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ABSTRACT

‘Iwo-dimensional linite Yotume Method (FVM) bas been applied o solve Fluid
Structure [neraction (FSI) problens in this rescarch work, The aumerical solutions
of the governing equations have been obained using commercial CFD sofiware
packagc FLULNT 6.2, Circular evlinder and four axissmmetric bodies of revolution,

such as, sphere, DRLA standard submaring bare hnll, pod and onderwater vehicle

hull lorms based on Gertler's acometry are used as test cases for this study In case of

cireular cylinder. steady laminar flow at Revnold’s number of 20 and 40, unsteady
laminagr low at Re=100 and wrbulent flow at Re =1000 and 3900 ae simulated.
lhree turbulence models, namely, standard &0, realizable f-r, shear siress transport
{5517 &-w are used to capéure turhulent Mow. Two-dimensional asisyonnetrie low
solver has been used to analyze turbulent Now around sphere. DREA submarine bare
hull, pod and underwater vehicle hull farms at Reynold's number of 5% 167 2.3x 1"
Ax10” and 2= 1F respectivels, For sphere. Spalar-Allmaras (8-4) and shear stress
trunsport (SST) k- turbulenes models and far all other axisyvmmetric bodies, only
shear stress pansport (8571 -2 wrbulence model are used. The nuinerical results in
lermas of the skin friction cocMicient, pressure coclficient and drag coefficient tor
diMerent Reynolds numbers have been shown cither graphically or in the rabula
Torm. Velocity vectos as well as contour ol pressare distnbution have also heen
displaved gaphically. The computed results show sood agreement with the

experimental measurements nuimerical resulls oblained by other rescarchers,

Vi
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CHAPTER 1

1. INTRODUCTION

1.1 Computational Fluid Dynamies in Rescarch and
Development

Computational fluid dynamics (CHY) is ene of the branches of fluid mechanics that
uses numerical methods and algorithms to solve and analyze prablems that invilve
ttuid tlows. Computers are used to poeform the millons of calculations required o
sunulate the nteraction of Awigs and pascs with the complex sudaces used in
cogincering, Whether in the prisate o public scewor. rescarch oty Nuwd flow
problems i necessary for the  development of new  Muid  bascd  wasleins,
Computational Vluid Dynamics (CF13 has the power to model fluid flow and heal
transfer in an abundance of sitvations. With the advent of more powerful computers
and more comprehensive computer codes, {FLY has come to the forefioml as a
legilimate and effective research tool. CFE analysis can be much more cost effective
caompared to experimental models since changes can be made quickly and easdy to
almost any characteristic of the simulation. Simulations can also be set up more
quickly and easily than experiincatal ethods, However, since it is a computer based
solution technique. the results must be verified against experimental dat. This seetns
counter inwitive wince no profilable company o agency has the money to duplicate
their experimentation ‘Lhis is not entirely the case, Not every simulation needs to be
compared with experimental values, Only 4 lew base cases are compared To
vahdation purpascs and then ids assumed salt t say that the other CFD sionulalions
in that range are valid, Cven if same smuolations are analyzed both experimentally
and pumerically. CE1Y is still henelicial since 1t has the abiline to offer more
information to researchers about the flow, CFD not only gives the overalt values that
eaperimentation ofters. but gives a value ar every node in the domain. [f the overall

values match. it can be assuined that all e detant deseribed by the CFD solution 1

legitimate, giving rescarchors the ability o investizate small but important regons ol

the flow more closelx,
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Linfortunately, there are drawbacks to computational (uid dynamics as well. First il
can be difticult to model extremely complex physics acceratcly inall sltuations with
current numerical algorthms. Boundary laver transition and separation are (wo
phenomena that can be paricularty troublesome to predict with a high degres of
accuracy . Second, many prohlems must be simplified to make them tracrable, With
some problems. computer resources may nod be available to solve the prohlam to the
level of accuracy originally desired. Examples of problem simplification include
madehng  a three-dimensional problom as a two-dimensional or axissmmetric
problem. reducing the computational domain sive or solution resolution of a given
Now ficld. or modeling a ume-varying problem as a steady-state problem. Third,
certain assumptions must be made to obain a solution, Usually these assumptions
appear a» boundary conditions and are relatively accurare — examples are asvimptotic
behavior at tar-field boundaries or prescribed inlet or exit conditions, TFourth, a
padicular solution algorithm might not produce a converged solution for a given flow
figld, [n many cases, simply using inuiion and applving specibically suited

algorithms ta the prablem ar hand can avoid this prablem,

1.2 Fluid Strueture Interaction Prollem and lts Importance

‘The solution of Flud Structure interaction (F517 problems using Computational Fluid
Dwvnamics {CEDY analysis 1s now becoming tractahle through the accessikliny ol high
performance computing. Flad strocture interaction occurs when a floid interacts with
a solid structure, caerling pressure thil may cause defomation in the structure and.

thus. alier the flow of the fluid iiself,

Flind-Structure Tateraction (FST) problems are of great relevance o many liclds in
cnoineering and applied sciences [t has a wide range of application i many
mdusteial and non- industrial [elds such as acrospace industrs. aulomobite industy.
detanation wave cftecels on structure. underwater eaplosion, pressure vessel analvsis,

wind-toree analvsis on tall building eLe.

Fluid Structure Interaction (FS1) problem is one of the most important lopics in
teaval Architccture. Qfshore and Qcean bEngincering, The ahility w0 predict
accurately thnd structure interacnion 15 0l tundamental ioportance for design,

analysis and reconslruction in many areas of Naval Architecture and Ogean
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engineering. A new area of research i3 the inleraction between wave and Now
nrobloms, which cceurs when structures. such as ships and platforms are posmioned

near each other or in the cawe of moored vessely.

