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Abstract

Unsteady free convection boundary layer flow over a heated plate with different

inclinations have been studied numerically. The governing equations are then made

dimension1css by_using usual similarity transformations. The dimensionless equations are

solved numerically by appl}ing Nachtsheim-Swigert shooting iteration technique along

with Runge-Kulla sixth order integration method.

Two cases of the motion of the flow have been considered; one is the impulsive motion

and the other is the unifonnly acce1crated motion _The plate temperature is assumed (0

be a function of time. The dimensionless ~elocity, temperature and pressure profiles aTe

shown graphically for different values of the parameters entering into the problem -

The numerical values of the local skin-friction and local Nussell number are also

presented in tabular fOnTI.

Finite difference analysis of natural convection flow over an inclined heated plate have

been studied numerically. We have studied the natural convection flow over an inclined

flat plate by employing implicit finite-difference method of Crank-Nicolson method. The

transient ,-elocity and temperature prollles are displayed graphically and discussed

thereafter. The stability and convergence of the implicit finite-difference scheme are

established as well. The software fORTRAN 90 is used to perform computational job

and the post processing software MS Excel has been used to display the numerical results

graphically.
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: Specific heat at constant pressure

: Constant or mean velocity

: Free stream temperature

: Temperature at any point of the flow field

: Wall temperature

: Cartesian coordinates

: Velocity components in the x and y directions,

: respectively.

: Gravity acceleration

: NusscltNL1mber

: GrashofNumber

: Prandtl NUDlbcr

: Dimen,ionless stream function

: Suction parameter

: Time

: Dimensionless pressure ofthe fluid

: Fluid pressure

: VeJocityfield

: TIJefmal comillctivity

: Any integer

: Dimensionless co-ordinates
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: Time dependent length scale

: Wall skin friction
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1.1 Introduction
Natural convection is a mechanism oftran,port in which fluid motion is not generated by

any external source like pump, fan, suction device, and moving solid object in contact

with fluid but only by den,ity differences in fluid occurring due to temperature gradients.

The heat transfer coefficient in natural convection is less than that of in forced

convcction. The movements of the fluid in free convection whether it is a gas or liqUid

result from the buoyancy forces imposed on the fluid when its dcnsity iTI the proximity of

the heat transfer surface is decreased as a rcsult of the heatiug process, The presence of

buoyancy forces likc gravitation or an equivalent force ansing from the equivalence

principle is essential for natural convection, It is important to note that body forces other

than gravity can act to move the fluid in a natural convection problem. For example

centripetal acceleration is a body force that exits in rotating machinery. Thc Coriolis

force is a body force that is significant in oceanic and atmospheric motions. Although a

number of variations can exist, the common situation is working with natural-convection

problems where the body force is gravitational and the dell5ity gradient is due to a

temperature gradient.

The tempcrature distribution in natural convection depends on the intensity of fluid

currcnts that depends on the temperature potential. So the quantitative and qualitati"e

analysis of natural convection heat transfer is difficult. Experimcntal and numerical

investigations take place for solving hcat transfcr and fluid flow problems. Also an

overall comparison of experimental, numerical method with theoretical analysis

established here to show the reliability of methods. Thc aim of the present work is to

study the frce convection boundary layer flow over a heatcd plate with different

inclinations considering time dependent plate temperature.

Natural conve<::tion attracted a great deal of attention of researchers be<::ause of its

presence in nature like the rising plume of hot air from fire, oceanic current" sea-wind

r
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formation, soil-flow dynamics, fog [annalion and also in engineering applications like

formation of microstructures during the cooling of molten metals, shrouded fins, solar

ponds, nuclear reactor operation. The most common analysis of heat transfer is on flat

plate. Recently heat transfer for non-plane surface plates are in concern. The natural

convection procedures are governed essentially by three (eahlre, namely the body force,

the temperature difference in the flow field and the Iluid density discrepancy with

temperature. Naluml convection is the most important style of heat transfer fonn pipes,

transmi:;sion lines, refrigeration coils, burning radiators and various realistic situations.

The manipulation ofnarural convection oflhe heat transfer can be deserted in the case of

large Reynolds number and very small Grashof number. Alternativc1y, the natural

convection should be dle governing aspect for large Grashof number and Reynolds

numher.

The main objectives of the project are as follows-

• To observe the effect of inc1ination on natural convection heat transfer for

different surface geometry .

• To evaluate wall shear stress in tenns of local skin friction and rate of heat

transfer in terms of local Nusselt number .

• To displayed the velocity, temperature and pressure profiles for different valu.es

of the controlling parameters .

• To solve numerically by using shooting method, the basic equations arc

transformed to non dimensional boundary layer equations.

Natural convection is observed as a result of the motion of the fluid due to the density

changes arising fOillI the heating process. This case occurs at very small velocities of

motion in the process of large temperature differences. A hot radiator used for heating a

room is one example ofa practical device which transfers heat by natural convection. The

movcment of/he fluid in natural convection, whether it is gas or liquid, results from the

buoyancy forces imposed on dle fluid when its density in the proximity of the heat

transfer surface is decreased as a result of the heating process. TIle buoyancy forces

would not be present if the fluid were not acted upon by same external force field such as

, -f-..,I.
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gravilY, although gravity is not the only type of force field which can produce the natural

convection currents; a fluid enclosed in a rotating machine is acted upon by a centrifugal

force field, and thus could experience nalunl convection currents if onc or more of the

surface in contact with fluid were heated. The buoyancy forces which give rise to the

natural convection currents are called body forces.

For natura! convective flows to be dynamically similar, the Grashof number

(G g~fJATLl h '.J. .. I I . "h hi., " 1 ,were gu 1S",e gravltatlOna acce orallOn, I' IS let erma expanslOll

"
coenient, !1T is the temperature difference, L is the length scale and v is the kincma\lc

viscosity) and the Prandtle number (p, =V:p ,where "is the IOlmal conductivity, pIS

tile Iluid density and c
p
i, the specific heat at constant pressure) must be the same in both

the systems.
The governmg equations for convection flow are coupled elliptic partial differential

equations and, therefore, of considerable complexity. The major problems in obtaining a

solutions to these equations lic in the inevitab1c variation of density with temperature, or

concentration, and in their partial, elliptic nature, Several approximations are generally

made to considerably simplify these equations. Among them Boussinesq approXimation

attributed to Boussi!1esq (1903) is considered here. In flows accompanied by heat

transfer, the fluid properties are nonnally functions of temperature. The variations may be

small and yet be the cal.lse of the fluid motion, If the density variation is not large, one

may treat the density as constant in the LIllsteadyand convection telms, and treat it as

variable only in the gravitational term. Tbis is called Boussinesq approximation.
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1.2 Literature Survey
Natural convection flows under the influence of gravitational force have beoll

investigated most extensively because they occur frequently in nature as well as in

science and engineering applications. When a heated surface is in contact with the fluid,

temperature difference causes buoyancy force, which induces the natural convection.

