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Abastract

The present study deals with the effects of transpiration (gither suction or
blowing) on skin friction and heat transfer coefficicnts for the steady laminar
free convection boundary-layer flow generated by heated horizontal circular
disc. The Boussinesq approximation is employed firstly to deal with the two
possible steady cases. Secondly, the numerical solutions are displayed for

different values of the established parameters.
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Chapter-1

General introduction with review of previous research

Fluid mechanics is a subject of widespread interest to researchers and it becomes
an obvious challenge for the scientists, engineers as well as users to understand
more about fluid motion. An important contribution to the fluid dynamics is the
concept of boundary-layer introduced first by L. Prandtl (1904). The concept of the
boundary-layer is the consequence of the fact that flows at high Reynolds numbers
can be divided into unequally spaced regions. A very thin layer (called boundary-
layer) in the vicinity (of the object) in which the viscous effects domiuate, must be
taken into account, and for the bulk of the flow region, the viscosity can be
neglected aud the flow corresponds to the inviscid outer flow. Although the
boundary-layer is very thin, it plays a vital role in the fluid dynamics., Boundary-
layer theory has become an essential study now-a-days in analysing the complex
behaviors of real tluids. The concept of a boundary-layer can be utilized to
simplify the Navier-Stokes’ equations to such an extent that the viscous ¢ffects of
flow parameters are evaluatcd, and these are useable in many practical problems
{viz. the drag on ships and missiles, the cfficiency of compressors and turbines in

jet engines, the effectiveness of air intakes for ram and turbojcts and so on),

Further, the boundary-layer effect caused by free convection is frequently observed
in our environmental happenings and engineering devices. We know that if
externally induced flow is provided and flows arising naturally solely due to the
effect of the differences in density, caused by temperature or concentration

differences in the body force field (such as gravitatinnal field), then thesc types of



flow are called ‘free convection’ or ‘natural convection’ flows. The density
difference causes buoyancy effects and these effects act as ‘dnving forces’ due to
which the flow is generated. Hence free convection is the process of heat transfer
which oceurs due to movement of the flnid parcticles by density differences
associated with temperature differential in a fluid. In such cases, the free stream
velocity falis away, in deed, no reference velocity does a priori exist. If the density
in the vicinity of the object is kept constant, a naturai convection flow can not
form. Thus this is an effect of variable properiies, where there is a mutual coupling
between momentum and heat transport. The divect origin of the formation of
natural convection flows is a heat transfer via conduction through the fixed
surfaces surrounding the fluid, If the surface temperature is preater than that of
ambient fluid, the heat transfer from the plate to the fluid leads 1o an increase of the
temperature of the fluid close to the surfaces and to a change in the density,
because it is temperature dependent. If the density decreases with increasing
lemperature, buoyancy forces arise close to the surface and warmer fluid moves

upwards. Such buoyam forces are proportional to the coefficient of thermal

expansion ﬁr, defined as ﬂr=—ﬁ[gJ , where p, T and p are density,

temperature and pressure respectively. It is observed that /3 . _1 for a perfect gas

and we see that siream is well approximated by the perfect-gas result f T =1 at

low pressure and high temperature. Also ﬁrf:% for a liquid and may even be

. 1 , . , .
negative, and Jf§ >? for imperfect gas, partienlarly at high pressure. ff . is also

useful in estimating the depcndencc of cnthalpy ‘A’ on pressure, from the



d,
thermodynamic relation dhchdT+(l—ﬁrT)—p, where of course 7 must be
Fu

absolute temperature. For the perfect gas, the second term vanishes, so that
h=~Hh(T) only.

The natural convection studics begun in the year 1881 with Lorentz and continued
at a relatively constant rate until recently. This mode of heat transfer occurs very
commonly, the cooling of transmission lines, clectric transformers and rectifiers,
the heating of rooms by use of radiators, the heat transfer from hot pipes and ovens
surrounded by cooled air, cooling the reactor core {(in nuclear power plant) and
carry out the heat generated by nuclear fission etc. Bulks of information arc now
available in literature about the boundary-laycr form of natural convection flows

over bodies of different shapes.

Schmidt (1932) was apparently the first researcher who investigated
experimentally the behavior of the flow near the leading edge above a flat

horizontal surface.

The theoretical analysis of the laminar, two-dimensionat, steady natural convection
boundary-layer flow on a semi-infinite horizontal flat plate was first considered by
Stewartson (1958) (later corrected by Gill, Zeh and Del-Casal (1965)). In that
analysis he used the Boussinesq approximation to show how the boundary-layer
analysis could be incorporated with the natural convection on rectangular plates,

which are of high planform aspect ratio.

Rotern and Claassen (1959a) investigated the boundary layer equation over a semi-
infinite horizontal surface of uniform tcrmperature and results were presented for
some specific values of Prandt]l number with its limits from zero to infimty. The

effect of buoyancy forces that exist in boundary-layer flow, over a horizontal



surface, where the surface temperature differs from that of ambient fluid, was
studied by Sparrow and Minkowycz (1962). The free convection above a heated
and almost horizontal plate has been treated by Jones (1973).

The boundary-layer type of the natural convection flow, which occurs on the upper
surface of heated horizontal, surfaces has been investigated theoretically and
experimnentally by amongst other, Rotem and Claassen (19359b), Pera and Gebhart
(1973) and Goldstein, Sparrow and Jones (1973). It is seen from their experiments
and also from the flow visvalization of Husar and Sparrow (1968) that a boundary-
layer starts from each edge of a plate edge, each boundary-layer having its leading
at a straight-side plate edge. The boundary-laycr development o¢curs normal to the
corresponding edge so that collisions between opposing boundary-layer flows
occur on the plate surface. After collision, the fluid checked in the boundary-layer
forms a rising buoyant piume. Most of the above analyses were based on the
Buossinesq approximation and have been concerned with the seeking of similarity
solutions in which the plate temperature varies with the distance from plate leading
edge. In this approximation, thus density, viscosity, thermal conductivity and
specific heat variations are ignored except for the necessary inclusion of the
density-variation in the body force term.

An analysis is performed by Cheu, Tien, and Armaly (1986) to study the flow and
heat transfer characteristic of laminar natural convection in boundary-layer flows
from horizontal, inclined and vertical plates with power law variation of the wall
iemperature.

With a parameter associated with the body shapes a simifarity solution on the

natural convection flow has also been studied by Pop and Takhar {1993),



In most of the above analyses the boundary-layer of the natural convection flows
were considered over venical, horizontal or near horizontal, semi-infinite or

LY

rectangular plates.

The natural convection boundary-layer flows on horizontal circular disc has not yet
been taken into consideration with transpiration. Zakeruilah and Ackroyd {1979)
theoretically investigated the higher order boundary-layer natural convection flow
on horizontal circular discs and paid an emphasis on the cffcets of fluid-properly
variations. Later Merkin (1983, 1985) obtained serics solutions of the similarty
equations derived by them (Zakerullah and Ackroyd (1979)) valid near the
circumierence of the disc. In his enalysis it was shown that the solution at the
cirtcumference of the disc is basically the samc as on a f{lat plate, with the
imporiance of the curvature effects increasing as the centre of the disc is
approached. However, near the centre of the disc, the boundary-layer thickness
increases very rapidiy and that the solution splits up into two distinet regions, a
thin inner viscons region next to the disc in which the temperature is almost
constart, and the pressure is large (and negative)} and almost uniform, and outside
this region is a thick outer inviscid region. In those analyses the boundary-layer
flows were considered over heated or uniformly heated horizontal circular discs.
The surface is impermeablc to the fluid, so that there is no transpiration le.,
suction or biowing velocity normail to the surfacc. This led to the kinematic

boundary condition w, =0,

The problem of boundary-layer control has become very important factor; in actual
application it is often necessary to prevent separation. The separation of the
boumdary-layer is generally undesirable, since scparated flow causes a great
increase in the drag experienced by the body. So it is ofien necessary to prevent

separation in order to reduce pressure drag and attain high 1ifi.



Suction (or blowing) is one of the useful means in preventing boundary-layer
separation. The effect of suction consists in the removal of decelerated particies
from the boundary-layer before they are given a chance to cause separation. The
surface is considered to be permeable to the fluid, so that the surface will allow a
non-zero normai velocity and fluid is either sucked or blown through it. In doing

this however, no-slip condition %, =0 at the surface (non-moving) shall continue

to remain valid.

In driving the boundary-layer equation, it is anticipated that the w-component of
L

the velocity is a small guantity of the order of magnitude {J[Re 5] and it is

assumed that the suction (or blowing) velocity w. normal to the surface has its

magnitude of order (characteristic Reynolds number) . The corsequence of this is

that outer flow is independent of w, and the boundary condition at the surface is

givenby z=0 ; u=0, w=w (x).

Suction or blowing causes double effects with respect to the heat transfer. On the
one hand, the temperature profile is influenced by the changed velocity field in the
boundary-iayer, leading to a changc in the heat conduction at the surface. On ihe
other hand, convective heat transfer occurs at the surface along with the heat

conduction for w, # 0, A summary of flow separation and its cootro] are found in

Chang (1970, 1976).

The boundary-layer suction was first applied by Prandtt (1904) in his fundamental
works on boundary-layers on a circular cylinder. The effects of blowing and
suctton on forced or free convection flow over vertical as weil as horizontal plates
were analyzed in a symmetric way by Gortler (1957), Sparrow and Cess ( 1961),
Koh and Hartnett (1961), Gersten and Gross (1974), Merkin (1972, 1975),



Vedhanaygam, Altenkirch and Eichhorn (1980), Hasio-Tsung and Wen-Shing
(1988}, Merkin (1994) and Acharya, Shingh and Dash {1999) etc. The effect of
transpiration on free convection above healed horizontal surface has been
discussed by Clarke and Riley {1975), allowing for variabie fluid densiry. But the
effects of suction (or blowing) on free convection flow over a heated horizontal

circular disc has received substantially less attention.

In our present study, we confined our discussion about the steady, laminar, free
convection boundary-layer flow on axi-symmeiric, heatcd, horizontai circular disc
including the effects of suction (or blowing) situaied near the edge of the disc. The
flow parameters like skin friction and heat iranster co-efficient are also studied.

In order to solve the laminar naturat convection boundary-layer equations 1t 15 in
gencral the N-S and energy equations are to bc transformed imo conventent
simplified forms like local non-similar solution. At the outset attempts are made to
incorporate the idea of similarity analysis. Because, the objectives of seeking
simitarity solutions are manifold, firstly, the partial differential equations (PDE)
governing the flow fields are to reduce ordinary differential equations (ODE) by
using seif-similar technique. By this means it is possible to obtain a number of
exact special solutions either anaiytically or sometimes even in numerical form.
Secondly, the resuits obtained from similarity equations mey be directly usable in
solving the local non-similar solutions. Here we adopt the method of classical
‘separation of variables’ which is of the simplest and most straightforward metheod
of determining simitarity solutions. This method was first initiated by Abbotl and
Kline (1960). in this method, once a specific form of sirnilarity variable ts chosen,
the given PDE is changed under the seiected co-ordinale transformations. The
dependemm variebles are considered to be functions of the new co-ordinates. The

dependent varigbles are to be expressed in terms of the product of separable



functions of the new independent variables where cach function is dependent on
the single variable. Substitution of the product form of the dependent variables imlo
the original PDE generally leads to an equation in whieh no functions of single
variable can be isolated on the two sides of the equation unless certain parameters
are to be specified. Usually, these parameters ean be specified quite readily and
“separation of the variables” is achieved. On this way the separation procceds until
the one side becomcs an OTE. Finally, if the complete transforination to QDE is
not possible, the local non-similar solutions are derived with some physical
background to the remaining independent variable.

