Similarity Solutions of Unsteady Natural Convection Boundary Layer Flow with Suction Over a Vertical Flat Plate using Group-Theory Method

by

HAREKRISHNA DAS
Student No. 100109001 F
Registration No. 0110641 . Session: October-2001

MASTER OF PHILOSOPHY
IN
MATHEMATICS

Department of Mathematics
BANGLADESH UNIVERSITY OF ENGINEERING AND
TECHNOLOGY, DHAKA-I000
September- 2006

Similarity Solutions of Unsteady Natural Convection Boundary Layer Flow with Suction Over a Vertical Flat Plate using Group-Theory Method

 submitted byHarekrishna Das
Student No. 10010900 IF, Registration No. 0110641 , Session: October- 2001, a full time student of M. Phil. (Mathernatics) has been accepted as satisfactory in partial fulfillment for the degree of

Master of Philosophy in Mathematics

September 20, 2006

BOARD OF EXAMINERS

1. Dr. Md. Mustafa Kama Chowdhury Professor 20.9.06 (Supervisor)

Debarment of Mathematics
BUET, Dhaka-1000
2. Head

Department of Malliematics

BUET, Dhaka-1000

3. Dr. Md. Abdul Alim	A. $A \ell$ ing	
Assistant Professor	20.9 .06	

Department of Mathematics
BUET, Dhaka-1000
4. Dr. Amulya Chandra Mandal

Professor
$\therefore 20+9,06$
(External)
Department of Mathematics
University of Dhaka

Abstract

The group theory is applied to present an analysis of the problem of unsteady laninar natural convection from a vertical porous flat plate. Assuming suction for the porous plate. analytical expressions for flow characteristics are obtained. Itwe application of oncparameta groups reduces the number of mdependent variables by one and the system of governing partial diflerential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The possible forms of surface temperature variations are derved. The one set of ordinary differental equations are solved numerically using shooting method based on sixlh order RungeKuth scheme along with Nachlshiem-Swigen iteration technique. Progranming software FORTRAN 90 is used to implement Runge-Kutta method and visualisation soltware TECPLOX is used to create graphs. The effect of suction parameter on the velocity, temperature, the skin finction and the rate of heat transfor for fixed Prandtl number is discussed with the help of grapls. Also the heat transfer characteritice fon vary ing values of Prandll number and fixed suction parameter are presented.

Candidate's Declaration

I hereby declare that the work presented in this dissertation entitled "Similarity Solutions of Unsteady Nalural Convection Boundary Layer Flow with Suction Over a Vertical Flat Plate Using Group Theory Method" which is submitted in paria! fulfillment of the requirements for the award of the degree of Master of Philosophy in Mathematics in the Departonent of Mathematics, Bangladesh University of Enginecring and Technology (BUET), Dhaka-1000 is an authentic recond of ny own work.
lt has not been submited elsewhere (Universithes or Institutions) for the award of any other degrec.

Harekrishna \&ias. (Harekrishna Das)

Date: 20-09-2006

Acknowledgement

I would like to express my graltude and indebtedness to my supervisor and Head of the Deparment of Mathematics, BUET, Professor Dr. Md. Mustafa Kamal Chowdhury, for his valuable suggestion, constant inspiration, guidance and for providing ne all rescarch facilities during the research work of my M. Phil program. I express my gratitude to my respectable teacher Dr.Md. Abdul Alim, Assistant Professor, Deparment of Mathematics, BUET for his kind help in solving the equations numerically and in preparing the figures. His generous help, guidance and constant encouragement werc available to me in the completion of this work. I am also grateful to Kh. Abdul Maick, Assistant Prolessor, ALUB and Md. Mahnud Alam, Plh.D research student of BUET for their generous help and co-operation.

Finally, I express my gratitude to my respectable tcachers, specially all the tcachers of the Deparment of Mathematics, BUET, Dhaka-1000.

Contents

Abstract iv
Candidate's Declaration v
Acknowledgement vi
Contents vii
Nomenclature viii
List of Figures: xi
Chapter 1 1
1.1 Genera! Introduction With Review of Previous Work 1
Chapter 2 4
2.1 Group-Theory and Important Terms 4
2.1.1 Group Theory 4
2.1.2 Important Terms 8
Chapter 3 15
3.1 Formulation of the problem and the governing equation 15
3.1.1 Case I: $T_{W} \propto(x+b t)^{-1}$ and suction velocity $\propto(x+b t)^{-1 / 2}$ 19
3.1.2 Case II: $T_{w} \propto\left(x / t^{2}\right)$ and suction velocity $\propto(1 / \sqrt{t})$ 26
3.1.3 Case III: $T_{w} \propto t^{r}$ and suction velocity variation is zero 34
Chapter 4 40
4.1 Results and Discussion 40
4.2 Conclusion 46
4.3 Future work 47
Appendix 48
References 53

Nomenclature

Dimensional variables		
Symbol	Quantity	Unit
x^{*}	Distance along the plate	m
y^{*}	Distance perpendicular to the plate	m
u^{*}	Velocity component in the boundary layer	$\frac{m}{s}$
	along the plate	
$\stackrel{*}{ }$	Velocity component in the boundary layer	\underline{m}
	normal to the plate	
T	Temperature	K
g	Gravitational acceleration	$\frac{m}{s^{2}}$
I.	Reference length	m
$q=-G^{\prime}(0)$	Heal Lransler rate	$\frac{f}{m^{2} s}$
U	Characteristic velocity	$\frac{m}{s}$

Dimensionless variables

Sy mbol	Quantity
$G r$	Grashof number
$F r$	Dinensiontess strean function
$P r$	Prandt number
$R a$	Rayleigh number $=G r P r$
x	Distance along the plate

$y^{\prime} \quad$ Distance perpendicular to the plate

* Velocity component in the boundary layer along the plate
v Velocity component in the boundary layer normal to the plate
$0=G=\frac{T}{T_{w}} \quad$ Temperature
1
Time

Greck symbols

Symbol	Quantity	Unit
a	Thermal diffusivity	m^{2}
		s
β	Coefficient of volumetric cipansion	$\frac{1}{K}$
μ	Dynamic viscosity	铬
		$m:$
ρ	Density of the fluid	$\underline{\mathrm{kg}}$
		m^{3}
t	Local shear stress	kg
		$m s^{2}$
k	Thermal conductivity	J
		$m k s$
θ	Dimensionless temperature function	
\%	Stream function	
n	Similarity variables	
$\alpha_{1} \alpha_{2,} \alpha_{3} \alpha_{4}$	Real numbers	

Subscripts

$w=$ Surface condition
$\alpha=$ Conditions in the ambient
$F_{\eta}=$ Derivative of stream function w.r.to
simikarity sariables η

List of Figures:

F!gure 1: Physual madel and corordinde svisten
Figure'2. Elfeet of liv on velocity protiles for fixed Pandil number. Pr $=10$.
Figute 3. Edece of Fw on temprature profiles for fixed Prandl number, $P_{r}=10$.

Figures: Lftee of Fw on heat trans fer lator for fixed Pratull number. $\operatorname{Pr}=10$.
I'igure 6. Vefocity profiles for lixed $\mathrm{F}_{\mathrm{w}}=0.2$ and varying values ol l°
I'randil number. Pr
 ['randul number. Pr:
 and $f w=0.5$
 $\mathrm{J} w=0.2 \mathrm{and} \mathrm{f} \mathrm{w}=0.5$

Chapter 1

1,1 General Introduction With Review of Previous Work

The Phenomenon of natural convection anses in the fluid when temperature changes cause densily variaton feadiag to buoyancy forees acting on the fatid elements. This can be seen in our everyday life in the almospheric dow which 15 driven by temperature differences. When the vertical plate is being hoated. the air layer adjacent to the wall expmas and rises due to buoyancy. A natural convection boundary layer is fomped adjacent to the wall sur Face.

Recently, unsteady conditions of motion and heating of bolies in fluids have become increasingly important it certan applications for some enginecring fields of arodynamics and hydrodynamics. Also a matural convection fow has been generated due to the temperature difference inside the plastic green houscs. Mankabadi (1988) considered two pumping systems that can ulilize a usable power about 200 W for pumping underground water for irrgation pupposes. Thercfore it becomes necessary to pay more altention to this problem.

Obviously, the introduction of time as the thited independent kariable wh the unsteady problem increases the complexity of the problen. Many attempts were node to find analyicat and numerical solutions applying ecrtinn special conditions and using different mathematical approaches. llingworth (1950) studied the problen of unsteady laminar flow of gas near an infinte fat plate. He obtained solutions which are available only with Prandtl number unity and under transient conditions of step change in the surface temperaturc. The problem of transient fire convection at the heated surface has been studied extensively. Siegel (1958) investigated the transient free convection from a vertical plate. Free conveetive dow past vertical plate has been sudicd extersively by Ostach (1953,54) and many others

The free convectue heat tansfer on a vertical semi-infinte plate has been investigated by Berezovsky (1977) . Marlynenko(1984) inveshgated the haminar free convection from a vertical plate. In all these papers, the plate was assumed to be maintainced at a constant temperature which is also the temperature of the surounding sationary fluid. Soundalgekar (1977) studied the unsteady fiee convection diow past an infinile vertical plate with constant sution and mbens transfor. It was ansumed that the plate temperature oscillates in such at way that its amplitude is small.

Possbble simitarity solutions for haminar liee convection on vertical plates and cylinders have been studied by Yang (1960). He establisined some necessary and sulficient conditions for which similatity solutions are possible. Hanscn (1958) investigated possible similarity solations of three dimensional lammar meompressible boundary layer cquations. Zakerultalt (2001) hus elerived similarity solutions of some possible cases of unsteady mixed convoction by group theory without suction. He also investugated steady natural convection by group theory method without suction. Abdel-cl-Malek (1990) investigated unsteady free convective laminar boundary layer flow on a non-1sothemal vertical flat plate without assumang suction at porous plate in this case.

The mathematical technique used in the present analysis is one parameter group transformalion which leads to a similarity represintation of the problen. The fundamental simplicity and power of this method are well known. Morgan (1952) presented a theory wheh ded to mprovements over earleer minianty methods.

Nichal (1952) extended Morgans theory. Group Methods, as a class of methods which lead to a reduction of the number of independent variables, were first introduced by Birkoff (1948,1900). IFe made use of one parameter group transfonmations to reduce a system of partial differential equations in one independent variable. Thas techaique has been applice mensively by Abuel-al-Malek (1990.1991) , Ancs(1985) and many others.
 similarily andysis. They uthlifed elementary group theory for the parpose of reduciug a
 been applied intensively by Gabbert (1907) For additionad discussions on group transformations, one consults Ames (1972,1985). Eisenhat, Bluman and Cole (1974), Moran and Gaggioli(1967).

In thes work we point out the chect of suction in three calses derived by yang (1960). We present a gerienal procedure for seducing the number of madependent vanables in the govening cquations from three to one independent variable. The technique used is the onc-parameter group transformation which is applied to both the govening partial differential equations and the boundary condtions to assure the invatiance conditions. One set of the resultant system of ordatary diferential equations with appropriate boundary conditions is then solved numerically wsing shooting method based on sixth order kunge-Kutha scheme along with Nachtshiem-Swigert atration techmigue to lind botndary layer fow characterishes due to suction effeet and for varying Prandll number whern suction parameter is lixtd. Programming soltware FORTRAN 90 is used to implement Runge-Kuta method and sisuatisation software TECPTOT is used to create graphs.

Chapter 2

2.1 Group-Theory and Important Terms

2.1.1 Group Theory

One of the most mathematheally sophisticated mednods of detemining similaty solutions of partial differental equatom, is based on concepts detived from the theory of continuous transformation groups.

Group Concepts: An algebruic group is a coltechon of 'elements' which has some sorts of operation defined between the elements. In addition, a certain set of rules or statements regarding the elements and the delined operation must be satisficd. The clements can be almost anything we choose to definc, such as integers, complex numbers, vectors, matrices, transformations, cle. Ouc important citerion, however, is the definition of an operation for these elements. Typical opsation. for the classes of elements just mentioned are meger addum, complex bumber mulupheation, vector addition, maturix inultiplication and stecessive dransormations.

The rules which a set of elements must obey under a given operation are given below. (The syinbol o will denote the given operation between two elements; e.g., a $a b$.)

1. The sets of elements is closed under the given operation. If a and b are two elenents of the sets, then $a \circ b=c$ is also a unique element of the set.
2. There exists an identily element $/$ such that $a \circ I=I \circ a=a$
3. Given any clement a, there exists an element a^{-1} such timat $a \circ a^{-1}=a^{-1} \circ a=1$
4. The associative lam is talid for the given operation $a \cup(b \circ c)=(a \circ b) \circ c$

Transformation group:

A complete set of transfonution is taken as group elenents. Sucecssive transformatoms employng various sets of function ane considered to be "operation" between elements

Invariant Solution:

We consuder a systen of partial differentiad efuations for which dies are deperdent variables and x^{i} are independent variables. Solutions of a system of eguations for which v^{\prime} are exacyly the sume furctions of the r^{1} as the γ^{\prime} are of the $\lambda^{\prime \prime}$ are calloch invariant solutions.

