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Abstract
The present dissCl1alion deals with the problem of laminar natural convection

around a horizontal cylinder. The external surface of tlllS cylinder IS

everywhere isothermal, with the exception of a region, which is adiabatic. The

effects Ofvcl1ical cold walls arc also determined.

The basic boundary layer equations have been reduced to local Ilonsimilarity

equations. Solutions arc obtained employing the perturbation method together

with the Runge-Kulla imtml value problem solver, the mtcgral solution

method and the finite volume method incorporating the SIMPLE algorithm Oll

collocated body fitted grids.

Perturbation as well as [mite volume solutions are obtained, respectively, for

!lIe leading edge and for the entire regimes. The results obtained are presented

in terms of local heat transfer, streamlines, isothemlallines, velocity vectors,

velOCItymid temperature profiles.

On analysing the heat transfer from the cylinder, it has been found that the

intensity decreased and increased lmexpectedly. The.explanation can be given

after visualization of flow. 11is ohserved that the fluid near the vertical walls

aspirated the layers of hot fluid from the honzontal cylinder. The uplift

pressure and the tendency of the system to reach balance cause the thud layers

of the similar temperature and density to merge. However, this efTect also

found to be dependent on the intensity of the heat transfer.

Effects of the aforementioned physical quantities for fluid having differenl

Grashof number and Prandtl number have been studied. The effects of thc

cold wall and adiabatic part of the cylinder on the flow and thermal fields have

also been studied.
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Nomenclature
Cp specific heat at constant pressure

Cf local skin friction

J) diameter of the cylinder

/ dunensionles.'> stream functlOlI

g acceleration due to gravity

Or, local Grashofnwnber

h heat transfer coefficient

He." heIght of the cylinder measured from the bottom of the wall

Hw"11 wall height

k thermal conductivity of the fluid

Nux local Nusseltnumbcr

P fluid pressure

f'r Prandtl Humber

qw swface heal flux

iU'r Rayleigh number for the cylinder

Ra" Rayleigh number for walls

T temperature in the boundary layer

T" temperature at the surface

1~ temperatlJIe of the ambient fluid

u, v vciocity 'components along x and y-directions respeCTIvely

W width between the vertical walls

'x,y distance along & normal to the sUl"face, respectively
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Greek Letters

a thernlal diffusivity

fJ coefficient of volumetric expansion

'7 sinlllarity variable

e dllllcnsionles5 temperature

J.I kinemctic coefficient of viscosity

v viscosity coefficient

~ localnonsimilarity variable

p density of the fluid

T" dimensionless shear stress

rp inclination of the plate to the honwnlal

If stream function
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Chapter 1

1.1 Introduction

Free convection around horizontal cylinders has been extensively invesugated,

both analytically mId numerically, in the basic situation corresponding to a

constant temperature of the surface. A little bit altentioll bas so far been paid

to other themlal conditions of noticeable practical interest, as arc those relative

10partly lsothennal and 'partly arliahatic cylinders.

In cngineenng filed, situatioHs related to the last one that describe about

practical problem; for example, in heat (ransfer around metallic lubes parttally

covered by snow or icc, or around pipes where an intenm! layer of deposited

salt greatly decreases in some areas of the cylinders. Luciano r 1], iHvcsligatcd
the laminar free convection around bonzontal cylinder. The author considered

the cyhnder ,ulface partly isothermal and partly adiabatic Ccsini et. al. [2]

studied the natural- convection from horizontal cylinders in a rectangular
cavity.

The study of heat t1'allsfer is of great interest in many branchcs of scicnce and

engineering. In the design of heat exchangcrs such as boilers, ~ondensers,

radiators, etc., for example, heat transfer analysis is essential for sizing such

equipment. In the design of nnclear-reactor cores, a thorough heat transfer

analysis of filel elements is important for proper sizing of fuel clements to

prevent bUlllOUt.In aerospace tedmology, heat transfer problems arc crudal

•



because of weight limitations and safety considcraliollS. In heating and au

conditioning applications for buildings, a proper hcat transfcr analysis is

neccssmy to estimatc the amount of insulation needed to prevent excessive

heat loses or gains.

The thrcc distinct modes of heat transfer, namely conduction, convection and

radiation must be considered. In reality, the combined effects of these three

modcs of heat transfer control temperaturc distribution in a mcdium,

COl1duction occurs if energy exchange takes place frOIll !lIe region of high

tcmperature to that oflow tcmperature by !lIe kinetic motion or dired impact

of molecules. as in the case of fluid .a! rcst, and by the drift of eJectrons, as in

the case of metals. TIle radiation encrgy emitted by a body is lranstlutted ill

the space in tile fonu of electromagnetic wavcs, Energy 1S emitted fmm a

material due to its tempcrature level, being larger for a larger temperature, and

