might appear as internal nodes of T [LKJ00].

For a Steiner k-power graph the corresponding tree can have some internal nodes as well as the

leaves that correspond to the vertices of the graph. Such a tree is called a k-root Steiner tree

of G and G is the kth Steiner power of T . The tree T in Fig. 2.13(b) is the Steiner 4-root of

the graph shown in Fig. 2.13(a). Here in T the internal vertex o corresponds to the vertex o of

G.

2.4 Algorithms and Complexity

In this section we briefly introduce some terminologies related to algorithms and complexity of

algorithms. For interested readers, we refer to [GJ79, DPV06, KT05].
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Figure 2.13: (a) A graph G, and (b) the 2-root steiner tree T of G.

2.4.1 Big-O Notation

The most widely accepted complexity measure for an algorithm is the running time which is

expressed by the number of operations it performs before producing the final answer. Expressing

running time in terms of basic computer steps is a simplification. After all, the time taken by

one such step depends crucially on the particular processor and even on details such as caching

strategy (as a result of which the running time can differ subtly from one execution to the

next). Accounting for these architecture-specific minutiae is quite a complex task and yields a

result that does not generalize from one computer to the next. It therefore makes more sense

to seek an uncluttered, machine-independent characterization of an algorithm’s efficiency. To

this end, we will always express running time by counting the number of basic computer steps,

as a function of the size of the input.

And this simplification leads to another simplification. Instead of reporting that an algo-

rithm takes, say, 5n3 + 4n + 3 steps on an input of size n, it is much simpler to leave out

lower-order terms such as 4n and 3 (which become insignificant as n grows), and even the

detail of the coefficient 5 in the leading term (computers will be five times faster in a few

years anyway), and just say that the algorithm takes time O(n3) (pronounced “big oh of n3”).

The reason behind such simplification is that we are often interested only in the “asymptotic
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behavior”, that is, the behavior of the algorithm, when applied to very large inputs, which is

insensitive to constant factors and low order terms. We now define this notation precisely. Let

f(n) and g(n) are the functions from the positive integers to the positive reals, then we write

f(n) = O(g(n)) (which means that f(n) grows no faster than g(n)) if there exists positive

constants c1 and c2 such that f(n) ≤ c1g(n) + c2 for all n.

This cavalier attitude toward constants in case of big-O notation may seem very rude since

programmers and algorithm developers are very interested in constants and give tremendous

effort in order to make an algorithm run faster even by a factor of 2. But understanding and

analyzing algorithms at theoretical level would be impossible without the simplicity afforded

by big-O notation.

2.4.2 Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is

bounded by a polynomial of the size of a problem instance. Examples of such complexities are

O(n), O(nlogn), O(n100), etc. The remaining algorithms are usually referred to as exponential

or nonpolynomial. Examples of such complexity are O(2n), O(n!), etc. When the running

time of an algorithm is bounded by O(n), we call it a linear-time algorithm or simply a linear

algorithm.

2.4.3 NP -complete Problems

There are a number of interesting computational problems for which it has not been proved

whether there is a polynomial time algorithm or not. Most of them are “NP -complete”. In

this section we will briefly explain NP -complete problems as well as the complexity class P

and NP .

Before going further into details, we first introduce some important concepts. Decision

problems refer to the algorithmic questions that can be answered by yes or no. For an example,

“Is there a truth assignment that satisfies a given boolean formula?” The state of algorithms
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consists of the current values of all the variables and the location of the current instruction

to be executed. A deterministic algorithm is one for which each state, upon execution of the

instruction, uniquely determines at most one of the following state (next state). All computers,

which exist now, run deterministically. In contrast, a nondeterministic algorithm is one for

which a state may determine many next states simultaneously. We may regard a nondetermin-

istic algorithm as having the capability of branching off into many copies of itself, one for the

each next state. Thus, while a deterministic algorithm must explore a set of alternatives one

at a time, a nondeterministic algorithm examines all alternatives at the same time.

A problem P1 is polynomially reducible to problem P2 (P1 ≤p P2) if there exists a polynomial

time algorithm that transforms every instance I1 of P1 to an instance I2 of P2 such that the

answer to I1 is “yes” (I1 ∈ P1) if and only if the answer to I2 is “yes” (I2 ∈ P2).

The Class NP

NP is the class of problems – solutions of which can be verified deterministically in polyno-

mial time. This means that there is an efficient (low-order polynomial) deterministic checking

algorithm C that takes as input the given instance I (the data specifying the problem to be

solved), as well as the proposed solution S, and outputs true if and only if S really is a solution

to instance I. Moreover the running time of C(I, S) is bounded by a polynomial in |I|. We

can also define NP as the class of decision problems that can be solved nondeterministically in

polynomial time, which is why NP stands for “nondeterministic polynomial time.”

The Class P

P is the class of problems that can be solved by deterministic polynomial time algorithm.

This implies that there is a deterministic algorithm that takes as input an instance I and has

a running time polynomial in I such that if I has a solution, the algorithm returns such a

solution; and if I has no solution, the algorithm correctly reports so. Clearly P ⊆ NP . But

the question, “P = NP ?” is still unresolved. It is widely believed that P �= NP . However,

proving this has turned out to be extremely difficult, one of the deepest and most important
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unsolved puzzles of mathematics.

The class NP -complete

A problem p is NP -complete if it satisfies the following two conditions.

1. p ∈ NP .

2. For every problem p′ ∈ NP , p′ ≤p p.

A problem satisfying condition 2 is said to be NP -hard, whether or not it satisfies condition

1. NP -complete problems are considered to be the hardest problems in NP . These problems

have the following interesting properties.

(a) No NP -complete problem can be solved by any known polynomial algorithm.

(b) If there is a polynomial algorithm for any NP-complete problem, then there are polynomial

algorithms for all NP-complete problems.

2.4.4 Heuristic Algorithms

In computer science, a heuristic algorithm, or simply a heuristic, is an algorithm that is able to

produce an acceptable solution to a problem in many practical scenarios, but for which there is

no formal proof of its correctness. Alternatively, it may be correct, but may not be proven to

produce an optimal solution, or to use reasonable resources. Heuristics are typically used when

there is no known method to find an optimal solution, under the given constraints (of time,

space etc.) or at all. These algorithms, usually find a solution close to the best one and they

find it fast and easily. Sometimes these algorithms can be accurate, that is they actually find

the best solution, but the algorithm is still called heuristic until this best solution is proven to

be the best. The method used for a heuristic algorithm is one of the known methods, such as

greediness, but in order to be easy and fast the algorithm ignores or even suppresses some of

the problem’s demands. Heuristics rely on ingenuity, intuition, a good understanding of the

application and meticulous experimentation to attack a problem [DPV06].



Chapter 3

Pairwise Compatibility Graphs

In this chapter we resolve the open question regarding whether or not every graph is a pairwise

compatibility graph by showing that not all graphs are PCGs in Section 3.1. We next recognize

some subclasses of bipartite graphs as PCGs in Section 3.2. Finally Section 3.3 is a conclusion.