Coulormally invariant, Constant conformally invariant, absolute javariant:

The difierential bomb $\phi\left(z^{\prime}, \ldots . . ., z^{\rho}\right)$ is defaned to be conformally invarian tunder a oneparancter transformation group $Z=T_{a} z$ if under the group transfonations $\phi\left(Z^{1}, \ldots \ldots, Z^{p}\right)=F\left(z^{1}, \ldots \ldots, z^{p} ; u\right) \dot{\varphi}\left(z^{1}, \ldots \ldots \ldots, z^{\mu}\right)$ Where $F\left(z^{1}, \ldots ., z^{\mu} ;\right.$ a is sonve tunction of the z^{k} and the single group parameter, a. $\|_{\phi} \phi\left(Z^{\prime}, \ldots \ldots, Z^{p}\right)=\mathcal{F}(a) \phi\left(E^{1}, \ldots \ldots \ldots, z^{p}\right)$, Whe function ϕ is sade to be constant conformally mariant under the group transformati015 . If $F(a)=1$ so thatl $\phi\left(Z^{\prime} \ldots \ldots \ldots . . Z^{\mu}\right)=\phi\left(z^{1}, \ldots . ., z^{p}\right)$ the function ϕ is said to be absolule intaraun under the transfonnation group.

Group Theory Method:

Let us constder a single partial differential equation in two independent variables. We sock transfomations that will reduce the number of independent variables by one, i.c. lead to an ordinary differential equation The steps are to

1 Seleet anc-parameter tansformaton group. If x and y ate the independent variables. a reasonable first elioice might be

$$
\begin{aligned}
& X=u^{\prime \prime} \tau \\
& Y=u^{s \prime \prime}, \\
& \bar{u}=u^{p} t u
\end{aligned}
$$

2. Find an obsolute invariant whach is a function of the independent variables alone. for example

$$
\eta=y n^{3}
$$

Entablishr relation between $m_{4} m$ and s such that

$$
y x^{s}=Y X^{s}
$$

The absolute invarian η will be the new independent variable.
3. Find a second absolute invariant g. chosen in such a way that g involves the dependent variable u. For example

$$
y=u x^{r}
$$

Find relation such that

$$
u x^{r}=\bar{u} X^{\prime}
$$

4. Sel $g=F_{1}(\eta)$. Then

$$
u=F_{1}(\eta) x^{-r}
$$

and $F_{1}\left({ }^{\prime}\right)$ is the new dependent varialble.
5 Substituting the transformation for u into the given equation and employing the definution of η should reduce the given partial differential equation to a ordinary differential equation

If mone dependent or independent variabies are involved, the above procedure remains cssentially the same, cacept that a group of independent variables η_{1}, η_{2}, . are sought from the original independent variables and ane one less in number . The n are absolute invartants.

For cach dependent, an absolute invariant g, is sought which insolves the dependent variabla. A good choice is $g_{i}=u_{j} h\left(x_{1} \ldots \ldots \ldots \ldots x_{m}\right)$ wicre u_{t} is the dependent variable. The [unction g_{1} is then equated to a finction
$F_{1}\left(\eta_{1}, l_{2}, \ldots \ldots \ldots / /_{n-1}\right)=U_{2} h\left(x_{1} \ldots \ldots \ldots, x_{m 1}\right)$
then

$$
u_{i}=\frac{h_{i}\left(\eta_{1}, \eta_{2}, \ldots \ldots\right)}{h_{i}\left(x_{1}, x_{2}, \ldots \ldots x_{m}\right)}
$$

is the dependent vallable transformation. Substituting the various transformations into the original system of equations should lead to athew system with the number of indepenclent variobles reduced by one.

Evaluation of the Group-Theory Method:

The advantages of the group theory method should be obvious. The first is that the method is rather simple to apply. We merely pick a transformation and procecd. There is no concern about boundary conditions, choices for various functions, etc. Seconcl, in reducung the number of independent vartables by one it is possible to obtain a new system of partial clifierential equations, without contunting to obtain ordiarary dificrential equations The possible advaultage of stopping shom of a system of ordinary diflementiab equations is that it may be possible to solve wider variety of problems in this mamer. It would be very interesting to explore thas possibility in solving the boundary layer tquations.

On the other hand. dere are two evident disadvantages to employing group-theory methods. The first is that boundary conditions ate not taken into account in any way unti] the entire analysis is completed. The second is the uncertainty in choosing a proper tratsformation group. IT we should fail to sinylify a system under one choice of transfomation group. Lhis does not mean that another, which would prove to be adequate, does thot exist. Fortunately, the types of group employed in the examples seem to be adequate for yielding the classes of similarity transformations obtained b) olter methods.

Although it has been pointed out that one advantage of the group- theory methods is to reduce a systen of partial differential equations in n independent variables to a system in $n-1$ variables without continuing to ordinary differential equations, the same lype of results could be achieved widn a modification of free parameter methocl. We would simply introduce fimetions of mow than one paramecer. We would begin an analysis by assuming that the independent variables were expressibie in terms of ($n-1$) dependent variables instead of a single parameter η. While such ant approach has not been explonted in literature, it would be quite simple to unestigate this possibility. However, the grouptheory methods should yield complete results with less effort.

2.1.2 Important Terms

Porous plate:

By porous plate we mean that the plate porsesses very fine holes distributed uniformly over the entise surface of the plate through which fluid can flow frecly.

Plate with Saction and Injection:

The plate from which the fluid enters into the flow region is known as plate with injection and the plate from which the fluid leaver out the flow region is known as plate with suction. Sometimes it is necessary to control the boundary layer flows by injecting or withdrawing fluid through a heoted boundary layer wall. Since this can cohance healing (or cooling) of the system, can help delay the transition from the laminar to turbulent flow. Boundary layer suction is used to control laminar and turbulent separations by removing flow of the low monentum. The techaique is used in an wings, some wind tunnels to remove boundary layer Blowing (injection) a boundary layer on high temperature components can maintain a thin layer of colder flow that allows the systent to fitnetion with very high dluid velocity.

Isotherinal:

It is a process if temperature is held constant during the process. i,e, $\Delta T=0$ or, having cqual or conshant temperature with respect to either space or time.

Similar Solutions' of the boundary layen equation:

Boundary layer equations are mome simpler than the orginal momenturn equalions. yet they are non-Jinear partial differential equatons. We, therefore, simplify them further by reducing liven into ordinary diferemtal equations. To this end, we propose to change, if possible, the independent and dependent variables in such a way so as to transtom the partial differential equations of the boundary loyer equations into ordinary differential equations Whenever such a transformation exists, we say that 'similar solution' exists.

Similarity variable:

Similarity variable is a function of original independent variables.

Thermal conductivity: The well-known Fourier's heat conduction law states that the conductive heat flow per unit area (or, heat flux) q_{n} is proporional to the temperature decrease per unit distance in a direction nomal to the area through which the heat is flowing. 'I hus, mathematically

$$
\epsilon_{n} \propto-\frac{\partial T}{\partial n} \text { so that } q_{n}=-k \frac{\partial T}{\partial n} \text { where } k \text { is said to be the thermal conductivity. }
$$

Viscosity: Viscosity of fluids is due to cohesion and interaction between particles. Vis--cosity introduces resistance to motion by developing shearing and frictional stress between the fluid layers and the boundary. Existence of shearing resistance in real huid causes the fluids to adhere to the solid boundary, and hence there is no relative motion or slip between the flajd layers immediately in contact with the solid boundary. Vescosity causes be flow to oceme in two different modes, namely, faminar and turbutent fow.

Kinematic Viscosity, Dynamic Viscosity: In Fluid problems, the coetficient ot dymamic viscosity μ usually oceurs logether writh mass density ρ in whe form $\frac{\mu}{\rho}$. In such problems, it is convenient to use another coefficient called the coefficient of kincticviscosity v (nu). It is the ratio of the coclifieient of dynamic viscosity to mass density.

$$
v=\frac{\mu}{\rho}
$$

'The dimension of v

$$
[\nu]=\left\lfloor L^{2} / T\right\rfloor
$$

In CGS units, it is measured in stoke which is equal to $1 \mathrm{~cm}^{2} / \mathrm{scc}$.
A parameter μ defined such that |shear stress)= μ [strain rate]
Dynamic viscosity is related to kinctic viscosity v by $\mu=\rho v$, where ρ is the density.

Incompressible, Compressible Fluid: A fluid is said to be incompressible if it call not be compressed casily. The density of an incompressible fluid is almost constant. A tiuid is said to be compressable if it can be casily compressed. Compressible thuids have var able density.

Steady Flow: The flow is said to be steady when the flow characteristics, such as velocity, density, pressure, temperature do not change with time. A flow will be steady when the rate of clange of these characteristics is zero. For cxample, if V is the velocity at any point, the flow wild be steady if $\frac{d V}{d t}=0$

Water flowing through a tap at constanl rule is an example of steady flow.

Unsteady Flow: The flow is unsteady if the velocity and other hydraulic characteristics change with time. Mathematically, $\frac{d V}{d t} \neq 0$. If the water is flowing at a changing rate, as is the case when tap is just opened, the flow is unsteady.

Uniform Flow: The flow is said to be uniform when the velocity and oher characteristics are constant in a parieular reach. A flow will be unform if the rate of change of these characterstics with respect to distance along the path is zero.
For example, if V is the veloculy at ally point, the flow will be unitorm if $\frac{d V}{d S}=0$, where S is the distance measured from some dixed point on the path of flow.

In the other words, velocity is constant in the reach. A liquid flowing through a long straight pipe of uniform diancter at constant rate is an example of unform flow, as the velocity is the same at a! sections in the reach.

Non-Uniform Flow: The flow is non- uniform when the flow characteristics change at various points along the path. For example, if V is the velocity at any point, the flow will be non-uniform if $\frac{d V}{d S} \neq 0$. If the diameter of the pipe changes, i.e., the pipe is either converging or diverging, the velocity at different sections in the reach is rot constant and the flow is non-uniform.

Stream Function: Stream function w is a function which describes the form of patcon of flow. If the stream function w is expressed as a function of x and y, the streamlincs can be plotled The component of velocity at any point may be oblained by Laking partial derivatives of w,

$$
u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial y}{\partial x}
$$

Convergely, if u and vare given, the stream function ψ can be obtained by integration, Suce, $d \psi=\frac{\partial \psi y}{\partial x} \cdot d x+\frac{\partial \psi}{\partial v} \cdot d y$
Therclore, $\psi=\int\left(\frac{\partial \psi}{\partial x}\right) d x+\int\left(\frac{\partial \psi}{\partial y}\right) d y+C$

$$
\psi=\int-v d x+\int u d y+C
$$

Skin friction: Plastic drag is drag cassed by moving a solid object through a lluid. In Aerodynamics, skin friction is the component of plastic drag arising from the friction of the flund agamst the skin of the object Inat is moving through it. Skian friction is a function of the interaction between the flutd and the skin of the body, as well as the welled area, or the area of the surface of the body that would become wet if sprayed with water howing in the wind.

Coefficient of skin friction: It is denoted by C_{f} and is defined as whe ratio of the shear stress τ_{0} to the quantity $\left(\rho U^{2}\right) / 2$.

$$
\text { Thus, } C_{f}=\frac{\tau_{0}}{(1 / 2) p L^{\prime 2}}
$$

Laminar and Turbulent Flows: A flow, in which each flud parncle traces out a delinte curve and the curves thaced out by any two diferent fluid particles do not intersect, is said to be laminar On lise oher hand, a flow, in which each fluid partuele does not trace out a definite curve and the curves faced out by falid paticles intersect. is sudd to be turbulent. The flow of thick ould though a small tube is an example of laminar flow. The flow in rivers at fle time of floods is turbulent.

Grashot Number: It is a dinemsionless group which represents the ratio of buoyancy force to viseous fore in free convection. One of the parameters which must be the same in two frec convecting systems for them to be dymamically sinilat It is detined by ΔT.

$$
G r=\frac{g \alpha \Delta T L^{3}}{v^{2}}
$$

whereg is gravity, α is thermal expansion cocfficient, ΔT is the lemperature difference, I is the length seale and $:$ is the kinematic viscosity.

Proudt Number: Prandil number is a dimensionless parameter of a convectung sysem that characterizes the regime of convection. It is defined as

$$
\operatorname{Pr}=\frac{1}{\kappa}
$$

where v is the kinerratic vistosity and κ is the themal diffusivity. Prandll number is the ratio of viscous force to the themmal force.

Reynotds Number: The effect of viscosity of a fluid phemomenon is usually expressed in terms of a non-dimensional parameter called Reynolds Number(Re) given by $R \omega=\frac{V^{\prime} /}{v}$

Whare V denotes the characteristic welocity, v is the kmematic viscosity and L denotes the chatacteristic feagels. This is the ratio of the mertial fore to the viscous force.

Two flows of meompressible viscous fluid about simitar geomedrical bodic: arc dynanjeally similar when Reymold's numbers for the flows are cqual. A small Reyroold's number inplies that viscosity is predominum whereas a large Reynold's number imples that viscosity is suati. If the value of Reynold's number exceeds a ecrtain critical vilue (namely 2,800) the flow ccases to be laminar and the flow becomes turbulent. When $R e<2000$, the flow is lammar.

