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Abstract

Unsteady free convection boundary layer flow over a heated plate with differcnt
inclinations have been studicd numerically. The governing equations are then made
dimensionless by.using usual similarity transformations. The dimensionless equalions are

solved numerically by applying Nachtsheim-Swigert shooting iteration technique along

with Runge-Kutta sixth order infegration mothad,

Two cases of the motion of the flow have been considered; one is the impulsive motion
and the other is the uniformly accelerated motion . The plate temperature 15 assumed lo
he a function of time. The dimensionless velocity, temperature and pressure profiles are
shown graphically for different values of the parameters entering into the problem .

The numerical vajues of the local skin-friction and local Nusselt number are also

presented in tabular form.

Finite difference analysis of natural convection fMow over an inclined heated plate have
been studied numerically. We have siudicd the natural convection [low over an inchined
Mat plate by employing implicit finite-difference mecthod of Crank-Nicolson method. The
transient velocily and temperature profiles are displayed graphically and discussed
lhereafer. The stability and convergence of the implicit finitc-difference scheme are
established as well. The software FORTRAN 90 is used to perform computational job

and the posl processing soflware MS Excel has been used to display thc numerical results

praphically.
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Nomenclature

P

3

Eo

Gr
Pr

: Specific heat at consiant pressurc

: Constant or mean velocity

: Free stream temperature

: Temperature at any point of the flow field

: Wall temperature

- Cartestan coordinates

: Velocity components in the x and y directions,
: respectively.

: Gravity acceleration

: Nussclt Number

: Grashof Number
: Prandtl Number

» Dimensionless stream function

: Suction parameter

: Time

- Dimcnsionless pressure of the flnd
: Fluid pressure

: Velocity field

: Thermal conductivity

. Any integer

: Dimensionless co-ordinates

- Compaonents of the dimensionless velocily held.

: Characteristic length of the plale.
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Greek Symbols

: Arbitrary angle
. Thermal expansion coefficients

: Dimensionless temperatare

. C'oordinate transformation in terms of xand ¥
- Fluid kinematics viscosily

: Fluid density

- Time dependent length scale

: Wall skin friction

- Local surface heat flux
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1.1 Introduction

Natural convection is a mechanism of transport in which fluid motion is nat generated by
any external source likc pump, fan, suclion device, and moving solid object in contact
with fluid but only by density difTerences in [Muid occurring due (o temperature gradients.
The heat transfer coeflicient in natural convection is less than that of in forced
convection. The movements of the fuid in free convection whether it is a gas or liqud
result from the buoyancy forces imposed on the fluid when 1ts density 1n the proximity of
the heat transfer surfice is decreased as a result of the heating process. The presence of
buoyancy forces like gravilalion or an equivalent force ansing from the equivalence
principle is essential for natural convection. It is important to note that body forces other
than gravity can act to move the [luid in a natural convection problem. For exampic
centripetal acceleration is a body force that exits in motating machinery. The Conolis
force is a body force that is significant in oceanic and atmosphenc motions. Although a
number of variations ¢an exist, the commeon situation is working with natural-convection

problems where the body force is gravifational and the densily gradient is due to a

temperature gradient.

The temperature distribution n natural convection depends on the intensity of fluid
currents that depends on the temperature potential. So the quantitative and gualitative
analysis of natural convection heat transfer is difficult. Expenimental and numiencak
jnvesligations take place for solving heat transfer and fluid flow problems. Also an
averall comparison of experimental, numencal method with theerctical analysis
established here to show the reliability of methods, The aim of the present work is 1o
study the frec conveclion boundary layer flow over a heated plate with different

inclinations considering time dependent plale temperature.

Natural convection attracted a preat deal of attention of researchers because of s

presence in nature like the rising plume of hot air from fire, occanic currents, sea-wind



formation, soil-flow dynamics, fog formation and also in cngineering applications like
formation of microstruciures during the cooling of molten metals, shrouded fins, solar
ponds, nuclear reactor operation. The most common analysis of heat transfer 1s on flat
plate. Recently heat transfer for non-plane surface platcs are in coneem. The natural
convection procedures are governed essentially by three features namely the body foree,
the temperaturc difference in the fow field and the fluid density discrepancy with
temperature. Natural convection is the most important style of heat transfer form pipes,
transmission lines, refrigeration coils, burning radiators and various realistic situations.
The manipiation of natural convection of the heat transfer can be deserted in the case of
large Reynolds number and very small Grashof pumber. Alternatively, the natural

convection should be the govermng aspect for large (Grashol number and Reynolds

number.

The main objectives of the project are as follows-

. To observe the effect of inclination on natural convection heat transfer for

different surface geomelry.

. To evaluatc wall shear stress in tenns of local skin frction and rate of heat

transfer in terms of local Nusselt number.

. To displayed the velocity, temperature and pressure pro files for different values

of the conlrolling parameters.
. To solve numerically by using shooting method, the basic equatiens arc

transformed (o non dimensional boundary layer cquations.

Natural cenvection is observed as a result of the mation of the Muid due to the density
changes arising form the heatng process. This case occurs at very small velocities of
motion in the process of large temperaturc differences. A hot radiator used for heating a
room is one example of a practical deviee which transfers heat by natural convection. The
movement of the Muid in natural convection, whether it is gas or liguid, results from the
buoyancy forces imposed on the fluid when its density in the proximity of the heat
transfer surface is decreased as a result of the heating process. The buoyancy forces

would not be present if the [luid were not acted upon by same cxternal force ficld such as



gravity, allhough gravity is not the only type of foree field which can producc the natural
convection currents ; a fluid enclosed in a rotating machine 1s acted upon by a centrifugal
force field, and thus could experience natural convection currents if one or more of the
surface in contact with fluid were heated. The buoyancy forces which give rise to the

natural convection currents are called body forces.

For natural convective [lows to be dynamically similar, the Grashof number

ATL - : : .
(G, = @ﬁz— where g, is the gravitational acceleration, A is the thermal expansion
F

coeffient, AT is the temperature difference, L is the length scale and v is lhe kincmatic

1
viscosity) and the Prandtle number ( F, = e . where xis the termal conductivity, o is
x

the fuid densily and ¢, is the specific hcat at constant pressure) must be the same in both

the systems.

The govermng equations for convection flow are coupled elliptic partial differential
equations and, therefore, of considerable complexity. The major problems in obtaining a
solutions to these equations lie in the inevilable vanation of density with temperature, oI
concentration, and in their partial, elliptic nature, Several approximations are gencrally
made to considerably simplify these equations. Amnong them Boussinesq approximation
attributed to Boussinesq (1903} is considered here. In flows accompanied by heat
transfer, the fluid properties are normally functions of temperature. The variations may be
small and yet be the cause of the fuid motion. If the density variation is not large, one
may treat the density as constant in the unstcady and convestion terms, and ireat it as

variable only in the gravitational term. This is called Boussinesq approximation,



1.2 Literature Survey
Naluml convection flows under the influence of gravitational force have been

investigated most cxtensively because they occur frequently in nature as well as in
science and engineering applications. When a heated surface is in contact with the flud |
temiperature difference causes buoyancy force, which induces the natural convection.
Natura! convection flow has been studied in various types of surface such as [lat plate,
sphere, cylinder, vertical cone etc. The study of temperature and heat transfer 18 of great
importance to the engineers because of its almost universal occurrence in many branches
of science and engineering. Although heat (ransfer analysis is most impertant for the
proper sizing of fuel elements in the nuclear reactors cores to prevent burnout. The
performance of aircrafi also depemds upon the case with which the structure and engines
can be cooled. Heat transfer is commonly associated with fluid dynamics. The knowledge
of temperature distribution is essential in heat iransfer stndies because of the fact that the
heat flow takes place only whenever thers is a temperature gradient jn a system. The
threc different manners of heat transfer namely; conduction, conveclion and radiation
must be considered.

