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ABSTRACT

A set D of vertices in a graph G =(V,£) 15 2 dominating set of & if every vertex
in ¥ =D is adjacent to some veriex in D). The domination nnmber of G is the
minimum cardinality taken over all minimal dominating sets in ¢ and is denoted
by y(G). For a graph G with ¥(G)>1, the cobondage number cb(G)of G is
defined by cb(G)=min{| E,|: E, < E(G) and y(G+E,)<¥(G)}. The bondage
number H{(G} of a graph ¢ is the minimum cardinality of a set of edges of &
whose removal from G results in a graph with domination number larger than that
of . In the same way we can define two cobondage number, total cobondage
number, two bondage number and tolal bondage number. Different types of
methods are available depending on types of problems. Sharp upper bounds are
obtained for cobondage number of a graph and the exact values are determined for
several classes of graphs, The exact values of tolal cobondage number for some
standard graphs are calculated with the help of the methods used by Cockayme,
Hedetmiemi, Hartnell, Rall, Kulli, etc, An altemnative proof of a theorem for total

bondage number of Kulli for a compleie graph with at least five vertices is

provided. Finally, some operations on two bondage number are developed.
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CHAPTER ONE

INTRODUCTION

This thesis is devoted to the domination theory in graphs. The concept of
dominating sels introduced by Ore and Berge currently receives more attention
in Graph Theory. There has been a rapid growth of research in this area and a
wide variety of domination parameters have been mmtroduced, after the
publication of the paper ;‘Tﬁwards a theory of domination in graphs” by E.J.
Cockayne and S.T. Hedetnierm: [8]. 5.T. Hedetmicmi and R.C Laskar attributed
the following factors to the growth in the number of domination papers [19]:

a) the diversity of the applications to both real-world and other mathematical
‘covering’ or ‘location’ problems,

b) the wide vanety of domination parameters that can be defined,

c) the NP-compleleness of the basic domination problem, its close and
‘natural’ relationships to other NP-complete problems, and the
subsequent interest in finding polynomial time sclntions to domination
problems in special classes of graphs.

A brief survey of the literamire reveals the following sample of applications of
the concept of a dominating set.

Ore [24] mentions the problem of placing a minimum number of queens on a
chessboard so that each square 1s conlrolled by at least one queen.

Berge [3] mentions the problem of keeping all points in a network under
surveillance by a set of radar stations.

Application of domination in communication networks have been discussed by
C.L. Liu [23], P.J. Slater [29]. There are numerous papers on varous aspects of
domination theory. The domination theory has gained populanity and remains as
a major area of research due to the inspiring contributions by eminent graph

theonist like as C. Berge, E.J. Cockayne, 5.T. Hedetniemi, R.M. Dawes, B.



Bollobas, R.C. Laskar, R.B. Allan, P.J. Slater, P.L. Hammer, R.C. Brigham,
M.A. Henning, Douglas F. Rall, I.F. Fink, B.L. Hartnell, E. Sampathkumar, B.D.
Acharva, H.B. Walikar.

We consider only finite undirected graphs with neither loops ner multiple edges.

Graph:
A graph G = (¥ (G), E(()) consists of two finite sets. The first set ¥ (()is a non-

empty set of elements called vertices of &, and the second set E(G)is an edge
set of G, such lhat cach edge e £ is assigned an ordered pair of vertices

{w,v), called the end vertices of e,

Order and Size of a praph:

The cardinality of the vertex set ¥(() is denoted by » and is called the order of
(. The cardinality of the edge set is said to be the size of & andis denoted
by g.

Loop and parallel edges:

An edge ¢ having identical end vertices, i.e., a vertex v joined to itself by an
edge, is called a loop.

Parallel edges:

If two or more edges of a graph & have the same end vertices, Lhen these edges
are called parallel.

A graph G =(V,E) is called simple if it has no loops and no paralle] edges.

Isolated vertex, end vertex and support;
A vertex of a graph (G is called ap isolated vertex of G if it has degree zero. A

vertex of degree 1 is called an end vertex or pendent vertex. Any vertex which is

adjacent to a pendent vertex is known as a support.



Adjacent vertices, neighborhood sets:

Two vertices joined by an edge are said to be adjacent or neighbors, The set of
all neighbors of & fixed vertex w of a graph G {is called the neighborhood set of
v and is denoted by N, (¥).

The open neighborhood of # is
N{u)={veV iuveE)

and the closed neighborhood of « is
N[u] = {te} o N, (1)

Foraset § of vertices, the open neighborhood of § is defined by
NS = M)

ues

Subgraphs:
Let G be a graph with vertex set ¥{G)and edge set £(G).Then a graph H is

called a subgraph of G if F(H)c F(G) and E(H) < E{G).In this case, G is
called the supergraph of H.

Proper subgraph:
If H#c G but V(H)=V(G) or E(H)+ E(G), then H is called a proper

subgraph of G,
Spanning subgraph:

Let ¢ be a graph. Then # is called'a spanning subgraph of G if & has exactly
the same verlex set as .

Induced subgraph: Let 5 be a non-empty subset of the verlex set ¥V of G.
Then the subgraph G[S] of G induced by § is a graph having vertex set S and

edge set consisling of those edges of G that have both ends in S.
Similarly, let & be a non-empty subset of the edge set £ of (. Then the
subgraph G[F)] of G induced by F is a graph whose vertex set is the set of

ends of edges in 7 and whose edge set is F.
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Figure 1.1: G[U/] and G[F] for U7 = {u,v,w, ¥}, F = {g,,e,,e,,¢€:].

Yertex deleted and edge deleted subgraphs:

Let u € V(). Then the induced subgraph < ¥ (G} - {v} > denoted by G—u isa

subgraph of (¢ obtained by the removal of &.
If e = E{(}, then the spanning subgraph of G with edge set E{(G) - {e} denoted

by G —e is the subgraph of G obtained by the removal of e

For the graph G of Figure 1.1, the followings are the vertex deleted and edge

deleted subgraphs.
i = ¥ W
.
€4 €2 e
¥
€y w €
X X
() G-w (i) G-U, wherc (111} G-F, where

U= {v,y} F={e.e;5}

Fig. 1.2; Vertex deleted and edge deleted subgraphs.



The minimum and the maximum degrecs of vertices of a graph G are denoted
by &8(G} and A{G) respectively.

Complete graph:

A simple graph G in which each pair of distinct vertices is joined by an edge is
called a complete graph of G,

Thus, a graph with # vertices is complete if it has as many edges as possible
provided that there are no loops and no parallel edges.

If a complete graph G has #n vertices v,,v,,...,v,, then
G={{v,v,)v,#v;i,j=123,..,8}

The complete graph of # vertices is denoted by X,

1 edge

3 edges 6 edges

Figure 1.3 The complete graphs on at most 4 vertices.

Bipartite Graph;

An empty graph is a graph with no cdges. A simple graph G is called bipartite if
its verlex sct ¥ can be partitioned into two disjoint non-empty subsets ¥, and ¥,

(i-e., ¥V, =V and ¥, "V, = ¢) such that each edge of G has one end in ¥,
and one end in ¥ so that no edge in G connects either two vertices in ¥, or two

vertices in V, .The padition ¥ =¥, U¥, is called a bipartition of G.



Complete Bipartite Graph:

A complete bipartite graph is a simple bipartite graph G, with bipartition
V =¥, U¥,, in which every vertex in ¥ is joined to every verlex in V. If ¥,

has m vertices and ¥, has n vertices, such a graph is denoted by X

o

Complement of a graph:

The complement ¢ of a graph & is the graph with vertex set ¥ () such that

any two vertices are adfacent in G if and only if they are not adjacent in G.

Connected graph:
A graph G i1s said to be connected if every two vertices of G are connected,

Otherwise, G is a disconnected graph.

Let C(u)denote the set of all verlices in & that are connected to u. Then the
subgraph of & induced by « is called the connected component containing w.

A maximal connected subgraph of & is a component of &, Thus, a disconnected

graph has at least two components, The number of components of & is denoted

by a(G).

> =

(2) & b &

Figure 1.4: (2) Connected graph, (b) Disconnecled graph



Distance of two vertices:

The distance d{x,v) between two vertices » and v is the length of a shorlest
disiance «—v path in G. If there is no #-v path in G, then we define
d{u,v}=0.

Second neighborhood:

If v is a vertex of G, then we define the second neighborhood A, (v) of v as
N(Wy={u:ueV () and d(u,v)=2 in Gj.

Walk in a graph:
Let & be a graph. Then a welk in G is a finite sequence

W = voepyieqvy - Vi€ vy,
whose terms are altemmately vertices and edges such that, for i=12,---,k, the
edge ¢, hasends v, and v,.
The above walk W is a welk from origin v, to terminus v,.The integer k, the

number of edges iu the walk, is called the length of W,

Figure 1.5: uejve,ve,wegve,w is a walk.

In other words, the number of edges in W is called the length of ¥. If the

sequence of W comsists solely of one vertex, i.e., W =v,,then W is a trivial

walk with length 0.




Trail of a graph:
It the edges ¢,e,,...,e, of the walk

W = Vﬂﬁ'lvl Esz A .vk_lékvk,
are all distinct, then W is called a trail.

In other words, a trail is a walk in which no edge is repeated.

Figure 1.6 xe,we ve,ve,w is a trail.

Paths of a graph;
If the verlices of a walk
W =vieweyv, ... V1€ Ve,
are all distincl, then ¥ is called a path. A path with s vertices is denoted by P,

y

which has length n—1.

In other words, a path is a walk in which no vertex is repeated.

¥ W

Figure 1.7: xe ,weque,v is a path,



Thus, in a path no edge can be repeated either, and so every path is a trail. The

converse of this staternent 1s not true.

Cycle of a graph :

A non-trivial closed trail in a graph  is called a cycle if its origin and intemnal
vertices are distinct. In detail, the closed trail
C=w, ..,v'nvl
is a cycle if
(i) C has at least one edgc and
{i1) v, v,,...,v, are all distinct.
A cycle of length &, 1e, with k¥ edges, is called a k—cycle. A &k —cycle is

called odd or even depending on whether & is odd or even. A 3-cycle is often
called a tnangle,

A cycle with 7 vertices is denoted by C, .

Remark: A wu-v walk 1s called closed or open according as u=v or

u # v, The vertices v,,v,,...v,_, in the walk
W = VGE|Vi€1V2 . ..V;'._IE;_.U* '
are called internal vertices. In the graph G of Figure 1.5, C = ve,we uev is a

cycle.

Acyelic graph:

A graph G is calied acyclic if it has no cycle.

