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Abastract

The present study deals with the effects of transpiration (either suction or

blowing) on skin friction and heat transfer coetlicicnls for the steady laminar

free convection boundary-layer flow generated by heated horizontal circular

disc, The Boussinesq approximation is employed firstly to deal with the two

possible steady cases. Secondly, the numerical solutions afC displayed for

different values afthe established parameters.
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Chapter-l

General introduction with review of previous research

Fluid mechanics is a subject of widespread interest to researchers and it becomes

an obvious challenge for the scientists, engineers as well as users to understand

more about fluid motion. An important contribution to the fluid dynamics is the

concept of boundary-layer introduced first by L. Prandtl (1904). The concept of the

boundary-layer is the consequence of the fact that flows at high Reynolds numbers

can be divided into unequally spaced regions. A very thin layer (called boundary-

layer) in the vicinity (of the object) in which the viscous effects dominate, must be

taken into account, and for the hulk of the flow region, the visoosity can be

neglected and the flow corresponds to the inviscid outer flow. Although the

boundary-layer is very thin, it plays a vital role in the fluid dynamics. Boundary-

layer theory has become an essential study now-a-days in analysing the complex

behaviors of real tluids. The concept of a boundary-layer can be utilized to

simplifY the Navier-Stokes' equations to such an extent that the viscous effects of

flow parameters are evaluated, and these are useable in many practical problems

(viz. the drag on ships and missiles, the efficiency of compressors and turbines in

jet engines, the etfectiveness of air intakes for ram and turbojets and so on).

Further, the boundary-layer effect caused by free convection is frequently observoo

in our environmental happenings and engineering devices. We know that if

externally induced flow is provided and flows arising naturally solely due to the

effect of the differences in density, caused by temperature or concentration

differences in the body force tield (such as gravitational field), then these types of



flow are called 'free convection' or 'natural convection' flows. The density

difference causes buoyancy effects and these effects act as 'driving forces' due to

which the flow is generated. Hence free convection is the process of heat transfer

which occurs due to movement of the fluid particles by density differences

associated with temperatlITe differential in a fluid. In such cases, the free stream

velocity falls away, in deed, no reference velocity does a priori exist. If the density

in the vicinity of the object is kept constant, a natural convection flow can not

form. Thus this is an effect of variable properties, where there is a mutual coupling

between momentum and heat transport. The direct origin of the formation of

natural convection flows is a heat transfer via conduction through the fixed

surfaces surrounding the fluid. If the surface temperature is greater than that of

ambient fluid, the heat transfer from the plate to the fluid leads to an increase ofthe

temperature of the fluid close to the surfaces and to a change in the density,

because it is temperature dependent. If the density decreases with increasing

temperature, buoyancy forces arise close to the surface and warmer fluid moves

upwards. Such buoyant forces are proportional to the coefficient of thermal

expansion f3r' defined as f3r;-JJop] ,where p, T and p are density,plaT p=="'

temperature and pressure respectively. It is observed that f3 ;..!.. for a perfect gas'7
and we see that stream is well approximated by the perfect-gas result P rT =1 at

low pressure and high temperature. Also f3 <..!.. for a liquid and may even be, T

negative, and f3, > ~ for imperfect gas, particularly at high pressure. fJ,: is also

useful in estimating the dependence of enthalpy 'h' on pressure, from the

,



thermodynamic relation dh= cpdT + (1- fJ T)dp, where of course T must be, p

absolute temperature. For the perfect gas, the second term vanishes, so that

h=h(r) only.

The natural convection studies begun in the year 1881 with Lorentz and continued

at a relatively constant rate until recently. This mode of heat transfer occurs very

commonly, the cooling of transmission lines, electric transformers and rectifiers,

the heating of rooms by use of radiators, the heat transfer from hot p~pesand ovens

surrounded by cooled air, cooling the reactor core (in nuclear power plant) and

carry out the heat generated by nuclear fission etc. Bulks of infonmtion are now

available in literature about the boundary-layer form of natural convection flows

over bodies of different shapes.

Schmidt (1932) was apparently the first researcher who investigated

experimentally the behavior of the flow near the leading edge above a flat

horizontal surface.

The theoretical analysis of the laminar, two-dimensional, steady natural convection

boundary-layer flow on a semi-infmite horizontal flat plate was first considered by

Stewartson (1958) (later corrected by Gill, Zeh and Del-Casal (1965». In that

analysis he used the Boussinesq approximation to show how the boundary-layer

analysis could be incorporated with the natural convection on rectangular plates,

which are of high planform aspect ratio.

Rotem and Claassen (1959a) investigated thc boundary layer equation over a semi-

infinite horizontal surface of uniform tcmperature and results were presented for

some specific values of Prandtl number with its limits from zero to infinity. The

effect of buoyancy forces that exist in boundary-layer flow, over a horizontal



surface, where the surfuee temperature diilers from that of ambient fluid, was

studied by Sparrow and Minkowycz (1962). The free convection above a heated

and almost horizontal plate has been treated by Jones (1973).

The boundary-layer type of the natural convection flow, which occurs on the upper

surface of heated horizontal, surfaces has been investigated theoretically and

experimentally by amongst other, Rotem and Claassen (l959b), Pera and Gebhart

(1973) and Goldstein, Sparrow and Jones (1973). It is seen from their experiments

and also from the flow visualization of Husar and Sparrow (1968) that a boundary-

layer starts from each edge ofa plate edge, each boundary-layer !laving its leading

at a straight-side plate edge. The boundary-layer development occurs normal to the

corresponding edge so that collisions between opposing boundary-layer flows

occur on the plate surface. After collision, the fluid checked in thl~boundary-layer

forms a rising buoyant plume. Most of the above analyses were based on the

Buossinesq approximation and have been concerned with the seeking of similarity

solutions in which the plate temperature varies with the distance from plate leading

edge. In tms approximation, thus density, viscosity, thermal conductivity and

specific heat variations are ignored except for the necessary inclusion of the

density-variation in the body force term.

An analysis is performed by Chell, rien, and Armaly (1986) to study the flow and

heat transfer characteristic of laminar natural convection in boundary-layer flows

from horizontal, inclined and vertical plates with power law variation of the wall

temperature.

With a parameter associated with the body shapes a similarity solution on the

natural convection flow has also been studied by Pop and Takhar (1993).



In most of the above analyses the boundary-layer of the natural convection flows

were considered over vertical, horizontal or near horizontal, semi-infinite or

rectangular plates. •.

The natural convection boundary-layer flows on horizontal circular disc has not yet

been taken into consideration with transpiration. Zakerullah and Ackroyd (1979)

theoretically investigated the higher order boundary-layer natural convection flow

on horizontal circular discs and paid an emphasis on the effects of fluid-property

variations. Later Merkin (1983, 1985) obtained series solutions of the similarity

equations derived by them (Zakerullah and Ackroyd (1979)) valid near the

circumference of the disc. In his analysis it was shown that the solution at the

circumference of the disc is basically the same as on a flat plate, with the

importance of the curvature effects increasing as the centre of the disc is

approached. However, near the centre of the disc, the boundary.-layer thickness

increases very rapidly and that the solution splits up into two distinct regions, a

thin inner viscous region next to the disc in which the temperature is almost

constant, and the pressure is large (and negative) and almost uniform, and outside

this region is a thick outer inviscid region. In those analyses the boundary-layer

flows were considered over heated or uniformly heated horizontal circular discs.

The surface is impermeable to the fluid, so that there is no transpiration i.e.,

suction or blowing velocity normal to the surfacc. This led to the kinematic

boundary condition w, = o.

The problem of boundary-layer control has become very important factor; in actual

application it is often necessary to prevent separation. The separation of the

boundary-layer is generally undesirable, since separated flow causes a great

increase in the drag experienced by the body. So it is often necessary to prevent

separation in order to reduce pressure drag and attain high lift.

;



Suction (or blowing) is one of the useful means in preventing boundary-layer

separation. The effect of suction consists in the removal of decelerated particles

from the boundary-layer before they are given a chance to cause separation. The

surface is considered to be permeable to the fluid, so that the surface will allow a

non-zero nonnal velocity and fluid is either sucked or blown through it. In doing

this however, no-slip condition u, =0 at the surface (non-moving) shall continue

to remain valid.

In driving the boundary-layer equation, it is anticipated that the w-component of

the velocity is a small quantity of the order of magnitude o( Re -~J and it is

assumed that the suction (or blowing) velocity w, nonnal to the surface has its

magnitude of order (characteristic Reynolds numbery1l2. The com,equence of this is

that outer flow is independent of w, and the boundary condition at the surface is

givenbyz=O; u=O,w=wJx).

Suction or blowing causes double effects with respect to the heat transfer. On the

one hand, the temperature profile is influenced by the changed velocity field in the

boundary-layer, leading to a change in the heat conduction at the surface. On the

other hand; convective heat transfer occurs at the surface along with the heat

conduction for w. '" O. A summary of flow separation and its control are found in

Chang (1970, 1976).

The boundary-layer suction was first applied by Prandtl (1904) in his fundamental

works on boundary-layers on a circular cylinder. The effects of blowing and

suction on forced or free convection flow over vertical as well as horizontal plates

were analyzed in a symmetric way by Gortler (1957), Sparrow and Cess (1961),

Koh and Hartnett (1961), Gersten and Gross (1974), Merkin (1972, 1975),



Vedhanaygam, Altenkirch and Eichhorn (1980), Hasio-Tsung and Wen-Shing

(1988), Merkin (1994) and Acharya, Shingh and Dash (1999) etc. The effect of

transpiration on free convection above heated horizontal surface has been

discussed by Clarke and Riley (1975), allowing for variable fluid density. But the

effects of suction (or blowing) on free convection flow over a heated horizontal

circular disc has received substantia!1y less attention.

In our present study, we contined our discussion about the steady, laminar, free

convection boundary-layer flow on axi~syrnmetric, heated, horizontal circular disc

including the effects of suction (or blowing) situated near the edge of the disc. The

flow parameters like skin friction and heat transfer co-efficient are also studied.

In order to solve the laminar natural convection boundary-layer equations it is in

general the N-S and energy equations are to bc transformed into convenient

simplified forms like local non-similar solution. At thc outset attempts are made to

incorporate the idea of similarity analysis. Because, the objectives of seeking

similarity solutions are manifold, firstly, the partial differential equations (PDE)

governing the flow fields are to reduce ordinary differential equations (ODE) by

using self-similar technique. By this means it is possible to obtain a number of

exact special solutions either analytically or sometimes even in numerical form.

Secondly, the results obtained from similarity equations may be directly usable in

solving the local non-similar solutions. Here we adopt the method of classical

'separation of variables' which is of the simplest and most straightforward method

of determining similarity solutions. This method was first initiated by Abbott and

Kline (1960). In this method, once a specific forrp. of similarity variable is chosen,

the given PDE is changed under the selected co-ordinate transformations. The

dependent variables are considered to be functions of the new co-ordinates. The

dependent variables are to be expressed in terms of the product of separable

, ,



functions of the new independent variables where each function is dependent on

the single variable. Substitution of the product form of the dependent variables into

the original PDE generally leads to an equation in which no functions of single

variable can be isolated on the two sides of the equation unless certain parameters

are to be specified. Usually, these parameters can be specified quite readily and

"separation of the variables" is achieved. On this way the separation proceeds until

the one side becomes an ODE. Finally, if the complete transformation to ODE is

not possible, the local non-similar solutions are derived with some physical

background to the remaining independent variable.