Natural Convection: Convection is the study of conduction in a fluid as cnhanced by its "convectuve framsport' that 15 , its velocity with respect to a sohd surface. It thes comhnes the cnergy equation, or lirst law of thermodynanics, with the continuity and inomentum relations of fluid mechanics.
In natural convection thuid motion is due solely to locat buoyancy differences causcd by the presence of the het or cold body surface. Most fluids near a hot wall, for example. Will have their density decreased, and an upward near- wall motion will be induced.
Natural convection velocilics are relatively gentle and the resultant wall heat flux wilt gencrally be iess than in foreed notion.

Boundary Layer: The layer of reduced velocity in iluids, such as air and water, that is immediately adjacent to the surface of a solid past which the fluid is flowing In olher words. the boundary laye is the layer of fluid in the immediate vicinity of a bounding body. In the amosphere the bounclary layer is the an layer near the ground arfected by diumal heat, moisture or momentum transfer to or from the surface. On an airchaf wing the boundary layer is the part of the dow close to the wing. The boundary layer effect oceurs at fac liede region in which all challges oceur in the flow patern The boundery layce distorts surroundang nom-viscous flow.
The bounday layer is a sery thin sheed of air lyng over the surface of the wing (and, for Itat all the suffaces of the airplanc) Because air has viscosity, the fayer of the air tend: to althere to the wing. As the wing nove forward through the airs, the boundary layer at lirst flows smoothly over the streandined shape of the airfoil. llere the flow 15 called the laminar layer.
As the boundary layer approaches to the centre of the wing, it begins'to lose spead due to skinf friction and it becomes thicker and turhulent Here it is called turbulent layer. The point at which the boundary layer clanges from laminar to turbulent is called the transition point. Where the boundary layer becomes turbulent, drag due to skin friction is relatively high. As speed increuses, the transtion pont tends move forward. As the angle ol' attack increases, the transition point also tends to move domad. The boundary layer is particularly important in acroclyamics becanse it is responsible for a considerable anount of drag. In high-performance designs, such as sailplanes and commereial transport aircraf, much attention is paid to controlling the behavior of the boundary layer to maminize drag.
Two effects need to be considered. First, the boundary layer adds to the effective thickness of body, hence increasing the pressure drag. Second, the shear forces at the surface of the wing creale skin friction drag.

Chapter 3

3.1 Formulation of the problem and the governing equation

Let us consider a laminar freceonvective boundary layer adjacent to a semi- infinite vertical fat plate. The mon-isothernal porous plate is heated in an unsteady manner, consequently the temperature distribution over the plate. $F_{\text {" }}{ }^{*}$ will be a function of the vertical distance r and the time. Where is a normal velocity of suction at the porous plate. The fluid is of constant temperature T_{o}^{*} far from the plate such that $T_{s}{ }^{*}>T_{6}^{*}$ in [ing.]

Figure 1: Physical model and co-ordinate system

If we lake Las wome abilary referine fengeth, $\frac{L}{U}$ as a typical time, where
 gravity, '/f' is the volumbtre comficient of thermal expansion and $\Gamma_{\text {ef }}^{*}$ is some abicrary reference temperature, along with the application of the Boussinesq and boundary layer approximation, the equations of motion may be writuen as

Continuily equation: $\frac{\partial z}{\partial x}+\frac{\partial v}{\partial y}=1$
Monentunn equation. $\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+p \frac{\partial u}{\partial y}=T+\frac{\partial^{2} z}{\partial y^{2}}$

Energy çuation: $\frac{\partial T}{\partial t}+n \frac{\partial T}{\partial x}+\cdots \cdot \frac{\partial T}{\partial y}=\frac{1}{P r} \frac{\partial^{2} T}{\partial y^{2}}$
whin the houndary corditions

$$
\begin{array}{lll}
u=0, v=r_{w}(u, l), 7=T_{I I}(x, r) & \text { at } y=0 \tag{3.4}\\
u=0 . v=0 . & r=0 & \text { at } J=\infty
\end{array}
$$

where $x=\frac{x^{*}}{L} \quad, \quad y=\frac{y^{*}\left(C_{j}\right)^{1 / 4}}{L}$

$$
u=\frac{u^{*}}{U}, \Rightarrow v=\frac{\left.v^{*}(G)^{\prime}\right)^{\prime \prime}}{U}
$$

Gr $=\frac{g / H^{3}\left(T_{e f}^{*}-T_{c o s}^{*}\right)}{v^{2}}$ is the Grashof number, v is the kinematic viscosity.
Pr $=\frac{v}{a}$ is the Prandd number and α is the thermal diffusivity.
lrom the continuity eguation (3.1), there exists a non-dimensional stream function $\psi(x, y, t)$ such that $u=\frac{\partial \psi}{\partial v}, \quad v=-\frac{\partial \psi}{\partial x}$ which satisfics (3.1) identically. We introduce the non-dimensional temperature delined by $\theta=\frac{T}{T_{w}}$

Equation (3.2) and (3.3) become
$\dot{\phi}_{1} \equiv \frac{\partial^{2} \psi}{\partial y \partial t}+\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial y \partial x}-\frac{\partial w}{\partial x} \frac{\partial^{2} \psi r}{\partial y^{2}}-0 T_{w}-\frac{\partial^{3} \psi}{\partial y^{3}}=0$
$\phi_{2} \equiv\left(T_{1} \frac{\partial \theta}{\partial t}+\theta \frac{\partial T_{w}}{\partial r}\right)+\frac{\partial \psi}{\partial y}\left(T_{u} \frac{\partial \theta}{\partial x}+\theta \frac{\partial T_{w}}{\partial x}\right)-T_{\mathrm{u}} \frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial y}-\frac{1}{P r} T_{w} \frac{\partial^{2} \theta}{\partial y^{2}}=0$
i.c.,
$\phi_{2} \equiv \frac{\partial \theta}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial \theta}{\partial x}-\frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial y}+\theta\left[\frac{\partial}{\partial t}\left(\ln T_{w}\right)+\frac{\partial \psi}{\partial y}, \frac{\partial}{\partial x}\left(\ln T_{w}\right)\right]-\frac{1}{\operatorname{Pr}} \frac{\partial^{2} \theta}{\partial y^{2}}=0$
with bourndary conditions:
$\frac{\partial \psi}{\partial y}=0,-\frac{\partial \psi}{\partial r}=v_{\omega}, 0=1 \quad$ at $y=0$
$\frac{\partial \psi}{\partial y}=0, \frac{\partial \psi}{\partial x}=0, \theta=0 \quad$ at $y=\infty$

Our method of solution depends on the application of one parameter group (ransifonmation to partal differential eguations (3.5) and (3.6). Under this transformation, the three independent variables x, y, t will be reduced by one and the differential equalions (3.5) and (3.6) will be transformed into ordinary differential equations in only one independent variable, which is a smidarity variable.

3.1.1 Case I: $T_{w} \propto(x+b t)^{-1}$ and suction velocity $\propto(x+b t)^{-1 / 2}$

Unsteady natural convedion with surface temperature varying inversely as a limear combination of x and t and the suction velocity varying inversely as a square root of the linear combination of x and t

Finding the simblanty solutions of the equations (3.5) and (3 6) are cquivalent to determan the mariant solutions of these equations under a particular contimuous onepatameter group.

In order to seck invariant solution to this set of PDF we scateh a transformatuon group from one parameter triansfonation defined by the following group (Gl):
$\left.\begin{array}{l}x^{\prime}=a^{a a_{1}} x \\ y^{\prime}=a^{a_{2}}, \\ t^{\prime}=a^{a_{2}} t \\ \psi^{\prime}=a^{a r_{3}} \psi^{\prime} \\ T_{w}=a a^{a_{1}} T_{w} \\ \theta^{\prime}=\theta\end{array}\right]$

Here $u \neq 0$ is the parameter of the group and α 's the arbitrary real numbers whose interctuationship will be determined by the subsequent analysis. We now investigate the relationship anong the exponent α 's such that
$\phi_{i}\left(x^{\prime}, y^{\prime}, t^{\prime}, u^{\prime}, v^{\prime}, \ldots \ldots, \frac{\partial^{3} \psi^{\prime}}{\partial y^{\prime 3}}\right)$
$=H,\left(x, y, t, u, v, \ldots \ldots \ldots, \frac{\partial^{3} \psi}{\partial y^{3}} ; \|\right) \phi_{J}\left(x, y, t, u, v, \ldots \ldots, \frac{\partial^{2} \psi}{\partial y^{3}}\right)$
for this is the reguirement that the differential forms ϕ_{1}, ϕ_{2} be conformally invariant under the transformation group (3.1.1). Substifuting the fransformations (3.1.1) in (3.5) and (3.6) we dave
$\phi_{1}=\frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime} \partial t^{\prime}}+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime} \partial x^{\prime}}-\frac{\partial \psi^{\prime}}{\partial x^{\prime}} \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime 2}}-\theta^{\prime} T_{w}^{\prime}-\frac{\partial^{3} y \psi^{\prime}}{\partial y^{\prime 3}}=0$
$=a^{\alpha_{3}-\alpha_{2}-\alpha_{1}} \frac{\partial^{2} \psi}{\partial y \partial t}+a^{2 \alpha_{3}-2 \alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi f}{\partial \partial x}-a^{2 \alpha_{3}-2 \alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}$
$-a^{\mu_{4}} \theta I_{w}-a^{\alpha_{3}-3 \alpha_{2}} \frac{\partial^{3} w}{\partial v^{3}}$
$\phi_{2} \equiv \frac{\partial \theta^{\prime}}{\partial t^{\prime}}+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial \theta^{\prime}}{\partial x^{\prime}}-\frac{\partial \psi^{\prime}}{\partial x^{\prime}} \frac{\partial \theta^{\prime}}{\partial y^{\prime}}+\theta^{\prime}\left[\frac{\partial}{\partial t^{\prime}}\left(\ln T_{w^{\prime}}^{\prime}\right)+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial}{\partial x^{\prime}}\left(\ln T_{w}^{\prime}\right)\right]-\frac{1}{p^{\prime} r} \frac{\partial^{2} \theta^{\prime}}{\partial y^{\prime 2}}$
$=a^{-\alpha_{1}} \frac{\partial \theta}{\partial r}+a^{\alpha_{3}-\alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial y} \frac{\partial \theta}{\partial x}-a^{\alpha_{3}-\alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial y}$
$+\theta\left[a^{-\alpha_{1}} \frac{\partial}{\partial t}\left(\ln T_{w}\right)+a^{\alpha_{3}-\alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\ln T_{w}\right)\right]-\frac{1}{P r} a^{-2 \alpha_{2}} \frac{\partial^{2} \theta}{\partial y^{2}}$
Equating the vartous exponents of 'a' from equations (3.1.3) and (3.1.4) leads to the following equations
$\left.\begin{array}{l}\alpha_{3}-\alpha_{1}-\alpha_{2}=2 \alpha_{3}-\alpha_{1}-2 \alpha_{2}=\alpha_{4}=\alpha_{3}-3 \alpha_{2} \\ -\alpha_{1}=\alpha_{3}-\alpha_{1}-\alpha_{2}=-2 \alpha_{2}\end{array}\right]$

Solving the equation (3.1.5) we get the following relationship between the exponents
$\alpha_{1}=2 \alpha_{2} \quad ; \quad \alpha_{3}=\alpha_{2} \quad ;$

$$
\alpha_{4}=-2 \alpha_{2}
$$

or. $\frac{\alpha_{1}}{\alpha_{2}}=2$
or. $\frac{\alpha_{3}}{\alpha_{2}}=1$
or, $\frac{a_{4}}{a_{2}}=-2$

If follows that ϕ_{1} and ϕ_{2} are conformally mvariant under the following transformation group.

$$
\begin{align*}
& y^{\prime}=a^{\alpha_{2}} y=B y \\
& x^{\prime}=a^{\alpha_{1}} x=\left(a^{\alpha_{2}}\right)^{\frac{\alpha_{1}}{\alpha_{2}}} x=B^{2} x \\
& \left.t^{\prime}=a^{\alpha_{1}} t=\left(a^{\alpha_{2}}\right)\right)^{\frac{\alpha_{1}}{\alpha_{2}} t}=B^{2} t \tag{3.1.6}\\
& \psi^{\prime}=a^{\alpha_{3}} \psi=\left(a^{\alpha_{2}}\right)^{\frac{\alpha_{3}}{\alpha_{2}}} \psi=B \psi^{\prime} \\
& \left.T_{v}^{\prime}=a^{\alpha_{1}} T_{v z}=\left(a^{\alpha_{2}}\right)\right)^{\frac{\alpha_{4}}{\alpha_{2}}} T_{1 v}=B^{-2} T_{1 v} \\
& 0^{\prime}=0
\end{align*}
$$

We shatl now show that ϕ_{1}, ϕ_{2} can be expressed in terms of new independent variable η (similarly variable). dependent variables F, G, I and their derivatives w.r.to η. I'he solution of the new system will be a particular set of mvariant solutions of the original system in tems of x, y, u, v ctc. The variable η is to be an absolute invariant of the subgroup of the transformation of the independent variables.

