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Abstract

The present dissertation deals with the problem of laminar natural convection
around 2 honzontal cylinder. The external surface of (hus cylinder is
everywhere isolhermal, with the exception of a region, which is adiabatic. The

effects of vertical cold walls are also determmed.

The basic boundary layer equalions have been reduced to local nensimilarity
equations. Solutions arc obtained employing the perturbation method together
with (he Runge-Kutta imial value problem solver, the integral solution
method and the fnite volume method incorporating the SIMPLTE algorithm on
collocated body fitted prids.

Perturbation as well as funite volume solutions are obtained, respectively, lor
the leading edge and for the entire regiines. The results obtained are presented
in terms of local heal transfer, streamlines, isothermal lines, velocity vectors,
velocity and teinperature profilcs.

On analysing the heat transfer from the cylinder, it has been found that the
intensity decreased and increased unexpectedly. The.explanation can be given
after visualization of flow. 1t is observed that the fluid near the vertical walls
aspirated the layers of hot fiuid from the horizontal cylinder. The uplifl
pressure and the tendency of the systemn to reach balance canse the flud laycrs
of the sumilar temperature and density to merge. However, this elTect also
found 10 be dependent on the inlensity of the heat bransfer.

Effects of the aforementioned physical qnantities for Muid having different
Grashof number and Prandtl number have been studied. The ellects of the
cold wall and adiabatic part of the cylinder on the flow and thermal fields have

also been studied.



Nomenclature

Cf"
Cr
I
f

specific heat at constant pressuze
local skun friction

diamcter of the cylinder
dinensionless stream function
acceleration due to pravity

local Grashof number

heat transfer coefficient

herght of the cylinder measured from the botton: of the wall
wall height ‘

thermal conductivity of the fluid

local Nusselt number

[luid pressure

Prandil nuinber

surface heal flux

Rayleigh number for the cylinder

Rayleigh number for walls

temperaiure in the boundary layer

temperature at the surface

temperature of the ambient fluid

velocity components along x and y-directions respectively
width between the vertical walls

distance along & nornai to the surface, respectively
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Greek Letters

a thermal diffusivity

4 coefficient of volumctric expansion

77 sinularity variable

& dimensionless temperature

i kinemetic coelficient of viscosity

b viscosity cocfficient

& local nonsunilarity variable

0 densily of the fluid

T dimensionless shear siress

@ inclination of the plale to the horizontal

W stream function

W
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1.1 Introduction

T'ree convection around horizontal eylinders has been extensively investigaied,
both analytically and numerically, in the basic situation corresponding to a
constant temperature of the surface. A little bit attention has so Tar been paid
to other thermal conditions of noticeable practical intercst, as arc those Telative

to partly isotherinal and partly adiabatic cylindets,

In engineenng filed, situalions related to the last one that describe about
practical problem; for example, in heat transfer around metallic wbes partally
covered by snow or ice, or around pipes where an internal layer of deposited
salt greatly decreases in some areas of the cylinders. Luciano [1]. investipated
the laminar iree convection around horszontal cylinder, The author considered
the cyhnder surface parlly isothermal and partly adiabatic Cesini et. al. {2]
studied the matural convection from horizontal cylinders iu a rectangular
cavity.

The study of heat transfer is of preat interest in many branches of scicnce and
engineering. In tbe design of heat exchangers such as boilers, cundensers,
radators, etc., for example, heat transfer analysis is cssential for sizing such
cquipment. In the desipn of nuclear-reactor cores, a thorough heat transfer
analysis of fuel elements is important for proper sizing of fuel clements fo

prevent burnout. In aerospace technology, heat transfer problems arc crucial



becansc of weight limitations and safety considcrations. Tn heating and air
condilionimyg applications for buildings, a proper heat transfer analysis is
necessary to estunate the amount of insulation needed to prevent excessive
lieat loses or gains.

The three distinet modes of heat transfer, namely conduction, convection and
radiation must be considercd. In reality, the combined effects of these three
modes of heat transfer control temperature distribotion in a medium.
Conduction occwrs if eneryy exchange takes place from the region of high
temperature to that of low temnperature by (he kinetic notion or direct impact
of molecnles. as in tbe case of fluid at rest, and by the drift of clectrons, as in
the case of metals. The radiation encrgy emitted by a body is transmutled in
the spacc in he fonn of electromagneiic waves. Energy 1s emiticd from a
malerial due to its temperature level, being larger for a larger lemperature, and
is then hansmitted to another surface which may be vacuum or a medium
which may absorh, reflect or transinit the radiation depending on the nature
and exlend of (he medium. Considerable effort has been directed at the
convective mode of heat transfer. In this mode, relative motion of (he flugd
provides an additional mechanism for energy transfer. A study of convective
heat transfer involves the mechanisms of conduction and, somelimes, those of
radiation processes as well. This makes the study of convective mode a very
complicaled one.