Tree of a oraph:

Let G be a graph. If G is a connected acyclic graph, then it is called a tree.
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.
[ - -
1 vertex 2 vertices &
[
. o
. . 3 vertices 4 vertices
3 vericcs
5 verlices

Figure 1.8; Trees wilh at most five vertices

A tree on n vertices is denoted by T, which has exactly two pendent
vertices.

Join of a graph:
Let & and G, be two graphs wilh vertex sets ¥, and ¥, and edge sets E, and

£, respectively. Then their join G, +G, is a graph whose vertex set is ¥ W ¥,

and edge set
EVE, ={uw:ucV Avel,)}.
If Tm Shy Seereenen <n,, then
Ko ey = Ky + K, + + Ky

Wheel of 8 Graph:
A wheel is a graph obtained from a cycle by adding a new vertex and edges

joining 1t to all the vertices of the cycle.
A wheel with n vertices is denoted by W, and W, =K, +C

H=i*

Connectivity of a Graph:The connectivity & of a graph G is the minimum

number of vertices whose removal results in a disconnected or trivial graph. A

graph G is said to be » — connceted if k = n.
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Edge Connectivity:

The edge connectivity A of a graph G 1s the mimmum number of edges whose
removal results in a disconnected graph. A graph G is said to be nr—edge
connected if 42 7.

Subdivision Graph:

An edge e=uv of a graph G is said to be subdivided if ¢ is replaced by the
edges uw and wv for some vertex w not in ¥(G).

The graph obtained from (G by subdividing cach cdge of & exactly once is
called the subdivision graph of G and is denoted by S(G).

Maiching of a Graph:

A subset M of edges of G, is called a matching if for any two cdges ¢ and £ in

M, the two end vertices of ¢ are both different from the two end vertices of f.

€

£

Figure 1.9: Two matchings M, and M,.

In the graph G of Figure 1.9, M,={e,e,} and M, ={e,,e,,2,} are both

matchings.
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Saturation:

Let & be a graph and let v € ¥({G). Then if v 15 the end vertex of some edge in
the matching M, then v is said to be M —saturated and we say "M saturates
v.” Otherwise, v 15 M —unsaturated. Thus, in Figure 1.9, a,b,c and e are all
M, —saturated while f and & are both M| —unsaturated; every vertex of G is

M, —saturated.

Perfect Matching:

If M 1s a matching in G such that every vertex of G is M —saturaled, then
M 15 called a perfect matching. The matching M, = {e,,e,,e,} of Figure 1.9, is

a perfect matching.

Maximum Matching:
A matchmg M of a graph & is called a maximum matching if & has no

matching Af' with a greater number of edges than M has.

i
Figure 1.10; Maximum matching

Any perfect matching is a maximum matching. The matching of the graph in
Figure 1.16, shown by the bold lines is maximum but not perfect,

Independent Sets: A subset S of vertices in a graph G is said to be an

independent set of G if no two vertices of § are adjacent in G. An independent

set is maximum if G has no independent set §' with |S]>|S].
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(a) (b)

Figure 1.11: (a) Independcnt set and {b) Maximum independent set.

A set 5 of edges of (& is said fo be independent if no two of the edges in § are
adjacent.

Independent Number:

The maximum number of vertices in an independent set is called the independent

number of & and is denoted by 5,(G).

Edge Independent Number:

The maximum cardinality of an independent set of edges of G is called the edge
independent number of & and is denoted by S,((), which is also called the
matching number of G. The minimum matching number 5 (G) of G, is the

minimum number of cdges in a maximal independent edge set,
An edge analogue of an independent set is a set of links no two of which are

adjacent, i.e., a matching.

Covering of a Graph:

A subset K of vertices in a graph G such that every edge of G has at [zast one

end in K is called a covering of G. The number of vertices in 2 minimum
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covering of G is called the covering number of G and is denoted by a,{(G). The

edge analogue of a covening is celled an edge covering,

An edpe covening of a graph G is a subset £ of edges of G such that each
vertex of G is an end of some edge in L. The edge coverings do not always
exist. The number of edges in a minimum edge covering of G is denated by

& (G). The number «,(G) is called the edge covering number of G. For

terminology and notations not given here, the reader is referred to [3, 13, 25].

Delinition:

If x is a real number, [x] and | x | denote respectively the least integer not less

than x and the greatest integer not greater than x,

Now we present the following definitions of various types of domination in a

graph.

Dominating Set:

A set DV is said to be & dominating set in G if every vertex in V' - D is
adjacent to some vertex in D, The domination number of G is the minimum

cardinality taken over all minimal dominating sets in (¢ and is denoted by (G,

Independent Dominating Set:

A dominating set D of a graph G is called an independent dominating set of G
if D is independent in G. The cardinality of the- smallest independent
domimating set of G is called the independent domination number of G and is

denoted by y,(G).
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Total Dominating Set:
A dominating set D of a graph G without isolated vertices is called 2 Lotal

dominating set of G if the subgraph G{D] induced by D has no isolated
vertices.
The cardinality of the smallest total dominating set of & is called the total

dormination mumber of G and is denoted by y,(G).

Connected Dominating Set:

A dominating set D of a connected graph & is called a connected domimating
set of G if G[D] is connected. The cardinality of the smallest connected
dominating set of & is called the connected domination nnmber of G and is
denoled by y (G).
For any connected graph G with A{G}<n -1,

¥(G) <y, (G) =<y (G)
Total dominating sets were first defined and studicd by Cockayne, Dawes and
Hedetniemi [9]. In addition to several new results invalving total domination,
Allan, Laskar and Hedetniemi [2] have studied several new inequalities for the
domination nomber of 2 graph.
Theorem 1.1 to Theorem 1.4 are cited from [9].

Theorem 1.1
If & 1s & connected graph with n = 3 vertices, then

76

Theorem 1.2
(1) If & has n vertices and no isolated vertices, then
Y (G)=n—-AGY+1.
{i)) If & is connected and A{G)< n-1, then
Y, (G) < rn— A(G).
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Theorem 1.3

If G has n verices, no isolated vertices and A{G} < n -1, then
Y (G +7,(GY<r+2,

with equality if and only if G or G =mK 5.

Theorem 1.4

If & has # vertices and no 1solated vertices, then

L _'?:{G)—‘_ ?r(GJ )
7.(G) 2

Robyn Dawes has proposed the following conjeciures:

yi(G)£n+l—{

For any connected graph G = (¥, E) with |¥]2 2, then
() 7(G)+r,(G)<n and
(ii) #,(G)+ ¥,(G) < n, where |[(G)f =n>2.

R.B. Allan et al, [2] have settled thesc conjectures by proving the following

theorem.

Theorem 1.5
If G=(V,E) is a graph with ‘VJ =n such that each component has at Icast 3
vertices, then

y(Gy+y {G)Y<n
Fnrthermore, in [2], Allan et al. have proved the following results:
Proposition 1.6
For any graph G without isolaied vertices, then

¥G)+y,(G)<n

Theorem 1.7
For any connected graph G with | V| >2 vertices, y, 225, .
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The following resulis were obtained by B. Bollobas and E.J. Cockayne [4]
conceming y¢ G} and y,(G).

Theorem 1.8

If G has no induced subgraph isomorphic to X, ;,, (k 22), then

y:(G) s p(GYk~1)—(k-2).
Theorem 1.9
If G has no isolated vertex and [Vf =n, then
n—r(G)
r (G)< R_Y(G)H_”W—"

In [27], E. Sampathkumar and H.B. Walikar have found out connected
domination number for some particular classes of graphs.
The connected domination numbers of some standard graphs from [27] are given
as follows:

(1) v (K,)=1.

(1) ¥. (K, +G)=1, forany graph G.

i) 7.(K 0 = {‘2”; e

(v} 7. (C,}=n-2.

{v) For any tree T of order =,

y.(T)=n-e
where e s the number of pendent vertices (i.e. vertices of degree 1)
n 7.

Theorem 1.10
For any connecled (n,q}—graph G with maximum degree A(G),

by
L{GHIJ <y (G)<2q-n.

§ iy
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E. Sampathkumar [28] has introduced (1,4) —~domination number of a graph.
The (1,k)-domination number y,, of G is the minimum cardinality of a
dominating set D such that ]Nl(v)ﬁV—D|£k for all veD. In [28),
Sampathkumar has introduced this new concept and obtained some bounds for
7, and for y,, .

A set UV is a k—dominating set if every point of ¥ -1/ is adjacent to at

least & ~points in /. The &—domination number ¥, ©of G 15 the minimum

cardinality of a ¥ —dominating set.
Some results from [28] are given bellow.

Proposition 1,11
If § =k, then

7x(G)
k

S ru{G).

Proposition 1,12
If k<&, then

}’]k(G]£Y;{G)'

Propaosition 1.13
If G has no isolated vertices and |¥(G)|=n, then

n+l+A-1,if §<k<A,
Gl +7,(GYsqn+2, if k<d.
n+l, i A<ksn-1.
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Bondage Number:

The bondage number &) of » nonempty graph G is the minimum cardinality
among all sets of edges £ for which
WG—E)>¥(G).

Thus, the bondage number of G is the smallest number of edges where removal
will render every mmimum dominating sct in ¢ a "non-dominating" set in the
resultant spanning subgraph.

Since the domination number of every spanning subgraph of a non-empty graph
G 1s at least as great as y{(), Lhe bondage number of a non-empty graph is

well-defined.

Cobondage Number:

The cobondage number ¢b(G) of a graph G is the minimum cardinality among
the sels of edges X ¢ A (V)- £, where

P(V)={XcV:|X[=2
such that y(G+ X) < »{G). A y —setis a minimum dominating set.

If we compare y(G) and yfH}, when H is 2 spanning subgraph of G, it
is immediate that yf# ) cannot be less than y¢G}. Every comnected graph G
has a spanning tree 7 with (G} =y(T) and so, in general, a graph will have
non-empty sets of edges F g E for which {G — F) = (G). Such a set F will
be called an inessential set of edges in G.

However, many graphs also possess single cdges e for which (G - e) > y(G).
The bondage number 5(G) of a graph G is the minimum cardiuality of a set of
edges of ¢ whose removal from G results in a graph with domination number

larger than Lhat of .
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J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts [11], introduced the bondage
number H{(G) of a graph G. In [11], Fink et al. have obtained sharp bounds for
b(G) and the exact valnes of 5(G) for several classes of graphs have also been

determined.

The following resulis have been established in [11].

Proposition 1.14
The bondage number of the completc graph K _(n 2 2) is

B(K )= E}

The bendage number of the # - cycle is
3,if n=lfmodi)

2, atherwise.