is then hansmitkd to £nother surface which may bc VaCllUll101' a medium

which may absorb, reflect or transmit the radiation depcndmg 011the naturc

and extend of the medium, Considerable effolt has been directed at the

convective mode of heat transfcr, In this mode, relative motion of the thud

provides an additional mechanism for energy tTansfel', A study of convective

heat transfer involves the mechmusms of conduction and, sometimes, dIOse of

radiation processes as well. TIns makes the study of convective mode a very

comphcated one,

The convective heat transfer has been extcnsively investigated, both

analytically and numerically, l3ejan [6], Cebecei [9]. Kuhen [J4] invcstigatt:d

expcrimentally thc study of natural convection hcat transfer III cOllccnll'ic and

eccentric horizontal cylindrical annuli, Markin [16J studicd the free

convcction boundalY layers ,Oil cylinder of elliptic cross scction, COllvedivc

h.cat transfer including natural convcction has also been sllldied in [1I-13J in

different sittlations. The convective mode of heat transfer is divided into two

basic processes. If the motion of the fluid arises due to an external agent such



as the externally imposed flow of a fluid over a heated object, the process is

tellned as forced convection, The fluid flow may be the result of a fan, a

blower, the wind or the motion of the heated object itself. If the heat transfer

to or from a body occurs due to an imposed flow of a fluid at a tempCIMure

differcnt from tbat of the body, problems of forccd convection CllCOllfitersin

technology, On the other halld, if the flow mises "naturally" simply due to the

effect of a density dIfference, resulting from a temperature, in a body force

field, such a$ gravit...•lional field, the process is tenned as nMuraJ or free

convcction. The density difference gives rise to buoyancy effccts dlle to Wllich

the flow is generated. A heated body cooling in ambient air gencrates such a

flow in the region surrounding it.

III many cascs of practical interest forced and natural convection

processes are importrnll. Heat transfer by mlxed convection is 011eIII which

neither forced eonvect!on nor natural convection is predominant. A heated

body lymg in stil1 air loses energy by natural convectIOn. But the body

generales a buoymlt flow above it. If mlother body is placed in that flow, the

hody is subjectcd to an external flow, Now it becomcs essential to delenninc

the natural as ,well as the forced convection effects and the rcgion in which the

heat transfer occurs,

TIlOugh natural convection process is much more complicated than that

of forced convection, yet the study of natural convection process is also

important because' of the problem of heat rejecTIon and rcmoval in many

devices, processes and systems. Natural convection represents a hmit on the

heat transfer rates and this becomes a velY im]J0l1ant consideration for

problems in which other modes are either not possible or not practicaL It IS

also relevant for safety consideration under conditions when the usual mode

fails and the system has to depend 011natural convection to get rid of the

generated heat. To overheating such consideration in design are essential 1Il

many electronic devices and system and in power generation,



This study deals with the problem of laminar natural convection around a

horizontal cylindcr. The external smface of this cylinder is everywhere

isothermal, with the exception of a region of variable extent, which is

adiabatic, morcover this cylinder is placed within two vertical cold walls. Thc

effects of cold walls on fluid flow and heat transfer will also be determined,

Fig.1.l Geometry ofthe problem

Wllcre in plnticulai:, the adiabatic sector corresponding to an angle 2~" is

symmetric with respect to the vertical diameter, whercas, the lellgth of thc

relative arc is I, which conld be reduced to zero in so restormg the fully

isothennal situation,

The objective of the heat transfer analysis is the investigation of the Nusselt

number distribution around the cylinder of different aspect ratios of the system

,



and at various Rayleigh numbers. The aspect ratio W. is defined as w. = W
D

where W is the 'Widtllbetween the walls and l) is the diameter of the eylulder,

In this study the equations goveming the flow arc reduced to non-similarity

botUidary layer equations. The derived non-similaJity bounda.ry layer

equations are analysed using tluee disTInctmethods, namely, (i) Perturbation

soiuTIon method together with the Runge-Kutta initial value problem solver

for small ,;, a scaled streamwise co-ordinate, (ii) The integral solution

method, and (ill) The finite volume method ineolporating the SIMPLE

algorithm on collocated body fitted grids

The resulting solutions have been presented in terms of local Nusselt number,

streamlines, isotllelTIlS,velocity vectors, velocity and temperature ]JlOfiles.,
Effects of the aforementioned physical quantities for fluid having different

Grashof nwnbers and ~randtillumbers have been studied, The effects of the

cold walls and adiabatic paIl of the cylinder on the streamlines, isothemlS,

velocity vectors and local Nusselt number are also shown, Overall

conclusions on the studies have also been given in this dissertation.