The convective heat transfer has been extensively investipated, both
analytically and mumerically, Bejan [6], Cebecei [9]. Kuhen [14] investigaied
experimentally the study of natural convection heat transfer i coucentric and
cccenlric  horizontal cylindrical annuli, Markin [16} studicd the free
conveetion boundary layers on cylinder of elliptic cross scclion, Conveclive
hcat transfer includiug natura! convection has also been studied in {11-13] in
different situations. The convective mode of heat transfer is divided into two

basic processes, If the motion of the fluid arises due to an external agent such



as the externally imposed llow of a fluid over a heated object, the process is
termed as forced convection. The fluid flow may be the result of a fan, a
blower, the wind or the motion of the heated object itself, If the heat transfer
1o or from a body occurs due to an imposed low of a fluid at a tempeiature
differcut from that of (e body, problems of forced convection encounters in
technology. On the other hand, if the low arises “naturafly” simply due (o the
ettect of a density difference, resulting from a temperature, in a body force
field, such as gravitational field, the process is lenmed as natural or free
conveetion. The density difTerence gives rise to buoyancy effcets due to which
the flow is generated. A heated body cooling in ambicnt air pencrates such a
flow in the region surrounding it.

In many cascs of practical interest forced and natural convection
processes are important. Heat transfer by muxed convection is one 1n which
neither forced convection nor natural convection is predominant. A heated
body lying iu still air loses cnergy by natural comvection. But the body
generates a buoyant flow above it. I another body is placed in that flow, the
body is subjected to an external flow. Now it becoines essential to delennine
the natural as well as the forced convection effects and the region in which the
heat transfer ocours.

Though natural couvection process is mnch miore complicated than that
of l[orced convection, yet the study of natural convection process 18 also
important because of the problem of heat rejection and remeoval in many
devices, processes and systems, Natural conveclion represents a {umit on the
heat transfer rates and this becomes a very important consideration for
problems in which other modes are either not possible or not practical. Tt s
also relevant for safety consideration under conditions when the usual mode
fails and the system has to depend on natural convection to get id of the
generated heat. To overheating such consideration in design are essential m

many electronic devices and system and in power generation,



This siudy deals with the problem of laminar natural convection argund a
horizontal cylindcr. The external suface of this cylmder is everywhere

1sothermal, with the exception of a region of variable exient, which is

adiabatic, morcover this cylinder is placed within two vertical cold walls. The

effects of cold walls on fluid low and heat transfer will also be determined.

Fig.1.1 Geomelry of the problem

Where m particular, he adiabatic sector corresponding to an angle 24, 18
symmetric with respect Lo the vertical diameter, whereas, the length of the
relative arc 1s /, which could be reduced to zero in so restormyp the fully

1sothermal situation.

The objective of the heal transfer analysis is the investigation of the Nusselt

number distribution around (he cylinder of different aspect ratios of the systern



and at various Rayleigh numbers. The aspect ratio W is defined as o
0

where W is the width between the walls and D is the diameter ol the cylinder,

In this study the equations poverning the flow are reduced o non-sumilarity
boundary layer ecquations. The derived non-similarity  boundary layer
equations are analysed using three distinct methods, namely, (i) Periurhation
solution method together with the Rungc-Kutta initial value problem solver
for small & a scaled streamwise co-ordinate, (i) The integral solution
method, and (i) The finite volume method incorporating the SIMPLE
algorithm on collocated body fitted prids

The resulting solutions have been presented in terms of local Nusscli number,
sttca.m'lines, isollierms, velocity vectors, velocily and temperaiure profiles,
Effect; of the aforementioned physical quantities for fluid haviug dilferent
Grashof numbers and Prandtl numbers have been studicd. The cffects of the
cold walls and adiabatic part uf the cylinder on the streamlines, isotherms,

velocily vectors and local Nusselt number are also shown, Owerall

conclusions on the studics have also been given in this dissertation,



Chapter 2

2.1 MATHEMATICAL FORMULATIONS

The boundary-layer equations govermning the flow are:

M e Hlu (x
HE—FVE_V?igﬁ(T-TQ)Sm[;J

a & &
H—+U—=a

& & &

with the boundary conditions

u=v=0r=7_ .y=0
. : o7 : o
I'=T, forisothermal part and — =0 jfor adiabatic part

u=071=1_as y—>w

(2.1)

(2.2)

(2.3)

(24)



Fig.2.1: The co-ordinate system

The plus and minus signs in front of the buovancy term in Eq. (2.2) apply,
tespectively, tu flows duc to heating and cooling. In writtng the above
equations, it is asswned that the flmd properties are constant except that the
density variations within the fluid are alfowed to confribute to the buoyancy
forces. In the equations, ¥ and v are, respectively, the velocity components in
the x and y directions, 7'is the fluid lemperature, vis the kinematic viscosity, /8
is the thermal expansion coefficient, g is the ucceleration due to gravity and

1., 15 the lemperature of the ambient fluid.
2.2 TRANSFORMATION OF THE GOVERNING EQUATIONS

Now we introduce the following group of transformations of co-ordinates

from (x.y) to (&, n) coordinates system in equatiuns (2.1-2.3)

?_;::l(}r”d, §=£
) )

(2.5)

w(x, ¥} =vEGr!" f(£, )
(2.6)



I{xy)-1,

o =

2.7

where he strean function wfx, y} satisfies the mass conservation equation

with

7 &
u=Y =X 2.9)
& %
v
Gr= %aﬂ is the Grashof nunber.
2.9
Also the Nussclt number, Nu= — 27 -
so the Nusselt number, R =T

Here & > 0 in equation (2.3) is for a heated cylinder in which case (he
buovancy force tenn 1s posilive and this aids the development of the
boundary-layer {acting like a favorable pressure gradient), while & < 0
represents the cocled cylinder and the buoyancy force opposes the
developrnent of the boundary layer.