The Boussinesq approximation is employed first in chapter-3 to deal with the two

possible steady cases. Numerical solution with graphs and tables are presented in

chapter-4 and 5.

•



Chapter-2

Basic equations and their order analyses

The generalilised Navier-Stokes' (N-S) equation (i,e., continuity and momentum

equations) and energy equation tor an axially symmetrical steady natural

convection flow are given:

continuity equation,

(2.1)

(As was described by Shih-I Pai (1958»

momentum equation,

p(ij.v)ij 0" - Vj! + V.(uV)ij
and energy equation

P', (ij.v)1'" V.(""T)+ (ij.V)p +<1>.

Here,

ij= ij(u, w) be the velocity vector of the fluid,

(2.2)

(2.3)

F:: (p - Po)g:: (p - Po)g(g"g,) is the gravitational body force per uDit volume,

where g is the vector acceleration of gravity,

and<l> denotes the 'dissipation function' involving the VISCOUS stresses and it

represents the rate at which energy is being dissipated per unit volume through the

action of viscosity. In fact the dissipation of energy is that energy which is

dissipated in a viscous fluid in motion on account of the internal friction given by-

t.
/ "



I.e.,

which is always positive since all the terms are quadratic. Here A is associated

only with volume expansion, called the 'coefficient of bulk viscosity', may

actually be negative. Stokes' simply resolved the issue by an assumption:

2
A+-P=O

3

2
A=--P

3

(Stokes' hypothesis (1845))

Thus we obtain

(2.4)

Hence the above equations (2.1) to (2.3) can be reduced to mo~t simplified forms

'"
. continuity equation,

u-momentum equation,

(
iJu au] iJji 8 ( iJu] iJ ( iJuIp u-+w- =(p-p)g --+- p- +- p-'
&: iJz 0 % &: &: &: iJz 8z)

(2.5)

(H)

w-momentum equation,

p(u ~ +w~)=(p- pQk -: +;(p :;)+ ~(p :} (2.7)

and energy equation,

(n)

'" .,
,

~



In the analysis we considered only the pressure perturbation p which is related to

the absolute pressureP by~

P=P+PQ'

where Po satisties the hydrostatic condition a:;; = Pog < (2.9)

Suffix '0' refers to conditions in a fluid at rest. Here, the gradients of the

hydrostatic pressure Po are balanced by the body force terms. Hence P is called

here the motion pressure. In general the functions of state Po' Po' 1;, vary with

altitude.

In forming the governing bonndary-layer equations from the above equations (2.6)

to (2.8) together with the continuity equation (2.5), we introduce the following

non-dimensional variabies (dashes):

, x , ~ Z , U , R~w , P ,p , J.I
x =-','z =R.'-,,'u ==-D'w == ,'-D'P == -l'P ==-,J.I =-,

P,U p, J.1,

K' == _K ,c' == _'_P , T' == _T_-_T_,.__T_-_T_., >' == _g_, and '= _g_,
, T T 'T' g, g g, gK, ch ,-, ~

(2.10)

Here f, is the characteristic length of the bonndary~layer, U is the convenient

characteristic velocity, R'l= ~~' J is a characteristic Reynolds number based on

U and .e " and suffix 'r' is used to denote convenient constant reterence quantities

evaluated in the fluid at rest far from the boundary-layer.

Now substituting the above dimensionless quantities with pnmes, the non-

dimensional forms ofthe equations (2.5) to (2.8) become,

Continuity equation,

a (p" ')+ a (p" ,) 0- '" - xw ==.ax~ Oz'
(2.11)



(2.12)

(2.13)

u-momentwn equation,

u,au' +w'iJu'_(I_P:)gf, , __I &P'+l_' .'l-( ,au'J
ox' fJz' ~ p' 0' gI p' ax' Of, p' ax' f.l ox'

v, R, 0 ( ,fm'J
+ Df, p' (jz' f.l Oz'

or, u,iJu'+w,au' ~(l-P~)g: __1 &P'+_' _I.'l-( ,au'J+_I.'l-( ,au'J
ax' (jz' - p' F, p' ax' R, p' ax' f.l ax' p' Oz' P Oz'

,
1- Po

or, u,Ou'+w,au'_ p' ,~_1OP'+_I.'l-( ,fm'J+0(6')
ax' az' F, g, p' ax' p' (jz' P Oz'

w-momentum equation,

_I (u,Ow'+w,aw'J=_I_(l_P~)gR., , __1 ap'+ u, _I.'l-( 'Ow'J
R, ax' Oz' JR: p' iJ' g, p' az' UR.,R,p'ax' Pax'

v 1 a ( ,000J
+ 0;, p' az' f.l az'

'<, _I (u'Ow'+w'Ow'J= p:1 (1- p:)g; __1 op'+_'_, _I .'l-("'Ow'J
R ax' Oz' R p' F p' az' R 'ax' r ax'• .' ,p

I , a ( ,000J
+ R, p' Oz' P Oz'

,( ,Ow' ,Ow'J 6 (I p;), I Bp' o( ,)or,6u-+w-=---g----+E
ax' Oz' F, p" p' az' '

and the energy equation,

,,( ,aT' ,8T'J- K, u, 18 ( ,aT') R a ( ,aT'))P' "-+w-----~-<-+ -K-
P ax' az' P,c

p
, Vi, ax' ox' '8z' Oz'

D' (Bp' - ') D' [f ((8 ')' (Ow')']+ cp,liT u' ox,+w':, + cp,liT ;;, f.l\2 ;, + az'

'( fm' Ow'J' 2(fm' Ow'J'}]+- R + ~~ -+-
R 'az' ax' 3 ax' Oz',



(2.14)

m,

0', ,,( ,aT' ,aT') 1 1 {a ( ,aT') R a ( ,aT')lP' u-+w-=-----K~+ -K-pax' oz' P, R, fu' ax' , az' az'

+E,(u'::+w':} ~:[+[(::J' +(~:n
+_1 (R 00' + ilw')' _~(OO' + ilw')'}]

R, • oz' ax' 3 ax' Oz'

P'e' (U'aT' +w' aT') =_1 _1 -"-(K' aT') +-1 -"-(K' aT')
p ax' az' P R ax' ax' p &' oz'. , .

( a' a ') E [ U(a ')' (ilw')']+ E,. u' :' + w' ;, + R: )1\\ ;, + az'

1 ( au' ilw')' 2(&' ilw')'}]+- R -+~ -- +
R 'az' ax' 3 ax' iJz',

,,( ,aT' ,aT')_p" a ( ,aT') O(E) o( -'Jm, P' u -+ W - _ - K ~ + +,
p ax' Oz' 'az' oz' , '

, ( iP J (p, J ([j' Jwhere &",R-',v =P •. Also F =~ ,F == ' P, andE = "'"
,r '£'K ccl1Tp, g , , h

the dimensionless Froucle, Prandtl and Eckert numbers of the flow respectively.

Now if we consider the limit I: ~ 0 with F, finite, according to first order

boundary-layer theory, the w-momentum equation asserts that p' == p'(x').

However, if we impose the
,

condition Lt c g, remains finite then the gravity
-' F,

dependent term must be retained in the lV-momentum equation, resulting in

p' == p'(x',z'). In the present analysis we are concerned with those boundary-layer

flows for which

(2.15)



The variation in the buoyancy force normal to the surface is the only means of

producing boundary-layer motion on a horizontal surface (i.e., g; '" 0 in the

equation (2.12»). The relative importance of the presence of gravity dependent

tenns in u-and w-momentum equations depends on the relative magnitude of

g: and £" g:. For horizontal surface since £" g: »g;, the equation (2.15)

detennines the order of the magnitude of characteristic velocity {j ,
,

I.e., {j~O(P:;;P: g,{!,vJ~J' (2.16)

K" "-lap] "d fl. "-"-(~p) ,
pap,. r poT

p

Here suffix's' denotes the (constant) representative condition at the surface. In

natural convection flow the relation (2,16) determines the order of the magnitude

of velocity generated by the density differences across the boundary-layer.

In all such situations, inside the first order boundary-layer p' '" p'(x',z') provides

the mechanism for flow generation. The pressure gradient normal to the surfuce

caused by the density difference ('" P, - Po) generates the perturbation pressure

field p(x',z') inside the boundary-layer, x'-variation is sufficient to cause the

motion in the boundary-layer.

Since the derivative of p' occurs in the momentum and energy equations, we may

write the general equation of state in the differential fonn as

p"p{P,T)

dp '" (a~JdT + lap] dp and sinceop op,.
we have-

0',

dp '" -p f3rdT + pK dp

dp +fl dT"Kd(j5+po)p ,



I.e.,

(2.17)

or, in the above non-dimerulional form we get

KfJ,fJ'dp' == d~' + fJTT,dT' _ Kdpo
p

The variations of Po' p" To ate detennined by the hydrostatic relatiorul (2.9)

together with some other condition such as, for example, To == constant.

If this other condition is slated in rather more general terms as a requirement that

any given function of state be constant, it can be shown that (cf. Ackroyd (1974)

',g jJ
Kdpo' dp~etc.areaJloforder T. ,,

. d o["gjJ,] d' o("gjJ,]I.e., K 'Po -'" c
p

; Po -'" c
p

, (2.18)

where to represents the vertical scale of the flow field considered and this may be

taken to be rather less than f, in most practical situatiorul: (R.0' for example, can be

,
taken to be the maximum boundary.layer thickness). Typically, -'- represents a

g jJ,
length scale, and because of the vary large values associated with this length seale

(104 for air and 106 for water at a atmospheric pressure and temperature), and

consequently with the additional provision that K,P,U' «1, it foHows from

equations (2.17) to (2.18) that

p=p(T);p,=p" (2.19)

so that, variations in p, etc., with altitude, due to hydrostatic relations (2.9) can be

ignored.



Governing boundary-layer equations

In view of above discussions, the steady laminar boundary-layer equations (i.e.,

continuity, momentum and energy equations) in dimensional form for a variable

properties fluid over a heated horizontal surface, maintained at a temperature

different to that of the ambient fluid conditions, are governed by-

(2.20)

(2.21)

(2.22)

wd

P' (14 aT + w aT) ==.2 (K ar) (2.23)Pax ozazaz
In the energy equation (2.23) the pressure and viscous dissipation work

contributions have been ignored. The Eckert number Eo' which governs the

significance ofthese terms, is

E __ U-, _ ij' _o{Pr(g, 1 p, -p, (O(]-~}
< ',.r ',(r,-rJ- '" /3,(T, -TJ P, ~

p, - p,

N P, . f d . h Pr!,g, b' 1ow /3 (T _ ) IS 0 or er umty were as , as seen a ave, IS extreme y
r,T, cp,

small compared with unity. However the occurrence (- ]"Vf 1 I

of -: =R.-' in the

above expression for the Eckert number indicates that terms involving Eckert

number should not appear in the first order boundary-layer theory.