Natura] convection flow has been studied in various types of surface such as flat plate,

sphere, cylinder, vertical cone etc. The study of temperature and heat transfer is of great

imporlance to the engineers because of its almost universal occurrence in many branches

of science and engineering. Although heat transfer analysis is most important for the

proper sizing of fuel elements in the nuclear reactors cores to prevent burnout. The

perfonnance of aircraft also depends upon the case with which the structure and engines

can be cooled. Heat tmnsfer is commonly associated with fluid dynamics. The knowledge

of temperature distribution is essential in heat transfer studies because of the fact that the

heat flow takes place only whenever there is a temperature gradient in a system. The

three different manners of heat transfer namely; conduction, convection and radiation

must be considered.
The theoretical analysis and experiments carried out by Schmidt and Bechmann (1930) of

the free convection boundary layer flow of air subject to the gravitational force about an

isothennal, vertical flat plate constitute one of the earliest comprehensi\'e studies of

natl.ITal convection flow. Eckert and Soehngen (1948) verified and extended the

experimental work of Schmidt. Schuh (1948) obtained the numerical solutlOns by

computing velocity and temperature distributions for several Prandtl numbers. Ostrach

(1953) studied aspects of natural convection heat transfer. He also analyzed laminar free

convection flow and heat transfer about a flat plate parallel to the direction of generating

body force. Yang (1960) studied the unsteady laminar boundary layer equations for free

,onvection on vertical plates to establish necessary and sufficient conditions under whi,h

similarity solutions were possible. Soundalgekar (1972) analyzed viscous dissipation

effects on unsteady free convection flow past an infinite, vertical porous plate with

constant suction. Ganapathy (1997) studied time dependent free convection motion and

heat transfer in an infinite porous medium by a heated sphere. Elliot (1970) analysed the

problem of unsteady free convection boundary layer flow over two_dimensional and ,
•
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axisymetric bodies for a step input in the surface (emperatllTc. Williams ct a1. (1987)

studied the unsteady frec convectioll 1101'1over a vertical flat plate under the assumption

of variations of (he wall temperature with time and distance. They found possible semi-

similar solutions for a variety of classes of wall temperature distributions. Saltar and

AJam (1994) investigated the unsteady free convection flow of a viscous, incompressible

and electrically conduding fluid past a moving infinlte vertical porous plate taking into

account the thermal diffusion effect. The unsteadiness in the flow field was introduced by

time-dependent velocity of the moving plate.

Natural convection boundary layer flow over horizontal and slightly inclined surfaces

was studied by Pera and Gebhart (1972); the effects of a small surface inclination were

analyzed by perturbing /low over a horizontal surface. These studies concern two-

dimensional flows whose principal direction is nomlal to the single leading edge of

honzontal and slightly inclined surraces. Umemura and Law(1990) investigated natural-

convection boundary-layer flow over a heated plate with arbitrary incliJlation by

identifying a set or combined boundary-layer variables and then casting the governing

equations into a universal form. This concerns that the flow characteristics depend not

only on the extent of inclination but also on the distance from the leading edge.

Ekambavanan and Ganesan(1994) have considered the transient free eOllvec!ion over a

semi.infinite flat plate which is inclined with a positive angle to the horizontal and in

which both the wall temperature and spices concentration vary together with the power of

the coordinate along the plate .Recently the steady laminar free convection boundary

layer over the upper surface of a semi-infinite /lat plate which is inclined at a small angle

to the hori~ontal under the combined buoyancy effects of thelTIlal and mass

(concentration effects) is theoretically studied by Angel et al.(2001). Both positive and

negative inclinations of the plate are concerned. The Ke1Jcr-box scheme has been used to

complete the solution. Re~ults for the skin li"iction coefficient, the local Nussclt and

She;uv,'ood number are presented on graphs. Chamkha el al.(2001) have considered

steady, laminar, hydromagnetie coupled heat and mass buoyancy induced na!llral

convection boundary later flow of an electrically- conducting and heat generating and

absorbing fluid along a semi Infinite permeable inclined flat plate. The governing

eqnations were developed and transfolTIlcd using appropriate similarity transfOlTIlations.

•
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The transfonned equations were then solved numerically by an implicit, iterative finite-

difference scheme and the results were also shown in W,,-phs.Very recently Hasan et

al.(l003} have studied the mathematical modeling for free convection How of a

particulate suspension over an infinite, inclined, permeable and isothermal plate in the

presence of both magnetic field and fluid heat absorbing effects. The general effects of

the magnetic field and the heat absorbing fluid were found to damp the flow and the

themwl profiles. Ganesan and Palani(2003) investigated the natural convection effects on

impulsively started inclined plate with heat and mass transfer. Crank- Nicobon implicit

finite difference method was used to solve the unsteady, non-linear and coupled

goveming equations. Numerical results were obtained for various parallleters. The steady

state velocity, temperature and concentration profiles, local and averagc skin friction,

Nusselt number and Sherwood numbcr are shown graphically. It was observed that the

local wall shear stress decreascs as an angle of inelination decreases. Other important

contributions on heat and mass transfer now over inelined flat plate are due Jones (1973),

Chen and Ych(1980), Moutsoglou and ChCIl(1980), Ganesan and Ekambavannan(1992),

Hossain et al. (1996), Ramadan and Chamkha(2003), and Yu and Lin(1998).

Unsteady free convection flow past a vertical porous plate was investigated by

Helmy(1998), Acharya et al(2000) have studied frce convection and mass transfer flow

through a porous medium bounded by vertical infinite surface with constant suction and

heat flux. But In this siudy they considered the flow to be stcady. Coming back to

unsteady case, Kim(2000) investigated unsteady /I.1HDconvection heat transfer past a

semi-infinite verllcal porons moving platc with variable suction. Little cxtension to thi.~

problcm has been done by Chamkha(2004).

Free convective steady hydro magnetic flow about a heated vertical flat plalc was

considered by Gupta(1961), Poots(1961), Osterle and Yound(1961). Thc problem of the

free convection boundary layer on a vertical plate with prescribed surface hellt flux was

studied by Merkin and Mahmood(l990),A transformation of the boundary byer

cqualions for free convectIOn past a vertical plate with arbitrary blowing and wall

temperature variations was studied by Vedhnyagam et al.(1980). The case of a heated

isothermal horizontal surface with transpiration was discussed in some dctail first by

Clarke and Riley(1975,1976) and then recently by Lin and Yu(1988). ,

•
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The unsteady mixed convection flow past an infinite vertical isothermal plate of an

incompressible fluid is a physical situation, which is ol1:enexperienced, in the industrial

application. Some important contributions in this aspect have been given by

Schneidcr(1979), Jha(l991) and Sattar et a1.(1997) investigated the MHD unsteady mixed

convection flow through a porous medium, He, however, obtained the solutions by

employing Laplace transform technique and taking the value oflhe Praudtl number to be

equal to one. Latter Satter et a1.((997) obtained an analytical solution of an unsteady flow

through a porous medium taking a constant heat source and a variable suction velocity.

