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INDEX OF SYMBOLS

- the vertex set of a graph G

- the edge set of a graph G

- respectively denote the path, cycle and complete

graph of n vertices.

- complete bipartite graph

- wheelan n vertices

- the length of the shortest path from II to v or

infinitely if there is no path from II to v.

- set of all vertices adjacent to II

- the closed neighborhood of a vertex II,

that is, (u}vNt(u)

- set of all vertices )I in G with d(u, v) = 2

- the diameter of a connected graph G

- the graph with vertex set V(C) in which II and v are

adjacent iff d(u,v)~n in G

- the greatest integer not exceeding x

- the least integer not less than x

- subgraph induced by a subset S of V(G)

- the complement of a graph G

- the number of elements of a set S

- the graph obtained from G by removing a vertex v

- the graph obtained from G by removing an edge e

- the graph obtained from G by adding an edge e
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PI(G)

PI (G)
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Yl(G)

y,(G)

r,(G)

r,(G)

eb(G)

(eb),(G)

(eb), (G)

biG)

b1(G)

b,(G)

- the graph obtained from G by adding a subset Eo of

E(G)
- the graph obtained from G by removing a subset ED

of E(G)

- the set of all edges in G joining the vertices in V;

and the vertices in Vl, wherc VIand Vl are subsets

of V(G)

- vertex covering number of G

- edge covering number of G

- the independent number of G

- the edge independent number of G

- the minimum matching number of G

- maximum degree of G

- minimum degree of G

- domination number of G

- the two-domination number of G

- total domination number of G

- the connected domination number of G

- the independent domination number of G

- cobondage number of a graph G

- two-cobondage number of a graph G

- total cobondage number of a graph G

- bondage number of a graph G

- two-bondage number of a graph G

- total bondage number of a graph G
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ABSTRACT

A set D of vertices in a graph G -=0 (V,E) is a dominating set of G if every vertex

in V - D is adjacent to some vertex in D. The domination number of G is the

minimum cardinality taken over all minimal dominating sets in G and is denoted

by reG). For a graph G with reG) > 1, the cobondage number cb(G)of G is

defined by cb(G)=min{IE~I:Eo cE(G) and y(G+Eo)<r(G)}. The bondage

number beG) of a graph G is the minimum cardinality of a set of edges of G

whose removal from G results in a graph with domination number larger than that

of G. In the same way we can define two cobondage number, total cobondage

number, two bondage number and total bondage number. Different types of

methods are available depending on types of problems. Sharp upper bOWlds are

obtained for cobondage number of a graph and the exact values are deterrni~ed for

several classes of graphs. The exact values of total cobondage number for some

standard graphs are calculated with the help of the methods used by Cockaync,

Hedetniemi, Hartnell, Rail, Kulli, etc. An alternative proof of a theorem for total

bondage number of Kulli for a complete graph with at least five vertices 1S

provided. Finally, some operations on two bondage number are developed.

Vlll . .



This thesis is devoted to the domination theory in graphs. The concept of

dominating sets introduced by Ore and Berge currently receives more attention

in Graph Theory. There has been a rapid growth of research in this area and a

wide variety of domination parameters have been introduced, after the

publication of the paper "Towards a theory of domination in graphs" by EJ.

Cockayne and S.T. Hedetniemi [8]. S.T. Hedetniemi and R.C Laskar attributed

the following factors to the growth in the number of domination papers [19]:

a) the diversity of the applications to both real-world and other mathematical

'covering' or 'location' problems,

b) the wide variety of domination parameters that can be defmed,

c) the NP-eompleteness of the basic domination problem, its close and

'natural' relationships to other NP-complete problems, and the

subsequent interest in finding polynomial time solutions to domination

problems in special classes of graphs.

A brief survey of the literature reveals the following sample of applications of

the concept of a dominating set.

Ore [24] mentions the problem of placing a minimum number of queens on a
chessboardso thateachsquareis controlledby at leastonequeen.

Berge [3] mentions the problem of keeping all points in a network under

surveillance by a set of radar stations.

Application of domination in communication networks have been discussed by

C.L. Liu [23], PJ. Slater [29]. There are numerous papers on various aspects of

domination theory. The domination theory has gained popularity and remains as

a major area of research due to the inspiring contributions by eminent graph

theorist like as C. Berge, EJ. Cockayne, S.T. Hedetniemi, R.M. Dawes, B.
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8011obas, RC. Laskar, R.B. Allan, P.J. Slater, P.L Hammer, RC. Brigham,

M.A. Henning, Douglas F. Ran, J,P. Fink, B.L. Hartnell, E. Sampathkumar, B.D.

Acharya, H.B. Walikar.

We consider only finite undirected graphs with neither loops nor multiple edges.

Graph:

A graph G '" (V(G),E(G)) consists of two finite sels. The first set V(G) is a noo-

empty set of elements called vertices of 0, and the second set E(G) is an edge

set of G, such that each edge e E E is assigned an ordered pair of vertices

Cu,v), called the end vertices of e,

Order and Size of a graph:

The cardinality of the vertex set VCG) is denoted by n and is called the order of

G. The cardinality of the edge set is said to be the size of G and is denoted

by q.

Loop and parallel edges:

An edge e having identical end vertices, i.e., a vertex v joined to itself by an

edge, is called a loop.

Parallel edges:

If two or more edges of a graph G have the same end vertices, then these edges

are called parallel.

A graph G == (V,E) is called simple ifit bas no loops and no parallel edges.

Isolated vertex, end vertex and support:

A vertex of a graph G is called an isolated vertex of G if it has degree zero. A

vertex of degree 1 is called an end vertex or pendent vertex. Any vertex which is

adjacent to a pendent vertex is knO\VII as a support.

•
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Adjacent vertices, neighborhood sets:

Two vertices joined by an edge are said to be adjacent or neighbors. The set of

all neighbors of a fixed vertex u of a graph G is called the neighborhood set of

11 and is denoted by N,(u).

The open neighborhood of 11 is

Nj(U)={vEV:uveE}

and the closed neighborhood of 11 is

N[u] = (u}UN1(u),

For a set S ofveruces, the open neighborhood of S is defined by

N(S)= UN1(u).

""
Subgraphs:

Let G be a graph with vertex set V(G) and edge sct E(G).Then a graph H IS

called a subgraph of G if V(H) c V(C) and E(H),;;; E(G).In this case, G IS

called the supergraph of H.

Proper subgrapb:

If H cG but V(H),.: V(G) or E(H) 'Ie-E(G), then H IS called a proper

subgraph of G.

Spanning subgraph:

Let G be a graph. Then H is called'a spanning subgraph of G if H has exactly

the same vertex set as G.

Induced subgraph: Let S be a non-empty subset of the vertex set V of G.

Then the subgraph G[S] of G induced by S is a graph having vertex set S and

edge set consisting of those edges of G that have both ends in S.

Similarly, let F be a non-empty subset of the edge set E of G. Then the

subgraph G[FJ of G induced by F is a graph whose vertex set is the set of

ends of edges in F and whose edge set is F.
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"

G

y
w

C[UJ

y w

G[F]

y

Vertex deleted aDd edge deleted subgraphs:

Lei U E VeC). Then the induced suhgraph < V(G) - {u} > denoted by G - u is a

subgraph of G obw.ined by the removal of u.

If e E E(G), then the spanning suhgraph of G with edge set E(G) - (e} denoted

by G - e is the subgraph of G obtained by the removal of e.

For the graph G of Figure 1.1, the followings are the vertex deleted and edge

deleted subgraphs.

"

(i)G-w

y

"Oi) G-U, where
U '" {v,y}

y

(iii) G - F, where
F = {Cj,64}

Fig. 1.2: Vertex deleted and edge deleted subgraphs.

•
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The minimum and the maximum degrees of vertices of a graph G are denoted

by t5(G) and L\(G) respectively.

Complete graph:

A simple graph G in which each pair of distinct vertices is joined by an edge is

called a complete graph of G.

Thus, a graph with n vertices is complete if it has as many edges as possible

provided that there are no loops and no parallel edges.

Ifa complete graph G has n vertices vpvl' ... ,vn' then

G"" {(vi>vj): v, * vj ;i,j ""1,2,3,,, .,n}.

The complete graph of n vertices is denoted by Kn"

•
K,

1 edge..~-----.
K,

3 edges 6 edges

Figure 1.3: The complete graphs on al most 4 vertices.

Bipartite Graph:

An empty graph is a graph with no edges. A simple graph G is called bipartite if

its vertex scI V can be partitioned into two disjoint non-empty subsets V, and VI

(i.e., P;uV2 "" V and V,n V:! "" 1jJ) such that each edge of G has one end in V;

and one end in V2 so that no edge in G connects either two vertices in V; or two

vertices in V1 .The partition V == V; U Vl is called a bipartition of G.
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Complete Bipartite Graph:

A complete bipartite graph is a simple bipartite graph G, with bipartition

V = r; u V1, in which every vertex in Y; is joined to every vertex in V:!. If VI

has m vertices and VI has n vertices, such a graph is denoted by K,,,,",

Complement of a graph:

The complement G of a graph G is the graph with vertex set V(G) such that

any two vertices are adjacent in G if and only if they are not adjacent in G.

Connected graph:

A graph G is said to be connected if every two vertices of G are connected.

Otherwise, G is a disconnected graph.

Let Ceu) denote the set of all vertices in G that are connected to u. Then the

subgraph of G induced by 1,,1 is called the connected component containing u.

A maximal connected suhgraph of G is a componenl of G. Thus, a disconnected

graph has at least two components. The number of components of G is denoted

by w(C).

(a) G (b) G'

Figure 1.4: (a) Connected graph, (b) Disconnected graph



7

Distance OrWiO vertices:

The distance d(u, v) between two vertices u and II is the length of a shortest

distance U - II path in G. If there is no u - II path in G, then we define

d(u, v) =0 O.

Second neighborhood:

If II is a vertex of G, then we define the second neighborhood Nl. (v) of v as

Nl.(v)={U:UEV(G) and d(u,v)=2 in G}.

Walk in a graph:

Let G be a graph. Then a walk in G is a finite sequence

whose terms are alternately vertices and edges such that, for i '"1,2,... ,k, the

edge e, has ends 11,_1 and v,"

The above walk W is a walk from origin 110 to lenninus v•. The integer k, the

number of edges in the walk, is called the length of W.

In other words, the number of edges in W is called the length of W. If the

sequence of W consists solely of one vertex, i.e., W = 110, then W is a trivial

walk with length O.

--
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Trail of a graph:

If the edges el,62, ... ,6k of the walk

are all distinct, then W is called a trail.

In other words, a trail is a walk in which no edge is repeated.

G

Paths of a graph:

If the vertices of a walk

are all distinct, then W is called a path. A path with n vertices is denoted by p.,

which has length n - L

In other words, a path is a walk in which no vertex is repeated.

G

Figure 1.7: xe, w6,ue,v is a path.

•
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Thus, in a path no edge can be repeated either, and so every path is a trail. The

converse of this statement is not true.

