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Abstract

Ihe group theary is applied to present an analysis of the problem of unsteady laminar
natural conveetion from a vertical porous flat plate. Assuming suction for the porous
plate. analytical expressions for flow characteristics are obtained. |he application of one-
parametes graups reduces the number of independent variables by vne and the system of
gaverning partial difterential equations with boundary conditions reduces to a system of
ordinary differential equations with appropriate boundary conditions, The possible forms
of surface temperaturc variations are denved. The one sct of ordinary differcntial
equations are solved numecrically using shooting method based on sixth order Runge-
hutla scheme along with Nachtshiem-Swiger iteration technique. Programming software
FORTRAN 50 iy used to implement Runge-Kufta method and visualisation soliware
TECPLOT is used to create graphs. The effect of suction parameter on the velocity,
temperacure, the skin fnetion and the rate of heat transfer tor fixed Prandt] number s
discussed with the help of graphs. Also the heat transfer characterisies for varying values

of Prandil number and fixed suction parameter arc presented.
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Chapfter 1

1.1 General Introduction With Review of Previous Work

The Phenomenon of natucal conveclion anses n the [luid when temperature changes
causc densily varialion feading to buoyancy forces acling on the (luid clements. This can
be seen 0 our everyday life in the atmospherie flow which 15 driven by lemperalure
differences. When the vertical plate is being heated. the wir layer adjacent to the wall
capands and rises due o buoyancy. A nateral convechion boundary layer is formed

adjacent Lo the wall surlace.

Reeeontty, unsteady condibons of wotion and heating Dfrbm[ius in [uids have become
increasingly imporlant 1w cerlain applications  for some  enpineering  fields  of
acredynamics and hydrodynamics. Alse & natural convection [low has boen generated
due o the lemperature difference inside the plastic green houscs,  Mankabadi (1988)
considered two pumping systems that can ulilze a usable power about 200 W for
pumiping underground water for nigation pwposcs. Therelore it becomes necessary 1o

pay motc altenlhion o Uus problen:.

Chvicusly, the intreduction of time as the hivd independent variable in the unsteady
problem increases the complexity of the problem. Many attemipts were made o {ind
analyticat and numerical solutions applying cerluin speeial conditions and using different
mathematical approaches. lhngworth (1950) studicd the problem of unsteady laminar
flow of gas near an infinite ul plale. He obtained solutions which are available only with
Prandtl number unity and under transicnt conditions of step change i ihe surface
temperature. The problem of wansient (ree convection at the heated surface has been
studicd extensively, Siegel (1958) bnvuestigated the tansiont free conveclion lrom a
vertical plate. Free conveotive 1low past vertical plote has been studicd extensively by

Ostrach £1953,534) and many olhers



The fice conyeclive heat transfor on o verlical semi-infintle plate has been investigated by
Berezovsky (1977) . Martyncuko{1984) imvestigated the fanunar lree conveclion from a
vertical plate. In all these papers, the plate was assumed Lo be maintained at a constanl
emperalure which is alse the temperature of the surrounding stationary  fluid.
Soundalgelar (1977) studied the unsteady Tice convection 1low past an infinile vertical
plale with constant suction and mass transfer. It was assumed that the plate temperature

oscillotes I such o way that its amplitude ts small.

Possible similarily solutions [or Bninar [ree comvection on vertical plates and eylinders
have been siudied by Yang {19600 He establishcd some necessary and sullicicnt
conditions for which similurily solutions are poessible, Hansen (1958) mveshigalud
possilile similarity solutions of three dimensional laminar meompressible boundary layer
cquations. Zakerultah (2001) has derived similarity solulions of some possible cases of
unsteady mixed convection by group theory without suction. [e also investigated stcady
natural convection by group theory mcthod without suchon. Abdel-cl-Malek (1900)
investizated unsteady free conveclive laminar boundary layer flow on a non-1sothermal

vertical [lal plate without assuming suclion at porous plate in this case.

The mathematical technigue used in the preseni analysis is one parameler group
transformabion which leads {0 o similary represcntation of the problem. The
fundamental simplicity and power of this methad wre well known, Morgan (1952)

presented a theory winch led 1o improvements over earber similanty methods,

Kichai (1932) extended Morgans theory. Group Methods, as a class o methods which
lead 1o a reduction of ibe number of independent vanables, were lirst introduced by
Birkolf {194%,19060). IIe made use of one paramcter group Lransfonmations to reduce a
system of partial differentis) equations in one independent variable, This weehnique has

been applied wtensively by Abdel-cl- Malek (1990.1991) , Ames{19835) and muny others.



Moran and Gaggioil {1906,1968) presented 2 pencrat systematic group lormahisin for
similarily anadysis. They ubliced elementary group theory for the purpose of redueiy
given system of partial differential eguations in a single variable. Stimilanty analysis hos
been apphed intensively by Gubbert (19067) For additional discussions on group
trausiormations. one consults Ames (1972,1983), Eisenhacl,Bluman and Cole (1974},

Moran and Gueeialif 1967 .

In ths woek we point ot the efieet of sugtion in three cases derived by Yang (1960). We
presenl 2 wereral procedure for 1educing the number of ndependent vanables n e
govermning cquations fiom fhree o one independent vaviable, The iechnique used 15 the
onc-parameler group transformation which is applied 1o bolh the governing partizl
dllerential cquations and the boundary conditions to assure the nivariance condiions.
Onc sct of Lhe resultani systen of ocdumary differential equations with appropriate
houndary condilions s then selved numerncally using shooting method based on sixth
order Ronge-Kutta scheme along with Nachtshient-Swigert weration technigue to lind
boundary layer (low characteristics due o suction effect and for varying Prandil number
when suction parameter is (xed, Programming soliware FORTRAN 90 is used Lo

impiement Runge-Kuotla meibod and visualisation software TECPLOT is used to creale

orapls,



Chapter 2

2.1 Group-Theory and Important Terms

2.1.1 Group Theory

One ol the most mathematically soplisticated methods of delenmining similanity

solutions of partial dillerential equations is based on concepls detived from the theory of

cantinuous ranslormation groups.

Groep Concepts: An algebraic group is a colleclion of “clements’ which hos some
sorts of operation defined between the clanenis. In addition, a certain set ol rules or
statements regarding the elements and the defined operation must be satisficd. The
clements can be almost anything we choose lo deling, sucl as integers, comples nembors,
veclors, matrices, ansformalions, cle, Que nnporiat ciiterion, howeyer, is {the definition
of an operation for these elements. Typical operations [or the classes ol elements Just
menfivned are mteper addivan, complex number mulupheation, veelor addition, malnx

inultiplication and successive franslormalions.

The rules which a set of clenicnts must obey under a given operationy are given helow.

(The syviabol owill denole the given operalion between two clements; ey, 4oh.)

i. The sels of elements is closed under the given operation. Il erand O are two clements
althe sets, lthen gofr=¢ is also a unigue clement of the sct.

2. There exists an identily element / suchthat aof =foa=u

- - -1 - -1
3. Given any clement . there exisls an element ¢ suchthal wea ' eu=

4. The associative Liw s valid [or e siven operation g (bocl={uahjoc



Transiormation group:
A complele set of ransfomuinbion is tken as group ¢lements. Successive translormalions

employing various sets of [unction are considered 1o e “operation” between elements

Envariant Solution:

We consider a system ol partial differential equations for which the » ' are dependeut
variables and x’ are independent variables. Soiutions of a syslem of equahions [or which
v oare exactly the same lunctions ol the v as the ¥ fare of the A are called invariant

solulions.