The theoretical analysis and experiments carried out by Schmidt and Bechmann (1930) of
the firee conveetion boundary layer flow of air subject to the gravitational force about an
isothermal, vertical flat plate constitute one of the earliest comprehensive sludies of
natural convection flow. Fckert end Soehngen (1948) verilied and extended the
experimental work of Schmidt. Schuh (1948) obtained the numerical solutions by
computing velocity and (emperature distobutions for several Prandtl numbers. Osirach
(1953) studied aspeets of natural convection heat transfer. He also analyzed laminar [ree
convection flow and heat transfer aboul a [lat plate parallel to the direction of generating
body force. Yang {1960} studied the unsteady laminar boundary layer equations for free
convection on vertical plates to estahlish necessary and sufl ficient conditions under which
similarity solutions were possible. Soundalgekar (1972) analyzed viscous dissipation
cifects on unsteady free convection fjow past an infinite, vertical porous plate with
constant suction. Ganapathy (1997) studied time dependent frec convection motion and
heat trausfer in an infinite porous medium by a heated sphere. Eiliot (1970} analysed the

problem of unsteady free convection boundary layer [low over {wo-dimensional and



axisymetric bodics for a step input in the surface lemperature. Williams et al. (1987)
studied lhe unsteady free convection flow over a vertical [lat plate under the assumption
of variations of the wall temperature with time and distance. They found possible semi-
similar solutions for a varety of classes of wall tcmperature distributions, Sattar and
Alam (1994) investigated the unsteady free convection Mow of a viscous, incompressible
and electrically conducting fluid past a moving infimite vertical porous plate taking into
account the thermat difTusion effect. The unsteadiness i the flow field was introduced by
time-dependent velocity of the moving plate.

Natural convection boundary layer flow over horizontal and slighily inclined surfaces
was studied by Pera and Gebhart (1972); the effcets of a small surface inclination were
analyzed by perturbing flow over a horizonlal surface. These studies concern 1wo-
dimensional fows whose principal direction 1s normal to the single leading cdge of
henzontal and shightly inclined surfaces. Umemura and Law(1990) investigated natural-
convection boundary-layer flow over a heated plate with arbitrary inclination by
identifying a set of combined boundary-layer varizbles and then casting the governing
equations into a universal form. This concems that the flow characteristics depend not
only on the extent of inclination but also on the distance froin the leading edge.
Ekambavanan and Ganesan(1994) have considered the transient free conveclion over a
semi-infinite (at plate which is inclined with a positive angle to the horizental and in
which both the wall temperature and spices concentration vary together with the power of
the coordinate along the plate .Recently the steady laminar frec convection boundary
layer over the upper surface of a semi-infinite flat plaie which is inclined at a small angle
to the horzontal under the combined buoyancy effects of thermal and mass
{concentration effects) is theorctically studied by Angel cf al {2001). Both positive and
negative inclinations of the plate are concerned. The Kellcr-box scheme has been used to
counplete the solution. Results for the skin friction cocflicient, the local Nusselt and
Shearwood mumber are prescnted on graphs. Chamkha et al.(2001) have considered
steady, laminar, hydromagnetic coupled heat and niass buoyancy induced nalural
convection boundary later flow of an electrically- conducting and heat gencrating and
absotbing fMuid along a semni infinite permeable inclined flat plate. The governing

equations were developed and transformed using appropriate similarity transformations.



The transformed equations were them solved numerically by an implicit, iterative [inite-
difference scheme and the results were also shown in graphs. Very recently Hasan et
al. (2003} have studied the mathematical modeling for free convection [low of a
particulate suspension over an infinite, inclined, permeable and isothermal plalc in the
presence of both magnetic field and Muid heat absorbing effects. The gencral effects of
the magnetic ficld and the heat absorbing fluid were found to damp the [low and the
thermal profiles. Ganesan and Palani(2003) iﬁvestigatcd the natural conveciion clfects on
impulsively started inclined plate with heat and mass transfer. Crank- Nicolson implicit
finite diffcrence method was used to solve the unsteady, non-linear and coupled
govemning equalions. Numerical results were obtained for various parametcrs. The steady
state velocity , temperature and concentration profiles, local and average skin [riction,
Nusselt nmumber and Sherwood number are shown graphically. Tt was observed that Lhe
local wall shear siress decreases as an angle of inclination decreases. Other important
contributions on heat and mass transfer flow over inclined flat plate are due Jones {1 973},
Chen and Ych{1980), Moutsoglou and Chen(1580), Ganesan and Ekambavannan{i9%2),
Hossain et al. {1996}, Ramadan and Chamkha(2003), and Y1 and Lin{1998}.

Unsteady free convection flow past a verlical porous plate was investigated by
Helmy(1998), Acharya et al(2000) have studied frce convection and mass (ransfer Now
through a porous medium bounded by vertical infinite surface with constant soction and
heat flux. But In this study they considered the Nlow to be steady. Coming back te
unsteady casc, Kim{2000) investigated unstcady MHD convection heat transfer past a
semni-infinite vertical porous moving plate with variable suction. Litlle cxtension to this
problem has been done by Chamkha(2004).

Free convective steady hydro magnetic Mow about a healed vertical flat platec was
considered by Guptaf1961), Poots(1961), Osterle and Yound(1961}. The problem of the
free convection boundary layer on a vertical plate with prescribed surface heat {lux was
studied by Merkin and Mahmood(1990).A transformation of the boundary layer
equations for free convection past a vertical plate with arbitrary blowing and wall
temperature variations was studied by Vedhnyagam et al.{1980). The case of a heated
isolhermal horizontal surface with transpiration was discussed in soms detail first by

Clarke and Riley(1975,1976) and then recently by Lm and Yu(1988).



The unsteady mixed convection [low past an infinite veriical isothermal plate of an
incompressible fuid is a physical situation, which is ofien experienced, in the industrial
application. Some imporiant contributions in this aspect have been given by
Schneider(1979), Jha(1991) and Sattar et al.(1997) investigated the MHD unsteady mixed
convection flow through a porous medium, He, however, obtained the solutions by
employing Laplace iransform technigue and taking ihe value of the Prandt] number 1o be
equal to one. Latter Satter et al.(1997) obtained an analytical solution of an unsteady [ow
(hrough a porous medium taking a constant heat source and a variable suction veclocily.
Untike the work of Jha(1991), the solutions have been obtained for differcnt Prandtl
number.

Tn the present work, Unstcady free convection boundary layer flow over a heated plate
with different inclinations have been investigated. The results have been obtamed for
diffcrent values of relevant physical paramcters. The governing equations arc then made
dimensionless by using usuzal similarity iransformations. The dimensionless cquations are
solved numerically by applying Nachtsheim-Swigert shooling iteration technique atong
with Runge-Kntta sixih order integration method. Numerical results of the veloeity,

temperature and skin fiction coelTicient for differsnt values of Prandtl number Pr ,

GrashoT number G, and angle o are presented graphically.