Cycle ora graph:

A non-trivial closed trail in a graph G is called a cycle if its origin and internal

vertices are distinct. In detail, the closed trail

is a cycle if

(i) C has at least one edge and

(ii) 1.',,1.'2""'1.'" are all distinct.

A cycle of length k, i.e., with k edges, is called a k -cycle. A k -cycle is

called odd or even depending on whether k is odd or even. A 3-cycle is often

called a triangle.

A cycle with 11 vertices is denoted by en'

Remark: A u - v walk is called closed or open according as II = V or

u -;tov. The vertices 1.',,1.'2, ... Vk~1 in the walk

W = 1.'oel v,e2 V2 ... 1.'._1<1,V.'

are called internal vertices. In the graph G of Figure 1.5, C = ve4 we,ue] v is a

cycle.

Acyclic graph:

A graph G is called acyclic if it has no cycle.

Tree of a grapb:

Let G be a graph. If G is a connected acyclic graph, then it is called a trec.



2 vertices
. -.. --.

1 vertex

5 vertices

3 vertices 4 vertices
5 vertices

10

Figure 1.8: Trees with at most five vertices

A tree on n vertices is denoted by T", which has exactly wo pendent
vertices.

Join of a graph:

Let G1 and G2 be two graphs with vertex sets VI and V2 and edge sets £1 and

£2 respectively. Then their join G1+G, is a graph whose vertex set is Vi u V2

and edge set

Wheel of a Graph:

A wheel is a graph obtained from a cycle by adding a new vertex and edges

joining it to all the vertices of the cycle.

A wheel with n vertices is denoted by Wn, and W. =Kj +C"_I'

Connectivity of a Grapb:The cOllllcctivity k of a graph G is the minimum

number of vertices whose removal results in a disconnected or trivial graph. A

graph G is said to be n - connected if k ~ n.

•
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Edge CODnectivity:

The edge connectivity A of a graph G is the minimum number of edges whose

removal results in a disconnectedgraph. A graph G is said to be n-edge

connected if 1 ~ n.

Subdivision Graph:

An edge e == uv of a graph G is said to be subdivided if e is replaced by the

edges uw and wv for some vertex w not in V(G).

The graph obtained from G by subdividing each edge of G exactly once is

called the subdivision graph of G and is denoted by SeC).

Matching ora Graph:

A subset M of edges of G, is called a matching if for any two edges e and f in

M, the two end vertices of e are both different from the two end vertices of f.

G

J

M,

f

Figure 1.9: Two matchings M] and M,.

In the graph G of Figure 1.9, M1 = {e],eJ and M2 = {epe),e.} are both

matchings,

•
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Saturation:

Let G be a graph and let v E V(G). Then if v is the end vertex of some edge in

the malching M, then v is said to he M -saturated and we say "M saturates

v." Otherwise, v is M -unsaturated. Thus, in Figure 1.9, a,b,c and e are all

M, -saturated while f and d are both M, ~unsaturated; every vertex of G is

M 1 - saturated.

Perfect Matching:

If M is a matching in G such that every vertex of G is M -saturated, then

M is called a perfect matching. The matching M 2 == {e],e),e.} of Figure 1.9, is

a perfect matching.

Maximum Matching:

A matching M of a graph G is called a maximum matching if G has no

matching M' with a greater number of edges than M has.

Figure 1.10: Maximum matching

Any perfect matching is a maximum matching. The matching of the graph in

Figure 1.10, shown by the bold lines is maximum but not perfect.

Independent Sets: A subset S of vertices in a graph G is said to be an

independent set of G ifno two vertices of S are adjacent in G. An independent

set is maximum if G has no independent set S' with IS1 > lSi.



I)

(b)

Figure I,ll: (a) Independent set and (b) Maximum independent set.

A set S of edges of G is said to be independent if no two of the edges in S are

adjacent.

Independent Number:

The maximum number of vertices in an independent set is called the independent

number of G and is denoted by Po(G).

Edge Independent Number:

The maximum cardinality of an independent set of edges of G is called the edge

independent number of G and is denoted by fJ,(G), which is also called the

matching number of G. The minimum matching number /3]-(G) of G, is the

minimum number of edges in a maximal independent edge set.

An edge analogue of an independent set is a set of links no two of which are

adjacent, i.c., a matching.

Covering of a Graph:

A subset K of vertices in a graph G such that every edge of G has at least one

end in K is called a covering of G. The number of vertices in a minimum
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covering of G is called the covering number of G and is denoted by ao(G). The

edge analogue of a covering is called an edge covering.

An edge covering of a graph G is a subset L of edges of G such that each

vertex of G is an end of some edge in L. The edge coverings do not always

exist. The number of edges in a minimum edge covering of G is denoted by

al(G). The number al(G) is called the edge covering number of G. For

terminology and notations not given here, the reader is referred to [5, 13,25].

Definition:

If x is a real number, rxl and LxJ denote respectively the least integer not less

than x and the greatest integer not greater than x.

Now we present the following definitions of various types of domination in a

graph.

Dominating Set:

A set D s;;;;V is said to be a dominating set in G if every vertex in V - D is

adjacent to some vertex in D. The domination number of G is the minimum

cardinality taken over all minimal dominating sets in G and is denoted by reG).

Independent Dominating Set:

A dominating set D of a graph G is called an independent dominating set of G

if D is independent in G. The cardinality of the- smallest independent

dominating set of G is called the independent domination number of G and is

denoted by rl(G).

• •
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Total Dominating Set:

A dominating set D of a graph G without isolated vertices is called a total

dominating set of G if the subgraph G[DJ induced by D has no isolated

vertices.

The cardinality of the smallest total dominating set of G IS called the total

domination number of G and is denoted by Y,(G).

CODnected Dominating Set:

A dominating set D of a connected graph G is called a connected dominating

set of G if C[D] is connected. The cardinality of the smal1est connected

dominating set of G is called the connected domination Dumber of G and is

denoted by rAG).

For any connected graph G with ~(G)< n -1,

r(G):-;; y, (G):S:; r c(G).

Total dominating sets were first defined and studied by Cockayne, Dawes and

Hedetniemi [9]. In addition to several new results involving total domination,

Allan, Laskar and Hedetniemi [2J have studied several new inequalities for the

domination number of a graph.

Theorem 1.1 to Theorem 1A arc cited from [9J.

Theorem 1.1

If G is a connected graph with n <: 3 vertices, then

2"r,(G)~3.

Theorem 1.2

(i) If G has n vertices and no isolated vertices, then

y, (G) ~ n - L\(G) + 1.

(ii) If G is connected and L\(G) < n -1, then

r,(G);S;n-L\(G).
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Theorem 1.3

If G has n vertices, no isolated vertices and I'l.(G) < n -1, then

r,(G) +y,(G):'O n+ 2,

withequalityifandonlyifG or G=mK2"

Theorem 1.4

If G has n vertices and no isolated vertices, then

.(G)";; n + l-rn - 1,(G)1- 1,(G) .
y, r,CG) 2

Robyn Dawes has proposed the following conjectures:

For any connected graph G '" (V, E) with I Vi <: 2, then

(i) y(G)+r,(G):Sn and

(ii) r,{G)+y,(G):5:n, where iVCG)I=n>2.

R.B. Allan et a1. [2] have settled these conjectures by proving the following

theorem.

Theorem 1.5

If G=(V,E) is a graph with jVj=n such that each component has at 1cast 3

vertices, then

r,(G)+Y,(G):Sn.

Furthennore, in [2], Allan et aL have proved the following results:

Proposition 1.6

For any graph G without isolated vertices, then

Theorem 1.7

For any connected graph G with IVI:<:2 vertices, Y, <:ZP,-.
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The following results were obtained by B. Sonobas and E.J. Cockayne [4J

concerning y(G) and r,(G).

Theorem 1.8

If G has no induced subgraph isomorphic to K],k+l (k:2:: 2), then

ri(G).s; y(G)(k -I) -(k - 2).

Theorem 1.9

If G has no isolated vertex and IV I == n, then

y, (G):s; n - reG) +\- rn - Y(G)1.
rCG)

In [27J, E. Sampathkumar and H.B. Walikar have found out connected

domination number for some particular classes of graphs.

The connected domination numbers of some standard graphs from [27] are given

as follows:

(ii) ro(K. +G) '" 1, for any graph G,

... 11,ifeithermorn=1.
(Ill) rJK"".)= 2 if >2

,I m,n_ .

(v) For any tree T of order n,

rcCT)==n-e

where e is the number of pendent vertices (i.e. vertices of degree 1)

in T.

Theorem 1.10

For any connected (n ,q) - graph G with maximum degree ~(G),

l1'.(;)+1J .s:yc(G);;:; 2q-n.

...•.,
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E. Sampathkumar [28] has introduced (I,k) -domination number of a graph.

The (l,k)-domination number r'k of G is the minimum cardinality of a

dominating set D such that jN1(v)nV-DIs;k for all vED. In [28J,

Sampathkumar has introduced this new concept and obtained some hounds for

r.l and for r'k .
A set U c V is a k - dominating set if every point of V _ U is adjacent to at

least k-points in U. The k-domination number y" of G is the minimum

cardinality of a k -dominating set.

Some results from [28] are given bellow.

Proposition 1.11

If {j '? k, then

y.(G)::;;r (G)k lk'

Proposition 1,12

Ifk<o, then

Y]k(G)5y,(G).

Proposition 1.13
If G has no isolated vertices and !VCG)I == n, then

{

n+l+t..-i, if o:5,k<fJ..

Ylk(G)+Y'k(G):>: n+2, if k:o.
n+1, if !Lks;n-1.

•
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Bondage Number:

The bondage number beG) of a nonempty graph G is the minimum cardinality

among all sets of edges E for which

y(G-E»y(G).

Thus, the bondage number of G is the smallest number of edges where removal

will render every minimum dominating set in G a "non-dominating" set in the

resultant spanning subgraph.

Since the domination number of every spanning subgraph of a non-empty graph

G is at least as great as y(G), the bondage number of a non-empty graph is

well-defined.

Cobondage Number:

The cobondage number cb(G) of a graph G is the minimum cardinality among
the sets of edges X <;;; P2(V) - E, where

P2(V) == (X <;;; V :IXI= 2}

such that reG +Xl < reG). A r -set is a minimum dominating set.

If we compare y(G) and r( H), when H is a spanning subgraph of G. it

is immediate that y(H) cannot be less than r(G). Every connected graph G

has a spanning tree T with r(G) "'r(T) and so, in general, a graph will have

non-empty sets of edgcs F l;:E for which r(G -F) '" r(G). Such a sct F will

be called an inessential set of edges in G.

However, many graphs also possess single edges e for which y(G -e» reG).

The bondage number beG) of a graph G is the minimum cardinality of a set of

edges of G whose removal from G results in a graph with domination number

larger than that of G.