Coulormally invariant, Constant conformally invariant , absoluic jnvariant:
- . . | .
The diflerential lomig{z ,......,2" 115 defined lo be conformally mvanant under a one-

parameter eansiormation group 7 =7,z 1 under the group translormations

o
AN Lo Fezl a2

where Fiz' .. z%:ahs some lunction of the 2% und the single group parameler, .
(7 2P )= itz 2,

Lhe funclion @is said to be constanl conformally invariunt under the group transformali-

ons I Fa) =1so il @(Z" e 2¥y=92", . 27)

ihe [unclion ¢ is said to be ahsolule invanant ueder the transfenmation group.
Group Theory Method:

Let us constder a single partial difforential equation in {wo independent vanables, We
scck transformations thal will reduce the nunber of independenl vaniables by ong, i.c.,

lead w an ordinary diflercntial cquation . The steps are (o

I Seleel 4 one-parsmeter transformution proup. 16 xand y ace the independent variables,

a reasonabbe first cholce might be

A




w=uly
2, Find an absolute invariant which is 4 lunction of the independent variables alone.
Eor exanple
5=’
Eutablish relation belwesn o and s such that
it =¥
The absolute invartant 7 will be the new mdependent variable,
3. Fmd a seeond absolute invariant g . chosen m such a way that g
involves the dependent variable &, For example
g = ux
Fmd relation such Lthat
wr’ = X!
4. 5¢l g=Finr. Then
u=Flpx
and Fp(7) ts the new dependent variable.
5 Substluting the transtormation tore inte the given equation and employing the
defimtion ol # should reduce the given partial differential cquation to a ordinary

dilferenuial equatton

If mome dependent or independent variabies are invalved | the above procedure remains
chsentially the same |, eacept that a group of independent variables 5,5, ., are sought
from the original independent variables and aie one less tin number . Thes, ae absolute

IV AL LALE.



For coch dependent. an absolute invaciant g, 15 seught which involves the dependent
variable, A good choice is g, = 8, A(x e 3, Pwhere w, is the dependent variable.
The [unction g, is then equated to a function

FU a1 =0, ALE e )

then

is the dependent vaniable transformation . Substituting the various transformations
ittto the original system of equations should lead 1o« new system with the number

of independent variables reduced by one.
Evuluation of the Group-Theory Mulhod:

‘The advanages of the group theory methad should be obvieus. The first is thal the
method s rather simple Lo apply. We mercly piclk a transformation and proceed. There is
no concern about boundary conditions, choices [or various functions, ele. Second, in
reducing the number of independent variables by one it is possible 1o obtiin 4 new system
ol purtial differential eguations wilhoul contuwing to obtain ordinary ditlerential
cquations The passible advantage ol stopping short of & system of ordinary ditlerential
cquations is that il may be possible 10 solve wider variety of problems in this manner. It
would be very interesting to explore this possibility in solving the boundary layer

LguaLans.

Cn the other hand. there are two evident disadvantages to enpleying group-theory
methods. The first 15 thﬂtlbﬁut]dﬂl'}' condilinns are not taken into account in any way until
the entire analysis i completed. The sccond s the uncertainly in choosing a proper
transformation group. IT we should fail to simplify a system under one choice ol
transformation group. this does nol mcan that another, which would prove to be adequare,
does ot exist.  Portunately, the types of group employed in the examples seem o be

adequate for yiglding the classes of similarity transformations obtained by other incthods.



Although it has been pointed out thal one advantage of the group- theory methods is to
reduce a systein of partial differential cquations in s independent variables 1o a system in
a—1variables without continuing to ordinary differential equations, the same type of
results could be achieved with a modification of free paramcter method, We would
simply introduce functions of more than one parameter. We would begin an analysis by
assuming that the independent variables were expressible in terms of (w—1} dependent
variables instcad of a single parameter ;. While such ait approach has not been exploted
in lilerature, it would be quite simple w rvestigate this possibilily. [Mowever, the group-

theary methods should yield complete resulls with less elfort,

2.1.2 Important Terms

Poraus plate:
By porous plate we mean that the plale possesses very fine holes distributed uniformly

aver the entive surface of the plate throush which fluid can flow froely.

Plate with Suction and Injection:

The plate from which Lhe NMuid enters into the flow region is known as plate with
injeclion and the plate from which the flutd leaves out the Mow region is known as plate
with suclion. Svmetimes it is necessary Lo control the boundary Jayer flows by injecting
or withdrawing Muid through a heated boundary layer wall. Since this can cnhance
heating {or cooling) of the system. can help delay the transition from the laminar to
turbulent Aow. PBoundary layer suction is used to control laminar and turbulent
scparations by removing flow of the low momentum. The technigue s used in air wings,
some wind tunnels Lo remove boundary laver Blowing {injection) g boundary layer on
high temperature components can maintain a thin layer of colder flow that allows the

svstem 1o funcion with very bigh Toid velocity.

lsothermal:
[t is a process if lemperature is held constant during the process. i,e, AT =0 or, having

cqual or conslant temperature with respect to either space or time,



Similar Solutions® of the boundary layer cquation:

Boundary layer equations are moie simpler than the eriginal moementum equalions, yel
they arc non-lincar partial ditferential equations. We, therelore, simplify them fuither by
reducing them into ordinacy dilferential eguations. "To this end, we proposc to change, it
possible, the independent and dependent vanables o such a way =0 as o transform the
partial differential equations of the boundary laver equations inte ordinary differential

equations Whenever such 4 transformation exists, we say that “stmilar solution® ealsts.

Similarity variable:

Similarity variable is a functien of original independent variables.

Thermal conductivity: The well-known Fourier’s heat conduction law states that the
conductive heat flow per unil area (or, heat flux) g, is propomional to the temperature

deercase per unit distance in a direction normal to the area through which the heat is

flowing. 'L hus, mathematically

&r ot i . .
g, % —— sothat ¢, =—4 En where &y said 1o be the thermal conductivity,
ot i

Viscosity: Viscosity of fuids is due to cohesion and interaction between particles. Vis-
-cosity introduces resistance to motion by developing shearing and Irictional slress
between the fluid lavers and the boundary. Lxistence of shearing resistance in real {iluid
causes the fluids o adhere to the solid boundary, and hence there is no relative motion or
slip between the flaid layers immediately in contact with the solid boundary. Viscosily

causes the Mow o ocour 1 two different modes, namely, laminar and turbulent flow.,

Kinematic Viscosity, Dynamic Viscosity: In Fluid problems, the coctficient ot

dvnamic viscosity 2 vsually oceurs topether with mass densily 2 inthe Iorm‘i . Insuch

fe)
problems, it is convenient to use another cocfficient called the cocfficient of kinetic-

viscosity v {nu). It is the ratio of the cocificient of dynamic viscosity to mass density.



_H
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The dimension ol v
v]=1z2/7)
In CGS units , it is measured in stohe. which 1s equal to 1 em?® isec.

A parameter g defined such that |shear stress)= g [strain rate]

Dvnamic viscasity is related w kinctic viscosity v by = v, where g is the density.

Incompressible, Compressible Fluid: A fuid is sald to be incompressible if it
can not be compressed casily. The density of an mcompressible 11uid is almost constant.
A fluid is snid to be compressible 1f 1t can be casily compressed. Compressible fluids

have vanable density.