•



Here the independent variables x. z denote the co-ordinates measured along the

surface from the center of the disc and perpendicular to the plane of the disc

respectively, and u and w are velocity components along x and z directions

respectively. Also g, and g,are the components of the gravitational acceleration

along x and z directions respectively.

p is the density of the fluid and is defined as the mass per unit volume. It is a

thermodynamic property of the fluid and in general is a function of the temperature

and pressure, Le., p '" p(p,T). If density p varies with the variation of pressure

and temperature, the fluid is then said to be compressible. Otherwise the fluid is

said to be incompressible, i.e., for incompressible flow it is asswned that

p =constant. Again the density differences arising from temperature differences

cause buoyant flow. If the density decreases with increasing temperature,

buoyancy forces arise which act as driving forces. This generates the natural

convection flows.

The second property of the fluid f.J is called the coefficient of viscosity of the fluid.

It is a physical property ofthe fluid may be defined as the tangential force required

per unit area to maintain a unit velocity gradient, Le., to maintain unit relative

velocity between two layers unit distance apart. Thus it relates momentum flux to

velocity gradient. Since it establishes the momentum transport perpendicular to the

main flow direction, it is also called transport property of the fluid.

The coefficient f.J is in general a fimction of the temperature and pressure,

although the temperature dependence is dominated. So the coefficient of viscosity

of a fluid (Newtonian) is directly related to molecular interactions and thus may be

considered as a thermodynamic property in the macroscopic sense, varying with

temperature and pressure. As the temperature increases, the viscosity of gases

generally increases whereas that for liquids decreases. But for gases at ordinary



temperature the pressure dependence of viscosity IS ignored and only the

temperature variations is usually considered. For a perfect or non-viscous fluid,

At higher temperatures, a common approximation for viscosity of dilute gases is

the power law: 1!....z (,,-)"
"" 1;

where n is of the order of 0.7 and lJo is the reference viscosity value at reference

temperature To . This formula was suggested by Maxwell and later deduced on

purely dimensional grounds by Rayleigh.

Another widely used approximation formula resulted from a kinetic theory of gases

by Sutherland (1893) using an idealized intennolecular-foree potential is,

where S is an effective temperature, called Sutherland constant, which is

characteristic of the gas, i.e., is dependent on the type of gas (e.g., for air S =11OK).

For liquids, since the liquid molecules are very closely packed compared to gases

and thus dominated by large molecular forces, momentum transport by collisions-

so dominate in gases-is small in liquids. If data are available for calibration, the

empirical approximation formula for liquid, is given by Bird et al. (1977) and Reid

et al. (1977) as Tn L"", a +b("-)+ ,(,,-)'
~o, To To

where ~" ' To are the reference values and a, b, c are dimensionless curve-fit

constants (e.g., for water at atmospheric pressure the curve+fitvalues are a = -2.10,

b = • 4.45, C = 6.55, corresponding to To = 273K and flo = 0.00179 kg I m.s.). For

non polar liquids, c""O, i.e., plot is linear.

'"



The third property of the fluid c p is the specific heat of the fluid at constant

pressure is defined as the amount of heat required to rise the temperature of a unit

mass of the fluid by one degree where pressure is assumed to be constant, i.e.,

c == 8Q , where aQ is the amount of heat added to rise the temperature by
p aT p.",,,,,.,
aT at constant pressure. It is also a thermodynamic property of the fluid.

Also K is called the coefficient of thermal conductivity of the fluid, which connects

the heat flux with the temperature gradient. It is also a positive physical property

s{)oocalledheat transport coefficient of the fluid. Since, a fluid is isotropic, i.e., has

no directional characteristics, hence K is a thermodynamic property and like

viscosity varies with temperature and pressure. By inspection, we see that K should

have dimensions of heat per unit time per length per degree, Le.,

Heat flux Btu. 1 . . .
K == - ( X X ) m usua engmeenng unit.

TemperatureGradient h ft 'R

Also, K has the dimensions of viscosity times specific heats, so that the ratio of

these is a fundamental
~,

parameter called Prandtl number = Pr = --p. This
<

parameter involves fluid properties only, rather than length and velocity scale of

the flow and measure the relative importance of heat conduction and viscosity of

fluid.

For routine calculations with dilute gases, the power law and the Sutherland

formula, like viscosity, can also be used for thermal conductivity:

Power Jaw: ~ '" [,-)"
K. To

.,

< [T)' T + SSutherland:_ 0 - " .

/Co To T+S

"



Since for a horizontal surface the component of the buoyancy force parallel to the

surface is zero (i.e., g x == 0), so that g. represents the gravity component nonnal

to the disc surface and in the z-direction We can write g. =:tg, (2.24)

Also the pressure perturbation p, due to motion is related to the absolute pressure

pby-

p==p+p,

Here p, is the hydrostatic pressure satisfying-

(2.25)

(2.26)

Both the hydrostatic density, P" and hydrostatic temperature, T" can be taken to

be constants.

Because of the boundary-layer has its origin at the periphery of the disc, we prefer

here to use co-ordinates (x, z) instead of (X, Z) and velocity components (ii,w)

instead of (u ,w), where the relations between them are-

~~a-x)
u =-u

(2.27)

Here, 'a' is the radius of the circular disc, x and z are (non~dimensional) c0-

ordinates measuring distance from the edge of the disc and nonnal to it in the

upward direction respectively, with Ii and w be the velocity components in the

b01mdary-layer generated by the buoyancy effect one to density differences almost

close to the surface of the disc and in the i' and z directions respectively as shown

by the Fig. I.



a

Figure-I: The flow configuration and the co-ordinate system

Using equation (2.27), the governing equations (2.20) to (2.23) for the circular disc

become

(2.28)

(2.29)

(2.30)

""d
(2.31 )

•



Chapter-3

Similar solutions for the Boussinesq approximation

In this section we shall discuss the steady free convection laminar boundary-layer

equations by simplifYing them using Boussinesq approximation. In this

approximation density variation other than the variation in the buoyancy term in

momentum equation are ignored. Fluid property variations are completely

disregarded in this approximation.

(3.3)

(3.2)

(3.1)

(3.4)~d

For Boussinesq approximation the forms of the governing boundary-layer

equations (2.28) to (2.31) simplify to-

~ {(a - i)U}+~ {(a-x)w) = 0ax Cz
~au aii 1 0j5 a''iiu-+w-=---+v -
ffi 8z p, ax 'az'

iJjj = -p g fJ !>.TO
8z "T

~aT ar V a'ra-+w-=-' --ax oz P, Oz'
Here,

v, == )1, is the kinematic co-efficient of viscosity
p,

~ p-p,=-p,fJ,(T-rJ.

T-T T-T
Since '- '-0 T,-T,=6.Tand

T,-T, I1T '

so that, P - p, '"'-p, PrATe

I
poc-

T
(3.5)

(3.6),

(Suffix 's' represents the condition at the surface of disc and suffix or' is the

constant reference condition in the fluid at rest exterior to the boundary-layer)



(3.7)

(3.8)

0',

We may now introduce the stream function If, which automatically satisfies the

continuity equation (3.1)

(a-x)ii = 3\if. a,
(a-x)w=- a \if

iEi
_ 1 Bif
u=----a-x az

I "\if-w=----a-x ox",d

",d

Since for a finite diameter circular disc, the boundary-layer has its origin at the

edge of the disc, near the edge of the disc (i.e.,
x- -4 0 or, x ---)0 a) we would
a

expect the boundary-layer to be the same as that obtained on a two-dimensional

horizontal flat plate by Stewartson (1958).

Equations (3.1) to (3.4) are non-linear, simultaneous partial ditferential equations

(PDEs) and to obtain solutions for them are extremely difficult. Consequently, we

adopt first the method of seeking similarity solutions in order to reduce the system

of PDEs (3.2) to (3.4) together with the continuity equation (3.1) into a pair of

ordinary differential equations (ODEs). If not, local non-similar solution will be

finally achieved. For this purpose we define a new set of variables (q,ft), related to
(x, z) as follows:

q=x
,nd (3.9)

Here y(x) can be thought of being proportional to the local boundary-layer

thickness.



",

From equation (3.9), we obtain

a 8';8 8Tfa-~--+- -
(Ji (Ji8'; Ui ai'j
8 8 z or({) 0

iiX ~ a< - y' «) 0< a"
a a r~~ a-~---"-
iiX a< r a"

and similarly,.

a 1 a-~--
8z r 8i'j

Guided by the idea ofthe similarity procedure, we may put-

'I(a - <,7r ~fi(' -)
o D«)"' ,,"

(3.10)

(3.11)

(3.12)

where D == D(,;) is the non-dimensionalising characteristic velocity. Equation (3.9)

and (3.12) are the traditional substitutions with a small modification in equation

(3. J 2) for the case ofaxi-symmetric flow only.

Now substituting equations (3.9) and (3.11) in equation (3.7), we obtain

0',

i7 ~ (a-;)r«) :" {W«,,,)}

(a-(]ii 1 a _
u«) - y«fJ«)a" {W«,"))

Integrating with respect to if from 0 to i'j and using equation (3.12), we have

fi«, ,,)~ r«~«}d<, ", )J:

0', fi«,i;)= r«~«)[~«,,,)-w«,O)J

", ~«,,,)~r«)D«)F«, ,,)+ W«,O) (3.13)



(3,14)

Again using (3.9), (3.10) and (3.13) in equation (3.8), we obtain

-W=_I_[: r'if o_J{r(;YJ(;)i'(;,if)+~(;,O)}a-,; o~ y 0'1

=_I_{I uF) _ ,u- ai'(Uj) + a~(;,O)1
a-s 11 , Y, '1 oil Os

I {I,e-) -_-) 1 ()=--e I,YUF,-y,D'lF- +--If/, ';,0
a-q '- " a-,;'

Here suffixes denote the differentiation partially with respect to associated

arguments.

I {I '~) - -)-W'" a-s I,YUrI -r;UifP'} -w,

Here w, '" __ 1_ alf/(';,o) - __ I_lf/
I
(';,0) represents the non-zero wall velocitya-,; a,; a-,;

called the suction or blowing velocity normal to the disc surface, since the surface

is taken to be porous, so that fluid will be sucked or blown through it. Physically

w, < 0 and w, > 0 represent respectively the suction and blowing velocity through

the porous surface. For uniform suction (or blowing) w. ",constant. However

w, '" 0 implies that the surface is impermeable to the fluid (i.e., the surface is not

porous). We consider in our problem that w,depends on the position of the disc

(i.e., on ,; measured from the periphery towards thc ccntcr of the disc).