In chapter two, Tims dependent free convection analysis over an inelined heated plate
have becn analyzed. The non- dimensional boundary layer equations have been solved by
using Nachisheim-Swigert shooting iteration techmque aleny with Runge-Kutta sixth
order integration inethed. The results in terms of  local skin friction coefTicient and
Nusselt number have been shown in tabular forms. Velocity profiles, Temperature
profilcs and pressurc have been prescnted graphically for various valacs of Prandtl
number Pr , Grashof number Gr, and angle a. .

In chapter three, Finite diffcrence analysis of natural convection flow over an inclined
heated plate has been described. The non- dimensional boundary layer equalions have
been solved by using implicit finite difference techmque. Numerically results are
presented by velocity, temperature and Prand!l number Pr.

In chapter four, we have presented overall conclusions of (he models studied. Finally all

references quoted in the text can be found at the end of the thesis.



Chapter Two

Time Dependent Free Convection Analysis Over An Inclined

Heated Plate .

Free conveetion fow adjacent to inclined surface bounded by an extensive body of [luid
is of considerable importance in micrometeorological and industrial applicaticns. Some
of the earlier workers in this respeci arc Ostrach (1933), Stewarlson {1958), Gill et al.
(1965). Most of the cxisting analyses have used (he similanity solutions for the vertical
case with the buoyant force being the component of the body force along the plaie. Many
researchers such as Merkin {1989,1996) and Ilarvet and Blay (1999) have investigated
the problem of free convection over a vertical plate. Karkus {1968} applicd perturbation
technique to study the natral convection flow adjacent to inclined isothermal aud {inite-
lengih surfaces. Free convection boundary layer [low over a horizontal and slightly
inclined surface has been studied by Pera and Gebhan (1972). In the recent past,
Umermura and Law (1990} developed a generalized fonmulation for the natural
convection boundary layer flow over a fat plate of arbitrary inclination. Recently
Hossian et al. (1995) studied the free convection flow from an isothermal plate inclined at
2 small angle to the horizontal . Angel et al,(2001) presented numerical solution of free
convection [low past an inclined surface. He siudicd the flow charasteristics depended
not only on the cxtent of inclination but also on the distance fromn the lcading edge. The
above works were on steady Tows. The aim of the present works is to study the free
convection boundary layer flow over a heated plate with different wnclinations

considering time dependent plate temperature.

Free convection boundary layer flow over a semi-infinite heated flat plate wath inclined

arbitrary angle {0 ca < %) to the horizontal is considered. For this purpose let us

consider the unsieady motion of an incompressible fluid. The flow is assutned o be in
the x-dirsction and y-axis is normal to it. At time t>0, the plate temperature is

instantly raised to T{>7,), where T be the tempcrature of the uniform fow and the



plate starts with a veloeity U{t) in its own plane. Consider # and v be ihe velocity

componenis in the rectangular co-ordinate syslen, U/, be the mean velocity of (he plate
in the x-direction and p be the (lnid density and C, 35 the specilic heat at constant

pressurc. The physical flow configuration 15 shown in the following Figure 2.1

Figure 2.1 : Configuration of the problem

The flow model considered is of unsteady free convection boundary layer [low over a liat
plale with arbitrary inclinalion under the influence of applicd field. We have considered a
time dependent suction and plate tcmperature. [t 1s assumed that the Mow is omc-
dimensional, unsieady state, laminar and the fhnd is incompressible. The solutions of the
governing equations have heen done taking suitable similarity transformations . The
nonlincar similarity equations, which are locally similar, are solved numerically by
Nachtscheim-Swigeri{1995) iteration technigue.Two cases are considered 1) Impulsively
started platc moving in its own planc and 2) Uniformly accelerated plate . The suction

velocity is taken to be inversely proportional to he length-scale .



2.1 Governing equations of the flow
The continuity, momenfum and energy equations for unstcady, viscous and

incompressible flows are respectively given by

V=D (2.1}
Eji+ (a¥)g=-Vp+v ¢ +F (2.2)
=tV =-Vp Ve 2
£+{E.?]T= i VT (2.3)
ot PC,

Here g = g{u,Vv) is the velocity veetor F is the body force per unit volume which defined
as - pg , p is the pressure force, o is the density of the (luid, v is the kincmetic viscosity
,/3 is the thermal expansion coelficients, g, is the gravitational acceleration, T is the
lemperature inside the boundary layer,& is the inclination angle from horizontal

direction, & is the thermal conductivity, ¢, is the specific heat at a conslant pressure and

V is the vector differential operator which is defined by

voi 2.1 2
o &y

where / and i , are the unit veclors along x and y axes respectively.
The above mentioned equations (2.1)-(2.2) would serve as the governing cquations of the

problemis under the Boussinesq's approximation

ov
—=10 (2.4)
iy
e e A u )
— ty—=p—r1= T—T sina 2.5
{?f B}r Uayz gﬂﬂ{ m) [ )
1 dp
===y g, J(T =T, }ecosc (2.6}
poy
al &F AT
pc,,(ar 5y) % (2.7}

Where the variables and related quantities are defined in the Nomenclature.
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The appropriate boundary conditions for the above problem arc as follows:
u=U@), v=v(), T=T() a y=0 (2.8Ba}
w=0,v=0,7=T,P=0 asy 3w {2.8b)
Two cases have been considercd for the problem . They are:
Case I: Impulsively siarted plate (ISP}, i.e., when the platc is impulsively starled and
moves in its own plane.
Case 1: Uniformly accelerated plate (UAP), ie., when the plate moves with a velocity

taken to be a function of time.
2.2 Similarity analysis

Case 1: 1Impulsive motion

We introduce & similarity parameter o as

a =) (2.9)
where & is the time dependent length scale . Interms of o, a convenient soluben of the
equation (2.4} is considered 1o be

y= oy, = (2.10)
o

here the constant v, represents a dimensionless normal velocity at the plate which is

positive for suction and negative for blowing.

Now we introduce the following dimensionless yariables

M
w=Uty=U,, 1= i,f(i'}] -
g U,

T (2.11)
—_ — J
007) = —2 Plpy = =L

T,-T. Uwp

where [7, is the mean velocity , T, is the mean temperaturc and p is the dimecnsionless

pressure , all being constant.

Using equations (2.9),(2.10) and (2.11) in equations (2.5)+(2.7), we obtain



12

feliilog

_=Ee 2.12
ot ( )

nf'=f"+G 0sma

0=—P" +G,Ocosa (2.13)

—EE‘EHH’—v@E}E}l—S” (2.14)

v at .

where

2
G.(= £o5 (TEI T.)o }, 18 the GrashofT number,
L
Lt

L= IU Y, is the Prandi] number
J2

all are the dimensionless local parameters .
The boundary conditions (2.8a) and (2.8b) then becomes
f=0, #&=1 at g=0 {2.15)

f=0,8=0 P=0 as p-rw
So following the works of Sattar and Hossain (1992), assuming that

. E_ﬂ_cr- = ¢ {a constant) {2.16)

v oot

The equations (2.12) and (2.14) are similar execpt for the term E—%E, where time t
v oot

appears explicitly.