Steady Flow: The flow is said to be steady when the flow charvacteristics, such as
velocity, density, pressure, temperature do not change with time. A flow will be steady

when the rate of change of these characteristics is zero. For example, if ¥ is the velocity

i . L dF
atany point, the Mow will be sicady | — =0
!

Waler [lowing through a tap at constant rale 15 an cxample of stcady flow,

Unsteady Flow: The [low is unsteady if the welocity and other hydraulic

- T . ¥ . .
characteristics change with time, Mathematically, - # 0. if the water js flowing at a
d
changing rate, as is the case when tap is just opened, the Now is unstcady.
Uniform Flow: The flow is said to be wuform when the velocity and other

characteristics are constant in a particular reach. A flow will be uniform 1§ the rate of

change of these characteristics with respect to distance along the path is zero,
. : . . ) . -l
Far example, if ¥ s the velocily at any point, the flow will be uniform ITd_S = (,where

5 15 the distance measured from some Tixed point on the path of low.



[n the other words, velocity is constant in the reach, A liquid flowing through a long
straight pipe of uniform diameter al constant rale is an exampie of uniform flow, as the

velocity is the same at all scetions in the reach.,

Non-Unitform Flow: The flow is non- uniferm when the flow characteristics change

at various points along the path. For example, if ¥ is the veloeity at any point, the flow
. odv . ) . . . L
will be non-uniform il =5 = (0. [f the diameter of the pipe changes, i.c., the pipe is either

converging or diverging, the velocity at dillerenl sections in the reach is not constanl and

the flow is non-unilorm.

Stream Function: Stream function g is a lunction which describes the [orm of
pattern of flow. If the stream function g is expressed as a function of xaund y, the
streamlines can be plotled The component of velocily al any point may be obtained by
laking partial derivatives of

VR — —

v ix
Conversely, i # and vare given. the stream function g can be obtained by integration,

T
Ty

Simce, dy = -a'x+itf_'i.dy

£

th
o
Therelore, w = J‘[%fh‘-i- Sy iy +
fx ay

o= I— vl + Jufe’}-' +{7.

Skin friction: Plastic drag is drag caused by moving a solid object through a Nuid. In
Aerodynamics, skin friction is the component of plastic drag arising from the frietion of
the tluid sgainst Lhe skin of the object that s moving through il Skin Mriction is a function
of the interaction between the wd and the skin of the body, as well as the wetled area, or
the arca of the surface of the body thal would become wet if sprayed with water Nowing

in the wind.



Coefficient of skin friction: It is denoted by € and is defined s the ratio of the

shoar stress r, to the quantity [pUz}.-"Z.

r

s, T = ( .-"2};9{,’3

Laminar and Turbulest Flows: A {low, in which each flud parhicle truces oul a delinite
curve and the curves taced out by any two dilferent Auid particles do net mtersect, (s
said 1o be laminar .Ono e other hand. a flow, in which each Nuid parbcle does not trace
out o definile curve and the curves traced oul by uid parlicles inlersect. 15 swd Lo be
iurbulent. The [ow of thick ol Uwough a small wbe 15 an cxample of laminar flow. The

fow in rvers al the iime of (loeds (s wrbulent.

Grashot Number: [t is a dimensionless group whiclh represents the ratio of buoyancy
force to viscous force i [ree convection. One of the paramcters which must be the same

in two free convecting systems for them Lo be dynamically similar 618 delined by AT

gl

2
1

G

where grtg gravity, & is thermal expanston coelficient, AY 15 the lemperature dif [erence,

L s the leneth scale and 1 ks the kinematic viscosity.

Prandi Number: Prandt! oumber is a dimensionless pavameter ol a convecling syslem

that characlerizes the regime of convection. It s defined as

14
Pr=--

-
where 1115 the kinematic visvosity and «1s the thermal diffusivily. Prandil number 15 tbe

tatio of viscous force 1o the themual {orce.

12



Reynolds Number: The elfect of viscosily of & [Tuid phenomenon is usuaily expressed
in lerms of a non-dimensional parameter called Reynolds Number{ Re ) given by

L
Re= —

L.l'

where ¥ denotes the charactenstic veloeity , wis the kinematic viscosity and £ denotes

ihe characteristic Jeugih. This is the ratio of the nertia [oree o the viscous force.

Two flows of weompressible viscous flud zhowt similar geomelrical bodics  are
dyoamically stmilar when Reynold’s numbers for the flows are cyual. A small Reynold’s
number implics thal viscosity 1s predominant whereas a large Reynold’s number implies
ihat viscosity is small, If the value of Reynold’s number exceeds a ¢ertain cntical vidue
{namely 2,800) the fow ceascs 1o be laminar and the [low becomes turbulent. When

Re <2000, the Tow 15 laniuar.

Nutural Convection: Convection 1 (be sludy of conduction m a (uid as enhanced by its
“conveclive transport” that 18, ils velocily with respect to o sohd surluce, It thus combines
the energy equalion, or first law of thermodynamics, with the continuity and momentum
rclations ol uid mcchanics.

in naturat convection uid meotion is due solely o local buoyancy differences caused by
the presence of the hot or cold body surface. Mosl Muids ncar a hot wall, for example,
wilt have thetr density deercased, and an upward near- wall motion will be induced.
Natural convection velocilics are relatively genile and the resultant wall heat fTux will

gencrally he less than in forced motion.

15



Boundary Layer: The layer of reduced velocily in fluids, such as air and water, that is
immediately adjacent 1o the surface of a solid past which the Auid 15 flowing, [n olher
words. the boundary laveor (s the laver of fAuid in the bnmediate vicinity of a bounding
body. In the atmosphere the boundary layer 1s the au layer near the ground affected by
cliurnal lzat, meisturs or momentwn transler to or from the surface. On an airerafl wing
the boundary layer is the part ol the flow clese to the wing. The boundary layer cffect
oecurs Jb dhe hedd region mowhich all changes oceur 10 the fow pattern The boundary
layer distorls surroundinyg nor-viscous ow.

The boundary layer s a very thin sheet ol air [ying over the surlice of the wing (andd, Tor
Ut all the surlaces of the airplanc} Beeawuse air bas viscosily, the layer o the air lends 4o
acdbicre to the wing, As the wing move lorward rough the air, the boundary layver at lirst
fAows smoolhly over the streamlined shape of the airfoil. llere the flow 15 called the
larninar layer.

As the boundary layer approaches to the centre of the wing, it begins to lose specd due to
skine [riction and it hecomes thicker and tuhulent Here 1l is called torbulent layer, The
point al which the boundary layer changes from lamnaar to turbulenl 1 called the
transition point. Where the boundary layer becomes turbulent, drag due Lo skin fnchion is
relalively high. As speed increases, the transition pomnt tends move forward, As the angle
ol atlack increases, the transilion point also tends to move lorward. The boundary layer s
pacticularly imporant in aerodynamics because it is responsible for a considorable
amwount of drag. In high-performance desipns, such as sailplancs and commereial
transport atrerafl, much attention is paid to controlling the behavier of the boundary laver
o maninnize drag.

Two effects need to be considercd. Firsl, the boundary layer adds o the clfoctive
thickncss of body, hence mereasing the pressure drag. Second, the shear forces at the

surface of the wing creale skin fniction drap.

I4 .