The Boussinesq approximation is employed first in chapter-3 o deal with the two
possible steady eases. Numerical solution with graphs and tables are presented in

chapter-4 and 5.



Chapter-2

Basic equations and their order analyses

The generalilised Navier-Stokes’ (N-S) equation (i.e., continuity and momentum
equatinné) and energy equation for an axially symmetrical steady natural
convection flow are given:
contimuity equation,

V.{=ig)=0 (2.1)
( As was described by Shih-I Pai (1958))

maomentum equation,

pa.v)g=F-Vp + VuV){ (2.2)
and energy equation
pe ([ GV)T=V.06NT)+@GV)p+D. (2.3)
Here,

g = G(u, w) be the velocity vector of the fluid,

F=(p-p,)8=(p-p,)E(z,.g.) is the gravitational body force per unit volume,
where § is the vector acceleration of gravity,

and® denotes the ‘dissipation function® involving the viscous stresses and it
represents the rate at which energy is being dissipated per unit volume through the
action of viscosity., In fact the dissipation of energy is that energy which is

dissipated in a viscous fluid in motion on account of the internal friction given by-

[E}u]z [aw ’ (611 611;]2 ,\[Eﬁﬂ ﬁwJE
GO=p |24 — | +|— | ¢+ —+ + Al —+
]: { cx oz oz oOx dr oz

T



which is always positive since all the terms are quadratic. Here A is associated
only with volume expansion, cailed the ‘coefficient of bulk viscosity’, may

actually be negative. Stokes’ simply resolved the issue by an assumption:

2
A+t—pu=0
3.11
, 2
£, A=—-—
1.e 3;:

(Stokes’ hypothesis {1845))

Thus we obtain

G ] e
Ox dz ¢z ax Jlax &

Hence the above equations (2.1} to {2.3) can be reduced to most simplified forms
as:

. continuity equation,

d &
il - = 2.5
2 () + (o) | 2.5)
y-momentum equation,
ou  Ou op of duy af Ju)
il l={pn— S DTN Y sk YT Y T, 2.6
p("aerwazJ (p-p,)2. Py &[#ﬁxj+az[#é‘z) (2.6)
w-momentum equatior,
ow ow g af owy 2 ow
T iwa(p- 2y | g = g, 2.7
p[uax+wé‘z] (o-p.)e. az+ax(”a‘x]+az(”az] @7

and energy equation,

( ar ar] a( aT] a( aTJ ( &p aﬁ]
pelo—+w— |=—|K— |+ | Kk — [+ —+w_—-
L O oz ) ax\ &) &\ & o oz}

A @)y ]
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In the analysis we considered only the pressure perturbation p which is related to
the sbsolute pressure p by-
P=p+py,

s
Do - pos. 2.9)
oz

Suffix ‘0’ refers to conditions in a fluid at rest. Here, the gradients of the

dp

where p, satisfies the hydrostatic condition E" =2, »

hydrostatic pressure p, are balanced by the body force terms. Hence p is called

here the motion pressure. In general the functions of state p,, p,, 7, vary with
altitude.

In forming the governing boundary-layer cquations from the above equations (2.6)
to (2.8) together with the continuity eguation {2.5), we introduce the following

non-dimensional variables (dashes):

x 1z Lw
IJ=_, z':R‘Z — u’:i, Wr=Rr2T, p‘l: phz’ pr=£’ H':i’
£ £ U U au 28 i,
L (2.10)
] r r CP I T_Tr T-?—: r g,:l: r I
L L ~e—t, gt =B and g = E:
X, c, T - AT 4 g

Here £, is the chamacteristic length of the boundary-layer,  is the convenient

i

£
characteristic velocity, R, [: v 'J is a characteristic Reynolds number based on
U

{7 and £, and suffix ‘r’ is used to denote convenient consiant reterence quantities
evaluated in the fluid at rest far from the boundary-layer.

Now substituting the sbove dimensionless quantitics with primes, the non-
dimensional forms of the equations (2.5) to (2.8) become,

Continuity equation,

a Kt ir:r_
aﬂuuu)+&jpxw)_o (2.11)

11



y-Imomentum eguation,
r 4 ' y ' i '
H,@u +W'ﬁ= 1_,&1; Ei;,g:_er’?J'_i_ i}r --Ma,(#*a”,]
ox’ oz’ p Ut paxt UE pox o
voR, 6( ,&u']
T = ' ' H r
U, p oz oz
o

’ ' r ¢ F 1] ¥
or, u'au +w’al=[]_&)§_£_L5p +iii[#’auj+l_“_[#'a_”]

&' & o JF o R pa'\” a') pal” &
_P
or, u'ay +w'ahr I i g ——l;ﬁpﬁi’ a,[y'ay:]+0(£1) (2.12)
ox' az' F plax' p'or 554
w-momentum equation,
f ] ¥ E r r
i(u'f}w +w'@]:—l _.&. gw_'g:_LaP,q.ﬁU' _1.. 9 ( 'awrj
R, ox’ az' R, p Ul o 8z Ut R p'ox Ox

f 0w Lon'Y
or, ENY —+W —|=

I R N A
" o [1 JH +0le?), (213)

e

and the energy equation,

.c,[u,ar'+w, aT’J_ x. v |8 [r,a'r')% fi[,g?ﬂ)
£\ " o 6z ) g, Uf, |ax'\ &' o'\ &
it r [ ] AT g 2
LU [u.ﬁpﬁw,op} Ut v, #'Z[QI{TJ N @J
c, AT\ &' a'} ¢, AT UE, cx 8z

1 g’ aw'Y 2(3;;' aw' Y’
+—| R + - — +
R -4 Jvex' &

12



( o ,a:r’) I 1 a( ,ar'] [ o
ar, £2C | U '“_:+W_ =N K"'_' +R£ ; K -
L &x '] PR |tx P Bz

[

)
)

f 2 £y
R )73
,,(,a:r' ,ar'] 11 8
or, po ey —+w |
N o&x &) PR &

x
6T’ ) 1 8 [ ,OT" )
'y +——
') P &'\ &
r ' Py 2 Py 2
+.‘E{u'a—p,+w'ai +i 182 [_@ﬂ,] +[@-]
B ') R, o’ &z’
1 ( ou’ ) ' ow'Y
+—| R, — +
R\ "o "a) e &
or, p'c;{u'%gT+ aTFJ p1 2 [ ]+OE)+ Ols?), (2.14)

F 2
where £=R¢'2l, £ Also F , Pl = Hr % | and E|= v are
P, gf : K, ¢, AT

?

the dimensionless Froude, Prandtl and Eckert numbers of the flow respectively.
Now if we consider the limit £— 0 with F finite, according to first order

boundary-layer 1theory, the w-momentum equation asserts that p'=p'(x').

[

P

However, if we impose the condition L{J remains [inite then the pravity

dependent ferm must be retained in the w-momenturmn equation, resulting in

p'=p(x",z’). Tu the present analysis we are concerncd with those bonndary-layer

flows for which

£

_[ _&} ' ~0(). (2.15)
Iz,

F,

r

13



The variation in the buoyancy force normai to the surface is the only means of
producing boundary-jayer motion on a horizontal surface {i.e, g, =0 in the
equation (2,12})). The relative importance of the presence of gravity dependent
terms in w-and w-momentum equations depends on the relative magnitude of

g and gg!. For horizontal surface since &g >>g’, the equation (2.135)

determines the order of the magnitude of characteristic velocity i,

o P 11
i+e'3 U m O[p: - pu g: (F rU.l' }E] {2'16)

v

Here suffix ‘s’ denotes the (constant) representative condition at the surf;ace. In
natural convection flow the relation (2,16) determines the order of the magnitude
of velocity generated by the density differences across the boundary-layer.

In all such situations, inside the first order boundary-layer p’= p'(x',z") provides
the mechanism for flow generation. The pressure gradient normmal to the surface
caused by the density difference (= P, — p“) generates the perturbation pressure
field p{x’,z") inside the boundary-layer, x'-variation is sufficient to cause the

motion in the boundary-layer.

Since the derivative of p’ oceurs in the momentum and energy equations, we may

write the general equation of state in the differential form as
p=plp.T) |

dp=[?fj dT+{a—pJ dp and since x=i{a—p} and ﬁTE—l(?_pj ,
oT F ap T P ap r P or £

we have -
do=—p fi dT + px dp

or, d—p+ﬁrdT=ra'(ﬁ+pﬂ)
o

14



of, in the above non-dimensional form we get

f

xp Udp' = 9 + 3 I.dT" ~ kdp, (2.17)
2

The variations of p,, p,, 7, ate determined by the hydrostatic relations (2.9)
together with some other condition such as, for example, 7, =constant.

If this other condition is stated in rather more general terms as a requirement that

any given function of siale be constant, it can be shown that (cf. Ackroyd (1974)

Eﬁgﬂr

Y

Fa
; ¢
ie., xdpumO{ ”gﬂfj ; dp;mO{LﬂT], (2.18)
o [

£

xdp, , do, etc.arealiof order

F

where £, represents the vertical scale of the flow field considered and this may be

taken to be rather less than £ in most practical situations: (£, for example, can be

CF‘

taken to be the maximum boundary-layer thickness). Typically, represents a

r

length scale, and because of the vary large values associated with this length scale

(10* for air and 10° for water at a atmospheric pressure and temperature), and
consequently with the additional provision that x p UJ? <<1, it follows from
equations (2.17) to {2.18) that

p=pT); p,=p,, (2.19)
so that, variations in p, etc., with altitude, due to hydrostatic relations (2.9) can be

ignored,



(Governing boundary-layer equations

In view of above discussions, the steady laminar boundary-layer equations (i.e.,
continuity, momentum and energy equations) in dimensional form for a variable
properties tluid over a heated horizomal surface, maintained at a temperature

different to that of the ambient fluid conditions, are governed by-

2 (prur ()= 0 (2.20)

u@+wﬁ‘i=_l@+lﬂ(ﬂﬂj (2.21)
ox oz pox paz\ &z

p

S P 2.22

o =l-rk. (2.22)
and

pe [ua—r+wﬁJ=£[x£J (2.23}

R oz /) az\ oz '

In the energy equation (2.23} the presswe and viscous dissipation work

contributions have becn ignored. The Eckert number £ , which poverns the

significance of these terms, is

| A
LA VL i - p,-p,(w,]z
e, T o,T-T) | ¢, B@-T) p (v
£, =P,

Now —P*__is of order ugity where as 27 <5+ bave, is extremel
ﬂ(}"‘ _._T)ISD 0 I.HH}"W ere a5 c ,ESSEEHEDE,ISE:K mE}T
r I 4 Pr

Lt

o oe y: 0.
smail compared with unity. However the occurrence of (——] =R, 2 in the

o

r

above expression for the Eckert number indicates that terms involving Eckert

number should not appear in the first order boundary-layer theory,

19



Here the independent variables x, z denote the co-ordinates measured zlong the
surface from the center of the disc and perpendicular to the plane of the dise
respectively, and » and w are velocity components aleng x and z directions

respectively, Also g and g_are the components of the gravitational acceleration

along x and z directions respectively.

o is the density of the fluid and is defined as the mass per unit volume. It is a
thermodynamic property of the fluid and in general is a function of the temperature
and pressure,-i,e., p=p(p,T). If density p varies with the variation of pressure
and temperature, the fluid is then said to be compressible. Otherwise the fluid is
said to be incompressible, ie., for incompressible flow it is assumed that
p =constant. Again the density differences arising from temperature differences
cause buoyant flow. If the density decreases with increasing temperature,
bnoyancy forces arise which act as driving forces. This generates the natural
convection flows,

The second property of the fluid 4 is called the coefficient of viscosity of the fluid.
It is a physical property of the fluid may be defined as the tangential force required
per unit area to mainlain a unit velocity gradient, i.e., to mainiain unit relative
velocity between two layers unit distance epart. Thus it relates momentum flux to
velocity gradient. Since it establishes the momentum transport perpendicular to the
main flow direction, it is also called transport property of the fluid.