A graph G is a PCG if there exists an edge weighted tree T and two non-negative real

numbers dmin and dmax such that G = PCG(T, dmin, dmax). Since there are abundance of

choices for selecting the topology of T , and real numbers dmin and dmax, one may think that there

would always exist T , dmin and dmax for a given graph G such that G = PCG(T, dmin, dmax).

The proponents of the PCG conjectured that all graphs are PCGs [KMP03]. However, we

have observed that regardless of the topology of T and the values of dmin and dmax, some

adjacency relationships among the vertices of a graph makes it impossible to construct an

pairwise compatibility tree T for the graph. We have found that the placement of a vertex of a

graph as a leaf in an edge weighted tree imposes constraints on the placements of the remaining

vertices, and as a result, in some cases, it becomes infeasible to have a tree that generates the

graph as a PCG, even when there may exist an exponential number of tree topologies for the

given number of graph vertices.

26
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3.1 Not All Graphs are PCGs

In this section we show that not all graphs are pairwise compatibility graphs, as in the following

theorem.

Theorem 3.1.1 Not all graphs are pairwise compatibility graphs.

To prove the claim of Theorem 3.1.1 we need the following lemmas.

Lemma 3.1.2 Let T be an edge weighted tree, and u, v and w be three leaves of T such that Puv

is the largest path in Tuvw. Let x be a leaf of T other than u, v and w. Then, dT (w, x) ≤ dT (u, x)

or dT (w, x) ≤ dT (v, x).

Proof. Let o be the core of Tuvw. Then each of the paths Puv, Puw and Pwv is composed of

two of the three subpaths Puo, Pow and Pov. Since dT (u, v) is the largest path in Tuvw, dT (u, v) ≥

dT (u, w). This implies that dT (u, o)+dT (o, v) ≥ dT (u, o)+dT (o, w). Hence dT (o, v) ≥ dT (o, w).

Similarly, dT (u, o) ≥ dT (o, w) since dT (u, v) ≥ dT (w, v). Since T is a tree, there is a path

from x to o. Let ox be the first vertex in V (Tuvw) ∩ V (Pxo) along the path Pxo from x. Then

clearly ox is on Puo, Pvo or Pwo. We first assume that ox is on Puo, as illustrated in Fig. 3.1(a).

Then dT (v, x) ≥ dT (w, x) since dT (w, x) = dT (x, o) + dT (w, o), dT (v, x) = dT (x, o) + dT (v, o)

and dT (v, o) ≥ dT (w, o). We now assume that ox is on Pvo, as illustrated in Fig. 3.1(c). Then

dT (u, x) ≥ dT (w, x) since dT (w, x) = dT (x, o) + dT (w, o), dT (u, x) = dT (x, o) + dT (o, u) and

dT (u, o) ≥ dT (w, o). We finally assume that ox is on Pwo, as illustrated in Fig. 3.1(b). Then

dT (u, x) = dT (u, o)+ dT (o, ox)+ dT (ox, x) and dT (w, x) = dT (w, ox)+ dT (ox, x). As dT (w, ox) ≤

dT (w, o) and dT (u, o) ≥ dT (w, o), dT (u, x) ≥ dT (w, x). Likewise, dT (v, x) ≥ dT (w, x). Thus, in

each case, at least one of u and v is at a distance from x that is either larger than or equals to

the distance between w and x. Q.E .D.

Lemma 3.1.3 Let G = (V, E) be a PCG(T, dmin, dmax). Let a, b, c, d and e be five leaves of T

and let a′, b′, c′, d′ and e′ be five vertices of G corresponding to the five leaves a, b, c, d and e of
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Figure 3.1: Different positions of x.

T , respectively. Let Pae be the largest path in the subtree of T induced by the leaves a, b, c, d and

e, and Pbd be the largest path in Tbcd. Then G has no vertex x′ such that x′ is adjacent to a′, c′

and e′ but not adjacent to b′ and d′.

Proof. Assume for a contradiction that G has a vertex x′ such that x′ is a neighbor of

a′, c′ and e′ but not of b′ and d′. Let x be the leaves of T corresponding to the vertex x′ of G.

Since Pae is the largest path in T among all the paths that connect a pair of leaves from the set

{a, b, c, d, e}, max
y∈{a,e}

dT (x, y) ≥ max
z∈{b,c,d}

dT (x, z) by Lemma 3.1.2. Since both a and e are adjacent

to x in G, max
y∈{a,e}

dT (x, y) ≤ dmax. This implies that dT (x, y) ≤ dmax, y ∈ {a, b, c, d, e}. Since Pbd

is the largest path in Tbcd, max
y∈{b,d}

dT (x, y) ≥ dT (x, c) by Lemma 3.1.2. Without loss of generality

assume that dT (x, b) ≥ dT (x, c). Since b′ and x′ are not adjacent in G and dT (x, b) ≤ dmax,

dT (x, b) < dmin. Then dT (x, c) < dmin since dT (x, b) ≥ dT (x, c). Since dT (x, c) < dmin, c′ cannot

be adjacent to x′ in G, a contradiction. Q.E .D.

Using Lemma 3.1.3 we now present a graph which is not a PCG as in the following Lemma.



3.1. NOT ALL GRAPHS ARE PCGS 29

Lemma 3.1.4 Let G = (V, E) be a graph of 15 vertices, and let {V1, V2} be a partition of

the set V such that |V1| = 5 and |V2| = 10. Assume that each vertex in V2 has exactly three

neighbors in V1 and no two vertices in V2 has the same three neighbors in V1. Then G is not a

pairwise compatibility graph.

Proof. Assume for a contradiction that G is a pairwise compatibility graph, i.e., G =

PCG(T, dmin, dmax) for some T , dmin and dmax. Let Puv be the longest path in the subtree of

T induced by the leaves of T representing the vertices in V1. Clearly u and v are leaves of T .

Let u′ and v′ be the vertices in V1 corresponding to the leaves u and v of T , respectively. Let

Pwx be the longest path in the subtree of T induced by the leaves of T corresponding to the

vertices in V1 − {u′, v′}. Clearly w and x are also the leaves of T , and let w′ and x′ be the

vertices in V1 corresponding to w and x of T . Since |V1| = 5, T has a leaf y corresponding

to the vertex y′ ∈ V1 such that y′ /∈ {u′, v′, w′, x′}. Since G is a PCG of T , G cannot have a

vertex adjacent to u′, v′ and y′ but not adjacent to w′ and x′ by Lemma 3.1.3. However, for

every combination of three vertices in V1, V2 has a vertex which is adjacent to only those three

vertices of the combination. Thus there is indeed a vertex in V2 which is adjacent to u′, v′ and y′

but not to w′ and x′. Hence G can not be a pairwise compatibility graph of T by Lemma 3.1.3,

a contradiction. Q.E .D.