Theorem 1.15

.E:(CJ:{
Form2?2,

Mﬁjz{i,{fnslfmodﬂj

1, otherwise,

Theorem 1.16

IfG=K{n,n, ... M), where my <n, <-.onnn < n,, then

[[%],g“nm =land n,, 22, for somem, 1 <m<t.

E}(G)=<2{-],ifnl =R, ==, =7
-1

Zrir , otherwise,

hr=i
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Theorem 1.17
If T is a non-trivial tree, then A(T) <2,

Corollary 1.18

If any vertex of a tree T is adjacent with two or more end-vertices, then 5(T) =1.

Theorem 1.19
If F is a forest, then F is an induced subgraph of a tree § with 5(S)=1 and a
tree T with &(7)=2.
Theorem 1.20
If G is a connected graph of order #2 2, then 5{G) < n—1.
Theorem 1.21
If G is a non empty graph, then
H(GY < mun{deg(u}+ deg(v)—1; w and v are adjacent vertices}.
Theorem 1.22
If & is a connected graph of order # > 2, then

G < n-y(G)+1.
The following conjectures were made in [11].

Conjecture 1.23
If G 15 a non-empty graph, then 5(G) < A(G) +1.,

But in [15], Hartmell and Rall have given a counter example of the above
comjecture.
The following results have becn obtained in [15].
Theorem 1.24
If G is a non empty graph, then
HGY< min  {deg(w)+e({x},V - N[x])}.

el xeilu)
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Theorem 1.25
If G has edge connectivity A, then

G A(GY+ A -1.
Avertex v of atree T will be called a level vertex of T if y(T—v)=»(T) anda
down vertex if ¥{T —v) < »{T),
In [14], Bert L. Hartnell and Douglas F. Rall have studied the effect of removing
edges in the domination number y(). An edge is essential if (G —e) > y{()
and not essential otherwise, that is, if #(G — &) = y(G).
In [11], Fink et al. were posed an open problem to classify trees of bondage
number 2.
Harinell and Rall [14] have presented a constructive characterization of the trees
for which the bondage number is 2.

In [14], they have demonstrated how to build larger trees with bondage number 2

from existing ones. They defined four types of operations on a tree.

Type (1)

Attach a P, to T at v where v is a level verlex of T belonging to at least one

y—setof T.

Type (2)

Attacha F; to T at v where v is a down vertex of 7.

Type (3)

Attach H, to T at v where v belongs to at least one y —setof T.

Type (4)
Auwach H, ,nz2,to T at v, where v can be any vertex of T.
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IFinally, let C={F:T isatrecand T=X,, P, or H_, forsome n22 or T can
be obtained from £, or X, {n > 2) by a finite sequence of opcrations of type (1),
(2), (3) or (4)}.

£, and C are shown identical in [14], where £, = {7:T is a tree and b(T) =2}.

Here the tree H, refers to the tree given in the following figure.

Figure 1.12: The tree H .

To determine the bondage number of a graph, we omit certain edges of 7 in order

to obtain a spanning subgraph H of G such that ¥ (#H) > ¥(G). Another direction

1s to study the domination number of & after adding some edges.

In other words, our aim is to study the relation betweeu (G + £;) and y(G),
where E; c E(G). Can there be any graph H for which G is a spanning
subgraph such that y{H) < y(G) ? If there are some such graphs H, what is the
minimum value of {E(H)- E(G)}? This leads to the cobondage number of G.

V.R. Kulli and B. Janakiram [22] have iuitiated the cobondage number of a graph.
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Two-domination number:

Let & be a graph. A subset D of V(G) is said to be a two-dominating set for & if

to each ueV -D, d{u,v) <2, for some ve D. A mimmal cardinality of a two-
dominating set is said to be two-domination number of G and is denoted by

¥,(G). A two-dominating set D of G 1ssaildtobea y, —setif |D| = y,(C}.

Examples:

Figure 1.13: G,

a b v

Figure 1.14: G,.
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ae ]

Figure 1.15: G,.

For G, {a} 1sa y, —set.
For G,, la,b,c} isa y, —set.

For (o, {a,b} isa y, —set.

Remark:

y G € (G and y,{G)=y(G*), where V(G)=V(G) and wu,ve¥ are

adjacent in G* if and only if d(z,¥) <2 in G.



CHAPTER TWO

THE COBONDAGE NUMBER OF A GRAPH
INCLUDING TWO DOMINATION

For a graph G =(V(G),E(G)) with y{G)>1, the cobondage number cb{G) of
(r 15 defined by

ch(G) = min{ |Ey|: By € E(G) and y(G + Ep) < T{G)}
If y(G)=1, then the cobondage number is not defined. The following
results regarding cb{G) are oblained in [22].
If the order of G 15 n, then

eb{G) s n-1-A(G) (2.1)
eb((7) < MGY+1 (2.2)
cb(G)sn—1 (2.3)

If # 2 4 and neither G nor G is 2K,, then

ch(G) +cb(G) < 2(n - 3) (2.4)
In this chapter we improve the result (2.4) and prave

eB(G) + ch(G) < n.
Also we characterize the graphs which satisfy the equality

ch{G) +ch(G) = n—1.
Let & =(V(G),E(G)) be a graph with ¥(G) 2 2. If D is a minimum dominating
setin & with |D| =y{G) 2 2, then to each vertex u e D, let

V, =veV(G)y:N()nD={u} and ve D}.



27

If ¥V,=¢ for some vertex uecp, then y(G+e)<y(G) whenever e=uv

and ve D—{u}. In this case, cb(()=1. Now we assnme that V_=¢ for all

vertices v € D. Clearly, If «,x, € D, u, = u,, then ¥, n¥, =¢. Hence, if n is the

order of G, then

7 \‘EJEJ",IEL{G]I
y(G)

min §

VH

Select one vertex &y € D such that

Voo e DY

=min{ |F,

Select another vertex v=u« in D. IT

E =pwiwel, 0w},

then yH{G+E)<y{G)-1

and by s|E[s LD o P
y(G) ¥(G)

Thus, we have

Lemma 2.1

If G 1s a graph with order a and y{G) > 2, then

A

HGy

ch(G) <

Corollary 2.2
If & is a graph of order » and ¥(G) = 2, then

eB(Gy=n-1eG=K,.

Proof. If y{G)2>2, then n 22 and if ¢b(G)=n-1, by (2.6},

A=-1< i 55.
y(G)y 2

Then n=2 and G=K,.

Conversely, if G= FZ, then obviously ¢b{G)=n-1.

(2.5)

(2.6)



28

Corollary 2.3
If order of G is # and y(G)22,then cA{G)}=r—2 if and only if G=2K,0r K_J

or K, UK.

H

Proof. From (2.6), ch(G) <
r(G)

H
< 2 Therefore,

If =3 and y((G) 2 2, then G is not connected and G is cither E; or K, UK.
If n=4, then cb{G)=2 andso G is 2K,.

Conversely, if G=2K, or E or K, wK,, then ¢cb(G)=n-2.

Lemma 2.4

If G is a graph of order r with 1 < &5(G) < A{G) <n—2, then
eb(G) + cb(G) < . (2.7)
Proof. As 1 2 5(G) < AGYSH-2, »(G) =2 and ¥(G) 2 2.

(So both cb{G) and ch(G) exist ).
By Lemma 2.1,

L S (2.8)
2 2

Y@ y(G)~
If ch{(G)+ch(Gy=n, then in (2.8) all the inequelitics must bc replaced by

eB(G) + eb(G) <

equalities and we have ch{(G) = ch(G) = %.

From {2.1), it follows that —<n-A(G)—1 and %in—ﬂ.{a)-—l.

=
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So, A{G)+ A(G) < n—-2, which is a contradiction as
n—1=AG)+{n—1-AG)) = A(G) + 8(G) < AG) + AG).
Then ch{G)+cb(G) # r and we obtain the tequired result.

Example:
For the following graphs, we have

eB(G) +cb() =n -1,

C,,C,=2K,,Cs, Cy, Co, K,y 2K .

[

Let us now charactenze the graphs for which
cH(GY+eb(Gy=nr—1,
If n<6, we can list those graphs.
When n=4, G=C, or E:=2K2.
When n=5,G =C; (note that C, = ;).
When n=6, G=C, or C,.
Let a given graph G with order r 2 7 satisfy the equality
eb(GY+eb(Gy=n—1. (2.9)
As ch(G)+cb(G) s (n - A(G) -1+ (n - A(G)—1), we have
n—122n-A(G)-AG)-2 and AMG)+AG) <n-1.
As n—1=A(G)+8(G) £ A(G)+A(G) <n—1, we have &(G)=A(G), ie., G is
regular. Hence, & is regular.
Claim: y(G) = (G) = 2.
If either ¥{G) 23 or ¥(G) 23, then

Ty L £n(l+l}
G HGy 23

r—1=chb(G)+ cb(@] <

implying that 67— 6 < S# which contradicts that 5 > 7. Thus, y(G) =2 = ¥(G).
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Let D ={x,y} be a y —set in G. Then every vertex in V{G)—(N,(x)\{x,y}) is
adjacent fo y. As Lhere are at least # — A{G}— 2 vertices adjacent to y,
n-A{G)-2 < deg v < A(G)
Le., n—-2<2A(G),

Similarly,
n—-2<2MG)=28(G)=2(n-1- A(G))
ie, 2AG) s

Then E—lg.ﬁ[(})gﬂ.
2 2

These observations prove the necessary part of the following characterization
theorem.

Theorem 2.5

Let & beagraph withorder n27 and let 1<8{G)<A(G)<n-2. Then G

satisfies the equality cB(G)+ch(G)=n~1 if and only if
(1) 7 is regular,
(i) 7(G)=y(G)=2 and
ray M n
i) =1 < A(G) < —.
(iii) > Gy

Proof. In view of (he earlicr observations, it is enough to prove the sufficient part.

Let G be a graph that satisfies (1), (i1} and (iii). If # is even, then
A(G),AD))= {%— ! %} eb(G)=n—1-A(G)
and cb(G) =n -1- A(G). This is because ¥(G) = 2 = y(G).

Now ch(G)+cb(G)=n-1-A(G)+n—1-A(G)
=2n-2-(A(G)+ MG}

=2n—2—(£—1+£ —n-1.
7 2
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If r1s odd, then

n—1

D eh(G)=cH(G)=n—1- :

n—1

AG) = AG) =

and hence ch{G)+ch(G)=n-1.
Given an integer #2 7, we now describc a method to construct all graphs G of

order n, which satisfy the equality {2.9).