The coefficient x4 is in general a function of the temperature and pressure,
although the ternperature dependence is dominated. So the coefficient of viscosity
of a fluid (Newlonian) is directly related to molecular interactions and thus may be
considered as a thermodynamic property in the macroscopic sense, varying with
temperaturc and pressure. As the temperature increases, the viscosity of gases

generally increases whereas that for liquids decreases. But for gases at ordinary

7



temperature the pressure dependence of viscosity is ignored and only the

temperature variations is usually considered. For a perfect or non-viscous fluid,

H=0.

At higher temperatures, a common approximation for viscosity of dilute gases is

the power law: LIS (E]
o L

where n is of the order of 0.7 and g, is the reference viscosity value at reference

temperature 7, . This formula was suggested by Maxwel! and later deduced on

purely dimensional grounds by Rayleigh.
Another widely used approximation formula resulted from a kinetic theory of gases

by Sutherlaud (1893) using an idealized intermolecular-foree poteutial is,

# T IETL,+S
M, 7.] T+5§

where § is an effective temperature, called Sutherlend constant, which is

characteristic of the gas, 1.¢., is dependent on the type of gas (e.g., for air $=110K]).
For liquids, since the liquid molecules are very closely packed compared to gases
and thus dominated by large molecular forces, momentum transport by collisions-
s0 Jdominate in gases-is small in liquids. If data are available for calibration, the
empirical approximation formula for liquid, is given by Bird et al. (1977) and Reid
etal (1977)as In 2= a+ b(iJh:[LJ

MHy T, 8

where g, , T, are the reference values and 4, b, ¢ are dimensionless curve-fit

constants (e.g., for water at atmospheric pressure the curve-fit values are g = -2,10,

b=-445, c=6.55, corresponding to T, =273K and y, =0.00179kg/ms.). For

non polar liquids, ¢=0, i.e., piot is imear.

13



The third property of the fluid ¢, is the specific heat of the fluid at constant

pressure is defined as the amount of heat required to tise the temperature of a unit
mass of the fluid by one depree where pressure is assumed to be constant, ie.,

_o@
“ T ar

LT T

, where 80 is the amount of heat edded to rise the temperature by

8T at constant pressure. It is also a thermodynamic properly of the fluid.

Also xis cailed the coefficient of thermal conductivity of the fluid, which connects
the heat flux with the temperature gradient. It is also a positive physical properly
so-called hest transport coefficient of the fluid. Since, a fluid is isotropic, i.e., has
no directional characteristics, hence «is a thermedynamic prc;perty and like
viscosity varies with temperature and pressure. By inspection, we see that « should
have dimensions of heat per unit time per length per degree, ie.,

_ Heat flux _ Bw
" Temperature Gradient - (hXﬂI”_R

K ) in usual engineering unit.

Also, x has the dimensions of viscosity times specific heats, so that the ratio of

c
these is a fundamental parameter called Prandti number =Pr=2—%. This
K

parameter involves fluid properties only, rather than jength and velocity scale of
the flow and measure the relative importance of heat conduction and viscosity of
fluid.

For routime calculatious with dilute gases, the power law and ihe Sutherland
formula, like viscosity, can also be used for thermal conductivity:

Power law: * o~ (EJ

K, T,

32\
Sutherland:i - L L+ .
K, T+8

¢
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Since for a horizontal surface the component of ﬂ;e buoyancy force paraliei to the
surface is zero (i.e, g =0), so that g represents the gravity component normal
to the disc surface and in the z-direction. We can write g, =%g, (2.24)
Also the pressure perturbation B, due to motion is related to the absolute pressure
phy-

p=p+p, (2.25)
Here p, is the hydrostatic pressure satisfying- '

Hp
—_—L = 2.26
E JDrgz ( }

Both the hydrostatic density, p,, and hydrosiatic temperature, T,, can be taken to

be constants.
Because of the boundary-layer has its origin at the periphery of the dise, we prefer
here to use co-ordinates (¥,z) instead of (X, Z) and velocity components (¥, w)

instead of {(u ,w), where the relations between them are-

B ”_I} Q.27

By M)

n

—U
Here, ‘a’ is the radius of the circular disc, ¥ and z are (non-dimensional) co-

ordinates measuring distance from the edge of the disc and normal to it in the

upward direction respectively, with # and w bc the velocity components in the

boundary-layer gencrated by the buoyancy effect one to density differences almost

close to the surface of the disc and in the X and z directions respectively as shown

by the Fig. 1.
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Figure-1: The fiow configuration and the co-ordinate system

Using equation (2.27), the governing equations (2.20) to (2.23) for the circular disc

became
% lpla-2)i}+— {pla-%)u}=0 (2.28)
gfiu_wﬂ;_l@J,ii(ya_”] (2.29)
& & p&E pa\ &
&
£=(p—ﬂ,)gz (2.30)
and

pcﬂ[ﬁ§+wﬁ]:i(r£] {2.31)
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Chapter-3

Similar solutions for the Boussinesg approximation

In this section we shall discuss the steady free convection laminar boundary-layer
equations by simplifying them wusing Boussinesq approximation. In this
approximation density variation other than the variation in the buoyaucy term in
momentum equation are ignored. Fluid property variations are completely

disregarded in this approximation.

For Boussinesq approximation the forms of the governing boundary-layer

equations (2,28) fo (2.31) simplify to-

2 {a= )+ =T =0 G.1)

o 1
§@+wﬁi=—l@+u, a—f (3.2)
& dz P, ox dz
ap
5 =P8 B, ATH (3-3)
2
and 7L w200 (3.4)
ox & P &’
Here,
v o= £: is the kinematic co-efficient of viscosity
£,
and p-p, =-p, 3,(T-T).
r-r -
Since - =T Tf:ﬂ', T —T =AT and po:-!— (3.5)
T -T AT ’ T
sothat, p—p, =—p, 3 ATE . {3.6),

(Suffix *s’ represents the condition at the surface of disc and suffix ‘r’ is the

constant reference condition in the fluid at rest exterior to the boundary-layer)
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We may now introduce the stream function , which automatically satisfies the

continuity equation (3.1}

(-5 =2
- Oz
and (a-% -
&
o, Fe—2¥ Qa.7)
a—x oz
and —w=—2¥ (3.8)
a—x &

Since for a finite diameter circular disc, the boundary-layer has ifs origin at the

edge of the dise, near the edge of the disc (i.e., 50 or, x —a) we would
&

expect the boundary-layer 1o be the same as that oblained on a two-dimensional
horizontal flat plate by Stewarison (1958).

Equations (3.1) to (3.4) are non-linear, simultaneous partial differential equations
(PDEs) and to obtain solutions for them are extremely difficult. Cansequently, we
adopt first the method of seeking similarity solutions in order to reduce the syslem
of PDEs (3.2) to (3.4) together with the comtinuity equation (3.1} into a pair of
ordinary differential equations (ODEs). If not, local non-similar solution will be

finally achieved. For this purpose we define a new set of variables (£,7), related to
(¥, z) as follows:

F=%
and = . (3.9)

y(¥)
Here »(¥) can be thought of being proportional to the local boundary-layer

thickness.
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From equation {3.9), we oblain

L 8. 2z ol
L& By 8 o7
or, 9 im’?—g” ¢ (3.10)
& dE ¥ 51}'
and similarly,.
.
g_1e G.11)
% yon
Guided by the idea of the similarity procedure, we may put-
a - I
I( ;—')1 = F(£,7) (3.12)

where I = U(rf) is the non-dimensionalising characteristic velocity. Equation (3.9)
and (3.12) are the traditional substitutions with a small modification in equation
(3.12) for the case of axi-symmetric flow only.

Now substituting equations (3.9) and (3.11} in equation (3.7), we obtain

© wie )

gtem «5)7( ) o7

or a—;’)u :
) e en 2

Integrating with respeet to 7 from 0 to 7 and using equation (3,12), we have

ZEBI

Pen- )U(«f)

or, Figij)= )[w(é‘sff )-w(£.0)

|
W (&
or, A& )= EWHEFE,7)+w(£.0) 4 (3.13)
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Again using (3.9}, (3.10) and (3.13} in equation {3.8), we obtain

- [i-?—q—){ytgw(;)ﬁtg 7 wle0)

o8& ¥y 3R

| . ~
= UF), —y.U
A

| —

A

oF(¢.77) , By(£0)
o7 PY:

(&)

Here suffixes denote the differentiation partially with respect to associated

arguments.
1 . oo
o, —w=a_§{(ﬂﬂ:)¢ —y ORF f-w, (3.14)
Here w, =- 1 ov(0) = —Lw ; (£,0) represents the non-zero wall velocity
a-& o0& a—-<&

called the suction or blowing velocity normal to the disc surface, since the surface
15 laken to be porous, so that fluid will be sucked or blown through it, Physically

w < 0 and w > 0 represent respectively the suction and blowing velocity through
the porous surface. For uniforin suction (or blowing) w, =constant. However
w, =0 implies that the surface is impermeable to the fluid (i.e., the surface is not
porous)., We consider in our problem that w_depends on the position of the disc
(i.e., on & measured from the periphery towards the center of the disc).