Lemma 3.1.4 immediately proves Theorem 3.1.1. Figure 3.2 shows an example of a bipartite

graph which is not a PCG. Quite interestingly, however, every complete bipartite graph is a

PCG. It can be shown as follows. Let Km,n be a complete bipartite graph with two partite sets

X = {x1, x2, x3, · · · , xm}, and Y = {y1, y2, y3, · · · , yn}. We construct a star for each partite set

such that each leaf corresponds to a vertex of the respective partite set. Then we connect the

bases of the stars through an edge as illustrated in Fig. 3.3. Finally, we assign one as the weight

of each edge. Let T be the resulting tree. Now one can easily verify that Km,n = PCG(T, 3, 3).

Taking the graph described in Lemma 3.1.4 as a subgraph of a larger graph, we can show

a larger class of graphs which is not PCG, as described in the following lemma.
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a1 a2 a3 a4
a5

b2 b3 b4 b5 b6 b7 b8 b9 b10b1

Figure 3.2: Example of a graph which is not a PCG.
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Figure 3.3: Pairwise compatibility tree T of a complete bipartite graph Km,n.
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Lemma 3.1.5 Let G = (V, E) be a graph, and let V1 and V2 be two disjoint subsets of vertices

such that each vertex in V2 has exactly three neighbors in V1 and no two vertices in V2 has the

same three neighbors in V1. Then G is not a pairwise compatibility graph.

Proof. Assume for a contradiction that G is PCG, i.e., G = PCG(T, dmin, dmax) for

some T , dmin and dmax. Let H be the subgraph of G induced by V1 ∪ V2. Now, let TH be

the subtree of T induced by the leaves representing the vertices in V1 ∪ V2. According to

the definition of leaf induced subtree, for any pair of nodes u, v in TH , dTH
(u, v) = dT (u, v).

Then H = PCG(TH , dmin, dmax) since G = PCG(T, dmin, dmax). However, H is not a PCG by

Lemma 3.1.4, a contradiction. Q.E .D.

3.2 Bipartite Graphs and PCGs

From Theorem 3.1.1, it is evident that not all bipartite graphs are PCGs (see Fig. 3.2). So

it would be interesting to find some restricted classes of bipartite graph that are PCGs. We

have already showed that complete bipartite graphs are PCGs. We now establish two other

subclasses of bipartite graphs as PCGs.

Theorem 3.2.1 Let G = (V, E) be a bipartite graph with two partite sets P and Q. Let X ⊂ P

and Y ⊂ Q such that there is no edge in G having one end in X and the other end in Y . Assume

that the subgraph of G induced by (P − X) ∪ Q is a complete bipartite graph with partite sets

P −X and Q, and the subgraph of G induced by (Q−Y )∪P is a complete bipartite graph with

partite sets Q − Y and P . Then G is a PCG.

Proof. Let G be a bipartite graph as specified in Theorem. 3.2.1 with |P | = p, |Q| = q,

|X| = r, and |Y | = s. Without loss of generality we can assume that p ≥ q. We first

construct two caterpillars Cp and Cq corresponding to two partite sets P and Q such that

each leaf of the Cp and Cq corresponds to a vertex of P and Q, respectively as follows. We

make the path u1, u2, . . . , up as the spine of Cp and u′
1, u

′
2, . . . , u

′
p as the leaves of Cp such
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that ui is adjacent to u′
i and u′

p, u
′
p−1, . . . , u

′
p−r+1 are the r vertices in X. Similarly we make

the path v1, v2, . . . , vq as the spine of Cq and v′
1, v

′
2, . . . , v

′
q as the leaves of Cq such that vi

is adjacent to v′
i and v′

q, u
′
q−1, . . . , v

′
q−s+1 are the s vertices in Y . Cp and Cq are depicted in

Fig. 3.4(a). We next construct a single tree T by connecting Cp and Cq through an edge

upvq as illustrated in Fig. 3.4(b). We finally assign the weight of the edges of T as follows.

We assign the weight lw = 2l of the edge upvq, where l = max{p, q}. We assign weight one

to each edge connecting a leaf of the caterpillar to its spine except for the edges incident to

the leaves corresponding to the vertices in X and Y , i.e., weight of each edge uiu
′
i and vjv

′
j

is one where 1 ≤ i ≤ p − r and 1 ≤ j ≤ q − s. We assign l + 1, l, l − 1, . . . , l − r + 2 as the

weights of the edges upu
′
p, up−1u

′
p−1, up−2u

′
p−2, . . . , up−r+1u

′
p−r+1 respectively. Similarly we assign

l + 1, l, l − 1, . . . , l − s + 2 as the weights of the edges vqv
′
q, vq−1v

′
q−1, vq−2v

′
q−2, . . . , vq−s+1v

′
q−s+1,

respectively. This weight assignment is illustrated in Fig. 3.4(c). Let dmin = 2l + 2 and

dmax = 4l + 1.

We now show that T is a pairwise compatibility tree of G. The distance between u′
1 and u′

p,

and v′
1 and v′

q are p + l + 1 and q + l +1 respectively (see Fig. 3.4(c)). Since l = max{p, q}, the

maximum possible distance between two leaves of the same caterpillar is 2l + 1. The distance

between any two leaves of the same caterpillar should be out of the range, and here we can see

that (2l + 1) < dmin. Again the distance between any two leaves u and v, where u ∈ X and

v ∈ Y is (l+1)+(l+1)+2l = 4l+2, which is greater than dmax. The maximum possible distance

between two leaves corresponding to two vertices that are adjacent in G is l+2l+(l+1) = 4l+1

(distance between u′
1 and v′

q), which is within the specified range dmin and dmax. Again the

minimum possible distance between two leaves corresponding to two vertices that are adjacent

in G is 1 + 2l + 1 = 2l + 2 (distance between u′
p and v′

q while X and Y are empty), which is

also within the specified range. Thus T is a pairwise compatibility tree of G and hence G is a

PCG. Q.E .D.

Figure 3.5(a) illustrates an example of the bipartite graph as specified in Theorem. 3.2.1

where p = 5, q = 4, X = {p1, p2, p3} and Y = {q3, q4}. Fig. 3.5(b) illustrates the pairwise

compatibility tree of the graph in Fig. 3.5(a) obtained by the construction in the proof of
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Figure 3.4: (a) Two caterpillars Cp and Cq, (b) connecting Cp and Cq through the edge upvq,

and (c) the weight assignment.
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Figure 3.5: (a) A bipartite graph as of Theorem 3.2.1, and (b) its PCG .

Theorem. 3.2.1.

Theorem 3.2.2 Let G = (V, E) be a bipartite graph with two partite sets P and Q where

|P | = p, |Q| = q and p ≥ q. Let p1, p2, . . . , pp be the p vertices in P and let q1, q2, . . . , qq be the

q vertices in Q. Let dm = max
v∈P

deg(v). Then G is a PCG if any of the following conditions (1)

and (2) holds.

1. For any vertex u ∈ P , if deg(u) = dm then its neighbors are qi, qi+1, . . . , qi+deg(u)−1 where

1 ≤ i ≤ (q − deg(u) + 1).