Chapter 3

3.1 Formulation of the problem and the governing equation

et us consider a laminar frec-conveetive boundary layer adjucent 1o a semi- infinite

vertical flat plate. The gon-isothermal porous plate s heated 1o an unsleady manner,
consegquantly the temperature distribution over the plaic. ]f'“,* wiil be a function of the
vertical distance v and the timer. Lhere is a normal velocily of suclion at the porous
plate. The fluid is of constant temperature 5 Far from the phae such that ka:-v T in

IRTL

.

Figure 1:Physical model and co-ordinate system
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Ioswe ahe Las some abitacy relerence fength, ?ﬂs o typical time, where

o a1k . , , i
[ = {gﬁh( My — l;} I S is o dypical wvelacily with g'the acccleration  duc Lo
- - - ' - * ' '
gravity," #is the volumetoie coefticient ol thermal expansion and 7,0 15 some arbitrary

refcrence temperature, along with the appheaton of the Boussinesq and boundary layer

approximation, the equations ol motion may be writlen as

TR

Continuily cquation: —+-—=1 (3.1}
oy av
. fut Ou die L. O%w .
Momentum equation. —+u——+1r—=7+— (32)
et e 2
_ . AT &r  ar 1 & )
Fnergy cguation: —+ it —-v—n=— 5 {3.3)
al'l QX (7']" .Pf‘ E}’
wilh the boundary conditions
n=0o =1, 00,0, =1 (e al p=0
(3.4
=t vat, F=0 at y=w
x oGy
where y=— | v=f0——"—
L
- ) . 1
i vyt
o= — . V= —r-—
S £



1 Y ot

L O : : e

T = ”;r " is the Grashof number, v is the kinematic viscosity.
2

b . . L
' = —1s the PrandU number and a 1s the theomal difTusivity,
£

Irom the continuily equalion (3.1} there exisls a non-dimensional stream function

wix, y.e)such that u =$ , V= —Eﬁrfi which satisfics (3.1) identicatly. We introduce
av Gx

the nen-dimensional temperatare delined by £ = —

Equation (3.2} and (3.3} become

A 35
6 = e,.cr_l_&e,sfﬂw ﬂwawdﬁﬂu_ﬁ_wzﬂ {3.5)
it &y dydx  dx gy- &y

= -_5.-1 ™ - -
gﬁls[ﬂpoa—ﬂ+ﬁté—”]+aw[f1 f r:?a;;J-TH G_*‘i“ﬂ_ﬂ__l_rwﬂ=ﬂ
f r oy 24

. - 2
73 e O & 1 e -
b e g S en]-5 20 6o

with houndary conditions:

di dyr
— =0, - =v,,0=]1 at y==0
E,-n'!}-' a'f W -}
(3.7}
a—l'iz ,%=U,E’=D at y=w
oy lx

17



Qur method of selution depends on the application of one paramcler  group
trans [ormation Lo partial differential equations {3.5) and (3.6). Under this transformation,
the three independent variables x, w, ¢ will be reduced by ome and the differential
equalions  {3.5% and {3.6) wiil be lransformed into ordinary differential equations in only

onc independent variable, which is a sumidarity variable.



3.1.1 Case I: T, « (x+bt}"! and suction velocity « {x+bt} "'

Unsteady natural convecdion wilh surface temperature varying ioverscly as a
linear combination of x and ¢ and the section velocily varying inversely as-a
square root of the linear combination of x and f |

Finding the similanty solutions of the eguations (3.5} and {3 6} arc cquivalent to
delemmine the avariant solutions of these equations under a particular continuous ane-
parancler group.

In order lo seck wvariant solution to this sou of PDE we scareh o transformation group

irom one paramcter trans formation defined by the followmg group (Gl}):

Ao l’.[' .
=y
¥ =gy
th=a"y
w'=a "y . (3.1.1}
r
gt
T, =a T,
&=a

Here w =0 15 the paramcter of the group ande s \he arbitrary rcal numbers whose
wnterrclationship will be determined by the subsequent analysis. We now invesheate the

relativnship amony the exponenta ’s such thal

[ N B ﬂj !
ﬁ." ('r !'.j"r"r !” :v [REREEE] w ]

= r3
% . (3.1.2)
iy &
=H | 5y V3 B Ve
oy L ay
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for this is the requirement that the differenlial forms ¢ @y be conlormally nvariant

under Lhe transformation group (3.1.1). Substituting the (ranstormations (3.1.1} in (3.5)

and (3.6) we have

5 = r"}zr,uf“ . A’ 3y’ _dy’ 3y’ T Ay’ 0
Cas o A & gyt Y=
1 2 L
g R 0 4 2=z %azfﬁ' _aggj_gafz_gl 5_:',&'5 i (3.1.3)
e By Svdx 5x oy’
23
Y !-w _a&'],—ﬂ-a‘z C EE:
Ll
= ! -y ¢ ' ac} b ro =2 ar
O A e
&' ey drt ' oy ot av' Pr gy
=g ™ [_F’if. PR Skt Al %E_“ﬂ@_“ﬁ_al E_QUE (3.1.4)
& dy or dx gy
o2
+Gl g™ E(In T, )+ a™oma ﬁi{ln T ek ZE
_ i 5} feis Pr ayz

Equating Lthe various exponents of o' from equations (3.1.3) and (3.1.4) icads to the

following cquations

f;r;,—(rl—r,rz:2a3—al—2a2=a4=a3—3a3] (3.1.5)

- =Xy — () — iy =~

Solving the equation (3.1.5) we get the following relationship between the cxponents

&, =2y : @y =y @y = —2dxy
r X r
or, =k =72 or. —- =1 m,w“—:—z
sz ] I
20
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It foltows that ¢ and ¢, are conformally invariant under the following translonmation

LEOUP,

yr — a”}_y — B},
il

x=g¥x= (a“z )Efz x= 8%«

P AT _( cka )Q_] _ 2

t=a=\a"? et = B (3.1.6)
3

w'=aMy = {a“i )H: W=y

' 4
7, =7, ={a fe T, = 570,
=20

We shall now show that g, #ycan be expressed in terms of new independent variablc 7
{similarily variablc). dependent vanables £, (¢, fand their derivatives w.rto #7.The

solution of the new system will be a particular set of invanant solutions of the original

system in terms of x, y,u,v  cte. The varisble ris 10 be an absolute invariant of the

subgroup of the transformation of the independent variables.

In otherworlds, 7is w0 be a function such that #{x", 3¢t = 1Hx, ¥, 0)

whers

x= B

V= By

o Bk (3.1.7

‘The way of seeking absolute invariant 1s nol well defined. From the boundary layer

conceptions, it would be a good guess to assume that gmight be weritten in terms ol

power of xand 7.

v
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Yariable Transformation 1

Independent Yariable Transformation:

We assume that
= {x+ b.r}'u ) {3.1.8) |
15 an absolule myvanant of group (Gl), where p is a real number. Now restniction might

be placed on p 1o order that 7 would be invanant under (3.1.6).

So we must have, 7' = ¥'(x' + bt = B|+2"Jy|[,1'+b.!}'“ I
. . |
For alsolute variantwe pul 1+2p=0= p=——
2

1

So, p=p{x+5:) 2 isan abzolule invanunl.

Dependent Yariable Traonsformation: . S

We now cxpress all dependent vanables in tenms of 57, Since there are three dependenit

variables, we seek three funclions g (1 =123} which are absolulcly invariant under

(3.1.1).