The effcel of BSI can be classified in two ways: one case is occurred when only the
Now is alfected Tor the interaction In this study. this phenomenon is considerad only
tor sinplicity. The problem becomes complicated when the body is also moving or s
flexible and may change its shape. The unsteady loading acting on the body in the
flow may damage it The lack ol understanding the underlying phenomena related o
Fusd-structore mteraction has causcd e such catastrophes as the collapse of the *Bay
Drdge” o Scothand {1879 the "Tacwma Bodec’ near Scatlde (1948), the cooling
lowers in Ferrvbridee {England, 1963). "Transvaal-Park” in Moscow (2004) and
rocenl disasters in the CGull ol Meaieo highlighted the need for a betler understanding

in Lthis field

Multidisciplinary problems involving Muid structure inleraction are common in
engineering design Fluid flow and adjacent structures often interact through
displacement andfor thenmal effects. Such interactions may be a desirable part of a
design or may cause unwanted hehaviors that need to be considered and eliminated
during the design process. Therefore. the ability to predict and counter-act potentially
negative eflects of fluid-structures interactions Is very important and challenging tor

most of the engineering field

1.3 Previous Research

Considering the maportance ol Nuid structure Interaclion, an exlensive research work
has been carried out by naval architeets, olfshore and ocean engineers, hvdro-
dynamists and mathematicians, Both exporunental and numerical investizations have
been carried out to examing the characteristic of both laminar and turbulent flow
around difterent structures. e o, circular cylinder, pod, strut, hydrotol, sphere.

surlace ship under-waler vessel, mopeller etc

I'ke laminar and tucbulent unsicady viscous flow bohind a ciccuiar cylinder has hegn
the suhrect of numerous experimental and numerical studies, ecspecially tfrom the

hydrodynamics pant of view, According 1o the obscrvauen of Sumer (1997 the
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How ticld over the cireular exvlinder is symmetic ar bow values of Reynalds number.
As the Reynolds number increases, Now beging o separate behind the cylinder
causing vortex shodding which i an unsteady phenomenon o the 40 = ke - 200
therz is a laminar vorex sheddmge in the wake of the exlinder. The laminar wake
transient to turhulence in the region of Re = 200 o 300, In the suberitical repion 300
< Re < 3%107 the wake behind the circular cviinder becomes completely turbulent
and a laminar boundary layer separation gecurs. The unsteady flow was first studied
by Payne (1%38) tor Reynolds aumber equal to 40 & 100, The numerical study and
physical analysis of the pressure and velocmy ficlds in the ncar wake of a cuewlar
cvhinder for laminar and mirbulent tlaw has been investigated by Braza of of. (1986)
and Braza er of. 1990, Recently Laokshmipathy (20043, Reichl e af, {2003} and
Bahman et ef. (2007) have also nsestipated this problem for dillerent Revnolds
numbers. The commaon points of intercst of these works are the deselopment of the
primary unstcady wake behind the cireulvr cylinder and the cvaluation ol the drag
coelficient and the separation angle with time.  Most of the experimental swdies
investigaled the steady and unsleady behaviers of the alternating vortices in the
wake. | he experimental investigation of "Tritton (1959 and Andeizon (2003} should

e mentioned.

A considerable amount of research work has been published on flow around the
axisymmetric hody of resalution such as: sphere, pod. submarine, axisymmetric
under-water hody etc. The basic structure of the flow past a sphere has been
cxperimentally  investigated  using a  variety  of approaches. including  {low
visuglization by Achcnbach (19723 Tancda (1978, Kim (1988), Sakamoto §1990),
Rakic {20002) etc, Recent time-accurate computanons of lamimnar and tuebulent fluw
around spheres using different methods are reported by many researchers. among
them the wobk of Chemaz (19930 Armcne (1993) Kalre (1998), and Sun et ef

f2006) are remarkahle.

dulti-component  propulsors  are becoming  ncreasingly  popular i modern
commcicial marine vesscls on gecount of the mercase of their clhicieney due 1© the
cancellation of the flow swirl downstream of the propeller. The major advantage of
using 2 podded propulser is that the inflow to the propeller is more unifonm

comparad 10 that of 4 conventivnal propulston system. The study of Now around the
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propetler and the pod and strul unil is of inercasing importance due 1o the exlensive

use of padded propulsors.

An optimum design can be chosen to mininmze the drag and tlow separation
Vartdal er af {1999), and can lead to better etficiency of the podded propulsor. 71 he
flow around pod was tnvestigated and thie force acting an it was calculated by o large
number of researchers. Among them the work of Stern {1994 Choi (20007, Choi
{2003y, Gupta (2004). Kinmas (2004) and Mishra (2005) are very much related with
the present work. Privono (1994 and Fan {1995 also investigate the pressue and