Integrating (2.16) we obtain

o =2t (2.17)

where the constant of inlegration is determined through the condition that & =0 when
¢=0, It thus appcars from (2.17) that by making a realistic choice of ¢ to be equal to 2,
then in (2,10} o= 2/t which exaclly corresponds to the usual scaling factor
considered for various non steady boundary layer flow Schlichting (1968). Sincc o 1sa

scaling factor as well as a similarity parameter, one other value of ¢ in (2.16} would not

change the nare of the solution cxcept that the scale would be different. Lastly,
introducing (2.16) with ¢=2 in equations (2.12) and (2.14) respectively we have the

following dimensionless ordinary differential equations :
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" ==20 -G 0sine (2.18)

P’ =G geosa (2.19)

g = -2 {2.20%
where &=n+t %ﬂ

Now it is required o solve the above elquations subject to the boundary conditions (2.15).

Case 11: Uniformiy Accelerated Motion

In this case {7(f) is the frec siream velocity and T{z) is the plate temperaturc are

assumed to have the following forms :

Uiy =U,ol™ (2.21)
T =T, +(T, - T, )o" (2.22)
where m is an integer and o. =7
Ty
Now introducing
w=U{) )= U0l f@) (2.23)
T =T, + (T~ T.)oi"6(n) 224
p= -‘ﬂiﬂﬁm} = ———pif”fm R (2 25)

where £, is the dimensionless pressure for accelerated motion.
Introducing the relations (2.9),(2.10) and (2.16)-(2.20) in equations {2.5),{2.6) and (2.7)

and also introducing the following dimensionless parameters

A 2
G (= 2% =1.)0 }, is the Grashoff number,
LAY

L

and P {= 07 }, i$ the Prandtl number

P

We obtain the following dimensionless differential equations



14

E%[{Em+2)f-r;f']—vnf’:f"+6’,§sina (2.26)
g d
Par =G, fecosa (2.27)
v da 1
= 2mb-pd |-, =—08" (2.28
P [ miz—§ ] Lf ) )
The boundary conditions (2.8a},(2.8b) now reduce to
f=1, 8=l at n=0 (2.29a)
{2.29B)

=0, §=D,f_’;=[} as 17— @

Now following the arguments in case 1, equations (2.21) and (2.22) become respect vely

T2 - Am 41} f + G @sina =10 {2.30)
P =G dcosa (231)
O+ 2P068 —AmP O =0 (2.32)
Yo
where & =H+E

The solution of the equation {2.18)-(2.20) for the case T and the equation {2.30)-(2.32)

for the case TI arc solved numerically under the respeclive boundary conditions using

Nachtsheim - Swigert iteration technique.

2.3 Skin- friction coefficieut and Nusselt number :

The paramelers of engineering iniercst for the prescnt problem arc the focal skin-friction
coefficient and local Nussel number which indicate physically wall shear stress and rale

of heat transfer respectively .

The equation defining the wall skin-friction is given by

r = P[EJ (2.33)
& )
and the local surface heat flux is defincd
&t
q. = —;{—] (2.34)
),
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The dimensionless local wall shear stress and local surface heat flux for impulsively

stared plate respectively are obtained as

7.
iy o 2.35
Fr e AL { )
G
L 2.36
and T To) &7'{0) (2.36)

Hence for impulsively started plate the dimensionless skin- fiction coeflicient and the

Nusselt number are given by

r, = = () (2.37)
MU,
and N,=—17 _—_g(0) (2.38)
k(T — Teo)
for aceclerated plate they arc obtuined as
T 0, ,

r = d = {0 230
e EN) (239)
7.7 (2.40)

and = 5
k(T - Too)al

Thus the dimensionless values of the local skin-friction and the Nussell number [or

impulsive as well as accelerated plate are obtained numencally.
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2.4 Numerical analysis
The systems of equations {2.18-2.20) for case T and (2.30-2.32) for case II with the

houndary conditions are ton lincar and coupled. It is difficult to solve them analytically

Hence we adopt a procedure to obtain the sohution numencal . Here we use the sixth

order Runge - Kutta methed namely Nachtsheim-Swigert ileration technique (guessing
the missing value) and Runge-Kutia Merson niethod , in collaboration with Runge-Kutla
shooting mcthod |

In a shooting method , the missing (unspecified) imtial condition at the initial peint of the
interval is assumed , and the differential equation s then integrated numencally as an
initial value problem to the terminal point . The accuracy of the assumed missing joitial
condilion is then checked by comparing the calculaied value of indepcndent vanable at
the torminal point with its given value there . If a difference exists, another value of the
missing initial condition must be assumed and the process is rcpeated .This process is
repeated uniil the agreement berween the calculated and the given condition at the
{erminal point is within the specificd degree of accuracy .

The Nachtsheim-Swigert iteration technique thus needs to be discussed claboratcly. The
boundary conditions (2.15)-(2.29) associated with nonlincar ardinary differential
equations {2.18)-(2.20) and (2.30-2.32) are the two points asymptotic ¢lass . Two point
boundary conditions have valucs of the dependent variable specified at tweo differemnt
values of independent variable. Specification of an asymptotic boundary condition

implies that the velocity f and temperature & tend to unily as the independent variable

tends o outer specified value .

The method of numerically integrating a two point asymiptotic boundary value problem of
the boundary layer Lype , the initial value method is recast as an initial value problem .
Thus it is necessary to estimate as many boundary conditions at the surface as were given
at infinity . The goveming differential equations arc integrating with these assumcd
surface boundary conditions . The solution has becn achieved , if the required outer
boundary condition is satisficd . But this 15 not so casy , because selecting a value may

result in this divergence of the trial integration or in slow convergence of surface

boundary conditions required satisfying the asymptotic cutcr boundary condition .
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Selecting too large a value of the independent variable is expensive in terms of conmputer

time .
Nachtsheim-Swigert {1965) developed an iteration method to these difficullics. In

equation there are throe asymptotic boundary conditions and hence threc unknown
surface conditions
f0)=g,8 (0 =g, amd PO)=g;

Within (he contest of the imitial value method and Nachtsheim-Swigert iteration

(2.41)

technique the outer boundary conditions may be functionally represcnted as

S lma) = S (0,87 (0), POY = 6, (2.42)

Aitme) = 8CF ' (0),0'(0), PO = 5, (2.43)
with the asymptotic convergence criteria given by

I Gy = 1 (00,87 @), PO) =6, (2.44)

§' () = 8 () (00,0'(0), P(0)) = &, (2.45)

Pl00x) = P (0),0' (0), P(O) = &5 (2.46)

Choosing ' (0) =g, 0" ()= g,and P(0) = g; and expanding in a first order Taylor's
serfes after using equations

. ad
f(rlrmix}zfr:-i_%ﬁg].'- o’?f ﬂgli-aiﬁg:l =§| {24?)
1

dg, 3
5 [
by =0.+ L ag + 2% ng + g =5, (2.48)
%, ax CLs
— — AP ap ap
P Y=P +— g +——Agy 88 =5 (2.49)
0F g, Ggy
. . a T a (] a +
TP =S+ / ﬁgﬁi—ﬁgﬁ,\iﬂg, =d, (2.50)
5'31 agz OF,
Hr t -t
O} = 0 +a—é~g1 +E~ﬁg1 +£ﬂg1 =8, {(2.51)
agl 523;, ag:;

yields where subscript ‘¢’ indicates Lhe value of the function at 77, determined from

the trial intcgration .
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Solution of these equations in a least — squarcs sensc reguires delerminmg the mintimum

value of
=5 482 48]+ 465 (2.52)

with respect to g, g, and g,

Now dilferentiating £ with respect to g, yields

5 5, 86, .. 86
25,20 125,90 1 05,702 125,00 425,70 =
g, l 2 o, og,
3 20 20 pe oo
ar(f +iﬁg]+i 5+ bfﬁchf ( r+—£g|+T-ﬁgz+—ﬂgj]q
oF 3z, g og| OF; 925 o8

apP gP aP &' M &
P —_ b A, A + = ﬂ 325 I
[ Ay g2 33]8& [f Sl 2, 8271 2, 3]6{5]

g 7 o, 8
r -‘j F 5 r
(‘9""%5‘?1 %6 ﬁg:“'rg 5&'3) g =0
&g, gy £l o

-l (&) () A e

T+ -1y r -‘3‘ ! !