We sclect

g = wix+bey?
g =1, (v + )
g3 =8 =0G)

(3.1.9)

wlicre ¢ , r are real numbers.
Employing expression (3.1.6} in g; gives
gy =ylxtb)? = BT (x 607 .

y = ToAr+b0) = BET (6 +be") (3.1.10)
gy= 8=0"=Gn) b

22



For constant conformally invariant we must have .

]
—|—2q={]:bq=—;

2o =0=r=]

3100

For invanant solutions of the equations (3.5) and {3.0) will be expressed in tenns

of rand the functions F,G and 7

l
W= |.fJ|:-r—!:r.f}2 F{i}

o T, =+ )

7 = G{1)
= ai= Iy
iy
o2
gy -l
oy r--ifr;{x +h)
=2
& 1 -1,
=——bnlx+be)y " F
Byt 5 i ) an
A 1

WOy ! -1
— =——nlx+ 0 F,F,,
By oxdy 2??( ) ntne

[

oy ] . 3

1) = —— __F——;i'_fi ‘+£}I <
ey [2 2?”]{}' )

-.3.1
S =i,

R
C_]J.l
oy v _[1p Lol aon
"E' ﬁ'_],'z = ‘2“ _5-‘? i .',r:,r(l‘i' f)
& . on 1 i
—={:-I|._:G -—Tbx‘i‘lﬁ!
At ' Bt ‘?[ 2” ) ]
- -
ti_{:’. = Gi} ﬂ = {'rl-",f [_rri-b.l'}_l
y cv

(3.1.12)



1 L

— =1 I-EJ'F] 2 (x b)) 2 =G,Ff}{r+£rx}"

14

qv
.
LT = (o) — 97 = (’ru( ]:;(xHH)F]
o 239
kil g =G, — f”‘;' ?}G plxt+ !}f}
Ay dx w2
Oy O} S -
— —a;" ' -é}\:j = —[E F L(rﬁ. — Efﬂr pr GJ.} ]'I:J e hf}
Ny Y e
T = =P Gy, ()
&

A H’
(P A ({ L :|{:.r+bf}_1
iy {

7 nf
LA (intT,)=GF, 1oL e gy
By or 2 1

Substituting all valucs in the cquations (3.5) und {3.6), we obtain,

1., b | a )
F,M,F{EP+2 J,?,}+Gf 0 J'HE.J

b I F
MG+ IF_}_E??]Q B ’“+f;+!ﬁr+liu'“—”- G=0 (3.1.14)
2 2 ol g 2

i

700y = (x+ bty (57) = el x, 0} (17)
whore anx )= (x+bf)_]
Since a4y and 7 {x, /) are independent of p where pdepends on y it follows that f

must be cgual to & constant,

For simplicity, let J{n)=1= {{y}=10



MNow, {31 130 and (3,114 beconie

S R SR

Fyn + [21+2;J;-W+G=0 (3.1.15)
| ¢

ProlG, + [ F+§}r;r]G”+(b+ﬁ;}G=D (3.1.16)

The boundary conditions are

F,(0y =0, F(0) = Fw « 0,G(0) = lat =0
(3.1.17)

Fn[m} =0.0{e)=0at -

The additional parameter is given in the boundary condition as #{0) = Fw relaled to the

suction v
| -
Ilere — v, (x,1)= E{x +ht) 172 F(0).

v, <0 signilies suction, v, > 0 signilics injection,

The boundary- layver charactenstics [or this cuse are
(1) Wertical selocity
w= £,

{iiy Morizontal velocity

= (x4 2y ViR - nF)

r~.>|—

{(iii) Surface heat flux

-G'(0
= +bf}ﬁ2[ )]
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3.1.2 Case Il T, {x/t%) and suction velocity o {1/t)

Unsteady free convection with surface temperature varying directly with a
functivo x and inversely with the square of a function ol ¢ and suction velocity
varving inversely wilh the square root of a function of ¢

Finding the similarity solutions of the cquations (3.5} und {3.6) arc cquivalent to
determine the invariant solutions of these equations wnder o particular continuous one-
PRramelor grougs.

I order 1o seek mvariant solotion (o this sct ol PDE we search a transbomation group

froin one parameter transfonnation defined by the following group {G2):

x' =gy

¥=u £ W

"= g™y
{(3.2.1%
p'=aSy
T, = HUJLTW
=0

Here o # 0 is the parameler ol the group ande’s the arbitrary real numbers whosc
interrelationship will be determined by the subsequent analysis. We now investipate the

relationship amone the eaponente: ™3 such that '
B g P

1o
?, (X’.Jr",f’,u', Ve %—}

a})rl )

E!-J'rpf ajw {3.2.2)
=8| x o e — 0 |0 XLV
( J Y ]ﬁj ) @vz]
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for Lhis is the requirciucnt that  the dillferential forms ¢, dy be conformally  invariant

under the transformation group (3.2.1). Substituting the transformations (3.2.1) in (3.5)

and {3.6) we have

a3ty N g’ @' By By o &y 0
- o @y' @»'ﬁx' Fi ﬁ}.lrz * 5‘)1'3
at Sy %y By &
:arzg—rxg—{q LW 4_‘:2&3—2H2—6¥1_{L f _alaj‘lui‘“l _W.__._w (3,2,3}
i &y Eydx 5x
3
_aag T, = OV
H 6})3

- ! F!I . [ x —.|| r r -“ |lf 2 r
a6 +££}9 Gy 90 |ﬁ"[L(In?’;,)ri%:a—r(]n]%}}—La 0
S

#2 =0 EN X @ = Fr a},z
— g 5’_54;_“.:?3—4:;—&1 a_wﬁ_a“ﬁ‘”l‘al ﬂ_l,fﬁ 3.2.4)
Bt &y ér e &y
. - =2
+ 80| ™ i{Ir1]f},,,]+ gt3TarT e ﬂE(Enlﬁu] ——lu_z“‘? i
ot &y Pr E,y?

Equating the various exponents of 'a' in equations (3.2.3) and {3.2.4) leads to the

[allowing equations

czj—cz,—ag:2@—&,—2%:“4:&3—3&2} (325,

-, =@, -, - &, = —2a,

Solving the equation (3.2.5) we get the following relationship between the exponenis

o) =2 : g =iy ! g = —2¢n
7 u t

or, — =2 or, —= =1 or, — = -2
55 &y €3



It foliows that @, and ¢y arc conformally invariant under the following transformation

group.

¢ =a®lf = (.::“2 22t = B (3.2.6)

1

|;."/"r — al'i_'-iwr — (ﬂﬂ': iy "y- = ﬂlﬁc

T =u“4:r‘w=(a“1 w2 £, = B°T,
4 =0

We shall now show thal @, @;can be eapressed in terms of new independent variable 5
{similarity variable), dependent variables £, G, {and their derivatives w.r.lo 7 .The

sululion of the new system wiil be a pamicular set of invariani solutions of the original

syslem ip terms of x, y,u, v ete. The variable #is to be an absolute invariant of the

stibgroup ol the transfermation of the independent variables.

In otherworlds. 7 is o be a Qnelion such that ()¢ =n(x.1), Where

¥ =By {3.2.7)

= B4



Yariable Translformation
Independent Variuble Transtormation

We assume that
=y (3.2.4)

is an absolule invariant of group {G2) where p is real number. Now restriction might be

placed on p in order that i would be invariant under {3.2.6).