2. If deg(u) < dm, then its neighbors are q1, q2, . . . , qdeg(u) or qq, qq−1, . . . , qq−(deg(u)−1).

Proof. Let G = (V, E) be a bipartite graph as specified in Theorem. 3.2.2. We now construct

two caterpillars Cp and Cq corresponding to two partite sets P and Q such that each leaf of

the Cp and Cq corresponds to a vertex of P and Q, respectively as follows. We make the path

u1, u2, . . . , up as the spine of Cp and u′
1, u

′
2, . . . , u

′
p as the leaves of Cp such that ui is adjacent to

u′
i. Similarly we make the path v1, v2, . . . , vq as the spine of Cq and v′

1, v
′
2, . . . , v

′
q as the leaves
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of Cq such that vi is adjacent to v
′
i. Cp and Cq are depicted in Fig. 3.6(a). Here u′

i and v′
i

correspond to pi and qi, respectively. We now construct a single tree T by connecting Cp and

l
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Figure 3.6: (a) Two caterpillars (Cp and Cq), (b) connecting Cp and Cq through the edge upv1,

and (c) the weight assignment.

Cq through an edge upv1 as in Fig. 3.6(b). We assign weight one to each edge of Cq. Let l,

Wp(i), be the weight of the edge upv1, and the weight of the edge uiu
′
i, respectively. Let the

neighbors of pi in G be qj , qj+1, . . . , qj+deg(pi)−1; then we define Nskip(i) as j − 1.

Let d′
max = p+ q, d′

min = d′
max − (dm − 1) and l = 2(p+ q− 1)− d′

min +1. We now take dmin

as d′
min + l and dmax as d′

max + l. Then we take Wp(i) as follows and show that T is a pairwise

compatibility tree of G.
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Wp(i) =




d′
max − (p − i) − (Nskip(i) + deg(pi)) if degm(i) = dm(i) or degm(i) <

dm(i) and its neighbors are the first

degm(i) vertices of Q-partite set

d′
min − (q − deg(pi) + 1) − (p − i) otherwise.
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Figure 3.7: (a) An example of a graph as of Theorem 3.2.2, and (b) its PCG.

We have defined Wp(i) in Eqn. 3.1 in such a way that if deg(pi) = dm and its neighbors are

qj , qj+1, . . . , qj+deg(pi)−1 then the distances from u′
i to v′

j , and v′
j+deg(pi)−1 are equal to dmin and

dmax, respectively. This implies that the distance from u′
i to v′

t, where piqt /∈ E is either less than

dmin or greater than dmax. Next, if deg(pi) < dm and its neighbors are q1, q2, . . . , qdeg(pi) then

the distance from u′
i to v′

deg(pi)
is dmax. In this case, the distance from u′

i to v′
t, where piqt /∈ E is

greater than dmax. Finally, if deg(pi) < dm and its neighbors are qq, qq−1, . . . , qq−(deg(pi)−1), then

the distance from ui to v′
q−(deg(pi)−1) is dmin. Thus the distance from u′

i to v′
t where piqt /∈ E is less

than dmin. Therefore, the distance between two leaves is within the range defined by dmin and

dmax if and only if their corresponding vertices in G are adjacent. Again, dmin must be greater

than the maximum possible distance between the two leaves of Cp; and the weight of l should be

chosen accordingly so that the distance between the two leaves corresponding to two adjacent

vertices of G is greater than the maximum possible distance between the two leaves of Cp. The
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maximum possible distance between the two leaves of Cp is the distance between leaves u1 and

up when Wp(1) and Wp(p) get their maximum possible weight. Again, they get their maximum

weight when p1 and pp are connected only to the first vertex (q1) in the Q-partite set. In this

situation Wp(1) = p+q−(1−1)−(p−1+1) = q and Wp(p) = p+q−(1−1)−(p−p+1) = p+q−1

using the formula as stated in Eqn. 3.1. Now maximum possible distance between two vertices

of the same caterpillar is equal to maximum distance between u1 and up

= (maximum weight of leaf u1) + (maximum weight of leaf up) +(p − 1)

= q + (p + q − 1) + (p − 1) = 2(p + q − 1). Then dmin must be greater than 2(p + q − 1) and

we assign dmin = 2(p + q − 1) + 1. Now l = dmin − d′
min = 2(p + q − 1) − d′

min + 1. Therefore,

T is a pairwise compatibility tree of G. Q.E .D.

Figure 3.7(a) illustrates an example of the bipartite graph as specified in Theorem. 3.2.2.

In this example, p = 5, q = 4 and dm = 3. Note that deg(p1) = deg(p3) = dm = 3 and other

vertices of P -partite set are of less degree. Two vertices p1 and p3 are connected to 3 vertices

of Q-partite set having neighbor set {q1, q2, q3} and {q2, q3, q4} respectively. On the other hand,

deg(p2) = 2 which is less than dm and its neighbors are q1 and q2. Similarly vertices p4 and p5

have degree one and their neighbor is q4. Here Nskip(p1) = 0, Nskip(p3) = 1 and Nskip(p4) = 3.

Figure 3.7(b) illustrates the pairwise compatibility tree T of the graph given in Fig. 3.7(a)

obtained by the construction in the proof of Theorem. 3.2.2. One can easily verify that T is

the pairwise compatibility tree of G.

3.3 Summary

In this chapter we have settled the conjecture that every graph is a pairwise compatibility graph

in negative. At the same time, we revealed the fact that not all bipartite graphs are PCGs.

We have also recognized two subclasses of bipartite graphs as PCGs.



Chapter 4

Tree Power Graphs and PCGs

In this chapter we recognize that tree power graphs and two of its extensions namely phyloge-

netic k-power graphs and Steiner k-power graphs are pairwise compatibility graphs. We first

discuss the importance of establishing such relationships. Next, we continue in Section 4.1 with

giving a brief description on tree power graphs and their extensions, and introducing the “tree

compatible graphs.” In Section 4.2 we establish that every tree compatible graphs are pairwise

compatible graphs. Finally Section 4.3 is a conclusion.

For any class of graphs, recognition is a fundamental structural and algorithmic problem.

Hence, recognizing tree power graphs and some of its extensions as PCGs is very important. But

the most intriguing potential of this recognition lies in the fact that there is rich literature on tree

roots and powers (more generally graph powers/roots), but few results on PCGs. Substantial

works have been done on the power of special classes of graphs such as chordal graphs [BP83,

LS83], interval graphs [R87], strongly chordal graphs [R92] and circular arc graphs [R92].

Moreover, it is well known that the square of a 2-connected graph has a Hamiltonian cycle [F74],

and the Hamiltonian cycle can be found in polynomial time [L80]. Furthermore, Skiena showed

that for any non-trivial connected graph G, the graph G3 is Hamiltonian [S60]. Knowing that

tree power graphs and their extensions are PCGs, we can utilize the algorithmic properties of

these classes in PCG.

We have already mentioned that the complete characterization and the computational com-

38
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plexity of recognizing PCGs are not known to date. But a lot of work has been done on power

graphs and their extensions. kth power recognition of a tree can be solved in polynomial time

for k > 2; for bipartite graphs it is NP -complete [L06]. Lau et al. showed that for proper

interval graphs it is in P [L06]. They also proved the NP -completeness of recognizing squares

of chordal graphs, recognizing squares of split graphs, and recognizing chordal graphs that are

squares of some graph. For k ≤ 5, k-leaf powers can be recognized in linear-time, and for k ≤ 4,

structural characterizations are known [BL09].