Now from equation (3.12), we have

(3.15)



With the help of (3.10), (3.11), (3.14) and (3.15), the convective operator
- a a b,-+w- eeames

iIi '"
_ a aUF" (0 Y, _ a J [ 1 r ( ,,-) -_- } ] 1 a,-+w-=-- ---'7~ - --('"uF! -Y,U11Fi; -W, ---::-ox 8z a-~ as r 8'7 a-,; rBq

or, u~+w~= uF,) !!-_ (,UF)! a+~~ (3.16)
ox OZ a-sa;; (a-.;')y8Tj r 8fj

In attempting separation of variables we assume

(3.17)

Then from equation (3.15), we have

(3.18)

Using (3.17) and (3.18) in equation (3.16), we obtain

_ a a 01 a (,oe), a w, a
,,-+w-=--F.-----F-+--- (3.19)

ox OZ a-q "as (a-q)r Dr; r oij

[_ a a]_ {Of a ~O,), , a w, a}( Of J
or, uQi+waz u= a_.;Fij8;;-(a_;)yI'a'ij+y8if a_;;.F,!

or, it ali + w au = [if ~( DI. JF- 2 _ De(yDe1FF._ + Ufw, F-_
iIi '" a-; d; a-; • (a-;rr •• (a-;lr ..

_0" H"_{oe(oe), (O'Y}., _ 01(,0,), ,. Ofw,
or, U (JX+WiJz - (a-;;)' + (a-c;)' Pi; (a_.gyyFF;I;;+(a_{)yFi;,(3.20)

Again we assume

Ii =p(;)G(;,il)
Using (3.21) in equation (3.10), we have

(3.21)

m,

Ojj (a Y, - a J{ ()G( -))- = -;;;:-;:- - '1 ---:::: p;; ;;, 'Iax 01; r 0'1

Ojj=dP(;)G(' _)+p3G(;,il)r, rae(;,i)
Vi d;; ",17 8<g r Tf afj



iJji pOG r,~aG0', -=p.G+ --P-'7-
ill' a~ raij

Again in view of equation (3.11) and (3.18) we obtain

au 1 a [DR J
8z=y8iJ a_;;F"

(3.22)

0', au = af. F-
az (a -;;)r ',il

a'u = De F
az' (a -I;)r' "." (3.23)

Substituting (3.20), (3.22) and (3.23) in equation (3.2), one obtains

{
UI(Ul), (iJf)')., UI~ii,), ii£w,
(a-{)' + (a-q)' c, -(a_<l'rFF"+(a_qJrF"

I [ 8G r,~aGJ U£
0-- P.G+P--p-'"- +0.( )y'!',"';

P.' Dq r aij a - q

Dividing both sides by U: and multiplying by (a - f)', we have
Y'

0,(0 - q)' Fm + (0 - qJr~£lJF" - ~'. (0 - q)' F,.•

- (co - W(ii£), + r'(ii£)jF,' 0 r~ (0 - q)'[p,o + Pao - Pr, ij~J
P,Ui! aq r 0'1

0', 0.(0- <l'Fm +(0 - q){r~), F - (a- qJrw,JF;" - {(o - q)y'(U£),

+r'(iil)}F,' r~ (O-{)'[P,G+pm: _p"' ija~J (3.24)
p,uf rJq y a'l

Again using equation (3.2 J) in equation (3.] 1), we have

op o~ 8, {p(q)G(q,ij){
OZ r Dry

0j5 P 2G0'. -0--az r 3ij (3.25)



Substituting (3.25) in equation (3.3), we obtain

pac =_p g fJ f':..TO
rolf "r

BC p,g, j3 Tr6T e
0', art P
Again from equation (3.5)

T = T,+;;T(fJ(,Jj)

and by the method of separation of variables like

0(" ii) =,,(,).9(i))

we have,

Then equation (3.26) becomes,

DC=p,g,fJ,r1();;T a
olf P

(3.26)

(3.27)

(3.28)

(3,29)

oc,

Also from equations (3.19) and (3.28), we have

(":+W~)T={ U, F;,~ (,.Uf), F,o_+",,- ~}(T,+,((,jt;T9)
ox oz a -,; u,g (a -,g)y (JI] 7 217

oc, "aT +wBT = U'(},(,jt;T), F.9- (,.U'!'('(,jt;T) F9. + (l(,jt;T)w, 9.
m oz a-,; , (a-,;)y " r 'I

(3.30)
Using (3.28) in I:quation (3.11), we get

or 1 0
- = -"",(T, + ,((,);;T9)az r 01]

aT = l(,);;T 9
az r 'I

D'T _ ),(,)"T 9.
()Z' y' '"

"

(3.31)



Substituting (3.30) and (3.31) in equation (3.4), we obtain

Dr(,.({)"\ _(yD'lJl({)"r) ("({)"r),,. " ="c "({),, "
----cF,S ( ) F8"ii+ '-",; , 17'i"a-q a-,;r r P, r

Dividing both sides by A(q~T and multiplying by (0 - c;'),we have
r

u, , (.1.0) ( L'l ('0)(1(,),,,), _
or, P, (a-dB;;" + rl)'Uf J- a-';Jf't, 9,; -V' [if (--1(.;)L\T) F,/1-0

m, ~ (0 -,),9" + (r~Drl,F - (a - ,lrw.ls, - ~'D,Xlog.l({)"l, F,S =0
,

(3,32)

There are, however, bOlUldaryconditions, which must be imposed in order to

determine the solutions of the transformed boundary-layer equations (3.24), (3.29)

and (3.32). Boundary conditions will be ascertained from the following physical

behaviors of flow configurations.

1. The velocity component 11tangential to the surface of the disc vanishes at

the surface (no-slip condition). However, since the surface is porous, the

velocity component normal to the surface must be equal to the suction (or

blowing) velocity, i.e., mathematically:

u",O and w =w, atz"'O, implies

F(O) = F,(O)= 0

II. The velocity of the fluid at a large distance from the surface of the disc must

be zero, i.e., mathematically:

11'" ° when z ---7w, implies



•

III. The temperature of the fluid at the surface of the disc must be equal to the

disc temperature, i.e., mathematically:

T==T at z==O. ,

e~T-Tl O'lior, - '- aLz= ,Imp es
T -T, ,

IV. The temperature of the fluid ata large distance from the surface of the disc

must be equal to the undisturbed fluid temperature, i.e., mathematically:
•T == T, when z ---)0 00

B T-T h '['or, == ' = 0 w cn z ---)0 00, Imp leS
T -T, ,

Without loss of generality we may choose U£==U(q) and ..1(';)==1. Also for

similarity solutions G is assumed to be the function of ii only. Then equations

(3.24), (3.29) and (3.32) become

v, (n -q)' F"" +(n - S'Xr(ru),F - (n - S'lrwJF"

- {(n -S'lr'(u). + r'U)F.' =L(a -S'l'[P.G- pYo.,W)
, 'P,U ' r"

,nd

~ (n -Ii)"" + {r(ru),F - (n - S'lrw.l", -{y'UXlag 'rl,F,B = 0
,

(i'.



Hence we have the following system of equations:

v,(a-;'Y F", +(a-4: {(y'U), +r'(U),}F -(V-;'),w};,

. -{(vc;')r'(U), +y'U}F,' =(v-;,y(Lp,G- )7, ?FiG,) (3.33)
" p,u p,u

. f3 ,rG =_ p,g, rr 9 (3.34)
, p

,nd

~ (v- ;')9" + [: {(y'U), +y'(U),}F - (v -;,),w. la,
-(y'UXlag"),F,9=O (3.35)

with boundary conditions:

F(O)= F; (0)= 0; F,(oo)=O
9(0)= 1; 9(00)= O•

•

• •

(3.36)



It is observed from Merkin's (1983,1985) analysis that a complete similar solution

may not be obtained for a natural convection on circular disc problem. So we are

interested to have a local non-similar solution for which we have to consider

(i.)

(ii.)

(iii.)

(y'u), "G,

y'(U), "a,,

(iv.) YW', == a, (3.37)

(vi.)

(vii.)

Yr, P
-- "0
U 'p,

p,g, Pry!:J.T
- -ap ,

where at, a" a
l
, •••....................••••••••••••.., a, are all in q alone.

Local non-similar solutions for equations (3.33) to (3.35) exist only when aU a's

are finite; that is to say that all a's must be constants. And thus equations (3.33) to

(3.35) will be reduced to local non-similar solution and will finally become non-

linear ordinary differential equations in the limiting situations for the remaining

variable other than the similarity variable. Consequently, the relations given (or

stated) by equation (3.37) will be treated conditions. These furnish us the equations

for U(q) and y(q), the scale factors for the velocity eompom:nl Ii and the ordinate

•



~. Uniquely thesc scale factors together with the suction (or blowing) parameter

will detennine the flow characteristics of the boundary-layer.

We shall now proceed to find U(';:), r(';:) and consequently the mction velocity

w,for the possible two types of self-similarity solutions in the case of the

Boussinesq fluid:

Type-I: (power-law variation)

From condition (i) of equation (3.37), we have

(,'U), = a,

0.,

Integrating with respect 10 q we get

r'V==u,,;+A
1 a,';:+Ar = u

(Here A is the constant of integration and U ••0)

Substituting (3r,l) in condition (ii) of equation (3.37), we obtain

r'(U\ == G,

(a,c + AXU),
or, U -u,

(U)! G,
m--=

, U u,,;+A

or,(logU), == u,
a,q+ A

Integrating with respect to ,;: we get

logU(q)+ log B=~log(a,q + A)
a,

(31.1)



0',

IOgU(qHOg{ (a,q; A)~}
1 "'U(q)=-(o,q +A).
B

(31.2)

(Here B is also constant of integration)

With the help of (31.2) equation (31.1) becomes

r'(q)=B(a,q+Ar~ (31.3)

Substituting (31.2) and (31.3) in different conditions stated in equation (3.37) we

obtain the following relations:

Q1' G, are arbitrary,

Sa, - a,
0=---

• 2

aL -G,
G, = 4a as; a" a, and Q, are disposable constants and,

Thus the general equations (3.33) to (3.35) are reduced to

v,(a-q)' F", +(a- q~~ (a,+ a,)F - (a-q)o, )F" -(a -q)o,F/

- (a,q+ A)F;,' = (a- q)' a,[G - a~~~,"G, J (31.4)

G" == G, [} (31.5)

,nd

~-'v,(a - q)9" +G (a,+ a,)F -(a-q)o, )9, - ~(5a,-a.)i',9 = 0
Subjected to the boundary conditions:

F(O)=F,(O)=O; r~(oo)=O
9(0)=1; 9(00)=0

(31.6)

(31.7)



Let us now substitute

F==aJ, Tf==a,'l and G==a,g ,sothat

a a a'l I a a' I a'_~ __ ~ __ --~--- etc.
aTf Uf] aTf a, a'l' aTf' a,' a,,'

Here a's are used to have the convenient fonus of the similarity solutions.