So we must have, 7'=11'f = ﬂHzp}’f*ﬂ

For abselute invariant we put [+2p={= p= ——é

k

So, 7=t 2 15an absolute invariant.

Dependent Variable Transformation:

We now cxpress all dependent variables in terms of 7. We select the dependent variables

for w, T, and ¢ in such a way that

2 7 ) i
x R
a :W[T] = i 1"5“[_:.- ) =iy

anF r
I U v e
g2=1 =5h ﬂ,:r = {{n) (3.2.9)

X

g1=0=0"=G{n)

where ¢ . »are ceal numbers. For invariant ol transformation group we must have to put

]
N-2y=0=g=——
IERTEETS (3210

2-2r=0=1r=1



,.,

Oy _ 8w
gedy  axl oy
1

7 X
_=_ —
Bt 6‘[ ] I

4
ay
2 .
du O [i ][ ;.;?)zizﬂg
v dvdy At ¢

S
2

i
S'x dix
3 .
i}f - [ .fl ]rfmr:
dy 52@’ 1 F .xj.- N2 M’"
B PYE TR 174

wa = %)I(T?)(T{Fﬂ
t

(3.2.11)
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27
_( |f;f”(})]
L 2 i

31



Substituting all valucs in the equations (3.5 and (3.6)

we obtain,
] 2 N
Fong +{~£q+f Jfam +F, - Fy +GI=0 {3.2.12)
. 1 r;f G
PG, +(F 4-5?;]@, +l-F i)+ e (3.2.13)

T, (2,6) = (r-"‘fjf(q;

Since [iz] and T, {x,/} are independent ol y where as g depends on y
!

At follows that f{z) must be equal to a constant.
For simplicity, let f(my=1=1"(71 =10
Mow, (3.1.02) and (3.2.13) become

f 2 -
Frlfrj.l_lr (2q+,{ ]'{j}q I"Fq "_F.fjr +G =ﬂ {J214)

PriG,, + [I n ;q](_: +(2—F,)G =0 (3.2.15)
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The boundary conditions are

F=0,F0)=Fw=0CG{0)=lat n=0

(3.2.16)
Fo(o)=0,G{m}=0al n—w
The additional paramcler is given in the boundary condition as F{0} = Fw rclated 1o the

suction v, whenz =
Here — v, (x,0) = ¢tV f7(0)

v, < (0 signifies suclion, v,, > 0 signifies injection.

The boundary- fayer characteristics for this case are
{iYVertical velocity

X
u=—Fr
¢ i

{11) Hortzontal velocily
1

p==—F
N

{iii) Surface heat Hux

e )
e

Su
And for wall shear stress, r, = y(q—}
W o

Delinmg skin fnction coelhicient

2r,

o=

i pUE

i e

= —cbr| — |=F, ({0
ch r[x] J?[)
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3,1.3 Case lll: T, t" and suction velocity variation is zero

Unsteady Free Coonveclion with Unilorm but Unsleady surface Temperniure
variaiion al Large Distance x

In order to scck invariant solution, we scarch a transtormation group (G3) from onc

parameter trarsformation defined by

' FEH
X =d A
_}a’:aaz”_v
Ii = aﬂ}nr
l,."fr =aﬂ'¢uw
TET RN - Yo
Te=a-1,
&' =¢

Here & % 0 s the parameter of the group and & °s arc the arbitrary rcal numbers.

Substituting the above transformations in equations (3.5) and (3.6) we have

_ a:r}rf.' N ay}_r azwr _awl al”fi _E}, T' _ C"]d'!wf _u
"Tava T o aar ot boa?

2 2 2
= UarEaA—an 3 Ll + ulcrd,r:—l‘r;rgu—:mr dyr o Ll _ulcr.ur—iagn—cqr: 5&’ & L

5{1«‘5‘# E:]r ﬂyﬂr dx a_}:j
— g !w _ arrdrr—:'a(rzrz 5'1!;5’ )
5}!3
oL o' ' ' ; oo i 2
PR AU AN A A ) A R BN (| B B
Ot v oar det oy et ' dr Pr gy

— g EE § grM—an—a %E_aa‘w—agn—a;n a_!ﬁ"ﬂ
o dy O dr dy

+0 a—a'jjfi[[n e .)+g&“"’_a’z”_a]”%i{ln?' } _La—Eﬂzri ___a_:f?_
o aox | Pr o



For conformad invariant we have the lollowing set o equalions

CE R = (En 1 (g B = 20 i — 20k — 5 1 = (e = (X 1 — 31
| ; 3 4 2 | & 4 2

— A = N — @ — I = =2
We have the ollowing relationship between the cxponcnts

Ll 2a

cr
=2 =2 =1 = —2n
a; r4] ) 4]

¢y and ¢ arc conformally invariant under the following transformation group.

r frs 2_.??

yvi=a"®y=By |, where g™ =0

. @3 5
= = ({f“ln )fﬁ_ t =0t

L)

w'=g™y = (a“?-r" );'z w =B

X3
o sl B -2 L B TR e
1 =T, ={a™" Joz x = BT,

Yariable Translormation

Independent Yariable Translormation:
Let n=pe? isan absolute invartant of group (G3), where p is a real number.

?.i"r =.}I:1,:;_r _ H]+2Fyrp
. ] [
For absolutc invariant we put 1+2p=0=>p= -5

So.op=

I
>
pa
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Dependent Yariable Transformation:

We now cxpross all dependent variables in terms of 77, We sclect the dependent variables

lorg . T, and & in such a way that

g =I¢Tw _ B—2q+2urrq?—;

"'lr:.ﬁ'rllbri

gr=fy=8""
g3 =0 =8 =0
where g, & are real numbers.
For constant conformally invariant we must have ,
-2g+2n=0=g=n
1

=2v=1=ll=Ds=——

W must hove,

g =",
—1fx
Hy =L "W -

g1 =0=0"=G0)

Writing — 1o —(r + E) and n=-r
2 2

We have
£ :rFrTw
|
s
ga=tt Ty

Therelom,

T, =t"{p

A3

y=" iy
g=Gin)
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3! 41 -
Now, o= TU_ = .f"”f‘ﬁ,
iy

w

ox

LE v, varation is zero.

EEW = E a_w = E(f'""'l f-'{r”): [l
dxcy  Gxl v

&y _v_[ﬂj = {4y

oy o\ v

=l |, .
={ lf“,m(—i]%ﬁ'ff}{rﬁ-])lﬂ’-

i Ei'z;.-f _
&v  oxdy

By &7
2.2y
X oy
Py,
=
&y
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oo . (>
g—(n? =Gl —+¢ 1, —— |+
2nr=d] 2o (-2

Substituting al! values in the cquations {3.5) and {3.6) we obtain,

|- . .
+;m’f,},} —{r+ D +GI=0

Jrr_f.i' i

e | - .o .
PG, +-2-I,?G|.I —rGt Eﬂjurgﬁ = ()
For simplicity, let f= constant=1 = {, =0
We ool

F

| .
i +EI;FWI, —(r+ ]}Fr.i' +{7=10

_ |
PG, +5 Gy —r G =0

The boundary conditions are

F () =F(0}=0 G(0)=lat =0

Fpwp=0.0ly=0at 5w

3&



The boundary- layer charasteristics for this case ane
{I} Yemical velocity
_
W=k,
(i) Morizontal velocity
v=1_

{iii}) surface heat Nux

»
r-1

-

The situation is valid at large disance x . Theretore all partial derivatives w.r. to x will
be neglected. Since T, =:' I{r), surface temperature distribution is independent of x
L.e uniform. [t is a function of time 7. The surface temperature may increase or decrease

with time according to » being posilive or negative respectively.