In otherworlds, η is wo be function such that $n\left(x^{\prime}, y^{\prime}, t^{\prime}\right)=\eta(x, y, t)$
where

$$
\left.\begin{array}{l}
x^{\prime}=B^{2} x \\
y^{\prime}=B y \tag{3.1.7}\\
t^{\prime}=B^{2} t
\end{array}\right]
$$

The way of seeking absolute invariant is not weil defined. From the boundary layer conceptions, it would be a good guess to assume that \Rightarrow might be written in terms of power of x and t.

Variable Transformation

Independent Variable Transformation:

We assume that

$$
\begin{equation*}
\eta=1 n(x+b t)^{p} \tag{3.1.8}
\end{equation*}
$$

is at absolute invarant of group (Gl), where ρ is a real number. Now restnction might be placed on p in order that η would be invariant under (3.1.6).

So we must have, $\eta^{\prime}=y^{\prime}\left(x^{\prime}+h^{\prime}\right)^{p}=B^{1+2 p} y^{\prime}(x+b t)^{p}$
For absolute invariant we pui $1+2 p=0 \Rightarrow p=-\frac{1}{2}$
So, $7=y(x+b t)^{-\frac{1}{2}}$ is an absolute invariant.

Dependent Variable Transformation:

We now express all dependent variables in tenns of r. Since there are three dependent variables, we seek three functions $g_{f}(t=1,2,3)$ which are absolutcly invariant under (3.1.1).

We select

$$
\left.\begin{array}{l}
g_{1}=\psi(x+b r)^{q} \tag{3.1.9}\\
g_{2}=T_{w}(x+b t)^{r} \\
g_{3}=\theta=G(n)
\end{array}\right]
$$

where q, t are real numbers.
Employing expression (3.1.6) in g_{i} gives

$$
\begin{align*}
& g_{1}=\psi^{\prime}(x+b t)^{q}=B^{-1-2 q_{q}} \psi^{\prime}\left(x^{\prime}+b^{r} t^{\prime}\right)^{q} \\
& g_{2}=T_{1 h^{\prime}}(x+b t)^{r}=B^{2-2 r} T_{11}^{\prime}\left(x^{\prime}+b t^{\prime}\right)^{r} \tag{3.1.10}\\
& g_{3}=\theta=\theta^{\prime}=G(\eta)
\end{align*}
$$

For constant conformally invariant we must have .

$$
\left.\begin{array}{l}
-1-2 q=0 \Rightarrow q=-\frac{1}{2} \tag{3.1.11}\\
2-2 r=0 \Rightarrow r=1
\end{array}\right]
$$

For invariant solutions of the cquations (3.5) and (3.6) will be expressed in tens of η and the functions F, G and I

$$
\begin{aligned}
& w=(x+b t)^{\frac{1}{2}} F(n) \\
& \therefore T_{w}=(\lambda+b t)^{-1} I(\lambda) \\
& \theta=G(\eta) \\
& u=\frac{\partial \psi}{\partial y}=F_{\eta} \\
& \frac{\partial^{2} y}{\partial x \partial y}=-\frac{1}{2} \eta(x+b t)^{-1} F_{m} \\
& \frac{\bar{o}^{2} w}{\partial y \partial t}=-\frac{1}{2} b \eta(x+b t)^{-1} F_{i t 7} \\
& \frac{\partial \psi}{\partial y} \cdot \frac{\partial^{2} \psi}{\partial x \partial y}=-\frac{1}{2} \eta(x+b t)^{-1} F_{\eta} F_{n \eta} \\
& -v=\frac{\partial \psi}{\partial x}=\left[\frac{1}{2} F-\frac{1}{2} \eta F_{n}\right](x+b t)^{-\frac{1}{2}} \\
& \frac{\partial^{3} w}{\partial y^{3}}=(x+b t)^{-1} I_{\eta \eta \eta}^{-1} \\
& -\frac{\partial \psi}{\partial x} \cdot \frac{\partial^{2} \psi}{\partial y^{2}}=\left[\frac{1}{2} F-\frac{1}{2} \eta F_{\eta}\right] F_{m m}(x+b t)^{-1} \\
& \frac{\partial \theta}{\partial t}=G_{\eta} \frac{\partial \eta}{\partial t}=G_{\eta}\left[-\frac{1}{2} \eta \eta(x+b t)^{-1}\right] \\
& \frac{\partial \theta}{\partial y}=G_{\eta} \frac{\partial \eta}{\partial \eta}=\left(i_{\eta}(x ; \dot{\sigma})\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \theta}{\partial y^{2}}=(\lambda+b t)^{-\frac{1}{2}} G_{m \eta}(x+b t)^{-\frac{1}{2}}=G_{m}(x+b t)^{-1} \\
& \left.\frac{\partial \partial}{\partial x}:=G_{\eta} \frac{\partial \eta}{\partial x}=G_{\eta}\left(-\frac{1}{2}\right)\right)_{\eta}(x+b r)^{-1} \\
& \frac{\partial \psi}{\partial y} \cdot \frac{\partial \theta}{\partial x}=G_{\eta} \frac{\partial \eta}{\partial r}=-\frac{1}{2} \eta G_{\eta} F_{\eta}(x+b)^{-1} \\
& -\frac{\partial \psi}{\partial x} \cdot \frac{\partial \theta}{\partial y}=-\left[\frac{1}{2} F G_{\eta}-\frac{1}{2} m F_{\eta} G_{\eta}\right](x+b t)^{-1} \\
& -P_{r}^{-1} \frac{\partial^{2} \theta}{\partial y^{2}}=-P_{r}^{-1} G_{\eta \eta}(x+b t)^{-1} \\
& \partial \frac{\partial}{\partial t}\left(\ln T_{w}\right) \frac{\partial O}{\partial y}=G\left[-b-\frac{1}{2} \frac{\eta h I_{\eta}}{I}\right](x+b t)^{-1} \\
& \theta \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\ln T_{n}\right)=G F_{\eta}\left[-1-\frac{1}{2} \frac{\eta I_{\eta}}{I}\right](x+b t)^{-1}
\end{aligned}
$$

Substituting all valucs in the equations (3.5) and (3.6), we obtaiin, .
$F_{M \eta \eta}+\left[\frac{1}{2} F+\frac{b}{2} \eta\right] F_{\eta \eta}+G I=0$
$P r^{-1} G_{p \eta}+\left(\frac{1}{2} F+\frac{b}{2}\right) G_{q}+\left(\frac{1}{2} \frac{\eta b I_{n}}{I}+b+F_{n}+\frac{1}{2} \frac{\eta I_{\eta} F_{\eta}}{I}\right) G_{r}=0$
$T_{w}(x, t)=(x+b t)^{-1} /(\eta)=\omega(x, t) I(t)$
where $o(x, t)=(x+b t)^{-1}$
Siuce $\omega(x, t)$ and $T_{w}(x, t)$ are independent of y where 7 depends on y it follows that f must be cqual to a constant.
l'or simplecity, let $I(\eta)=1 \Longrightarrow I^{\prime}(\eta)=0$

Now, (3.1.1.3) and (3.1.14) beconta

$$
\begin{equation*}
F_{m, \eta}+\left(\frac{1}{2} F^{\prime}+\frac{b}{2} \eta\right) F_{\eta \eta}^{\prime \prime} \div G=0 \tag{3.1.15}
\end{equation*}
$$

$P r^{-1} G_{i \eta \eta} \div\left(\frac{1}{2} F+\frac{b}{2} \eta\right) G_{\eta}+\left(b+F_{\eta}\right) G=0$

The boundary conditions are
$F_{f f}(0)=0, F(0)=F w \neq 0, G(0)=$ lat $\eta=0$
$F_{\eta}(\infty)=0, G(\infty)=0$ at $\quad \eta \rightarrow \infty$
The addtional parameter is given in the boundary condition as $F(0)=F w$ relaled to the suction v_{w}.

I Lere $-v_{u}(x, r)=\frac{1}{2}(x+b t)^{-1 / 2} F(0)$.
$v_{w}<0$ signifies suction, $v_{w}>0$ signilies injection.

The boundary- layer characteristics for this case are
(i) Verlical velucity
$u=F_{u}$
(ii) Horizontal velocity
$\nu=\frac{1}{2}(x+b t)^{-1 / 2}\left(F-\eta F_{\eta}\right)$
(iii) Surface heat flux
$g=\frac{1}{(x+b t)^{3 / 2}}\left[-G^{\prime}(0)\right]$

3.1.2 Case II: $T_{w} \propto\left(x / t^{2}\right)$ and suction velocity $\propto(1 / \sqrt{ } t)$

Unsteady free convection with surface temperature varying directly with a function x and inversely with the square of a function of t and suction velocity varying inversely wilh the square root of a function of t

Finding the similarity solutions of the equations (3.5) and (3.6) are equivalent to determine the invariant solutions of these equations under a particular contimuous oneparameter group.
In order to seek mariant solution to this set of PDE we search a transfonnation group from one parameter transformation defined by the following group (G2):

$$
\left.\begin{array}{l}
x^{\prime}=a^{\alpha_{1}} x \tag{3.2.1}\\
y^{\prime}=a^{\alpha_{2}} y \\
t^{\prime}=a^{\alpha_{1}} t \\
\psi^{\prime}=a^{\alpha_{3}}, y \\
T_{w}^{\prime}=a^{\alpha_{l}} T_{w} \\
\sigma^{\prime}=0
\end{array}\right]
$$

- Here $a \neq 0$ is the parancer of the group and α 's the arbitrary real numbers whose imerrelationship will be detemmed by the subsequent analysis. We now investigate the relationshpa among the exponcnt α 's such that
$\phi_{J}\left(x^{\prime}, y^{\prime}, t^{\prime}, u^{\prime}, v^{\prime}, \ldots \ldots, \frac{\partial^{7} \psi^{\prime}}{\partial y^{\prime 3}}\right)$
$=H_{i}\left(x, y, t, u, v, \ldots \ldots, \frac{\partial^{3} \psi}{\partial y^{3}} ; \alpha\right) \phi_{J}\left(x, y, t, u, v_{2}, \ldots \ldots, \frac{\partial^{3} \psi}{\partial y^{3}}\right)$

For this is the requirement dat lie differential forms ϕ_{1}, ϕ_{2} be conformatly invariant under the transformation group (3.2.1). Substituting the transformations (3.2.1) in (3.5) and (3.6) we have

$$
\begin{align*}
& \phi_{1} \equiv \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime} \partial t^{\prime}}+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime} \partial x^{\prime}}-\frac{\partial \psi^{\prime}}{\partial x^{\prime}} \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime 2}}-\theta^{\prime} T_{w}^{\prime}-\frac{\partial^{3} \psi^{\prime}}{\partial y^{\prime}, 3}=0 \\
& =a^{\left[\alpha_{3}-\alpha_{2}-\alpha_{1}\right.} \frac{\partial^{2} \psi}{\partial y^{2} \partial t}+a^{2 \alpha \alpha_{3}-2 \alpha_{2}-\alpha_{1}} \frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial^{2} \psi}{\partial y \partial x}-a^{2 \alpha \gamma_{3}-2 u_{2}-c_{1}} \frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}} \tag{3.2.3}\\
& -a^{\alpha_{4}} \theta T_{w}-a^{\prime \alpha_{1}-5 \alpha_{2}} \frac{\partial^{3} \psi}{\partial y^{3}}
\end{align*}
$$

$$
\dot{\phi}_{2} \equiv \frac{\partial \theta}{\partial t^{\prime}}+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial \theta^{\prime}}{\partial x^{\prime}}-\frac{\partial \psi^{\prime}}{\partial x^{\prime}} \frac{\partial \partial^{\prime}}{\partial y^{\prime}}+\theta^{\prime}\left[\frac{\partial}{\partial t^{\prime}}\left(\ln T_{\psi^{\prime}}^{\prime}\right)+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial}{\partial x^{\prime}}\left(\ln T_{w}^{\prime}\right)\right]-\frac{1}{P r} \frac{\partial^{2} \partial^{\prime}}{\partial y^{\prime 2}}
$$

$$
\begin{equation*}
=a^{-\alpha_{1}} \frac{\partial \theta}{\partial t}+a^{\alpha_{3}-\alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial y^{\prime}} \frac{\partial \theta}{\partial \mathrm{x}}-a^{\alpha \alpha_{3}-\left(x_{2}-\alpha_{1}\right.} \frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial y^{\prime}} \tag{3.2.4}
\end{equation*}
$$

$$
+\theta\left[a^{-\alpha_{1} 1} \frac{\partial}{\partial t}\left(\ln T_{w}\right)+a^{\alpha_{3}-\alpha_{2}-\alpha_{1}} \frac{\partial \psi}{\partial y} \frac{\partial}{\partial \pi}\left(\ln T_{w}\right)\right]-\frac{1}{P r} a^{-2 \alpha_{2}} \frac{\partial^{2} \theta}{\partial y^{2}}
$$