Then we have from equations (31.4) to (31.6)

v,a, (a-')'; +(a-'~-'(a +a la,' f_(a_l)a,a,} •
.1 ., 1"",, ., 2 I " ~,J,,"a, a, a,

~d

P,-',V,(a-,)9" + {-'(a, +a,)5- f -(a-,)"'-}", _(Sa,-a,ja, f,9~O
a, 2 a, a, 2a,

Of, (a-f)' I""" +(a-q*a, +a,)~'~,' I -(a-f)a;2 }/oo

-(a _ qt,a,a, j~'_(f + sola, a,a, I: = (a-fY a5a~a,[it - a,_a"JIg"]
v, v, ap, 4a,

_ a,a, (l

g. ==--"
a,

",d
P, _1 (a -;)8., + ((a, + a,) a

2
,a, f - (a - s)ap, },q"
v, V,



0', ('-")'I" +(l-"){(a, +a,)"""- I -(1- ") a,a,}/,a. a 2au au', ,

""d
- Q,a, 9g "'-, ",

pt'- ~)9"+ +a,);~::1-(1-~J":,~}
(5a,-a,):r,u, /.9==0

2ou, '

(31.8)

(31.9)

(3LiO)

20,Choosing aJ == a" (a, +a,)a,' == 1 and
2av, == p. Also for a purely' free

G, +a,

2a'a aconvection flow we are to put " 1. Then
a, +a1

Q,a, == 2a'a,a, ~
a., G,+a, V~

8a'a,aoG;- x
(a, +a,),Ja, +a,



Using equation (3I.3), we get

Q,a, '" 8a'a1 x .,J2;;;;: (_g j3 6ft' -a1 ~a,';+A
a, a, -a, (a,+a,)Ja, +a, 'T 2U' U

where'; +,;, is tenned as the local characteristic length.
2a, h 2a, haSince "'/3,t en -2-/3,we ve
Q,+a, Q,+al

,
a,a, 2ai ;3)2 - ;3(- g, f3,6T )Ja, (, + '0 )

= --------------
a,

,

=(~r
,

U'

(3l.l1)

is called the free convection velocity associated with the local characteristic length

.; +';0 . Since we are concerned with the free convection Oows, without loss of

generalitywe may put U '" UF'



Thus the above equations (31.8) to (3[.10) can be written as

-(I <J' aa,a,'a, (- ",-Q, - J- -- g----"g
a v, 4a,"

,

g,=(~r8
",d

,nd



or, if we put r; ",,;g;;g «I, then
a

(l-nI",+HXr +nl.lt" +~)Pfi

-(2- fJX~+~o)1.,' =HY( g - I~: "g,J

""d

(3Li2)

(31.13)

(31.14)

where f~is thc non-dimensional suction (or blowing) velocity at thl: surface of the

disc defined by

(3U5)

Here R
F
is thc Reynolds number based on frec convection velocity Up given by

(- -)~_ U."+t
and the local characteristic length'; +r;" as RF "" f q ~1I

U,

or, in terms of r;, f~== ~a(2 - fJ)RF W,
U,

h
"b ' ) U,(q+q,)were U

F
ISgiven ytheequatton(3I.ll and RF ""~~~=",

(3I.l5a)

(31.16)

(31.16a)

(3Li6b)



The transformed boundary conditions are:

I(O)~/,(O)~O; I,(~)~O
9(0)~1;a(~)~o

(31.17)

The boundary conditions on if(l7) may be derived from the last boundary

conditions described in equation (3.36). That is,

g,(O)~I, g,(~)~O (3U7a)

The similarity function /(17), the similarity variable 'land the pressure function

g('l) are related to the stream function /If, the physical co.ordinate (x, z) and

perturbation pressure p by the following equations respectively

,,~v,~a(2-fJ)R, 1(")+,,(X,O) (31.18)

(3U9)

(31.20)

The velocity components (00 'ii,w) along with the skin friction r, and the local heat

transfer co-efficient q, associated with the equations (31.12) to (31.14) are as

follows;

,
-w~ v,_ r;;-_R) {r-(I-fJ),If,)-w,

a-x f2"=-p x +xo, ,

(6
- -.

_~ _v_ R: -1- _ UpR/
- v-'ii\2-fJx+x, lr ( fJW,) ~a(2-fJ)l,

(31.21)

(31.22)



(3L23)

(31.24)

Here q, is the heat transfer rate per unit area of the disc.

Now, if for simplicity we consider,;o ",0, then at the periphery of the disc where

';--'l-O,or,';--'l-O,(i.e.,x--'l-O,or,x--'l-a), the equations (3r.12) to (31.14)

become-

~d

/, (j /,)/, n/,' _ l-P -
"'"+ - ~ ,.-'" 'I "'g- 2fl rJg,

g ",,9,

(31.25)

(31.26)

(31.27)

with boundary conditions given in (3L 17) and (31.17a), and if here, the suction (or

blowing) effect is ignored then the equations (31.25) to (31.27) reduced to those for

the two-dimensional boundary-layer development on a horizontal surface.

Thus, with minor changes in the similarity function and similarity variable (i.e.,
,

F(rJR) '" 5-~{1O,8(2- fl)' }: /(rt), IlR '" 5~ f(2 - fl)' }' IJ; (where suffix 'R' stands1 lOp

for Rotem and Claassen» the similarity equations established by Rotem and

Claassen (1969a) by thc method of group theory may also be obtained.

Again, as bT is fully responsible for the buoyancy flow, therefore, in order to

have the existence of the similarity solutions, fo"T -variation is found to be

lP-'
!!T ex: (x + xo) )-p (31.28)



while the suction velocity w, varies as

If' ' d h 3f3-1 d P-I h 'It IS assume t at -- == m an -- == n, t en we can wnte
2- P 2- P

f"T = k,x'" (where k, is a constant)

and w, must be of the type

w == k x", ,

(31.29)

where k, is a constant of uniform tmnspiration rate and

there exist a relation between m and n which is m == 5n +2

n == '!"(m-2). That is,
5

(31.30)

The constant k, is negative for the case of suction, and positive for blowing. For

an impermeable surface, kl- == O.

Also it appears that the exponent of w, and I!.T -variation are finite provided

P* 2.

For the case of isothermal surface we have m == -0,
,. --,I.e., w, == kl-x '

2
thenn==--

5

(31.31)

The special case of n==O (i.e., P==l) defmed here as isothermal suction (or

blowing).



Since the dependent variables f,,9 and g mostly depend on the variable I}

(similarity variable), we may expand the dependent variables

I(.f,7}), ,9(,g, 17) and g(,g, 17) for l,gl «1, in ascending powers of :f as follows:

1(::, ")= f::,1.(")= I.(")+::j;(")+ ::' IJ.)+"."" ...
J~"

9(::,.)= f::,9, (.) = 9, (")+::9,(.) +::'9, (")+"',,,,,,,,,,
,"

"" ii(::,")= i::' ii, (") = ii,('I)+::ii, (.) +::' ii,H+ "" "
}"'

(31.32)

(31.33)

(31.34)

Now, inserting the expansions (31.32) to (31.34) into equations (3I.l2) to (31.14)

together with the boundary conditions (31.17), v,"ith 40 =0, and equating like

powers of :f,wc obtain
4 a :

10'"" +Cr. - I~)jo",-filo,' =go _I~:7}go"

boundary conditions:

1,,(o)=j~..(O)=O; 1,,(w)=O
9,(0)=1; 9,(00)=0
iio, (0) = 1 .. ii"(00) = 0

(31.35)

(31.36)

•



?,L :

./'"'" - 210""" + lol,," + (j, - 10 )/0 •• -If;,,. - 210 •• )/., - 2/lf,J,.

ii,,! eo 9,

boundary conditions:

j,(O)o j,Jo) 0 ° ; J;,(oo)oO
9,(0)00; 9,(00)00
",,(0)00, ",,,(00)00

:r' :

(31.38)

ii,. eo 9,

P, -, (9"," - 9",)+ 109", + 1,9", + 1,9u" - (9", - 9,J/_

boundary conditions:

j,(o) 0 j,JO)o ° ; j,,(oo)oO
9,(0)00; 9,(00)00
",JO)oO, ",,(00)00

and so on.

(3I.40)



The equations (31.35) fully coiti'cide with the equations (31.25) to (31.27) and are

those for the two-dimensional boundary-layer development on a semi-infinite

horizontal surface.

Now using equations (3U6a) and (3U5a) in (3J.24) we obtain the local heat

transfer rate per unit area of the disc

"_ KAT [2a'P~2-p(-g,p,"T)[vII: 9 (0)
q, a~2-p ~v} ,

, '
m, Kq~T"-{2p( - g,p,AT)}: a', (2 - Pr:v'-:~';", (0)
or, using (31.33), we get

,
Kq~T"-{2p( - g ,p,"T)}: {v,a(2- p))'j~', \9" (0)+ ~9" (O)+~' 9,.,(0)+ .....l

(31.41)

For elementary ring arca of the circular disc (see Fig. 2) of radius (0 - x) we obtain,
the overall surface heat transfer rate from the disc Q as

,
Q=- Jq, x21l"(a-x)ai=

where q, is the heat transfer rate per unit area of the disc.

or, using (31.41), we obtain
, ,

Q" -2~',,",T{2p( - g,p,JT)), {v,a(2- p)'i
" 'W'(1-?X9" (0)+~9" (0)+~' 9" (0)+ .....l"~, (31.42)

••



~'-----2a •
Figure-2: A portion ofthe elementary circular ring

Now,
, ,
J~-'(I - ~XS,' (0)+~9" (O)+~'So,(0)+ },,~,

~)[~: -~: JlS,,(O)+~9"(O)+~'9" (0)+}8~

~){[~: -~:},,(O)+[~: -~:J9,,(0)+[~: -~¥},(O)+}O~

~5[[10: -1.':J9 (0)+[1.;1 __I '¥Js (0)+[_1o¥ __I '¥Ja (0)+ ]'3; II" ", 8" 13" ['I 13<; 18" '" .. "

~5[[1_1.),9 (0)+[1._.J.)9 (0)+[_1_.J.)" (0)+ ]
3 8 °'1 8 13 L. 13 18 "

~S[;4So,(0)+ 8:13 9",(0)+ 13: 189,JO)+ .....J
25[ 24 24 ]

'" 24 .9,,(0)+ 8 x 13 9,. (0) + 13x 18 9" (0) + .

=25[9 (O)+~ 24 f) (O)J
24" :'t(Sj+3XSj+8)"



Then from equation (31.42) we obtain
, ,

Q = -2""'dr{2p( - g,p,~r)Hv,a(2 - p)p

25 [a (0)+ <- 24 9 (0)]
24"0 ~(5j+3X5j+8)' ,"

Henee the average heat transfer rate Q is given by

- QQ=-",,'

", Q = -dr {2p(- g,p,,,r)}: {v,a(2- pW1

25 [a (0) <- 24 9 (O)J12 "0 +1:t(Sj+3X5.i+8)J"

(31.43)

(31.44)

Consequently, defining Nusselt and Orashof numbe~ based on diameter '2a ' of

the disc as:

Nu 0= Q.2a
dr

Or =0 _ (2a)' g,/3rLJT
v;

we may express equation (31.44) as

,

", N 25G ,{ Sp }'[a (0) '" 24 9 (0)]u=O-12 r' (2-fJ)' "0 + :8 (5.i+ 3X5i+8) J'I
(31.45)



Ackroyd (1979) with

Equation (31.45) may be compared with the equation (12b) of Zakerullah and

2-P 1
C == 1oIi' C:::< I for j3 =-, i.e., for a constant temperature

,'jJ 3
,

difference !::.T. But in this case the suction velocity varies as )(, .