Now from equation (3.12), we have

W=

vtg)or e, U(é’)F_(é ) (3.15)
a—-& an a—¢

25



With the help of (3.10), (3.11), {3.14) and (3.15), the convective operator
9

i — + w— becomes
oz

,.,_,,.._

i Zenl T 2 L P L (G, D, | L

a—¢\ 08 vy ' BF ~¢ y Off
Uf* TF ;
Or, E%+wra~ 9 ) 0 42 iﬂ {3.16)
& "o a-£of lalyon y on
In attempting separation of variables we assume
© R R)= HEFE) (3.17)
Then from equation (3.15), we have
@ =U(E))F, () (3.18)

Using (3.17} and {3.18) in equation {3.16), we obtain
7 ¢
g Lewl Y oA o _ L) F OO (3.19)
o gz a—-¢& o3& ((I 5},* 815 ¥ 67

5 7 {e :
or (aiwi}a‘: Lf g B & (7 ) 2 +u¥ Uﬁ =
& o a-& "aE (a- «:}r oF  y oF|la-¢&"7
LoF o U d[ J oo OtbOe) . O,
a—¢& g

or, w—++ = f

& o a-Ede s ol Py el
Lo i {ﬁf(ﬁf)u (¢} },n” U{’[}Uf) Ot

L P ) P MLCERg o

F.,(3.20)

e oz

Apain we assume

5 = PE)GIETT) (3:21)
Using (3.21) in equation {3.10), we have

26

-y



or, %=EG+P?—G~P£F§'6—G—

— (3.22)
og y o
Again in view of equation {3.11) and (3.18) we obtain

@_10o( 0,
gz yonla-£& "

o £is
of, —=——

{3.23)
Substituting (3.20), (3.22) 2nd (3.23) in equation {3.2), one ohtains

AN ot N
{zf(_ug; . f,i l)ﬂ ]ﬁ” Falyie), o, O,

¥ T 7 oa :f?f+—_F$ﬁ
(@-¢&)'y {a-¢&ly

. PIG+P6—G-P?—‘F5QC—; +u,———£LFhr_-
0 i B (ﬂ_f:)yz R

y on
- : (/¢ L A
Dividing both sides by — and muiliplying by (a— &), we have
hE
Ur (’a - 5)2 FFEE" + [ﬂ - g)?WF).g F}r-ﬁ*ﬁ - ?“'?1 (ﬂ - "::':]2 Ff.-"
lla= 0 )+ @)1 =7ty (1 P

_ PG+p_plez G
Fa RV eg

—
y on

or, ur(a~§)zFﬁ$ +(a*«f){?’()”(7):‘m_{ﬂ_§):’w: }FH:}’ _{(a“ff)?”z[ﬁf]f
"'J”z(ﬁf)}ﬂz =

2z -
(e PP _ple580) (504
), 0 T

i
Again using equation (3.21) in equation {3.11), we have

g 1 -

- Y ip 3

T et

.
or, P £ ﬁ

&z v on

(3.25)
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Substituting (3.23) in equation {3.3), we obtain

P3G
T AT
37 0.8 p3,
5 AT

or, ;€=-p”g" ,ET:-* g (3.26)
7

Again from equation (3.5)
T =T, + AT, )

and by the method of separation of variables like

o, 7) = MEWET) (3.27)
we have,
T =T, +A(£)AT(Z)9(7) (3.28)

Then equation (3.26} becomes,

3G pe. By AT P
o1 P
Also from equations (3.19) and {3.28}), we have

[i%wijh{ff rL ), F al ‘:" }(T L A(EATS)

(3.29)

o Jz =& " p& {ff 5)7
o FOT, 07 _DUAenT), o Lit) (i(é)ﬂ ) g, AEATw,
, H—+HW F, g, +——=———""9
& e ae 7T oy ' ¥ !
(3.30)
Using (3.28) in cquation (3.11), we et
T
= a 2T, + HEWTS)
o, OT _ AE)AT g
oz ¥ !
O'T _AMENT ’y (331)

azi :Vz
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Substituting {3.30) and (3.31) in equation (3.4}, we obtain
Je(ale)aT), (va) (AEBT) o GEATIw, o v AAT

r.' i b GE

a—¢& (a - &) 7 y Py

(é’)ﬂ-

Dividing both sides by and multiplying by {a — &), we have

v, . (A(5)AT),
or, Fr(a_‘:)‘gw {f[fUP)F (@-&w, } (7 ](()QT)F'Q 0

L‘;_r (a-£)3,, + {y(y00), F —(a = Eyw, 19, - [T Nlog A(E)AT), F,9=0

(3.32)

There are, however, boundary conditions, which must be imposed in order to

determine the solutions of the transformed boundary-layer equations (3.24), (3.29)

and (3.32). Boundary conditions will be ascertaincd [rom the following physical

behaviors of Mow configurations.

L The velocity component & tangential to the surface of the disc vanishes at

the surface (no-slip condition). However, sinec the surface is porous, the

velocity component normal to the surface must be equal to the suction (or

blowing) velocity, i.e., mathematieaily:
#=0and w=yw atz=0,implics

F{0)=F,(0)=0

Il.  The velocity of the Muid at a large distance from the surface of the disc must

be zero, 1.2., mathematically:
# =0 when z — o, implies

Fo(x)=0
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V.

The temperature of the fluid at the surfacc of the disc must be equal to the

disc temperature, i.e., mathcmaticaily:

T=T atz=0
or, &= r-1 =1 al z =0, implies
A£)s(0) =1

The tempcrature of the fluid at a large distance from the surface of the disc
must be equal to the undisturbed fluid temperature, i.e., mathematically:
=T whenz—»aw

r-r

[

or, # = =0 when z — o, implies

I

S(m) =0

Without loss of generality we may choose Uf=U{#) and A(£)=1. Also for

similarity solutions G is assumed to be the function of 77 only. Then equations

(3.24), (3.29) and (3.32) become

and

v,(a~¢) Fy; "'-(”_é:){?’(J’U).;F _(ﬂ'“‘f%:}ﬁﬁ

2

-y O )R = o2 RGP L
U y

o _ P [y AT

3 ?
P

%(ﬂ _‘5)3% + {}’(}*‘U);F _(a "é:}rwa}‘gﬁ _(;"EUIIGE ﬂT)ﬁ Fﬁ‘g: 0

”
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Since y(); =77, U + 7" (U); = (20,0 + 2 w),}

_1
2

- {6, +7*0).)

. Hence we have the following system of equations:

i Ur(‘f"‘r_g)3 FHFJH +(a_§{%{(72u]¢ +?’2(U).: }F_(a_g)?w;:|f‘;jﬁ

{J’Q(UL + 2y U +?;2(U)¢}

a1

- {(a—~_gf)y2(f.f)_f +y UF," =(a —5)’(-—}:_—@6 - fu P;;"G,.,J (3.33)

p.U

r

p.g. By AT
G, =- >

F

3
and
;T:(‘-’J_éf)'gﬁ :"[_;’{(J’EU); +72(U); }F—(aﬁg)ywa}gﬁ

~ (U log AT), F,8=0

with boundary conditions:
F0)=F(0)=0; F,(xo)=0
30)=1; 8(=}=0,

(3.34)

(3.35)

(3.36)



It is observed from Merkin’s (1983, 1985} analysis that a complete similar solution
may not be obtained for a natural convection on circular disc problem. So we are

imerested to have a local non-similar solution for which we have to consider

@ (U), =aq \

i) y'U)=q
I
(iil.) y(;rU); =E(ﬂ1 +a,)=a,
(v) mw,=a, 337
:V'.‘.
v.,) ~—2F =qa,
) pU 7 7
YY-
Vi ——P=aq
e p U °
: AT
iy - E: fT:" -,
(viii) (r°UlogAT), = q, J
where a,, a,, Qe @, are allin & alone.

Local non-similar solutions for equations (3.33) to (3.35) exist only when gll a’s
are finite; that is to say that all a’s must be constants. And thus equations (3.33) to
(3.35) will be reduced to local non-similar solution and will finally become non-
linesr ordinary differential equations in the limiting situations for the remaining
variable other than the similarity variable, Consequently, the relations giveu (or
stated) by equation (3.37) will be treated conditions. These fumish us the equatious

for U(&) and #(£), the scale factors for the velocity component @ and the ordinate
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z. Uniquely thesc scale factors together with the suction (or blowing) parameter

will determine the flow characteristics of the boundary-layer.

We shall now proceed to [ind (&), y(&) and consequently the suction velocity
w,for the possible two types of self-similarity solutions in the case of the

Boussinesqg fluid:

Type-1: (power-law variation)

From condition (i) of equation (3.37), we have
[}fo): =g,

Integrating with respect to £ we get

yiU=a, &+ A
+ 4
or, ¥ =”"§U (L1

{(Here A4 is the constant of integration and U = 0)
Substituting (31.1) in condition (ii) of equation (3.37), we obtain
?'E(U).; =d,
(a,é + AXU):
or, T =a,
(U )-f a,
or, =
U al+4
a?
at+ A

or, (log U): =
Integrating with respect to £ we get
log U(&)+log B = a—zfag(a1§ +A)

d,

33



f

log U(Z) - loglw}

or, Ulg)= é(a,g + A (31.2)

{Here B is also constant of integration)
With the help of (31.2} equation {31.1) becomes

y'()=Blag +4)™ (3L3)
Substitining {31.2) and (31.3) in different conditicns stated in equation (3.37) we
obtain the following relations:

a, —a

——24a,;a,,a, and a, are disposable constants and
2

a., a, are arbitrary, a, =

S5a, —a
Hs= 22 3

Thus the general equations {3.33) to (3.35) are reduced to

Ur(a_‘st)iFEﬁE +(ﬂ_‘§){%(‘71 +a2)F_(a_‘§h¢}Fw -(a "‘gth;

a,_d

—(ale:m)ﬁﬁ(a—:)’aﬁ[m 7 zﬁGﬁ] (314)

G,=a,$ (31.5)

_ i .
Plu(a-&¥,, + {E(a, +a,)F —(a -g)a,,}yﬁ - E(ﬁa;ai)@s =0 (3L6)
Subjected to the boundary conditions:
F(U)r- FF,-(U')=0 ) Fﬁ (m):[]

§(0)=1; 9(x)=0 GL7)
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Let us now substitute
F=z=a,f, f=a,pand G=a,g ,sothat
8 _dog_10 g’ _ 1 B’
Ei‘n 8:;.' 6:;,' a, on’ ﬁn a,’ o

Here « ’s are used to have the convenieut forms of the similarity solutions.

elc,

Then we have from equations (31.4} to (31.6)

U'fl (a _‘g)zfrw; +(a_§){'l_(ﬂl +f11)9{%f—(a—-§)a*f' }fw
“ 2 &; (4

2

et fq2 _al(g"]"fu)fqz =(a_§)}ﬂsa3[§_%-ﬁ??ﬁqj
ad

2

—(a-

and

_ (5azwa|}7_|fql9 —0
2ex

2

P20 (0 25, +{i(al +am)ﬂf—(a-§)i*}5',,
a, 2 e, &,

(a_m+(a_§){@,t+ag)ﬂ2_f3f—(a_¢)i;%}qu

a,a.a, a,a,ax, saae . a.a, -
—a-&) = g s )T =) [g— ' nqu
U, U, axn, da,
— da. 0
=g

3

and

_ [ 24 4 a0,
P 1 g—ﬁ)ﬂ?w + {(ﬂ'] +a2)#f—(ﬂ mé:)u—}lq”

r

— (5{]"1—{11 }g]az fqg — D
2,
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and

Pfj[l“i]% +{(a. +a,) 2% f{l-ﬁ]ﬂ}&
a 2ap a; p !

r

_Lﬂﬂ:ﬁllrf_z_fg:g GLIO)

2av, !
2
) 2 +a 2a ,
Choosing & =a,, L—'—-—E-)EL =1 and —=/4. Also for a purely free
2au, a, +a,
: 2a*a.n
convection flow we are to put << 9s%s =1, Then
a, +a,
aa, 2a’a.a, 2aup,
o, a, +a, a4, +a,
2
_8d’a,a,a, 2av,

_—"—-—-—__X_'_‘_"—-—-—.___

a, —ua, (a] +a, :l.,a'al +a,
8a’a, +2av 7 » ( 0K, ﬁr}ﬂ?’]
— -

= ).;—-—-—-—._..'_____:..(
day —a, (ar+az)ﬂa|+a3 Ry

P
8a‘a, 2av »y
- = )('—-—-—__.L_____ — ﬂ}" —._f..
qQ-da, {a +a, a, +a, ( 8-/ J v
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Using equation (31.3), we get

a, @, 8a'a, Jiau, ( B AT YT % la&+ A
a, a,—ﬂf +a, ha, +a, - 7 2u? L

. r _ o, —a,
YT

) 4a2a2 .J?au (ﬂ«f-l-z‘f)( ﬁ &T)
(al +93W Ué B Py
_dae, [a (g 0aEE)
a,+a, \a +a, 7 s
:
_ 4&'151 N ( ﬁ &T)q”l'u |§ é:ui
a, +d, H'a +a:12 U?

where & + £_is termed as the local characteristic length.