Tree power graphs, phylogenetic k-power graphs and Steiner k-power graphs have appli-

cations in the reconstruction of the evolutionary history of species and admit efficient algo-

rithms for generally difficult problems, that mainly exploit the tree structure of the underlying

tree [FMRST08]. Since pairwise compatibility graphs have also been descended from phylogeny,

it is quite important to investigate the existence of any relationship of these aforementioned

three graphs classes with pairwise compatibility graphs. Such a relationship may serve the

purpose of not only unifying related graph classes, but also utilizing the method of tree con-

structions for one graph class in another.

4.1 Tree Compatible Graphs

To establish the relationship of tree power graphs, phylogenetic k-power graphs, and Steiner k-

power graphs with pairwise compatibility graphs, we introduce a generalized graph class which

we call “tree compatible graphs.” Before defining tree compatible graphs, we first present a

brief overview on phylogenetic k-root tree, Steiner k-root tree, and k-root tree of a graph G.

Interested readers are referred to [LKJ00] to know more about these graphs.

4.1.1 Phylogenetic k-root Tree

Interspecies similarity is represented by a graph where the vertices are the species and the adja-

cencies represent evidence of evolutionary similarity. A phylogeny is then constructed from the

graph such that the leaves of the phylogeny are labeled by vertices of the graph and two vertices
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are adjacent in the graph if and only if the corresponding leaves in the tree are connected by

a path of length at most k, where k is a chosen proximity threshold. This gives rise to the

following algorithmic problem:

Problem Phylogenetic k-root Problem

Input A graph G = (V, E).

Output A tree T such that its leaves are labeled by V and for each pair of

vertices u, v ∈ V, (u, v) ∈ E if and only if dT (u, v) ≤ k.

The tree T which is asked to construct in the phylogenetic k-root problem is called a k-

root phylogeny of G and G is called the kth phylogenetic power of T . Lin et al. proposed an

O(|V |+ |E|) time algorithm to determine if a (not necessarily connected) graph G = (V, E) has

a 3-root phylogeny, and if so, demonstrate one such phylogeny [LKJ00]. They also proposed

an O(|V | + |E|) time algorithm to determine if a connected graph G = (V, E) has a 4-root

phylogeny, and if so, demonstrate one such phylogeny.

4.1.2 Steiner k-root Tree

In the context of phylogenetic k-root tree T of G, only the leaves correspond to the vertices of

G. However, it is sometimes useful to allow the vertices in V to appear as internal nodes in the

output tree T . This gives rise to the following problem:

Problem Steiner k-root Problem

Input A graph G = (V, E).

Output A tree T such that its leaves and a subset of internal vertices are

labeled by V and for each pair of vertices u, v ∈ V, (u, v) ∈ E if and

only if dT (u, v) ≤ k.

The tree T which is asked to construct in the Steiner k-root problem is called a k-root

Steiner tree of G and G is the kth Steiner power of T . The internal nodes of T that do not

correspond to any vertex of G are termed Steiner points. Note that a phylogenetic tree of V is
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a Steiner tree of V where all internal nodes are Steiner points.

4.1.3 k-root Tree

Phylogenetic power and Steiner power are extensions of the standard notion of graph power.

An important special case of graph power is tree power. The tree k-root problem is as follows.

Problem Tree k-root Problem

Input A graph G = (V, E).

Output A tree T on V such that (u, v) ∈ E if and only if dT (u, v) ≤ k.

The tree T which is asked to construct in the tree k-root problem is called a k-root tree of

G. Whereas recognizing a graph power is NP -complete [MS94], it is possible to determine if

a graph has a k-root tree, for any fixed k, in O(n3) time, where n is the number of vertices in

the input graph [KC98].

4.1.4 Tree Compatible Graphs

A graph G = (V, E) is a tree compatible graph if there exists a tree T such that all leaves

and a subset of internal nodes of T correspond to the vertex set V of G, and for any two

vertices u, v ∈ V ; (u, v) ∈ E if and only if kmin ≤ dT (u, v) ≤ kmax. Here kmin and kmax are

real numbers. We call G the tree compatible graph of T for kmin and kmax. It is quite evident

from this definition that tree compatible graphs comprises tree power graphs, Steiner k-power

graphs, and phylogenetic k-power graphs.

4.2 Tree Compatible Graphs are PCGs

As their definition suggests, tree power graphs and their extensions have striking resemblance,

in their underlying concept, with PCGs. But does this similarity signify any real relationship?

It does indeed; we find that tree power graphs and these two extensions are essentially PCGs,
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as in the following theorem.

Theorem 4.2.1 Every tree compatible graph is a pairwise compatibility graph.

Proof. Let G be a tree compatible graph of a tree T for non-negative real numbers kmin and

kmax. Then to prove the claim, it is sufficient to construct a tree T ′ and find two non-negative

real numbers dmin and dmax such that G = PCG(T ′, dmin, dmax).

Clearly G = PCG(T ′, dmin, dmax) for T ′ = T , dmin = kmin and dmax = kmax if every vertex

in V corresponds to a leaf in T . We thus assume that V contains a vertex which corresponds to

an internal node of T . In this case we construct a tree T ′ from T as follows. For every internal

node u of T that corresponds to a vertex in V , we introduce a surrogate internal node u′. In

addition, we transform u into a leaf node by connecting u through an edge of weight λ with

u′. Figure 4.1 illustrates this transformation. Here, in addition to the leaves of T , two internal

nodes d and e correspond to the vertices in V . T ′ is the modified tree after transforming d and

e into leaf nodes by replacing them by d′ and e′, respectively.
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Figure 4.1: (a) T and (b) T ′.

The aforementioned transformation transmutes the subset of internal nodes of T that par-

ticipates in V into a subset of leaves in T ′. Let u and v be two arbitrary nodes in T . If u and

v are both leaves in T then dT ′(u, v) = dT (u, v). If both u and v are internal nodes of T that
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are contributing to V then in T ′ they are two leaf nodes, and dT ′(u, v) = dT (u, v)+2λ. Finally,

if only one of u and v is transformed to leaf then dT ′(u, v) = dT (u, v) + λ. We next define

dmin = kmin and dmax = kmax + 2λ. Since every vertex u ∈ V is represented as a leaf in T ′, T ′

may be a pairwise compatibility tree of G. We will prove that T ′ is indeed a pairwise compat-

ibility tree by showing that G = PCG(T ′, dmin, dmax) for an appropriate value of λ. Note that

we cannot simply assign λ = 0 because, in the context of root finding as well as phylogenetics,

an edge of zero weight is not meaningful. For example, if an evolutionary tree contains zero

weighted edges then we may find a path of length zero between two different organisms, which

is clearly unacceptable. Therefore, we have to choose a value for λ more intelligently.