•
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J.F. Fink, M.S. Jacobson, LF. Kinch and J. Roberts [11], introduced the bondage

number b( G) of a graph G. In [11], Fink et al. have obtained sharp bounds for

beG) and the exact values of beG) for several classes of graphs have also been

deknnined.

The following results have been established in [11J.

Proposition 1.14

The bondage number of the complete graph K
IT
(/! ~ 2) is

b(Kn)=r~l
Theorem 1.15

The bondage number of the n - cycle is

b(C,) '" J3, if II '" l(mod3)lz, orherwl.Se.
Forn~2,

(
2, if n •• 1(mod3)

b(P)=
• I, otherwise.

Theorem 1.16

If G '" K(n, ,112 , •••••• ,11,), where III ,..:;112 :$ :s;11" then

r;1- if 11m=1 and 11",+,:<:2, for somem, l:S;m<l.

b(G)'" 2t-l,if ilL =11, = =11,=2.
,-,
LII" otherwise.
•=,
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Theorem 1.17

If T is a nOll-trivia! tree, then beT) ~ 2.

Corollary 1.18

If any vertex of a tree T is adjacent with two or more end-vertices, then beT) '" 1.

Theorem 1.19

If F is a forest, then F is an induced subgraph of a tree S with b(S) '" 1 and a

tree T with beT) = 2.

Theorem 1.20

If G is a connected graph of order n <: 2, then beG) ~ n-1.

Theorem 1.21

If G is a non empty graph, then

beG) ~ min {deg(u) + deg(v) -1; u and v are adjacent vertices}.

Theorem 1.22

If G is a connected graph of order n <: 2, then

b(G)5n-y(G)+1.

The following conjectures were made in [11].

Conjecture 1.23

If G is a non-empty graph, then beG):5; A(G) + I.

But in [15J, Hartnell and Ran have given a counter example of the above

conjecture.

The following results have been obtained in [15J.

Theorem 1.24

If G is a non empty graph, then

b(G) 5 min {deg(u) + e({x}, V -N[u])}.
ueV, ,elll(u)
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Theorem 1.25

If G has edge connectivity )., then

b(G):;; !'leG) +A-I.

A vertex v of a tree T will be called a level vertex. of T if y(T -v) == reT) and a

down vertex if yeT - v) < yeT).

In [14], Bert L. Hartnell and Douglas F. Ra1l have studied the effect of removing

edges in the domination number reG). An edge is essential if reG-e) > reG)

and not essential otherwise, that is, if yCG- e) == reG).

In [11J, Fink et al. were posed an open problem to classify trees of bondage

number 2.

Hartnell and Rall [14] have presented a constructive characterization of the trecs

for which the bondage number is 2.

In (14], they have demonstrated how to build larger trees with bondage number 2

from existing ones. They defined four types of operations on a tree.

Type (1)

Attach a Pz to T at v where v is a level vertex of T belonging to at least one

r - set of T.

Type (2)

Attach a p) to T at v where v is a down vertex of T.

Type (3)

Attach HI to T at v where v belongs to at least one r - set of T.

Type (4)

Anach H", n;:: 2, to T at v, where v can be any vertex of T.

•
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Finally, let C", {T: T is a tree and T", K1, P4 or H", for some n <:: 2 or T can

be obtained from p" or H" (n ~ 2) by a finite sequence of operations of type (1),

(2), (3) or (4)}.

Co and C arc shown identical in [14], where &0 '" {T: T is a tree and beT) '" 2}.

Here the tree H" refers to the tree given in the following figure.

"
y

w

Figure 1.12: The tree H n'

To detennine the bondage number of a graph, we omit certain edges of G in order

to obtain a spanning $ubgraph H of G such that y(R) > rCG). Another direction

is to study the domination number of G after adding some edges.

In other words, our aim is to study the relation between rCC +Eo) and r(G),

where EQ C E(G). Can there be any graph H for which G is a spannmg

subgraph such that y(H) < rCG) ? If there are some such graphs H, what is the

minimum value of {E(H) - E(G)}? This leads to the cobondage number of G.

V.R. Kulli and B. Janakiram [22] have initiated the cobondage number of a graph.



Two-domination number:

Let G be a graph. A subset D of V(G) is said to be a two-dominating set for G if

to each U E V -D, d(u,v) ~ 2, for some v ED. A minimal cardinality of a two-

dominating set is said to be two-domination number of G and is denoted by

r 1 (G). A two-dominating set D of G is said to be a Y2 - set if ID I= r 2 (0).

Examples:

"

Figure 1.13: G1

, b

Figure 1.14: G1,



Figure l.1S: GJ.

ForG1, {a} isaY2-set.

ForG2, {a,b,c} isaY2-set.

For GJ, {a,b} isa Y1-set.

Remark:

Yz{G)5; y(G) and Y2(G)"'y(G1), where V(G2)=V(G) and U,VE:V are

adjacent in G1 ifand only if d(u,v) 5;2 in G.

•



CHAPTER TWO

THE COBONDAGE NUMBER OF A GRAPH

INCLUDING TWO DOMINATION

For a graph G==(V(G),E(G» with r(G»I, the cobondage number cb(G) of

G is defined by

cb(G) == min{ IEGI:Eo c E(G) and r(G +Eo) <reG)}
If reG) = I, then the cobondage number is not defined. The following

results regarding cb(G) are obtained in [22].

rfthe order of G is n, then

cb(G):5n-l-~(G)

cb(G):5~(G)+1

cb(G):5 n-I

Ifn~4 and neither G norG is 2K2, then

cb(G) + cb(G):5 2(n - 3)

In this chapter we improve the result (2.4) and prove

cb(G)+cb(G)<n.

Also we characterize the graphs which satisfy the equality

(2.1)

(2.2)

(2.3)

(2.4)

cb(G) + cb(G) == n-1.

Let G == (V(G),E(G» be a graph with reG) ?: 2. If D is a minimum dominating

set in G with IDI == r(G)?: 2, then to each vertex U E D, let

v" ={vEV(G):N1(v)nD== {u} and vI!:D}.



If V. ==1jJ for some vertex uED, then y(G+e) <y(G) whenever e==uv

and vED-{u}, In this case, cb(G) ==1. Now we assume that Vu",1jJ for all

vertices U E D. Clearly, if u, ,U, ED, u, ", u,' then V., n V., = I). Hence, if n is the

order of G, then

min { IVui:uED}:> n~(~~)

Select one vertex uQ ED such that

Select another vertex Ii'" U in D. If

E, =={VW:WEVuo}V{vuo},

then r(G+El)~r(G)-1

and cb(G)::; lEd::; n ~ reG) + I == _"_.
reG) reG)

Thus, we have

Lemma 2.1

If G is a graph with order nand r(G);:>: 2, then

"cb(G)~-.
reG)

Corollary 2.2

If G is a graph of order nand reG) ;:>: 2, then

cb(G) == n-1 <=:- G == K1•

Proof. If r(G);:>: 2, then n ;:>: 2 and if cb(G) == Il -1, by (2.6),

" "Il-l::;--~-.
reG) 2

Then n == 2 and G =K,.

Conversely, if G = K" then obviously cb(G) = n -1.

(2.5)

(2.6)



Corollary 2.3

If order of G is nand reG) ~ 2,then cb(G) == n-2 if and only if G= 2K,or K,

Proof. From (2.6), " "cb(G)~--~-.Therefore,
reG) 2

cb(G)=n-2

"::::-1<n-2<-- - 2

=>2~2n-4Sn

=>3~n~4.

If n=3 and y(G)?:2, then G is not connected and G is either K) or Kz uK].

If n == 4, then cb(G) = 2 and so G is 2Kz.

Conversely, if G == 2K2 or KJ or K2 UK1, then cb(G) == n - 2.

Lemma 2.4

IfG is a graph of order n with 1::::8(G)sJ.(G)Sn-2, then

cb(G)+cb(G)<n.

Proof. As !S8(G)SA(G)Sn-2, y(G)?:2 andr(G)~2.

(So both cb(G) and cb(G) exist).

By Lemma 2.!,

- n n nneb(G)+ cb(G) ::;;--+--=-S -+- == n.
reG) y(G) 2 2

(2.7)

(2.8)

If eb(G)+cb(G)=n, then in (2.8) all the inequalities mus! bc replaced by

equalities and we have cb(G)= eb(G)=~.
2

From (2.1), it follows that "-Sn-A(G)-l2 "d



(2.9)

So, l!(G)+ l!(G)::;n - 2, which is a contradiction as

n -I == l!(G)+ (n -1-l!(G» == Ll(G) + 8(G)::; l!(G)+ l!(G).

Then cb(G) +cb(G) 0#. n and we obtain the required result.

Example:
For the following graphs, we have

cb(G)+cb(G)==n-1.

Let us now characterize the graphs for which

cb(G) + cb(G) == n - 1.

If n::; 6, we can list those graphs.

When n==5,G==Cs (note that C, ==Cs).

'When n==6, G==C6 or C".

Let a given graph G with order n:::: 7 satisfy the equality

cb(G) + cb(G) == n-1.

As cb(G) + cb(G)::; (n -l!(G) -1) + (n - L\(G) -1), we have

n-1::;2n-L\(G)-L\(G)-2 and L\(G)+l!(G)::;n-l.

As n-I=l!(G)+8(G):il!(G)+L\(G):in-l, wc have 8(G)==l!(G), I.e., G IS

regular. Hence, G is regular.

Claim: reG) == reG) = 2.

Ifeither r(G)::::3 or r(G) 2'-3, then

- n n 11n-I == cb(G)+ cb(G) ::;--+~:$ n(-+-)
reG) r(G) 2 3

implying that 6n - 6::; 5n which contradicts that n 2'- 7. Thus, reG) "= 2 = y( G).



Let D == {x,y} be a r - set in G. Then every vertex in V(G) - (NI (x) U {x,y}) is

adjacent to y. As there arc at least n - 6.(G) - 2 vertices adjacent to y,

n ~ 6.(G) - 2::;;degy:<;;6.(G)

i.e., n - 2 :<;; 26.(G).

Similarly,

n - 2:<;;2b(G) ==2o(G) ==2(n -1- beG))

i.e., 2b(G)::; n.

Then " "--l:<;;6.(G)s-.
2 2

These observations prove the necessary part of the following characterization

theorem.

Theorem 2.5

Let G be a graph with order n;<;7 and let l:<;;o(G)::;b(G)::;n-2. Then G

satisfies the equality cb(G) +cb(G) == n -I if and only if

(i) G is regular,

(ii) reG) ==reG) ==2 and

(iii) '::-I:<;;b(G):<;;'::.
2 2

Proof. In view of the earlier observations, it is enough to prove the sufficient part.

Let G be a graph that satisfies (i), (ii) and (iii). If n is even, then

- - -
and cb(G) '" n -1- b(G). This is because reG) == 2 = reG).

Now cb(G) +cb(G) == n -1- A(G)+n -1- beG)

== 2n - 2 - (b(G) +A(G))

==2n-2-(%-1+%J ==n~1.