Equating the various cxponents of ' a ' in equations (3.2.3) and (3.2.4) leads to the following equations
$\left.\begin{array}{l}\alpha_{3}-\alpha_{1}-\alpha_{2}=2 \alpha_{3}-\alpha_{1}-2 \alpha_{2}=\alpha_{4}=\alpha_{3}-3 \alpha_{2} \\ -\alpha_{1}=\alpha_{1}-\alpha_{1}-\alpha_{2}=-2 \alpha_{2}\end{array}\right]$

Solving the equation (3.2.5) we get the following relationship between the exponents
$\alpha_{1}=2 \alpha_{2} \quad: \quad \alpha_{3}=\alpha_{2} \quad: \quad \alpha_{4}=-2 \alpha_{2}$
or, $\frac{\alpha_{1}}{\alpha_{2}}=2 \quad$ or, $\frac{\alpha_{3}}{\alpha_{2}}=1 \quad$ or, $\frac{\alpha_{4}}{\alpha_{2}}=-2$

It follows that ϕ_{1} and ϕ_{2} are conformalify invariant under the following transformation group.
$y^{\prime}=a^{c_{2}} y^{\prime}=b y$
$x^{\prime}=a^{\alpha_{1}} x=\left(a^{\left(\alpha_{2} 2\right.}\right)^{\frac{\alpha_{1}}{\alpha_{2}}} x=B^{2} x$
$t^{\prime}=a^{\alpha_{1}} t=\left(a^{\alpha_{2}}\right)^{\frac{\alpha_{1}}{\alpha_{2}} t}=B^{2}{ }^{2}$
$\psi^{\prime}=a^{\alpha \alpha_{3}} \psi=\left(a^{\alpha \alpha_{2}}\right)^{\frac{\alpha_{1}}{\alpha_{2}}} \psi^{\prime}=B_{1} \psi^{\prime}$
$\left.\begin{array}{l}\left.T_{u}{ }^{\prime}=a^{\alpha_{4}} T_{w^{\prime}}=\left(a^{\alpha_{2}}\right)\right)^{\prime \alpha_{2}} T_{w^{\prime}}=B^{-2} T_{w^{\prime}} \\ A^{\prime}=\theta\end{array}\right]$

We shall now show that ϕ_{1} : ϕ_{2} can be expressed in terms of new independent variable η (similarity variable), depondent variables F, G, I and their derivatives w.r.to η. The salution of the new system will be a paricular set of invariant solutions of the original system in terms of x, y, u, v etc. The variable η is to be an absolute invariant of the subgroup of the transformation of the independent variables.

In otherworlds. η is to be a function such that $\eta\left(y^{\prime}, t^{\prime}\right)=\eta(y . t)$, Where

$$
\left.\begin{array}{l}
 \tag{3.2.7}\\
y^{\prime}=B y \\
t^{\prime}=B^{2}
\end{array}\right]
$$

Variable Translormation

Independent Variable Transformation

We assume that
$\eta=y t^{p}$
is an absolute invariant of group (G2) where p is real number. Now restriction might be placed on p in order that η would be invariant under (3.2.6).

So we must have, $\eta^{\prime}=y^{\prime} t^{p}=B^{l+2 p} y t^{p}$
For absolute invariant we put $1+2 p=0 \Rightarrow p=-\frac{1}{2}$
So, $\eta=y i^{-\frac{1}{2}}$ is an absolute imvariant.

Dependent Variable Transformation:

We now express all dependent variables in terms of η. We select the dependent variables for ψ, T_{4} and O in sweh a way that

$$
\begin{align*}
& g_{1}=\psi^{\prime}\left(\frac{x^{2}}{t}\right)^{q}=B^{-1-2 q^{\prime}}\left(\frac{x^{\prime 2}}{t^{\prime}}\right)^{q}=F(\eta) \\
& g_{2}=T_{w}\left(\frac{t^{2}}{x}\right)^{r}=B^{-2-2 r_{w}^{\prime}}\left(\frac{t^{\prime 2}}{x^{\prime}}\right)^{r}=I(\eta) \tag{3.2.9}\\
& g_{i}=\theta=O^{\prime}=G(\eta)
\end{align*}
$$

where q, r are real numbers. Jor invariant of transformation group we must have to put $\left.\begin{array}{l}-1-2 q=0 \Rightarrow q=-\frac{1}{2} \\ 2-2 r=0 \Rightarrow r=1\end{array}\right]$

Now,

$$
\begin{align*}
& \psi \\
&=\left(\frac{x^{2}}{t}\right)^{\frac{1}{2}} F(\eta)=\frac{x}{t^{1 / 2}} F(\eta) \tag{3.2.11}\\
& \therefore T_{w}=\left(\frac{x}{t^{2}}\right) I(\eta) \\
& \theta=G(\eta)
\end{align*}
$$

Herc, $u=\frac{\partial \psi^{\prime}}{\partial y}=\left(\frac{x}{t}\right) F_{{ }_{p}}$

$$
\frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{x}{t} F_{\eta}\right)=\frac{1}{f} F_{\eta}
$$

$$
\frac{\partial^{2} \psi}{\partial y \partial t}=\frac{\partial}{\partial t}\left(\frac{\partial \psi}{\partial y}\right)=-\frac{x}{t^{2}} F_{\eta}-\frac{1}{2} \cdot \frac{x}{t^{2}} \eta F_{\eta t}
$$

$$
\frac{\partial \psi}{\partial y} \cdot \frac{\partial^{2} \psi}{\partial x \partial y}=\left(\frac{x}{t} F_{\eta}\right)\left(\frac{1}{t} f_{\eta}^{\prime}\right)=\frac{x}{t^{2}} F_{\eta}^{2}
$$

$$
-v=\frac{\partial y}{\partial x}=\frac{\partial}{\partial x}\left(\frac{x}{t^{1 / 2}} F\right)=\frac{1}{t^{1 / 2}} F
$$

$$
\frac{\partial^{3} \psi}{\partial y^{3}}=\left(\frac{x}{t^{2}}\right) F_{0 m}
$$

$$
\frac{\partial \psi t}{\partial x} \cdot \frac{\partial^{2} \psi}{\partial y^{2}}=\frac{1}{t^{1 / 2}} F \cdot \frac{x}{t} F_{m,} t^{-1 / 2}=\frac{x}{t^{2}} F F_{\eta \eta}
$$

$$
\theta T_{w}=\left(\frac{x}{t^{2}}\right) I(\eta)(\dot{\eta})(\eta)
$$

$$
\frac{\partial O}{\partial t}=G_{n} \frac{\partial \eta}{\partial t}=\frac{1}{t} G_{i q}\left(-\frac{1}{2}\right) 7
$$

$$
\frac{\partial O}{\partial y}=G_{i j} \frac{\partial \eta}{\partial y}=G_{i n} t^{-1 ; 2}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \theta}{\partial y^{2}}=\frac{1}{t} G_{n} \\
& \frac{\partial \theta}{\partial x}=0 \\
& \frac{\partial \psi}{\partial y} \cdot \frac{\partial \partial}{\partial x}=0 \\
& \frac{\partial y}{\partial x} \cdot \frac{\partial \theta}{\partial y}=\frac{1}{i} F_{i} G_{i} \\
& p^{\prime} \cdot \frac{\partial^{2} \theta}{\partial y^{2}}=P r^{-1} \cdot \frac{1}{r} G_{m} \\
& \theta \frac{\partial}{\partial t}\left(\ln T_{w}\right)=\theta\left[\frac{1}{T_{w}} \frac{\partial T_{w}}{\partial t}\right]=G\left[\frac{t^{2}}{x I} \frac{\partial}{\partial t}\left(\frac{x}{t^{2}} I\right)\right] \\
& =G\left[\frac{t^{2}}{x t}\left\{\frac{x}{t^{2}} A_{n} \frac{\partial \eta}{\partial t}-2 / \cdot x \cdot t^{-3}\right\}\right] \\
& =G\left[\frac{t^{2}}{x I}\left\{\frac{x}{t^{2}} I_{n}\left(-\frac{1}{2}\right) m t^{-1}-2 I \cdot x \cdot t^{-3}\right\}\right] \\
& =G\left[-2-\frac{1}{2} \frac{M I_{u}}{f}\right] \frac{1}{t} \\
& =\left(-2 G-\frac{1}{2} \frac{\eta I_{t} G}{I}\right) \frac{1}{t}
\end{aligned}
$$

$\theta \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\ln T_{w}\right)$
$=\theta \frac{\partial \psi^{\prime}}{\partial y^{\prime}}\left[\frac{1}{T_{w}} \frac{\partial T_{w}}{\partial x}\right]$
$=G \frac{x}{t} F_{n}\left[\frac{t^{2}}{x I} \frac{\partial}{\partial x}\left(\frac{x I}{t^{2}}\right)\right]$
$=G \frac{x}{t} F_{\eta}\left[\frac{t^{2}}{x I}\left\{\frac{x}{t^{2}} I_{7} \frac{\partial \eta}{\partial x}+I \cdot \frac{1}{t^{2}}\right\}\right]$
$=G \frac{x}{t} f_{t r}\left[\frac{t^{2}}{x I}\left\{\frac{x}{t^{2}} I_{t y}, 0+I \cdot \frac{1}{t^{2}}\right\}\right]$
$=G F_{7} I \cdot \frac{1}{t}$
Substituting all valucs in the equations (3.5) and (3.6)
we obtain,

$$
\begin{align*}
& \left.F_{\eta m}+\left(\frac{1}{2} \eta+F\right) F_{\eta \eta}+F_{\eta}-F_{\eta}^{2}+G\right)=0 \tag{3.2.12}\\
& P_{r}^{-1} G_{\eta \eta}+\left(F+\frac{1}{2} \eta\right) G_{\eta}+\left(2-F_{\eta}\right)\left(G+\frac{1}{2} \cdot \frac{\eta l_{\eta} G}{I}=0\right. \tag{3,2.13}\\
& T_{u}(x, t)=\left(\frac{x}{t^{2}}\right) I(\eta)
\end{align*}
$$

Since $\left(\frac{x}{t^{2}}\right)$ and $T_{w}(x, t)$ are independent of y where as η depends on y
it foltows that $I(\eta)$ must be equal to a constant.
For simplicity, let $J(\eta)=1 \Rightarrow I^{\prime}(\eta)=0$
Now, (3.1.12) and (3.2.13) become

$$
\begin{align*}
& F_{\eta \eta I}+\left(\frac{1}{2} \eta+H\right) i_{\eta \eta}+F_{\eta}-F_{\eta}^{2}+G=0 \tag{3.2.14}\\
& P_{r}^{-1} G_{\eta \eta} \div\left(F+\frac{1}{2} \eta\right) G_{\eta}+\left(2-F_{\eta}\right) G=0 \tag{3.2.15}
\end{align*}
$$

The boundary conditions are

$$
\begin{align*}
& F_{\eta}(0)=0, F(0)=F W \neq 0, G(0)=\text { lat } \eta=0 \tag{3.2.16}\\
& F_{\eta}(\infty)=0, G(\infty)=0 \text { at } \eta \rightarrow \infty
\end{align*}
$$

The additional parancter is given in the boundary condition as $F(0)=F w$ related to the suction v_{w} when $\eta=0$

Herc $-v_{w}(x, t)=t^{-1 / 2} F(0)$
$\nu_{w}<0$ signifies suction, $\nu_{w}>0$ signifies injection.