According to the definition of tree compatible graphs, for every pair of vertices u, v ∈ V ,

(u, v) ∈ E if and only if kmin ≤ dT (u, v) ≤ kmax. Meanwhile, we have derived T ′ from T

in such a way that either the distance between u and v in T ′ remains the same as in T , or

increased by at most 2λ. Therefore, if we can prove that dmin ≤ dT ′(u, v) ≤ dmax if and only

if kmin ≤ dT (u, v) ≤ kmax then it will imply that G = PCG(T ′, dmin, dmax). Depending on the

nature of the change in the distance between u and v from T to T ′, we have to consider three

different cases.

Case 1: dT ′(u, v) = dT (u, v).

In this case, three possible relationships can exist among dT (u, v), kmin and kmax. First, if

dT (u, v) < kmin then dT ′(u, v) < dmin since dmin = kmin. Next, if kmin ≤ dT (u, v) ≤ kmax then

kmin ≤ dT (u, v) ≤ kmax+2λ. That implies, dmin ≤ dT (u, v) ≤ dmax. Finally, let dT (u, v) > kmax.

Suppose p is the minimum difference between kmax and the length of a path in T that is longer

than kmax, that is p = min
u,v∈V

{dT (u, v) − kmax} . Then dT (u, v) − kmax ≥ p. By subtracting

2λ from both side of the inequality we get, dT (u, v) − kmax − 2λ ≥ p − 2λ. Which implies

dT ′(u, v)− dmax ≥ p− 2λ. Therefore, if we can ensure that p > 2λ then dT ′(u, v) will be larger

than dmax.

Case 2: dT ′(u, v) = dT (u, v) + 2λ.

In this case, we have to consider three scenarios as we have in case 1. First, if kmin ≤ dT (u, v) ≤

kmax then kmin ≤ dT (u, v) + 2λ ≤ kmax + 2λ. Which implies dmin ≤ dT (u, v) + 2λ ≤ dmax.
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Hence dmin ≤ dT ′(u, v) ≤ dmax. Next, if dT (u, v) > kmax then adding 2λ in both sides we

get dT (u, v) + 2λ > kmax + 2λ. That implies dT ′(u, v) > dmax. Finally, let assume that

dT (u, v) < kmin. Suppose q is the minimum difference between kmin and the length of a path

in T that is smaller than kmin; that is q = min
u,v∈V

{kmin − dT (u, v)}. Then kmin − dT (u, v) ≥ q.

Subtracting 2λ from both sides of the inequality we get kmin − dT (u, v) − 2λ ≥ q − 2λ. Which

implies dmin−dT ′(u, v) ≥ q−2λ. Therefore, if we can ensure that q > 2λ then dT ′(u, v) < dmin.

Case 3: dT ′(u, v) = dT (u, v) + λ.

This case is similar to case 2. By following the same reasoning as in case 2, we can show that

dmin ≤ dT ′(u, v) ≤ dmax if and only if kmin ≤ dT (u, v) ≤ kmax, provided q ≥ λ. If we can satisfy

the inequality derived from case 2 (q > 2λ) then the inequality q > λ will be immediately

satisfied.
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Figure 4.2: (a) A tree compatible graph, (b) the corresponding tree T , and (c) the corresponding

pairwise compatibility tree T ′.

From our analysis of the three cases above, it is evident that if we can satisfy the two

inequalities p > 2λ and q > 2λ simultaneously then G = PCG(T ′, dmin, dmax). We can do this

by assigning λ any value smaller than min(p, q)/2. Thus T ′ is a pairwise compatibility tree of

G, and hence G is a PCG. Q.E .D.
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Figure 4.2(a) illustrates an example of a tree compatible graph G = (V, E) and the corre-

sponding tree T is depicted in Fig. 4.2(b). Here kmin = 2, kmax = 4, and the weight of every

edge is one . Two internal nodes d and e along with the leaves of T correspond to the vertices in

V of G. We now transfer T into T ′ according to the procedure described in Theorem 4.2.1. Fig-

ure 4.2(c) illustrates this transformation. Here, p = q = 1 and hence we can chose any positive

value less than 0.5 for λ. Let λ = 0.4 and then, dmin = kmin = 2 and dmax = kmax + 2λ = 4.8.

One can now easily verify that G = PCG(T ′, 2, 4.8).

4.3 Summary

In this chapter we have established a relationship of pairwise compatibility graphs with the tree

power graphs and two of their extensions. We have showed that tree power graphs, phylogenetic

k-power graphs and Steiner k-power graphs are pairwise compatibility graphs.



Chapter 5

Improper PCGs

In this chapter we introduce a new notion which we call “improper PCGs.” We start with

defining improper PCG and other related terms in Section 5.1. In Section 5.2, we show that

every graph is an improper PCG. We present some preliminary results on triangulated planar

graphs in Section 5.3 and present a heuristic algorithm to construct an “improper pairwise

compatibility tree” of any triangulated plane graph in Section 5.4. Finally we conclude in

Section 5.5.

5.1 Improper PCGs

In this section we introduce two new concepts that we call redundancy and improper PCG. A

graph G is an improper PCG if the corresponding pairwise compatibility tree can be constructed

by allowing multiple existences of the same leaf; we call these extra leaves redundancies. Fig. 5.1

shows an example of redundancy and improper PCG. Here the pairwise compatibility tree T

in Fig. 5.1(b) contains two leaves corresponding to the vertex v6 of G in Fig. 5.1(a), one of

which is called a redundancy (enclosed by grey circle). We call the pairwise compatibility tree

T , allowing some redundancies, an improper pairwise compatibility tree. We denote the number

of redundancies by nrd . In Fig. 5.1(b) nrd = 1. For an improper pairwise compatibility tree

nrd ≥ 0. Obviously, a PCG is also an improper PCG, but the reverse is not necessarily true.

46
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Figure 5.1(c) illustrates a pairwise compatibility tree of G in Fig. 5.1(a)with nrd = 0. Given
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Figure 5.1: (a) A graph G, (b) an improper pairwise compatibility tree of G and (c) a pairwise

compatibility tree of G.

a graph G, the improper pairwise compatibility tree construction problem asks to construct an

edge weighted tree T with nrd ≥ 0 such that G is an improper PCG of T for suitable dmin and

dmax.

The concept of improper pairwise compatibility graph not only opens up an interesting field

of theoretical research, but also possesses some significant practical values. Phylogenetic tree

deals with the evolutionary histories of groups of organisms that play a major role in represent-

ing the interrelationships among biological entities. But the problem posed by phylogenetics

is that genetic data are only available for the present, and fossil records are sporadic and less

reliable. Hence what we can do is to use our knowledge of how evolution operates to reconstruct
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the phylogenetic tree [SE67]. Unfortunately, however, evolutionary history is not something

we can see. It has only happened once and only leaves behind clues as to what happened.

Systematists use these clues to try to reconstruct evolutionary history. Thus, a phylogenetic

tree is based on a hypothesis of the order in which evolutionary events are assumed to have

occurred. Hence, nothing is absolute in phylogenetics rather everything is tentative. Therefore,

biologists are interested in revealing the tentative patterns of relationships among organisms.