Chapter 4

4.1 Results and Discussion

Figure 2 shows that the velocity decreases will increusing suclion parameter, Fw. It ciun
alzo be scen that at cach value of Fw |, there cxists a Jecal maximum valuc of the velocity
profile m the boundary layer region, The maximum values are obtwmed as 0.540, 0.405,
0302 at p=1.778 and a5 0.109, (L.062, 0.046 a1 ;7=1.238, 0.347, (1.242 respeclively.

For the temperatuwce profile, Figure 3 ndicales the oecurrcnce of the deercasc in
lemperature, G near the plale for suction. Also, the thenmal boundary layer thickness
nereases with merewsing Fw. IU s evident that lemperature does nol exhibit any defect
corresponding to Fw = 2.0 and Fw = 4.0, The temperature decreases slowly near LI11: plate
for Fw = (11 than Fw = 0, Fw = 0.5 than Fw = 0.2 and s0 on. Vigure 4 indicates that skin
friction decrcases with increasing suction paramcter, Fw, From Figure 5, if is observed
thal the rule of heal {ransfer increases with increasing suction parameter, Pw, [Figure 6
shows that the velocily increases in the vicinily of the plate and then decreases far from
the plale for increasing Prandtl number. The temperalure profile o the Figure 7 shows
thal & becomes negative in a cerlain region of the boundary laver Tor varying values of
Pr. This phenomenon is known as temperature defect that will vamish for the limiting
ciase Pr—y oo, Physically it is true because the inercasc in the Prandtl number is duc o
ingrease in the viscosity of the Nuid. So, skin {riclion decreases with increasing Pr. The
Fig. & shows that the skin friction decreases wilh incrcasing Pr. In this figure it is scen
that skin Itiction decrcascs rapidly [or Faw =003 (han Fw = 0.2,

Figure ¥ represents the effect of Prandtl number and suction parmmeter on the surtace

heat flux represented by - GY0). The rute of heatl {ransfor mereases wilh mereasing

Praniit] number, Pr. The rate of heat transfor increases rapidly for Fw = 0.5 than l'w =

(0.2, 1.e., ut & given Pr increasc in the suction results in an increase in heat transfer.
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Velocity profiles

lemperature profiles
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Fig. 2:Vclocity profiles for fixed Prandti number, £+ =10 and varying

values ol Fw.,
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Fig. 3: Temperaturc profiles for fixed Prandtl number, £r=10 and
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4.4

Heat Transfer, -G'(0}
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Fig. 5: Effect of Fw on heat transfer factor for fixed Prand(l number,
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Velocity profiles
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temperature profiles
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Skin frican, F'{0)

Heat Transfer, -G'{0)
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Fig. 8: ElTect of Prandt] number, Pr on skin friction factor for
lianed Fw.
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Fig. 9: Lffect of Prandil number, Pr on heat wransfer factor for
fixed Fw.
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Numerical results of 1°(0) and -G'(1) arc presented in the following Table |, Table 2

and Tablc 3

Tablel: Numerical values of shear stress, #77(0)
and Lhe rale of heal transler, 0700 Tor dilTerent
values of suction paramcter, I'w while Pr=7.2

Fw F{0) G/(©)
0 388345 3.97461
1 316530 1.83155
2 231261 282467
3 2.00583 3.68462
4 1.85072 4 47856
3 171367 5326384
[ F.58%603 381176
7 [.53174 604765
5 | 45846 6,28258
2 148117 f.51869

Tablc2: Numerical values of shear
stress A7 {0 and the vate ol heal
transicr, -G {0} for different values
ol Prandtl number, Fr while Fw

0.4

Pr Fr -G (U}
0.1 0.87050  0.60053
0.7 0,7541 | 1.12784
| 0.70200  1.38759
2 0.56120  2.12758
4 0.37823  3.3678]
6 0.2414] 428272
7 0.10056  4.59690
8 0.14140  4.88185
10 11542 524689
12 0.05145 558191

‘Fable3d: Numerical values of shear
strese £ () and the rate of heat
transter, -G (0) for differant values
of Prandtl number, Pr while Fw

0.6
Pr #{0) -G (0)
0.1 0.826579  0.703205
0.7 0715988 1.242018

| 0.666493  1.515605
2 0531272 2.269813
4 (0.359833  3.535938
6 0.218922  4.4)8237
7 0.181469  4.725248
8 0.133919  5.030259
10 0091173 5.397764
12 0048421  5.755267




4.2 Conclusion

A successlul method of oblaming similanty solutions from partial differential equalions
15 the method of group theory, Here boundary condilions are not taken into account for
choosing vanious funclhions. So this method is very casy and simple to apply. An analysis
iz madc of the two-dimensional unsteady natural convection boundary layer ﬂm;v with
suclion on vertical plate for estublishing the conditions under which similarity solulions
alc possible. Three possible cases have been derived on the basis of these conditians. The
case “Unsleady free convection with surface lemperature varying dircetly with function
of x und inversely with the square of a lunction of ¢ and suction velocily varying inversely
with the square root of a function of ¢ has been studied numenecally, The veloeity and
temperature disiributions are presenled for finite values of suetion parameter and Prandtl
number. 1t is shown that skin friction decreases with increasing suction parameter and
inercascs i the suction results in an increases in heat transfer .The effect of Prandil
number on  the surface heat flux and skin friction is also found here. The skin friclion
decrcases with inercasing Prandtl number and the rate of heat transfer increases will

increasing Prandtl number.
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4.3 Future work

1. Future work should focus on the apphcation of iwo-parameter group transformati-
ons to reduce the system of goveming partial differential cquations with boundary
conditions o ovdinary differentiul equations with appropriate boundary conditions
f{or the problem.

2. An anal _‘;I’biS should carry out to study the effect of maenetic field for the problem,
whicl is applicd normal to the surface.

3. Fulure work in this area consisis of identilying the cffect of suction for case L

4. Finite difference method can be used to solve system of ordinary diflcrential
cquations numerically for comparing with the results obtained by using shooting
method bascd on sixth order Runpe-Kutta scheme along with Nachtshiem-Swigen

teration lechnique.
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Appendix

Runge-Kutta Shooting Mcthod along with Nachtshiem-Swigert
Iteration Technique

In shooting method, the missing (unspecified) imitial conditions at (he inidial point in the
interval is gucssed and differential equation 1 then integrated numerically as an initial
value problem to the terminal points by Runge-Kulta method. Calculated values are then
comparcd with the given values at the terminal points, if there 1s any difterence (crror)
found gucssed valucs must be changed before next ileration, This proccss is repeated

until the agreement between the caleulaled and the given condition at the tenmmnal 'point is

within the specilied tolerance small guantity, «.

F’"+[%r;+FJF"+F'—F‘2 +G=0

and G—+[F+EJG' F (2 FYG =0
Fr 2

The procedore of refining the valucs F'{D): and G(D] by a shoaling mcthod based on

Nachishenm-Swigert {1965} teration  technique, whc:'cF'[{]).G(ﬂ} stand  lor

dunensionless velocily, and lemperature respectively.