•



If n is odd, then

- n-l
A(G)"'A(G)==-,-;

- n-l
cb(G)=cb(G) '" n-1--,-

and hence cb(G)+cb(G)=n-1.

Given an integer n:?: 7, we now describe a method to construct all graphs G of

order n, which satisfy the equality (2.9).

Case (i): Let n be even and l!(G)==~-1.

Observation: If D=={x,y} is a y-set in G, then y is adjacent only to the

vertices in V(G)-(N,(x)u{x,y}) (in particular, x and yare not adjacent) and

H==G-{x,y} is ~-2 regular.,
,-,

Construction: Let D == {x,y,ZpZl , 'zn_l}. First form any -,- regular graph

H with the vertex set V(H)={Z"Zl' 'Zn_2} and then obtain G from H as

follows.

V(G)=Vand

n-2 n-2
E(C) '" E(H) u {xz, : i == 1,2, ..... "-,-1u{YZi :-,- < i::;n - 2}.

Obviously, (i) D.(G)=~-l.,
(ii) C is regular.

(iii) D = {x,y} is a y -set in both C and G.

(iv) cb(C)=n-!::==~., ,
,

(v) cb(C)==--l,
and hence, (vi) cb(G)+cb(G)=n-l.

•



Let 3. be the family of graphs with order Il, (Il is an even number greater than

7), constructed by this method. From the observation made just before the

description of the construction, it follows that a graph G with order n > 7, n even,

D.(G) = ; -1, satisfies the condition (2,9) if and only if G l:3n•

Case (ii): Let Il be even and t.(G) =~.
2

"As t.(G)=-,
2

- " -t.(G) '" - -I and hence G E 3 •. If
2

the family of graphs with order Il > 7, where Il is even,

cb(G) + cb(G) "'n-I holds.

t.(G)=~
2

whence

Case (iii) Observation:

If n<:7 is odd, then n=4k+1 or 4k+3 for some positive integer k. As n is

" "odd and --l:-:::t.(G)S-,
2 2

we have Since G is a " -1---regular
2

graph with order Il,
" -1 must be even; i.e., n = 4k + I (and the possibility,

n = 4k + 3 cannot arise). Let Il = 4k + 1 and D", {x,y} be a r -set in G. Then x

and y are not adjacent to each other.

(If x Y EE(G), each of x and y IS adjacent to " -1only---1
2

V(G) - {x,y} and hence {x,y} cannot be a dominating set in G).

vertices in

- 1l-1 - --
As t.(G) = -,- and reG) '" 2, if D'", {x' ,y'} is a r -set in G, then x' y'," E( G).

So x'y'EE(G) and NI(x')nNl(y')"'~ in G. There exists a vertex Z'EV(G)

such that x' z', y' z'," E(G).

•



(i) N,(x')r'I{x,y};<<P; N,(y')n{x,y};<<P in G;

(ii) N1(x)n{x',y'}*<P; Nj(y)n{x',y'}*<P in G;

(iii) If X'E: N,(x) in G, then y'l" Nj(x) in G.

Construction:

Let V == {x,y,x',y' ,ZI 'Z2' ...•.. ,Z4!_J. Construct in any marmer a (2k - 2) -regular

graph H with vertex set V(H) == {ZpZl' ••••• "Z4k_3}. Obtain G from H as

follows:

V(G) == V and

E(G) == E(H) v {n', x' y',y' y} u {xz, :1 S; i S; 2k - 3}

u {yz; :2k -I::; i::; 4k -3}v{x'z, :l'::;i S;2k -2}

v {y'z, :2kS;iS;4k-3}.

Then clearly, (i) V(C) = 4k +1,

(ii) t.(G)==t.(G)==2k= n-1,
2

(iii) D == {x,y} is a r -set in G,

(iv) D'= {x',y'} is r-sel in G,

(v) reG) == reG) = 2 and

(vi) cb(G) + cb(G) == n-l.

Let 3., (n == 4k + 1, k ~ 2) be the family of all graphs of order n and constructed

by this method. We note that G E ::i. if and only if G E: 3, and hence 3. = 3".

•
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Thus, we have the following theorem.

Theorem 2.6

If n;:>:7;n '" 3(mod4), then the set of all graphs G with order n satisfying the

equality

cb(G)+cb(G)=n-1

is the family :3" v:3."

Examples:

1. For every integer n, 2K" E J2n and K.", E 31."

2. For n = 13, the graph given in Figure 2.1 is a member of :3ll"

2

7

3

8

4

9

Figure 2.1. A graph G E 313,

Remarks:

1. If n?: 7 and n.;, 3 (mod4), every graph G E 3. satisfies the equation

,b(GJ =l-" j.reG)
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This shows that there are infinitely many graphs for which cb(G) attains the

upper bound given in (2.6). This class includes 3" for all even n ~ 8.

2. If n > 7 and even, every graph G E:ln satisfies the equation

"cb(G)=--1.
reG)

3. 1fn>7 and even, for every Ge.0n, cb(G)= A(G-l+1.

4. If n;:>:7 and n '" 1 (mod4), the equality ch(G) == L\(G) holds good for every

GE3n,

5. Let n:::'7 and n.,3(mod4). The class 3, U3n ",.,l'{n> where t\. is the family

ofall regular graphs G with order n, !:-I:;A(G)-;;~ and y(G) =2. We can
2 2

construct a regular graph G with that

Graphs given in Figure 2.2 and in Figure 2.3 are not in 'J~and 310u:l1O

respectively.

Figure 2.2. A graph G", 3.with G E \{9'
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Figure 2.3: A graph G ~ 3\0 U 3]0 but G ENIO•

In this section we extend the concept of the cobondage number to two

domination.

Definitioio:

Let G be a graph and let Yl(G);;: 2. Then the minimum cardinality among the

sets £1 cE(G) such that y,(G+E[)<Y2(G) is denoted by (Cb)2(0) and is

called the two-cobondage number of G.

A set £1 c £(0) for which Y2(0 +E]) < y:! (G) is said to be a two-cobondagc set

and a minimum-two cobondage set is called (Cb)2 - set of edges for G.

Two-cohondage number (cb), (G) for some standard graphs.

I. If p" is a path on n 2:6 vertices,

(
1 if n == 1,2,3 (mod 5)

(Ch),(P,,)= 2 if n",4,O (modS).
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2. If C. is a cycle on Il?>: 6 vertices,

{
i if n '" 1,2,3(mod 5)

(ebMCJ'" 2 if n '" 4,0 (mod5).

We now obtain upper bounds for (cb)z(G).

Let G be a graph with Y2(G) ~ 2. If II is a vertex in G, let

A", {u}uN](u)vNz(u)

andB=V-A.Thcn

1:0;IB I$ n - CD-(G)+ 2) if G is connected

and l$IBI::;;n-(,',,(G)+l) ifG is not connected.

If E, ={ux:xEB}, then Yz(G+Ej)=l<Yz(G).

Thus we have the following proposition.

Proposition 2.7

If G is a graph with Y2(G):<: 2, we have

(cbMG):<::;n- 6.(G)-1.

Theorem 2.8

If Yl(G) ?>: 2, then

(i) (cbh(G) Sd(C) and

(ii) (Cb)l(G)S n 1";~-1.
Y2(G) 2

i,l5:.iSm, let

V. =N,(ui)-vN1(u;) .."
If V; = rft for some i, then let £1 = {e = U,X}, where x is some fixed vertex in

D-{u,}. Since Yl(G+E,)<y)(G) and hence in this case
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If V, '" ~ for all i, select one iosuch that

IV,I = mt,il V,lo' = 1,2, ... ,ml.
Select one j *- ioE {1,2, ... ,m} and let

E1=lyuj:yeV;'of'

Then we have Y2(G +E1) < r 1(G) and

Also, (Cb)1(G):o;;IE1ISA(G).

Thus (Cbh(G):<>min(A(G), n 11
Y2(0)

Example:

Graphs G for which (cb),(G)=A(G),

The next result improves the inequality

(Cbh(G)Smin(Ll.(G), II -11.
Y2(G)

(2, I 0)

Theorem 2.9

If G IS a graph with Yl(G)::::2, then either (ebh(G)$! or

(Cbh(G)5:min("'(G), n I.
2Y2(G)

Proof: Let G be a graph with Y2(G)::::2 and let D={u[,u"".,lIm}, where

m == Y2(G), be a Y2 -set for G. To each i, 1:::;i:::; m, let

X, == tu E N1 (u,): d(u,1Ij) is not less than 3 for all j ••i,iE {l,2, ... ,m}}.
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If Xi '" r/J, for at least one i, say, for i~let e == IIi{)IIJ for some j'" io' Now we

have D- {u,o} is a Yl -set for G +e and hence in this case (cb}z(G) == 1.

Assume that Xi'l'rP for all i=1,2, ...,m. Let S, be a subset of N1(u,) with

minimum cardinality such that each II EOX, is adjacent to at least one vertex of SI'

LeI Y, be a minimum dominating set for < X, >.

We note that I r:1 == y« X, » and I S;I ::;IX,I. Let

I, ",min {l+ls,I,INj(ul)I,IYII+l}
andlet I=min {t,:i=1,2,3,,,.,m}.

Select one iosuch that t '" 1'0. Select some j '"ioE {1,2,3, ... ,m}. Take

£1 ={UjX:XEYJo}U{Uju,) if t=jY01+1

={UJX:XES,} u{uju'ol if t=ISII+l:s;INj(u,)1

"'{ujx:nS,} if IS,I=IN,(u,)I=t.
Then D-{u'<J} is a Yz -set for G+E1 and hence in this case

Let k '" (cbh (G). From (2.11), we get the following:

If btl, then k::; min {jS,I+l,Il';I+l,IN1(ul)l} for i= 1,2,3,.."m.

(2.11)

Hence in this case n ~ 2k Y2 (G). We note that the sel S, , Xi' for i= 1,2,3, ... ,m;
are all disjoint.

" "Therefore, ks---~-.
2Y2(G) 4

Thus,wehaveeither(cb),(G)~l or (cb),(G) s:min fA(G), n ).1 2Y2(G)

Corollary 2.10 If n <: 4,

t,
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Corollary 2.11

If each component of G contains at least three vertices, then y, (G)::;; and hence

15. nand (cbh{G) 5.min ftl(G) , n ).
2y,(0) 1 2Yl(G)

Remark:
- -

If r1(0) '* 1, then r1(G) == I and hence (chMG) is not defined.

Let us now analyse the structure of graphs for which (cbh (G) = 6(G).

Let G be a graph with Y2(G);:: 2 and (Cb)l (G) = !leG).

If "'(G)",] and n<:4, then (cb),(G)=I'.(G) and G=mK, (m:<:2). So, assume

that A(G);:: 2.

First we claim that D is an independent set in G. If possible assume that !I,u} is

an edge in G for some i,j (I::; i< j 5.m).