In this connection, improper pairwise compatibility tree may serve the purpose of modeling

the tentative evolutionary history among different biological entities at the cost of some redun-

dancies. As far as the hypothetical nature of phylogenetic tree is concern, these redundancies

will not hamper the tentative pattern of relationships. Moreover, since constructing pairwise

compatibility tree is difficult and, in some cases, impossible, improper pairwise compatibility

tree can be an effective alternative in modeling evolutionary history.

5.2 Every Graph is an Improper PCG

In this section we show that every graph is an improper PCG, as in the following theorem.

Theorem 5.2.1 Every graph is an improper PCG.

Proof. Let G = (V, E) be any graph. Let ni be the number of neighbors of a vertex ui ∈ V

and these neighbors are ui1, ui2, ui3, . . . , uini
. We first construct a star for each vertex ui ∈ V

with ni +1 leaves where one leaf corresponds to the vertex ui and other leaves correspond to its

neighbors. We next assign 1 as the weight of the edge incident to the leaf corresponding to ui,

and 2 as the weight of each edge incident to the leaves, that correspond to the neighbors of ui.

Finally, we connect all the bases of these stars to a single node through edges of weight 1 and let

the resulting tree be T . Let dmin = dmax = 3. One can easily verify that the distance between

two leaves in T corresponding to two adjacent vertices in G is 3. Otherwise, the distance is

greater than 3. Thus T is the pairwise compatibility tree of G with some redundancies. Hence

G is an improper PCG. Q.E .D.
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u1 u11 u12 u1n1
u2 u21 u22 u2n2 un un1 un2 unnn

Figure 5.2: An improper pairwise compatibility tree of any graph with n vertices.

This construction process is illustrated in Fig. 5.2. Figure 5.3 illustrates the pairwise com-

patibility tree of Kn obtained by this method where vertices are labeled as 1, 2, 3, . . . , n. This

is the worst case of our construction where the required number of leaves is n2 for a graph

with n vertices. And the total number of nodes is n2 + n + 1 (including leaves and all other

intermediate nodes).

nnn n − 11 11 222 33

Figure 5.3: An improper pairwise compatibility tree of Kn.

To reduce the number of redundancies, we can take the following strategy. While we are

constructing the star for a vertex u ∈ V , we can exclude its neighbor v ∈ V if the corresponding

star of v is already been constructed since the connectivity of u and v is already taken in

account in the star corresponding to v. We can do so by labeling the vertices of G numerically
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(1, 2, 3, . . . , n) and constructing the star for the lowest numbered vertex first, then for the

second lowest and so on. We can now exclude all lower numbered neighbors of any vertex u

while constructing its corresponding star. Figure 5.4 illustrates the tree constructed by this

method for Kn. Here total number of leaves is, n + (n− 1) + (n− 2) + . . . + 2 = n(n− 1)/2− 1

and total number of nodes is n(n−1)/2−1+(n−1)+1 = (n−1)(n+2)/2. Hence the following

theorem holds.

nnn n − 11 22 33 4

Figure 5.4: Improved construction of improper pairwise compatibility tree of Kn.

Theorem 5.2.2 An improper pairwise compatibility tree of a graph with n vertices can be

constructed with at most n(n−1)
2

− (1 + n) number of redundancies.

5.3 Triangulated Planar Graphs

In this section we discuss some triangulated plane graphs that are PCGs. These results will be

used in our heuristic algorithm for constructing improper pairwise compatibility tree for any

triangulated plane graphs.

The pairwise compatibility tree T of a triangle, as shown in Fig 5.5(a), is a caterpillar as

illustrated in Fig. 5.5(b). We assign 1 as the weight of each edge. Let dmin = 3 and dmax = 4.

Now one can easily verify that T is the pairwise compatibility tree of the triangle.
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Figure 5.5: (a) A triangle G and (b) a PCG of G.

We now merge multiple triangles in two different ways. First, we merge arbitrarily large

number of triangles in such a way that two consecutive triangles share an edge and the vertices

of the graph can be numbered in such a way that the endpoints of an edge shared by two

triangles get consecutive numbers, i.e, for an shared edge uv, if u gets label n then the label

of v is n − 1 or n + 1. We call this sort of numbering sequential numbering. We denote this

type of merging as type1. Fig. 5.6(a) shows an example of this sort of graphs. To construct the

corresponding pairwise compatibility tree we merge the individual caterpillars for each triangle

as shown in Fig. 5.5(b) and let T be the resulting tree as illustrated in Fig. 5.6(b). Values for

dmin and dmax remains the same as it was for a single triangle, i.e, 3 and 4 respectively.
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1 2 3
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11 111

1

54

(a) (b)

Figure 5.6: (a) Merging of triangles (type1), and (b) its PCG.

We now consider another type of merging which we call type2. In this case, no two triangles

share any edge rather they share only one vertex as shown in Fig. 5.7(a). In this case, we

construct a caterpillar for each triangulated face in the same way as illustrated in Fig. 5.5(b)

and subdivide the edge that connects a leaf to the spine of the caterpillar. We now merge these

caterpillars as in Fig. 5.7(b) and let the resulting tree be T . We assign 1 as the weight of each

edge except the edge by which two caterpillars are merged – where we assign 2. Let dmin = 5
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Figure 5.7: (a) Merging of triangles (type2), and (b) its PCG.

and dmax = 6. We can see that d(1, 2) = d(2, 3) = d(3, 4) = 5, d(1, 3) = 6 that are within the

range but d(1, 4) = d(2, 5) = 9 which is out of the range. Hence T is the pairwise compatibility

tree of the graph as illustrated in Fig. 5.7(a).

We now consider both of these two types simultaneously. Fig. 5.8(a) shows an example

of such a graph where two triangles can share either a single vertex or an edge and for the

later case the shared edge admits an sequential numbering, i.e., endpoints are labeled with

consecutive numbers. Now using the corresponding construction processes of these two types

(type1 and type2), we can construct the pairwise compatibility tree T of the graph shown in

Fig. 5.8(a). Fig. 5.8(b) illustrates such construction. One can now easily verify that T is

pairwise compatibility graph of G for dmin = 5 and dmax = 6. Hence the following theorem

holds.

Theorem 5.3.1 Let G be a triangulated plane graph such that two faces of G can share a

vertex, or can share an edge e which admits a sequential numbering. Then G is a pairwise

compatibility graph.
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Figure 5.8: (a) A graph G combining the criteria of type1 and type2, and (b) a pairwise

compatibility tree T of G.

5.4 A Heuristic Algorithm for Improper PCG

For any graph G, an improper pairwise compatibility tree T can be constructed with nrd ≥ 0.

If there exists a tree with nrd = 0, then G is a PCG. Since we have already shown that not

all graphs are PCGs, it is not always possible to construct a tree T with nrd = 0. In this

context, constructing an improper pairwise compatibility tree with the minimum number of

redundancies is an important concern. Motivated by this problem, we now give a heuristic

algorithm to efficiently construct an improper pairwise compatibility tree of any triangulated

plane graph with smaller number of redundancies.