2a,

Since =/, then =2-f, we have
a, +a, a, +a,
a0, 25T B 8, fATNOTE +)
a] U%

whete U, =al2pJ2= pl- g, B ATNu, G+, I (3LLD)

is called the free convection velocity associated with the local characteristic length

£+ £, . Since we are concerned with the free convection [lows, without loss of

generality we may put UV =¥/,
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Thus the above equations {31.8) to (31.10) can be writien as

| (l-gj fn:'?r; +[1_§j{(at +az) alz f_[l_'ijﬂ}fw
a a, 2auv, a; v,

P,"[l-—éJSW +{f—(1-5)fw}9,, ~(3p-1)f,8=0

a

K-



ot, if we put £=§ ; E{{l, then
a

1-2) £, < BN -G-E) -2 1

- z_ﬁxg'l'gn)fu _( 5]J{g‘“_"_?lg ] (3112)
g,=9 (31.13)
and
P -E)s, +lr- 1-&)r,J8, -Gp-1)f,8=0 (31.14)
where f, is the non-dimensional suction (or blowing) velocity at the surface of the
disc defined by
W
= 2= s
f.=a BIR, v
ca 2P, E e T (3L.15)
U(

Here R, is the Reynolds number based on free convection velocity /. given by

[2& A2 g, . AT v, if + & l] {31.15a)
- = U lE+&
and the local characteristic length £ +&, as R, =M (31.16)
33
of, i al2— BIR; (31.16a)
where U/, is given by the equation (31.11) and R, = gﬂ“—) (31.16b)

¥

r
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The transformed boundary conditions are:

1(0)=71,10)=0; f,{x)=0

3(0)=1; 9(0)=0 (31.17)

The boundary conditions on ()} may be derived from the last boundary
conditions described in equation {3.36). That is,

£,(0)=1, g,{=)=0 (31.178)
The similarity function f(7), the similarity variablc s7and the pressure function
#(n) are related to the stream function y, the physical co-ordinate (¥,z) and

perturbation pressure p by the following equations respectively

w=v, Jal2- PR, fln)+w(E0) {3L.18)

w1 —

R, z

- 19
" e B x) GL19)
and ’ﬁ=‘3’;; g) (31.20)

The velocity components (=1, w) along with the skin friction 7, and the local heat

transfer co-efficient g, associated with the equations (31.12) to (31.34) are as -

follows:
= U'L'_dfﬂ (31.21}
(d—X
!
v a R '
—-W= {1 — - W
a-x\2- 1 3:"'+xu{f ( ﬁ)’:‘;",,} i

R% |
a2 vy Tl el S Ay e 112 GL22)
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3Tl ;
= 0 12
S e o [ 370 )
or a6 kAT R?
and g, = = —K M{ ] TG g {0) (31.24)

Here g, is the heat transfer rate per unit area of the disc.
Now, if for simplicity we consider EJ =0, then at the periphery of the disc where

£ 0, o1, & 0,(ie., ¥ >0, or, x> a), the equations (31.12) to (3L14)

become-
1- B
Son ¥ F =S ) =B 1) = 3~—2-ﬂ—ng (31.25)
g =9 | (31.26)
and
rrg +(f-1)9,-08- 1)£,8=0 (31.27)

with boundary conditions given in (31.17} and (31.17a), and if here, the suction (or
blowing) effect is ignored then the equations (31.25) to (31.27) reduced to those for
the two-dimensional boundary-layer development on a horizonial surface.

Thus, with minor changes in the similarity function and similarity variable (i.e.,

F(q3)=5'*: {m,g(z -8y }5 7). 7, =55{(21*0§)2 }5 17; (where suffix ‘R’ stands

for Rotem and Claassen)) the similarity equations establishcd by Rotem and
Claassen (1969a) by the method of group theory nay also be obtained.
Again, as AT is fully responsible for the buoyancy flow, therefore, in order to

have the existence of the similarity solutions, AT -variation Is found to be

AT (5 +x, )57 (31.28)
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while the suction velocity w, varies as
2
w, o (¥ +x, )7 (31.29)
38-1

. 1 .
If it is assumed that =m and ——— = n, then we can write

AT =k 3" (where k, is a constant)
and w_ must be of the type

w o=k, X"
: . i 1 :
where £, is a constant of uniform transpiration rate and n= g(m—2)+ That 1s,

there exist a relation between m and » which is m=5n+2 {31.30}

The constant &, is negative for the case of suction, and positive for blowing. For
an impermeable surface, £, =0.

Also it appears that the exponent of w, and AT -variation are finite provided

g=2.

. 2
For the case of isothermal surface we have m =0, then n= _E

2
ie, w =kX °

(3L31)
The special case of n=0 {i.e., f=1) defincd here as isothermal suction {or

blowing).
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Since the dependent variables f, . and g mostly depend on the variable 5

(similarity  variable)) we may cxpand the  dependent variables

f(f, r;), S[E, r;-) and ’g‘(é,-'”, r;) for‘%’u‘ << 1, in ascending powers of E as follows:

=S8 7, 0= £+ E 10+ E L0 (3132)
9(E.n)= ZE 18 ()= 9, () + & 9,0+ E28, )+ i (3133)
and (&)= i 2 =20+ EE M+ G+ i (31.34)

=0

Now, inserting the expansions (31.32) to (31.34) into equations (31.12) to (3L.14)
together with the boundary conditions (31.17), with £ =0, and equating like

powers of &, we obtain

——

Eo:
Jom o = F M =81 =8 - lgﬂﬂ g, )
€, =9 (31.35)
P8, +{fy - £.)%, - BE-1)1.,8,

boundary conditions:

£,(0)= £, (0)=0; £, {=)=0
8,(0)=1; 8,{x)=0 (31.36)
EDH(U):I N Euq(m)=0 -
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£
.ﬁwr} - 2-}{;1?1-': + f;'f;rm T (-fl - -f;')f"i'w - (nflw - z-ﬂ?w )fn - 2i@ﬁ?ﬂrﬁq A

- 1= ~ —~
1= BV =B - 3F, - =L g, - 32,)  BL3Y)

2
2, =9 |
P9, 8, )+ 18, + Fi% — (8, — 9, )0 BB -1 + £,8)=0

boundary conditions:

£0)=1,0)=0: 1,(=)=0

5,(0)=0; ,{=)=0 (31.38)

g,0)=0,g,(=)=0

.
f!r.um - zﬁwq - fﬂufm T fﬂf?rm + (j; - Jﬁl )Jﬁrrn + (fﬂ o Jﬁ )f;?'w - (fzmr h 2J]r;r:‘n'\l

v o Mo =280 foy — M= BV, —2B f0 S — B, =82 38, +38,

P
- ——‘ﬂn(gzu ~3g, +38, ) (3139)

g, =9
‘I‘Jr_1 (Sﬂrm - lE;IW )+ }1,32,‘, + fl"gla,r + -'rz'gunu - ('92:.: - '91a,r ]fw
- (31"3 - 11,fl:rr;'92 + -’r!r.llg'l + fﬂq'gu )= 0 J

boundary conditions:

/(0= 1., 0)=0; 1, {=)=0
8,{0)=0; 8,{x)=0
#,(0)=0, &,,{=)=0

and so on.
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The equations {31.35) fully coincide with the equations (31.25) to (31.27) and are
those for the two-dimensional boundary-layer development on a semi-infinite

horizontal surface.
Now using equations {31.16a) and (31.15a) in (31.24) we obtain the local heat

transfer rate per unit area of the disc

A K AT [2a’pJ2- (- g.B,8T N, ] 3 (0)
1 a r_z ﬂ m 4

(2-pY5o,

LR

or, T—r{?—ﬁ( g.5. AT} a

or, using (31.33), we get

(- g B AT o a2 PN E 50, (0)+ £8, (0)+ £29,,(0)+ ...

K EJ'
(31.41)

For elementary ring arca of the circular dise (see Fig. 2) of radius (a—%) we obtain

the overall surface heat transfer rate from the disc © as

0=~ [q, < 25(a-T)&
=2m13q‘(1*5}?5

where g_ is the heat transfer rate per unit area of the disc.

or, using (31.41}, we obtain

0= —2ma*xAT2 (- g, B, AT {o,a(2 - B)

Al ey

1

I3 E (1 -E ]{Sﬂ,,(u)dr £9 (0)+ &9, (0)+...... }5;5 (31.42)
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-4 2T -

Figure-2: A portion of the elementary circular ring

Now,

(173 Latlg @)+ LB o 22T s, o) LET - LET o, (0)+
_I\3 ‘; B i 8 13 Ly 13 g I 8 r:l N .
(1 1 1 1 1 !

=5 === 19 (0)+|-—— — |9
2 Do, 0+ (-5 2. 0455 m] Nor.

=5_—9 {0)+ O (0)+ —— 3, (0}+......
(24 ™ 8x13 " 13 18

25[ 24 24
=2 0 g 4. {0+ ...
24_‘9“( ]+3x13 "’(D)+13x13 ”()+ }

_2 S 24
-2 0 S (0)]

24 (5 +3)57+8)
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Then from equation (31.42) we obtain

0 =27 kATR (- ¢, B, AT ) fo,a(2 - BY S

[Sﬂq( } Z ( + 1X5_f + 8)‘ " (U):| (3[-43)

Hence the average heat transfer rate @ is given by

0=2

aad

-,l—

or, O =-waT2p(- g7 )lv,a2 B}

25
12 [Suq( )+ Z(SJ " 3)[5 +E)‘9“(0)] (3L.44)

Consequently, defining Nusselt and Grashof numbers based on diameter *2a 7 of
the disc as:

—

Nu = 0.2a
kAT
o _0aY s, paT

2
Ur

we may express equation (31.44) as

-

Nu=-2Rp(- g5, AT a2 P} 2a u,,(a) e +3X5 7O

__ 3 _(ZG)}g,ﬂ,ﬂT ; 2' g .

3

o o Bl a0 Z(sﬁssts)‘g“(“)} (149
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Equation (31.45) may be compared with the equation (12b) of Zakerullah and

Ackroyd (1979) with C=ﬂ. C =1 for ﬁ:%, i.e., for a constant temperature

N7

difference AT . But in this case the suction velocity variesas X *.
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Type-1I: {exponential variation)

From the above type of solution it is obscrved that the solution is rcal and finite

provided £ = 2. So we are now interested to have a solution when £#=2. We see

pi
from the relation f§ = i

ie., (p2U), =0

or, yU=k

that /#=2 when a, =0,
a, +a,

L
ug)

where k is constant of integration.

or, y'{&)=

Then from relation (ii) of equation (3.37) we have

k
EU'-E zﬂz
o U_a
U k

or, (loglU}, = G
Y
Integrating with respect to &, we have

ot, lngU(§)=~i—2§+lngC

”!F

U{E)=Ce*t’ (31L.1)
where C is constant of integration.