Unlike the work of Jha(1991), the solutions have been obtained for different PIandtl

number.
In the present work, Unsteady free convection boundary layer flow over a heated plate

with different inclinations have been investigated. The results have been obtained for

different values of relevant physical parameters. The goveming equations are then made

dimensionless by using usual similarity transfonuations. The dimensionless equations are

solved nlJmeneally by applying Nachtsheim-Swigcrt shooting iteration technique along

with Rlmge-Kutta sixth order integration method. Numerical results of the velocity,

temperature and skin friction coefficient for different values of Frandtl number Pr ,

Grashoffnumber Gr, and angle a are presented graphically.

In chapter two, Time dependent free convection analysis over an inclined heated plate

have been analy.-:ed. The non- dimensional boundary layer equations ha,'e been solved by

using Nachtsheim-Swigerl shooting iteration technIque along with Runge-Kulla sixth

order integration method. The results in tenus of local skin friction coefficient and

Nusselt number have been shown in tabular forms, Velocity profiles, Temperature

profiles and pressure have been presented graphically for various values of Prandtl

number Pr, Grashorfnumber Gr, and angle a.

In chapter three, Finite difference analysis of natural convection flow over an inclined

heated plate has been described, The non- dimensional boundary layer equations have

been solved by using implicit finite difference technique. Numerically results arc

presented by velocity, temperature and Prandtl number Pro

In chapter four, we have presented overall conclusions of the models studied. Finally aU

references quoted in the text can be found at the end of the thesis.



Chapter Two

Time Dependent Free Convection Analysis Over An Jnelined

Heated Plate.
Free convection flow adjacent to inclined surface bounded by an extensive body of fluid

is of considerable importance in mierometeorological and industrial applications. Some

of the earlier workers in this respect arc Ostrach (1953), Stcwarlson (1958), Gill et aL

(1965). Most of the existing analyses have used the similarity solutions for the vel1ical

casewith the buoyant force being the component of the body force along the plate. Many

researchers such as Merkin (1989,1996) and Harvet and Blay (1999) have investigated

the problem of free convection over a vertical plate. Karkus (1968) applied perturbation

technique to study the nahlral convection flow adjacent to inclined isothermal and finite-

length surfaces. Free convection boundary layer flow over a horizontal and slightly

inclined surface has been studied by Pera and Gehhart (1972). In the recent past,

Umemmm and Law (1990) developed a generalized fonnulation for the natural

convection boundary layer flow over a flat plate of arbitrary inclination. Recently

Hossian et aL (1995) studied the free convection flow from an isothermal plate inclined at

a small angle to the horizontal. Angel et al.(2001) presented numerical solntion of free

convection flow past an inclined surface. He studied the flow characteristics depended

not only on the extent of inclination but also on the distance from the leading edgc. The

above works were on steady flows. The aim of the present works is to study the free

convection boundary layer flow over a heated plate with different inclinations

considering time dependentplate temperaturc.

Free convection boundary layer flow over a semi-infinite heated flat plate wlth inclined

arbitrary angle a(O ~a" ~) to the horizontal is considered. For this pUlpose let us
2

consider the unsteady motion of an incompressible fluid. The flow is assumed to be in

the x-direction and y-axis is normal to it. At time t>O, the plate temperature is

instantly raised to T(>1~), where T", be the temperature of the uniform flow and the

•



plate starts with a velocity U{t) in its own plane. Consider u and v be thc velocity

components in the rectangular co-ordinatc system, Ua be the mean velocity of the plate

in the x-direction and p be the fluid density and Cp is thc specific heat at constant

pressurc. The physicaillow configuration is shown in the following Figure 2.1

.Figure 2.1 : Configuration of the problem

The flow model considered is of unsteady free convection boundary layer flow over a Hat

plate with arbitrary inclination under the influence of applied field. We have considered a

time dependent suction and plate tcmperatllrc. It is assumed that the flow is OnC"

dimensional, unsteady state, laminar and the fluid is incompressible. The solutions of the

governing eqllations have bcen done taking suitable similarity transfol1l1ations The

nonlinear similarity equations, which arc locally similar, are solved numerically by

Nachtscheim-Swigert(1995) iteration teelmique.Two cascs are considered 1) Impulsively

started plate moving in its own plane and 2) Unifonnly accelerated plate. The ~l1etioll

velocity is taken to be inversely proportional to the length-scale.
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2.1 Governing equations of the flow
The continuity, momentum and energy equations rOT unsteady, viscous and

incompressible flows are respectively given by

'V,q =0 (2.1 )

(2.2)

(2.3)

oq -- ,--
-+p{q.'V)q=-vp+v'V q+Fa,

ar - k 1
-+(qSl)T=-'II T
01 PCp

Here q = ;j(ll, v) is the velocity vector, F is the body force per unit volume which defined

as _pg , P is the pressure force, p is the density oftbe fluid, v is the kmcmetlc viscosity

,fJ is the thermal expansion coenicienls, f?o is the gravitational acceleration, T is the

temperature inside the boundary layer, a is the inclination angle from horizontal

direction, k is the thermal conductivity, cpis the specific heat at a constant pressure and

V is the vector differential operator which is defined by

. a . a
'V=I-.1 -

'ax '0'
where l,and J, are lhe urutveClors along x and y axes respectively.

The above mentioned equations (2.1 )-(2.2) would serve as the governing equatlOns of the

problems under the Boussinesq's approximation

au au 8'u .-H-.c-+goP(T-T )sma
cl 0' By' 00

0= _.!.. ap + gof3(T - T~)cos(l
pBy

aT &1' 8'T
IX(-H-)=k-

p at 8y 8y'

Where the variables and related quantities are defined in the Nomenclature.

(2.4)

(2.5)

(2.6)

(2.7)



The appropriate boundary conditions for (he above problem arc as follows:

u=U(t), ""1'(1), T=T(t) at y=O

11

(l.Sa)

(2.Sh)

Two cases have been considered for the problem, They arc:

Case I: Impulsively started plate (ISP), i.e., when the plate is impulsively started and

moves in its own plane.

Case II: Uniformly accelerated plale (UAP), i.e., when the plate moves with a ,-clooity

taken to be a function aftimo.

2.2 Similarity analysis

Ca~eI: Impulsive motioo

We introduce a similarity parameter <J' as

(T = a(l) (2.9)

where a is the time dependent length scale. In terms of a, a convenient solulion of the

equation (2.4) is considered to be

(2.10)

here the constant Vo r"Presents a dimensionless normal velocity at the plate which is

positive for suction and negatIve for blowing.

Now we introduce the following dimensionless ~ariables

(2.11)

where U 0 is the mean velocity, To is the mean temperature and p is the dimension1css

pressure, all being constant.

Using equations (2.9),(2.10) and (2.11) in equations (2.5)-(2.7), we obtain



_ (]'au 17/'=["+G Osina
u at '

0= _pi + G,Ocosa

uau 8' g' 18,---IJ -vo =-
uBI P,

where

g peT -T )cr'G,(= 0 0 ro ), is the Grashoffnumbcr,
U,V

P, (= v ) , is the Prandtl number
kl PCp

all are the dimensionless local parameters,

The boundary conditions (2.8a) and (2.8b) then becomes

12

(2.12)

(2.13)

(2.14)

e = 1 at IjI = 0 (2.15)

/=0,8=0 P=O as '1-'>00

So following the works ofSattar and Hossain (1992), assuming that

uau
--=C (aeonstant)
v a,

(2.(6)

The equations (2.12) and (2.14) are similar exeept

appears explicitly.