Chapter 2

2.1 MATHEMATICAL FORMULATIONS

The boundary-layer equations govcming the flow are:

., [ JiUiUou .X,-H-=v-tgjJ(T-T )sm -
&0'0'2 ~a

with the boundary conditions

(2.1)

(2.2)

(23)

u = v = O,T = Tt< ;Y = 0

j' == 1~for isothermalparI and: == 0 jiJradiabatiG'parr (2.4)

u=O,1'=l~ as Y~C(J

•,
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Fig.2.1: The co-ordinate system

The plus and minus signs in frout of the buoyancy term in Eq. (2.2) apply,

respectively, to flows due to heating and cooling, III writmg the above

equations, it is assumed that the flUld properties are constant except that the

density variations within the fluid are allowed to contribute to the buoyancy

forces. In the equations, 11and vale, respectively, the velocity comp011cnls in

the x and y directIOns, T is the fluid temperature, v is the kiucmatic viscosity, fJ

is the thenlla! expansion coefficient, g is the acceleration due to gravity and

1:" is the temperature of the ambient fluid.

2.2 TRANSFORMA nON OF THE GOVERNING EQUAnONS

Now we introduce the following group of transformations of co-ordiuates

from (x,y) to (~, Tj) courdinates system in equations (2. 1-2.3)

(2.5)

(2.6)



B(' , ) ~ T(x,y)-l~
..,,7 T-T

• 00

(2.7)

where the stream function If(x, y) satisfies the mass cOlJservation" equation

with

Olf olf
U=- V=--",' '"

Gr == gfJCI~2- 7~) a.1 is the Grashof nmnber.,

(28)

Also the Nusselt number, Q."Nu==----
k('l~,-7~,)

(2.9)

Here a > 0 in equation (2.3) is for a heated cylinder in which case the

buoyancy force leon is positive and this aids the development of the

boundaly-layer (acting like a favorable pressure gradient), while a < 0

represents the cooled cylinder and the buoyancy force opposes Lhe

development of the boundary layer.

Then the equations (2.2) to (2.3) transfonned into (~, 11)coordinate system as

(The detailed calculations are in Appendix A)

(2.10)

(2,1I)

where primes denote differentiation with respect to 1] and

pCp II
J'randtl number Pr::: -- = -

k a

,

•



The boundary conditions (2.4) become

f= if =0 ,/=0. m, ,
0= 1( for Isothermal part) and dO ~ 0 (for adiahatic pari)

m/

(2.12)

AS1/-4co:

In applications, quantities such as the surface rate of heat transfer Qw and the

shear stress or skin friction r v are very important. Here we pICsent the results

for these two items, which can be obtained in terms of thl;:Nussclt numbl;:r,

Gl'ashof number and the dimensionless fi-ictional factor Cr . After obtaining

velocity and temperature profiles, sUiface rate of heat transfer Qw and skin

friction r" can be calculated from die following relations:

Thus we get

Q ", -k[DTJ = -k T..: TroGrll'e'(~ ,0)
0: y=~

"d

rw .", Jl(: ) y=u =:~lGr.1!'ij"(O,!;)

NuGr-I
!4 = -O'(!;,O),

and

~CjGr-Jl4 = lfH(;,O)
2

(2.13)

(2.14)



Chapter 3

3 METHODS OF SOLUTIONS

In tllis section, three different methodologies, namely, (i) the perturbation

method for small values of e, used by Hossain ct. aL [3J, Allin and Sadl'll! [8],
(ii) the integral solution method used by Merk und Prins (1'1';; 1) [10] and

(iii) the finite volume method described by Ferziger [4J and Patankar [5] used

by Mohamad [71 and H:Tasnim, S. Mahmud [15] are proposed to investigate

the solutions of the equations governing the flow along a hoJizontal cylinder

in vertical cold walls with partly adiabatic surface.

3.1 Perturbation solution (for smaJl ~)

The perturbation solution is valid for sufficiently sroan values of ~,

Accordingly the functionsfi:s ,1]) and eel; ,1]) are expanded in a power serie:; III
powers of S, that is, we assmne

" .
fC,,") =H'j,C")

I;()

"and ()(~,ll)==Lq;O;(11)
,=11 (3. I)

Slibstituting the above expansion into equations (2 10)-(2.11) and equaling the

coefficients of various powers of 1; we get the following equations:

'" ,



(The detmled calculations are in Appendix B)

Basic set of equations 0(1;°):

(3.2)

_I B~+ 100(1 = 0p,

'Nhere primes denote the derivatives with respect 1011.

The cOlTcsponding boundaty conditions are:

f~=f~=O,Oo=l at17=0 and f;=O,Oo=O aSlJ-+[fj

(3.3)

for adiabatic part a:) = 0 as 17--? [fj andOu is unknown (3.4)

Fint order perturbation equations O(SI):

(3.5)

(3.6)

The boundaty conditions are:

(3.7)

"
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and for adiabatic part et = 0 aS'1 ---j. coand OJ is unknown

Second order perturbation equatiuns O(C):

1''''+(/01,"+fJ/+ 1'/0}-(21:1; + f;'fJ+ (B,_~O)

= {2U;J;.- lu"t~)+(fJ,'-fl"1;) (3.8)

;r e;+Uli; + f.e: + f;O~)= {2(j;O,- he;) + (f.'B\- ./\0,')

widl the boundary condItIOns:

/,=/;=0,=0 all/=O and [;=e,=o aSIJ-Jo'co

and for adiabatic PUlt O~= 0 as '1 --* co andB, is unknown (3.9)

nth order perturbation clluations 0(1;;"):

(3.10)

(3.11)

The boundary condltiolls arc:

f,=//=O;=O atr;=O and 1/=0;=0 asr;--*co
fori=2,3,"',n (1.12)

and for adiabatic prot as '1 --* coand 0; is unknown

"

•



Zeroth order solutions:

--~ •• n

Fig. 3.!: Plot of the velocity profiles versus 11
for different values nfPr

---- •., 'Jl

Fig. 3.2: Plot of the temperature profiles versus 11for
different values of Pr

B

•
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3.2 Integral solution

An integral approach to the solution of the buundaly-Iayer equations for the

free cunvection around isothermal circular horizontal cylinders has becn

followed by several authors. In this study the illtegral form of the basic set uf

boundary-Iaycr equations (2.2)-(2.3) together with boundary conditions (2.4)

be solvcd by extending to the non-completely isothermal cases, thc method

used by Merk and Prins (Pr ~ 1) [10]

For the prescnt case, a third degree polynomial is assumed for the velocity

profile and a fifth degrec polynomial for the dimensionless tempcrature

profile. In particular taking into accowlt the proper boundruy conditions, wc

y
can put '7 = <5 and

wherc

f = ua =Orl
,'2 F(,;),.,(I-I/)

"

T-T8= oc =0 +A8
T -T 0 1
" ",,

i 80 =1-10,.,3+15174-6175

! 81 = '1 - 6'13 + 8174- 3,.,5

(3.13)

(3.14)

(3.15)

and A = (~e) is equal to zero on the adiabatic surface and is unknown" "
along the isothermal sU1face.

Taking into account that, at the wall, one has (3.16)

•



Then calculation yields
5

A=-- Also
3 '

ANu=--Q'

where (y 'is boundary layer thickness dimensionless with respect to radius of

the cylinder a

Introducing the new function G(~)=(Jr-I"'4 /!i'(~), we have lhe

differential equalions for the isothennal regIOn

dF =~ sinq;>_(105 + 420)C;l
drp 2 F 2 17 '

dG =[35sinop _(105 + 2520\--;11°)
dop 2 F 2 21 r F

(3.17)

where for the angle lfl the relation rp" 2'; holds. Tills system can be easily

solved by simple numencal procedure like Runge-Kulla scheme or other

methods, provided that the initial conditions at the forward slagnation point

.;" 0 are given. These cOlJciitionsare obtained, followlllg the same approach of

[lOJ, by matching the integral solutions to the similm' solutions, F, and G"

around lP=O,that is

F =km andC =ks 1, ., 2

In the present case, k] = 2.060 andk2 = 0.289

Above the adiabatic pmt of the cylinder, the unknown functions are

F(O, C(q) and Ow _The integral equations and equation (3.17) provide



dF '" 105 Sillip _[ 105 \;1
dip 4 F 2+30)'-'

dG =[105 sin.\" _[105 +60)U'][0)
drp4J' 2 F

dE I;;G2

-'=-30-
drp F

(3.IS)

(3.19)

(3.20)

with the initial COllditiOIlS E(ip) = 1, aJld F(tp) and G(lfl) matching the solutions

for the isothennal part of the cylinder.



3.3 Finite volume method

In the present study, the finite volume method has been used incorporating the

SIMPLE algorithm. A control volume based finite volume method is used to

diseretize the goveming equations. A body fitted gild with collocated variable
arrangement is used.

Collocated scheme is emcient in the sense of computer memory saving, because

pressure along with other variables is calculated at snrne location of grid. In this

connection the CPD code called "CAFFA" has been modified for the present

configuration and used to obtain the solutions for the problems. Present

investigatlOllwas enl1'iedout for a range of orientation 0°.:0;ljJ, :$ 900.Thermal field

is presented in the fonn of isothermallilles Heat transfer is presented graphically

as well as in tabular fOllHin Nusselt number for various GInshof numbers (Or) and

aspect ratios (WID). Flow fields are presented in the foml of streamlines, velocity

vectors and also in velocity curves for different Orasbof numbers and adiabatic

part parameters <:P•.