The boundary- layer characteristics for this case are
(i) Vertical velocity
$u=\frac{x}{t} F_{H}$
(ii) Horizontal velocity
$v=-\frac{1}{t^{1 / 2}} F$
(iii) Surface heat flux
$q=\frac{x}{t^{5 / 2}}\left[-G^{\prime}(0)\right]$

And for wall shear stress, $\tau_{w}=\mu\left(\frac{\partial u}{\partial y}\right)_{y=0}$
Delining skin friction coelficient
$c_{f}=\frac{2 \tau_{\omega}}{\rho U^{2}}$
$\Rightarrow \frac{1}{2} c_{f} G r\left(\frac{\sqrt{t}}{x}\right)=F_{\eta \eta}(0)$

3.1.3 Case III: $T_{w} \propto t^{r}$ and suction velocity variation is zero

Unsteady Free Convection with biniorm but Unsteady surface Temperature variation at Large Distance x

In order to seek invariant solution, we search a transformation group (G3) from one paraneter trarsformation defined by

$$
\begin{aligned}
& x^{\prime}=a^{r \gamma_{1} r} x \\
& y^{\prime}=a^{\alpha_{2}^{\prime \prime}} v \\
& i^{\prime}=a^{\alpha 3_{3}{ }^{n}} t \\
& \psi^{\prime}=a^{\alpha_{4}{ }^{\prime \prime} \psi} \\
& T_{\psi}^{\prime \prime}=a^{\alpha_{5}} T_{w^{\prime}} \\
& \theta^{\prime}=\theta
\end{aligned}
$$

Here $\alpha \neq 0$ is the parameter of the group and α 's are the arbitrary real numbers.
Substituting the above transformations in equations (3.5) and (3.6) we have $\phi_{1} \equiv \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime} \partial t^{\prime}}+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime} \partial x^{\prime}}-\frac{\partial \psi^{\prime}}{\partial x^{\prime}} \frac{\partial^{2} \psi^{\prime}}{\partial y^{\prime 2}}-\theta^{\prime} T_{1}^{\prime}-\frac{\partial^{3} \psi^{\prime}}{\partial y^{\prime 3}}=0$
$=a^{\left(\alpha_{4} n-\alpha_{2} n-\alpha_{3} n\right.} \frac{\partial^{2} \psi}{\partial y \partial t}+a^{2 \alpha_{4} n-2 \alpha_{2} n-t c_{1} n} \frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial y \partial x}-a^{2 \alpha_{4} n-2 \alpha_{2} n-\alpha_{y^{n}}} \frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}$
$-a^{i x<} \theta T_{H^{\prime}}-a^{r r_{4} n-3\left(x 2^{n}\right.} \frac{\partial^{3} \psi}{\partial y^{3}}$.
$\phi_{2} \equiv \frac{\partial \theta^{\prime}}{\partial t^{\prime}}+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial \theta^{\prime}}{\partial x^{\prime}}-\frac{\partial \psi^{\prime}}{\partial x^{\prime}} \frac{\partial \theta^{\prime}}{\partial y^{\prime}}+\theta^{\prime}\left[\frac{\partial}{\partial t^{\prime}}\left(\ln T_{w}^{\prime}\right)+\frac{\partial \psi^{\prime}}{\partial y^{\prime}} \frac{\partial}{\partial x^{\prime}}\left(\ln F_{w^{\prime}}^{\prime}\right)\right]-\frac{1}{P^{\prime} r} \frac{\partial^{2} \theta^{\prime}}{\partial y^{\prime 2}}$
$=a^{-\alpha_{3^{\prime}}} \frac{\partial \theta}{\partial t}+a^{\alpha_{4}{ }^{\prime \prime}-\alpha_{2^{n}} n-\alpha_{1} n} \frac{\partial \psi}{\partial y} \frac{\partial O}{\partial x}-a^{\alpha_{4} \mu-\alpha_{2^{n}}-\alpha_{1} n} \frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial y}$
$+0\left[a^{-\alpha_{3} n} \frac{\partial}{\partial t}\left(\ln T_{w}^{\prime \prime}\right)+a^{\alpha_{4^{\prime \prime}}-\alpha_{2^{\prime \prime}}-\alpha_{1^{\prime \prime}}} \frac{\partial \psi \psi}{\partial y^{\prime}} \frac{\partial}{\partial x}\left(\ln 7_{w}\right)\right]-\frac{1}{P r} a^{-2 \alpha_{2^{n}}} \frac{\partial^{2} \theta}{\partial y^{2}}$.

For conformal invariant we have the Jollowing set of equalons

$$
\begin{aligned}
& \alpha_{4} n-\alpha_{2} n-\alpha_{1} n=2 \alpha_{4} n-2 \alpha_{2} n-\alpha_{1} n=\alpha_{5}=\alpha_{4} n-3 \alpha_{2} n \\
& -a_{3} n=a_{4} n-a_{2} n-\alpha_{1} n=-2 \alpha_{2} n
\end{aligned}
$$

We have the following relationship between the exponents

$$
\frac{\alpha_{1}}{\alpha_{2}}=2 \quad, \frac{\alpha_{3}}{\alpha_{2}}=2 \quad, \frac{\alpha_{4}}{\alpha_{2}}=1 \quad, \frac{\alpha_{5}}{\alpha_{2}}=-2 n
$$

ϕ_{1} and ϕ_{2} are conformally invariant under the following transformation group.

$$
\begin{aligned}
& y^{\prime}=a^{r_{2} n} y=B y \text {, where } a^{r_{2} n}=B \\
& x^{\prime}=a^{\alpha_{i}^{\prime n}} x=\left(a^{\alpha_{2} / 7}\right)^{\frac{q_{1}}{\alpha_{2}}} x=B^{2} x \\
& \left.t^{\prime}=a^{r_{3} y^{n}} t=\left(a^{\alpha_{2}}\right)^{\alpha_{3}}\right)^{\alpha_{2}} t=B^{2} t \\
& \psi^{\prime}=a^{\alpha_{4} / \psi} \psi=\left(a^{\left(\alpha_{2} n\right.}\right) \frac{\alpha_{4}}{\alpha_{2}} \psi=B \psi \\
& T_{w}^{\prime \prime}=a^{\alpha \alpha^{\prime \prime} T} T_{w}=\left(\alpha^{\alpha_{2} n}\right)^{\alpha_{2} \alpha_{2}} x=B^{-2 n} T_{w}
\end{aligned}
$$

Variable Transformation

Independent Variable Transformation:

L.et $\eta=y t^{p}$ is an absolute invariant of group (G3), where p is a real number.

$$
\eta^{\prime}=y^{\prime} t^{\prime p}=A^{1+2 p} y t p
$$

I:or absolute invariant we put $1+2 p=0 \Rightarrow p=-\frac{1}{2}$
So, $n=y^{-\frac{1}{2}}$

Dependent Variable Transformation:

We now express all dependent variables in terms of η. We select the dependent variables fory, T_{w} and θ in such a way that
$g_{1}=t^{\varphi} T_{w}=B^{-2 \varphi+2 \mu_{t} q^{\prime} T_{u}^{\prime}}$
$g_{2}=t^{*} \psi=B^{-2 i-1} t^{\prime s} \psi^{\prime}$
$\xi_{3}=\theta=\theta^{\prime}=G(t)$
where q, s are real numbers.
For constant conformally invariant we must have,

$$
\begin{aligned}
& -2 q+2 n=0 \Rightarrow q=n \\
& -2 s-1=0 \Rightarrow s=-\frac{1}{2}
\end{aligned}
$$

We must have,
$y_{1}=t^{n} T_{w}$
$g_{2}=t^{-1 / 2} \psi$
$g_{3}=\theta=\theta^{\prime}=G(\eta)$

Wriling $-\frac{1}{2}=-\left(r+\frac{3}{2}\right)$ and $n=-r$
We have
$g_{1}=t^{-r} T_{1 w}$
$g_{2}=t^{-\left(\left\{+\frac{3}{2}\right)\right.} \psi^{\prime}$
$g_{3}=\theta=\theta^{\prime}=G(7)$

Therefore,
$T_{w}=f^{r} /(f)$
$\left.y z=i^{\left(-1 \frac{3}{2}\right.}\right)_{F(n)}$
$\theta=G(n)$

Now, $u=\frac{\partial \psi}{\partial y}=t^{+1} F_{\eta}$
$-v_{w}=\frac{\partial \psi}{\partial x}=0$
1, et $v_{1,}$ variation is zero.

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial y}\right)=\frac{\partial}{\partial x}\left(t^{r+1} F(\eta)\right)=0 \\
& \frac{\partial^{2} \psi}{\partial y \partial t}=\frac{\partial}{\partial t}\left(\frac{\partial \psi}{\partial y}\right)=\frac{\partial}{\partial t}\left(r^{r+i} r^{\prime}(\eta)\right) \\
& =t^{r-1} F_{m p}\left(-\frac{1}{2}\right) \frac{\eta}{t}+F_{\eta}(r+1) t^{r} \\
& \frac{\partial \psi}{\partial v} \cdot \frac{\partial^{2} \psi}{\partial x c y}=0 \\
& \frac{\partial \psi}{\partial x} \cdot \frac{\partial^{2} \psi}{\partial y^{2}}=0 \\
& \frac{\partial^{3} \psi}{\partial y^{3}}=t^{r} F_{m \eta} \\
& \theta T_{w}=G t^{r} I(n)
\end{aligned}
$$

$$
\frac{\partial \partial}{\partial y}=G_{\eta} \frac{\partial \eta}{\partial y}=G_{\eta} t^{-\frac{1}{2}}
$$

$$
\frac{\partial^{2} \theta}{\partial y^{2}}=\frac{G_{0 \eta}}{t}
$$

$$
\frac{\partial \theta}{\partial x}=G_{\eta} \frac{\partial \eta}{\partial x}=0
$$

$$
\frac{\partial \psi}{\partial y} \cdot \frac{\partial \theta}{\partial x}=0
$$

$$
\frac{\partial \psi}{\partial x} \cdot \frac{\partial \theta}{\partial y}=0
$$

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}=G_{r} \frac{\partial \eta}{\partial t}=G_{\eta}\left(-\frac{1}{2}\right) \frac{\eta}{t} \\
& P_{r}^{-1} \frac{\partial^{2} \theta}{\partial y^{2}}=P_{r}^{-1} \frac{G_{n}}{t} \\
& \frac{\partial}{\partial x}\left(\ln T_{w}\right)=0 \\
& \partial \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}\left(\ln T_{w}\right)=0 \\
& \frac{\partial}{\partial t}\left(\ln T_{w}\right)=\frac{r}{t}+t^{r} I_{\eta}\left(-\frac{1}{2}\right) \frac{\eta}{t} \\
& \theta \frac{\partial}{\partial t}\left(\ln T_{w}\right)=G\left[\frac{r}{t}+t^{r} I_{n}\left(-\frac{1}{2}\right) \frac{\eta}{t}\right]
\end{aligned}
$$

Substituting all values in the equations (3.5) and (3.6) we obtain,
$F_{\eta \eta}+\frac{1}{2} n F_{m}^{-}-(r+1) F_{\eta}+G I=0$
$P_{r}^{-i} G_{i \eta}+\frac{1}{2} \eta G_{i \eta}-r G+\frac{1}{2} t^{r} I_{\eta} \eta G=0$
For simplicity, let $I=$ constant $=1 \Rightarrow I_{n}=0$
We gel
$F_{\eta \eta \eta}+\frac{1}{2} \eta F_{\eta \eta}-(r+1) F_{\eta}+G=0$
$P_{r}^{-1} G_{m q}+\frac{1}{2} \mu G_{\eta}-r G=0$
The boundary conditions are

$$
\begin{aligned}
& F_{\eta}(0)=F(0)=0 \quad G(0)=1 \text { at } \eta=0 \\
& F_{\eta}(\infty)=0 .(i(\infty)=0 \text { at } \eta \rightarrow \infty
\end{aligned}
$$

The boundary- layer chatacteristios for his casc are
(i) Verical velocity

$$
u=r^{r+1} F_{n}
$$

(ii) Horizontal velocity

$$
v=0
$$

(iii) Surface heat Nux

$$
q=f^{\left(\frac{r-1}{2}\right)}\left[-C^{\prime}(0)\right]
$$

The situation is valid at large distance x. Therefore all partial derivatives w.r. to x will be neglected. Since $T_{w}=t^{\prime} I(\eta)$, surface temperature distribution is independent of x, i.e uniform. It is a function of time t. The surface tompcrature may increase or decrease with time according to r being posilive or negative respectively.

Chapter 4

4.1 Results and Discussion

Figure 2 shows that the velocity decreases with increasing suchon parameter, Fw. It cent also be seen that at cach value of Fw, there exists a local maximum value of the velocity profile in the boundary layer region. The maximum values are obtained as $0.540,0.405$, 0302 at $\eta=1.778$ and as $0.109,0.062,0.046$ at $\eta=1.238,0.347,0.242$ respectively.

For the temperature protile, Figure 3 indicales the occumence of the deerease in temperature, G near the plate for suction. Also, the thermal boundary layer thickness increases with mereusing Fw. It is evident that temperature does not exhibit any defect coresponding to $\mathrm{Fw}=2.0$ and $\mathrm{Fw}=4.0$. The temperature decreases slowly near the plate for $F w=0.1$ than $F w=0, F w=0.5$ than $F w=0.2$ and so on. ligure 4 indicates that skin friction decreases with increasing suction parancter, Fw. Fron Figure 5, it is observed that the rate of heat iransfer increases with increasing suction parameter, Fw. Pigure 6 shows that the velocity increases in the vicinity of the plate and then decreases far from the plate for increasing Prandtl number. The temperalure profile in the Figure 7 shows that G becomes negative in a certain region of the boundary layer for varying values ol Pr. This phenomenon is known as temperature defect that will vanish for the limiting case $\operatorname{Pr} \rightarrow \infty$. Physically it is true because the inerease in the Prandtl number is due to increase in the viscosity of the Пuid. So, skin friction decreases with increasing Pr. The Fig. 8 shows that the skin fiction decreases wilit increasing Pr. In this figure it is seen that skin frietion decreases rapidly for $\mathrm{Fw}=0.5$ than $\mathrm{Fw}=0.2$.

Figure 9 represents the effect of Prandtl number and suction parameter on the surtace heat thux represented by $-\mathrm{G}^{\prime}(0)$. The tethe of heat transfer increases with inereating Prandll number, Pr . The rate of heat transfer increases rapidly for $\mathrm{Fw}=0.5$ than $\mathrm{I} w=$ 0.2 , 1.e., at a given $P r$ increase in the suction results in an increase in heat transfer.

Fig. 2: Velocity profiles for fixed Prandti number, $P_{r}=10$ and varying values of $F w$.