Case (i): Let n beevenand A{G) = —;l -1.

Observation: If D={x,y} is a y—set in G, then y is adjacent only to the

vertices in F{G)— (N, (x)u{x,»}) (in particular, x and y are not adjacent) and

H=G-{x,y} is %—2 regular,

Construction: Let D = {x,3,2,,2,,...... +Z, 5 +. First form any ? regular graph

H with the vertex set F{(H)={z,,z,,...... ,Z, -} and then obtain &G from H as

follows.

V(G)=V and

E(G)=E(H)wi{xz,:i=12,..... \

Obviously, (i) A(G)= % 1.

(i) & is regular.
(iii) D ={r,y} isa y —setinboth G and G.

(iv) cb(G):n—%=%.
(v) cb(G) = -E—l

and hence, (vi) eB(() +ch(Gy=n—1.
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Let 3, be the family of graphs with order », (7 is an even number greater than

7}, constructed by this method. From the observation made just before the

descnption of the construction, it follows that a graph G with order 7> 7, n even,

AGY= % —1, satisfies the condition (2.9) ifend onlyif G € 3.

Case (ii): Let # be even and A{(G) = %

As .&.{G):—;-, 5.(5):-;_1 and hence Ge3,.If 3 _={G:Ge5,}, then 3, is

the family of praphs with order n>7, where n is even, ﬁ(G}=% whence

ch{(G) +eb(G) = n -1 holds.

Case (iii) Observation:

If n27 is odd, then n=4k+1 or 4k +3 for some positive integer k. As r is

odd and %—15&(6]2%, we have .ﬁ{G}=HT_1. Since G 15 a ih‘!T_l-rf:gl.llﬂr

) -1 ) -
graph with order n, 52— must be even ; i.e., n=4k+1 {and the possibility

n=4k+3 cannot arise). Let n =4k +1 and D={x,y} be a y-setin G. Then x

and vy are not adjacent to each other.

(If xyeE(G),each of x and y is adjacent fo only E; —1 wvertices in
¥ (G) - {x,y} and hence {x, y} cannot be a dominating setin ).

As f.‘.‘.(FG")=nT_1 and y(ﬁ) =2 if D'={x",y'} is a ¥-setin G. then xy'e E(E)‘

So x'y'e E(G) and N, (x)Yn N, {y'}=¢ in G. There exists a vertex z'c V()
such that x'z', y'z'e E(G).
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Thus
(1) N(XD{x =g, NOIninyied m G
(i) Mx)nix,pt#d; NO)nix,yi#¢ inG;
(i) If x'e ,(x) in G, then y'¢ N (x} in .

Construction:

Let ¥V ={x,y,x',3,2,,24,...... ,Z44-21- Construct in any manner a (2k — 2} -regular
graph H with vertex set V(H)={z,z;,.......2;; 3}. Obtain G from H as

follows:
V{G)=V and
E(G)=E(H)Yu{xr' x'y', ¥y} Ulaz, (1 <1< 2k~ 3
Uiyz, 1 2k-1<isdk -3 uix'z, 1 1<i <2k -2}
'z, 12k <F<4k-3).
Then clearly, (i) ¥({G)=4k+1,

-1

(i) AMG)=A(G) =2k = —

(iif) D ={x,¥} isa y -serin G,
(iv) D'= {x',¥'} is y-setin G,
(v) 7(Gy=y(G) = 2 and
(vi) cB(G)+ch(G)=n—1.
Let 3,,(n=4k+1, k£ 22} be the family of all graphs of order # and constructed

by this method. We note that Ge S, ifand only if GeJ, andhence I, =3
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Thus, we have the following thearem.
Theorem 2.6
If n27;rn#3{mod4), then the set of all graphs G with order n satisfying the
equality
eb(GY+ (G =n—1
is the family S 3.

Examples:

1. For every nteger n, 2K, €3,, and K, €3,

mt

2. For n=13, the graph given in Figure 2.1 is a member of J,,.

Figure 2.1. A graph G € 3,;.

Remarks:

1. If n27 and n # 3 {mod4), every graph & € 3, satisfies the equation

B(G) = | ——1
oHG) L(G)J
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This shows that there are infinitely many graphs for which ¢b((7) attains the

upper bound given in (2.6). This class includes 3, for ell even » = 8.

2. If n> 7 and even, every graph G e 3_ satisfies the equation

n
r(G)
3. T pn>7 and even, forevery Ge 3, cH(G) = A(} +1.

4. If n=7 and n=1(mod4), the equality ¢b((Z) = A{G) holds good for every

ch(G) =

Gel,.

5. Let n27 and n #3 (mod4}. The class 3, LJET_::-E W, where ¥ is the family

of all regular graphs (¢ with order n, -g-—l £ AG) ég and y(G)=2. We can

construct a regular graph G with ¥(G) =2 and %-— 1 < A(G) 5—% such that

G, uﬁ:.
Graphs given m Figure 2.2 and in -Figure 2.3 are not in I, and Smuﬂ_m

respectively.

Figure 2.2. A graph Ge 3, with G N, .
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Figure 2.3: A graph Ge S, U but Ge X, .

In this section we extend the concept of the cobondage number to two

dommation,

Definitioin:

Let ¢ be a graph and let y,{G)=2. Then the minimum cardinality among the
sets E, < E(G) such that y,(G+E) <y,(G) is denoted by (cb),{G) and is
called the two-cobondage number of G,

Aset E, C E(E} Tor which y,(G + E,) < 7,(G) is said to be a two-cobondage sct

and a minimum-two cobondage set is called (ch), — set of edges for .

Two-cobondage number {cb}, ((7) for some standard graphs.
1.If P, 15 apathon » 26 vertices,

1 if n=1,2,3 (mod 5)

(“b)z(ﬁ}z{z if n=4,0 (mod 5).
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2.If C, isacycleon n =26 vertices,

1 if n=1,2,3(mod 5)
2 if n=4,0 (mod5).

(b}, (C.) ={
We now obtain upper bounds for (cb),{G?}.
Let & be a graph wilth ,{G)2 2. If & 1s a vertex in G, let

A= {u} O N ()N, (1)
and B=¥F—A4. Then
1 <|B|<n—(A(G)+2) if G is connected
and 1<|B|<n—(A(G}+1} if G is not connected.

If B, ={ux:xe B}, then y,{G+E)=1<y,(().
Thus we have the following proposiiion.

Proposition 2.7
If G 15 a graph with y,{G) 22, we have

(eh), (G) < n=AG)-1.
Theorem 2.8
H y,{(G)=22, then
(i) (cb),(G)<A(G) and

R 1<f

i} {cb), (G} <
(ii} (b}, (G} 0 5

Proof: Let D={u, u,,....u } bea y,~set for G, where m=y,(G). To each
Elsi<m, let
Y, = N = 9N ,)
If ¥, =¢ for some {, then let E, ={e=wux}, where x 13 some fixed vertex in
D—1u;}. Since y,(G+ E,) <y,{C) and hence in this case
(ch),(Gy=|E |=1.
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If ¥, ¢ forall i, select one i, such that
¥,| = min{|¥, J:i=1,2,...,m}
Selectone j#i,{l,2,...,m} and let
E, = {_}?uj ryE Vfu}‘
Then we have y,(G+E ) <y,({)and

AN a0 Pliant 1L N R DL AR )
e N R T
Also, (c0),{G)<|E||< A(G).
Thus (cb)z{G)ﬂmin{ﬁ(G), . —1} (2.10)
?’z(G}

Example:
Graphs G for which (eb),(G) = A(G).

NI G=2K,, (cb), (G) = MG} =———1=1.

(1) 2 (eb), () (G) (G

The next result improves the inequality

, n
(ch), () = mm{f}.(G), C) - 1}.

Theorem 2.9
If & 15 a gmph with »,(¢)=2, then either {cb),(G}<1 or

(ch),(G) < min«[é-.(G), r H(G)]'

Proof: Let G be a graph with y,(G)>2 and let D ={u ,u,,...,u_}, where
m=y,{(G), bea y, —setfor G, Toeach {,1<i<m, let
A = {u € N,(u,):d(u,u;)is not less than 3 for all j=i,i€ {1,2,...,m}}.

el
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If X, =¢, for at least one i, say, for i, let e=w, u, for some j=i,. Now we
have D~{u,} isa y, —set for G +e and hence in this case (cb},(G)=1.

Assume Lhat X, = ¢ for all i=1,2,...,m. Let S, be a subset of N,(¥,) wilh
minimum cardinality such that each u € X, is adjacent to at least one vertex of §,.

Let ¥ be a minimum dominanng set for < X, >.

We nole that | ¥,| = y(< X, >) and

S| s| x| Let

f, = min {1+|Sr|=| LRCAIN Y:IJFI}

and let ¢ = min {.t[ = 1,2,3,...,m}.

Select one {; such that z=¢, . Select some j=i, €{1,2,3,...,m}. Take

E={u;xixeX tofu,u ) if r=]}’h|+1
={u, xrxe§tu{uu t if r=|S,|+1£|N1{u=.)|
={u x:xeS;} i |S,|:|N1{u!.]|=r.
Then D—{w,} isa y, —set for G+ E, and hence i this case
{cb]z(G)£|E,|=r (2.11)
Let k ={cb),((). From (2.11}, we get the following:

k1, then k smin {]8)+1,| 3|+ 1,|¥, @)} for i=1,2,3,...,m.

Hence in this case n > 2k y,(G). We note that the set §,, X, for i=1,2,3,....m,
are all disjomt.

n

Therefore, & < L
2y,(G} 4

Fat

Thus, we have either (¢b},(G) <1 or {cb),(G) < min {ﬂ(G) > ’::G)},
2

Corollary 2.10 If n24, {(cb),(G)< g:

-*
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Corollary 2.11
If each component of G contains at least three vertices, then ¥,(G) < g and hence

H
1<
27,(G)

and (cb),(G) < min {a(r}) 2 ”(G)}.

Remark:

If 7,(G) #1, then yz{a} =1 and hence (ch}z(ﬁ) i not defined.

Let us now analyse the structure of graphs for which (cb), (G) = A{G).

Let G be a graph with y,(G) 2 2 and {¢b),(G) = A(G).

If A(G)=1 and n 24, then (¢b),(G)=A(G) and G=mK, (m=2). So, assume
that A(G) = 2.

Let D be any minimum y,-sct for &. Let D={wu,u,,......,u_}, where
m=y,(G).

First we claim that D is an independent set in G. If possible assume that «; u, is
an edge in G forsome £, j (1£i< j < m).