Substituting (311.1) in the above equation, we have

T L
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k

m

£
Cet
k _bz,

=—e ".-

C
Hence for this exponential case U{£) and y(¢} are given by

Ulg)=cet’ (311.2)
and _yz{ﬁ):%-?_ e (311.3)
By virtne of (311.2) and (31L.3) with the similarity requirements (3.37), we abtain

the following relations between the constants as

. : a :
a =0, a, 1s arburary, g, =-?5; a,, ¢, and a, are disposable ccnstants and
Sa
a, = —=.
2

Hence the general equations {3.33) to (3.35) take the following form as

Ur(a_‘;:)zF'rjigff +(a_§){'%;3:F_(a_‘§)‘74}Faa _(a“é:)azFffz

—kF, =(a—§)‘a5(c;+}:ﬁﬂ‘ﬁ] (311.4)

G, =a,9 (31L.5)
and

Po{a-8)9,, + {% a,F —(a—&a, }3&. = %ai F.9=0 (31L.6)

with boundary conditions :
F(0)= F,(0)=0; F,()=0

9(0}=1; Y()=0 (31L.7)
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Now substituting
F=a/f.hq=anad G=a,g ,
30 that
o _@8dp_ 12 o 1 &
o A df a, 0n 8% a,’ on’
Then we have from equations (31L.4) 1o (311.6)

XA +(aa¢){“*—‘*;-f—(a—¢)‘”":'}ﬁ},, @-)%
a; 2a; @, a;

ele.

alz 1 1 — 1

_k—_ifr.' ={ﬂ—§) aﬁfl(}[g-l__ngn)
a; 4

a3 Er?:a?g

&%,
and
P “1{)

a,a a Sa,a
(a )3, + {2;2‘ f _(a_é:)a_Z}S" - 2;; £,9=0

or, (a-f)l Lo +(”“=‘){%fzf "(a—é-')a‘fz}ﬁm —(a—r:)-—"*“““ .

UJ’

a,a, 1
~k——= (7 =la -é’) [3+—ng]
U, 4
- G,
=% 4
Fj' {Ij

and

P a-¢)8, + { L f-(a- )aaz}ﬂq—mﬁg:o
L L

of, (l—-é]zfq +(1_£]{fﬂf [ _ﬁ)ﬂﬂ:}ﬂw _[1u£)azﬂ|ﬂz J{;rz
aj "™ 2av v, a/ au,

g
ko o ‘aaala, (.1
= 1.}:.2:[1_%) _#[g-pzngq) (311.B)

a‘v,

g, =2 (311.9)
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Pr-.[l_.si]gw +{w&f_(._£]ﬂ_ﬂ_z}3q Se@a g g G110)
; ,

2au a; v 2ap,

¥

¥

lal

Choosing @, = «,, =1, and for a purely free convection flow we are to put

2ab,

2 2
2 25%s _ 1 Then we have from the above equations (311.8) te (311.10)

a,

[1-_":-)2 - _'_[1_.5){__02&[2 f—(l-gjfﬁ}fw _(1_£] a,a’ f,,z
a a}l|2av, aj; v, aj av

ka' s EY aaala, (. 1 .
-/ =[1-E — | £+ g,

a’v, v, 4

Pr-l[l_ﬁ}gm +{a_2(ﬂ_f_(l_£]a.,a.}& _M.Jﬁf,g:n
aj 2av, aj v, o 2auw,
where U, =2{a*(- g.8,47 v, xd . (L1

is the frec convection velocity associated with the fixed characteristic lengih

d (= —k—] _SQince we are concerned with the frec flows, we may put U/ =U/ .
ad, :

Hence the above equations bccome

(oS-
a d () il

g, =%
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and

P;’@ - é)yw . {f ; [1 B, 5){,}53 _5£.9=0
a a

or, if we put 3 =& , then
a

(-] 7, +1-ENr-b-EN s, ~20 8D -2,
[g)’[g+4qg) (31L.12)

g, =0 (311.13)
pi-E, +{r-0 _E), -51,9=0 (31L.14)

wJ:
where f,=a 2R, Ef: (BII.IFS}

Here R, is the Reynolds number based on free convection velocity U, given by

(311.13 ) and the fixed characteristic length & as

R = U;jd , (311.16)

r

The transformed boundary conditions are:
£0)=£,00)=0;; £,(=)=0
9(0}=1; Hwx)=0 (31L.17)
g,(0)=1; g,le)=0
For this steady exponcniial case the similarity function f (), the similarity
variable zand the pressure function gi) are related to the stream function w , the
physical co-ordinate (¥,z) and perturbation pressure p by the following equations

respectively
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w=uv,a 2R, fln)+ w(T,0) {(311.18)

| RF £
_1fs Z 311,19
m==\5 ( )
and
- U - '
5= ) (311.20)
da’

Here AT, which is responsible for the buoyant flow, varies exponentially with¥

s+ i +x[,

as ATae ¥ and w, varies as w, xe?

As we have seen in the previous case that the exponent of w, and AT -variation are

finite provided 4 # 2, but as usual in such similarity solutions those are tinite when

f =2, now taken the present exponential form.
The velocity components {= i, w}along with the skin friction 7., and the local heat
trausfer co-efficient ¢, are respectively
U

7/ (I1.21)

a-x

L U

u =

(a x)d V2
. L, R%‘d UF‘R.;',,%
le. =T To0 7 {f+nf,}- e 1 (31.22)

L

ul,
Sk 1)d a..a’_f”’“{ ) (311.23)

and

x AT K

q,=-
a2 d

(311.24)
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Chapter-4

Method of Numerical Solutions

Tt has been shown previously that as & —» 0, or, E —» 0, the equations (31.12) to

. (31.14) with boundary conditions (31.17) rednce to those for the two-dimensional

boundary-layer development on semi-infinite horizontal surface. However it was
seen from the analysis of Zakerullah and Ackroyd (1979) that when E >0, such a

two-dimensional nature is Jost immediately and the subsequent boundary-layer
development becownes pro gressively influenced by an axially symmetrical
squeezing of the flow as ihe centre of the disc is approached. Thus close to the disc
centre, the boundary-layer theory breaks down and & soluiion of the full Navier-
Stokes equations 1§ necessary in this region. So, in our prescii investigation we
will consider the zeroth-order boundary-layer equations (31.35) with the boundary
conditions (31.36) for numerical solution at the periphery of the disc.

The set of equation (31.35) together with the boundary conditions (31.36) are non-
linear and coupled. it is difficult to solve them analytically. Hence we adopt a
procedure to obtain the sojution numerically, Here we use the siandard initial-value
solver shooting method namely Nachtsheim-Swigert iteration technique (gucssing
the missing value) (Nachisheim & Swipert (1965)) and Runge-Kutta Merson
method, in cotlaboration with Runge-Kutia shooting method.

[n a shooting mcthod, the missing (unspecitied) initial condition at the initial point
of the interva! is assumed, and the differential cquation is then integrated
numerically as an initiaj value problem to the terminal point. The accuracy of the

assumed missing initial condition is then checked by comparing the calculated
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value of the dependent variable ai the terminal point with its given value there, ifa
difference exists, another value of the missing initial condition must be assumed
and the process is repeated. This process in continued until the agreement between
the calculated and the given condition at the terminal point is within the specified
degree of accuracy. For this type of iterative approach, one paturally inquires
whether or not there is a systematic way of finding each succecding (assumed)
value of the missing initial condition.

The Nachtsheim-Swigert iteration technique thus needs to be discussed
elaborately. The boundary condition {31.36) associated with the non-linear ODEs
(31.35) of the boundary-layer type arc of the two-point asymptotic class. Two-point
boundary conditions have values of the dependent variable specified al two
different values of independent variable. Specification of an asymptotic boundary
condition implics that the first derivative (and higher derivatives of the boundary-
layer equations, if exist) of the dependent variable approaches zcro as the outer
specified value of the independent variable is approached.

The method of numerically integrating a two-point asymptotic boundary-value
problem of the boundary-layer type, the initial-value method, requires that it e
recast as an initial-value problem. Thus it is necessary to estimate as many
boundary conditions at the surface as were (previously) given at infmity. The
governing differential equations are then integratcd with these assumed surface
boundary conditions. If the required outer boundary condition 1s satisfied, a
solution has been achieved. However, this is not generaily the case. Hence, a
method must be devised to estimate logically the new surface houndary conditions
for the next trial integrations, Asymptotic boundary value problems such as those
governing the boundary-layer equations are further complicated by the fact that the
outer boundary condition is specified at infinity. [n the trial intcgrations infinity 1s

numerically approximated by some large value of the independent variable. There
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is no a priori general mecthod of estimating his value. Selccting 100 small a
maximum value for the independent variable may not allow the solution to
asymptotically converge to the required accuracy. Selecting large a valuc may
vesult in divergence of the trial integrations or in slow convergence of surface
boundary conditions. Selecting to0 large a value of the indepcndent variable is
expensive in terms of computet time.

Nachtsheim-Swigerl developed an iteration method to overcome these difficulties.
Extension of the Nachtsheim-Swigerl iteration schemc to the system of equation
(31.35) end boundary conditions (3L.36} is straightforward. In equation {31.36)
{here are thrce asymptotic boundary conditions and hencc thrce unknown surface
conditions £"(0), §'(0) and §(0) (dropping the subseript ‘07).

Within the context of the initial-value method and Nachtsheim-Swigert iteration

technique the outer boundery conditions may be functionally represented as

7. )= 70, $1(0),8(0) }=46, 4.1

9. )= 9(£"(0), 9'(0), §(0) }=9; (4.2)

#(n )= B(7"(0), (0% E(®)) =4, (4.3)
with the asymptotic convergence criteria given by

£y )= ), 8'0), E(0) ) =4, (4.4)

F(n. Y= (1@, §'0),8(0))=6, (4.5)

5. )=E1(/70), §10),8(0)) =5, (4.6)

Choosing f"(0)=g,, ¥ =g, and §(0)=g, and expanding in a first-order
Taylor series after using equations (4.1) to (4.6) yields
S Y= Fi0 )+ 108, + Fp 085 + T A% =0, (4.7)
907, )= 9 (1 )+ 8, A2, + 8,08, + 9,88, =5 (4.8)

E(?}m]zﬁﬁ(nm)-‘_?glﬂgl+§g:£\g1+§g3ﬂg}=§3 {4*9]
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()= Fo00e )+ SL 08, + 108, + 1,88, =9, (4.10)
"g'(?;m ): '9:‘(?;'.rn:w )+ S;|f$g1 + Séz‘ﬁgl + '9;'3&31 = (55 {4*] 1)
T )= Ee 0 )+ To 08, + 8,08, + /9,88, =9 (4.12)

o',
oe,

where subscripts indicate partial differentiation , e. g, f,, ete. and

subscript *C * indicates the value of the function at 7, determined from the trial
integration.