+E_‘@:’+5E}‘L8§+_E}_P_IGP+ ¥ g.-_ffiﬂgz

| 3g; 83y 08 O O oz, 9, Of agz 3 (2.53)
.\ o ¥ 08 00, P 8P " &, 3¢ E':‘r:’i"]M

X ag; ag] 3, n og, 0z O og |

|:f f c j-j_'a_ji fc Of 5” o7 :|

531 5 Sl o 2, o
Similarly diffcrentiating £ with respect lo g, and g, , we obtain respectively
b} & &4,

256—- 24, tm:‘+2§a"”+2§E- 25———{!

02, T &2 2 E 1
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[ ¥, 86 59+aﬁ aﬁ+@r g, o8 aa']ﬁg
'5'E| £ 2 35’; dg, oz, dg, g 0 531 =) l

EGRAREIR S ]ﬂz
j S p] dg; 08, 083 dg; (2.54)
(o o , 06 o8 8P 8P, o, aa’]ﬂg
| 0g; ng o E:"gz C'galﬁgz % 532 Pg_j,'ﬁgz ’
[f ¥ g a1 —ap f'af vo, aa’}
085 33'2 “ g B2 52 Oy

and

? + 28, — ) + 28, — &4, +28, — 864 2595— 0

o8 5g3 %; a2, £y

[of of 26 39, oP OP o o' of 33']5@
1

o6, F; | o2, Oz, | o8 O 08 0> 38, 0
(& & o0 86 0P 0P o' ¥ B8 E‘E]ﬂg
2

24,

+ . .
ﬁgz ﬁg; %4 58’3 g, €2, 55’1 5'3'3 5&'2 dey
8 a0 opY (o s0'Y (2:53)
024 og; de; 05 g4
[ S o +Ef‘P+fc’i+gc'?i}
9.!’.’3 0F 5 L2 0g; L2t
We can write equations (2.53)-(2.55) in a system of linear cquations as follows:
a, A +a,A8, +a,Ag, =5 (2.50)
ay Az, + a2, A8, +d,;08, =b, (2.57}
(2.58)

Mg, + a5, A2, +d,A8, =5,

Here
z bl o2 N2 2
N CRCRERC L
K & %, o) 2]

_F o 90 90 GP 8P ¥ & 20’ 00
oy Og, Oz Og, 2 9, dg; Az, dg 0%

22
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o9 29 OF P o B0 88
a .
1B 0 333 2 5&'3 53’1 333 agl 533 agl 0
Hl_of o, 00 E_i_aF ap oy, 08 8
2 - A
g3 53. dg, 8z; 0OFy 08 532 r’*gl &g, 0g

)

dg 7

8P 8P YA
ﬁgz 53’3 532 0g 3
29 86  oP aﬁ+af o, o8 0
Bg, 0z Ogs lq.E.'] dey 88

ap SP f ﬁf
a.E.'J 085 983 E‘é’z

g = af éj‘f A 59
® 8z, g, 531 0, ng'é‘gj

A a4
ay = y f .
&g, 5E| 53’3 73

2 ﬁf rf bl ori?
2 0F 5 53’1 533 5.5’1 g4 532

& T+[f‘9T+[5FT+(ff'T+(?"1ﬂ
83 &gy O OF

dy3 =] 3
Uy
P P LA o +9;5“5'}
L og) dg| o8 o og,y
.@f

o 80 —-aP }
£ + 1, + e —
[c E?gz cagz ﬂgz 932

and

& —apF 8" ., 8
4-”}1 -ﬁf - +P€-‘ +fﬂ f-lf- +&C }
'5’8’3 &g, g B

Oy
Now solving the cquations (2.56-2.58) using Cramer’s rule , we have

det 4 _ det A, and Ag, = {:if:tt,:!:
=

E!g’=a:in.=:tfi’ 7 detd
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where

det A, Uy ap|=b{anay — i)t bi{@a; — )58, Y+ Dy{a ay — a0y, )

n

detd, =la,, b, ay = b, {2, —d, 8y )+ by (a,,2., — @yt 3+ Dy (a5, 8, —a,,85,)

det 4, =@, a5 by = b {ayay, — iyt )+ b, (e, —dy @y 3+ Iy (aydy, -y

2, 4y dpy
detd =a, ay @yn|=4a,;(@ndy — 05 )+ @y (€58 — iy } F oy (3182 — @yt }

1y iy y

Then we obtain the missing values g,,g;and g, as

g, =g tag,
£ =£’2+53'z :
&4 =g3+-ﬁ§3 .

Thus adopting the numerical technique aforcmentioned the solution of the equations
(2.18)-(2.20) with boundary conditions (2.15) for case T and the cqualions (2.30}-(2.32)
with boundary conditions (2.29) for case Il are ohtained together with sixth-order
implicit Runge-Kuta nitial value solver and determine the velocity, temperature and

concentration as a function of the coordinate 7. In the process of integration the skin-

Friction coefficient f"{0)and heat transfer rate — §'(0) are aiso calculated .
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2.5 Results and discussion

The sysicm of nonlinear ordinary differential cquations (2.183—(2.20) together with the
boundary conditions (2.15) for the case 1 and {2.30)-(2.32} together with the boundary

condition (2.29) for the case 1{ have been solved numerically by using sixth-order Runge-
Kutta shooting mcthod. Various groups of the parametcrs o, Gr,Pr,v,,m were
considered in different phases. In all the compulations the step size Ax= 0.005 was
sclected that satisfied a convergence criterion of 107" in almost all of different phases
meniioned above. However, different step sizes such as Aw =0.01 to Az = 0.00] were
also iried and (he obtained solutions have been found to be independent of the step sizes

as observed in fgure 2.2.

1.2

Gr =10, Pr=0.72, ¥y = 0.5,a = 30°

T 1.j,,-r-l = ;003

0.8
eunxnn A7) =0 001

Velocity Prafiles

0E F
f&o
04 F
Temperalure
0.2 | Profiles
0
0 1 2 3

Fig. 2.2: Velocity & temperature profiles for diffcrent step sizes.

The results for the two cases considercd above arc displayed graphically in Figures
(2.2.1)-(2.2.12) respectively for dimensionless forms of velocity, lemperature and

pressure . Numerical computations have becn carried out for the study of the effecls of
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various parameters on the velocity, temperalure and pressurc distribution for hoth the

case . For this purpose the effects of diflerent paramcters Gr,v,, Pr, m and @ on the

(luid Now have been investigated . The value of Prandil number Pr is taken equal to

0.72, 1.0 and 7.0 that comespends physically 0.72 is suitable for air at 20°¢ , 1.0

correspond to clectrolyle solution as salt water and 7.0 corresponds to water. The value
Grasho T number Gr is taken to be large 10.0 , where larger values of Gr correspond to
a cooling problem that is generally encountered in nuclear cngingering in connection with
the cooling of reactors . The positive or negatives values of Gr mespechively represent
cooling and heating of the plale . The suction velocity v, is taken to be equat to 0.5, 1.0

and 2.0 which are appropriate for the liquid metals . The values of @ and m are chosen

arhtrarily .