Integrating (2.16) we obtain

cr= -!2cm

u ocr
for theternJ--,v D,

where time t

(2.17)

where the constant of integration is determined through the condition that cr = 0 when

1=0. It thus appears from (2.17) that by making a realistic choice of c to be equal to 2,

then in (2.16) a=2JVi which exactly corresponds to the usual scaling factor

considered for various non steady boundary layer flow Schlichting (1968). Since 0" is a

scaling factor as well as a similarity parameter, one other value of c in (2.16) would not

change the namre of the solution except that the scale would be different. Lastly,

introducing (2.16) with c=2 in equations (2.12) and (2.14) respectively we have the

following dimensionless ordinary differential equations:



where

f' '"-lif' - G,Osin a

pi", G,Bcosa

"(='1+-'
2
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(2.18)

(2.19)

(2.20)

Now it is required 10solve the above equations subject to the boundary conditions (2.15).

Case II: Uniforml~' Accelerated Motion

In this case U(tl is the free stream velocity and T(t) is the plate temperature are

assumed to have (he following forms:

T(t) = T~+ (To _ T.,lcr;ffl

h .. d Cwere mIS an mtegcr an u.;-"0
Now introducing

u =U(I)/(17) '" Uo(1';"'" f(rll

T = Tro + (T - T~)u;rnB('1)

p = pU(t)v Pa (ll) = ~p_u","_._o._"_".P'. (ry)

" "
where Pais the dimension1css pressure for accelerated motion,

(2.21)

(2.22)

(2.23)

(2.24)

(225)

Introducing the relations (2.9),(2.10) and (2,16)-(2.20) in equations (2.5),(2.6) and (2.7)

and also introducing the following dimensionless parameters

G ( ,g~'cP~('"o_-_T".)cu_o) . h I ff b.~ ,1steGraslo numer,
Uou

and P,(= u ), is the Prandtl number
kl PCp

We obtain the following dimensionless differential equations:

•



~ a~cr[(2m + 2)/ _ 'If']- vo!' =r + G,8sin a
"0<

~ Bcr[2mB_nB']_v 8,=_1 e'
aut 0' 0 P,

The boundary conditions (1,8a),(1.8b) now reduce to

/=1,19=] a/ 1]=0

j=O,B=O,P,=O as 1/--+0:>

14

(2.20)

(2.27)

(2,28)

(2.2%)

(2.29b)

Now following the arguments in case I, equations (2.21) and (2.22) become rcspeclivcly

l' + 2if' - 4(m+1)[+G,Osina = 0

O' + 2P,t;B' - 4mP,O = 0

(2.30)

(2.31)

(2.32)

where
,

(=1/+_'
- 2

The solution of the equation (2.18)-(2.20) for the case r and the equation (2.30)-(2.32)

for the case II arc solved numerically under the respective boundary conditions using

Nachtsheim - Swigert iteration technique.

2.3 Skin- friction coefficient and Nusselt number:

The parameters of engineering wterest for the present problem arc the local skin-friction

coefficient and local Nussel numher which indicate physically wall shear stress and rale

ofheat transfer respectively.

The equation defining the wall skin-friction is given by

,.. p[")
8} Y.'

and (he local surface heat flux is defined

[")q =,-k-
W ry ,'_0

(2.33)

(2.34)
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The dimensionless local wall shear stress and local surface heat flux for impulsively

stared plate respectively are obtained as

Twa", 1'(0)
pU,

and qwcr =' -0'(0)
k(T-T"O)

(2.35)

(2.36)

Hence for impulsively started plate the dimensionless skin- friction coefficient and the

Nussel! number are given by

~d

',= T,P = /,(0)
pUo

N., = qwcr _ -8'(0)
k(T-Too)

(2.37)

(2.38)

for accelerated plate they arc obtained as

(239)

~d N"
q/TO

k(T _l'ctJ)cr:ffl"
(2.40)

Thus the dimensionless values of the local skin-friction and the NusseU number for

impulsive as well as accelerated plate arc obtained numerically.
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2.4 Numerical analysis
The systems of equations (2,18-2.20) for case I and (2.30-2.32) for case 11 with the

boundary conditions are non linear and coupled. It is difficult to solve them analytically

Hence we adopt a procedure to obtain the 501ution numerical. Here we use the sixth

order Runge _ Kulla method namely Nachtsheim-Swigert iteration technique (guessing

the missing value) and Runge-Kulla Merson method, in collaboration with Runge-Kulla

shooting method.
In a shooting method, the missing (unspecified) imtial condition at the initial poinl oflhe

mlcrval is assumed, and the differential equation is then integrated numerically as an

initial value problem to the terminal point. The accuracy of the assumed missing mitial

condition is then checked by comparing the calculated value of independent variable at

the terminal point with its given value there. If a difference exists, another value of the

missing initial condition must be assumed !IIld the process is repeated .This process is

repeated until the agreement between the calculated and the given condition at the

terminal point is within the specified degree of accuracy .

The Nachtsheim-Swigert iteration technique thus needs to be discussed elaborately. The

boundary conditions (2.15)-(2.29) associated with nonlinear ordinary differential

(ll}nations(2.18)-(2.20) and (2.30-2.32) are the two points asymptotic elass. Two point

houndary conditions have values of the dependcnt variable specified at two different

values of independcnt variable. Specification of an asymptotic boundary condition

implies that the velocity J !IIld temperature B tend to unity as the independent variablc

tends to outer specitied value.
The method ofnumerical1y integrating a two point asymptotic boundary valuc problem of

the boundary laycr type, the initial value method is recast as!lIl initial value problem -

Thus it is necessary to estimatc as many boundary conditions at the sL1rfaceas ,,'Cre gJ\'cn

at infinity The governing differential cquations arc integrating with these assumed

surface boundary conditions. The solution has been achieved, if the required outer

boundary condition is satisfied. BlIt this is not so easy, because selecting a value may

result in this divergence of the trial integration or in slow convergence of surface

boundary conditions required satisfying the asymptotic outer boundary condition .