The boundary conditions associated with non-dimensional ordinary dilferenhiat equalions
ol the boundary twpe are of the two-poinls asymplohe class, Two-point bDundﬁi’}'
conditions have values of the dependent variable specified at two different values of the
independent variable. Specification of an asymplolic boundary condition implies the
velocities F' and G tend to unity as the independent variable tends to outer specilied
value. The method numerically integrates two-poinl asymplotic boundary value preoblem
ol the boundary layer type, the initial value methed, requires thal il be recast as an initial
value probleny. Thus il is necessary 1o guess as many boundary conditions at the surlace

as were piven at infinily. The solution has been achicved ashen the required outer
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houndary conditions are satisfied afler the mlegration of governing differential cquations
by the assumed surface condilions. I this is not satisfied, another new surface boundary

condition Is estimaled for the next irial intcgration. But ibis is not so casy, because
sclecting a value may resull in the divergence of the (nal inmlegration or in slow
convergence of surface boundary condhfions required satisfving the asymptotic outer
boundary condition, Morcover selecting too large a value ol the independent vanable 13
expensive in terms of computer time. Nachtsheim-Swigerl developed an iteration method,
which overcomes these difficulties. Tn cquation there arc three asymptolic boundary
conditions and hence two unknown surluce conditions F =g, and G'= g,. Within the
context of the inital value method and the Nachisheim-Swigerl ileration technique Lhe

outer boundary condibons may be funclienally represented as

F(”llm)t F(gl? gl}=§| (ll}
G{f-'-"mnt): G{Hngz}= 51 (12}
Fr[}}”m ) = Fr(gl 15\'1} =d, (1.3}
With the asymplotic convergence critetia given by
Pm('ﬁllllu) = F" (gl.!gl) = 54 (1'4)
(?J{jhnua):G(gl’ gl): a‘S (ISJ
Expanding the equalion (1.1)-(1.5) in a first order Taylor’s series gives
Pﬂ(”luux}z Ii:.'(‘rlill'ﬂax}_‘-?_f.ﬂgl +£ﬁgl = [5. (]'6}
& $1
m.m) ETL ( :||1.11. +£ﬁ'g2 = (52 (l‘?j
. . e BF _
'IL (I.I-"mnx } = }rr. (J-?I'Ilﬂ }+ - é\E:I + c &gl = {‘J‘.} {]' '8}
dg, ag,
. F*  BF
£ {r}rnn:&) = £ (‘rﬂ?max }+ &gl ?ﬂé}l - (5 [1 E}}
2
- » oo’ e
G (FFHIZ": ) = (JL {?l'rm.n + a 'ﬁ\g % agl = {Sﬁ (]' 'lﬂ}
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The subscripl ¢ indicates the value of the function al 7, determined from irial

intcgration. Solution of these equations in a leasl square schse requires delermuning the

munimum value aof

E= 8 48 +8 +8] + 8] . {11
Dilferentiating £ with respect to g, and g, respeclively dilferentiabion yields u system
ol lincar equations in the following Tom as

a b g b, = {1.12}

iy Ag, ey, Ag, =5, (1.13)

Whaic the coctlicients a,, and A urc shown in (Ad)

From cquations (1.12) and {1.13), we have

o detd _det 4,
S detd’ 52 det A
I
Where, del A = [”" iz }
azl azl
@14:?'%},
b, ay, '

N ), b]
And det A, ={ }
i a, h

Now, the puess valucs are revised by Ag, and Ay, respectively,
g, = & +Ag,
g = K.t A%,

Thus adopting the numerical tcelinique described above, a computer program wils sct up

i

for the solutions af the basic non-linear differential equations (1.12) and (1.13) with the

boundary conditions .
Flg)=TFw =0, F'(M=0,G{n)=1,for 7=0

=0, Gir)=0 ,at noew
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Of our problem where the integration technique was adopted as the sixth order 1mpl'icit
Range-Kutta of integration. Basced on the integrabion done with the above numerical
techinique, the results obtained are presented in Whe following section

E=8+8+8 +3; +8] {Al)
Differentiating (A1) with respect to g, we have

a3 86 Y a8, . .08,

28, b4 28, =L 428, =L+ 28, 23, =)
2% ag, ag, o8, ag,
s} S' - >
= & s, &0 + 4 %, + & 0%, + 5, 90, =10
air, &, ag, e, i,
- (ﬂ L Iﬁ_F,ﬁgz]ﬁ
0 0%, e,
A ; 56 GF a1 '
[G, + oG Ag, +E;-£!ugz] ¥ [E.'+E£.ﬁgl + ﬂ.gzj ?F +
g, g, 3, dg, 2, ag,
13 1f ] F# '-rr jFﬂ
\Gl_f+§\G Ag, +6G aglJ 9G + [f{"-i--@—&g, +5f—ﬂ~g2] Sl
L g, 2y, dg, g, ag, J,
[&F Jl [:’:‘F"T [ar*}"‘ [ SG'T [BG’T
ar,| |— | + + + +| = Az,
3 ag I ag:l cf'g I ag I O
[aﬁ aF QG 0GB eF  AG aG"  ar” af-“J
Pl — + + 4 = + Az,
o tly 2 o, Og, Or, Og, CE agz dg, oz,
” -‘,‘| "] I [ - [l . L]
= —[1{. or + Gc£+ F;E;£+G;i:£+!i,*ar ]
&y dg, K, &y oL,
= o, Mg, +a dg, =D : {A2)

Where, the coefficients a,,, «,, and b, are shown in {A4},
Differentiating (A1} with respect to g, , we have

85,

28, L 425, 2L 428, —= + 28, — + 26, ={
7 i 2K ag, oL,
N a5, .5 85, i5, 3 | N a4, i’ a5 _ 0

di, g, a, o, 28,
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a8 g oG
= [ft_+-a£ﬁgl+—.ﬂg1 )E}F+ {GL aGﬂ.g rﬂ.;, ]6G+
o, g, dz, dg, 0t og,

nlig— '

[E,+ﬁ3F ﬂgﬁar- %]aﬁ +[G:+ac; ﬁgi+uG &gz]aG .\
[ a&-’z

d &, gy, T Om,
oF" L OF Ag oF
dg, 3G,

[aﬁ aF  aG 8G  8F' aFt 8G' 3G aFT aF" ]
= | —t — + —+ - + Ay, +
dg; Oz,  Oey Oz, dg, 0%, oy, dg, 0Og, Og,
2 2 1 2 2
{aﬁ'] [aa] [ﬁF’] (aﬁ'J {ﬂF"J
+| == | —| + + Ag, +
ﬁgl 5.’32 agz ﬁgz '.532
=—[E.5F+GL 00  pBF , 190" pudF }
aﬁl %, aﬂz agz ﬁg
4y AR, + 8y Ay = b (A3)

The coellicients a,,, a,, and the constant 5, are shown in (A4).

{SFT [BF'T [EF"]E [aa] [aa‘}
a, = + + S + -
og, ag] L L2 a&'l
[aﬁ 86F AG 8G AFaF 8G' aG' aF" oFT )
= | ——+ + + +
og, dg, ok, agz agl e, dg, 6g, ok Ciy ¥,

{ oF T [5{3 }2 [aF']z [SG' Jz [EHT")Z | S
a = b =+ ¥
i 2%, e, g, K> g, |

= iy

b1 O G 8GO 0T OF )
y ag: agl. e o g,

b, = [EE 4G 88 G e & )
g, g, dir, 0%, &R,
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