Then iNI(u,)-DiS;L'>(G)-l and if E[ ={uJx:xEN,(uJ)-D},it is clear that

D-{ul} is a Y,-set for 0+£1 and hence (cb),(G):",;!J.(G)-l, which is a

contradiction. Thus, D is an independent set in G.

Next we claim that N, (u,) r1 NI (uj) = ~ for all i,* j E {I, 2, ,m}.

For if possible, assume that N, (II,) n N] (uj) '" t/J for some i,j (i '" j).

Ifwe take E, = {Ui x: XE NI(u•.)- Nl(u)}, then IE11s .1(G)-1 and D-{u •.l is a

y 1- set for G + £1 and hence (cbh (G) S .1(G) -1, which is a contradiction.
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Thus, NI (ui) n Nj (u) == t/J for all i '"j. We note that IN[ (u,.)1= <leG) for all i.

Fora fixed i, if £1 ={ujx;xEN](u,») for some i"'j, then Yl(G+E1)<yz(G)

and hence IEll == IN] (ul)12 6(G).
Let xEN[(D). Then xEN1(u,) for some i. Let

A(x) = {z E Nl (D): N] (z) nN1 (D) '" {x}}.

We claim that A(x) '" 16.

If A(x)=,p, then by taking £1 =lU}Y:YEN1(u,)-{x}J for some i"'j, we have

Y2 (G + £1) < r1(G) which is a contradiction.

Thus, A(x)o;/.ct/J, [or all xEN](D).

Thus, we have the inequality

IDI+IN,(DII+IN,(DIlsIDI+IN,(D)I+ L IA(x)I,"
,,,NI(D)

Hence, Yl(G)+2Y2(G)tl(G)Sn.

We have the following proposition,

Proposition 2.12

Ifforagraph G,6(G)22 and (cbh(G)= 6.(G), then

6(G)Sn-rz(G)
2y.(G)

Now we obtain certain properties of a graph G for which

(cbh(G) == I'!.(G) == n -Y2(G),
2Y2(G)

Let G be a graph with (cb)z(G) '" t.(G);<: 2 and

t.(G)=n-y:!(G).
2Yl(G)

As t.(G)=n-y2(G) ,we get
2Y2(G)

n ~ r2(G) (I +2t.(G» ~ IDH Nj(D)I+ L:iA(x)I.::; n

(2.12)

(2.13)

(2.14)
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and hence IA(x)l=l for all xEN,(D).

Also from the proof of theorem 2.9, the set < v{A(x): x E NI (u,.)}> can contain at

most one edge for each iE {1,2, ,m}.

Thus we have

1. V(G) = D u NI (D) u (uA(x): x E NI (D» is a partition of V(G).

2. IA(x)l=l for aU xEN1(D).

3. < u{A(x): x E N, Cu,)} > can contain at most one edge, for each i.

4. D is an independent set in G.

5. If A(x) = {y}, then N](y)n(DvNj(D»={x}.

6. PuCG)= independent number of G:?:2ACG)-1.

We now give an example for a graph G for which p(G)=36'Y2(G)=4 and

and so n-y:!(G)_36-4=4=A(G).
2y,(G) 8

Figure 2.4: G

•••



CHAPTER THREE

THE COBONDAGE NUMBER OF A GRAPH WITH

TOTAL DOMINATION

This chapter is devoted to the total cobondage number of a graph. Given a

graph G, without isolated vertices, we can find the total domination number

y,(G). If r, (G) > 2, G cannot be the complete graph K", where n == IV(G)I. As

2 == r,(K") == y,(G+E(C)) < r,(G), we can find a subset E~cE(G), with

least cardinality such that y, (G +Eo) < 1, (G). We define this least cardinality as

the total cobondage number of C.

Definition:

If G is a graph without isolated vertices and 1, (G) >2, then the total cobondage

number of G is denoted by (cb),(G) and is defined as

(cb),(G)==min {iEol:En cE(G) and y,(G+Eo)<y,(C)}.

We can obtain (cb),(C) for known standard graphs. First we observe that

(cb),(G)"';; d(C).

Let D be a minimal total dominating set for G. If the induced graph <D >

contains a component with at least three vertices, select such a component

{X"Xl, ,x"}, n~3 of<D>. Now

Eo =={X2Y:XIYEE(G) and XlYEE(G)}.

Then D - {XI} is a total dominating set for C+E~. If every component of

< D > is Kl, select a component {XI ,x,} and select one XED - {Xl ,Xl}' Then

if
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Then D - {xd is a total dominating set for G +Eo' Hence, (cb), (G) :>:6.(G) in

both the cases.

There are infinite number of graphs for which (cb), (G) == d(G).

Examples for graphs for which (cbl, (G) = A(G).

Figure 3.1

v-v v-v
Figure 3.2

~,•...--~--~-~-->;

Figure 3.3

For the above four graphs (eb), (G) = beG).

Figure 3.4
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exists G withinteger n <: 2, therepositive

Now we show that for the graph given in Figure 3.4, (cb), (G) '" A(G) '" 4. First

wenolethat n=16, G is regular with A(G)=o(G)=4, andD=={vl,V2,V"v4}

is a y, -set for G and hence y, (G) == 4. Lei £1 c E(G) such that

y,(G+E1)<y,(G),Theneilher r,(G+Ej)==3 or r,(G+E1)=2.

Case I: y,(G+E1)==3.

LetD=={zl,z"zJ!bc a Y,-5el forG+Ej.AsD is ay,-setforG+E1

there is at least one edge from each vertex in {V(G) - {ZI , Z2 ,zJ} I to D, As D

is a total dominating set, there should be at least two edges in <D > with

respect to G + £1 .Hence, there are 15 distinct edges which are incident

with {ZpZl'Z)} and {deg(zj)+deg(z2l+deg(z))}:?:17 in G+E1"

Case II: r.(G+E,)=2.

Let D={u,v} be a Y,-sel forG+E1.Again, In G+E1,

deg(u) + deg(v) 2':14 + 2 == 16.

But in G, deg(u)+deg(v)=8. Hence, 1£11;<:4.

Thus, in all the cases lEI I<: 4, Therefore, (cb), (G) <: 4.

But we can find £1 such that IE,I '" 4 and D '" {VI' vl ,v3} is a Y, -set for

G + £1 . Then (cbUG):s; 4. This proves that (cb), (G) '" 4.

Example:

Given any

A(G) '" n, Y,(G) > 3 and (cb), (G) '" A(G) '" n. It is enough to consider the case

n <: 5 (in view of the examples 3.1, 3.2, 3.3, 3.4).

E(G) '" {a/at ,bit ,C/. ,djd.:j.= k E {1,2,3, ..... ,n}}u {a1bl,c1d,}u

{aJd / ,bjG j :j '"2,3," .... ,n}.

•
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Then for G, r,(G)=4, (cb),(G) =8(G)=n. Now we obtain the necessary

conditions for a graph G to have (cb),eG) == t.(G).

Theorem 3.1
Let G~qKl and f,CG):?:3.

If (cb),(G)=I'!.(G), then every Y, -set D of G satisfies the following

conditions:

(i) D=qKz and n=2q!J.(G) for some integer q~2,

(ii) every vertex in D is of maximum degree and

(iii) every vertex in V - D is adjacent to exactly one vertex in D.

Let D be a y, - set for G. If C is a component of <D > which contains more

than two vertices, C contains at least two vertices x and x' such that both

<C-{x}> and <C-{x'}> will contain no isolated vertex.

If £1 ={X'W:WEV -D and Ni(w)nD={x}}, then D-{x} IS a total

dominating setfor G + £1 and hence (ch), (G) < lEd::;; deg(x) -1 <A(0).

As (cb), eG) = !J.(G), it follows that every component of < D > must

contain exactly two vertices. Thus, D.(G) ==qK l' for some q;;:: 2 [q ;;::2 follows

from the fact that r,(G);;:: 3]. Let U E D.

Claim: deg( u) ==D.(G).

Let EI =={VW: WE V -D and Nj(w)nD =={u}}, where v is the unique vertex

in D which is adjacent to u. Let vl be a vertex in D - {u, v} and e ==vv1' Then

D-{u} IS a total dominating set for G+(E, +e) and hence

li(G) == (cb), (G) S lEI I+1:;;deg(u).
Then, we have deg(u)==D.(G) and [Vul==IE11==D.(G)-1. As IVul==D.(G)-1 for

all II ED, it follows that if WE V - D is adjacent to u, then w EO Vu and hence

•
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w is not adjacent to any vertex in D - {u}. Thus every vertex in V - D IS

adjacent to exactly one vertex in D and

Therefore,

IV-DI= U V. =2q(A(G)-1)
"'"

and n == ID]+IV -DI '" 2q+ 2q(8(G)-I) == 2qA(G).

We recall the following result [9].

Theorem 3.2

If G is a connected graph with order n;:: 3, then Y, (G):;; 2
3
fl. Now we obtain

the following theorem.

Theorem 3.3

If G is a graph with order n, without an isolated vertex and YI (G);:::: 3, then

f '-2)(cb),(G)::;minl!l(G)'-2- .

Proof: Let G be a graph without isolated vertices and Y,(G):2:3. Let S

be a total dominating set of smallest cardinality, clSI == Y,(G);:: 3). By

minimality, to each S E S has at least one of the following two properties:

PI: There exists a WEV -8 such that Nj (w)!1S '" {s}.

P2: < S - {s} > contains an isolated vertex.

To each sES,!et

V,={WEV-S: N1(w)r>S={s}}

and C,"'{WES: wis an isofated vertex in <S-{s}>}.

•
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ThenN=S-M.",dLet M={SES: S has the property PI}

M = {SES: V, ",.p} and N= {s E S: V, = .p}.
Case (I):

Let N",.p, consider one S'E N. Then Ie,,]::;; deg(s')::;; A(G) and

Ic,.]::;;ISI-I = y, (G) -I. Let C,' = {ZI 'Z2,. ..... ,Zg}' We note that if q'" I, then

z, EMand IC"I<n-(q+I).

We construct E1 as follows:

(a)lfq=l,EI = {ZIS} for some SES-{ZpS}.

(b) If q is even, £1 == {ZIZ2 ,Z]Z4'" •••• , Zg_IZq}'

(c) If q ~ 3 and odd, £1 = {ZIZ2 ,ZIZ], Z4ZS,. ..... ,Zg_IZq}'

Then 1::;;lEI I::;;I;' 1::;; If>.~G)1and S - Is'} is a total dominating set for G + E1•

Thus, in this case, (cb), (G)::;; IE1I::;; IA~G)1and
"-, if G is connected

(cb),(G)::;;IEd::;;1J..::; 3
2 n-q_
-2-' if q '" 1.

Therefore, (cb), (G)::;; min{f f>.~G)lr, ;G) ,n; 2}.
Case (ii):

LeI N ==.p. Select a vertex S'ES such that IV"j=mini] V,I:S ES J. Then
(a) l::;;IV.,I<deg(s').

(b) IV,.is IV -Sl_ "-Y,(G)
lSi Y,(G)

(c) 0::;; I C"I::;; dcg(s') -IV"I.