Then the equations (2.2) to {2.3) transfenned into (&, 1) coordinate system as

(The detailed calculations are in Appendix A)

f”+ﬁ’”—f’2+m%§9=§(f'£—f"g] 2.10)

x 7 a
1 L8 g
_gl' + 9' - ] —_— 9! T
5 07+ 6(}‘ g %) 2.11)
where primes deuote differennialion with r-esr:ect to 7 and

ﬂCF v

& @

Prandt number Pr =



The boundary conditions (2.4) become

f=£=[}, =1
7 (2.12)
0= 1{ forisothermal part) and ;E — i (for adiabatic part )
7

AS — o i:ﬂ =0

2 B

In applications, quautities such as the surface rafe of heat transfer Q,, and the
shear stress or skin friction 7, are very imnpertant. Here we present the results
for these two items, which can be obtained in terms of the Nussclt number,
Grashol number and the ditnensionless frictional factor Cr . After obaining
velocity and termperature profiles, swface rate of heat transﬁ;:r (), and skin

friction ¢, can be calculated from the following rclations:

s ’”[%J - 260, @1

Thus we get

NuGr™"" = -@'(£,0),

and

1 oY ’
SC,Gr " =)

(2.14)



Chapter 3

3 METHODS OF SOLUTIONS

I this section, three different methodologics, namely, {i) the perlurbation
method for small values of £ used by Hossain ct. al. [3]), Alun and Sadrul |87,
(i1) the intepral solution method used by Merk and Prins (I'r = 13 [10] and
(ii1} the finite volume method described by Ferziger [4] and Patankar [5] used
by Mohamad [7] and H."Tasnim, 8. Mahmud [15] are proposed Lo invest grate
the solutions of the equations goveming (he flow along a Lorizontal cylinder

in vertical cold walls will: partly adiabatic surface.

3.1 Perturbation solution (for small £)

The perturbation solution is valid for suf] ficiently small values of £
Accordingly the functions € 1) and 8(& ) are expanded in a power series i

powers of £, that is, we assume

f(rf,ff)=_§“rf"ﬂ ) and 6 v)=§u§‘a () -

Substituting the above expausion into equations (2 10)-(Z.11} and equating the

coefficients of various powers of £ we get the following equations:

1}



{The detailed calculations are in Appendix B)

Basic set of equations O(E™):;

fot fofo - 1.‘:2 +8,=0

(3.2)
; w - ryf
— g + fol; =0
Pr (3.3)
Where primes denote the derivatives with respect Lo 7.
The corresponding boundary conditions are;
Hh=,=00,=1 atg=0 and f;=0,6,=0 asp—o»
for adiabatic part &, =0 asn— xand B, is unknown (3.4)
First order perturbation equations O(£'):
FHS I+ R =2K 046, =R - 1)
(3.5}
1 L ! d f 3 d f
EHI +{ﬁ:ﬁ'1 +f1ﬂn):{.:"::g: _fl"gn) (3-5)

The boundary conditions are:

H=0,/=06=0 ay=0 and f/=0,8,=0 asno>w 37)



i

and for adiabatic part 6/ =0 @517 — e and 0, is unknown

Second order perturbation equativns Q{™):

LSS+ A+ LI = Cffi + D+, _%u)
=0t~ fr+ - 1 B8

éﬂé’ﬂfnﬁ; F10 4 1,00 ={201,0, - 1,80+ (FB, ~ 1.00)

with the boundary conditions:

L=f=0,=0 aln=0 and £=6,=0 asn>w

and for adiabatic part &, =0 as 77 > e and ¢, is unknown (3.9)
nth order perturbation equations O(E"):
I 2 k) =D (R f 4 3 (D B g
; k. nm; E kd net Z (?,k £yl (3.10)
—H" L+ R0, - QK0 fl, =0
k=t k=0 (3.1
The boundary conditions arc;
=fi=0;=0 an=0 ad f{=6,=0 aspgow
fori=223--n (3.12)

and for adiabatic part & =0 asn — coand & is unknown

12



Zeroth order solutions:

Taim

/

—_

IIII

Velocty Profes

1A
A

Pr
20

\%‘-“

Fig. 3.1: Plot of the velocity profiles versus 7

&
o~
i
=

Temperature Profes
' =
l 1

for different values of Pr

Fig. 3.2: Plot of the temperature profiles versus 1 for

dilferent values of Pr
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3.2 Integral solution

An integral approach to the solution of the boundary-layer equations for the
free conveciion around isothermal circnlar horizontal cylinders has been
followed by several authers. In this study the inlegral form of (he basic set of
boundary-laycr equations (2.2)-(2.3} together with boundary conditions (2.4)
be solved by extending to the non-completely isothermal cases, the method

used by Merk and Prins (Pr = 1) {10]

For the present case, a third degree polynomial is assumed for the velocily
profile and a filth degrec polynomial for the dimensionless temperature

prefile. In parlicular taking into account the proper boundary conditions, we

) d
can put 7 = and

)
f == =Gr P -n?) (3.1)
T-7
&= " _?'f =8, + A0, (3.14)

where

8, =1-107 +155" —61°

3.15
5€]=q—6n3+8;3"—3q5 G 1)

i
and A= (EEJ 1s equal to zero on the adiabatic surface and is unknown
"

along the isotbermal surface.