Fig. 3: Temperature profiles for fixed Prandtl number, $P_{r}=10$ and varying values of $F w$.

Fig. 4: Effect of Fw on skin friction factor for fixed Prandll number, $\operatorname{Pr}=10$.

Fig. 5: Effect of Fw on heat transfer factor for fixed Prancll number, $\operatorname{Pr}=10$.

Fig. 6:Velocity profiles for fixed $\mathrm{Fw}=0.2$ and varying values of Prandtl number, Pr

Fig. 7:Temperature profiles for dixed Fiw $=0.2$ and varying values of Prandtl number, Pr

Fig. 8: Elleet of Prandll number, Pr on skin friction factor for lixed Fw.

Fig. 9: Effect of Pıandti number, Pr on heat transfer factor for fixed Fw.

Numerical results of $1^{\prime \prime \prime}(0)$ and $-G^{\prime}(0)$ are presented in the following Table t, Table 2 and Table 3

Table1: Numerical values of shear stress, $F^{\prime \prime}(0)$ and the rate of heat transfer, - G^{\prime} (0) for different values of suction parameter, Fw while $P r=7.2$

F_{w}	$F^{\prime \prime}(0)$	$-G^{\prime}(0)$
0	3.88345	0.97461
1	3.16530	1.83355
2	2.31261	2.82467
3	2.00563	3.68462
4	1.85072	4.47856
5	1.71367	5.26384
6	1.58603	5.81176
7	1.53174	6.04768
8	1.45846	6.28258
9	1.41117	6.51869

Table2: Numerical values of shear stress $F^{\prime \prime}$ (0) and the rate of heal transler, - $G^{\prime}(0)$ for different values of Prandtl number, Pr while $\mathrm{Fw}=$ 0.4

ρ_{r}	$F^{\prime \prime \prime}(0)$	$-G^{\prime}(0)$
0.1	0.87050	0.60055
0.7	0.75411	1.12784
1	0.70200	1.38759
2	0.56120	2.12758
4	0.37823	3.36781
6	0.24141	4.28272
7	0.19056	4.59690
8	0.14140	4.88185
10	0.11542	5.24689
12	0.05145	5.58191

'fable3: Numerical values of shear stecss $F^{\prime \prime}(0)$ and the rate of heat transter, - G^{\prime} (0) for different values of Prandtl number, Pr while $F \cdot \mathrm{w}=$ 0.6

Pr	$F^{\prime \prime \prime}(0)$	$-G^{\prime}(0)$
0.1	0.826579	0.703205
0.7	0.715988	1.242018
1	0.666493	1.515695
2	0.531272	2.269813
4	0.359833	3.535938
6	0.218922	4.418237
7	0.181469	4.725248
8	0.133919	5.030259
10	0.091173	5.397764
12	0.048421	5.755267

4.2 Conclusion

A successful method of oblaining similarity solutions from partial differential equalions is the method of group theory. Here boundary conditions are not taken into account for choosing various functions. So this method is very casy and simple to apply. An analysis is made of the two-dimensional unsteady natural convection boundary layer flow with suction on vertical plate for establishnge the conditions under which similarity solutions ate possible. Three possible cases have been derived on the basis of these condithons. The case "Unsteady free convection with surface temperature varying dircctly with function of x and inversely with the square of a finction of t and suction velocity varying jnversely with the square root of a function of $t^{\prime \prime}$ has been sudied numerically. The velocity and temperature distributions are presented for finite values of suction parameter and Prandt number. It is shown that skin friction decreases with increasing suction parancter and increases in the suction results in an increases in heat transfer . I'le effect of Prandll number on the surface heat flux and skin friction is also found here. The skin friction decreases with increasing Pratdtl mumber and the rate of heat transfer increases wilh increasing Prandtl number.

4.3 Future work

1. Future work should focus on the applation oriwo-parameter group transformathons to reduce the system of governing partal diferential equations with boundary conditions to ordinary differential cquations with appropriate boundary conditions for the problem.
2. An analysis should carry out to study the effect of magnetic field for the problem, which is applicd normal to the surface.
3. Fulure work in this area consists of identifying the effect of suction for case I.
4. Finite difference method can be used to solve system of ordinary differential equations numerically for comparing with the results obtaned by using shooting nethod based on sixth order Runge-Kutta schense along with Nachtshiem-Swigert iteration technique.

Appendix

Runge-Kutta Shooting Method along with Nachtshiem-Swigert Iteration Technique

In shooting method, the misting (unspecified) initial condutions at the initial point in the interval is goessed and differential equation is then integrated numbrically as an initial value problen to the temmal points by Runge-Kulta method. Calculated values are then compared with the given values at the terminat points, if there is any difference (error) Found gucssed valucs must be changed before next iteration. This process is repeated unthl the agreement between the calculated and the given condition at the tenminal'point is within the specilied tolerance small quantity, ε.

$$
F^{\prime \prime \prime}+\left(\frac{1}{2} \eta+F\right) F^{\prime \prime}+F^{\prime}-F^{\prime 2}+G=0
$$

and $\frac{\mathrm{G}^{\pi}}{P_{r}}+\left(F+\frac{\eta}{2}\right) G^{\prime}+\left(2-F^{\prime}\right) G=0$
The procedurc of refining the values $F^{\prime}(0)$, and $G(0)$ by a shooting method based on Nachtshem-Swigert (1965) iteration techniquc, where $F^{\prime}(0) . G(0)$ stand for climensionless velocity, and temperature respectively.

The boundary conditons associated with non-dimensional ordinary differential equations of the boundary type are of the two-points asymplolic class. Two-point boundary conditions have values of the dependent variable specified at two different values of the indejendent variable. Specification of an asymplotic boundary condition impties the velocitics F^{\prime} and G tend to unity as the independent variable tends to outer specified value. The method numerically integrates two-point asymptotic boundary valuc problem of the boundary layer type, the initial value method, requires that it be recast as an intial value problem. Thus it is necessary to guess as many boundary conditions at the surlace as were given at infinity. The solution has been achicved aslien the required outer
boundary conditions are satisfied after the integration of governing differential equations by the assumed surface conditions. If this is not satisfied, another new surface boundary condition is estimated for the next trial integration. But this is not so easy, because selecting a value may result in the divergence of the trial integration or in slow convergence of surface boundary conditons required satisfying the asymptotic oater boundary condition, Morcover selecting too large a value of the jndependent variable is expensive in terms of computer time. Nachtshcim-Swigerd developed an itcration method, which overcomes these difficulties. In cquation there are three asyinptotic boundary conditions and hance two unknown surface conditions $\Gamma^{\prime \prime}=g_{1}$ and $G^{\prime}=g_{2}$. Within the context of the inital value mothod and the Nachtshem-Swiger iteration technique the outer boundary conditions may be functionally represented as

$$
\begin{align*}
& F\left(f_{\text {max }}\right)=F\left(g_{1}, g_{2}\right)=\delta_{1} \tag{1.1}\\
& G\left(\eta_{\text {IIax }}\right)=G\left(g_{1}, g_{2}\right)=\delta_{2} \tag{1.2}\\
& F^{\prime}\left(l_{\text {IIax }}\right)=F^{\prime}\left(g_{1}, g_{2}\right)=\delta_{3} \tag{1.3}
\end{align*}
$$

With the asymptotic convergence criteria given by

$$
\begin{align*}
& F^{\prime \prime}\left(\eta_{\text {max }}\right)=F^{\prime \prime}\left(g_{1}, g_{2}\right)=\delta_{4} \tag{1.4}\\
& G^{\prime \prime}\left(\eta_{\text {IIUA }}\right)=G\left(g_{1}, g_{2}\right)=\delta_{5} \tag{1.5}
\end{align*}
$$

Expandug the equalion (1.1)-(1.5) in a first order Taylor's series gives

$$
\begin{align*}
& F\left(\eta_{\text {mux }}\right)=F_{c}^{\prime}\left(\eta_{\text {max }}\right)+\frac{\partial F}{\partial g_{1}} \Delta g_{1}+\frac{\partial F}{\partial g_{2}} \Delta g_{2}=\delta_{1} \tag{1.6}\\
& G\left(\eta_{\text {max }}\right)=G_{4}\left(\eta_{\text {max }}\right)+\frac{\partial G}{\partial g_{1}} \Delta g_{1}+\frac{\partial G}{\partial g_{2}} \Delta g_{2}=\delta_{2} \tag{1.7}\\
& F^{\prime}\left(\eta_{\text {mux }}\right)=F_{c}^{\prime}\left(\eta_{\text {max }}\right)+\frac{\partial F^{\prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial F^{\prime}}{\partial g_{2}} \Delta g_{2}=\delta_{3} \tag{1.8}\\
& F^{\prime \prime}\left(\eta_{\text {max }}\right)=F_{4}^{\prime \prime \prime}\left(\eta_{\text {max }}\right)+\frac{\partial F^{\mu}}{\partial g_{1}} \Delta g_{1}+\frac{\partial F^{\pi}}{\partial g_{2}} \Delta g_{2}=\delta_{4} \tag{1.9}\\
& G^{\prime}\left(\eta_{\text {max }}\right)=G_{2}^{\prime}\left(\eta_{\text {max }}\right)+\frac{\partial G^{\prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial G^{\prime}}{\partial g_{2}} \Delta g_{2}=\delta_{3} \tag{1.10}
\end{align*}
$$

The subseript c indicates the value of the function at $\eta_{\text {nux }}$ determined from trial integration. Solution of these equations in a least square sense requares detemining the mumimun value of
$E=\delta_{1}^{2}+\delta_{2}^{2}+\delta_{3}^{2}+\delta_{4}^{2}+\delta_{s}^{2}$
Differentiating E with respect to g_{1} and g_{2}, respectively difforentiation yields a system of linear equations in the following from as
$a_{11} \Delta g_{1}+a_{12} \Delta g_{2}=b_{1}$
$a_{21} \Delta g_{1}+c_{72} \Delta g_{2}=b_{2}$
Where the cocfficients $a_{1,}$ and b_{j} are showin in (A4).
From equations (1.12) and (1.13), we have
$\Delta g_{1}=\frac{\operatorname{det} A_{i}}{\operatorname{del} A}, \Delta g_{2}=\frac{\operatorname{det} A_{1}}{\operatorname{det} A}$
Where, del $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
Lel $A_{1}=\left[\begin{array}{ll}b_{1} & a_{12} \\ b_{2} & a_{22}\end{array}\right]$.
And det $\bar{A}_{2}=\left[\begin{array}{ll}a_{11} & b_{1} \\ a_{21} & b_{2}\end{array}\right]$
Now, the guess values are revised by Δg_{1} and Δg_{2} respectively,
$\begin{array}{ll}\text { i,c } \quad & g_{1}=g_{1}+\Delta g_{1} \\ & g_{2}=g_{2}+\Delta g_{2}\end{array}$
Thus adopting the numerical teclnique described above, a computer program was set ap for the solutions of the basic non-linear differental equations (1.12) and (1.13) with the boundary conditions
$F(\eta)=F w \neq 0, F^{\prime}(\eta)=0, G(\eta)=1$, for $\eta=0$
$F^{\prime}(\eta)=0, G(\eta)=0$, at $\quad \eta \rightarrow \infty$