Then |N,(x,)-D|SA(G)-1 and if E ={u,x:xeN,(u,)—D},it is clear that
D-{u,} 152 y,-set for G+FE, and hence {ch),(G) < A(G)—1, which is a
contrediction. Thus, D2 is an independent set in (7.

Next we claim that Ny (u) N (u,)=¢ forall i= je{l,2,...... R 1Y

For if possible, assume that N, {u ) N (u, ) # ¢ forsome 1, ] (i /).

If we take E, = {u, x:x€ N\(4;)- N (1)}, then |E | A{G)-1 and D—{u;} isa

¥, —setfor G+ E| and hence (cb), (G) < A(G) -1, which is a contradiction.
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Thus, N (u, )N (u,)=¢ forall iz j. We note that |N1 (“s}| = A(G) forall i.
Fora fixed i, 1f £, ={u;x:xe N;(&)} forsome i+ j, then y,(G+E,)<y,(G)
and hence | E;|=| N, (u,)|2 A(G).
Let x € ¥, (D). Then x < N {u,) for some i. Let

A(x) =iz € N,(D): Ny (2) A N, (D) = {x}}.
We claim that 4(x) # ¢.
If A(x)=¢, then by taking E, = {u, y: y € N\(1,)— {x}] for some i # j, we have
Y. (G+E,)<y,(G) which is a contradiction.
Thus, A(x)= ¢, forall xe N,(D).
Thus, we have the ineqnality

| D[+| MDY |+| M (D) S| P+ | MDY+ D | A(x)j<n (2.12)

T2 (D)
Hence, y,(G}+ 2y, {G)A(G) < n. {2.13)
We have the following proposition,
Proposition 2.12
If for a graph G, A(G)>2 and (cd},(G) = A{G), then

A(G) s%ﬁ (2.14)
)

Now we oblain certain properties of a graph & for which

_ _n-1{G)
@:(6)=86)= "7,

Let G be a graph with (cb),{G} = A(G) =2 and

AG) = n-7,(G) )
27,(6)

As ﬂ(G):%Eg?,we get
2

n <y, (GY(1+2MG)) < | D |+ MDY+ D | Az} <

»
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and hence | A(x)|=1 forall xeN,(D).
Also from the proof of thecrem 2.9, the set < U{A{x} xe N, (u‘.)} > can contain at
most one edge for each i€ {1,2,...... ).

Thus we have
1. ¥(Gy=DuUN(D)w(uwA{x}): x e N {D}) is a parition of F(G).
2. {A(x)|=1 forall xe N (D).

»

< L.J{A{x) rxe Ny, )} > can contain at most one edge, for each .

4, D is an independent setin G.

LA

If A(x) = {3}, then N,()(DUN(D)) = x}.
6. B,(G) =independent number of G = 2A(G)-1.
We now give an example for a graph G for which p{G) =36, ;rzl(G}mf-l and

n—y,(G) 36~4

A(G)=4 and so
27,(0G) 3

= 4=A(G).

Figure 24: G



CHAPTER THREE

THE COBONDAGE NUMBER OF A GRAPH WITH
TOTAL DOMINATION

This chapter is devoted to the total cobondage number of a graph. Given a

graph G, without isolated vertices, we can find the lotal domination mumber

¥.{G).If ,(G) > 2, G cannot be the complete graph X, where n = | V(G)|+ As

2=y, (K )=y G+ E(G) < ¥ AG), we can find a subset £, C E(G), with
least cardinality such that ¥, (G + E;) < 7,((). We define this [east cardinality as

the total cobondage number of .

Delinition:

If G is a graph without isolated vertices and #,(G) > 2, then the total cobondage
number of G is denoled by {cb),(G)and is defined as

(c6) (G)=min {|E,|: E, < B(G) and y,(G+Ey) <7,(G)}.
We can obtaimn (¢b),(G) for known standard graphs. First we aobserve that
(c8),(G) < A(G).
Let D be a minimal total dominating set for . If the induced graph <D >
conlains a component with at least three vertices, select such a component
{x) 2y oeeees , X, 1, n23 of <D> Now

Ey={ix,y:5ye E(G) and x,y € E(G)}.

Then D-{x} is a total dominating set for G+ E;. If every component of
< D> is X, , sclect a component {x, ,x,} and select one x € D —{x,x,;}. Then
if

E, = {,}winy xy e E(G) and x,y ¢ E(G)}.
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Then D~ {x} is a tolal dominating set for (r + E,. Hence, (cb),(G) <A(G) in
both the cases.
There are ifinite number of graphs for which (cb),(G) = A(G).

Examples for graphs for which {¢b),(G) = A(G).

R A

Figure 3.1
'Ir'] 1-"2 'r'j ‘.-'4
Figure 3.2

&S,

. .

v ¥4

v2 . * & “"2.@ @"3
Figure 3.3 Figure 3.4

For the above four graphs (cb), (G} = A(G).
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Now we show that for the graph given 1n Figure 3.4, (¢h), () = A(G) = 4. First
we note that # =16, G is regular with A(G) =5(G}=4, and D ={v,,v,,v;,v,}
is a y,—set for G and hence p,(G)=4. Let E, C E(G) such that
¥ (G+E) <y (G). Theneither ¥, (G+E)=3 or y{G+E)=2.

Casel: ,{(G+E =3

Let D={z ,z,,z;} be a y,-set for G+E. As D is a y, —set for G+ E|
there is at jeast one edge from each vertex in {(V(G)—{z,,z,,z;}} to D. As D

is a total dominating set, there should be at lcast two edges in < D> with

respect to & + E| .Hence, there are 15 distinct edges which are incident
with {z,,z,,z,} and {deg(z,)+deg(z,)+deg(z,)}217 In G+E,.
Casell: y (G+E,)=2.
Let D={u,v} be a y,—set for G+ E,. Again, in G+ E,,
deg{u) + deg() 214 + 2 =16,
Butin G, deg(u} + deg(v)=28. Hence,

E|z4.

Thus, in all the cases |E |‘ 2 4, Therefore, (ch), (G)= 4.

But we can find £, such that |E|=4 and D ={v,v,,v,} is a y,—set for
G + E,. Then {cb),(G) = 4. This proves that (cb), (G) =4.

Example:
Given Any posilive integer n>2, there exists G with

A(G)=n, y,(G) >3 and (cd),(G)=A(G)=n. It is enough to consider the case
ne5 (in view of the examples 3.1, 3.2, 3.3, 3.4).

Let V(G)={a,,a,,- Y7 .. FORRPERY B O Gy e VG oy dy e ,d.}
and

E(G) = {a,a, ,b,b, ,cc, d,d,: jrhke{l23, Ay iab od v

{o,d, by j=23 ¥ 1
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Then for ¢, y,(G}=4, (ch),(G)=A{G)=n. Now we obitain the necessary
conditions for a graph G to have (cb),(G) = A{G).

Theorem 3.1
Let G#gK, and 7,(G) 2 3.

If (cb),(G)=A(G), then every y, —set D of (G salisfies the following
conditions;

(1) D=gK, and n =2gA{G) for some integer g =2,

(i1) every vertex in D is of maximum degree and

(iii) every vertex m ¥ — D is adjacent to exactly one vertex in D2,
Let D be a y, —set for G. If C is a component of <D > which contains more

than two vertices, € contains at least two vertices x and x' such that both

<C —{x}> and <C - {x'} > will contain no isolated vertex.

If E,={x'w:weV-D and N(wW)nD={z}}, then D—{x} is a total
dominating set for G+ E, and hence (cb),(G) <|£,| S deg(x) -1 < A(G).

As (cb), (G)=A(G), it follows that every compenent of <> must
contain exactly two vertices. Thus, A(G)=¢K,, for some ¢ 22 [g > 2 follows
from the fact that y,(G)23]. Let ue D, '

Claim: deg(u) = A(G).

Let E, ={vw:weV -D and N (wynD={u}}, where v is the unique vertex
in £ which is adjacent to &. Let v, be a vertex in £2— {i,v} and e =wv,. Then
D—{u} is a total dominating set for G+(E +e) and henee
A{G) = (cb),(G) < |E,|+1 < deg(w).

Then, we have deg(u) = A(G} and

¥

=|El=MG)-1. As

VH

= A(G)-1 for

all ueD,it follows that if we ¥ - D is adjacent to u, then we ¥, and hence
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w is not adjacent to any vertex in D —{u}. Thus every vertex in ¥ - D is

adjacent to exactly one vertex in D and

v-p={]7,.
neld
Therefore,
I -Dl=|U ¥.|=24(a&)-1)
e
and n=|D|+V - D|=2q + 2¢(A(G) -1} = 29A(G).

We recall the following result [9].
Theorem 3.2

If G is a connected graph with order R 23, then 7,(G) < 2?19:. Now we obtain

the following theorem.
Theorem 3.3
If G 15 & graph with order A, without an isolated vertex and y,(G}2 3, then

(ch),(G) < min{a(f}),”T_z}.

Proof: Let G be a graph without isolated vertices and y (G)z3. Let §
be a total dominating set of smallest cardinality, (|S|=7,(G)23). By

minimality, to each s € § has at least one of the following two properties:
P1: There exists & we ¥ —§ such that N, (w).S = {s}.
P2: < §—{s}> contains an isolated vertex.
Toeach 5.5, let
| V,={weV -§: N (w)~S=1s}}

and C, ={weS: wis an isolated vertex in < 8§ —{s} >}.
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Let M={sc8: s has the property Pl} and N=§-M. Then
M={seS:V =2¢land N={se§5:V, =4}
Case (i):
Let Nw#¢, consider one s'elN. Then [CS,] < deg(s'} <A(G) and
Co||S|-1=7,(G)-1. Let C, ={z;,2,,++,2,}. We note that if g+ 1,then
z, € M and |C'3.| <n—{g+1).
We construct E, as follows:

(a)If g =1,F, = {z,5} for some s €8 -{z,s}.

(b)If ¢ is even, E, ={z,z, 2.2, Z,42.}

i‘—‘ < |Vﬁ(f)-} and S~ {s'} is a total dominating set for G + £, .

Therl1£|E!|£{

Thus, in this case, (cb),(G) <{£| < |'ﬂ(26)-‘ and

g-, if G is connected
n—

(D) (D)< |E| sl s
2 q .
2 E UF tfi‘-’l

Therefore, (¢b), (G} < min HV ﬁ(f)-‘, 7 E_’-G) z ;2} 3.1}

Case (ii):
Let N =¢. Select a vertex s'e§ such that |¥,|=min{|¥,|:s€ S |. Then

(@) 12|V, <deg(s").