Taking into account that, at the wall, one has (3.16)

14



) %) %)
d?f w_ dn ) )\ d& y

3 A
Then calculation yields 4 = "5 , Also Nu=-— 5

where & 'is boundary layer thickness dimcnsionless with respect to radius of

the cylinder @

Introducing the new function G(EY=Gr'*/ 8 (&), we have (he

differeutial equations for the isothermal region

dF  35sing (105 4203 ,
=— — + (",
dp 2 F 2 17

. (3.17)
dG | 35sing 1[‘15+:15:n:r},2 G]

= —_— —_ T —_—
de |2 ¥ 2 21 I3

where for the angle ¢ the relation @ =2¢ holds. This system can be easily

solved by simple numerical procedure like Runge-Kutta scheme or other
inethods, provided that the initial conditions at the forward siagnation peint

& = Oare piven. These condilions are obtained, following the same approach of

[10], by matching the integral solutions to the similar solutions, F, and G. .

around =0, that is
F. =k and G, =&,
In the present case, & = 2.060 and £, = 0.289

Above the adiabatic part of the cylinder, the unknown funclions are

F(&), G(&) and A, The integral equations and equation (3.17) provide



dF 105sing ( 105 Y} .,
= - (3.18)
dp 4 F 2430

di}'= 105 sh1¢:_(lﬂ5+6ﬂ]gg EJ {(3.19)
dg 4 4 2 F
—
ﬁ: 30 G (3.20)
e F

willt the mitial conditions £{p)=1, and F{sp) and G{p) matching the solutions

for the sothermal part of the cylinder.

|15



3.3 Finite volume method

In the present study, the finite volume method has been used incorporating the
SIMPLE algorithm. A control volume based finite volumne tnethod is used to
discretize lhe governing equations. A body fitted grid with collocated variable

arrangement is nsed.

Collocated schemne is cfficient in the sense of coinputer memory saving, because
pressure along with other variables is calculated at samc location of prid. In this
connection the CFD code called “CAFFA” has been modified for the present
configuration and used to ohtain the solutions for the probiems. Present
investigation was carried out for a range of orientation 0" < ¢, < 90°. Thermal field
is presented iu the form of isothermal lines Meat transter is presented graphically
as well as i tabuiar form it Nusselt nuinber for various Grashof numbers (Gr) and
aspect ratios (W/D). Flow fields are presented in the form of streamlines, velocity
vectors and also in velocily curves for different Grashof numbers and adiabatic

part parameters p,.

NUMERICAL SCHEME

The primary variables arc the Cartesian velocity componenis, pressure and
temperature and the density is linked to temperature variation via Boussinesq
approximation. Pressure-velocity coupling is achieved through SIMPLE
algorithm. The discretization is carried out on control volumes defined by a
boundary fitted, non-orthogonal grid. Since Cartesian base vectors are employed,

the method is not sensitive to prid smoothness. The co-ordinate free intepral forms

17



of the steady state conservation cquations for mass, momentum and energy

cquations are as follows;

_L prondS=u (3.1}

j pu,v.nd&:_Lpgradu,.ndS—jpi,.nda‘+jpg, dyr (3.2)

5 £ -

L pz.*Jv.ndS:_[‘!Lgradu!.ndS*L pi}.ndh‘+];ng;dV (3.3)
¥

j pTw.HdS-—-I LgrrndIr'".Jl'i'u:L_'? (3.4)

§ . Pr

The Boussinesq approximation is:
p=p,l-Br-1,)} (3.5)

The peneralized form of equation (3.1) - (3 4) is given in equation {3.6)

jpr;'w.ndﬂ:jlrgradgﬁ.ndﬁ#jlqédlf’ (3.0
5 ki I

Here, 15 the surface and ¥ is the volume of the arbitrary control voluine, n is the
unit vector normal to § and directed outwards, v is the velocity vector, #; and u, are
the Cartesian velocity components, p is the density, p is the viscosily, Pris the

Prandl nnmber, p and 7' are the pressure and temperature respectively.

18



DISCRETIZATION METHOD

The solution domain is subdivided info a finite number of contiguous guadrilateral
contrel voiumes {CV). The CVs arc defined by coordinates of their vertices,
which ate assumed to be connccted by straight lines. This siinple form is possible
due to the fact that the equations contain no curvature terns and only ihe
projections of the CV faces onto Carlesian coordinate surfaces are required in the
course of discretization, as demonstrated below. All the dependent variables
solved for and all fluid properties are stored in the CV center (collocaied
arrangement). A suitable spatial distribution of dependent variables is assumed
and the conservation equations (3.1 - (3.4) are applied to each CV, leading 1o a
system of non-linear algebraic equations. The wmain steps of discrelization
procedure to calculate convection and diffusion fluxes and source tenns are
putlined below.