,



17

Selecting too large a value of the independent variable is expensive in terms of computer

time.
Nacht:;heim"Swigerl (1965) developed an iteration method to (hese difficulties. In

equation there are three asymptotic boundary conditions and hence three unknown

surface conditions

'e' -f (O)=g[. (O)=g"and P(O)=gJ (2.41 )

Within (he contest of the initial value method and Nachtshcim-Swigerl iteration

technique the outer boundary conditions may be functionally represented as

, , -
B('1m"l = B(f (0),0 (O),P(D) = oJ

with the asymptotic convergence criteria given by

f (II Ill") = II (If (O),el (0), 1'(0)) = <5]

8/ (11m,,) = e' (f (O),O! (O),P(O)) = 04

[>(77"",,) =7'(/1 (0),01 (O),P(O») = 0,

(2.42)

(2.43)

(2.44)

(2.45)

(2,46)

, , -Choosing f (0) = g"O (0) = g2and pea) = gJ and expandmg in a first order Taylor's

series after using equations

ae ae ae
8('!moxl = 8,+_"g, +-"g, +-,-8.g,= 0,aK, aK, ug,

- - -_ - ap ap ap
P('!max)=P, +-,-L'lg1+-L'lg1 +-L'lg3 = 0)

ogl Dg2 GgJ
of' Df' af'

f'(I1"",) = J:.' +-;-"'g, +-;-"';:" +-,-"'g, = 0,
ug, ug, og,
"B' BB' '0'

0'( )(/'"8. '" 0 IiII",",= '+-0 gl+-0 g,+-;-i'lg,= 5
g, 1;2 ug,

yields where subscript' c' indicates the value of the function at II"",

the trial integration.

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

determined from

••
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Solution of these equations in a least _ squares sense requires delermining the minimum

value of

£",0.'+0'+8'+0'+0', , , 4 ,

Now differentiating E with respect 10 g, yields

)£iJo, 2~8S, ~(jJ, 2.000; 2~ao,=_u, + u, + 2v" + u, + u, ~ 0
og, Og, og, Ug, (,X,

(2.52)

[[ J' ( ]' [-]' ( ]' ( J']Df 8B UP of' DO'
or, og] + og] + ogl + ogl + ogl flgi

Similarly differentiating E with respect 10 g, and g, ,we obtain respectively

2.0 ao, 2£ oS, aii, as, DS,",_+ ",_+25,_+25,_+25,_,0og, og, 13g, Og, ug,

(2.53)



25, co, + 20, Do, +20, ao, + 25, 80, + 25_ oJ, = 0
ag, ag, og, iJg, ' og,

",[af. of + DB. ae + DP. oP + aI' ,if' + Nl.80']I>g,
og] CgJ og] og) 8g1 Og) agl og) Og[ <Jg.1

[
Of 8f fJB ae DP oP af' af' Be' act)

+ og,' ag) + ag
2

• ag] + og2 . og} + ag2 . og} + og) . ag) Agl

[(af)' (aoJ' (DP]' (DrJ' (8B')']+ ag) + ag) + ag) + ag) + og] .!Ig)

[
if DB -OP 'oJ' . 8B']

=- 10-,-'0,-'",-,-' I, -,8, -,-
og) og] og) Og) og]

We can write equations (2.53)-(2.55) in a system oflinear equations as follows:

a,/"g, +a"tlg, +a,,"'g, =b,
"ll.!lg, +a"bg, +a"ti.g, =b,

[(afJ' (ao)' [6P]' (8rJ' (aB'J']"11= - ,- ,- ,- ,-
og, og] Ogl agl ag]

- -aj aj 80 ae BP OP Of' of' arl Be'
al!=-,-,-,-,-,-'-,-'-,-Ogl ogl agj Ogl 8g1 Ogl agl og, ag] Bg2

19

(2.54)

(2.55)

(2.56)

(2.57)

(2.SS)



if Df ae fJB of 8P of' of' 8(1' M'al):0-.--+-.-+ -.-+-.- .+-.-
og] Og) ogl Og) ag, ag) ogl as] agl ag)

of 8f ao DB oF>oP ar of' DB' M'
an =-.-+-.-+-.-+-. -+-.-

ag). ogl Ogl Og! Ugl agl ag) ag[ Bg1 ogl

[[8f]' [,"" [Op]' [or]' [,e'J']a,,'" - +- + - +- +-ogl ag,) 8g2 81;2 og,

of Of aD 80 tiP OP Dr of' ao' 8(}'
a)2=-'-+-'-+ -.-+-,-+-.-

Og] og) ag, og2 ag] cgl ag] og2 ag) og,

[
if aD -OP ,fj' ,0(1']b,=_ r -+0 _+P -+' -+0-'co c"" c~ JeD ":g2 C5l '-':gl :g2 ug,

-[
of ae - of ,8/' ,NF]

bJ= /,-,-+8,-,-+P,-+/,,-+', -
og] og) 0;) OK] ag)

Now solving (he equations (2.56-2.58) using Cramer's rule, we have

20

~'" = detA,
'-'0, detA'

del A,
Ag,= detA and

del A,
l;gJ= detA
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where

b, '" ""
deL1, '" b, '" '"b, '" '"

'" b, aE
del A, = "" " '"

'" b, '"
"" '" b,

det A, '" '" 'n b,

"" "" b,

'" "" '"
detA= "" 'n ""

"" "" '"

= b,(0"",, - a,,",,) + b, (a"",, - """,, )+b, ("II "" - a"all)

= h,(a"a" - "11"") +b,(all"" - ""au) +b, (a"a" - a"a,,)

= b,(0"0,, - """,,J + b, (a"a" - all"") +b, (a"a" - li"O,,)

= oj] (ouo" - a,,",,) + ll" (11"",, - a"a,,) + ll" (a"",, - a,,",,)

Then we obtain the missing values g],gland g] as

g,=g,+L'.g"

g,=g,+£>g,

g, =g, +L'.g,.

Thus adopting the numerical technique aforementioned ,the solution of the equations

(2.18)-(2.20) with boundary conditions (2.15) for case I and (he equations (2.30)-{2.32)

with boundary conditions (2.29) for case !I are obtained together with sixth-order

implicit Rungc-Kutla mitial vallle solver and delemline the velocity, temperature and

concentration as a function of the coordinate 1/. In the process of integration the skin-

friction coefficient f" (0) and heat transfer ratc - 8'(0) are also ealeLllated .
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2.5 Results and discussion

The system of nonlinear ordinary differential equations (2.18)-(2.20) together with the

bou.ndary conditions (2.15) for (he case I and (2.30)-(2.32) together wl(h the boundary

condition (2.29) for the case Il have b~n solved numerically by using sixth-order Runge-

Kutta shooting method. Various groups of the parameters a,Gr,Pr,"o,m were

consirlercd in different phases. In all the campl.dations the step size !:JI/= 0.005 was

selected that satisfied a convergence criterion of 10-' in almost all of different phases

mentioned above. However, different step sizes such as 1'11/=0.01 to 111/= 0,001 were

also (ried and (he obtained solutions have been found to be independent of the step si~,es

as observed in figure 2).

"
Gr ~10, Pr= 0.72. Vo = Q,5.a _ JOO

0.8

0.61&9
0.'

62

6
o

Temperalure
Profile.

Velocity Pror.les

,

------ ~'1 ~0,01
•••••••••• 1'111 = 0,~05

•••••• 1'111..l] ~Ol

2 3

Fig. 2.2: Velocity & temperature profiles for different step sizes.