Case I : The mentioned parameiers the velocity , temperature and pressure distnbution
profiles are represented graphically in Figures {2.2.1)-(2.2.6) for both the heating and
cooling of impulsively started plate . From Figures {2.2.1) and (2.2.2) for the case when

Gr >0 {in the presence of cooling of the plate by natural convection currents } we observe
that i) there is a rise in the velocity proliles duc to an increasc in o , ii) an increase in the
suction parameter v, causes a fall in the velocity felds. From Figures ( 2.2.3} for the case
when Gr positive and negative {in the presencc of heating and cooling of the plaie by
natural convection curreits ) it is seen that there is fall in the velocity profiles due to an

increase. Figures (2.2.4) for the case when Gr=01n the prescnce of cooling of the plate by

natural convection currents.
We also plotted temperature profiles in Figure (2.2.5) in case of Gr =0 for a comparison

in different Prandt] number Pr.We see that (here is a decreasc in lemperalure due to
increases which is very large in case of water (Pr=7.0). Figure { 2.2.6 ) shows the
pressure distribution profiles for two cases Gr <0 and Gr >0 for fixed values Pr v, and
. We observe that (hexe is a risc in pressure due to increase for the case Gr >0, on the

other hand , a reverse phenomenon occurs in case Grr <)
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1.4

Pre0.72, Gr= 10, Vo= 0.5

Curves
I oa= 307
? =407
3 xwbd

Fig:2.2.1: Velocity profiles due to cooling of impulsively started plate for dilferent
values of .

1.2
1 Gr=10Pr=072 o =3
0.8 Curves
1 V=05
f06 2 V=10
3 Wy =20
0.4
0.2
0 Lkl £
| 0.5 1 1.5 2 25 3

Fig:2.2.2: Yelocity proliles due to conling of impulsivcly started plate for different
values of v, .
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1.2
Pr=072 v,=05,0=30"
1
Curvas
0.8 1 Gr==5
2 Gr=-10
0.6 1 Gr=-15
4 Gr=5H
5 Gr=10
f o4 6 Gr=15
0.2
0
0.2
0.4 L 1 : . 1
0 0.5 1 1.5 p 25 3

Fig:2.2.3: Velocity profiles due to heating apd cooling of impulsively started plate
for dilferent values of Gr.

14

12 F ... Pr=072, Q=30 v, =05

0.8
0.6
0.4

0.2

2.5

Fig:2.2.4: Velocity profiles due to cooling of impulsively started plate for different
values of Gr.
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Curves
1 Pr= 72
2 ™=10
apr=7a4

- -

Fig:2.2.5: Temperature profiles for impulsively started plate for diffcrent values of
Pr.

Pr=0.72, ¥ =05, a=30° Cirves

Fig:2.2.6: Pressure distribution profiles for impulsively started plate for different

values of {rr.
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Case I1:  Figures (2.2.7-2.2.10) show the variation of the velocity profiles duc to
accelerated motion of the plate when it is cooled and heated by natura! convection
currents respectively. Figure (2.2.11) shows the temperature profiles and Figure (2.2.12)

shows the pressure distribution profiles. We observe from the ligures that the effects of

vapous parameters on velooity and temperature are similar to those of the impulsively

started plate. Thus the discussion of the resulis in this case 15 not produced for brevity.

Pr=072 Gr=10, vurﬂi,m:'iﬂ

08 r
06 r

04

Fig:2.2.7: Velocity proliles due to cooling of uniformly accelcrated plate for
di{fferent values of a.



Fip:2.2.8: Velocity profiles due to heating of unifermly accelerated plate for

0.8

0.6

0.4

0.2

Prs 072 m= 10, V,=05, =30°

Curyes
1 Gr=-3
2 Gr=-10
3 Gr=-13

different values of G,

"" " Gr=10, Pr=072 (0 = 30°, v =03
A
LY ‘*‘ Curves
| 1 ) 1m=04
' n 2m=1.0
Im=20
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Fig:2.2.9: Velocity profiles due to cooling of unmiformly accelerated plate for

dilferent values of #7.
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1
Gr=-5ps072m=10c= a0

CLIMves

1Y =05

2V, = 1.0

f IV,=20
0.2 : - :

0 0.5 1 1.5 2

Fig:2.2.10: Velocity profiles due to heating of uniformly aceclerated plate for

different values of v,.

Gr=10,m= 10, w=30", v, =03

Curves
1Pr=0.72
2Pr=10
Apr=T70

Fig:2.2,11: Temperature proliles for uniformly accelerated plate for different values
of I'r,
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cunves
Pr=0.72,m=10, V,= 05, £ =30° 4 Gr= 15

Fig:2.2.12; Pressure distribution profiles for uniformly accelerated plate for
dilferent values of c.

Finally in Tahles 2.1 & 2.2 numerical valucs of the skin friction and Nusselt
Number respectively proportional to f '(0) and —8'(0) are given for impulsive as well
as uniformly accelerated motion of the plate. In Table 2.1, 1t appears that the skin friction
coeflicients increase with the increase of a and Gr but decreases with the increase of
v, and Pr. On the other hand, Nusselt number decreases with the increase of v, and Pr.
The Table 2.2 Indicates that the skin frietion cocflicients increasc with the increasc of
a,Gr,m but decreases with the increase of v, and Pr. The cocificient of Nusselt nunmber

inereascs with the increase of m,v, and Pr. We see from both the table that the wall

shear stress has a larger effect in case of impulsively starled plate as compared to the

uniformly accelerated plate.
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Numerical yalues of skin friction cecfficient, 7, and nussclt pumber N, for
impulsively started plate

Gr Pr X V, T, N,
10 0.72 30t 0.5 0.6058 1.2005
10 7.4 30° 0.5 - 08207 5.0515
10 0.72 40° 0.5 1.1960 1.2008

-10 0.72 30° 0.5 -3.5365 1.2003
5 0.72 30° 1.0 -0.8609 1.4594
-5 0.72 30° 0.5 -2.5021 1.1993
5 0.72 60" 0.5 {(1.3282 1.2005

Table 2.2

Numerical values of skin friction cocfficient, 7, and nusselt number N, for
uniformly accelerated plate

Gr . Pr m b4 v, T, N,

10 7.0 1.0 30° 0.5 -2.8525 8.1123
10 0.72 1.0 30" 0.5 -3.0716 2.3385
10 0.72 0.0 30" 0.5 -1.7968 1.1997
10 0.72 1.0 40" 0.5 -1.9762 2.1195
10 0.72 1.0 10° 1.0 -2.56074 2.33%
-10 0.72 1.0 3% 0.5 -4.2988 2.1196




Chapter Three

Finite Difference Analysis of Natural Convection Flow Over an

Inclined Heated Plate

Two dimensional natural convection heat and mass transfer [low past a semi-infinite {lat
plate have been receiving the attention of many researchers because of its wide
application in industry and technological fields. Natural convection along an inclined
plate has received less arlention than the casc of vertical and horizontal plates. Finite-
difference technique has been used in natural convective [low analysis by many
researchers. Callghan and Mamer (1976) have presentsd a paper o1 iransient frce
convection with mass transfer effects and to solve the problem by explicii linite
difference technique. Soundalgekar and Gancsan (1985) solved the same problem using
implicit finite difference technique and compared the result with those of Callahan and
Marmer {1%76) and both the results agree well. Recently Chamkha et al. {2001} have
prescnted a paper on similanty solutions for hydromagnetic simultancous heat and mass
transfer by natural conveclion from inclined plale with thermal heat gencration or
absorption and 10 solved by implicit finite difference technique. Very recently Ganesan
and Palani (2003) have studicd free convection effects on the flow of water at 4°C past a
semi-infinite inclined fat plate o solved the problem using implicit finite differcnce
technique. The explicit finite difference technigue is conditionally stable bul implicit
finite difference technigne is unconditionally stable and hence during computatien large
time-steps as compared to explicit technique are permilted which leads to saving
computer time which is a distinct advantage. For this convenience we have solved our
problemn using inplicit finite difference technique. Numerically results are presented by
velocity, temperature and Prandtl number Pr. In the [ollowing sechion detailed
dervations of thc governing equations for the flow and the methed of solutions along
with the results and discussions are presented.