The mass fiux through the cell face ‘e’ {Fig.3.2) is evaluated as:

m=[ pVdS=(ov) 5, =p (US: +vs;) (3.7)

Wherte 8y, 1s the surface vector representing the area of the celf face (E=const.} and
S;. and 8§ denotes its Cartesian components. These are given in terms of the OV
vertex coordinates as follows:

8. =0y, -y.} and 8] =—(x, —x) (3.8)
The mean cell face velocily components, U, and V. are obtained by 1nterpolating
neighbor nodal values in a way which ensures the stabtlity of grid scheme. The

convection flux of any variable ¢ can now be expressed as:
= [ ppvds =(pp¥), 8, =g, (3.9)
The difTusion flux of ¢ is calculated as:

F2 = —qu, grad g.dS & ~ (T ,gradg J, .5, (3.10)
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Fig.3.3 A typical CV with different notations

By expressing the gradient of ¢ at the ccll face center *¢”, which is taken here to
represent the mean value over the whole ccll face, through the derivatives in £ and
n directions (Fig.2) and by discretizing these derivatives with CDS, the following

expression results:

"o rw-e _ _
R e 0008, 8,006, (5,05, (310

PE 15 the vector representing the distance from P to E, directed towards E. S, 15

the surface veclor orthoponal to PE and directed outwards positive 1 coordinate
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(F1g 3 3), representing the area in'the surface n=0 bounded by P and E. lts x and ¥

components are;
s y _ -
52,,=—[}'E~—_vp) ahdd SQE—(.IE—AP) (3.12)
I'he volumelric source term is inteprated by simply multiplving ihe spectlic source

at the control volume center P (which is assumed to represent the mean value ovel

the wholc celly with the cell volume Le.
Q) = | apdv =lg,) AV (3.13)
The prcssure term in the momentum equations are treated as body force and may

be regarded as pressure sources for the Cartestan velocity compounents, They we

evalualed as:

Qh =~J pi, dS =~ (grad piJav =[(p, -p )8, +(p, - p )8, )i (G.14)
Where the surface vectors Sy, and 8, 1epresent the area of the CV cross section at
=0 and n=0 respectively. Since CV’s are bounded hy straight lines, these two
vectors can be expressed through the CV surface veclors, e.g 5 p=0.5(8,.+ S.}

Terms in the momentum equations not featurmg in cquation (3.6) are discrelized

using the same approach and added o the source terns.

After summing up all cell face fluxes and sources, the discretized transport

equation reduces to the following algebraic cquation

Aoy + 2 Apba =0, : (3 15)

ah
Where the coellicients A,; contains the conveclive and diffusive Tlux contrilutions
and {Jy represents the source tenm, The system of equations is solved by using

Stone’s SIP sofver{d].
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FL.OW AND THERMAL FIELDS

At lower Grashol number, Huid near the cylmder wall is alinost siagnant duc to
high viscous effect. Dommance of buoyant effect increases wills the increasc of
Grashof number. Fluid motion 1s greatly allected by the orientation of the cylinder
ie [or dilferent values of @, Fiuids are moving vpwards along the cylinder
surface creating the boundary layers and and separates in some places due to the
cifects of adverse pressure gradient and adiabatic porton of the cylinder. As an
etfect of cold walls there 15 downward fow along the verfical walls. Fluid velocity
is zero at the wall and at the tip of the boundary layer. ln between wall and

boundary layers, velocity (s the maximum and thus depends on Grashof number,

Isothermal lmes are presented in the Figures for some valucs of adiabatic part
patamcter «p,, different aspect ratios and different Grashol numbers (Gr) and
different Rayleigh numbers {Ra) Upward velocily is almost negligible for high
viscons force, Bllﬂ}'ﬂ!ll.f‘{JICE starts o dominalc wiih the increase of Grashof
number, Tsotherinal lines are conmcentrated near the cylinder wall showing high
temperature gradient as well as high heat transfer. There are separatton points in

the theomal boundary layers in different positions due to the effect of adiabatic

part ol the cylinder
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Fig. 3.4: Contour plot of streamnlines for different wall spacing
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Fig. 3.5. Change of Nusselt number for cylinder as width of walls function
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Streamlines Isotherms

Fig. 3.6: Contour plot of streamlines and 1sotherms for @=60°
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Fig. 3.7: Plot of the # and v Velocity Profiles for ¢,=60°
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Fig. 3.8: Plot of Isotherms for 9,=30" and Gr=10"

27



e T
eI —= e et
e e T
e T _—-

=

ol of streamlines for <:|wa=3i'][J and Gr=10*

Fig. 3.9: P}



F__. —
_ - - o b - -
B - L.........\\.._...‘..._\\\._. B P A
] — __ - T - ..H. \\\.h..w\.l“.i[\n —" v T
[ 1 g \\.\.\\..\\“\l.nwupllll....u.. PR 4
- - p— -
] __‘ _ﬂ r L...\...\l\...\.\.u...\.....,.ﬂ.a:f]mil et -
h ! . B e e e T et
.__p‘__q - L L Lot
{ .x_. ! s T - I R A I A
.. '
; PR T T PR T T S
_ )y o i >
e e _— - - - .
, L\‘ILILIIll-. — e —— me - e e - . h
P S
ot e
Ty —a . — — = = -
. ﬁ.. |11|r|-|-_|..|llrl||.r.|r||—| —_ = = = - - - -

?