The results for the two cases considered above arc displayed graphically in Figures

(2.2.1)-(2,2.12) respectively for dimensionless forms of velocity, temperature and

pressure. Numerical computations have been carried out for the study of the effecls of
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various parameters on the velocity, temperatme and pressure distribution for hoth the

case. For this purpose the effects of different parameters Gr, vo' Pr, m and a on the

fluid flow have been investigated, The value of Prandll number Pr is taken eqL1alto

0.72, 1.0 and 7.0 that correspondsphysically 0.72 is suitable for air at 20'C , 1.0

correspond to electrolyte solution as salt water and 7.0 corresponds to water. The value

Grashoffnumber Gr is taken to be large 10.0, where larger values of Gr correspond to

a cooling problem that is generally encountered in nuclear engineering in cOllnection ",ith

the cooling of reactors, The positive or negatives values of Gr rcspec!ivcly represent

cooling and heating of the plate. The suction velocity Vo is taken to be equal to 0,5 , 1.0

and 2,0 which are appropriate for the liquid metals. The values of a and m are chosen

arbitrarily.

Case I : The mentioned parameters the velocity, temperature and prcssure distnbution

profiles are represented graphically in Figures (2.2.1)-(2,2.6) for both the heating and

cooling of impulsively started plate. From Figures (2.2,1) and (2.2,2) for the e3se when

Gr >0 (in the presence of cooling of the plate by natural convedion currents) we observe

that i) there is a rise in the velocity profiles dne to an increase in 0. , ii) an increase in the

suction parameter vocauses a fall in the velocity fields. From Figures (2.2.3) for (he ease

when Gr positive and negative (in the presence of heating and cooling of the plate by

natural convection currents) it is seen that there is fall in [he velocity profiles due to an

increase. Figures (2.2.4) for the case when Gr>O in the presence of cooling of the plate by

natural convection currents.
We also plotted temperature profiles in Figure (2.2.5) in case of Gr >0 for a comparison

in different Prandtl number Pr.We see that (hcre is a decrease in temperature due to

increases which is very large in case of water (P1=7.0). Figure ( 2.2.6 ) shows the

pressure distribution profiles for two cases Gr <0 and Gr >0 for fixed values Pr, v, and

0.. We observe that (here is a risc in pressure due to increase for the case Gr >0, on the

other hand, a revcrse phenomenon occurs in case Gr <0.
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Fig:2.2.1: Vdocity profiles due to cooling of impulsively started plate for different
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Fig:2.2.2: Velocity profiles due to cO(lling of impulsively started plate for different
values orvo.
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1.2
Pr ~ 0,72. Vo= 0.5, a ~ 30'
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06 3 Gr~-15
4Gr-5

f 0.4
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Fig:!.2.3: Velocity profiles due to heating aDd cooling of impulsively started plate
for different values of Gr.
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Fig:2.2.5: Temperature profiles for impulsively started plate for different vailles of
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Fig:2.2.6: Pressure distribution profiles for impulsively started plate for different
values of Gr.
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Case II: Figures (2.2.7-2.2.10) show the variation of the velocity profiles due to

accelerated motion of the plate when it is cooled and heated by natura! convection

currents respectively. Figure (2.2.11) shows the temperature profiles and Figure (2.2.12)

shows the pressure distribution profiles. We observe from the ligures that the effects of

various parameters on velocity and temperature are similar to those of the irnpLllsively

started plate. Thus the discussion oflhe results in this case 15not produced for brevity_

1

Pr=on, Gr= 10,Vv~o5,m = 10

2

CUlVe5

1a~30'
2(£=40'
3 a=OO'

1.510.5
o
o

0.2

08 ,
\'..

06

f
OA 7

, ,
<i ,

Fig:2.2.7: Velocity profiles due to cooling of uniforml)' accelerated plate for
different ~'aluesof ll.
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different values of Gr.

1

2

...

Curve.
1m-D.O
2m=1.0
3m=2.0

1.5

--
1

,,
,

" '- - ---=--'--
0.5

Gr.l0 nr.072 a=30° V=05,r , • 0

,
•• • ,
\ " ---,,

,,
•

,,

• •
~".
• •
\ ..
\
\

o
o

0.8

0.2

0.6

f
0.4

Fig:2.2.9: Velocity profiles due to cooling of uniformly accelerated plate for
different values of m.
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Gr ~ -5, pr~ 0.72, m ~ 1.0, a ~30'
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Fig:2.2.1O:Velocity profiles due to beating of uniflJrmly accelerated plate for
different values of va'
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Fig:2.2.11: Temperature profiles for uniformly accelerated plate for different values
ofPr.
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Fig:2.2.12: Pressure distribution profiles for uniformly accelerated plate for
different values of (t.

Flllally in Tables 2.1 & 2.2 numerical values of the skin friction and Nusselt

Number respectively proportional to j' (0) and - e' (0) are given for impulsi\'e as well

as uniformly accelerated motion of the plate. In Table 2.1, It appears that the ~kin friction

coefficients increase with the increase of u and Gr but decrea,es with the increase of

", and Pro On the other hand, NusseH number decreases with the increase of Voand Pro

The Table 2.2 Indicates that the skin friction coefficients increase WIth the increase of

a,Gr,m but decreases with the increase of va and Pr. The coefficient of Nusselt number

increases with the increase of m, va and Pr. We sec from both the table that the wall

shear strcss has a larger effect in case of impulsively started plate as compared to the

uniformly accelerated plate.

•



Table 2.1

Numerical values of skin friction coefficient, T;and nussclt number N.! for
impulsively started plale

31

G, p, a " " N.!

10 0,72 30' 0.5 0,6058 1.2005

10 7.0 30' 0.5 - 0.8207 5.0515

10 0.72 40' 05 Ll960 1,1008

.10 0.72 30' 05 -3.5365 1,1003

5 0.72 30' 1.0 _0,8609 1.4594

-5 0.72 30' 0.5 -2,5021 1.1993

5 0.72 60' 0.5 0.3282 1,2005

Table 2.2

Numerical values of skin friction coefficient, 1. and nusselt Dumber N" for
uniformly accelerated plate

G, p, m a " " N._

10 7.0 1.0 30' 0.5 -2.8525 8.1123

10 0,72 1.0 30' 0.5 -3.0716 2.3389

10 0,72 0.0 30' 0.5 _1.7969 Ll997

10 0.72 10 40' 0.5 _1.9762 2,1l9S

10 0.72 10 30' 10 -2.5674 2,3391

-10 0.72 10 30' 0.5 -4.2988 2.1196



Chapter Three

Finite Difference Analysis of Natural Convection Flow Over an

Inclined Heated Plate

Two dimcnsional natural convection hcat and mass transfer flmvpast a semi-infinite flat

plate havc been receIving the attention of many researchers because of its wide

apphcation in industry and technological fields. Natural convectIOn alcmg an inclined

plate has rcceived less attcntion than the casc of vertieal and horizontal plates. Finite-

difference technique has been used in natural convective flow analysis by many

researchcrs. Callahan and Marncr (1976) have presented a paper on transient frcc

convection with mass transfer effects and to solvc the problem by explicit I,nite

difference technique. SOlmdalgekarand Gancsan (1985) solvcd the same problem using

implicit finite differencc technique and compared the result with thosc of Callahan and