Qolution of these equations in a least-squares sense requires determining the
minimum value of

E=82+5,"+8"+6/ +38, +8, (4.13)
with respectto g,, g, and g,.

Differentiating £ with respect to g, yields

ole) ole) 80 o8 04, o8
251,‘—'-+25“—2—+2§3—i+25471+255—-+25b )
og, 0g, og, og, g, 0g,

Using the above equations we get
or, U}} + foAg oA+ 158, Jf;. + (SC +9, Ag, + 8, Ag, + 3, AL, )‘93.
Hgo + 7, Ag, + 8,08, + 08 )8, + U+ fde + fo08, + Fp 08, )i
+H8L + 9! Ag, + 8, 88, + 9 Ag o +(BL+ 7, 08 +E 08 +E 08, g
o, (f17+9, 48, +fm v+ g he + (S + 9,9, vELEL
Frfa 98+ E 2 Mg, H S+ 9, F BB a S 9%

+§;1§;3 )ﬁgi == :fgrl + '9C'gg| +§L'Eg| +f:fg’:’ + '96:"9;; ++§|':'§;1 ]{4']4)
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Similarly differentiating E with respectto g, and g, we obtain
or, (71 f +0,8, + BB, + alat 500 + €k We + (2 +9,+8,)
a8 g A+ 8,8+ B TS0+ 55,
v BLE W =LA+ 909, + By, + S+ 5, +EE,) @15
and
s +8,8, + 8,8, + Fa o g9 +ELE e+ (/1 fr+9.9, +
BE, 4+ S8, +ELE,, Vg, + (7 i+ 8 4G+
2 g, =i+ 08, 4 BoR 4 S I, A EER,) (419
We can write equations (4.14) to {4.16) in system of linear equations in the

foliowing forms as

|5"11‘}1"‘-‘_51 + anﬁgz +Huﬂ.g} =b11 (41?}

a8, + g, +aphg, =by (4.18)

ay&gn T ‘33:"3'32 +a,A8,= b33 (4-19]
where

a,=f1+ 8, + g+ S+ g+ g’

a,=f1f 48,0, * B, ¥ IaSn + 90 T B R,

a, =1 f1 8,0, + B8, + falp+ 8,9, T B8,

ay =SS+ 9,9, + BBy t a9 90 + B8 = a0
a,=f11+9, + g8 +3]

_ I r Ly e L (3 F i Ll S 3
a‘-‘-’ - fg:fgx ¥ 951'933 + g:'r:gm + vf;z-’rm + '9#2'951 + ggﬂ‘gm

2 9 e 3 nl b2 eer X
ai‘ﬂﬁfm +'9§: +g33 +f¥3 +'9.gu +g§3
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by = 09, +BE, + S+ S+ R,

b, =S+ 8.9, + BB, + S+ S8, v EE,)
and b, =—{f1f1 + 8.9, +BE, + fII0 + 55, 8 g )
Solving the equations (4.17) to (4. 19} we have

det A
Ag =
BL= qetA

_detA,
> detA

det A
det A

and Ag, =

b, a a
I 12 13
= bl:(azza.u - a:}”u) bxz(az.zalz - aua:ﬂ)

where, detA =, a, a;
b, ay

+ bsn(auar - anan)
i
a, bn ady
= EJn (aziazit - anaz})"' bzz (anﬂszx - a:uau)

detA, =g, b, a,
1 il 75

5 + bja(ama;n - anau)
15 a?ﬂ

detA. =g, 4a b = by {ay @y —duthn + bzz(”s:“uz _“uﬂaz]
E b = 2
+ by (an”:z - ”uﬂu)

=d, (azzaaa — @y ) + 4, (aazau - auau]

and detA=la, a, d, ( )
+d, \dy U T dupdy,

Then we obtain the missing (unspecified) values as
g =8 148,
£:=8:t8¢;

and g,=g tAg,
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Thus adopting the numerical techmque aforementioned. the solution of the
equation (31.35) with boundary conditions (31.36) are oblained together with sixth-
order implicit Runge-Kutta initial value solver and detcrmine the velocity,
temperature and pressure functions as funetion of the co-ordinate #7. In the process
of integration the skin friction coefficient £"(0) and the heat transfer rate —9(0)
are also calculated out and we applied the method for different values of perlinent
parameters. Based on the integration done with the aforementioned numerical
technique, the results ohtained are given in the next chapter with graphs and tables.
For more details numerical calculation technique the corresponding FORTRAN

program with subroutine is also given in the Appendix ‘A’ of chapter 3.
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Chapter-5
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Graphs and Vables

B2



9€ 803

Graphs
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0,59
] . fw=-15
0.8
: vi 0L fws-1.0
07
- IV fw =05
08 Vo fw=0.0
-~ 057 vl fw=05
0.4

Figure-3: Velocity profiles for different values of f, at the petiphery
of the disc with $=10.33 and Prandtl No Pr= 0.72.
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Tigure-4: Velocity profiles for ditferent values of f, at the periphery
of the disc with §=1.0 and Prandtl No. Pr= 0.72.
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of the disc with f=0.33 & 1.0 and Prandil No. Pr=0.72.
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Figure-6: Velocity profiles for different values of /7 at the periphery
of the disc with f, ==2.0 and Prandil No. Pt = 0.72.
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Figure-8: Temperature profiles for different values of £, at the periphery
of the dise with 8= 0.33 and Prandt! No. Pr =0.72.
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Figure-9: Temperature profiles for diffcreni values of f at the periphery
of (he disc with #=1.0 and Prandtl No. Pr=10.72.

]
1% curves for f=0.33
497 %= - - -gurves forf=1.0
os R I1tw=-20
o7 N :fw=-15
TUE_ W Il P = 1.0
: . V- wo=-D.8
oo [ 5 E S
) S Vv hw=00
04— R
. -, e .
3 N ;
0.2 A g
01 - e,
[— , T =
0 ] s 5

Figure-10: Temperature profiles for differcnt values of f, &l the periphery
of the dise with 8= 0.33 & 1.0and PrandtiNo. Pr= 0.72.
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Figurc-12: Temperature protiles for different values of /3 at the periphery

of the dise with £, = 0.0 and Prandtl No. Pr=10.72.
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Figure-13- The non-dimension! pressure distributions at the periphery of the disc
for £, ==-2.0& 00 with f= 0.33 and Prandti No, T'r = 0.72.
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Figure-14: The non-dimensional pressure distributions at the periphery of the disc
for £, =-2.0 & 0.0 with g=1.0 and Prandt] Ne. Pr=10.72.
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Figure-15: The non-dimensional pressure distribulions at the petiphery of the dise
for f3-variation with £, = _2.0 and Prandtl No. Pr=0.72,
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Figure-16: The son-dimensional pressure distributions at the periphery of the dise
for f -variation with f,, _0.0 and Prandt! No. Pr=0.71.
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Tigure-17: Skin friction factor {= f™{(0)) for £, - variation af the periphery
of the disc with =033 and Prandtl No. Pr= 0.72.

Figure-18: Skin friction factor (= /() for £, - variation at the periphery
of the dise with f =1.0 and Prandtl Ne. Pr=0.72.
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Figure-19: Heat transfer co-eflicient (= —-&(0)) for f, - variation at the periphery
of the disc with @ =0.33 and Prandtl No. Pr= 0.72.
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Figure-20: Heat transfer co-eflicient (= —&(0)) for f, - variation at the periphery
of the dise with £ =1.0 and Prandti No. Pr= (.72,
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Figure-21: Skin [riction factors (= f(0y) for f,- variation at the periphery
of the dise with #= 033 & 1.0 and Prandt] No. Pr=0.72.
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Figure-22: Heat transfer co-eflicient (= —&'(0)) for - variation at the periphery
of the disc with #=0.33 & 1.0 and Prandtl No. Pr = (.72.
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Figurc-23: Skin fiction factor (= f"(0)) for 3 - variation at the periphery
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Figure-24: Skin Friction [actor (= 7"(0)) for B - variation at the pedphery
of the dise with £, =0.0 and Prandtl No. Pr= 0.72.
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Figure-25: Heat transfer co-¢ Ficient (= —(0)) for f- variation at the periphery
of the disc with f, =—2.0 and Prandti No. Pr= 0.72.
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Figure-26: Heat transfer co-cificient (= —F(0) for j- vanation at the periphery
ofthe dise with 7, = 0.0 and Prandtl No. Pr= 0.72.
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Tables

e 10 =3(0) 3
-2.00 0.36397 |.49356
-1.50 0.55170 1.15770
-1.00 0 81350 0.86050 .
0.33
-0 50 1.04040 061530
0.0 117535 041707
0.50 122752 0.26399

Table-1: The skin friction and heat transfer coefficients for different values of £, with g =0.33

fo SO —5(0) A
-2.00 0.32577 152513
-1.50 0.44916 122735
-1.00 0.62381 0.98412 00
-0.50 0,75316 0.80067

0.0 0.77969 0.63301

Table-2: The skin friction and heat transter coefficients for dilferent values of £, with f§ = 100
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r 8 £(0) - F(W i
0.33 0.36979 1.49356
0.67 0.35818 1.51269
075 0.35230 1.51613
1.00 {(.32577 1.52513 -2.00
1.25 ) 29243 1.52385
1.50) 0.2283) 1.51216
1.75 . 14383 148168
i |
Table-3: The skin friction and heat rransfer coelficients for different values of g with f, =-2.0
5 7o - &{0) 5
0.33 117532 0.41707
0,50 1.05185 0.50494
0.00
.67 0.92110 0.56475
0.73 {1.87630) 0,58394
1.00 077969 0.63301
1.25 0.70887 0.66254

L _
Table-4: The skin friction and heat transter coe

fficients for different values of A with f, =00
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Results and discussions

On the basis of the numerical resulis of the set of cquations (31.35) and {31.36) the
dimensionless velocity and tempecrature profiles along with the pressure
distributions are presented in Fig. 3 to Fig. 16, whereas thc skin friction factors
(7"{0)) and the heat transfer co-efficients (— 9(0)) are displayed in Fig. 17 to Fig.
26 for the fixed valuc of Prandtl number Pr = 0.72 (the typical value of air) with
several sclected values of established parameters f, and B so far zeroth order
boundary-jayer is concerned. Figures show that profiles vary as usual with
variations of parameicrs £, and 7.

The displayed Fig. 3 shows that for isothermal temperature 3 =0.33 the velocity
profiles rise sharply with the increasing value of f, from nc gative to positive (L.e.,
with decreasing suction) and the rises are higher than thosc of A =1.0 (i.e., Tor

isothermal suction) [Fig. 4]. Consequently, sharp risc will increase the wall shear
SIeSSCS,

For A=033, f, =00 and Pr=0.72, the pumerical results shown in Tab. 1
coincide with those displayed by Rotem and Claassen {1969a) and Zakerullah and
Ackroyd (1979} for some particular values of thc paramcters concerned,

For a fixed value of suciion parameter s, =-2.0) the velocity profiles [Fig. 6]
exhibit the remarkable behaviors for 8 —variation. Here, the velocity profiles rise
usually with the decrease of the disc temperature. The same situation ariscs if no
suction is applied [Fig. 7] but the sharp rise happens in this case.