viscous drag on the axisymmetric body

Applications of computational tluid dynamics (CFD) to the maritime industiy
continuge 1o prow as this advanced technolopy tlakes advantage of the increasing
specd of computers, Mumenical approaches have evolved o a level of accuracy which
allows them o be uwsed during the design process o predict ship resistance,
Simulation of flows past undcewater vehicle hull forms 1s of considesable importance
in marine hydrodynawmics. This 35 mainly due W lack of relisble and sufficicntly
accurale caperimental data, Guncration of quality experimental data requires a large
number ol hull forms and esperimental Tacilities. In the last two decades. different
arcas ol incompressible Dow modeling - including grid gencration techniyues.
silution algorithms and turbulence modeling. and computer hardware capabilitics -
have  witnessed  lremendous  desclopment. In view ol lhewe  dosclopments,
computaticnal Auid dyvnamics (CRI3Y) can olTer a eost-effective solution to many
peablems in underwater vehicle hull forms, How ever, cflcetive utthizauon of CFD for
maring hydrodynamics depoends on proper sclection of wrbulence model, grid
generation and boundary resolution. On the other hand grid generation and boundary
laver resofution depends on the Lind of twbulence model that is used in a solution
process, Howeser, i can be said thal the main issue is wirbulence modeling and grid

generation and boundary layer resclution are sub-issues,

Many researchers used turbulence modeling to simutate flow arcund axisymmetric
bodies since late seventies. The flow amound wnder water ship or sulmarine was
investigated and the force acting on it was calculated by a farge number of

researchers. "L he present research is influenced by the work of Gertler (1930), While
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(1977), White (1978) Lin ef oo, {1995). Schwabacher (2000), Sohaib (2003), Joubert
{206) et

1.4 Research Objectives

Ihe main ehjective of the present study (s 1w apply Finite Yolume Method for the

hydrodynamic analysis of fluid strugture mieraction (FSI. The investigation is

carried out to simulate incompressible flow around some marine struclures {¢.p.

circular cylinder. sphere. pod and submariney and investizate the viscous drag and

tlow pattern for diflerent Rey nolds numbers, The specific aims of this study are:

ta apply finite volume method to analyee the flow arownd marine structures

to devide the flow domain withe ddlerent epes of 2od and check the grid

independency on the predicled results.
to visualize the fow in wake for laminar and turbulent tlow
Lo compute the viscous drag acting on the body for different Reynolds numbers

to validate predicted results comparing with experimental and ather numerical
rosults,



CHAPTER 2

2. COMPUTATIONAL FLUID DYNAMICS MODELING
CONSIDERATIONS

2.1 Discretization Methods in Compuatational Fluid

Dynamics

Fvery computational fluid dynamics, in one foem or another. is hased oo the governing
equations of finid dynamics: the continnity. eneray. and momentuim equations. 'l hese
equations imathematically state three things, respactively: that mass is conserved. that
cherey 15 consceved, and that foree equals mass tmes acecleration. In general, these
governing equations can be written in two forins: the integral form and the partial
dittcrenual cguation, or PDE form. Thoush the lorm of the cquations results lidle
difterence with regard to hydrodynamic theory. ditferent form leads to vastly differam
CFD solwtion aigorithm. Since compulers are unable w directly solve the poverning
gouations ol uid molon, these equations musl be wransformed inte Gorms thal
computers can handle; namely. the partial devivative {or integral) equalions must be
replaced with disciete numbers. In shot, the computational domain is diserclized so
that the dependent vartables are computed only at disciele points, Derivatives amd
inteerals are approximated. which lead o an algebraie representation of the goveeming
cquations, Tn this way, a caleulus problem s eHectively tmnstormed nto an algebraic
piellem. There are three discretization schemes in CRx €0 Finite Difference Method
(ELIMY i) Finite Flement Method {IEMY (D Finite Volume Method {(F¥ M) which

are discussed elaborately by Versicee & Malalaschera, (19957,

2.1.1 Finite Difference ¥ethod {FIM)

The FIXM is the oldest of the methods, considered to have been developed by Euler im
1968, and is used to ohtain numerical solution 1o dilTerential equations by simple
calculations, Tailar’s series expansions are used to geneiate finile dillerence
approsimations e lhe derisatives ol the RANS equations. The denvatives appeating

in the moverning equations are then replaced by these fnile difference expressions.

bt

)
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vieldine an alpebraic cyuation for the New solution at each grid poinl 1CTs the simplest

methad to apply, but requires a tugh deerce of regulacity of the mesh,

2,12 Finite Elemenr Method (FEM)

The FER was descloped inittally as a procedece B constructing matria selutions w
siress and displacement caleulations in structural analysis. Fhe method uses simple
plecewise polynomial funclions on elements W describe the variations of the unknown
flow variables When these approsimation functions are substiluted into the poverning
equations it will not hold esactly. and the concepl of a residual is introduced 1o
measure the errors, These residuals are then minimized by mulliplying by a set of
weighting functions and then integrating ‘L his resull i5 a set of algebraic equativn: o
the unknown ternns of the approanmating functions and hence the flow solutions can be
fbund., Finite clement method 15 not used caicnsively as it requires  greater

comnputational resouwrces and LU0 clfort thitn equivalent finite volume method,

2.1.3 Finite ¥Yolume Xethod (FYN)

The F¥YM method discretises the intepral torm of the governing equations directly in
physical space. The resulling statemenrs cxpress the oxact conservation of relevant
properties for cach finite cell volume. Finite-dilterence type approximations ae then
substituled (or the wrms of the integrated eyuations. torming algebraic equations that
are solved by an iterative method which wili be discussed in Chapter 3. As this method
works with the cell volumes and net the grd interscetion pounts, both structured and
unstructured meshes can be used. Flow variables cun be siored either at Cell Centre or
Cell Vertes locations. Conveniently, the cells coincide with the control volumes 1
usirtg the Cell Centered scheme For the Cell Veres scheme, additional velumces are
required to he constructed; howeser, the scheme has the advantage that boundary

conditions are more casily applicd sinee the varialbes are konown on all boundaries.