For this purpose let us consider a two-dimensional unsteady [(ow of a viscous

incompressible [uid past an inclined flat plate. Initially it is assumed that the flow i5 to
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be in the X-direclion which is penneable inclined at an angle a to the horizontal and the
Y-axis is perpendicular to the plate, The physical flow configuration is shows in the

following Figure 3.1

Figure 3.1 : Configuration of the problem

3.1 Governing equations of the flow:

The mathcmatical statement of the basic conservation laws of mass, momentem and

energy for the unsteady viscous incompressible [low are given by

vV.g=0 (3.1)
%{:-+p{§,‘?}§:—?p+p?3§+ﬁ (3.2)
of .
—+{g.V)T= " i
= §.v) e {(3.3)

where §= §(u,v ), u and v arc the velocity components along the x and p axes
respectively, F is the body force per unit volume which ig defined as - gz, T is the
temperature ef the fluid in the boundary layer, g, is the acceleralion due to gravity, & 1s
the thermal eonduclivity, ¢, is the specific heal at constant pressure and g 1§ the viscosily

of the fluid. ¥ is the vector differential operator and is defined by
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vei, Suf L
dx gy
where fx and the / are the un it vector along x and y axes respectlively.

The above mentioned equations (3.1) to (3.3) would serve as the governing equations of

the problems under the Boussinesq’s approximation

trF:J—M+Ei'i--['i 34
P. (3.4)
o  bu  fu  du .
E{-HE;-FVE;:V“'Z +guﬂ(T—T¢)51ﬂﬂ {35]
ar 8T AT x 8T

LI (3.6)

—— g
3 & By pec,

The appropriate boundary conditions to be satishied by the above equations are

t<0u=0,v=0T=T7_ (3.7a)
¢>0,u=0,TI=7, at x=o
y=0=0, T=T at y=o {3.7b)
u={}, =T, a5 y—¥ o0

3.2 Transformation of the governing equations

Equations (3.4) te (3.6) may now be nondimensionalized by using the following

dimensionless varigbles:

1 _ T_ 1 }’(2(
X I”=%Gr}{‘, gty i g Lt L 170

; 3.8
b ¥ T -1, r G-8)

Where L is the characteristic length of the plate, Gr is the Grashaf number, 15 the non

dimensional temperature.
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Substituting the relations (3.8) into the equalions (3.4) to (3.6} then the following non-

dimensional equalhions

alf o

Bl Ny 3.

ax ay (32
2

v L EU+VEU 9 U+E?Sinﬂ: {3.10)

+ =
oF ax gy ar?

I, f8 8@ 1 8% (3.11)
— otV —=———
ar ax 8y Pprayr’

T - ¥
Where Gr = 8oL (I;‘” T“}, i& the Grashol number and 7, = ol , is the Prandtl
v W

number,
The corresponding boundary conditions (3.7a) to (3.7b) take the following form:

=0, F=0, &=0 for every 1< 0 (3.12a)
for 10

U=a¢,V=0, =0 at X=0
U=a V=0, 8=1 al Y=
=@ 6= as Y= oo

(3.12b)

3.3 Numerical analysis

'he non-linear cquations (3.9)-(3.11) subject to the initial and boundary conditions
(3.12a) and (3.12b) are solved numerically for the velocity and temperature using the
implicit Gnite differences scheme of Crank-Nicholsen technique. For this purpose, we
consider a plate of height X, (=/.0) and regarded Y=Y_ (=4.0) which corresponds to
Y=m The value of ¥ is assumed to lie well ontside both the momentum and chergy
boundary layers. The computer time, variable mesh sizes are taken both in X and ¥

directions, where X direction is taken along the plate inclined at an apgle o to the

€ .
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horizontal and ¥ direction is taken normal to the plate. In figure 3.2, there are M and N

grid spacing in the Xand ¥ direction respectively.

. j- lines j=N
j=0 |
.---""""Fff

\ ..---"'""“f |
e __....---'"""'F.-FFFF

| ]
-

\ hﬁ‘f "
_._.___,..---""‘""’rr _...--"""""’.H-H
[, fﬁ____._,___...--"

..---""""f
\__,_...--""""'"fr fﬂ_,_..-—-—”"""rﬂ_r
..--"""'"f
\\_..---"""""rrr.’ _F.‘_.___.___..---""""f
'___,_...--"'"
\____...-—-"'""ffrr | ——
_-—""-.-'-.-._.-.-.-.-'-.-LH-.-.-.—F.
\_,_..----“"""'_.-.-.-._"-.-.i-":I
Yo rrrevrriiirriridls

Figure 3.2: Grid system

The mesh sixes are given by
AX =010 (0<X<14)
AY = 0,20 (0<Y<4 0)
Ar=0.10
The partia! differential equations (3.9)-(3.1 1) then ean be written in the following himtc-

difference approximations

r+l n+ * n ri+l
U-’-.f - J-IJ+U¢.1_UJ +UJ.J—1

‘]J

K+
=1y

n

n
-1 +Ur,;—l _U:-luril

+

n+1
Vi

n+] R H
-V +P:..f _H.J—l

ig=l

28X

=0

A¥Y

I
ol

i-lines

(3.13)
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U:'.T -3 +0T U:T;] - U:'ﬁ.lf +Uy, - Uiy P U.T}L - Urf;:l +U7 0~ Uis

AT N ZM s 44&}’ (3 14)
_ U:ﬁl ""?.U:;j +U:j:.t +U:j—] _EU:; +U::j+l + HIT;I —]—H:J 51T ek

2(AYY

3:; - '9::' +U ‘5':;] - QT; + ‘5'!:' ~ E:“ + 3" H:J'H — gfil;-!l * 9:1'“ _ E;;f'"

ar Y 28X N aa¥ (3.15)
= i gri:,rlll - 2{?1“:] + EIn;:-I + E:_F-1 B Eﬂ;di + H‘:Jr”

Pr Z(fi}’)l

Here the subscripts  designates the grid points with x- coordinates and f designates the
grid points with y-coordinates and » designates the valuc at a time T = nA1, where
n=f23.. . el