NUMERICAL SCHEME

The primary variables arc the Cartesian velocity components, pressure and

temperature and the density is linked to temperature variation via Boussinesq

approximation. Pressure-velocity conpling is achieved through SIMPLE

algorithm. The discretization is carried ont on control volumes defined by a

boundary fitted, non-orthogonal grid. Since Cartesian base vectors are employed,

the method is not sensitive to grid smoothness. The co-ordinate free integral forms



of the steady state conservation equations for ma%, momentum aud enerb'Y

equations are as follows:

Is pl'.JldS=1!

f, PII, v.ndS= f,11gradll,.ndS- f, pi,.ndS+ fpg, dV

"r pll J v.ndS = L IIgrad !I,.lIdS - L pi}.n dS + f P XI dV
"

(3.1)

(3.2)

(3.3)

Is pTI'.ndS= f, ~grlldT.ndS
Pc

(3.4)

Thc Boussineaq approximation is:

p = Po [1 -f(T - TolJ

The generalized form of equation (3. I) - (3.4) is given in equation (3.6)

fP?v.lldS= frgrad?ndS+ fq.dV
" "' ,~

(3.5)

(3.6)

Here, S IS the surface and V is the volume of the arbitrary control volume, II is the

unit vector normal to S and directed outwards, v is the velocity vector, u, and !I; are

the Cartesian velocity components, p is the density, I-tis the vIscosity, Pr is the

Prandtl number, p and l' are the pressure and temperature respectively.

•



(3.7)

DISCRETIZATION METHOD

TIle solution domain is subdivided into a finite number of contiguous quadrilateral

control volumes (CY). The CYs arc defined by coordinates of their veltiees,

which are assumed to be connected by straight lines. This simple form is possible

due to the fact that the equations contain no curvature tenus and only the

projections ofthc CY faces onto Cartesian coordinate surfaces are rcquired in the

course of discretization, as demonstrated below. All the dependent variables

solved for and aU fluid properties are stored in the CY center (collocated

arrangement), A suitable spatial distribution of dependent variables is assumed

and the conservation equations (3, J) - (3.4) are applied to each CY, leading to a

system' of llon.linear algebraic equatious, The main steps of discretization

procedure to calculate convection and diiIusion fluxes and source tenns are

outlined below.

The mass flux tillough the cell face 'e' (FigJ.2) is evaluated as:

Iii. = L. pV.dS '" (p v)•.S,. = p, (US: + VSi')

Where Sic is the suITace vector representing Ulearea of the cell face (~=COllSI.)and

S,",and Si~ denotes its Cartesial1 components. Thesc are givcn in terms of the CY

vertex coordinatcs as fol1ows:

S;. OO(Yn -y,) and Sr. =-(x, -x,) (3,8)

The mean cel1 face velocity components, Uoand Yo are obtained by IIlterpolating

neighbor nodal values in a way which ensures the stabllity of grid scheme. The

convection flux of any variable ~ can now bc expressed as:

F.e = Is,pifN.dS '" (P~V), ,SJ, = fir,~,

The diffusion flux of ~ is calculated as:

F,~,,- L, ["•grad~.dS '"- rr "grad~J,.S I.

(3.9)

(3.10)

•
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Fig.3.3 A typical CV with different notations

By expressing the gradient of ~ at the cell [ace center 'c', which is taken here to

represent the mean value over the whole cell face, through the denvalives in 1;and

11directions (Fig.2) and by discretizing these derivatives with CDS, the following

expression results:

(3. J I)

PE is the vectOTrepresenting the distance from P to E, direded towards E. 52. is

the surface veclor orthogonal 10PE and directed outwards positive 11 coordinate

'" ,



(tig 33), representing the area in'the s\lJ:fa~e1]=0 bounded by l' and E. Ih x and y

components arc:

(3.12)

I he volumetnc source tel'm is integrated by simply lllultiplYlllg the spcclfic source

~t 1he control volume ~entcr P (which is assumed to represent thc mean value ovel

the wholc eell) with thc cell volumc i,e.

Q,: = 1.1f"dV'", ('1,t"'v (3.13)

The plCSSlIrekrm in the momentum equations are treliled as body force and ll1~y

be rcgarded <], prcssure sour~es for the Cill'tcslan velOCity COll1pollcnl" Thcy :ue

evalualed as:

(3,1'1)

Where the sur/;1ee vectors Slr ~nd S21'lepresent the area of the CV cross section al

~=O and 11=0respectively, Since CV's are bounded 11ystraight lines, lhese two

vectors can be expressed through the CV surface vectors, e,g, Sjp=O,5(SIc+ SI,,),

TemlS in the momcntum equations not fcatufl1lg in cqu~tion (3,6) arc dlscreli7.cd

ll~ing thc sallie ap[Jloach and added 10lhe source (enll.

Aller summing lip all cell face fluxes and somce.>, the discrctized lnlllspor!

equalion reduces to thc following algebraic equation

Aeql" + L:>.J",0,," '" Q. (3 15)
"h •

Where thc coem~ients A"b contains the convective and diffusive flux contributions

and Q" represents lhe source tellTI, The system of e~uatioll.'>is solved by IIS111g

SlOne"; SIP solver[4j.