._.‘
!

.

4
’
{
1
Ehx‘
b "-\ n,
SN

- = e e —— o — — — o = = = = =

B ——n e v - — 4 o

\\..\. e ——————— e e el e o . L

\ \.\..L....]..l.lrlpll.lplrl.lfl.rr.rfj.r.f.-r....— .

/ P il e T T T T
AT e e - - v e,
.__‘ . R A [ tr
. [
L , P P PR o
\ . L
] . e e L
. P -
1 P ey

2 i e .
et . a
e .,

e g

i
f
} ‘:'\

|

P
Iy
If
."n
W4
L

i

R

R

30" and Gr=10*

or (o=

-

Velocity vectors 1

Fig. 3.10

24



4.4

39

Mu

~~

25

1.4

klllllllllllllll
-

L A L L 'l I i L L Il l L L Il
a0 1oc 150

p ¢ (radian)
Fig. 3.11: Plot of the local Nusselt number distribution for (,=30° and Gir=10°

kil



sf- e
15 /
i o
[ /
4 — -
15k
: -
Z I
Ik
E
25k
F/
= H
2 f;
1.5 j—ffa
o [ L l [ | L fl ' 1L
20 106 150
» (p (radian)

Fig. 3.12: Plot of the local Nusselt number distribution for ©,=90" and Gr=10"

31



of Isotherms for ¢,=90" and Gr=1¢°

Fig. 3.13: Plot
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Fig. 3.14: Plot of streamlines for ¢,=90" and Gr=10"



Table |. Effects of aspeet ratio and height ratio on heat transfer intensity

Aspect ratio Height ratio Surface heat transfer

WiD Hen/ Hunt Q

20 (.05 11.16

20 0.16 12.68

2.0 0.33 12.72

2.5 0.16 11.44

2.5 0.33 11.25

33 0.05 11 37

33 .33 12.75

5.0 (3.05 12.29
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Results and discussions

The natural convection investigation performed on herizontal cylinder placed
between 1sothermal vertical, parallel walls indicate that decrease in intcnsity of
heat transfer, approwunating the value of W/D=2.5 coeflicient, where maximun)
heat ransfer coefficient for all investigated cases was observed. The increase in
heat transfer intensity for W/D below minimuin heat transfer coefficient results
from the increasing influence of diffusion flow over the convection. The mosl
effective transfer takes place at coeficient value approximately 3.5. The shape of
curves (Fig 3.5) obtained in this investigation remnains in accordance with the
shape of the curve presented by Naylor and Tarasuk [17] for a vertical plate placed
in vertical walls. The qualitative investipation of this phenomena confirm the Lact
of change in the character of the fluid between the walls for such sinall width of
the walls.

Fig. 3.1 shows the velocity profile against n for different values of Pr. it shows
that the velocity decreases with Pr. Fig. 3.2 shows the temmperature profiles against
n Tor diffcrent values of Pr. It is evident that near the surface the velocity becomes
zero, then increascs, becomes maxiinum, then decreases and finally takes
asymptolic valuc obtained from the figure that the temperature decreases with
mcreasing Pr. Fig 3.4 shows the Contour plot of streamlines for different positiou
of vertical side walls i.e. for different aspect ratio (W/D=1.3 and 4.0). The effects

of wall spaciug in the flow fields are clearly shown in the figures.

Fip. 3.6 shows the Contour plot of streamnlines and jsotherms for p,=60" . We can
observe from the figures that the effects of vertical walls on thermal ficlds are
more sigruficant than that of flow ficlds. The most unportaut phenomenon

observed during the investigations is the structure of the flow around the cylinder
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placed nside the walls as it can be seen in the fipures, hot fluid lavers near hot
clements are "glued' to each olher. Thus, we can suppose that this elfect of joining
of the layers will result in local increase of the flow speed. The effect of ° joiming'
of flutd layers is most visible for the widil of the walls for which the increase in
heat transfer was stated after quaniilative mcasurements,

Some typical velocity curves are shown in Fip.3.7. There are u and v Velocity
curves Tor @,=60" in deferent figures {a) and (b) respectively. Notbing special in
the velocily curves actually. Many velocily curves over the region are shown in a
figure just to show that (he velocity profiles in this investigation are same as the

usual velocity profiles.

Fig.3.8 and Fig.3.13 represent fields of temperature arcund hotizontal cyiinder
within the walls, which was placed on high ratio Heyl/Hyu =0.4. In the piclures it
was shown how the temperature field was changed according to increasc of
adinbatic parl aud Grashof number. The adiabatic coefficicnt ¢, from 30° to 90"
and Gr from 10" 10 10°, Pownt of separation in thermal boundary layer is faster if

the cocfficient increases w the case of increment of adiabatic part.