2.2 Basics of Fluid Dynamics

In order to undersiand the results of this study, one must first understand the basics of
fluid Mew eoncepls including viscosily {47, density (). turbulent and laminar flow and
Revnolds number. Firstly, abl Nuids. whether they are liguids or gasses, have a certain

density and viscosity. While the definition of density 15 widely understood as the
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weight of set volume of material, the defimbion of viscosily 15 much less widely
known. Viscosity is a measure of a tluids resistanee w0 Oow. When a fluid is sheared (a
fince is applied). it begins to strain al o rate inversely proportiomal to the s iscosity
{¥ersteep Malalaschera, 1995) Accordingly, a high viscosity translates to a slower
moving thnd. Tegether with the scometry and velocity of the flow situation a value
known as the Revnalds number can be assizned. Reynolds number is represented by

the expression:

_pUE
M

R i21)

Where, & is the free stream flow wvebocity and £, 15 the length value suited for the
situation, Lypically the length of a wurface or the diameter of a pipe. Revnaolds number
i 4 dimensionless valug describing the viscous bchavior of all Newtonian fluids,
Because density (pd. viscosity (e and L ccmam constant throughout the experiment,

the Beynalds number is diccetly proporuional o the Tree-strcam velocity,

2.3 Laminar and Turbulent Flow

In general, viscous flow over a surface can be characterized in hwo ways. [f the path
lines of the various fluid elements that make up the flow move smoothly and evenly,
as shown in Mgure 2 1 {a), the flow iz called laminar. Conversely, if the movement of
the fMluid elements i rough and erratic, as shown in Figwe 2.1 (b). the flow is called
larbudent. Keynolds number is also necessary fon discussing the difference belween
laminar and turbulent flow, Lamar 11ow ¢ orlery in nature and follows simooth
strcamlines. Turbulence s 4 ramdom phenomenon of Now disorder paradosically dug

ta the destabilizing ctfects of viscosity {Wersteep & Malalasckera, 1993).

Figure 2.1: (a} Laminar and (b} Turbulent Path Line




Chapter & Computation sk Flud Dermmmes Midehng Conenleagams

Eevnolds number is used as a measure of when or where turbulent low will oceur. In
open flow, such as Mow over a flat plate, furbulenes transition occurs at Revnolds
number ol 53107 hased on plate length where as 10 case of flow over ¢y linder it is 200
to 300 (Sumer, 19971 The laminar to turbulenge transition point in either tlow
situation v based on the distwhance from the leading edge of the plate by the
boundary laver growth. 1t is not possible to predict exactly when the transition from
laminar to turbulent flow will occur singe factors such as free steam mixing and
envirnnmental noise levels influgnce the transition, Realistically, most enginearing
problems are in the turbulent domain, Understanding the difference between these two
rpes of 1low is eritical in analvzing 2 ud dvnamies problem, since much ditferent
answers can be determined based on the flow condition. The characterization of the
Now Neld is particolarly impontant in this sodsy because laminar and wrbulear low

flelds comtribute very dilferently 1o the wolal drag ona given body,

2.4 Drag Forces

Flow past an immersed body causes torecs to be applied to that body, which are
depodent on its shape and the nature ot the flow, When fluid lows over a circula
cvhinder thea generally the evlinder 15 considercd stationary, On the other hand, wiih
regard to pod/submaring. the body moves through the fluid, while the Nuid s more or
less stationary. Tlowever. analyzing flow palteins past a moving body with slationary
tluid ts duvnamically equisakent o analszing the Now patleen around g stationaey bods
as the flow moves, For ease ot CFD simulanon the later trame ol reference s
emploved o determine the forces In arder to compare dala between experimental 1€sts
1un using different speeds or even Muids one can make use of dynamic similarity, With
drae values this commaon ground is tound using 4 dimensionless coclTicient s, which

i determined vsing Lquation (2.2):

As shown. the drag force is made non-dimensional by dividing by the dynamic

prossure



Thapier 2, Computatiendl | hnd Denarsics Madehng Corsnls oo

and the area. The paiticular arca used depends on the shape involved As a general
rule, the frontal area 1s used lor blull bodies (e.g. cylinder. sphere) and the wetled area
i used for stream line bodies (e pod. submarime). The drap value in the above
cyuation is the drag force on the body, which s caused by both viscous [ [Tictionaly and

pressure (form) effects,

2.4.1 YViscous drag

I he viscous ellects are a resull of the friction between the fuid and the body and are
generated 0 the boundary layer. Fluid nean the body is in a no slip comdition. meaning
the flow dircetls nexl o the body wall is at zemo velogity relative to the velocity of the
wall This causes shear stresses 1o be introduced to the low, Turbulence kinctic cnerey
builds up av the flow passes over the body creating swirling vortices thal eventually
dissipate into heat enerpy. This viscous clect accounts for nearly all of the drag on a
flat plate can be tound using the Equalion ¢2 33 Much more detall is available from

ather resources (Versieep & hMalalasekera, 1993}
n,ey= (7,04 (2.3}

For this equation £, is the drag foree, 7, is the wall shear and the integral 15 over the
sutiace. Blasius {1908} was also able to determing the skin [Tiction coclTicient ol the

flat plaie, which relates to viscous drag. Cquations are as follow;

).064 , i
; ={ | Laminar {24
Re 2
0027
e T— Turbulcnt (2.3
Re 7

'y is the skin friction coetficient and 15 a measure of the wall shear on the flat plate [t
can be used to determine it CTD results are at least in the right range foa its final
reaults. Based on Mat plate caleulations, the viseous drag cocflicient is cqual 1o twice
the skin friction coefficient over the surtace, Avain, this is only an approximation since

an ideal Mat plate is rare in practical applications,
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2.4.2 Pressure drag and Now separalion