Let, G = (V, E) be a triangulated plane graph. First, we construct the inner dual G∗ =

(V ∗, E∗) of G. Let G∗ is consisting of the subgraphs G∗
1, G

∗
2, G

∗
3, · · · , G∗

n. For every G∗
i , we

construct the improper pairwise compatibility tree for the subgraph of G corresponding to G∗
i

as follows. We traverse G∗
i starting from an arbitrary vertex according to depth first traversal

(although any kind of traversal will do). While moving from u to v where u, v ∈ V (G∗
i ), we

cross an edge e ∈ E of G. Let fu and fv be the faces of G corresponding to u and v of G∗,

respectively. If e admits sequential numbering then we merge the tree of the face fv with the
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tree corresponding to the face fu according to the procedure as illustrated in Fig. 5.6. Otherwise

we delete one of the two edges (e1, e2) of fv, other than e, as follows. If only one of the ei, i ∈ 1, 2

is shared with other face then we delete the non-shared edge. If both of the edges are shared,

or not shared with other faces then any one of the e1 or e2 can be deleted. Let ed be the

edge to be deleted. If ed is not shared with any other face then v is a leaf of G∗. Then after

deletion of ed, there is just one edge connected to the face as illustrated in Fig. 5.9(a) and we

can extend the tree as illustrated in Fig. 5.9(b). If ed is shared with a face fd then we traverse

1 2 3

11

1 1 1

1 1

1

1 3

4

2
2

1

1

4

(a) (b)

Figure 5.9: (a) A graph G, and (b) a pairwise compatibility tree T of G.

the vertex corresponding to the face fd. In this case, fd is connected with the subgraph, the

faces of which are already traversed, according to type2 (see Fig. 5.7) and we merge the tree

for fd accordingly without deleting any edge of fd. In this way we traverse the tree Ti and

build the pairwise compatibility tree incrementally. Note that, so far, no redundancy has been

introduced. We now consider the edges that were deleted. Let, uv ∈ E be an deleted edge.

Then either u or v is present in the improper pairwise compatibility tree, i.e., either u or v

corresponds to a leaf. Without loss of generality let u be that vertex. We then introduce a leaf

for v and connect it to the parent of the leaf corresponding to u through a path of weight 4 as

illustrated in Fig. 5.9(b). Note that the subgraphs of G corresponding to the subgraphs of G∗

are connected as type2. Hence we can merge the improper pairwise compatibility trees of G∗
i ,
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i ∈ 1, 2, 3, · · · , n according to the procedure as illustrated in Fig. 5.7, and let T be the resulting

tree. Now, T is the improper pairwise compatibility tree of G for dmin = 5 and dmax = 6. We

call our algorithm Improper-Triangular.

Fig. 5.10 demonstrates the execution of Algorithm Improper-Triangular for an input

graph G as illustrated in Fig. 5.10(a). In this figure, triangulated faces of G that are drawn

by dotted lines are yet to be traversed, and the traversed faces have been drawn by solid lines.

Similarly, the untraversed edges of G∗ are drawn by grey lines whereas the traversed edges

of G∗ are black. The edges of G that has to be deleted (the edge incident between 4 and 6

in this example) are indicated by dashed lines. Figure 5.10(j) shows the improper pairwise

compatibility tree of G.

We now have the following theorem on the upper bound of the number of redundancies

need to be introduced in Algorithm Improper-Triangular.

Theorem 5.4.1 Algorithm Improper-Triangular constructs an improper pairwise compat-

ibility tree with at most f/2 number of redundancies where f denotes the number of faces of

G.

Proof. Let G be a triangulated plane graph and G∗ be the inner dual of G. In Algorithm

Improper-Triangular, while traversing G∗, we need to cross an edge e of G. If e admits a

sequential numbering then no edge is deleted, and the corresponding pairwise compatibility

tree can be constructed as type1. Otherwise we delete an edge ed which in turn results into a

redundancy. After deletion of an edge ed, the next face fd of G on the traversal is connected

as type2, for which the corresponding tree can be constructed without deleting any edge, i.e,

by introducing no redundancy. This implies that at most one redundancy may be introduced

for two consecutive faces of G on the traversal. Thus the total number of edge deletion which

is equal to the number of redundancies is no more than f/2 where f denotes the number

of faces in G. Therefore, Algorithm Improper-Triangular constructs an improper pairwise

compatibility tree for any triangulated plane graph with at most f/2 redundancies. Q.E .D.
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Figure 5.10: Construction of the improper pairwise compatibility tree according to the heuristic

algorithm.
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5.5 Summary

In this chapter we have introduced the new notion of improper PCGs. We have showed that all

graphs are improper PCGs. We have also presented an efficient heuristic algorithm to construct

an improper pairwise compatibility tree for any triangulated plane graphs.



Chapter 6

Conclusion

In this thesis we have dealt with different theoretical aspects of pairwise compatibility graphs.

We have started with an introductory overview on phylogeny and pairwise compatibility graphs

in Chapter 1. In that chapter we have given a precise definition of pairwise compatibility graphs

and discussed various practical applications of this graph. We also gave a literature review and

described our objective of this thesis.

In Chapter 2 we have introduced the preliminary ideas on graph theory and on pairwise

compatibility graphs. We have also discussed tree power graphs and two of its extensions, and

complexity theory in detail in this chapter.

In Chapter 3 we have resolved the open question regarding whether or not every graph is

a pairwise compatibility graph. We have showed that not all graphs are pairwise compatibil-

ity graphs. we have also studied the pairwise compatibility graph recognition problem and

established two restricted classes of bipartite graphs as PCG.

In Chapter 4 we have showed that tree power graphs, Steiner k-power graphs and phyloge-

netic k-power graphs are pairwise compatibility graphs.

In Chapter 5 we have introduced a new notion called improper PCG. We have showed that

all graphs are improper PCGs. We have also presented a heuristic algorithm to construct an

improper pairwise compatibility tree of any triangulated plane graph.

This thesis goes a long a way to address different important and challenging problems
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regarding pairwise compatibility graphs. However, the following problems are still open and

remained as future works.

1. To study the complete characterization of pairwise compatibility graph. The main chal-

lenge here, from the point of view of theoretical research, is to find a necessary and

sufficient condition for a graph to be a PCG.

2. To develop an algorithm that can construct a pairwise compatibility tree (if exists) for a

given graph. Since there may be multiple pairwise compatibility trees for a single graph,

researchers can also put their heads to find the one which describes the evolutionary

process more significantly than the others. As this is likely to be NP-hard (as is almost

everything in phylogeny estimation), heuristics for these problems need to be developed.

Furthermore, since the internal nodes of evolutionary trees are hypothetical, we first need

to define the criteria based on which we can classify a tree topology as significant one.

3. To study the complexity of testing whether a given graph is a pairwise compatibility

graph or not.

4. To find the smallest graph class that encompasses all of the pairwise compatibility graphs.

5. To find the number of pairwise compatibility graphs on n vertices.
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