Type-II: (exponential variation)

From the above type of solution it is observed that the solution is real and finite

provided fJ '1' 2. So we are now interested to have a solution when p = 2. We see

2a
from the relation fJ = 'that fJ = 2 when u1 = 0,

u, + a,

'.'., (y'U), = 0

or, r'U=k

where k is constant of integration.

Then from relation (ii) of equation (3.37) we have

m,

m, (logU)< =~• k

Integrating with respect to q, we have

or, logU(f")= :' f+logC

".U(C)=C,"
where C is constant of integration.

Substituting (31l.1) in the above equation, we have

(lll.l)



k
--- ~,ee' -

Hence for this exponential case U(f") and y(;) are given by

"'"U(;)=CeT'
k _a"~

y'(q)= Ce "

(JILl)

(311.3)

By virtue of (3II.2) and (311.3) with the similarity requirements (3.3'7), we obtain

the following relations between the constants as

a, == 0, a, is arbitrary, 07 are disposable cc,nstants and

Hence the general equations (3.33) to (3.35) take the following form as

G~ = "7.9

",d

with boundary conditions:

F(O) 0 F,(O)o 0 ; F,(oo) 0 0

9(O)oi; 9(00)00

'"

(311.4)

(3ILS)

(JIL6)

(JIL7)



Now substituting

F"'aJ,'ij"'al17 and G"'aJ'i,

so that

o 0 017 1 a a" 1 82_0 __ 0 0 '10
D'ij OIJ D'ij a2 817' orr1 G2z OIJ"

Then we have from equations (311.4) to (311.6)

~

' } ,u a" a,a, a,a, a,a, ;-'-, (a - q) ~'" + (a - q -, ' I - (a - q)-, ~,,-(a - q)-, 1,,-
a, al G, G,

k ",' ;' ( ,)' (- 1 -)- a;J, = a-", a,a, g+ 4'!]g"

""d

""d
Sa,G,Go f 9=0
2 'U,.

_ Q7G2"
g~"'--"",

(311.9)

c'



""d
P,-'(1- <J9" + fG,u,a, f - (1- <Ja,a, }9" - 50,a,o, J, [)= 0 (3II.l0)

a 1 2au, a u, 2ou, I

,
Ch

. a,a,
oosmg a, =a" - '=1,

20u ,
and for a purely free convection flow we are to put

2a'usa, =1. Then we have from the above equations (311.8)to (3ILlO)
G,

,
- -rUe)' 9g - - ,, U

,nd

r'(I- <Js +{a,a,' f-(I- ,;'Ja,a'}9 _ 50,a,' j" 9=0
, a '1'1 2ou, a v, " 2av, 'I

where Up=2{a'(-g,PrLlT-.j-'V-,x-d-)} . (311.11)

is the free convection velocity associated with the fixed characteristic length

d (=~J.Since we are concerned with the free flows, we may put U =Up'
aa,

Hence the above equations become

(1-~J'f" +~J\t+-~Jt.}f" -2(1- ~Jt:-2d(:
+~Hg+>g"J



,nd
P,'(I_ ~)9"+ -(1-~)f} - 'f,oM

or, if we put ; ",~,then
"

(1-nf,," + (I-?)(r - (1-?lr. lr", - 2(1-?)f," - 2df:
+n(.+>.,)

where f~=-(l~2RF, ~',

(31L12)

(3I1.13)

(31I.14)

(311.15)

Here R
F
, is the Reynolds number based on free convection velocity U F given by

(3Il.l J) and the fixed characteristic length d as

(3ll,16)

The transfonned boundary conditions are:

f(O) = f,,(O)= 0 ; f,(0o1=O
9(0)=1; 9(00)=0
.,(0)=1; ",,(00)=0

(3Il.17)

For this steady exponl:ntial case the similarity function fer,), the similarity

variable 'land the pressure function g(1]) are related to the stream function If, the

physical co-ordinate (x,z) and perturbation pressure P by the following equations

respectively



ond

weu,Q~2R,., 1(")+~(X',o)

~=~~R;,;
_ P,U,' _( )
p= 4a' gll

(3Il.18)

(311.19)

(311.20)

Here !1T, which is responsible for the buoyant tlow, varies exponentially with?

,(,,,,1 )H,

as !:>.T oc e 'd and w, varies as w, oce OJ •

As we have seen in the previous case that the exponent of IV, and t:.T -variation are

finite provided fJ #- 2, but as usual in such similarity solutions those are tinite when

pO' 2, now taken the present exponential form,

The velocity components (== ii,w)along with the skin friction T" and the local heat

transfer co-efficient q s are respectively

I.e.,

and

R'v, " {I -'}
-IV= (a-X"}d -Ii +'U'I -W.

== ,aU f R :', (0)
r. (a-:i)d a.fif",

K JT Ri-
q, e_ u.Jid9, (0)

(311.21 )

(311.22)

(31L23)

(311.24)



Chapter-4

Method of Numerical Solutions

It has been shown previously that as f -+ 0, or, S ..--+0 , the equations (31.12) to

(3I.l4) with boundary conditions (3I.l7) reduce to those for the two-dimensional

boundary-layer development on semi-infinite horizontal surface. However it was

seen from the analysis of Zakerullah and Ackroyd (1979) thaI when :g> 0, such a
two_dimensional nature is lost immediately and the subsequent boundary-layer

development becomes progressively influenced by an axially symmetrical

squeezing ofthe flow as the centre of the disc is approached. Thus close to the disc

centre, the boundary-layer theory breaks down and a solution of the full Navier-

Stokes equations is necessary in this region. So, in our present investigation we

will consider the zeroth-order boundary-layer equations (31.35) with the boundary

conditions (31.36) for numerical solution at the periphery of the disc.

The set of equation (31.35) together with the boundary conditions (31.36) are non-

linear and coupled. It is difficult to solve them analytically. Hence we adopt a

procedure to obtain the solution numerically. Here we use the standard initial-value

solver shooting method namely Nachtsheim-Swigert iteration technique (guessing

the missing value) (Nachtsheim & Swigert (1965)) and Runge-Kutta Merson

method, in collaboration with Runge-Kutta shooting method.

In a shooting method, the missing (unspecified) initial condition at the initial point

of the interval is assumed, and the differential equation is then integrated

numerically as an initial vaiue problem to the terminal point. The accuracy of the

assumed missing initial condition is then checked by comparing the ealeulated



value of the dependent variable at the terminal point with its given value there. If a

difference exists, another value of the missing initial condition must be assumed

and the process is repeated. This process in continued until the agreement between

the calculated and the given condition at the terminal point is within the specified

degree of accuracy. For this type of iterative approach, one naturally inquires

whether or not there is a systematic way of tinding each succeeding (assumed)

value of the missing initial condition.
The Nachtsheim-Swigert iteration technique thus needs to be discussed

elaborately. The boundary condition (31.36) associated with the non-linear ODEs

(31.35) of the boundary-layer type arc of the two-point asymptotic class. Two-point

boundary conditions have values of the dependent variable specified at two

different values of independent variable. Specification of an asymptotic boundary

condition implies that the tirst derivative (and higher derivatives of the boundary-

layer equations, if exist) of the dependent variable approaches zero as the outer

specified value ofthe independent variable is approached.

The method of numerically integrating a two-point asymptotic boundary-value

problem of the boundary-layer type, the initial-value method, requires that it be

recast as an initial-value problem. Thus it is necessary to estimate as many

boundary conditions at the surface as were (previously) given at infmity. The

governing differential equations are then integrated with these assumed surface

boundary conditions. If the required outer boundary condition is satisfied, a

solution has been achieved. However, this is not generally the case. Hence, a

method must be devised to estimate logically the new surface boundary conditions

for the next trial integrations. Asymptotic boundary value problems such as those

governing the boundary-layer equations are further complicated by the fact that the

outer boundary condition is specified at infinity. [n the tfial integrations infinity is

numerically approximated by some large value of the independent variable. There



is no a priori general method of estimating this value. Selecting too small a

maximum value for the independent variable may not allow the solution to

asymptotically converge to the required accuracy. Selecting large a value may

result in divergence of the trial integrations or in slow convergence of surface

boundary conditions. Selecting too large a value of the independent variable is

expensive in terms of computer time.
Nachtsheim-Swigert developed an iteration method to overcome these difficulties.

Extension of the Nachtsheim-Swigert iteration scheme to the system of equation

(31.35) and boundary conditions (31.36) is straightforward. In equation (31.36)

there are three asymptotic boundary conditions and hence three unknown surface

conditions r(O), 9'(0) and g(O) (dropping the subscript '0').

(4,1)

(4,2)

(4.3)

1'("_)= I'U"(O), 9'(0), g(O) )= 5,

9("_)= 9(r(0), 9'(0), g(O) )= 0,

g(ry_) = g(["(O), 9'(0), g(O) ) = 0,

Within the context of the initial-value method and Nachtsheim-Swigert iteration

technique the outer boundary conditions may be functionally represented as

with the asymptotic convergence criteria given by

1"(",.)= r(j'(O), 9'(0), g(O) ) =0,

9'("_)= B'(r(O), B'(O),g(O»)=0,

g'("_)=g'(["(O), 9'(0),g(0) )=0,

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Choosing r(O)=g" 9'(0)=g, and g(O)=g, and expanding in a first-order

Taylor series after using equations (4.1) to (4.6) yields

/'(17 mo' ) '" I; (11"", ) + I:,f:,g 1 + I:, f...g, + I:, 8.K, '" 0,

9(1],",,)= .9c('l"",J+ 9,,!:,g, + 9~,t:,g,+ 9"bgJ = fi,

gVl,,,,J= iL(lJ",.,.)+ g,,!:,g, + gg,bg, + g.,!lg, =oJ



r(l] ••.)'" '/;(1/"", )+ f;' 6g, + f;,c,g, + ./~~8.g, '" is,
9'(q"",)'" 9~('1"",)+ 9;,8.g, + S;,L\g, + S;,6g3 -= 0,

g'('1"",) '" g~ ('7"",) + g~,8.g, + g~,8.g1 + g' 9., 6gJ '" 0,

(4.10)

(4.11)

(4.12)

etc. anda['(ry.J
where subscripts indicate partial differentiation, e. go, r;, = og,
subscript 'c 'indicates the value of the function at '7,",-, detennined from the trial

integration.
Solution of these equations In a least-squares sense requrres detennining the

minimum value of
L" ~, ,-' ~, 0' 8' ,,'"oov, +u, +v, +". + , +"6

withrespecttog"g,and g,.