Determining the boundary faver thichness from Mat plate theory can only act as an
approximation since 1lat plate boundary laver development is not attccted by pressure
pradients, In most practical cases there will be pressure sradicnts thal very much aflceot
the bourdary layver thickness  Megative pressure changes or where pressure s
decrensiag and selocily iy inereasing, are known as favorable pressure eradicnts and
lead w4 thinner boundary layer. Positive pressure chanpes or where pressure s
mereasing and velocily s decreasing. are known as adverse prossure cradicnls

{Versteeg & Malalasekera. 1993) and lead to a thicker boundary layer.,

I-low separation describes the phenomenon of boundary faver aépn rating from the body
and ofieo recirculating hack towards the flow. Plow separation cannul occur unier
lavorable pressure gradient, it oceurs only under an adverse pressare gradient. For the
case ol a pod or a submarine hull facing dircctly nto the Mow. there is a favorable
pressure gradient at the front of the hull. near zera pressure gradient along the bods of
the hult and an adverse pressure gradient along the rear of the hull, Naturally, there is a
potential for the flow to separace at the rear of the hutl, 11 the adverse pressure gradient
1% oo hgh the fluid near the wall will stall and separation will ocour A very
witeresting and uselult point o nole abeut separation is that at the separation point ghe
wall shear equals zeri. and hence there 13 no viscous drag contribution. A rero wall

shear condition can be looked for to determine it flow separation has occurred.

Pressure eftects are dependent on the perturbation that a body makes on the Now, As
tiuid moves aroumd an object, there exists o messure difference hetween the front and
the rear of thal ebject. At the front of the pod/nbmaring hull exists a stagnation paint,
whure lugh pressure is the result of a near stop in fluid flow. Surrounding the
stagnation point there is a favorable pressure gradient with higher velocittes, At the
rear there s an adverse pressure gradient with low velocity and the possibility of
separation. The eflcets of pressure differences appear in the geneal equation for

pressury deay us given by,

n, = me (2.6)
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The elfeets of buoundary layer displacement. separation and viscous losses contiibute to
4 pressure dilference hetween the ront and the 1ear of an objeet, 1L s the pressure
ditference over the area of the shape thal makes up the pressure drag. Streamlined
abjects have relatively little pressure difference between the front and the rear and
henee Lhe viscous drag is dominant, BlufT bodies induce flew separation al the rear,

whitch incrcases the pressure difterence, thus making the pressure deag dominanl.

2.5 Grid Generation

Analyvtical solutions of 1uid dvnamics problems involve closed-torm mathematical
expressions dhat describe the variation of the dependent varighles comtinuous)y
throughout the Now domain. Howevel, numerical solvers cannotl gencrate closed-form
analytical expressions, but it can caleulale values of the dependent variabies only ar
diserele points in the domam, These poutts arc called grid points. or nodes. In order for
a computational fluid dynamics code W provide a complete flow field description for a
parlicular problem. the user must specify a mid that tells the flow solver at what
locations in the problem domain the solution is to be computed. The specifications o
the grid construction can hasve 1 major influence on the fidelity of the solution and can,

i fact. detenmine whether a solution is even attzinable.

2.5.1 Seluiion dependence om grid

The quality and etficiency ol the numerical solution is highly dependent on the
construetion ol the gnd used in the computatiomal model, Several thctors must be
comsidered when generating a grid to ensure thal the best possible numerical 1esults are
ubtained with a particular salution algorithm. Grid poinl placement can have a
substantial cffcel on the stability and convergence of the numencal solver. For
example. il prid peints are not adequatzly concentrated in regions o high flow
parameter gradients (such as ncar shock wases, in boundary layer separation regions,
or near stagnation pointsl, the numerical solver may not be able to adequately resolve
these gradicntz in the (ow ficld. Because oblaining the solution numerically iz an
Iterative process, (U is possible, and quite likely. that an insufficiently fine mesh will
preclude the adequate caleulation of important Now features, leading 10 oscillations in

computed parameiers or even dinergenee of the solution.
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In numerical prul construction. there is an iuporant lrade-off betwaen mesh density.
solution efliciency, and selution accuracy . Generally. the more grid points contained in
a given grid, the more accurate the [nal. converged solution will be. However, the
density of the grid cannet be arhitrarily increased withoul bound. Computer processor
speed and nmemory limitations often dictate how fine a mesh can realistically be.
Increasing the density of a mesh wo much can quickly cause a given problem to
hecome infractable, Along these same lines, it is imponant for the CFD analyst w
carctully concentrale grid poinls in high-gradicnt regions while kecping the garid
density throughout the majority of the compurational damain fine cnouch for accurac
¥l sparse enough for speed Clearly. the masium allowable grid point density of a
particular simulation i highly dependent on the speed and capabilitics ol the computer

platform being usced.

In the case o unstructured grids, sofution accuracy. conversence. and etticiency are
also highly dependent om the shape of the elements used to torm the mesh, Two
primary element shapes are used when gencrating unstruclured grids: triangles and
quadrilaterals. Due to fewer constraints on their use. pnds constructed of trangular
elements are often easicr to build around complen seomelries than are guadrilateral
mids, especially when using an avtomatic gnd gcncration program like GAMBIT.
lllement skewness also tends o be less ol lactor with triangular efement grids, Since
the relative skewness of elements has a dircet miluenee on the robustness of the
numerical model. particularly in high-gradient regions, triansular element-hased grid-
hald an advartape in this regard, Howeser, the price one pays when using triangula
elements is in efficiency, Since for a given noede distribution thure is a higher
concentration of triangular clements than there would be of yuadrilateral ¢lements. the
use of triangular elements incurs a large speed penalty on the numenical soher.
Analysly must aiso take into account the size of the computational domain whun

mmudeling a CFD problem.