"

f

•



FLOW AND THERlvIAL FIELDS

At lower Grashof numher, fluid ncar the eyll1lder wlill is almost stagnant due to

high vi~cuu., eHect. Dmmnance of buoyant effect increases with the increase of

Grashofnumher. Fluid motion ISgreaUy affected by the orielllation of the cylinder

Le, for different values of 'Po Fluid, are moving upwards al(mg the cylinder

sUlface creatmg the boundmy layers and and separates in some places due to the

cirecls of adverse pressure gradIent and adiabatic POrtlOllof the cylinder. As llll

effcct of cold walls there is downward flow along the vertical walls, Fluid vclocity

is zero at the wall and at the tip of the boundary layer. In betweelJ wall and

bOlJndmy layers, velOCity is the maximum and thiS depends on G Iashof Humber.

Isothermal lilies lire prcscnted in the Figures for some values of adiabatic pm1

parameter (P." different aspect ratios ami differcnt Grashof llumbers (Gr) and

dilTerenl Rayleigh 11l11I1bers(Ra) Upward velocity is allllOst neghgible for high

\%C0I15forcc, Buoyant force starts to dominate with the iJl(,;rease of Grashof

Humber, Isothermal lines are conccntrated near the cylinder wall showing high

temperatllI'e gradient as well as high heat transfer. There are separatWII points in

the thermal boundary layers in different positions due to tbe dfeet of adiabatic

part of the cylinder

• •

,.
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(a)WID = 1.3 ell)WID = 4,0 _

Fig. 3.4: Contour plot of streamlines fol' different wall spacing
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Fig. 3.5. Chmlge of Nusselt number for cylinder as width of waIls function



Streamlines Isotherms

Fig. 3.6: Contour plot of streamlines and Isotherms for Gla=60o
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(a)

>

(b)

Fig. 3.7: Plot ofthe u and v Velocity Profiles for (P."'60o
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Fig. 3.9: Plot of streamlines for <ra=30o and Gr=] 04
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Fig. 3.10: Velocity vectors lor 'Po"'JOoand Gr= 104
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Fig. 3.11: Plot of the local Nusselt number distribution for IP.=30oand 01=104



Fig. 3.12: Plot of the local Nusse1t number distribution for lV.=90D al1d Gl'= I05



.
Fig. 3.13: Plot of Isotherms for (Pa=90o and OF 105
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Fig. 3.14: Plot of streamlines for (p,=90o and Gl= 10'



Table I, Effects of aspect ratio and height ratio on heat transfer intensity

Aspect ratio Height ratio Surface heal transfer
WID H,,'l! H"~11 Q"
20 0,05 11.16

20 0.16 12,68

2.0 0,33 12.72

2.5 0.16 11,44

2.5 0.33 11.25

33 0.05 11 37

33 0.33 12.75

5.0 0.05 12.29



Results and discussions

The nahiral convection investigation performed 011 horizontal cylinder placed

between isothermal vCl1ical, parallel walls indicate that decrease in intensity of

heat transfer, approxlInaling the value of WID=2.5 coefficient, where maximum

heal transfer coefficient for all investigated cases was observed. The increase in

heat transfer intensity for WID below minimum heat tran&fer coefficient results

from the increasing influence of diffusion flow over the convection. The mosl

effective transfer takes place at coefficient value approximately 3.5. The shape of

curves (Fig 3.5) obtained in this investigation remains in accordance with the

shape uflhe curve presented by Naylor and Tarasuk [17] for a vertical plate placed

ill verlica! walls. The qualitative invcstigation of this phenomena confirm the fact

of change in the character of the fluid between the walls for sllch small v.idth of

the walls.

Fig, 3.1 shows the velocity profile against 11 for difTerent values of PL It shows

that the velocity decreases with I'L Fig. 3.2 shows the temperature profiles against

11 for different values Ofl'L [t is evident that near the sllrface the velOCItybecomes

zero, then increascs, becomes maximum, then decreases and finally lakes

asymptotic value obtained from the figure that the temperature decreases with

increasing PL Fig 3.4 shows the Contour plot of streamlines for different position

of vertical SIde walls i,e. for different aspect ratio (W/D=l.3 and 4.0), The effects

of wall spacing in the flow fields arc elearly shown in the figures,

Fig, 3.6 shows the Contour plot of slreamlines and isotherms for Ip.=60o . We can

observe from the figures that the effects of velueal walls on thermal fields are

more significant than that of flow fields. The most important phenomenon

observcd during the investigations is the structure of the flow around the cylinder



placed Hlside the walls as it can be seen in the figures, hot fluid layers near hot

clements are 'glued' to each o!ller. Thus, we can suppose that thiS effect of Joining

of the layers will result in local increase of thc flow speed. The effect of 'joining'

of fluid layers is most visible for thc wld!ll of thc walls for which the increase in

healtransfcr was stated after quantitative mcasurements,

Some typical velocity curves are shown in Fig,3.7. There are u and v Velocity

curves for (P.=60u in deferent figurcs (a) and (b) respectively, Nothing special in

the velocity curves actually. Many velocity curves over tlte regiOn are shown in a

figure just to 'show that the velocity profiles in this investigation are same as the

usual velocity profiles.