In F1g.3.9 and Fig 3 14 we can observe the flow fields for ¢,=30". Gr=10" and
ip,=90", Gr=10°. The chan ge 1n flow held according to increase «, and Gr have
been shown in the figures. The transition of sinple ccll flow in each side of
cylinder fo the multi-cé]luIar flow occurs duc to (he increase of Gr and o, .

Fig.3.10 shows the veclor field of velocity for ©,=30° and Gr=10" . W¢ observe
that the maximum velocity occurs in the upper region of the cylinder, Tluid
velocity is upward near the cylinder surface and downward along the vertical walls
as an effcct of their low temperature. For these kinds of forward and backward

[fows vorticity develops in some tegions of the flow field.

3
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In Fig.E_l-l and Fig.3.12 the local Nusselt number distribution against the P
coordinate for the adiabat:ic parametcr @,=30°, Gr=10" and 0,=90", Gr=10°
presented respectively. We could not find any significant change in these curves
duc to ¢, and Gr but there are great jucrement in Nu with the ¢ cuurdinate.

The influence of width of the wall on heat transfer mtcnsily has been presented in
Table 1. For width coefficient W/D<2.0 the heal transfer praceceded mainly by
diffusion stream. The hot stream Jayer from the ¢ylinder is strapgly “pglued' (o flwmd

layer from the wall. lu this case the convection movement cannot develop.

Conclusions

Effcets of confining cold walls on the free convection froin a horizontal cylinder
are studied analytically, and numencally for the various Grashof and Prandil
numbers considered, an optimwin wall to wall spacing was obtained for the
maximum ratc of heat transfer from the cylinder. Some part of the cylinder is
considered adiabatic and the effects of chanpe in adiabatic part also deternuned.

Perturbation as well as finite volumne solutions are obtained, respectively, for the
leading edpe and for the entire regimes. The results obtained are presented in
terms of local Nussclt numbers, streainlines, Isothermal tnes, velocily profiles and

velocily vectors,

We observed from the investigations that at lower Grashof number, fluid uear the
cylinder wall is almost stagnant due to high viscous cffect. Dominance of buoyant
cffect increases with the increase of Grashof nwnber. Fluid motiou is affected by
the adiabatic part of the cylinder and by the cold walls. From the leading edge,
. fluids are moving upwards along the two vertical walls. Fluid velocity Is zero at
the wall and at the tip of the boundary layer. In between the walls and boundary

layer, velocity is the maximum and this depends on Grashof number. Upward
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velocily 15 almost negligible for high viscous force, Buoyant force starts to
donunale with the increase of Grashof number. Isothermal lines arc concentrated
near the cylinder surface showing high temperature gradient as well as high heat

transfer,

Summing the obtained results we may state that:

|. For each wall the entry region fragment (reaching the height H /H..=0.2),
where temperature siabilisation (akes place, is identilied. The influcnce of height
al which the horizontal cylinder is placed (where the width of the walls is
insignificant} determines the temperature on the cylinder. It is nccessary to define
the so-called inflow temnperature in the analysis of the problem, because

geometrical position of the eylinder and the slot afTects the structure of the flow.

2. For the ratio W//3<2.0 dominating impact of heat transfer is detected. In such
case convection movements from horizontal cylinder are inhibited by the cold
walls. The increase of this ralio above the quoted value causes a decrcase in

difTusion tensity, and development of convection.
3. The optimal value of heat transfer intcnsity is obtained for the horizontal
cylinder, placed between two isothermal walls, for W/D ratio between 3.0 and 5.0,

4. The eflect of “gluing' of (he layers is characteristic of the range in which (he

optunal heat transfer intensity takes place.

5. The effects of cold walls cause the downward flow and creation vorlicity and
Now cells in the flow region. Also the separation in boundary layers faster in the

case of increment of adiabatic part.
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Appendix A

Transformation of momentum and energy

equations

The continuity, momentum and energy equations are:

N
——+===0
2 (A1)
M, R _ iof
ugﬂrg_v@z igﬁ{T-Tm)bm(ﬂJ AD)
N A §
H—t+V— = ——
& 3 (A3)
As u=% a.ndv=—%¥,

S b4 : .
the stream function ¥ {x, y) = vEGr™ " (&, m) automnatically satisfies the
mass conservation equation (A1). Now to get the corresponding transformed
equations of mementum and energy equations (A2) and (A3) we have to

follow the calculation below

v



Now from ¥ (x, ¥) = Vé:G-"le@J?) we pet

u=Y e aff,rﬂ [Gr”‘ ]
) ?
3 ! ¢ where f'(£,7)= 6f(§ )

"&”' £ i

v=—{2f=-—vGr”[ f{E, )+.faf IJ

Y
K [f(é’ e g

vy uf("r

2 - FUE ) f’;‘ = Z0 ot
cﬁ:_vfrr”z _f_
& (f(é‘??)+§a§)

1 T,
6 = L2 Thestne 1T, = (1, -7, )oE, )
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MNow

o~

S Gri o o OF
H—(§=V2§a—3(f2+g" "@]