2.5.2 Stractured grids

There are two Lvpes o grids commonly used in CFD research today — structured wrids
andd unstructured grids. Naturally, esch tvpe has its own advantages and disadvanlages,
and these faclors must be carefuily weighed to derermine which tvpe of grid 15 best

suited 2 a particular problem, Frequently. the computational domain ol a given

ld
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prohlem is selected to be rectangular in shape and ity intertor grid points are distributed
at 1egularly-spaced intervals along grid lines. Since the grid points can be identitied
easily with their respective prid lines. such a grid is called a stroctured grid, Srructured
orids require a hansformation from the physical space to the computational space, On
the other hand, another type of grid system can be constructed where the orid points
cannit be directly associated with orderts, defined grid lines; though not random, the
distribution of grid points cannot be predicted in a well-defined manner. This tvpe af

grid is called an unstructured grid {1oMmann. 1998).

Within a rectangular physical domain. the geneiation of a compumational grig with
unitorm spacing is a relatively simple task  Unfortunately, the majoriy ot physical
domains of interest are not strictly rectangular in shape. Tryving @ impose 4 rectangular
computational grid on a non-rectangular physical domain will require interpolation for
the implementation of boundary condilions, This is not desired. since the boundary
conditions have a major impact on the quality of the nwmerical solution. Further,
complications in discretization at the edpes of the computational demain make this
approach less than ideal. in order to overcome these difficulties, o transfonmation (Tom
physical space to computational space is introduced that will map a non-iectangular
cooTdutaly system in the physical space to @ rectoneolar system in the computational
space To eliminate the discretization ditficultics assoeciated with non-cqual slop sizes
in the computational domain, parlicularly for the tinite-difterence approach, physical
domains are generally transformed into reclangular. constant step-size. coimpuiational
domains. Also, it can be seen that deformation of the physical domain 15 usually

necessary 1o obtain the computations] domain.

To determime the mapping of grid points in physical space to computational space, a
few limitations are necessary. First, the mapping must be one-to-one: grid lines cannot
cross one another. Secomd. a smoeth grid point distribution, nonimuam grid  line
skewness, near-orthogonality, and concentration of grid points in regions of interest
(i.c. high Now gradients or lurge dependent vaciable Muetuations) are all desiied. | hele
are three primary structured erid seneration techniques prevalent today: algzebraic
methods, partial dilTerential methods, and conformal mappings hased on complex
variables. Each of these wehnigues invoelves solving a system of equations: given fiaed

step stzes In the computational domain, the solution of these equations provides the

15
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coordinates of the grid points in the physical domain. Modilving certain parameters
within these equations allows the analyst t ailor the grid (Lo some degree) to provide
higher grid resolution in physical areas of inkerest (boundary lavers. separation regions.
ete). Fually. the grid system may be cither fiaed or adaptive. A fiacd svstem is
sencrated prior 1o the solution of the governing eguations and docs nol change iy a
result of the solution, whare an adaptive prid system morphs as a result of the solution
{Ior cxample. grid points may beconwe concentraled in regions of high gradients. such

as in Lthe neighborhood of a shock wave).

2.5.3 Unstructured grids

ILis interesting to note that discrctization vl 4 domain can be accomplished either
directly in the physical space or in the transformed computational space; the chaice
depends mainly on the numerical solution methed and the domain of the solution, For
those solution schemes where the soverning Muid dypamics equations are integratcd

numerically on the physical domain and solved. the corresponding grid system s

usually penerated directly in the physical domawn. In such cases, the domain of

solution is divided into individual cells {usually trianeles or quadritaterals in 2D ar
pyramids or tetrahedrons in 3030 and for these cases. the gid points senerally cannot
be associated with grid lines. Tnstead, locations of points most be individually
specified. This gpe of grid systcm 15 known as an unstructered grid. I this study the

unstructured grid is used anly in easc of sphere mwdul.

Besides heing a natural choice far use with finite volume owmerical solsers, there sre
alse a number ol advantages thal unstructured grids enjoy over structured grids The
main advantage of an unstructured artd is that it can be used with equal ease and
success over a wide varicty of surlace peometrics. Unstructured gridy can also be used
fon both irregular. singly-connccted donains as well as multiply-connected domains.
Since unstructured grids do net rely on a mathematical transtormation, or mapping,
lrum physical space to computational space, they lend themselves more readily to node
placement optimization In other words. it is much easicr to arbitrarily concontrate
points in regions in the domain of high interest; tor cxample, near large prossure
gradients, inside boundary Tavers, ar around shacks, By the same token, unstructured
gridy are also mare easily coupled with grid refincmunt technigues for automated grid

adaptalion. However, unstructured prids have their drawbacks as well. Since the

10
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pesifion of cach node is not determined by the solution o a set of equanons, but
insteadl. 15 defined explicitly, there is a substantial amount ol book-kesping associated
wilh delining the position of cvery node in the unstructured nesh, This added data
manilists itelf in increased program complexity and reduced computanional efficicney

of CFD solutions of problems using unstructured erids compared 1o structured grids,