V=8| _n-7(6)
| S| 7, (G)

(c} 05| Cy| < deg(s) ~| V|

(b} |Vs'l£
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IfC. 2¢,let C.={z, 25, ,Z} and construct £, as in case (i).
If C,=¢, put E,=¢.
Select some seS-{s'} and put E,={sw:weV_.}. Then §-{'} is a total
dominating set for G+ £, + E, and hence,

(e, (G) <|& |+ [Ezl < deg(s') < A(G).
Thus, in Lhis case, (cb), (&) < A{(G).
If <&> is not connected, let C,,C,,----+,C, be the components of S. If there
1s a component £ with |C1|23, we can find ai least two points s, ,s, €C, such
that <C; —{s,}> has no isolated vertices for j=1.2.

Foratleastone s5,, je{l,2}, wehave

y | =7 G-, (G) -1
£ 2
2%, () +2 _n—
Say, |V, <2 Y:Z( ) <7 4 as y,(G}23. Let Ey={s,w:wel } then
S—{s} is a total dominating st for G+ E, and hence {cb), (G} <|E,|< ”—;4.
Thus, in this case,  {cb), (G) < min{ﬁ(G),”—j}. (3.2)

If there is no component C; of < 5> such that |C}|23, then S=¢K, for some
g=2.
Let S={x;,y;:j=12, g} where x,y, e E (<S5>).

There is a point, say x, =85 such that

v 1£|V'3|=”—J’;{G]‘_
B 21 (S B A1 (&)

Let £, ={pyw:wel, } Uix x}.
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Then §—{x,} is a total dominating sct for G+ £, and

n-y, (G} __r .
r (G  y(G) 4

(cd),(G) < | By =1+| ¥, | <1+

as ¥,(G) 24 in this case.

n—2
—

<

=ta

So, we have (cb),(G) = min{ﬂ(G),%}. As nz4, wehave
Thus, in all the cases, we have

(cb}, (G) < min {a({:),”zi}

Hence the result.



CHAPTER FOUR

THE TOTAL BONDAGE NUMBER

This chapter deals with total bondage number of a graph. We show that for a given

positive integer #, ihere is a tree T whose tota! bondage number is ». We obtain
bounds for total bondage number of a tree T in terms of |V(T}| and A{T). We

also obtain complete graphs with total bondage number 2n -5 for #2 5 vertices.

1. Introduction:
First we define the tota] bondage nurnber for a graph.
Definition:

Let G be a graph. If there exists £, < £(G) such that
(i) there is no isolated vertex in G—E, and
() 7, (G- Ey) > 7,(G),
then the edge set £, is called a total bondage cdge set for G.
If there is at least one total bondage edge set for G, we define
b,(G)=min}|E,|: £, is a total bondage edge set of G}
Otherwise, we put &, (G) =cc.
We call b,((), the total bondage number of a graph G.

Example:

1. If G is a path on six vertices, then b, (G) = 2.
2. b,(G)=w for ihe following graphs:
(a) X, ,{(star on »n +1 vertices),
(b) graphs for which each component is X, , or X, .

(c) X;.
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In [21], Kulli and Patwari calculated the exact values of 4,(G) for some slandard

graphs.
Theorem 4.1
If P, 15 the path with # > 4 vertices, then

2, if n=2(mod4)
1, otherwise.

b{(F)= {
Theorem 4.2
If €, is the cycle wath 7 =>4 vertices, then

3, if n=2{modd)

2, otherwise.

b,(C,,):{

Theorem 4.3
If X, , 1s the complete bipartite graph with 2 < m <, then b,(X,, .} =m.

Theorem 4.4
If X, is the complete graph with n > 5 vertices, then b (X, )}=2nr-5.

Theorem 4.5
H G be any graph with > 5 vertices, then b (G) <2 -5,

In this chapter, we investigate certain properties of the total bondage number of a

graph.

2. Bound for total bondage number of a tree.

We know that for a non-trivial tree T, the bondage number »(T) < 2. But given
any positive integer n, we can find a tree T for which the total bondage number
b(T)y=n.

For example, if n is the posilive integer, consider the following tree on 3n+42

vertices.
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Figure 4.1: Tree H, .

We denote this tree by H .

Theorem 4.6
Forthetree H_, b, (H }=n.

Proof. First we note that y,(H,)=2n+1. Let

Then y,(H, - E;)=2n+2> y,(H,)and hence
b{H,)<|Ejj=n. (4.1)
Let £, < E(H,) and |E,|<n and therc is no isolated vertex in H, — £, .

Then we nole that i

(1} Vi, Vi € E) forall j=1,2,...... I
(i) 1f vowy,, € B, then v, ,v,, | 2 F, and
if vy, vy, €E), then wpvy , 2 E ;
(111} as |E]| < n, there is at least one & (1 < & < n)such that

VoVakz s Vig—a Vet o Y Vs E B
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Thern the set D= {v;,vy, 1, Vi o ¥,V FE{1,2,3,.. A —1k}} is a total
dominating set for H, — E,.
As |D|=2n+l, we have
v, (H, -E)=y,(H,)=2n+1,
Then y (A, ~-E)=7y,(H,), whenever |EI|{H.
Thus, 8,(H, )2 n (4.2)
From (4.1) and (4.2), we have b, (H ) =n.

We now abtain an upper bound for &, (T), where T is o tree.

Theorem 4.7
T 1satreeon n verticcsand T # X, , then 5,(7T) < min{A{G), HT_I}

Proof: Let T be a tree which is not o star. Let P=v, ,v,,v,,...... V. (kz4) bea
longestpathin T'. If »(7}<3 or k=5,7,(F—¢}>y,(T), where ¢ =v,v,.In
this case, £, = {g }and 5,(T)=1. Now we assume that y,(7)24 and £ 2 6,let
€ = vy, .

If vy €D for some minimum total dominating set D, for T,, where T, is the
component of T -e, which contains the vertex vy, then Du{v,}is a total
dominating set for T while |D|+2 is the ¥.{T—¢). In this case,
¥ (T —e)>y, (T} Hence, 6,(T)=1.

S0, assume that v; 1 not a vertex of any minimum total dominating set 2 for 7.
Then clearly, deg(vy) =1 in 7, and v, € D for every minimum total dominating

set for 7,. If deg(v;}=2 in T, then v, € D for il minimum total dominating set

for 7.
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We can take E| ={v,v,,v,»}to get y (T—E)>y,(T}). Hence, in this case,
7,(T) €2, Now we consider the case in which deg{v,) = 3.
Let S be the set of all paths £ in T such that A starts from the point v, and
PR ={v}.
Let £ e§. Ifthereisno P, € §,P, # £ such that P is a part of P,, then we say
that | is a maximal path in T starting from the vertex v, such that £ 8 = {v }.
Let A be a maximal path in T starting from the point v, such that
P A ={v,}. Then £ 1is of length at most 3. If length of P, =2, then e, is the
edge in A incident with v,. If e, is a part of a path B, of length 3, when
PPy ={y}, let e, be the edge of P, which is incident with e,, then
yi(I—e)>y, (). If e, 1s not a part of any path £ of length 3, when
PP, ={v}, then y (T—e ~¢,) >y (MNand y, () <2.
S0, assume that there is no maximal path F| of length 2 starting from v, such that
PR ={v,}. If length of =1 forall A €S, thenas v, ¢ D for any minimal
dominating set of T;, we get v, € D. In this case, let ¢, =v,v,, so b(T)<2, as
v (T—e =) >y (T)
S0, assume Lhat there are maximal paths £ in S with length 3. Let
012 Qe Q, be a maximal collection of distinet such paths. If v, ¢ D, for all
minimal total dominating set of 7, then let

E, ={v,v,}U {central edges of 0,:i=1,2,...... .

If v; 1s in some minimum total dominating set for 7, , then take
E, = v,vy,vyvs 1o {all central edges of Q,:i=1,2,......,n}
n—1

Then 7, (T - E,) > 7,{T). Therefore, b,(T) <|E,| < -

Also, as | E; | < deg(v,), then we have 5,(T) < A(G).
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Remark:
Let G be a connected graph other than X X, X and K| . As G= K, K, K,

and K, , there is a path of length 3 in G. Then we can find E, ¢ £ such that
G-E 15 a spanning tree T for ¢ containing a path of length 3.
(|El=g—n+1). For the wee T we find E,cE(G-E,) such that
Y(G-E ~E)>y{(G-E}z 7,(6). So, 5{(G) < |E |+|E,}.

Thus, for every connected graph G other than K ,K,.K, and X, b(G) is

[,p?

fimite.

3. Total bondage number of X,

If 5 and T are disjoint subsets of F{(), by [S,T], we mean the set of all edges
in & which have one end in § and the other end in 7. Thus, e=uv[§,7] if
and only if [{w,v} N §|=1={{u, v} ~T].

In [21], Kulli bas proved that 4,(K,)=2n-35, if n 235,

We give an another proof for this result.

Theorem 4.8
Let K, be a complete graph with n = 5 vertices, then b,(K_ )=2#-5.

Proof: First we prove that b,(K,} 2 2n—5. Let E,  £(K,) with |E,|< 226,
such that there 15 no isolated vertex in K, —E;. We claim that 7, (K_-E,)=2.
Assume that 3, (K, — ;) > 2. Hereafter we denote the graph X, - £, i::y H.
Let s=min{n—1—deg, (u):u e V(H)}. As [E,|< 21-6, wehave 0< <3,
If s=0, then deg, (x;) =n~1 for some u, € V(H) and hence {u,,#,} is a lotal

dommating set for H, when w, = u, € ¥{H}, which is a contradiction.




a7

If s=1, there are verices u,we¥{H} such that deg, (#)=rn-2, the edge
uwe E,. As w is not an isolated verlex in H, wve E(H)} for some v (as
vewuvg £, ). Now {u viis a lotal dominating set for H, which is a

contradiction.

Assume that s=2. Select u,v,v, three distinct vertices in H such that
deg,{u)=r—73 and the edges wv, ,uv, € E;. Let §'=V(H)—{u,v,,v;}. Then we
gbserve the following:
(i) | S |=n-3,
(1) there 1s no vertex w e 8" such that both v w and v,we E,.
(If such a we §" exists, then {u,w} is a lotal dominating set for H ).
(ui)let §={weSvwe L}, T={weS:v,wekE} and U={weS:both
vyw and v,we E }, Then §'=5w7Twl, §=¢, T=¢ and the subsets
S,T,U are disjoint to each other.
Assume that S=+¢. Then vv, € E,, as v, is not isolated in & If
T=¢, then |Ey|> 2+2(n-3)= 2n~4, which is a contradiction.
Hence, T=¢. To each weT there is at least one =z e/ such that
wz € E,. {Otherwise {v,,w} i3 a total dominating set for H). This
implies that |E,|2 2+2|U}+2|T}=2+2(n-3), as §=¢, which
is @ coniradiction.
Thus, §=¢. Similarly, T # ¢.
Asto each we §', either wy, e E, or wy, € £, we have
|{{v1 ,vz},S']r"\Eﬂ]=n—3+|U| (4.3)
(1v} ix one verlex w €S and a vertex w, eT. To cach we T, either
wwe E, or there is a vertex z € 8" such that both wz and wz e E,.