FlgJ,8 and FigJ.J3 represent fields of temperature around horizontal cylinder

within the walls, which was placed on high ratio Heyl!H"'ull=0,4. In thc pIctures it

was shown how the tem~erature field was changed according to increasc of

adiabatic part and Grashof number, The adiabatic coefficient (P, from 30° to 90u

and Gr from 104 to 105 Pomt of separatIOn in thcrmal boundary layer is faster if

the coefficient increascs m the casc of increment of adiabatic parI.

In Fig.3.9 and Fig 3 14 we can observe the flow fields for rpu=30o,Gr=104 and

(P.=90~,Gr=lOl
. The chal1ge in flow field according to increase <P.and Gr have

been shown in the figures. The transition of single cell flow in each side of

cylil1del to the multi-cellular flow occurs due to !lIe increase of Gr and ljla.

Fig.3.10 shows the vector field of velocity for (P.=30oand Gr=104 . We observe

that the maximum velocity occurs in the upper region of the cylinder, I'luid

velocity is upward near the cylinder sUiface and downward along the vertical walls

as all effcct of tJleir low temperature, For these klllds of forward and backward

flow; vorticity develops in some regions of the flow field.

]6



In Fig.].11 and Fig.].12 the local Nusselt number dIstribution against the IjJ

coordinate for the adiabatIC parameter (p,=30o, Gr=104 and (r.=90", Gl=10\

presented respectively. We could not find any significant change in these curves

due to (P,and Gr but there arc great increment in Nu with the (pcoordinate.

The influence of width of lhe wall on heat transfer intensily has been presented ill

Table L For width coefficient WID<2.0 the heal transfer proceeded mainly hy

diffusion stream. The hot stream layer from the cylinder is strongly' glued' lu fluld

layer from the wall. In this case the convection movement cannot develop.

Conclusions
Effects of confming cold walls on the free convection hom a horizontal cylillder

are studied analytically, and numerically for the various Gnlshof al1d Praudtl

nUillbers considered, an optimum wall to wall spacing was obtained for the

maximum rate of heat transfer from the cylinder. Some part of the cylinder is

eonsidned adiabatic and the effects of change in adiabatic part also detemJined.

Pelturbalion as well as finite volume solutions are obtained, respectively, for the

leading edge and for the enlire regimes. The results obtained are presented in

terms onocal Nussclt numbers, streamlines, lsothermallines, velocily profiles aJJd

veloelly vectors.

We observed from the investigations that at lower GTashofnumber, fluid near the

cylinder wall is almost stagnant due to high viscous effect. Dominance of buoyant

effect increases with tlle increase of Grashof nwnber. fluid mohon is affected by

the adiabatic part of the cylinder and by tlle cold walls. From the leading edge,

fluids are moving upwards along the two vertical walls. fluid velocity is zero at

the wall and at the tip of the boundary layer. In bet\veen the walls and boundary

layer, velocity is the maximum and this depends on Grashof number. Upward



velocity is almosl negligible for high VISCOUSforce, Buoyant force starts to

dOTllmalewith the increase of Grashof number. Isothermal lines arc concentrated

near the cylinder surface showing high temperature gradient as well as high heat

lransfer.

Summing the obtained results we may state that:

I. For each wall the entry region fragmenl (reaching the height Hc/H ..•~1l=0.2),

where temperature slabilisatlOn lakes place, is idenlified. The influence of height

al which the horizontal cylinder is placed (where the width of the walls is

insignificant) determines the temperature on the cylinder, It is necessaJy to define

the so~called inflow temperature in the analysis of the problem, because

geomctflcal position of the cylinder and the slot affects the slructure of the flow.

2. For the ratio WIlJ<Z,O. dominating impact of heat transfer is detected, In such

case convection movemcnts from horizontal cylinder are iHhibited by !lIe cold

walls. The increase of this ratio above the quoted value causes a decrease in

(hITu,ioll intensity, and development of convection.

3. The optimal value of heat transfer intensity is obtained for the hm;70ntal

cylinder, placed belween two isothennal walls, for WID Iatio between 3.0 and 5,0.

4. The effect of 'gluing' of the layers is characteristic of the range ill which the

optimal heat transfer intensity takes place.

5. The effects of cold walls cause the downwaI"d flow and creation vorticity and

flow celis in the flow region. Also the separation in boundmy layers faster in lhe

ca,e of increment of adiabatic palt.

.'