(3.1 )
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If C" ~,p,let C,. '" {z, ,Z2""" .,Zq} and construct EI as in case (i).

If C,_ ==,p, put EI "',p.
Seiect some SES-{S'} and put E2=={sW:WEV,.}. Then S-{s'} IS a total

dominating set for G +£1 + £2 and hence,

Thus, in this case, (cb), (G) $ A(G).

If <S > is not connected, let C] ,e2 , •••• , ,Co be the components of S. If there

is a component Cj with IGII::::3, we can find alleast two points SI ,S2 Eel such

that <C] - {sJ ) > has no isolated vertices for j '"1,2.

For at least one sJ,jE{I,2}, we have

I
v 1:<; [(n-r,(G»-Cy,(G)-2)].
" 2

Say, I Voll::;; n-2Y'iG)+2 < 11;4 as r,(G)<:3. Let EJ={SIW:WEV,,},then

S - {SI} is a total dominating setfor G+EJ and hence (cb), (G):O;; IE31:o;; 11 - 4.
2

Thus, in this case, (cb), (G) :s;rnin{ A(G), 11; 4}. (3.2)

If there is no component C, of <S> such that IG,I::::3, then S=qK2 for some

q"?2.

Let S={xi'Yj :j=1,2,. ..... ,q} where xJY
J

EE «S».

There is a point, say x] E S such that

Let £4 = {Y]W;WEVx,} U {x] ,x,},



Then S - {x,} is a total dominating set for G +E. and

(cb),(G)~IE41"'1+lv jSl+n-r,(G)", n :;;!!..,
;q riCO) r,(G) 4

as r,(G);::':4 in this case.

J ,) n n - 2So, we have (cb),(G)::; minr!'.(G), 4 . As n::::4, we have 4:::; -2-.

Thus, in all the cases, we have

J '-')(cb), (G)s; mi0ll1.(O),-,- .

Hence the result.

50



CHAPTER FOUR

THE TOTAL BONDAGE NUMBER

This chapter deals with total bondage number of a graph. We show that for a given

positive integer n, there is a tree T whose total bondage number is n _We obtain

bounds for total bondage number of a tree T in terms of I V(T)I and 8(T). We

also obtain complete graphs with total bondage number 2n - 5 for n 2':5 vertices.

1. Introduction:

First we define the total bondage number for a graph.

Definition:

Let G be a graph. If there exists EQ c E(G) such that

(i) there is no isolated vertex in G - EG and

(ii) Y, (G - EG) > Y, (G),

then the edge set EG is called a total bondage cdge set for G.

If there is at least one total bondage edge set for G, we define

b, (G) '" min IIEol: Eo is a total bondage edge set of G}.

Otherwise, we put b, (G) =oc .

We call hi (G), the total bondage number of a graph G.

Example:

1. If G is a path on six vertices, then hi (G) '= 2.

2. hi (G) = for the following graphs:

(a) X',n(star on n + I vertices),

(b) graphs for which each component is X, .• or X"

(c) XJ.

.l'!"".-
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In [21], Kulli and Patwari calculated the exact values of b,(G) for some standard

graphs.

Theorem 4.1

If PIT is the path with n ~ 4 vertices, then

b,(Pn)=f2, if n",.2(mod4)11, otherwise.

Theorem 4.2

If en is the cycle with n;:: 4 vertices, then

b,(C
n
)=oj3, if n"'~(mod4)12, otherwise.

Theorem 4.3

If K.", is the complete bipartite graph with 2 :::;;m ::;;n, then hi (K",,") '" m.

Theorem 4.4

If K" is the complete graph with n;:: 5 vertices, then b,(K,) == 2n - 5.

Theorem 4.5

If G be any graph with n 2 5 vertices, then hi (G)::;; 2n - 5.

In this chapter, we investigate certain properties of the totat bondage number of a

graph.

2. Bound for total bondage number of a tree.

We know that for a non-trivial tree T, the bondage number b(T):::;; 2. But given

any positive integer n, we can find a tree T for which the total bondage number

For example, if n is the positive integer, consider the following tree on 3n+2
vertices.

•
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Figure 4.1: Tree H" .

We denote this tree by N,.

Theorem 4.6

For the tree Nn, b,(Hn)"'n.

Proof. First we note that r,(H,)=2n+1. Let

Eo'" {VOvl ,VOv4 , , VOV1n_2}.

Then r,(H, - Eo) == 211+ 2 > y,(H")and hence

b,(Hn),.:;IEol=n. (4.1)

Let EI c ECH,) and 1£,1 < n and there is no isolated vertex in H" - £1 .

Then we note that

(i) V'jvJj_1 '"£1 forall j=1,2, ,n;

(ii) if VOV3j_2 E £1 , then vJJ_:! V,}_I Ii" £1 and

if V'i_' VJ}_l EEl' then \'0VJj_2 Ii"EI ;

(iii) as lEI I < n, there is at least one k (1::; k,.:; n)such that

\'0vJJ<_:!' V3k_2 \'JI-I ,Vlk_l V1k Ii"£1 .

•
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Then the sel D '" {vo'Vlk_1, VJ!_l ,VJj, vJJ_1; j E {1,2,3, ,nj - {k}} is a total

dominating sel for H" - £1 .

As Inl=2n+l, we have

riCH, - El) = r,CHn) '" 2n+1.

Then rl(H. -E1) = r,(Hn>, whenever IEII< n.

Thus, b,(H,)'2n

From (4.1) and (4.2), we have hi (H n) == n.

We now obtain an upper bound for b,(T), where T is a tree.

Theorem 4.7

1fT isatreeon n vertices and T",K1,._1' then bj(T)~min{""(G), n;l}.

Proof: Let T be a tree which is not a star. Let P = VI' v,, v] , ,vk (k '2:4) be a

longest path in T. If r,(T):'O:3 or k = 5 ,Y,(l -el) > r,(T), where e] =v/vJ .In

this case, Eo = {e]} and hi (T) = 1. Now we assume that y, (T) '2:4 and k'2: 6, let

el=v2v).

If vJ osD for some minimum tolal dominating sct D, for TJ, where TJ is the

component of T - e, which contains the vertex v]' then D v {v,} is a total

dominating set for T while IDI+2 is the Y,(T-e]). In this case,

Y, (T - ej) > Y, (n. Hence, b, (T) == l.

So, assume that vJ is not a vertex of any minimum total dominating set D for T,.

Then clearly, deg(vJ) == 1 in TJ and v, ED for every minimum total dominating

set for T). If deg(v4) == 2 in T), then v, ED for all minimum total dominating set

for T3.
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We can take E[ ={v1v),v.v,}to get 1,(T-£I»Y,(T), Hence, in this case,

y, (T) ~ 2. Now we consider the case in which deg(v4);:: 3.

Let S be the set of all paths fl in T such that fl starts from the point V4 and

Let fl E S. If there is no P2 ES ,P, *- P, such that F; is a part of ~, then we say

thaI 1': is a maximal path in T slarting from the vertex v4 such that P n 1; = {v,}.

Let 11 be a maximal path in T starting from the point v. such that

P n R, = {v,}. Then F; is of length at most 3. If length of PI = 2, then e1 is the

edge in 1': incident with V4' If e1 is a part of a path ~ of length 3, when

P n P2 = {v4}, let e3 be the edge of P2 which is incident with e2, then

y, (T - eJ) > Y, (T). If c:! is not a part of any path ~ of length 3, when

P n P2 = {v4}, then r,(l - ej - e2) > y, (T) and r, (T) ~ 2.

So, assume that there is no maximal path r: of length 2 starting from 114such that

Pn~ == {1I4}.If length of ~ == I for all ~ E S, then as II) "-D for any minimal

dominating set of Tl, we get 11.1ED. In this case, let e2 =11411.1'so b,(T)s:2, as

r,(T -e, -eJ > r,(T).

So, assume that there are maximal paths p, in S with length 3. Let
,

Q, , Ql , ,Qn be a maximal collection of distinct such paths. If \15 '"D, for all

minimal total dominating set of T}, then let

Eo == {lIlliJU {central edges of Q; :1==1,2, ,n}.

If 115is in some minimum total dominating set for T), then take
Eo == {II,1I),1I4I1,}U{all central edges of Qi : i == I ,2 ,..... ,n}.

I I "-1Then r,(T -E~) > r,(T). Therefore, b,(T)::;;Eo ::;;-,-.

Also, as I Eo I::;; deg(1I4), then we have b,(T).$ !leG).

,



Remark:

Let G be a connected graph other than KI ,Kl ,K) and K],,' As G,.. KI ,K2 ,K3

and K].", there is a path of length 3 in G. Then we can find E, <;;; E such that

G-EI is a spanning tree T for G conmining a path of length 3.

(IE11=q-n+I). For the tree T we find £,<;;;E(G-E,) such that

Y, (G - E, - El) > Y,(G - EI)? Y, (G). So, b, (G) ~ IEII+IE21.
Thus, for every connected graph G other than K[ ,K2 ,K1 and K[,.' b,(G) is

finite.

3. Total bondage number of K",

If Sand T are disjoint subsets of V(G), by [S, T], we mean the set of all edges

in G which have one end in S and the other end in T. Thus, e==uv","[S,T] if

and only if I{u,v} nSI "" I == j{u,vI nTI.

In [2IJ, Kulli has proved that b, (K") == 211- 5, if n? 5,

We give an another proof for this result.

Theorem 4.8

Let K. be a complete graph with II? 5 vertices, then b,(K.) == 211- 5.

Proof: First we prove that b,(K.)? 211-5. Let EocE(K.) with IEol~ 211-6,

such that there is no isolated vertex in K. - Eo' We claim that y, (K. - Eo) == 2,

Assume that r, (K. - Eo) > 2. Hereafter we denote the graph K. - Eo by H.

Let s == min{n-l-degH(u):u EV(H)}. As IEol~ 211-6, we have °~s ~ 3,
If s == 0, then degH(uo) == II-I for some un E V(H) and hence {uo, uj} is a toml

dominating set for H, when u, ,. Uo E V(H), which is a contradiction.



If s=l, there are vertices u,wEV(H) such that degu(u)==n-2, the edge

uw E Eo' As w is not an isolated vertex in H, wv EE(H) for some v (as

v l' W,uv ~ Eo)' Now {u, v}is a total dominating set for H, which is a

contradiction.

Assume that s = 2. Select U, VI' v1 thrce distinct vertices in H such that

degH(u)= 1)-3 and the edges UV, ,uvl EEo' Let S'= V(H)-{u,vI ,v1}. Then we

observe the following:

(i) 1S' 1='-3.
(ii) there is no vertex WE S' such that both VI wand v2 W11'Eo'

(If such aWE S' exists, then {u, w} is a total dominating set for H).

(iii)let S={wES':v,wi!EoJ, T={wES':v,wi!Eo} and U={wES':both

v,w and v,wEEo}' Then S'=SvTvU, S"'r/>, T"'r/> and the subsets

S ,T ,U are disjoint to each other.