(Otherwise {w,w ] is a total dominating set for & ).
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In the case wywe E,, sclect w,w, otherwise select wz. By (his process, by
varying w in T, we pet a collection E, € £, and |E]| =|T|. Now Io each we ¥,
either wy,we E, or there is a vertex ze$' such that both wz and w,zeE,.
Select w,w if it 15 In £, otherwise select wz. We get a collection £, = E, and
|E2| = IS | We note that

|E, WE,|2|8|+|T|-1and (£, W E,)A[{n,1), $'1=¢ (4.4)
By (4.3} and {4.4), we have

|Eol 2 n=3+|U|+|8|+|T|-1+2=n-34+n-3-1+2=2n-5,

which is a contradiction as |Eﬂ] < 2n-6. Thus, 5 # 2. Hence the only possibility
s 5=3.
Assume that s=3. Let u,v,,v,,v, be four vertices in # such that uvw is an edge
in K, for all w=uw,v,, ond wv, ek for j=1,2,3. Let
S'=V{H)={u,v,,v;,v;}. There is no vertex we S such that viweE, for all
F=1,2,3 (as {u,w} 15 not a total dominating set for H).
Let §, ={we S ][y}, w]|=3~j in B} for j=1,2,3.
As §=3, to each we S|, there are at least two vertices w, and w, in 8" such that
ww ,ww, € E; (w, may be in §). Now it is possible to select | 5,| disjoint edges
in £, such that each onc of selected edge has one end in S, and the other in 5",
Thus, |Eo| 2 3+2]5|+2]S,]+2{ 5]

23+2( 8|+ 8, +| )

=34+2{rn—4)

=2r-3,
which is a contradiction.

Thus, in all the cases, we get a contradiction.
Thus, b(K,)22n-5 (4.5}
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Now we show that 5,{K )<2n-5.
Select four vertices w, ,u, ,u,,u, € V(K,).
E, = {WEZ,WHE,HlM,“HhHa,HEHq_ |we V(K ) and w= u,,uz,u3,u4}.
Then | Ey|=2(n-4)+3=2n-3 and y,(K, ~E,}=3 and {u,,u4,,4,} is a total
dominating set for K, — £,. Thus,
b(K,)<|E,|< 2n-5 (4.6)
By (4.5) and (4.6), it follows that b,(K,)=2r-5, if n 25,

Remark:
If G=K,, then 5,(K,)=4=2n-4 andif G=K,, then b,(K,) =x.



CHAPTER FIVE

THE BONDAGE NUMBER FOR TWO DOMINATION

One measure of the stability of the domination number & under edge removal is

the bondage number H(G). Tt was defined by Fink et al. [11]. The bondage number
b{C) of a non-empty graph G is the minimum cardinality among all scts of edges

E for which y(G—E)>y(G). Thus, the bondage number 5(G) of & is the

smallest number of edges, whose removal will render every minimum dominating
set of G a non-dominating set in the resulting spanning subgraph. The bondage

number is denoied by 5(G).

Now we define the bondage number for two domination.

Definition:
Let & be a graph with at least one edge. The bondage number 4,(G) for two
domination of G is the smallest cardinality of an edge set £, c E(G) for which

y:{G—E,) > y,(G). We also call b,(G), the two boendage number of a graph (.

Now we obtain some results on 5,(G).

Lemma 5.1

If any vertex of a tree T 15 adjacent with two or more end vertices, then &, (T} =1.
Proof: Assume that # is a vertex in 7 and two end vertices x and y are adjacent
tou in T. Take e=wux. If D 15 2 two-dominating set for T'—x, then D is a two-

dominating set for T also.
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Hence, y,(T—x)=p,(T). But y, (T -e}=1+7,(T—x).
Thus, y,(T—=e)> ¥,(T) and s0 b,(T)=1.

Lemma 5.2

Let T be a tree. If there is an end vertex u of T such that there is no y, —set for
T contuning u, then b,{T) =1

Froof: Let u# be an end vertex of T such that whenever D is a y, —set for T,
then w ¢ D. Let e be the edge incident with u.

Claim: y,(T-u)=y,(T).

If y,(T-u)<y,(T), let Dy bea y,—set for T—u. Then D, w{u} is a y, —set
for T, which is a coniradiction, Hence, y,(T ~u) =y, (7).

But y,(T—e)=p, (T i) +1 =y, {(T)+1.

Thus, y,(T—¢) > y,(T) and s0 b, (T =1.

Remark:

Converse of the theorem 5.2 is not true. Therc are trees T with b,(F) =1, but for

every given end vertex u of T there is one y, —setof 7 such that u e D.

Example:
For T=F;, a path on 7 vertices, &,(I')=1, and for every end vertex u of £,

there 1s one ¥, —set of T such that ¥ € D.

Now we obtain an upper bound for b,(), whete G is a tree.

Lemma 5.3

Forcverytree T, with n 23, b,(T)< 2.
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Preoof: Let 7 be a tree and P=w,u u,...... u, be a longest path in 7. Let
& =Hyiy and e, =w u,.Let H=T—¢ -¢,.

If 7, 13 the component of H containing u, and 4 is a ¥, —set for 7,, then
7.(H)=y,(T)+2, whereas y,(T)< y,(7}+1 [as A {w )} isa y, —setfor 7.}
Thus, b, (7)< 2.

Example for a tree for which b, (7)) =2.

Figure 5.1: A tree T with ,(7) = 2.

Now we obtain exact values of ,{¢) for some standard graphs G.

Lemma 5.4
The bondage number b, () for two-domination of the complete graph X, n 23,
is b(K )=n-1.

Proof; Let £ beunsetof n—2 edges of X, and H =K, — E,. Let 1, be a vertex
of H with least degree. Take deg(y,)=m <n—1, and N,(u,)={x,,...... i, 3 I

vel(G) and vzug,.... ,, then deg,{(vi>{(n-1)-(m-1) and hence
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deg, (v}>n—m, and v is adjacent to at least one of wug,...... .4, . Then {u,} isa
yy—setfor A and y,(K,)=7,(H}=y,(K, — £)=1 whenever [E| <n-12.

Thus, b,(K,)2n-1 (3.1}
Fix one verlex u of ¥V(G)=F(X,). Let £, be thc set of all #—1 edpes of G
incident with . Then for H =V -F,, y,(H)=2>y,{K ).

Thus, 5,(X,)<n-1 {5.2)
From (3.1} and (5.2}, we can conclude that

b (K )=n-1.

The b,(G), where G is a path, cycle, wheel are given in the following theorems.

Theorem 5.5
The bondage number 5,(G) for two-domination of the path of order 1 (r22), is
given by

1 if n#1(mod5)

bﬂ(mz{z if n=1(mod5).

Theorem 5.6
If C, is the cycle on n vertices, 5,(C,) is given by

2 if n#l{mod5)
34 r=1l{mod5)

b} (Cn) = {
Theorem 5.7 b, (K, ,}=mn{m,n).

Theorem 5.8

If ¥, is a wheel on » vertices, then b,(W,)=3, forall n>4.



64

We now obtain an upper bound for 5,{G), where G is a connected graph.

Theorem 5.9
For every connected graph G with 2 2 verlices,
b,(G) < n—y,(G).

Proof: Let G be a connccted graph with n 2> 2 vertices. Let # € V(C) and uv be
an edge in . Let E, be the set of edges in G incident with ».
Case (i)
Assume  that b {G)>|E|=deg(u). Then y,(G)=%,(G—E) and
72(G)=1+y,(G-u}. If D is a minimum two-dominating set for G~u, then
(Niw)w N,(upynD=g in G, otherwise D is a two-dominating set for G and
hence y,(G) =y,(G —u), which is a contradiction.
Let § be the union of all minimum two-dominating sets for G—u and let
E ={phL, NS tu G-u. If ,(G-w=-E,) <y,(G—u), lhen any minimum two-
dominating set /' for G—u—E, conlains a veriex w such that d{w,v) < 2. This
shows that weS. But as |D|=y,(G-u),D'cS and weS$, we get a
contradiction.
Hence, Y2(G-u—E)=1+y,(G—u)=y,(G-E)=7,(G)

YAG—E —E }=1+7,(G-u—-E)=1+y,(G)

b{G)<|E, VE, E,

=| Ey|+

= deg(u) +| E,
In G, the set N,(«) and N(S) are disjoint [otherwise if y & N, (1)~ N(S), there
exists we S such that wy is an cdge and a minimum two-dominating set D' for
G~u which conlains w. Then D' is also a two-dominating set | for G as
dw,u) <2, which is a contradiction as y,{G)=1+y,(G-u) |.
Thus, |Ev[£{n—l)—deg(u)—]5|

sn—l-deg(u)—y,(G—u) =n-1-deg(u}-(7,(G)-1).
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Hence, b,(G) < deg{u)+n -1 -degu}~(7,(G)-1)

Le, B, (G)<n—-7y,(G) (5.3
Case (ii):
If b,(G)<| E,|, then
by (G) = deg(u) < n—y,(G) (5.4)

Thus, m all the cases, we have
b, ()< n=-v,(G).

This completes the proof of the theorem,

Remark:

In a connected praph G, for any vertex, deg(u) <n—y,(G).

If p,{G)=1, then deg(u)=n-1.

If y,(G)#1, let D={u,,...,u,} be a minimum two-dominating set for G, where
t=|7,(G)| To each u,, there is a vertex w, € (G} such that d(x,,w,) <2 only
for j=i Let I={i:15i<t and u:-EN,(u)}.

Then either |7|<1 or w, g N {u) forall i=1,2,.. .. 1.

Therefore, deg{u) = n—t =n—y,{G}.

Fink, Jacobson, Kinch and Roberts introduced the bondage number of a graph and
proved that any tree has bondage number cither 1 or 2 and posed as an open
problem lo classify the trees of bondage number 2.