A L, O e
VT Vﬁal{ff +&f 65)

vg—? ¢ e

gB(T-T, ]sin[ﬁ-] = gB(T, - T.)Fsiné

Substituting the above results in the momentum equation (A2) and dividin g all

2, (oF
the terms by the factor V& — we get
a

20T an oG _ e, G, -1 si0E
f +c5f'§¢, bii cff'éé 7+ Gr -

Which unplies
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" v 2 51n§ g g
ST v (f g f@g}

Thys 15 the inomenium equation in non-dimensional formn

Similarly for energy equation we have Lo perform the following calculation

-7, = ATO(E, ) where AT=T, -T,

ar _,..86(&,m{ Grt" _ Gri't
3 =M, (] =(aT)——8'¢m)

T (g;)(rr §"(¢.1)

&*

sz = A %?ﬁ —(QT)l@

S 3 ax  ‘adé
Now
1 1-"2
uﬁi=w§ A28 p
7 a’ o

f?r l{rf'“z ﬂT[f0’+§5" afJ
"5 a’ oF
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A4 Gr''?
a(A: ) ’

0"

Substituting the above resulls in the encrgy equation {A3) and dividing ali the

V(ATYGR''?
terms by the factor ————
o

we get

, O r . a..
8 |- - oL =%

24 &) v
So

7B
-—--9 7' = -0 =
- é{f 2 ]

Which 1s the energy equation in dinensionless form.
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Appendix B

Details of the perturbation equations

The transformed momentum and energy equations are:

SV P O 4
PR B B ; é“f&; s P

To get the perturbation equations of various orders we assume

FEM=SELG  and a@,ra)=§:"ﬂ,(r;)

=0

1.e.
FEm) = 1M +& AN+ E ,m+E £ () +--

G 1) = 8,01 +E6,(m) + £20,(7) + £26, (1) + -+~

or
SEm =L+ E N+ L +E fn+--
SE M) = SXD+E SN+ E XM+ E £+
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& (8. 77)
4

Similarly

(&M =0/ (m)+E' 0N+ E G () + &8 () +---

= [, + 25,00 +38 £,(p) +-

%ﬁ;’”) = 6,01+ 2£6,(my+ 3E70,(n +- -

(1) Substituting the corresponding terms into momentutn equation

e oo _S_l_llg_g= ( 'i_ ”_@-._]

we pet,

(-7:3'"[”) +E A+ flf;”(f?) +& fn)+- --)+

(Ron+&AE+E, (?;r}+éﬂf,;(n)+-"Ifu"(u)+é",f."(fr)+é‘zf;(ff)+r§3ﬁ(r;)+-~)

i R ]{ﬂu(nh§191(?f)+§26’2(?f)+---)

{(ﬂ{{?}ﬂ ERn+E Fm+E i+ N+ 287 (+38* f16)+-+)
4

—(78my+ &' Fap) + E£2) + E Fip) - W )+ 280, (7) +3¢ LA+

Sorting the similar powers of £ and rewriting the above equatious we get,
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(Lo e 17 4 0, e o fi 1D = 2S04 6, =S~ ff N
N [.fzm'*‘ (faf;"' frl.fln+ fzﬂ:lj - (z.furfz' + J'(l!f]r) + ('5'2 - %) }52 +
=SS = fo) + U= o)

'+{fn”+i(1+k)ﬂf;lk SR S e }«:”+~-=ﬂ

(2E+1)
Then equating the cocfficients of various powers of & we can get the

perturbation equations of any order. Herc the equations for £°, £, £2, £"

have been presented:
S+ Lo fy = 1% +6, =0

KA L) -2065+6, = 5~ 1)

f2+(fﬂf1+ﬁfl+fzfupj (anfl'l'ﬂﬂr}-F{H
=20/3fi~ 1 [.fz)+(.ﬁ.ﬁ—.ﬁ3ﬂ)

DY RIS Y AR Y et
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(2) Similarly substititing the corresponding terms into energy equation

i
pro TP g[’f P ﬂa‘sJ

we get,

oo+ o+ s+ 0+
00+ E LD +E LD+ E L+ N0, ) + EG ) + £ ) +--)

{(fu'(n)+§‘f.‘(ff)+§2f;(??)+§3J';'(fr)+---xﬁ'] (M) +2£6,()+376,(n) +--
=£

6,0+ £+ E i+ N+ 28, +3E £ )+
Rewriting the above equations we get,

] ; l " v ’ - il
[ﬁﬂé’+|fﬂ€ ]+{E91 +(fﬂt9| +‘f;90}'—(fuﬂ] “.fﬁn)}‘:

* {ﬁ;ﬁ'? +{/o8; + 10]+ ,60) =218, ~ L,9)+(10, —fjﬁ’-')}}‘f e

'"+{%6:+ i(l +k)fkﬂj;—k _ikgxfr:—s:}‘fﬂ +ee=0
k=t

k=1
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Then equating the coefflicients o £”, &', 2, £" we get the following

perturbation equations:

Lgﬁ + fufe =10

o

éa,u{ L0+ 180 = (18, - £.6;)

%a; 0L+ 100+ 1,00) = 2018, - [.ED+(S8, — £,00)

] r ! ! ' N t
500+ LUK, - D H0, fL =0
14 k=0 k=0
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