Appendix A

Transfonnation of momentum and energy

equations
The continuity, momentum and energy equations are:

<,

(A 1)

(A2)

(A3)

u = BVI and v == _ iJIjf

iY "
the stream function I.f(x, y) = vc;GrJI4 f(~, 'I) automatically satisfies the

mass conservation equation (AI). Now to get the corresponding transformed

equations of momentum and energy equations (A2) and (A3) we have to

follow the calculation below

I



Y "1}=~Gr' and
a

"(T T)Gr=9p .- 0. a-'
c'

017 Or'" 'ISo -0--0-

cy a y
a, ,

and -=-=-

'" a x

Now hom !fI(x, y) = v~Gr1l4f(.;,,,)we get

u == iJljI == v,;Gr'I' arc" 11) [er1l4]
0' alJ a

= v;Gr'i2 ['(1;,17)
a

elf" "~,[I ) an]V=- Ox=-!-Gr' ;f{';,TJ +;a;;a

",;,'" [I(X ) x al]
0- --, ~,11+.,-

a a,

where

(j'u vqc;rl,(X)
and 0'2 =7 .,,17

e(X ) 0 l(x,y)-T,
.,,1} l' _T

, . Therefore T-T", = (1~ - T",19(;;, IJ)



Now

a, "G'(f" ".3I'Ja-=v",- +,-ac Ii B;

iJ2u = 2;; Gr f'(' )
V 2 V", J "',,,0' a

[ , .
gjJ(T - T~)sin ~) == gjJ(Tw - T~)IIsil1~

Substituting the above results in the mOlUen!tunequation (A2) and dividing all

2 Gr
(he terms by the factor v q-] we get

a

\Vllich unplies



TIllS is the momentum equation in non-dimensional form

Similarly for energy equation we have to perfolln the following calculation

T..To=bTO(,;,'l) where bT=Tw-T~

Now



Substituting the above results in the energy equation (AJ) and dividing all the

v(I'!.T)Gr'12
terms by the factor ,

a

we get

So

_I e'+fe'=,[rOli -e,uYl
Pr rA; aq

Which is the energy equation in di.mensionless form.



Appendix B

Details of the perturbation equations

The transformed momentum and energy equations are:

_I B"+ 'B'=I;[I,,88 -e,qr]
Pr J' .", 0.;' a~

To get the pelturbation equations of various orders we assume

"
((<",) =H'f.(")

;=0

1.e.

" .
and 8(!;,1/)== 'ifO,(1])

;=0

f'(q ,'7) '" f~(IJ) +;;1j;'(Tf) +.;2/;(1}) +;;l /;(11) + .

rel;,") '" f~"b)+q'f,11J)+;;21,"(17) +;;' fJ'tlJ)+ .



SimIlarly

O'(f, ,77) == (J,'(I7) + f,'Or(ll) + q'O;('7) +f,30J"(lJ)+ ...

ao~~,11) == 01(11)+ 2f,Bl (17)+ 3f,lB3(1l) + ...

(I) Substituting thc corresponding terms into momcntum equation

we get,

[
(r;(,o+ "[;('1) +<'[;(") +<'[;(")+ ---Xi:(,,) +2lf;('0 +3<'[;('1)+---) J

== f, _ ((,,"(11)+f,I.I;117)+ f,lf~'(Il) + f,0f3"(17)+ .. If 1(17)+ 2~fl ('I) + 3f,l f3 ('7) + ... )

Sorting the Sitllliar po~ers of ~ and rewriting the above equations we get,

•



(/0'"+ /0."'-- j;' +80)+{f;"'+ (Jot;" + J;Jo"'; - 2fJJ;' +81- (f ;.1;'- gj;)k

{
r:+ (/,1; + {'I'"+ I,/'i - (2{;1;+/;'/,) + (e,- 8

6
,) I,'+ ~ + ...

-{2(j;f{- fo"f2}+U;'f/- J;"J;)}

Then equating the coefficients of various powers of 1:;we can gd the

perturbation equations of a.ny order. Here the equati0115 for 1:;0,1:;1,1:;2,1;"

have been presented:

1,'"+([0/"+J;j;'+ fdu}-(2j;f{ + Rt;')+(B, - ~)

'" {2UJr; - f,,~(,)+ UU;' - flY,)

",



(2) Similarly substituting the eOll'esponding terms into energy equation

_1e"+fe'==I;(f'Of! _o,!?l]
Pr JI; 0';

we get,

_I (0;(,,) + ;,e~(ll) + 1;2B;(ll)+ qJO;Vl)+ ... )p,
(tQ (Il) + .;If. (IJ)+;;2 j~('1)+.;111 (Il) + ... XO~(77)+;;le;(77) + .;2e~(Il)+ ... )

[

VO'(77)+;;II/(1{) +.;'1;(,,) +;;3 fl'(1{) + ... XO] ('I) + 2;;02(11)+ 3;;'e3(1{) + ...

";
- (0;('1) + ;;JB{(1])+ .;20~(1J)+ ... X!; (Ill + 2if,(11)+ 3;;2fl (1])+ ... )

Rewriting the above equations we get,

(~r°0' + foO') + {~re;'+ (j~();+ /;r)~)- U;o] - /;O;)};;
+ {~ e; + (foe~+ .l;et+ f20~) - {2(j;02 - 12e~)+ C~'OI- .l;O,')}}e + ...



Then equating the coefficients of SU,Sl, Sl, S" we get the following

perturbation equations:

_1 e~+f,l)~=0p,
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