Fig. § and Fig. 9 predict that the temperaiure profiles are higher near the surface of
the disc and away from the disc they decrease asymptotically. Here we also infer
that the tempcrature profiles decrease with the dccreasing value of the suction

parameter [, (i.e. with increasing suction). Thus, as f, increases fromn negative
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value to positive ones, the temperature gradient at the wall increases. This
corresponds to the physical situation in which heat is iransferred from the disc to
the fluid.

Fig. 10 exhibits a comparison of the tempcrature profiles for isothermal disc’s

surfaces (= 0.33 } and isotherinal suction {8 =1.0), for different values of f,.

From Fig. 17 and Fig. 18 we chserve that for constant wall temperature the skin
friction graduaily decreascs with the increase of suction parameter but the skin
friction more decreases with the increasing of wall temperature. The Fig. 19 and
Fig. 20 concern that suctions increase the heat transfer rate highly. For suction the
fiuid at the ambicnt temperature being brought closer o the surfacc resulting in an
increase in heat transfer. It is cvident that the effccts of suctions to suck away the
warm fluids present on the wall and thus decrease the thermal boundary-layer
thickness and thereby increase the heat transfer rate. It is thns confirmly predict
that very small suction velocity plays a vital role on the offect of the skin friction
and heat transfer.

From Fig. 23 and Fig. 24 it is observed that the skin friction also decreases with the
increasing of wall temperature either suetion is applied or not, but the rate of

decrease with suction (f, =—2.0) are more dominant than those of without suction
(. =0.0).

The heat transfer coefficients for J — variation are shown in Fig. 25 and Fig. 26
with 7 =-2.0 & 0.0, 1tis anticipated from the figures that if no suction is applied
{he heat transfer co-efficients increase with the increase of 3. But a different

behavior is observed if the suction i« considered. Here, the heat transfer co-

efficient increases with the increase of g and the higher heat transfer occurs when

J =1.0 (isothermal suction).
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In addition to this we find from the numerical sohitions [Tab. 4] that for uniform

heat flux (i.e., for #=0.5) with Pr= 0.72, the results obtained coincide with those

deduced by Pera and Gabhart (1973) in absence of suction parameter £

Since the flow characteristics associated with heat transfer and skin friction co-
efficients of the present problem are of practical interest, so the numerical results

for £"{0) and - $°(0) are presented in tabular forms. Tab. 1 and Tab. 2 display the
effects of skin friction and hcat transfer co-efficients for the variation of f, with
f§ =0.33 (isothermal surface) and 1.0 (isothermal suction) for Pr=0.72. Also Tab.
3 and Tab. 4 display the same for 8 — variation with f., ==-2.0 & 0.0. We observe

that for isothermal suction, the skin friction and heat iransfer co-efficients are less

than those of isothermal surface {Fig, 21 and Fig. 22},
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Conclusion

It is desirable to evaluate the other correction terms like & (0) of equation {(31.44)

for i=1,2 etc. But £ -dependent terms like J(%ﬂ—f-] and J[jgﬁ] from the right-
A M

hand side of momenium and ;nerg}' equations are ignored in the present study
cmbodied with Boussinesq approximation. By the substitutions of the present
similarity variable, in the & -dependent terms / (Er; ) .Q(E.n ) and E[E,f}) of the
governing equations (3.1) to (3.4), the forms of the first order and second order
perturbed cquations like (31.32) to (31.34) would be affeeted, although zcroth order
remains unchanged. So it necds further study to includc more terns for equations
(31.37) to (31.40) :n, the calculation of over all heat transfer and drug co-efficients

numerically.
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Program

cm======mMainprogram=--= == = == ==
¢ shooting method

implicit real*8(a-h,0-z)

common/p/fw,pr,bt ~

common/v/ir,ix

common/vv/gl,g2,23

open(unit=3, file='sss3.dat’)

open{unit=2,file="0sss.dal’)

read(3,*)ir,ix,gl,82,e3,fw,bt,pr

¢ i=0
cll =i+l
call drill
call compl
¢ if{it.gt. 10)stop
¢ potoll
S0P
end
g===< drff0 = ==

subrouting drfI0
implicit real¥8(a-h,0-2)
common/p/fw,pr,bt
common/v/ir,Ix
common/vv/gl,g2,g3
dimension xd(60},xk{3,60},1{60},x{00)
external derfl
n=24
itmax==%
kk=0
555 Kk=ki+]

if{kk.eq.10)stop
write(*, *Yir =,ir
do 101 iter=1,ir

=0.0

do k=1.n

x(k}=0.0

enddo
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x(3)=gl

x{(4)=1.

X(5)=g2

x(6)=g3

x(9)=1.

*{17=1.

x(24)=1.

h=.01 >

h=dsinh(!./aa)

do i=1,ir

call rksys{dcrﬂ),t,h,x,xd,};k,ﬁn)

do k=1.n
x(k)y=xd{k}

enddo
h=dsinh{loat{i)/aa)-dsinh{float(i-1)/aa)
=t+h

enddo
al 1=x(8)¥*2+x( 9 * *2+x{10)**2+x(1 1y#*+24x{12)**2
a1 2=x(BY*x{ 14)+x(9)*x(1 5)yHx(10)*x(16)+x(1 (1 7+x(12)*x(18)
al 3=x(8)*x(20)+x(9)*x(2 Ly+x(1 OV x(22)+x(1 1)*x(23)+x(] 2y*x(24)
a21=al2
a22=x(14y*2+x{15y**2+x(16)**2+x({1 T*F*2+x(18)¥*2
a23=x{14)*x(20)+x(15)*x(21 YHx(16)*x(22)+x(1 7)*x(23)+x(1 8)*x(24)
ajl=al3
ajl=a23
833=x(20) ¥ 24X (21 ) ¥ * 2Hx(22 P 24x(23)F ¥ 2Hx(24)**2
bl=-[x(2j*x(3}+x[3)*x(9}+x{4)*x{lU}+x{5}*x(l P 6)*x{12))
b2=-(x{2YFx{ 14X 3y x (1 3)+x {4y x(1 HIFX{S Y x{1 TyHx(6)*x(18)}
b3=-(x(2)*x(2[l)+x(3)*x(21}-I-x(4)*x{22}+x(5]*x(23)+x{6)*x(24})
err=x(2)**2+x{4)**2+x(6)**2
write(*,3%err
write(*,39)gl,g2,23
if{crr.le. 0.00001)go to 22
dell=b1*(a22*a33-a37%a23)-b2*(al2*a33-a32%al 3)

] +h3*(a12#a23-222%a13)
dei2=-b1*(a21*a33-a31*a23)+b2*(ali*a33-a31%al 3}

1 -b3*(all*a23-a21%al3)
deld =bl *(a21*a32-a31*a22)-b2*(al 1 ¥a32-a31*al2)

1 +b3*(ul1*a22-221%al2)
delA=al1*(a22*a33-a32%a23)-a21*(al2%*a3 3-a32*al3)
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1 +a31*¥(al2%a23-a22%al3)
dgl=dell/delA
dg2=del2/delA
dgi=del3/delA
gl=gl+dgl
g2=p2+dp2
gi=g3-+dg3
if{iter.ge.itmax) then
Ir=ir+ix
go io 535
endif

101 continue

22 write(*,39)gl="gl.g2,83
write(2,39)gl,2.83

30 formal(2x,309.5)
return
cnd

c—==—===compl=
subroutine compl]
implicit real*8(a-h,0-z)
commeon/p/fw,pr,bt
common/v/ir,ix
common/vv/gl,g2,n3
dimension xd{60),xk(3,60),f(60),x(60)
external derfl

n=0
¢ itmax=§
¢ kk=0
¢ 555 kk=kk+1

¢ ifikk.eq.10)stop
c write{ *,*)'ir =\ir
c do 101 iter=1,ir

1=0.0

dok=1l,n

x(k)=0.0

enddo

x(3)=gl

x(4)=1.
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x(6)=g3
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22

39

writc(*,39),x(2),x(31x(4},%(5 ),x(6),fw
write(2,3 it x(2),x(3),x(4) x(5),%(6).fw
h=.01
h=dsinh{ |./aa)
doi=1,ir
call rksys(derf0,t,h,x,xd,xk,f,n}

do k=1,n

IO xdik}

enddo

h=dsinh{ float(i)/za)-dsinh{ float(i-  }/aa)
=t+h
write(*,39)t,x(3},x(5),x(6)
write(2,393,x(2),x(3),x(4),x(5),x(6), P
enddo
format([5.3,2x,619.4)
return
end

dertl
subroutine derf0{x,t,f,n)
inplieit real*8(a-h,0-z)
common/p/fw,pr,bt
dimension x{n},f{n}
pl=tw
p2=(1.-bt)/2.*bt
p3=3.%bt-1.
f{1)=x(2)
f2)=x(3)
{3 =-{x{1)*x(3)-p1 ¥x(3)-bt*x(2)**2+p2 *tra{4)-x(0))
f4)=x(5)
fiSy=-pr¥(x(1)*x(5)-p) *x(5)-p3*x(2)*x(4))
f6)=x(4)
do j=1,3
k=06%j
Rkt D=x(k+2)
flk+2y=x{k+3)
f{k+3)=-(x{ DFx (k433 ¥k +1)-p1*x(k +3)-bt*2*x{k+2)
| +p2*t¥*x{k+4)-x(k+6})
fik+d)=x{k+5)
fk+5 )= (pre(x( ¥ x(k+5 yrx(k+1)*x(5)-p1 *x(k+5)-pI*(x(2)*x(k+4)
1 Fx(kF2)X(4))
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[{(k+6)=x(k+4)

enddo
relurn
end
pr——m——ms——m=——E———me=mT = ———e
¢ Implicit R-K Sixth order method
o=—= = R — R

subrouiine rks ys(derivs,l,h,x,xd,xkﬂ f,n)
implicit rcal¥8(a-h,0-z)
dimension x{n),xd{n),xk(4,n},f{n}
sgt=sqrt{15.0)
al=(5.-sqt)/10.0
a2=1./2.
a3=(5.+sq1}/10.0
bl1=3./36.
b2=(10.-3.*sqi)/43.
b3={25.-6.%sqt)/1R0.
c1=(10.+3.%sqt)/72.
£2=2./9.
c3=(10.-3.%sqt)/72.
d1=(25.+6.%sqt}/ 180
d2=(10.+3,%sqt}/45.
d3=5./36.
call derivs(x,t,L,n}
doi1=1,n
xk(1,1=h*{{i}
xk(2,1)=h*{(i)
xk(3,1)=h*1i1)
xd(ﬂ=x{u+b1*xk(lJ}+b2*xk{2j}+b3*xk{35}
enddo
call derivs(xd,t+al*h,t,n)
doi=1,n
xk{ 1,)=h*1{(i}
xdﬂ)=x{ﬂ+ﬂ1*xk(ij}+02*xk{2j}+c3*xk{3j)
¢nddo
call derivs(xd,t+a2*h,,n}
do 1=1,n
xk(2,1)=h*1(1)
xd(D)=x(D+d1*xk(1 )2 xk(2,iyd3%xk(3,1)
enddo
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calf derivs{xd,t+a3*h,f,n)
do 1=1,n
xk(3,1F=h*{1}
xd(1y=x(i+(5. 7 xk(] ,i]+8.*xk(?,i]+5.*xk(3,i))fl 8.0
enddo
retnrn
end

)
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