Assume thaI S '" rfi. Then v,vl i! Eo, as v, is not isolated in H. If

T = rp, then IE~I;::.:2 + l(n - 3) = 2n - 4, which is a contradiction.

Hence, T"'r/>_ To each WET there is at least one ZEU such that

wz E Eo' (Otherwise {v" w} is a total dominating set for H)_ This

implies that IEol2: 2+2IUI+2ITI=2+2(n-3), as S=</;, which

is a contradiction.

Thus, S l' r/>.Similarly, T of- r/>.

As to each WE S', either WV, EE, or wv, E E" we have

(4.3)

(iv) fix one vertex W,ES and a vertex w,ET. To each wET, either

w,w E E. or there is a vertex 2 E S' such that both wz and W,Z E Eo'

(Otherwise {w,w,l is a total dominating set for H ).



In the case w,wEEo' sclect w,w, otherwise sc1ect wz. By this process, by

varying w in T, we get a collection EI ~ Eo and lEII= ITI. Now to each WE S,

either w2w E Eo or there is a vertex Z E S' such that both wz and w2z E Eo'

Select WI W if it is in Eo, otherwise select wz. We get a collection E, <;; Eo and

IE2I=1SI.We note that

lEI uE21~ISI+ITI-I and (EI uE])n[{v1,vZ)' S']=# (4.4)

By (4.3) and (4.4), wc have

IEol;:: n-3+IUHSH rl-1+2 = n -3+n-3-1 + 2= 2n-5,
which is a contradiction as I Eol::; 2n -6. Thus, s * 2. Hence the only possibility

is s = 3.

Assume that s = 3. Let u, VI ' v, ' VJ be four vertices in H such that uw is an edge

In H, for all w,;u,v],VZ,v) and uVj EEo for )=1,2,3. Let

S'=V(H)-{u,v"v2,v]}. Thcre is no vertex WES' such that vjwi1£EQ for all

J = 1,2,3 (as {u, w} is not a total dominating selfor H).

Let SJ=\wES':j[{v"v2,v)}'{w}JI=d-J in H}for j=1,2,3.

As s = 3, to eaeh WE SI' there are at least two vertices WL and w2 in S' such that

wwl ,ww2 E Eo (wi may be in S,), Now it is possible to select I S,I disjoint edges

in E, such that each onc of selected edge has onc end in 81 and the other in S'.

Thus, IEol~ 3+2ISd+2ISzl+2ISJI
, 3 +2(1 Sd+ IS,I+ IS,II
=3+2(n-4)

=2n-5 ,
which is a contradiction.

Thus, in all the cases, we get a contradiction.

Thus, b,(KY22n-5 (4.5)

,



Now we show that b,(Kn):<;;2n-5.

Select four vertices II] ,112,IIJ ,II. E V(Kn).

E~ = (WII2, Will ,111114,11111,,11.11. I WE V(K n) and w;t 111,111,11) ,II.}.
Then IE~I=2(n-4)+3=2n-5 and r,(K"-E~)=3 and (ul,u.,II)l isatota!

dominating set for K. - E~.Thus,

b,(K.)$, I Eo I::; 2n-5
By (4.5) and (4.6), it follows that b, (K,) = 2n - 5, if n;<;5.

Remark:

If G = K., then b,(K.) = 4= 2n-4 and if G =K), then b,(K,) =ce.

(4.6)



CHAPTER FIVE

THE BONDAGE NUMBER FOR TWO DOMINATION

One measure of the stability of the domination number G under edge removal is

the bondage number b(G). It was defined by Fink et al. [11]. The bondage number

beG) of a non-empty graph G is the minimum cardinality among all sets of edges

E for which y(G-E»y(G). Thus, the bondage number beG) of G is the

smallest number of edges, whose removal will render every minimum dominating

set of G a non-dominating set in the resulting spanning subgraph. The bondage

number is denoted by b(G).

Now we define the bondage number for two domination.

Definition:

Let G be a graph with at least one edge. The bondage number b2(G) for two

domination of G is the smallest cardinality of an edge set Eo c E(G) for which

Y2(G - Eo) > r 1(G). We also call b2(G), the two bondage number of a graph G.

Now we obtain some results on b2 (G).

Lemma 5.1

If any vertex of a tree T is adjacent with two or more end vertices, then b, (T) = I.

Proor: Assume that u is a vertex in T and two end vertices x and yare adjacent

to u in T. Take e=ux. If D isatwo-dominatingsetforT-x, then D is a two-

dominating set for T also.
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Hence, Y2(T-x)=Y2(T). But Y2(T-e)=t+Y2(T-x).

Thus, y,(T-e»Y2(T) and so b,(T)=1.

Lemma 5.2

Let T be a tree. If there is an end vertex u of T such that there is no 72 -set for

T containing u, then b2(T) =d.

Proof: Lei u be an end vertex of T such that whenever D is a Y'i--set for T,

then U '" D. Let e be the edge incident with u.

Claim: Y2(T-u)=Y2(T).

If rIfT -u) < Yl(T), lei Do be a 72 -set for T -u. Then DG v{u} is a Y2 -set

for T, which is a contradiction. Hence, r 1(T - u) == 71(T).

But Y2(T -e) = Y2(T -u)+ I = Y2(T)+1.

Thus, r,(T-e»y,(T) and so b2(T)=1.

Remark:

Converse of the theorem 5.2 is not true. There are trees T with b2 (T) = 1, but for

every given end vertex u of T there is one 72 - set of T such that U ED.

Example:

For T = P7' a path 01) 7 vertices, b2 (T) = 1, and for every end vertex u of p"

there is one rl. - set of T such that u EOD.

Now we obtain an upper bound for bl (G), where G is a tree.

Lemma 5.3

For every tree T, with n~3, b2(T)::>2.



62

Proof: Let T be a tree and P"'UOUIU1 u'" be a longest path in T. Let

el =1401/1 and e) =;!l1 u2" LeI H=T-el -e2"

If 1; is the component of H containing ul and A is a r 2 - set for TI, then

y:!(H)=yAT[)+2, whereas Y:!(T):'O:Y2(J;)+1 [as Au{uj} isa Yl-setfor T.]

Thus, b1(T)'S2.

Example for a tree for which b1 (T) '" 2.

Figure 5.1: A tree T with h) (Tl == 2.

Now we obtain exact values of b2(G) for some standard graphs G.

Lemma 5.4

The bondage number bl (G) for two-domination of the complete graph K", n <:: 3,

is b1(Kn)==n-1.

Proof: Let E, be a set of n - 2 edges of K, and H == K" - E1. Let Uo be a vertex

of H with least degree. Take deg(uo) == m < II -1, and N1(uo) == {ul, ..... ,um}. If

VEV(G) and v;tuo, ,u"" then degH(v»(n-l)-(m-l) and hence
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degH(\!) > n - m, and v is adjacent to at least one of uo, ,um. Then {uol is a

y, -set for H and r,CK.) == rl(H) == Yl(K" - E) == 1 whenever lEis n -2.
Thus, bl(K")~n-l (5.1)

Fix one vertex u of V(G)=V(K"). Let £1 be the set of all n-l edges of G

incident with u. Then for H == V -£" riCH) == 2 > r2CK.).

Thus, b2(K.}5:n-l

From (5.1) and (5.2), we can conclude that

b,(Kn)=n-l.

(5.2)

The hi (G), where G is a path, cycle, wheel are given in the following theorems.

Thwrem 5.5

The bondage number hI (G) for two-domination of the path of order n (n;:>: 2), is

given by

!1if !l'l"1(mod5)
b(P)-
1 " - 2 if n '" 1(mod5).

Theorem 5.6

If C. is the cycle on n vertices, b2(C.) is given by

!2if n "I (modS)
b (C)-
1 "- 3 if fl",1(mod5)

Theorem 5.7

TheOl,"em 5.8

If W, is a wheel on n vertices, then h, (W.) == 3, for all 11;:>: 4.

•
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We now obtain an upper hound for hl (G), where G is a connccted graph.

Theorem 5.9

For every connected graph G with n <: 2 vertices,

b2(G)~n-r2(G).

Proof: Let G be a counccted graph with n <: 2 vertices. Let 1/E VeC) and !IV be

an edge in G. Let £, be the set of edges in G incident with II.

Case (i):

Assume that b2(G»IE11=deg(u). Then r,(G)=Y,(G-E]) and

Y,CG)=l+Yl(G-U). If D is a minimum two-dominating set for G-u, then

(Nl(u)uN2(u»nD=~ in G, otherwise D is a two-dominating set for G and

hence Y2 (G) = r l (G - u), which is a contradiction.

Let S be the union of all minimum two-dominating sets for G-u and let

Ev = [{v}, N(S)] in G-u. If Y2(G-u-EJ5;Yl(G-U), then any minimum two-

dominating set D' for G - u - E, contains a vertex w such that dew, v) S 2. This

shows that wl1"S. But as ID'I=Y2(G-u),D'cS and WES, we get a

contradiction.

Hence, Y2(G - u - E,) ""1+Y2 (G - u) = Y, (0 - E1) = Y2 (G)

Y2(G-E] - EJ = 1+y,(G-u-E,) =-1+Y2(G)

b2(G) SI E1 vEvl = 1E]HEvl = deg(u)+1 Evl.

In G, the set N1(u) and N(S) are disjoint [otherwise if yEN1(u)nN(S), there

exists WE S such that WY is an cdge and a minimum two-dominating set D' for

G - u which contains w. Then D' is also a two-dominating set for G as

d( w,u) S 2, which is a contradiction as Y2(G) = 1+ y,(G - u) ].

Thus, IE,IS(n-l)-deg(u)-jsl

::;;n -1- deg(u) - y 2 (G -u) = n -1- deg(u) - (y, (G) -1).



Hence, bl.(G) ~ deg(u) + 11-l-deg(u) - (rl (G) -1)

i.e., b2(G)5:n-Yl(G)

Case (ii):

Ifb2(G):::IE11, then

b2 (G)::; deg(u)::; n - r2 (G)
Thus, in all the cases, we have

b2 (G)::; n - r2(G).
This completes the proof of/he theorem.
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(5.3)

(5.4)

Remark:

In a connected graph G, for any vertex, deg(u)::; n - r 1(G).
If Y2(G) '" 1, then deg(u):'On-l.

If Y2(G) •• 1, let D= {UI , ... ,II,l be a minimum two-dominating set for G, where

t '" IY,(G) I. To each u" there is a vertex Wi E VeC) such that deu), wa::; 2 only

for j=j. LetJ={i:l:5;:5:t and u,EN1Cu)}.

Then either 111:::1 or Wi ffN,(u) [orall i=I,2, ..... ,11.

Therefore, deg(u)::; n - t '" n - Y2(G).

Fink, Jacobson, Kinch and Roberts introduced the bondage number of a graph and

proved that any tree has bondage number either 1 or 2 and posed as an open

problem to classify the trees of bondage number 2.