2.6 Two-Dimensional Versus Three-Dimensional Modeling

Since most physical flows arc three-dimensional. it seems logical that a threc-
dimensional model would be the ideul choice fo selving most real-world problems.
However, in those real flows where the salfent features are primarily two-dimensional
of axisymmetric in nature {for example. flow over a high aspect ratio wing or flow
around a sphere/pod/submaring respectively), two-dimensional computational models
often provide a sufliciently accurate deseription of the major flow features 1o render
the inclusion of the thild dimension unnecessary. In tact, the additional computational
lowed incurred by modeling and solving a full three-dimensional flow ficld can be
substartiat; increases in solution time an the order o ten or moere are common. Two-
dimensional soluticns are, of coursc. unable 1o resolve complex three-dimensional
flow teatures (like 3D vorlex inlcractions). butl in those cases where the physical
geometry warrants 1, 2D models are olen preferred for the significant eficiency
advantages they provide. In addition, the sophisticatiom of grids required for twao-
dimensional problems is preatly reduced compared to those requited fon full three-
dimensional simulations. This kas advantazcs both for the analyst and the grid
sencralion soflware — the analyst can design a 21T computational mesh much more
guickly than a 313 mesh, and the grid generation seftware {in this case, GAMDIT), can
compute the associated node distribution for a given mesh boundary spacing much
moee efficiently and with a greater degree of success tor a 217 case than for a 317 case.
Singe GAMEIT has been shown o have dilTiculyy generating guadritateral elament-
based meshes tor 2D geometrics, adding a third dimension would provide even more

complexily and inerease the fikelihood of unstructured mesh generation prohlems.

2.7 Steady-State versus Time-Varving Solution Teehniques

The last major consideralion Lo be made when solving a parmcular CFP problem 15 o

decide whether o model the problem vsing a steady-state techrique or a tume-vary ing

17
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technique. Since all real-world problems take place over time, it seems natwral @
madel problems as tme-varying. However, there are several compelling reasons
against this approach. First, il the Now parameters do not vary with lime then a steady-
state technique is the obvious choice. Sccond. cven il time-varying elements are
present in the real flow, there imay be pood reason w model the flow using a steady-
state approach, in which case the analyst must deterimine how importaat the Lime-
varying elements of the flow are 0 the overall behavior of the syslem. For one, in a
tne-varying approach, the governing fluid dynanuics cquations must be discretized in
spiace and time. Not only does this complicate the st of algchraic cquations Lhe
numerical solver must manipulate, but sub-itcrations becomu neccssary W0 compule 4
Mow field solution far cach instant of time, In other words, the solver must achieve a
converged solution for each increment of thue thal the analyst has chosen o model.
This can increase the tolal rae of convergence by several orders of magnitude and
reduce the computational cllicicncy ol the model ter the point where the prahlem is no
tonser tractable, Also. since convergence of each sub-iteration must be attained prior
e procecding on W the next tme siep. the likebhood of solution oseillations or

divergence is increased.

The maor drawback in modeling o problem as sleady -stale s that the possihility exisls
those important aspects of the Mow will be overlooked For example, time-sarying and
purindic hehasiors such as vorles mixing and vortes streets. and transient behaviors
such as Mow acceleration and deceleration will not be captured when using a steady-
state approach. Again. intuition on the parl of the fluid dynamics is necessary to
determing whether the omission of such aspects of the flow will have a Jage impact on

the overall accuracy of the solution generated by the flow solver,



CHAPTER 3

3. THEORETICAL BACKGROUND

3.1 Governing Equations

The conservative or divergence tor of the system of equations which governs the time
depeadent twao duiensional flow af an incompressible Newtonian tluid is | Versteeyg and

Malatasckera, 19935].

Massieontinuity : divin) = 0 (3.1}
a - A )
x-mamentum 1 p Li—“ + ff.r'v| i || = —rli +otiv{ g gred )= 8, {3.2)
L e (S o
ay oo an
r-momentum F‘[T + .:?'r'v} i J] =— _i o+ el s grad v) - S, (3.3
K L F

Where, o = density, p = pressure, F = tIMe, o = uf + 13 = velocity vector, i = viscosils.
and & = spurce tenm. ' he above equations are known as conservation cquations as these
gquations ohey the conservation principles of nwss. momentum and encrgy, It as clear
that there are significant commonalilics anong abose the various cquations. 5o these
cyguations can be writlen in 4 general form and thal peneral cyuation can be solved
numerically instead of solving each equation individually, By introducing a general

variable ¢ the conservative form of all fluid tlow equations can he written as'

[ D el
A=+ a’iutm w || =dilT grad @)= S, (3.4
oy J
In words
Itate of tncieass Met rate of flow of Fate al increass Hauale of increase
of g ol flud n g aut aof fluid _ al @ due o of g oo L
element clement ditfusion ' saurce

§ Unsteady term) (Convectivea term| [ 2iffisiv e termd iSouice term)
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Lquation (3.41 15 the so-called transport equation lor property ¢, In order (o bring out the
comman features we have, of course, had to hide the terms that are not shared hetween
the equations in the souree werms. By seiing ¢ cqual 10 1. a4, v and selecuing appropriale
values for the diffusive cocMicient I and souree term we may obtain Equations (3.0 w
(3.3). Equation {3.4) 15 uscd as the starting poinl lor computational procedures o the

finite volume method,

3.2 Solution using Finite Volume Method

As owye have scen. all differential cyuations are conseryvaton cquatons for mass,
momentium, energy so s necessary that all diseretized equations also obey the
conservalion principle. Finile volume method s inherentls conscervative method because
the Mux going cut through a face of one control-volume is exactly cqual to the Dua
coming into the adjacent comtrol-volume through the seme Fee. Including diseretization

following steps are involved in finite volume method.