Marner (1976) and both the results agree well. Recently Chamkha ot al. (2001) have

presented a paper on similarity solutions for hydromagnelic simultaneous heat and mass

transfer by natural convection from inclined plate with thermal heat generation or

absorption and 10solved by implicit finite difference technique. Very recently Ganesan

and Palani (2003) have studied free convection effccts on the flow of water at 4"C past a

semi.infinite inclincd flat plate to solved the problem using implicit finite difference

techniquc. The cxplicit finite difference technique is conditionally stablc bul implicit

finite differencc technique is unconditionally stable and hence during computation large

timc-steps as compared to cxpliclt technique are perrniltcd which leads to saving

computer timc which is a distinct advantage, For this convenience we have solved our

problem using implicit finite difference technique. Numerically results are presented by

velocity, temperature and Prandtl number Pro ln the following section detailed

derivations of the governing equations for thc flow and the method of solutions along

with the results and discussions are presented.
For this purpose let us consider a two_dimensional unsteady flow of a viscous

incompressible fluid past an inclined flat plate, lnitially it is assumed that the flow is to
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be in the X-dircction which is pcnneable inclined at an angle a; to the horizontal and the

Y-axis is perpendicular to the plate, The physical flow configuration is shown in the

following Figure 3.1

Figure 3.1 : Configuration of the problem

3.1 Governing equations of the flow:

The mathematical statement of the basic conservation laws of mass, momentum and

energy for the unsteady VISCOUSincompressible flow are gi~en by

Dij+p(qS')q=-Vp+f!'V'ij+F

"
ar +(q.V)T=.5-v'r
iJt fX

"

(3.1)

(3.2)

(3.3)

where q = q (u, v ), u and v arc the velocity components along the x and y a.xes

respectively, F is the body force per unit volume which is defined as -pg, T is the

temperature of the flllid in the boundary layer, g, is the acceleration due to gravity, k is

the thermal conductivity, cp is the specific heat at constant pressure and p is thc ViSCO"lly

of the fluid. 'i7 is the vector differential operator and is defined by
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where i, and the IJlre the un it vector along x and y axes respectively.

The above mentioned equations (3.1) to (3.3) would serve as the governing equations of

the problems under the Boussinesq's approximation

•
i3u ou au a'u .
_ H-H- -=v--;;-;-+ go/3(T -T~ )sm IX
8/ ox Uy oy

aT 81' ar Ii a'r
-H-H -~----
81 ax By pCp By'

The appropriate boundary conditions to be satisfied by the above equations are

t:S; O,u = O,v= O,T = T~

(3.4)

(3.5)

(3.6)

(3.7a)

I>Ou=OT=T, , .
u=O;=O T=T, , .
1'=0 T=T, . as y--+ m

(3,7h)

3.2 Transformation of the governing equations

Equations (3.4) to (3.6) may now be nOlldimensionalizcd by using the follO\ving

dimensionless variables:

(3.8)

Where L is the characteristic length oflhe plate, Gr is the Grashof number, e lS the non

dimensional temperature.
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Substituting the relations (3.8) into the equalions (3.4) to (3.6) then the follO\ving non-

dimensional equations

'Where Gr =

au + iW ",0
ax or
au .au au a'u -_+u_+V_~ __ +gSJna
8. ax Br BY'

ae+U88+Va8",~8'8
or ax Br Pr BY'

"J!(T -T)gol' w ~, is the Gr3shof number and P, =

"

(3.9)

(3.lOl

(3.11)

is the Praudtl

number,
The corresponding boundary conditions (3.7a) to (3.7b) take the following form:

u~o,V=O, e~o
for .>0

u=o, V=O,8=0
U=O, V=O, 8=]

U~O,8=()

for every,,:5: 0

at X=O

al Y~O

as Y-,> ao

(3.l2a)

(3.12b)

3.3 Numerical analysis

The non-linear equations (3.9)-(3.11) subject to the initial and boundary conditions

(3.12a) and (3.12b) arc solved numerically for the velocity and temperature using the

implicit finite differences 5cheme of Crank-Nicholson technique. For this purpose, we

consider a plate of height X""" (=1.0) and regarded Y= Y"", (=4.0) which corresponds to

Y=ro. The value of Y is assumed to lie well outside both the momentum and energy

boundary layers. The computer time, variable mesh sizes are taken both in X and Y
directions, where X direction is taken along the plate inclined at an angle a to the
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horizontal and Y direction is taken normal to the plate, In figure 3.2, there are M and N

grid spacing in theX und Y direction respectively.

J

-

~O j-lines j ~ N

,
,
,

,
,
,
, ,

1= M

i-lines

i= 0

I<'igure 3.2: Grid s}stem

The mesh sizes are given by

AX ~ 0. 10. (O:sXs 1.0)

/c,.Y- 0,20 (O.sY54 V)

1H = 0..10
The partial differential equations (3.9)-(3.11) then can be \Hillen in the following finite-

difference approximations

un+' U"' U" U" 1.',,1 U'" U' U'',j - ,_1.1+ .,,- '_lJ+V',J_'- '_1,1_'+ ,,}-,- I-IJ-I

(3.13)
V'+l _ V"+l +V" - V'+ ',1 ',j-I ',J 1.,_[ _ 0

'"



U'+' _2U.+1.LU'" U' -2U' ,un ",,' 0'.,j_' I,J T 1./" + ,,;_1 ',I T I.}+'+ Ui.} + '.J sm a
2(L\Y)' 2

u,+1 -U" u'" -U'+' +U" -V'
I.] i,j ~ If" I,j H,j '.1 i-'J V'

T /' + I'~r ., 2M v

U'" U"" U" V"i,j.l - 1,1-' + i,j'] - i,j_'
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(3.14)

B'" 20.+1 +11"+1 fJ' 28' B"1 '.1_1 - '.' 1.]+' + ,.]_1 - i,J + i,j"

(J'" -8",
',j ',J +U"
L'lr ',J

p,

e,~l_On+'. +8', -e'
',J HI,) I,} ,-L,I+V"

2M 1,1

0' -0"" +8' -f}""'" 'J-t "j.] i,j_'

MY (3.15)

Here the subscripts idesignates the grid points with;r- coordinales and j designates the

grid points with y_coordinates and "designates the value at a time 1: ~ nL\l, where

n=1,2.3 etc.

The initial and boundary conditions

u.~J=O,v,~= O,Bi~J= 0

U;" = O,V.:, = D,Bo".]= 0

U', =O,V',= 0,8,', .1,. '. "
u,~.= 0,8,:, = 0

where 11--+ ro

Equations (3,13)-(3.15) are written in the following fonn

AU'" +BU'" CU'" E",r' I i,j + l l,j., = l

A On+' +B BO>] +C B'" = E,",)_, ",J , '01"

V'" = E
',f '

(3.16)

(3.17)

(3.18)

(3.19)

(3,20)
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where

A=_V.:!_ 1
I hAY 2(l'IY)'

Y,", I
A =--"---_-_

, 4l'1Y lPr(l'IY)'

U' 1
B, =-+-"-+--

D.T 2M (!'If)'
1 U;j 1

B, =-+--+----
D.r 2M PrC~y)'
V.