Of our problen where the integration lechnique was adopted as the sixth order inplicit Range-Kutta of integration. Bascd on the integratoon done with the above numerical technique, the results obtained are presented in the following section
$E=\delta_{1}^{2}+\delta_{2}^{2}+\delta_{3}^{1}+\delta_{4}^{2}+\delta_{5}^{2}$
Differentating (A1) with respect to g_{1}, we have

$$
\begin{align*}
& 2 \delta_{1} \frac{\partial \delta_{1}}{\partial g_{1}}+2 \delta_{2} \frac{\partial \delta_{2}}{\partial g_{1}}+2 \delta_{3} \frac{\partial \delta_{3}}{\partial g_{1}}+2 \delta_{4} \frac{\partial \delta_{4}}{\partial g_{1}}+2 \delta_{5} \frac{\partial \delta_{5}}{\partial g_{1}}=0 \\
& \Rightarrow \delta_{1} \frac{\partial \delta_{1}}{\partial g_{1}}+\delta_{2} \frac{\partial \delta_{2}}{\partial g_{1}}+\delta_{3} \frac{\partial \delta_{3}}{\partial g_{1}}+\delta_{4} \frac{\partial \delta_{4}}{\partial \xi_{1}}+\delta_{5} \frac{\partial \delta_{3}}{\partial g_{1}}=0 \\
& =\left(F_{\mathrm{c}}+\frac{\partial F}{\partial \mathrm{~g}_{\mathrm{t}}} \Delta \mathrm{~g}_{1}+\frac{\partial F}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial F}{\partial \mathrm{~g}_{\mathrm{l}}}+ \\
& \left(G_{1}+\frac{\partial G}{\partial g_{1}} \Delta g_{1}+\frac{\partial G}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial G}{\partial g_{1}}+\left(F_{c}^{\prime}+\frac{\partial F^{\prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial r^{-r}}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial F^{\prime}}{\partial g_{1}}+ \\
& \left(G_{c}^{\prime}+\frac{\partial G^{\prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial G^{\prime}}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial G^{\prime}}{\partial g_{1}}+\left(F_{1}^{*}+\frac{\partial F^{\prime \prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial r^{\prime \prime}}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial F^{*}}{\partial g_{1}}=0 \\
& \text { or, }\left[\left(\frac{\partial F^{\prime}}{\partial g_{1}}\right)^{2}+\left(\frac{\partial F^{\prime}}{\partial g_{1}}\right)^{2}+\left(\frac{\partial F^{n}}{\partial g_{1}}\right)^{2}+\left(\frac{\partial G^{\prime}}{\partial g_{1}}\right)^{2}+\left(\frac{\partial G^{\prime}}{\partial g_{1}}\right)^{2}\right] \Delta g_{1} \\
& +\left(\frac{\partial F}{\partial g_{1}} \frac{\partial F}{\partial g_{2}}+\frac{\partial G}{\partial g_{1}} \frac{\partial G}{\partial g_{2}}+\frac{\partial F^{\prime}}{\partial g_{1}} \frac{\partial F^{\prime}}{\partial g_{2}}+\frac{\partial G^{\prime}}{\partial g_{1}} \frac{\partial G^{\prime}}{\partial g_{2}}+\frac{\partial F^{\prime \prime}}{\partial g_{1}} \frac{\partial F^{\prime}}{\partial g_{2}}\right) \Delta g_{2} \\
& =-\left(F_{c} \frac{\partial F}{\partial g_{1}}+G_{c} \frac{\partial G}{\partial g_{1}}+F_{c}^{\prime} \frac{\partial F^{\prime}}{\partial g_{1}}+G_{c}^{\prime} \frac{\partial G^{\prime}}{\partial g_{1}}+F_{c}^{\prime \prime} \frac{\partial F^{n}}{\partial g_{1}}\right) \\
& \Rightarrow a_{11} \Delta g_{1}+a_{12} \Delta g_{2}=b_{1} \tag{A2}
\end{align*}
$$

Where, the coefficients a_{11}, a_{12} and b_{1} arc shown in (A4).
Differentiating (A.) with respect to g_{1}, we have

$$
\begin{aligned}
& 2 \delta_{1} \frac{\partial \delta_{1}}{\partial g_{2}}+2 \delta_{2} \frac{\partial \delta_{2}}{\partial g_{2}}+2 \delta_{3} \frac{\partial \delta_{3}}{\partial g_{2}}+2 \delta_{4} \frac{\partial \delta_{4}}{\partial g_{2}}+2 \delta_{5} \frac{\partial \delta_{5}}{\partial g_{2}}=0 \\
& =\delta_{1} \frac{\partial \delta_{1}}{\partial g_{2}}+\delta_{2} \frac{\partial \delta_{2}}{\partial g_{2}}+\delta_{3} \frac{\partial \delta_{3}}{\partial g_{1}}+\delta_{4} \frac{\partial \delta_{4}}{\partial g_{2}}+\delta_{5} \frac{\partial \delta_{5}}{\partial g_{2}}=0
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow\left(F_{c}+\frac{\partial F}{\partial g_{1}} \Delta g_{1}+\frac{\partial \theta}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial F}{\partial g_{2}}+\left(G_{c}+\frac{\partial G}{\partial g_{1}} \Delta g_{1}+\frac{\partial G}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial G}{\partial g_{2}}+ \\
& \left(F_{c}^{\prime}+\frac{\partial F^{\prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial F^{\prime}}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial F^{\prime}}{\partial g_{2}}+\left(G_{c}^{\prime}+\frac{\partial G^{\prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial G^{\prime}}{\partial g_{2}} \Delta g_{2}\right) \frac{\partial G^{\prime}}{\partial g_{2}}+ \\
& \left(F_{s}^{\prime}+\frac{\partial F^{\prime \prime}}{\partial g_{1}} \Delta g_{1}+\frac{\partial F^{\prime \prime}}{\partial G_{2}} \Delta g_{2}\right) \frac{\partial F^{\prime \prime}}{\partial g_{2}}=0 \\
& =\left(\frac{\partial F}{\partial g_{1}} \frac{\partial F}{\partial g_{2}}+\frac{\partial G}{\partial g_{1}} \frac{\partial G}{\partial g_{2}}+\frac{\partial F^{\prime}}{\partial g_{1}} \frac{\partial F^{\prime}}{\partial g_{2}}+\frac{\partial G^{\prime}}{\partial g_{1}} \frac{\partial G^{\prime}}{\partial g_{2}}+\frac{\partial F^{\prime \prime}}{\partial g_{1}} \frac{\partial F^{\prime \prime}}{\partial g_{2}}\right) \Delta g_{1}+ \\
& {\left[\left(\frac{\partial F}{\partial g_{2}}\right)^{2}+\left(\frac{\partial G}{\partial g_{2}}\right)^{2}+\left(\frac{\partial F^{\prime}}{\partial g_{2}}\right)^{2}+\left(\frac{\partial G^{\prime}}{\partial g_{2}}\right)^{2}+\left(\frac{\partial F^{\prime}}{\partial g_{2}}\right)^{2}\right] \Delta g_{2}+} \\
& =-\left(F_{c} \frac{\partial F}{\partial g_{2}}+G_{i} \frac{\partial G}{\partial g_{2}}+F_{c}^{\prime} \frac{\partial F^{\prime}}{\partial g_{2}}+G_{c}^{\prime} \frac{\partial G^{\prime}}{\partial g_{2}}+F_{\mathrm{c}}^{\prime \prime} \frac{\partial F^{\prime \prime}}{\partial g_{2}}\right) \\
& a_{21} \Delta g_{1}+a_{22} \Delta g_{2}=b_{2} \tag{A3}
\end{align*}
$$

The coefficicnts a_{21}, a_{22} and the constanl b_{2} are shown in (A4).
$a_{11}=\left(\frac{\partial F}{\partial g_{1}}\right)^{2}+\left(\frac{\partial F^{\prime}}{\partial g_{1}}\right)^{2}+\left(\frac{\partial F^{*}}{\partial g_{1}}\right)^{2}+\left(\frac{\partial G}{\partial g_{1}}\right)^{2}+\left(\frac{\partial G^{\prime}}{\partial g_{1}}\right)^{2}$
$a_{12}=\left(\frac{\partial F}{\partial g_{1}} \frac{\partial F}{\partial g_{2}}+\frac{\partial G}{\partial g_{1}} \frac{\partial G}{\partial g_{2}}+\frac{\partial F^{\prime}}{\partial g_{1}} \frac{\partial F^{*}}{\partial g_{2}}+\frac{\partial G^{\prime}}{\partial g_{1}} \frac{\partial G^{\prime}}{\partial g_{2}}+\frac{\partial F^{\prime \prime}}{\partial g_{1}} \frac{\partial F^{\prime}}{\partial g_{2}}\right)=a_{21}$
$a_{22}=\left[\left(\frac{\partial F}{\partial g_{2}}\right)^{2}+\left(\frac{\partial G}{\partial g_{2}}\right)^{2}+\left(\frac{\partial F^{\prime}}{\partial g_{2}}\right)^{2}+\left(\frac{\partial G^{\prime}}{\partial g_{2}}\right)^{2}+\left(\frac{\partial F^{\pi}}{\partial g_{2}}\right)^{2}\right]$
$b_{1}=-\left(F_{*} \frac{\partial F}{\partial g_{\mathrm{a}}}+G_{c} \frac{\partial G}{\partial g_{\mathrm{l}}}+F_{c}^{\prime} \frac{\partial F^{*}}{\partial g_{1}}+G_{c}^{\prime} \frac{\partial G^{\prime}}{\partial g_{1}}+F_{c}^{\prime \prime} \frac{\partial F^{*}}{\partial g_{1}}\right)$
$b_{2}=-\left(F_{c} \frac{\partial F}{\partial g_{2}}+G_{t} \frac{\partial G}{\partial g_{2}}+F_{c}^{\prime} \frac{\partial F^{\prime}}{\partial g_{2}}+G_{e}^{\prime} \frac{\partial G^{\prime}}{\partial g_{2}}+F_{c}^{*} \frac{\partial F^{*}}{\partial g_{2}}\right)$

References

Ame, W.F.(1972), Nonlinear parial differential equations in engincering, Vol. II. Chapter 2, Acadenic Press, New York.
Ames,W.F.and Nucci, M.C.(1985), Analysis of fluid equations by group methods, 3.Eingg. Math,20,181-187

Abdmel-Malek,M.B., Boutros, Y.Z. and Badran,N. $\mathrm{A}(\mathrm{I} 990)$, Group method analysis of unsteady free convective boundary-layer flow on a non-isothermal verlical flat plate,J.Engr.Math., Vol. 24, No.4, 343-368
Abd-ei-Malek,M.B.. Boutros, Y.Z. and Badran,N.A(1990), Group method analysis of unsteady free convective boundary-layer flow on a non-isothermal vertical circular cylinder,Acta. Mech., Vol. 85, 193-206
Abd-cl-Malek,M.B., Boutros, Y.Z. and Badran.N.A(1991), Group method analysis of steady free convective boundary-layer flow on a non-isuthermal vertical circular cy linder,Acta. J.Comput.Appl. Math., Vol.36, No.2, 227-238.
Birkoff, G.,(1948) , Malhematics for engineers, Elect.Ling.,67, I 185
Birkoff, G.,(1960) , Hydrodynamics, Princeton Univ.Press, Princeton, New Jerscy.
Bluman,G.W and Cole,J.D.(1974), Sisnilarity methods of differential equations, Springer, New York.
Berczovsky, A.A.Martynenko,O.G and Sokovishin ,Yu. $\Lambda(1977)$, Free convective heal transfer on a vertical semi infinite plate, J.Engng.Phys.,33, 32-39.
Gabbert, C. H. (1967), Similarity for unsteady compressible boundary layer, AIAA J.5, No. 6.
Gaggioti,R.A.anct Moran, M.S.(1966), Group theoretic teclinique for the similarity solution of the systems of partial differential equations with auxilary conditions, Math.Res.Center, U.S.Army, Univ. of Wisconsin, 'Tech. Summary Report No. 693
Hansen,A.G (1958), Possible similarity solutions of laminar incompressible boundary layer cquations, Trans A.S.M.E, Vol. 80, 1553-1559.
Illingworth,C.R.(1950), Unsteady laminar flow of gas near an infinite flat plate, Proc.Camb.Phil. Soc. 46, 603-613.
Kulharni .A.K., Jacobs.R.II. and Hwang, J.S. (1987), Similarity solution for natural convection flow over an isothermal vertical wall immersed in thermally stratificed medium, Int. J. Heal Mass transfer, 30, 69I-698.
Mankabdi, R.R(1988), On the use of natural convection llow for solar pumping. Energy Sources 10, 173-182.

Michal, A.D.(1952), Differential invariants and invariant parial differential equations under continuous transtormation groups in normal linear spaces, Proc.Nat.Acad. Sci.U.S.A. 37, 623-627.
Moran, M.J. and Gaggioli,R.A., (1968), Similarity analysis via group theory, AIAA J.6, 2014-2016.
Moran, M.J. and Gaggioli,R.A., (1967), Similarity analysis of compressible boundary layer flows via group theory. U.S. Army Math. Researell Center, Tech. Summary Report No. 838, Madison. Wisconsis .
Morgan, A.G.A.(1952), The reduction by one of the number of independent variablesin some systems of parial differential equations, Quart. J. Math., 3, 250-259
Martynenko, O.G, Berezovsky, A.A and Sokovishin, Yu.A (1984), Laminar free convection from a vertical plate, Int. J. Heat Mass Transfer, 27, 869-881.
Merkin ,J.H.(1972), Free convection with blowing and suction , Int. J. Heat Mass Transfer, 15, 989-999.
Merkin, J.H.(1975), Effect of blowing and suction on free convection boundary layers, Int. J. Heat Mass Transfer, 18, 237-244.
Ostach,S.(1953), New aspects of natural convection heat transfer, Trans.Am.Soc.Mec.Engrs.,75,1287-1290
Ostach, S.(1954), Combined natural and forced convection laminar flow and heat Itansfer of Ihuids with and without heat sources in channels with linearly varying wall temperature , NACA 'IN, 3141.
Siegel, R.(1958), Transient frec convection from a vertical flat plate, Transactions of the ASME, 30, 347-359
Soundalgekar, V.M. and Wavre, P.D(1977), Unstcady free convection flow past an irfinite verical plate with constant suction and mass transfer, 1nt. J. Heat Mass Pranster,20, 1363-1373.
Yang K.T. (1960) "Possible similarity solutions for laninar free convection on verrical plates and cylinders", J. Appl. Mech., 82, 230-236.
Yang, K.T., Novotny, J.L and Cheng, Y.S.(1972), Laminar free convection from a nonusothermal plate immersed in a temperature stratified medium, Int. J. Heat Mass Transfer, 15, 1097-1 109.
Zakerutlah, Md.(2001), Similarity Analysis. First Ldition , Bangladesh University of Engincering and Technology, Dhaka-1000.