In [14], B.L. Hartnell and D.F. Rail gave structural characterisation ,of class of

trees for which the bondage number is 2. We now demonstrate that their

techniques with some modification is valid to characterise the class of trees for

which the bondage number for two-domination b1(T) is 2.
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By p", we mean a path on n vertices. When we say that a path p" [XI " ••,X. 1 is
attached to a vertex v in a tree we refcr the operation of joining the vertices v and

Xl by an edge. We refer the graphs given in Figure 5.2 and Figure 5.3,

respectively as HI and H n"

y

"

w

Figure 5.2: Hj

"
"
y,

Figure 5.3: H"

When we say that we attach H. (or HI) to a vertex u in a tree T, we mean that

the vertex u and the vertex w of H, arc joined by an edge.

Definition:

A vertex v of a tree T is called a down vertex of T if Y2(T - v) < r2 (T) and

level vertex of T if r 1(T - v) == r2 (T).
If Y2 (T - v)";? r I (T), then v is said to be a non-down vertex. In the same way

we say that the vertex v of T is

1. a neighborhood level vertex if

1, (T - (N, (v) u{v}» '" Yl(T).

2. a neighborhood down vertex if

r2 (T - (N] (v) v {v}» < r 2 (T).



3. a neighborhood nOD-down vertex if

y, (T - (N, (v) u{v}»;;>:r 2(T).

Examples:

"'- -'_."' ". ." -.v

• • • • • •v
(b)

• • • • • •v

Co)

(d)

67

• • • • I :
(,)

Figure 5.4: (a), (b), (c), (d), (e)
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Figure 5.4 The vertex v is

C,) Level vertex and neighborhood level vertex

(b) Down vertex and neighborhood level vertex

(e) Level vertex but neighborhood down vertex

Cd) Non-down vertex and neighborhood non-down vertex

(e) Non-down vertex and neighborhood level vertex

We have already noted that for any tree b, (T)"; 2.

Let I>tl be the collection of trees T for which b, (T) * 1.
We devote the remaining section of this chapter to describe the class eo'

Thus,

Lemma 5.10

Let T he a tree and let u be a vertex in T. If either u is adjacent to two end

vertices or u is adjacent to an end vertex and a path p) is attached in T at u, or at

least two paths P, are attached in T at u, then Til' 80 and h, (T) == 1.

Proof: Let T be a tree and let u be a vertex in T. Assume that u is adjacent to

two end vertices, say Xl and YI or u is adjacent to an end vertex x, and a path

P2[X1 'YI] is attached at u or two paths P2[XI ,y,l and P2[X2 ,y2J are attached at u

as shown in the Figure 5.5.

"
Figure 5.5: (a), (b), (c)

'.
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Let D be a y, - set for T - Xl' Then D is also a two-dominating set for T and

D u {y]} is a r 2 - sel for T -e, where e = U Yl in the first case, while e = XI Yl for

the other two cases. Hence, b1(T) = I and T.,,!,o'

If T is a given tree, we consider the following operations.

Type (i)

Attach a path p) to T at a vertex v, where v is a non-neighborhood down vertex

in T and v belongs to at least one r2 - set of T.

Type (Ii)

Attach a path P4 to T at a vertex v, where v is a neighborhood down

vertex in T.

Type (iii)

Attach HI to T at v if there is at least one r 2 - set D for T such that

D n(N, (v)v {v}) ••~

and v is not a down vertex of T.

Type (Iv)

Attach H. (n:<: 2) to T at v, where v is not a down vertex of T.

We now prove that if T E 00 and S is a tree obtained from T by anyone of the

four t)pes of operations, then S E eo'

Lemma 5.11

If T E Co and S is a tree obtained from T by Type (I) operation, then S E £0.

Proof: Let TE[;O and veV(T) such that

Y2(T - (N, (v) u {v}))::: Yl (T)

•
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and v belongs to at leas! one r2 - set of T. Let S be the tree obtained from T by

attaching a Pl, say [x,y,zj at v.

y ,

Figure 5.6

As r 1(T - (N1 (v) U {v})) <: r, (T), it follows that y2(8) '" y, (T) + L Let e EE(T)
and D be a Y2 -set for T -e. Then Du{x) is a Yl-set for S -e and

Y2(S -e)::; IDu {x}1 =1 DI+ 1= Y2(T)+ 1'" Y2(8).

Hence, Y2(S-e)=y,(S) whenever eEE(T). Let D' be a h -set for T which

contains v. Then D'u{z} is a y, - set for S -e, where e == ux or xy or yz and

jD'u{z}1 = r1eT) + 1= Y1(S),

Thus, y:! (S - e) == Y2 (8) is true even if e E £(S) - E(T).

Therefore, S E (;0'

Lemma 5.12

If T E "tl and S is a tree obtained from T by a Type (ii) operation, then S E 80,

Proof: Let T E eo and let v be a neighborhood down vertex in T. Then

r 1(T - (N, (v)u{v}» < Y2(T).

Let S be a tree obtained from T by attaching a ~,say [x,Y,z, w] at v as shown

in the Figure 5.7.

•
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Figure 5.7

, w
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If D is a r l - set for T - (N, (v) v {v}), then D u {v} is a r2 - set for T and hence

r 2 (T - (N, (v) u{v}» + 1 '" Y2(T).

Also, D u {v, w} is a r1- set for S and any Y 2- sct for S should contain at least

one vertex of {y ,z, w}. Hence we have r 1(5) = Y. (T) + l.

If e=vx or xy or yz, then whenever D is a y)-set for T-(N1(v)u{v}),

Du{v,z} is a Y1-set for S-e. If e=zw, then Du{x,w} is a Y1-set for

S -e. If e E E(r), then let D be a y, -set for T -e. Then Du {y} is a Y2 -set

for S-e and

Y2(8-e):5:1 Du{y} I = IDI+ 1= y,(5).

Thus, in all the cases, Y,(S-e)=Yl(S) and hence 5E50.

Lemma 5.13

Let T E &G and let S be a tree obtained from T by a Type (iii) operation. Then

S E &0'

Proof: Let v he a vertex in T such that there is at least one r2 - set D fOr T such

that D ,,(N] (v) u {v}) '" t/J and v is not a down vertex of T. Let S be the tree

obtained by attaching H, at v as shown in thc Figure 5.8.

•
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y,

w

Figure 5.8

" t,

As Y2(T-v)2:Y2(T), we have Y2(5)=Y2(T)+2. If D IS any Yl-set for T

such that Dn(N,(v)u{v})nV(T);t.p, then

(i) Du {II ,yll is a Y, -set for S -e, where e '"SI/1 or XISI"

(U) Du {VI ,XI} is 11 r, -set for S-e, where e '" Yl XI or z] VI or Xl YI'

(iii)Du{x1'YI}isaYz-setforS-e,wheree=uwor wx] or X1YI'

If eEE(T), let D be a Y2-set for T-e. Then Du{x"y,} is a Yl-set for

S-e and Y2(S-e):::;IDu{X1'YIJI

~ IVI+2
Y2(T-e)+2

Y2(T)+2

= Y2(8)

Therefore, S E 1':0'

Lemma 5.14

If T E Co and S is 11tree obtained from T by a Type (iv) operation, then S E "0'

Proof: Let T be a tree and T E &0' Let u be a vertex in T such that u is not a

down vertex for T. Hence, Y2 (T - u) 2:Y1(T). Let H" be attached to u, as shown

in the Figure 5.9 and let the resulting tree be S.
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y,

w

Figure 5.9

y"

T

'"

As Y,(T-u);:>:y,(T), it follows that whenever D is a Y,-set for T,

Dv{x1 , ••• ,x, 'YI""'Y.} is a 12 -seIfer S.

[If D' isa Y,-selfor S, thenifuED', thcn D'nV(T) isa y:!-selfor T and

if u I'"D', then D' n VCT) is a 12 - set for T -u and hence D'2; 2n+Yl(n].

If eEE(T), let D be a Y,-set for I-e, then D'=Du{xj'Yi :i=I,2, ..... ,n}

isaYl-sct for Sand Yl(S-e):<:::iD'i=Yl(T-e)+2n=Y2(T)+2n"'Yl(S)

and hence Yl(S-e)=Yl(S),

WenotethatifD isaYl-setfor T,then

(i) Dv{x"y, :i=1,2,., .. ,.,n} IS a r, -set for S-e, where c=x}y! or x
J
IV

or \VII for some j,

(ii) Du{v, ,x, :i= 1,2, ... , .. ,n} is a 11 -set for S -e, where e = Yi Ii or Z} vj

for some j.

(iii) Du{x; ,y, :i;t j} U {Yl,I;} is a y, -scI for S-e, where e == tj lij or s; xj

for some j.

Thus, in all the cases, we have

Yl(S-e)==Yl(S)

for all e E E(S). Therefore, S E &0'

,
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CONCLUSION

This thesis is devoted to the domination theory in graphs. The concept of

dominating sets introduced by Ore and Berge currently receives more attention in

Graph Theory. A rapid growth of research in this area and a wide variety of

domination parameters have been introduced after the investigations on the theory

of domination in graphs by Cockayne and Hcdclnicmi. This thesis concentrates

mainly on the two cobondage number, the total cobondage number, the total

bondage number and the two bondage number of a graph.

This thesis contains five chapters.

In the first chapter, we present necessary graph-theoretic definitions and earlier

works on the domination theory.

In the second chapter, we have found a best upper bound for cb(G)+cb(G), the

sum of the cobondage number of G and the cobondage number of the complement

of G. We have characterised the graph G for which cb(G) + cb(G) '" n -1, where

I V(G)I '" n. A constructional method is also developed to obtain all these graphs.

If G is a graph with r 2 (G);;: 2, the minimum c~dinality among the sets

E[ c E(G) such that r2 (G +E,) < r, (G) is denoted by (Cb)2 (G) and is called the

two cobondagc number of G. This chapter also deals with the cobondage number

for two-domination. Upper bounds for (Cb)2(G) are obtained and a structural

theorem for the graphs for which (Cb)2 (G) '" 6.(G) has been proved.

Chapter three deals with the total cobondage number of a graph. An upper bound

for the total cobondage number has been obtained.

In the fourth chapter, we have proved that for any given positive integer n, we can

find a tree T for which the total bondage number is n. An upper bound for b,(T),

where T is a tree, is obtained. A rigorous proof was given to prove that the total

bondage number of the complete graph K, is 211- 5.
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In the last chapter, the concept of bondage number for two-domination is

introduced and a study on it has been initiated. If G is a graph with at least one

edge, the bondage number h) (G) for two-domination is the smallest cardinality of

an edge set Eo c E(G) for which Y2(G - Eo) > r 1(G). The exact values of b2(G)

are obtained for known families of graphs. An upper bound for b2(G), where G is

a connected graph has been obtained, It is also proved that hl (T) S 2 whenever T

is a tree. A structural characterization of the class of trees for which &2 (T) == 2 has

been obtained.

In future, anyone can proceed with this work by using algorithms.
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