The initia] and boundary conditions

Ut =0 =08,=0 (3.10)
Uy, =0V, =08,=0

Ul =0V, =067 =1 (3.17)
U, =06, =0

where h— w0

Equations (3.13)-(3.15) are written in the following form

AiU:ﬁ: + 5, U:T + C]U;,!;:ll = £ (3.18)
A0+ RO + Cza;j;:, = F, (3.19}

vl =E, (3.20)



where
Vﬂ
4 == - : 1
EAY  2(aY)
| 4
4y =—— 1 .
4aY  2pr(AY)
.
BI=_1_+_'i_+_1_2.
At 2AX  (AY)
UH
B,=L+ I s
AT 2AX Pr(r}.fr’)l
Vﬂ‘
C ==t ! -
4AY  2{AY)
_ Vi 1

C. = _
P 4ay  2pr(ary

Jr
T+ Uﬁ-:.j - U:J )+ I‘;#(U::;—l - U:.j,r H )

a

U-I'. 1+
A= gax UL

vy, 1
+—=1 -
At 2(AY)

(U2, ~208, + U )+ 5 007+, Jsina

1,51

n

K
’ [ﬂ:;-l - ﬂar.rm)

H: Uf“ n+l L ® i
EI =ﬂ_:-+ 'ﬂ[ﬂr—ld +ﬂ1-l,_,r -_El!;..' )-I":q:i‘r—}’

— o, —26r, 400

2pr(ay) "
AT
_ il L r
Ea - Vr.j—] - Vr,; + L=t _-EM

ra+l Hl r ] Hel w+] TH a
(L".!,j ~UZ; +UJ-,_,I "U:-l,; +U;u--1 _U:rl.;—1 +D:.j—1 - :-1,;—!)

1-1.f

Al a time 1t calculating the values of & I M at all the nodal points, their values al a time

1+A71 are calcnlated in the following manner

Knowing the values of & U] V ata tirne T = pAt , the ling i=1 15 considered. The values

of & are found from equation (3.19) at every nodal point on 7 =1 at fr+ ik time level
Finally the values of U7 are found from equation (3.18) in the same procedure. In all the

process the values of ¥ are derived from the equation (3.20). Processing on this way and

get the valugs of ¢, U and ¥V for all i=2.3........M . This process is ropeated for

n=2.3. unti} the steady statc is reached.

38
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3.4 Stability of the finite difference equation

It is necessary to discuss the stability and convergence of the finite difference scheme for
convenience of analysis. For constant mesh sizes, the general term of Fourier expension

for U/ and £ at a time arbitrarily called 7= 0 arc assumed to be the form '™ .

These terms can be written as follows at a Jaler time 7

U =Flzk"e™ (321)
&= H(r}ewew '
The values of F and H afler onc time step arc denoted by &' and H ‘respectively.
Substituting (3.21) in the finite difference equations (3.13)-{3.15} and the coefficients L/
and ¥ treated as constant after any one time step. We obtam

F'=F U i —iph¥ V r bl TP
— (F - A ¥ d
" + > (F +FX] ¢ )+ EﬁY{F + F JisingA

) (3.22)
{F’ + F)cosgAY - 1}+ E(H +H)sina

__1
(ary

H - H U {H +HI| rmt)+L{H’+H)isin;fa.ﬂ}’
AT ZAY (3.23)

1 ;
= W(H + H)rlcosgaY - 1)

Let us defing
ArlS {
2AX

- —lcosgAY - 1)
{ ) (3.24)

Al wry, ATV
—ZM[I e )+2&Y:sm¢6}’ Pe(aY }z(cosgﬁﬂ}’ 1)

114
A= e_""lv)+ g—zsm;ﬂ&}’

B=

Then the eguations {3.22) and (3.23) can be written as

(L+ AF = (1 —A]F+%5(ff'+ H\Sina (3.25)
(1+ BYH' =(1- B)H (3.26)
1+ A4 At
F'= [——]F $———
where [-4 (1 +AII +B) {3.27)

Hr=(1__£]hf
1+ 8



which can be expressed in the foltowing matrix
Fil la, ey F

HU |0 ay|H

ie n =Ep

-4 A o _1-5
1+A" 7 (t+4N+BY ® 1+B

i, =

40

The eigen values of the application malrix E are obtained from the characteristics

equation
72— E=0ie.

A=ay  —ay
0 A-a,

=2 =10

Thus eigen values are
1-4 1-1
Ry

AtV b= At
247 (AYY

Let,a=

We can wrnite
A=2asin’ {%)+ 25 sm{%ij + {zsin gAX

=2Z,+iZ,

B =12a sinz[ﬂj + 1.E.'Jsin2 [ﬁ] + ig sin gAY
2 Pr 2

=L, +iZ,

Since the real part of A or B are greater than or equal (o 7ero.

Therefore the scheme is unconditicnally stahle.

-Fr -
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3.5 Results and discussion

The jmplicit finite-difference method of Crank-Nicolson technique is cmployed in the
present work for numerical compulation. The transient primary velocitics and

temperature profiles are shown graphically in Figures 3.5.1- 3.5.5 and discussed

{hercalter. The solutions arc obtained at the upper cdge of the plate, namely A= 1.0 for

different values of the given dimensionless parameters. The values .72, 1.00 and 7.00

arc considered for the Prandt] number Pr which represent specific conditions of the Mow.

At first we have plotted the transient primary velocity profiles for differcnt values of
inclined anglc o respectively in Figure 3.5.1, 1l is scen that the primary velocity increases
with the inereasing valucs of . To show the effect of Prandt] number, Pr, in the velocity
field, we depict Figure 3.5.2. We have seen [rom this Figure, the increase of the Prandtl
nurnber reflects to the primary velocity profiles. However, the velocity profiles for lower

time values are also calculated and displayed. Figure 3.5.3 represent respectively of the

primary velocity for different values of .

We have also plotied the transient temperature profiles considering effects of vanous

values of non-dimensional parameters Figure 3.5.4 and 3.5.5 show the glfect of Prandtl

number Prand T in the temperature profilcs.
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Fig: 3.5.2: Primary velocity profiles for a = 30°.
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Chapter Four

4.1 Conclusion

Unsteady free convection boundary layer flow over a heated plate with dilfercnt
inclinations has becn studied. The present work is Time dependent frec convection
analysis over an tnclined heated plate. And another work is Fimte difference analysis of

natural convection {low over an inclined heated plate. From the investigation the flowing
conclusions may be drawn
The mentioned parameters the velocity profiles are represented graphically for

both the cooling and heating of impulsively started plate. When Gr ={}, there is a
rise in the velocity profiles due to an increase in « and an in¢reasc in lhe suction

parameter v, causes a fall in the velocity fields. When Cr positive and ncgative

the velocity profiles due to an increase. On the other hand the variation of the
velocity proliles due to accelerated motion of the plate when it is cooled and

heated by natural convection currents respectively.

The temperature profiles in case of Gr >0 for a comparison in different Prandtl

number Pr. There is a decrease in temperature due to increase which is large in

case of water { Pr =7.0)

The pressure distribution profiles due to increase for the case Gr ={}, on the other
hand, a reverse phenomenon oceurs in case Gr <0.

The skin friction coefficients increase with the increase of @ and Gr bul decreases
with the increase of v, and Pr and Nusselt number decreases with the increase of

v, and Pr.

The primary velocity increases with the increasing values of @.

The increase of the Prandt] number reflects to the primary velocity profiles.
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4.2 Extension of this work

The present work can be extended in different ways. Some of those are:

Temperature dependent (hermal conductivity has been considered in the present
study.

The problem can be extended considering the concentration effccts.
Inclusion of Joule heating effects may be another extension.
Considering the Radiation heat transfer effects.

Critical behavior of the flow may be studied.
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