In [14], B.L. Harinell and D.F. Rall gave structural characterisation .of class of
trees for which the bondage number is 2. We now demonstrate that their
techniques with some modification is valid to characterisc the class of trees for

which the bondage number for two-domination &,(7T) is 2.
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By P,, we mean a path on »n vertices. When we say that a path P [x,,...,x,] is

attached to 2 verlex v in a tree we refer the operation of joining the vertices v and

x, by an edge. We refer the graphs given in Figure 5.2 and Figure 5.3,

tespectively as A, and H .

¥ 1y
z 5
¥ X
W W
Figure 5.2: H, Figure 5.3: H,

When we say that we attach H, {or 7 ) ton vertex v ina tree 7, we mean that

the verlex u and the velex w of H, are joined by an edge.

Definition;

A vertex v of a tree T 15 called a down vertex of T if y,(T—v}<y,(T) and
level vertex of T if p, (T —v}=,(T).

If y,(T-v)2y,(T), then v is said to be a non-down vertex. In the same way

we say that the vertex v of T is
1. a neighborhood level vertex if
72T~ (N ()W {vh )=y (T).
2. a neighborhood down vertex if

Y {T = (N (v} ) <y (7).



3. a neighborhood non-down vertex if

V(TN (w2 p(T).

Examples:

* i : ] L ] > =
Y
{a)

L L 2 L 4> L L
{b)

— ... . B
(c}
¥

[ 2 L & L

(d}
D
(e)

Figure 5.4: (a), {b), (¢}, (d}, (e)
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Figure 5.4 | The vertex v is
{a) Level vericx and neighborhood level vertex
(b) Down vertex and neighborhood level vertex
{c) Level vertex but neighborhood down verlex
(d} Nen-down vertex and neighborhood nen-dewn vertex
(e) Non-down vertex and neighborhood level vertex

We have already noted that for any tree 5,(7) < 2.

Let &, be the collection of trees T for which 4,(T) = 1.

We devote the remaining section of this chapler to describe the class &;.

Thus,

g, =47 :T is a iree and vy (T —e)=p,(T) forall ee E(T}}

Lemma 5,10

Let T be a trec and let # be a verlex in T. If cither # is adjacent to two end

vertices or « is adjacent to an end verlex and a path P, is attached in T at », or at

least two paths P, are attached in T at w, then T & &, and 5,(T) =1.

Proof: Let 7 be a tree and let & be & vertex in 7. Assume that & is adfacent to

two end vertices, say x, and y, or u is adjacent to an end vertex x, and a path

Py[x,, ] is attached at u or two paths P [x,y;] and P,[x,,y,] are attached at

as shown in the Figure 5.5.

x) Y

=

Y1 b1 Y1

X X Xa
u u

Figure 5.5: {a), (b), (c)

Y2

£ o
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Let D) bea y, —set for T—x;. Then D is also a two-dominating set for T and
DUy} isa y, —set for T —e, where e =u y, in the first case, while e = x, y, for

the other two cases. Hence, 6,(T)=1and T e ¢,.

If T is a given tree, we consider the following operations.

Type (D)
Attach apath F, to T ata vertex v, where v Is a non-neighborhood down vertex

in ¥ and v belongs to at least one y, —setof T.

Type (i)
Attach a path P, to T at a vertex v, where v is a neighborhood down

verdexin I.

Type iii)
Attach H; to T at v if there is at least one ¥, ~set D for T such that

DN (o= ¢
and v 18 not a down vertex of T.

Type (iv)
Attach H (nz2) to T at v, where v is not a down vertex of T.

We now prove that if Te¢, and S is a tree obtained from T by any one of the

four types of operations, then S &,.

Lemma 5.11

If Tee, and S is a tree obtained from T by Type (i) operation, then S e &,.
Proof: Let T € 5, and v € V(T such that

yoAT-(N(yuivizy, (M
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and v belongs to at least one y, —set of 7. Let S be the tree obtained from T by

atlaching a 7, say [x,y,2] at v,

Figure 5.6

As p (T (N (M) 2 y,(T), it follows that ¥,{S)=7,(T)+1. Let e E{T)

and D bea y, —setfor T—~e. Then D {x} isa y, —setfor S—e and
7.(S—e)<|DUix}|=| D] +1=y,(T)+1=y,(S).

Hence, y,{S ~e}=7y,(5) whencver e E(T). Let D' be a y, ~set for T which

containg v. Then D'z} is a y, —set for § —e, where e=ux or xy or yz and

| DUz} =7, (T) +1=,(S).

Thus, y,(S—e)=y,(8} is truceven if e € E{(S) - £(T).

Therefore, Seg,.

Lemma 5.12

If Tee; and S is a tree obtained from T by a Type (ii) operation, then S ¢, .
Proof: Let T < g, and let v be a neighborhood down vertex in T, Then

72 (T = (M) U} < pa (T,
Let § be a tree oblained from T by atlaching a P,, say [x,v,z,w] at v as shawn

in the Figure 5.7.
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L L L & »
v X ¥ FA W
Figure 5.7

If Disay, —setfor T—(N,(v)w{v})then Du{v} isa y, —sct for T and hence
72T = (N ) {v)+1=7,(T).

Also, D{v, w} isa y, —set for § and any y, —sct for § should contain at [east

one vertex of {y,z,w}. Hence we have y,{S)=7,(T) +1.

If e=vx or xy or yz, then whenever D is a y, —set for T-(N,(v)uw {¥}),

Duiv.z} isa y,~set for S—~e. If e=zw, then D {x,w} is a y, —set for

S—e. lf ec E(T), thenlet D bea y,—set for T—e. Then DU {yp} isa y, —set

for S—¢ and
}'2(5—3)5|Du{y}»|:|D|+1=}-’2(S).

Thus, in ali the cases, 7,(S—e)=y,(S) and hence Se¢,.

Lemma 5.13
Let Teg, and let 8 be a tree obtained from T by a Type (iti) operation. Then

Seg,.

Proof: Let v be a verfex in T such (hat there is at least one y, —set D for T such
that D~{N (v} {v])= ¢ and v is not a down vertex of T. Let § be the tree

obtained by attaching A, at v as shown in the Figure 5.8.
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}’LI 7 *v
L L L L
v W X 5| LS

Figure 5.8

As y(T-vizy,(T), we have y, (N =y, (M)+2. If O is any y,—set for T
such that D (N (W) n P (T2, then
() Duif,y}isay,~setfor §—e, where e=5,¢ or x;5,.
(i) Dufy ,x,} isa y, —setfor S~e, where e=y x, or z;v, or x, y,.
(uy Duix,,y}isa y, —setfor §—e, where e=uw Inr WX, ar X, §|.
M ecE(T), let D beca y,—setfor T—e. Then Du{x,y) isa y,—set for
S—e and ;Vz(S—e)£|DU{.I[,y,}|
= |D|+2
= y,{(T-e)+2
= y,(T)+2
= 72(5)

Therefore, S e&,.

Lemma 5.14
If T'eg, and S 15 a tree obtained from T by a Type (iv) operation, then S e &, .

Proof: Let T be a tree and T e¢g,. Let u be a vertex in T such that & isnota

down vertex for 7. Hence, y,(T~u)2y,(T). Let H,_ be attached to ¥, as shown

in the Figure 5.9 and ¢t the resulting tree be 5.
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Figure 5.9

As 7, (T-u)zy,(T), it follows that whenever D is a2 y,~set for T,

Duix,...x, ...} sa y,—setfor S.

[if D'isay,—setfor S, thenif ue D', then D' ¥(T) isa y, —setfor T and

if ug D', then D'~ V(T) isa y, —setfor T—u and hence D'2 2n+y, (]

f ecE(T),let D bea y,—setfor T—e, then D‘:Du{x;,y‘. i=1,2,...... ,ﬂ}

isa y,—set for § and ;.vz(S—e)E]D’[:yz{T—e)+2n=h(E"’)+2n=;.V2(.5')

and hence 7,(5 e} =y, (S).

We note that if D 1sa y, —setfor T, then

() Dolx,,y, i=1,2,...... n} is a y,—setfor §—e, where e=Xx,y, 0 X, W
or wu for some j,

() Puly,xi=1,2,..... ,nbis a y,-setfor S—e, where e=y,z,0r z,V;
for some §.

(iii}Du{xi,y,:iij}u{yj,rj} s a y,—setfor S—e,wheree=t,5, or 5;x,
for some §.

Thus, in all ihe cases, we have
y2(5—e)=7,(5)
for all e € E(5). Therefore, Se=5,.
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CONCLUSION

This thesis is devoted to the domination theory in graphs. The concept of
dominating sets introduced by Ore and Berge currently receives more attention in
Graph Theory. A rapid growth of research in this area and & wide varicty of
domination paramcters have been introduced after the investigations on the theory
of domination in graphs by Cockayne and Hedetnicmi. This thesis concentrates
mainly on the two cobondage number, the total cobondage number, the total
bondage number and the two bondage number of a graph.

This thesis contains five chapters.

In the first chapter, we prescnt necessary graph-theoretic definitions and carlicr

works on the domination theory.

In the second chapter, we have found a best upper bound for ¢b(G) +ch(G), the
sum of the cobondage number of (¢ and the cobondage number of the complement
of . We have characterised the graph & for which r:b(G)+cb(a] = p~1, where

|V(G)! = n. A constructional method 1s also developed to obtain all these graphs.
If G is a graph with y,(G)z2, the minimum cardinality among the sets

Ec E(E) such that y,{G + E,) < y,{C) 1s denoted by (cb),(G) and is called the
two cobondage numher1 of G. This chapter also deals with the cobondage number
for two-domination. Upper bounds for (ck),(G)} are obtained and a structural
theorem for the graphs for which {¢b}, (G) = A(G} has been proved.

Chapter three deals with the total cobondage number of a graph. An upper bound
for the total cobondage number has been obtained.

In the fourth chapter, we have proved that for any given positive iuteger », we can
find a tree T for which the total bondage number is #. An upper bound for 4,(7T),

where T is a tree, is obtained. A rigorous proof was given to prove that the tolal

bondage number of the complete graph X, is 2r - 5.
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In the last chapter, the concept of bondage number for two-domination is
infroduccd and a study on it has been iniliated. 1f G 15 a graph with at least one

cdge, the bondage number b, () for two-domnation 1s the smallest cardinality of
an edge set £, c E{G) for which y,{G - E;} > ¥,(G). The exact values of b,{(}
are obfained for known families of graphs. An upper bound for 5,{(), where (7 is
a connected graph has been obtained. It is also proved that 5,(7) <2 whenever T
is a tree. A structural characterization of the class of trees for which 5,(T}=2 has

been obtained.

In future, any cne can proceed with this work by using algorithms.
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