Differentiating E witl1respect to g, yields

.80, " 88, 2.80, 2 8o, 2~ 80~ 2~ ao. 028 -+LO -+ 8 --+ <; --+ u -_. + v --=
t~ ,~ J~ 4~ '" "~ag, ag, ag, ng, "g, ng,

(4.13)

Using the above equations we get

or, lt~ + f:,c,g, + f;,6g, + f:,L\g,)J;, +l9c + 9816g, + 9,,8g, +9",6g,)9g,
+'0+- '" +- '" +- '")- +""+f"'" +f"'" +f"' )f"\be g.,'-'6, g.,'-'52 g.,'-'5,g~, \je ,,'-'6, .,'-'6, ~, g, ~,



Similarly differentiating E with respect to gl and gJ we obtain

,nd

(4.15)

(4.16)

We can write equations (4.14) to (4.16) in system of linear equations in the

following forms as

GlL6,g, + Gll6,gl +G"Ag, ",bLl

G"Ag; + Gllt.g, + GlJAg, '" bn

G"Ag, +G"Ag,

where

'" b._.'

(4.17)

(4.18)

(4.19)

a -j't,,- ',,"

a =j'j' +99to go OJ "' 8,

a" j' f''" g,",

",an

G" ",all

G" '" an



Solving the equations (4.17) to (4.[9) we have

detA,.g --~, - detA

,nd i". _detA,
gJ - detA

b" an a" '" bll (ana" - a"a",)+ bj2 (a"a" - a"a,,)
where, detA, '" b" a" a" +b" (a"a" - ana,,)

b" a" a"

a" b" a" '" b" (a"0" - 0" a,,) + b" (011a" - a" 0u )
detA,'" a" btl 0" +b"(o"o,, -olla2J)

a" b". 0"

a" a" b"
•• b" (a2Ia" - G.""",)+ b21(a."u" - <I"",,)

delA.,,,, a" a" b" + b31(all"" -",,0,,)
0" Q." b"

a" a" a" == a.,(aua" - a"o,,) + {I" (0."0,, - 0"a1.1)
md detA= a" a" a" + a" (a"u2J - anan)

1
a" "" a"

Then we obtain the missing (unspecified) values as

g, '" g, + L'l.g,

and g, = g, + L'l.g,



Thus adopting the numerical technique aforementioned. the solution of the

equation (31.35) with boundary conditions (31.36) are obtained together with sixth-

order implicit Runge-Kutta initial value solver and determine the velocity,

temperature and pressure functions as function ofthe co-ordinate". In the process

of integration the skin friction coefficient /"(0) and the heat transfer rate -,9'(0)

are also calculate<! out and we applied the method for different values of pertinent

parameters. Based on the integration done with the aforementioned numerical

technique, the results obtained are given in the next chapter with graphs and tables.

For more details numerical calculation tcchnique the corresponding FORTRAN

program with subroutine il; also given in the Appendix' A' of chapter S.
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oflhc disc wilh jJ==O,33 and Prandtl No I'r = 0.72.

08 :

roo
~O,5'

1'00"-2,0
11'!w__15

111'!w~10

IV fw - _0.5

V,fw-O.O

,..
--',------

figure-4: Velocity profiles for difTerent values of fwat the periphery
of the disc with jJ=l.O and Prandtl No. Pr = 0.72.



'0

____ .curveS lor p = OJ}

curves for P ~ \.0

l:fw~.2.0

1I1w~.15

1l1:!W"-1,O

IV' fw = .0.5

V,Iw-O,O

figure-5: Velocity proliles for different value~ of f .at the periphery
of the disc with fJ= 0.33 & 1.0 and Prandtl No. Pr = 0.72.

,. , P~UII
D'2 _

011:

, 11=1.2,

D.1 -
III, P ~ \,00

IV:P~II_75

V,p~O_67

"'P=Q,:;3

Figure-6: Velocity profl1e~ for different values of fi al the periphery
of the disc "ith j~,'"-2.0 and Prandtl No. PI = 0.72.



-~ •.12j

11;~=I.OO

111_~:(l7,

IV p= 067

V'~~O.J3

00

0-

"'tOB
:

, 0~
M

"
"'
"'
"'
0

0;

Figure- 7: Velocil y profiles for different value~ of f3 at the periphery
of the disc ",jlh fO' = 0.0 and Prandll No. Pr = 0 72,

l,fw:-2,O

1I:fw=-1.5

111:fw=.1.0

IV,iw--O,5

V'fw~OO

VI:fw~05

0

"'roo
.0; o.

M

0

"'
"'
" ""

Figllre"8: Temperature profiles for different wlues of fwat the periphery
of the disc with fJ= 0.33 and Prandtl No. Pr = 0,72.



o.

"'
0.'

i0.0 :

'"
0;

eo

"'
" ,
" "'

: fw = _2.0

II,fw=-1,5

IIl.fw~-l,O

IV fw ~ -0.5

V-fw~O,O

Figure-9: Temperature profiles for different value' of fwallhe periphery
of the disc with /3=1.0 and Prnndtl No. Pr = 0.72.

"'

__ curves for ~~O,3)
-curveSfor ~~ 1.0

I, fw"'-2,O

II:fw=-1.5

1II:fw=-'.O

IV: fw ~-O_5

V'fw~OO

-'"

-- .._-- .., .. - ---._.,- '._-.

Figure-IO: Temperature proflles for different values of fwal the periphery
of the disc with p= 0.33 & 1.0und Prandtl No. Pr = 0.12.

o,



I' ~~uo
1I.~~I.2.1

III: ~~ 1.011

IV,~~!175

V,~~()(,7

VI:~~())3

.-.. --': c-
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Figure-14: The non_dimensional pressure distributions at the periphery of the disc
for fw '" ~2.0 & 0.0 with fJ'" 1.0 and Prandtl No. Pr = 0.72.



, "lJlves for ~ _ 1.0

II . curves for p _ 0.33

f_0,5

figure-IS: The non-dimensional pressure distribution, at the periphery of the disc
for /I_varialion with f~=' -2.0 and Prandtl No. Pr =' 0.72 .

I: curve. for ~ ~ IIJJ

II' curves for ~ _ 1.0

.0,<

Figure-16: The non_dimensional pressure dislributions at the periphery of the disc
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of the disc with fJ = 0.33 and Prandtl No. Pr = 0.72.
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Figure-18: Skin friction factor (= 1"(0») for !"-variation at the periphery
ofthe disc with fJ = 1.0 and ?randtl No. Pr = 0.72.
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Figure-19: Heat transfer co-ell1cient (=, -8'(0) for fw - variation at the periphery
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Figurc-20: Heat transfer co-efl'icient (=, -8'(0) for f.-variation at the periphery
of the disc with jJ=I.O und Prandtl No. Pr=O.72.
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ofthe disc with fJ= 033 & 1.0 and Prandtl No. Pr = 0.72,
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Figure-22: Heat transfer co_elllcient (= -9'(0)) for j~-variation at the periphery
of the disc with [3= 0.33 & 1.0 and Prandtl No. Pr = 0.72.
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Figurc-24: Skin friction factoT (= f" (0)) for fJ - variation at the periphery
of the disc with f
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= 0,0 and Prandtl No, l'r = 0.72.
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Figure-26: Heat transfer co"cfficient (= -9'(0)) for fJ - variat ion at the periphery
ofthe disc with .fw=O.O and Prandtl No. Pr=O.72 .



Tables

i. j"{O} ,9'(0) fi

-2.00 0.36397 1.49356

-1 ,50 0.55170 1.15770

_1,00 () 81350 0.8(,050 0.33

_0 50 1,04040 0(,1530

0.0 1.17535 0.41707

0,50 1.22752 0.26399

Table-l: The skin friction and hcat tran~fcr coefficients for different vah.lcs of f. with jJ '" 0.33

Table-2: The skin friction and hcat transfer coeflicicnts for dilfcrcnt values of fw with f3 = I ,00

f. j"(O) $'(0) P

-2.00 0,32577 1.52513

-1.50 0.44916 1 22735

-1.00 0,623g1 0.98412 1.00

-0,50 0.75316 0.80067

0.0 0.77969 0.63301



Tab\c-3: The skin friction and heat transfer coefficients for different values of fJ ",ith f" '" -2.0

p ("(O) 9'(0) f.

0.33 0.36979 1.49356

0.67 0.35818 1.51269

075 0.35230 ).51613

1.00 0.32577 1.52513
_2.00

US {)29243 ' .52385

1.50 0.22831 1,51216

1.15 0,14383 1.48168

Table-4: The skin friction and heat transfer coefficients fur different values of fJ with f" = 0,0

p reO) -9'(0) f.

0,33 1.17535 0.41707

0,50 1.05185 0,50490

0.00

0.67 0.92110 0.56475

0.75 0,87650 0,58394

1.00 0.77969 0,6330]

1.25 0.70887 0.66254



Results and discussions

On the basis orthe numerical results of the set of equations (31.35) and (31.36) the

dimensionless velocity and temperature profiles along, with the pressure

distributions are presented in Fig. 3 to Fig. 16, whereas the skin friction factors

(/"(0)) and the heat transfer co-efficients (-.9'(0)) are displayed in Fig. 17 to Fig.

26 for the fixed value of Prandtl number Pr = 0.72 (the typical value of air) with

several selected values of estahlished parameters f" and fi so far zeroth order

boundary-layer is concerned. Figures show that proliles vary as usual with

variations of parameters f~and fi.
The displayed Fig. 3 shows that for isothermal temperature fi :=0.33 the velocity

protiles rise sharply with the increasing value of f. from negative to positive (i.e.,

with decreasing suction) and the rises are higher than those of fJ = 1.0 (i.e., for

isothermal suction) [Fig. 4]. Consequently, sharp rise will increase the wall shear

stresses.
For fJ =0.33, fu =0.0 and Pr =0.72, the numerical results shown in Tab. 1

coincide with those displayed by Rotem and Claassen (1969a) and Zakerullah and

Ackroyd (1979j for some particular values of the parameters concerned.

For a fixed value of suction parameter (j~=-2.0) the velocity proliles [Fig. 6]

exhibit the remarkable behaviors for P - variation. Here, the velocity profiles rise
usually with the decreasc of the disc temperature. The same situation arises if no

suction is applied [Fig. 71but the sharp rise happens in this case.