C = '---'.:!... _ 1
L 4,',Y 2(,",Y)'
C=v,.:!_ 1
, 46Y 2PrC~Y),

U" V"
F =-.-!.:l-(U••I U' -U" )+-""--(U' -U" )

L 2M '-',j + ._Lj ',J 4.!1Y ',r' ',f>'

U.
+----""-+ 1 (V' -lV', +U." )+~(oo+,+e" )sinaAT 2(D-Y)' ',r' ',j .,J.' 2 1.1 ',J

0" U' v:,
E - ,.) + 1,1 (e'" +0" B") ',' (0" 0")

2 - 8r 2AX '-'oJ ."L.; - 'J + 4L\Y ',J-I - ',j+'

+ 1 (B' -2B" 0" )lPr(tly)' .J-I ,J + ,.)"

E =V'''-V"+V" _ AT
J ,,}-' ',J I,j_' 2M

(rr+l -U'" +U" -U" U'" -U'+' U. -U' )I.J ,-I,j i,J I-',J + ',J-l H,,-1 + i,j-' i_L,,-'

At a time t calculating the values or 0, U, Vat all the nodal points, their values at a time

1:+L'I~are calculated in the following manner

KnO\ving the values of e, U, V at a lime ~ = nL'lt , the line ]=1 is considered. The values

of (J are found from equation (3,19) at every nodal point on i =1 at (n+l)th time leveL

Finally the values of U are found from equation (3.18) in the same proceUllre. In all the

process the values of Vare derived from the equation (3.20), Processing on this way and

get the values of 0, U and V for all i=2,3 ." .... M. This process is repeated for

n=2,3..until the steady state is reached.

,



(3.21)

(3.22)
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3.4 Stability of the finite difference equation
It is necessary to discuss the stability and convergence of the finite difference scheme for

convenience of analysis. For constant mesh sizes, the general term of Fourier expension

for U and e at a time arbitrarily called r= 0 arc assumed to be the ronne'~ e'" .

These terms can be written as follows at a later lime T

U=F(r)e,~re'"
8 = I1( r )e I.,.e,,<r

The values of F and H after ono time step arc denoted by F' and H'rcspcctively_

Slibstituting (3.21) in the finite difference equations (3.13)-(3.15) and the coefficients U

and V treated as constant after anyone time step. We obtain

F'- F+~(F' +FXI- e-i""r)+ ~(F' + F)isin~D.Y
AT 2M 2b.Y

~ _( 1), (F' + FXcos~!J.Y-1)+ ..!.-(H' +H)silla
8Y 2

Let us define

A ",VI ,~,) !J.rV - 8, (I )=2M l-e +2A/sm>,Il.Y-(Il.Y)' CllS ~Y-I

Mil .~) Il.rV.. Ar ( )B~--I-e-' +--lsm~Y- )' cospL'lY-l
2M 2~Y Pr(AY

Then the eql.Hllions(3.22) and (3.23) ean be written as

(I+ A)F' = (1- A)p + M (II' + H)Sina
2

(I+B)H'=(I-R)H

1',=[1+A)1'+ M
where I-A (1+AX1+B)

H,=[1-BJH
1+ B

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(
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which can be expressed in the following matrix

[F',] " ["" "" ][F]H 0 an II

I.e, IJ = E"
i-A I1r l-E

II '" --(I = II =--
II l+A'" (1+AXI+B)''' J+B

The eigen values of the apphcation matrix E are obtained from the characteristics

equatlon

-a"
1-a"

Thus eigen values are

j-A \-B
A, = !+A ,A, = I+B

ArU Ar
Leta=-- b"--
, 2M' (I1Y)'

We can write

=2,+;2,

B = 2aSin'(~)+ :r bSin'(~Y)+iaSin?8X

=L,+i2,

Since the real part of A or B are greater than or equal (0 7.cro.

Therefore the scheme is unconditionally stable.
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3.5 Results and discussion

The implicit finite-difference method of Crank-Nicolson technique is employed in the

present work for numerical computation. The transient primary velocities and

temperature profiles are shown graphically in Figures 3.5.1- 3.5.5 and discussed

thereafter. The solutions arc obtained at the upper edge of the plate, namely X = 1.0 for

different values of the given dimensionless parameters. The values 0.72, 1,00 amI 7.00

arc considered for the Prandtl nllmber PI which represent specific conditions oflhe now.

At first we have ploUed the transient primary velocity profiles for different values of

inclined angle a respectively in Figure 3.5.1, jt is seen that the primary velocity increases

with the increasing values of (J. To show the effect ofPrandtlnumber, Pr, in the velocity

field, we depict Figure 3.5.2. We have seen from this Figure, the increase of the Prandtl

number reflects to the primary velocity profiles, However, the velocity profiles for lower

time ~alues are also calculated and displayed. Figure 3.5.3 represent respectively of the

primary velocity for different values of r.

We have also plotted the transient temperature profiles considering effects of various

values of non-dimensional parameters Figure 3.5,4 and 3.5.5 show the dfeet ofPrandtl

number Pr and r ill the temperature profiles.
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Fig: 3.5.1: Primary velocity profiles for Pr '"0.72.
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Fig: 3.5.5: Temperature profiles for Pr = 0.72 and a = 60°.
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Chapter Four

4.1 Conclusion

Unsteady free convection boundary layer flow over a heated plate with dilTcrcnt

inclinations has been studied, The present work is Time dependent free convection

analysis over an inclined heatN! plate. And another work is Finlle differencc analvsis of

natural convectIOn flow over an inclined heated plate. From the investigation the flo",ing

conclusions may be drawn

The mentioned parameters the velocity profiles are represented graphIcally for

bolh the cooling and heating of impulsively started plate. When Gr >0, there is a

rise in the velocity profiles due to an increase in (J. and an increase in Ihe suction

parameter Vo causes a fall in the velocity fields. When Gr positive and negative

the velocity profiles due to an increase. On the other hand the variation of the

velocity profiles due to accelerated motion of the plate when it is cooled and

heated by natural convection currents respectively.

The temperature profiles in case of Gr >0 for a comparison in different Prandtl

number Pro There is a decrease in temperature due to increase which is large in

case ofwatcr (Pr =7.0)

The pressure distribution profiles due to increase for the case Gr >0, on the other

hand, a reverse phenomenon occurs in case Gr <0,

The skin friction coefficients increase with the increase of Ctand Gr but decreases

with the increase of Vo and Pr and Nusselt number decreases with the increase of

Vo and Pro

The primary velocity increases with the increasing values of 0:.

The increase of the Prandtl number reflects to the primary velocity proliles.
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4.2 Extension of this work
The present work can be extended in different ways. Some of those are:

Temperature dependent thermal conducliY;ly has been considered in the present

study.

The problem can be extended considering the concentration effects.

Inclusion of Joule heating effects may be another extension.

Considering the Radiation heal transfer effects.

Critical behavior oflhe flow may be studied.
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