Fig. 8 and Fig. 9 predict that the tempcralUre profiles are higher near the surface of

the disc and away from the disc they decrease asymptotically. Here we also infer

that the temperature protiles decrease with the decreasing value of the suction

parameter fw (i.e., with increasing suction). Thus, as fw increases from negative

"



value to positive ones, the temperature gradient at the wall increases. This

corresponds to the physical situation in which heat is transferred from the disc to

the fluid.
Fig. 10 exhibits a comparison of the temperature profiles for isothermal disc's

surfaces (j3 = 0.33 ) and isothermal suction (p = \.0), lor dilIerent values of f~.
. From rig. 17 and Fig. 18 we observe that for constant wall temperature the skin

friction gradually decreases with the increase of suction parameter but the skin

friction more decreases with the increasing of wall temperature. The Fig. 19 and

Fig. 20 concern that suctions increase the heat transfer rate highly. For suction the

fluid at the ambient temperature being brought closer to the surface resulting in an

increase in heat transfer. It is evident that the effects of suctions to suck away the

warm fluids present on the wall and thus decrease the thcrmal boundary-layer

thickness and thereby increase the heat transfer rate. It is thus confinnly predict

that very small suction velocity plays a vital role on the dfect of the skin friction

and heat transfer.
From Fig. 23 and Fig. 24 it is observed that the skin friction also decreases with the

increasing of wall temperature either suction is applied or not, but the rate of

decrease with suction {Ju = -2.0) are more dominant than those of without suction

The heat transfer coefficients for fJ -variation are shown in Fig. 25 and Fig. 26

with f. =-2.0 & 0.0. It is anticipated from the figures that if no suction is applied

the heat transfer co-effieients increase with the increase of fJ. But a different •

behavior is observed iF the suction is considered. Here, the heat transfer co-

efficient increases with the incrcase of f3 and the highcr heat transfer occurs when

fJ = 1.0 (isothermal suction).

•



In addition to this we find from the numerical solutions [Tab. 4J that for uniform

heat flux (i.e., for fJ = 0.5) with Pr = 0.72, the results obtained coincide with those

deduced by Pera and Gabhart (1973) in absence of suction parameter fw'

Since the flow characteristics associated with heat transfer and skin friction co-

efficients of the present problem are of practical interest, so the numerical results

for 1'(0) and _ ,9'(0) are presented in tabular forms. Tab. I and Tab. 2 display the

effects of skin friction and heat transfer co-efficients for the variation of fw with

fJ = 0.33 (isothermal surface) and i.O (isothermal suction) for Pr = 0.72. Also Tab.

3 and Tab. 4 display the same for fJ - variation with fw = -2.0 & 0.0. We observe

that for isothermal suction, the skin friction and heat transfer co-efficients are less

than those of isothermal surface lFig. 21 and Fig. 22).

•



Conclusion
,

It is desirable to evaluate the other correction terms like 9, (0) of equation (31.44)

for i 0= 1,2 ete. Hut ~ -dependent terms like J(j~1')md J(~',9) from the right-
C." C."

hand side of momentum and energy equations are ignored in the present study

embodied with Boussinesq approximation. By the substitutions of the present

similarity variable, in the ~ _dependent terms f (~.1]), [)(~.1]) and g (~,1]) of the

governing equations (3.1) to (3.4), the forms of the first order and second order

perturbed equations like (31.32) to (3l.34) would be affected, although zeroth order

remains unchanged. So it needs further study to include more terms for equations

(3l.37) to (3T.40) in thl: calculation of over all heat transfer and drug co-efficients

numerically.

•
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Appendix 'A'

Program
c======mainprogram======-- __ --~-_~~- o===-------==------

c shooting method
implicit rea1*8(a-h,0-z)
commonlp/fw,pr,bt "-
conunon/v/ir,ix
commonlvv/gl,g2,g3
opcn( unit= 3,file='sss3 .dat')
apen( unit=2, file=' osss.dat')
read(3, *)ir,ix,g 1,g2,g3, fw,bt,pr

c it=O
cI J it=it+ 1

call drfID
call compl

c if{it.gt.10)stop
c gotoll

stop
,nd

,.-_~~-drffD=========--~~--~~--o ======~=====--
subroutine drffO
implicit real*8(a.h,o-z)
common/pip,\' ,pr,hl
common!viir,ix
common/vvigl,g2,g3
dimension xd(60),xk(3, 60), f( 60),x( 60)
external derfl}
n=24
itmax=8
kk=O

555 kk=kk+ 1
if(kk.eq.l0)stop
write(* ,*)'ir =', ir
do 101 iter=l,ir
t=O.O
do k=l,n
x(k)=O.O
enddo



,

x(3)=gJ
x(4)=1.
x(5)"g2
x(6)=g3
x(9):1.
x(17}=1.
x(24)= I.
h=.OI
h=dsinh(l.laa)
do i=l,ir
call rksys( dcrfD,t,h,x,xd,xk,f,n)
dok=l,n
x(k)=xd(k)
enddo
h=dsinh( noat( i)/aa )-dsi nh( tloat(i-l )/aa)
t=t+h

enddo
all =x(8)**2+x(9)**2+x( 1O)**2+x(11 )**2+x(12)**2
a12=x(8)*x( 14)+x(9)*x( 15)+x(1 O)*x(16)+x( 11 )*x(17)+x(12)*x(18)
a13=x(8)*x(20)+x(9)*x(21 )+x( 1O)*x(22)+x( 11)*x(23)+x( 12)*x(24)
a21=a12
a22=x(14)**2+x( 15)**2+x( 16)**2+x( 17)**2+x(18)**2
a23=x(14)*x(20)+x( 15)*x(21 )+x( 16)*x(22)+x(17)*x(23)+x(18)*x(24)

a31=a13
a3Z=a23
a3 3=x(20)* *2+x(21 ) >I' *2+x(22)* *2+x(2 3)* *2+x(24) >I' *2
bl =_(x(2)*x(8)+x(3)*x(9)+x( 4 )*x( I O)+x(5)*x( 11 )+x(6)*x( 12»)
b2=-(x(2)*x( 14)+x(3)*x( 15)+x( 4)*x(16)+x(5)*x{ 17)+x(6)*x(18»
b3=-( x(2)* x(20)+x(3) *x(21 )+x( 4)"'x(22)+x( 5)"'x(23)+x( 6) *x(24 )
err=x(2) *"'2+x{4)* *2+x( 6) *"'2
write(*,39)err
write(* ,39)gl,g2,g3
if(crr.le. O.OOOOI)go to 22
dell =b] *(a22 *a33-a32*a23)-b2*(a 12*a33-a32 *a 13)

1 +b3*(a12*a23-a22*aI3)
deI2=-b I *(a21 *a33-a31 *a23)+b2*(a11 *a33-a31 *aI3)

1 -b3"'(al1 "'a23-a21 *a13)
del3 =bl *(a21 *a32-a31 *a22)-b2 *(all *a32-a31 *a 12)

I +b3*(all *a22-a21 *aI2)
delA=all *(a22*a33-a32*a23)-a21 *(a12*a33.a32*a 13)



\I +a31*(aI2*a23-a22*aI3)
dglo=dellldelA
dg2o=de12/delA
dg3=del3!deIA
gl=gl+dgl
g2=g2+dg2
g3=g3+dg3
if(iter.ge.itmax) then
ir=ir+ix
go 10 555
endif

101 continue
22 writc(*,39)'gl=',gl,g2,g3

write(2,39)gl,g2,g3
39 formal(2x,3f9.5)

return
end

,.~~~~eompl============~~~~=='=O====C--==----========

subroutine comp 1
implicit real*8(a-h,o-z)
commonfp/fw,pr,bt
commonlv/ir,ix
commonlvv/gl,g2,g3
dimension xd(60),xk(3,60), f(60),x(60)
external derfD
n=6

c itmax"'8
c kk=O
c 555 kk=kk+l
c if(kk.eq.lO)stop
c writc(*,*)'ir=',ir
c do 101 iter=l,ir

t=O.O
do k=l,n
x(k)=O.O
cnddo
x(3)=gl
x(4)==1.
x(5)=g2
x(6)=g3



write(* ,39)t,x(2),x(3 ),x( 4),x( 5), x(6), fw
wrhe(2,3 9)t,x(2), x(3), x(4), x( 5),x( 6),fu'
h=.Ol

c h==dsinh(l./aa)
do i=l ,ir
call rksys( derro,t,h,x,xd,xk,f,n)
do k=l,n
x(k)=xd(k)
enddo

c h=dsinh( float(i)laa)-dsinh( float(i-I )laa)
t=t+h
write(* ,39)t,x(3 ),x( 5),x( 6)

22 write(2,3 9)t,x(2), x(3 ),x( 4),x( 5),x( 6), fw
enddo

39 fonnat(f5.3,2x,6f9.4)
return
end

e=====dertD===~~"~~~~~~"~' ===============
subroutine derfD(x,t,f,n)
implicit real *8(a-h,o-z)
eonunonlp/fw, pr, bt
dimension x(n),ftn)
pI "'nv
p2=(l.-bt)/2. *bt
, p3==3.*bt-1.
«1)~x(2)
«2)~x(3)
f{3)=-(x( 1)*x( 3)-p 1*x(3 )-bt*x(2)* *2+p2 *t*x( 4)- x( 6»
«4)~x(5)
f(5)=-pr*{x( 1)*x(5)-p I *x(5)-p3*x(2)*x( 4»
«6)~x(4)
do j=I,3
k=6*j

ftk+ I)=x(k+ 2)
f{k+2)=x(k+3)
f(k+ 3)=-(x(1 )*x(k+3)+x(3)*x(k+ l)-p 1*x(k+3)-bt *2*x(k+ 2)
1 +p2*t*x(k+4)-x(k+6»
f(k+4)=x(k+5)
f(k+S)=-(pr*(x( I)*x(k+S)+x(k+ 1)*x(S)-p 1*x(k+5)-p3 *(x(2)*x(k+4)
1 +x(k+2)*x(4»»



f(k+6)=x(k+4)
enddo
relurn
eo'c~===:;===~----=====~~,~~~~.=====:;================

c Implicit R-K Sixth order method
c =========================================

subroutine rksys( derivs,l, h,x,xd,xk, f,n)
implicit rcal*8(a-h,o-z)
dimension x(n),xd(n),xk( 4,0),fCn)
sqt=sqrt(15.0)
a I=(5.-sqt)1l 0.0
a2=J.!2.
a3=(5.+sqt)11 0.0
bl=5.136.
b2=(10.-3. *sqt)/45.
b3=(25.-6. *sqt)/180.
eI=(1 0.+3. *sqt)/72.
c2=2.I9.
c3=(1 0.-3. *sqt)!72.
d 1=(25 .+6. *sqt)/180.
d2=( 10.+3. *sqt)!45.
d3=5.136.
call derivs(x,t,f,n)
do i=l,o
xk(l,i)=h*f(i)
xk(2,i)=h*fCi)
xk(3,i)=h*tli)
xd(i)=x( i)+b 1*xk(l ,i)+b2 *xk(2, i)+b3 *xk(3, i)
enddo
call derivs(xd,t+al *h,t:n)
do j=l,n
xk( 1,i)=h*f(i)
xd(i)=x(i)+c I*xk( I,i)+c2 *xk(2,i)+c3*xk(3,i)

cnddo
call derivs(xd,t+a2*h,f,n)
doi=!,n
xk(2,i)=h*t{i)
xd(i)=x(i)+d I *xk(l ,i)+d2*xk(2,i)+d3*xk(3,i)

enddo



call derivs(xd,t+a3*h,f,n)
do i=l,n
xk(3,i)=h*tTi)
xd(i)=x(i)+(5. *xk(l ,i)+8, *xk(2,i)+5. *xk(3,i»)/18.0

enddo
return
,nd
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