1. Divide the domain into [rite contrgl s olumes.,

. Inteerate the dilferential coquations over cach conteal volume,
. Approsimation of volume and surface integrals,

iv Discretization and interpolation using UL or C1S.

3.2.1 Control volume faces lovalion

Hefore poing Lo diserelization scheme i is important o define the girding with sign
convention used in this method. A poction of the 2-dimentiomal Cartesian grd wik
general notation in finite volume method is shown in Figure 3.1 In the finite volume
method. o caleulate all Nuaey through the contrel volume, lecation of its faces is

imporkanl since contrel-valume Taces define physically a conrel volume.

Discretization is done in pencral erms so that o can be applicable to each contiol-
voluime., There are two wayvs to locate faces of control-voleme with respect 1o zrid

poHnts,
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Figure 3.1. 2-D Cartesian Grid with Geocral Notation in Finite Yolume
Methed

| Faces of comtrol-volumes {CV) located iidway between the grud pornts,
2. 0rid points are placed at centers of control volume.

In the frest case. prid peinls are construcled [irsl and then OOV faces are placed midway
letween these grid paints, In this casc, the erid poinls do not lie on geameltric centers of
the control-volumes. Special care should be taken while dealing with boundars control
volumes, At boundary, thus pructice leads o o sct ol balf control-olumes and therefone

discretization scheme Tor boundaries have to be changed.

In the second case. control-volumc boundarics wre drawn first and then grid points are
placed at the centre of each control-volume. In case of uniform grid both schemes arc

dentical,

The lirst scheme is more accurare than the s¢cond one in caleulating difTusive Tus
because the slope of line (for linear profile ot variable) is nearly the samu as that of
slope of tangent to the parabola (pacabolic profiie} cvaluated midway between the grid
points, Second scheme 1s more convenicnt Lhan the st one because it covers the whole
domam with small [inile control-volumes  The comtrol-valume centers e on the
geometric centre ol the control-volume and therelfere midpaint apprasimation which i«

done during discretization in next scetion will be more accurate,

21
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3.2.2 acegration of the Transport Equation
I'he key step of [inite volume method is the integration of the transport Equation (3.4)
(3.5}

over each contral volume viclding
S
n’nl o rfJ"l» = LI dill grad gkh + I § v

;][I —('m +
" {; il 5
he volume integrals in the second team on the left hand side, the convective term. and

arals H - .
in the {irst lerm on the right hand side. the diffusive wem, are re-wrillen 4s intesrals ove
= o u . M

the entire bounding surface of the contro] volume by using Gauss' divergence theorem

=
IFar g voctor ¢ this thearsm states

I e ;;fi‘T‘L-'= L _}:a_;;cfA

Where s iw the vecolor normal to surface element of 4

Appling Crauss” divergence theorem. Equation (237 can be wrillen as
E - N
p[i—r[ oo ]+ [ Lg}u |{M] JH.U prad o 4 J- S e (3.6)
AN 1
In steady state problems, first term of Equation (3.6} i equal to zero. ' his leads 1o the
imtegrated form of the steady transpor cquation
(37

. —

Iz lAH.L{.'JH ]:H = Ln (T reecd  H4A + [ S v
Here we are solving this problem in two dimensions that 15, 0 x-v planc, so it can he

written as

o [kt = [ lugkto  (phix— [
rJr&\lf".— _h_",llf [eaR Ny
|| Jf [[@)ﬁjsu

J-|[ “;3} '{y “Fi?JJ}+[

Here. the term p o g is the convective 1ux and 1 gradf @ 15 the diffusive flux

wlr

I~
I~2
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3.3 Approximation of infegrals

The next siep is o gpproximate the Mux integials which are done by two levels of
approxunation. Consider, £= the ux in the /™ direction. In first lesel the in}egral is
apmonimated in tertns of the variable salues at one or more location on the cell face.
The simplest way is the midpouwnt rule flua, where the £ is approximated as the value at
the centre of CV face. The midpoint rule is a sueond order approsimation, se in order to
preserve the second onder accuracy the interpulation should also be of second order O

the east face of control-volume, the midpoint rule applied as:
[ b= fay

Source lenm approximation is done hy applving the centre value of the source as

representative value for the whole CV. Thus, Equanon (3.8) beoontes

pl{f!f;ﬂ] Ap— (r;@}" A+ (1'-;.!11, A% — {L‘{.‘?]\ ﬂw] =

T £ooa

|r°ﬁw [l‘f’{”’J Ay + 1'-EJ v —[l ] Ar + 8 AcAr (39
b {;'xfll. 1] . {:-’i] "

‘T his can also be wrillen

II{J[HI.Q'-".&P—H @, Ak v e A — ) .MJ:

[ g e - 5.0

1,.(’}” Av— f J Ay 1"‘ ’:u—l CF ] Ax 4 Aciw (3.10)
clr i o ’

To simphify the above equation, the convective flux is denoted by F that is.

=gt Ar,
Cquation (3. 100 now be simplified to
'IF:.'('O'. - f’ll'gﬂll + ‘rll:'lg'}'? _Eqﬂ\ =

e : 3.0

F| ;'n.y—[ | — ] wel, & Ax—T fr?l.hiiﬂrf“w l:

FI. L odr ) e ) L dv )

Ik
Lar
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3.2.4 [nterpulation

Aller the approximation of the integrals we obtam Lauation (3,11 invalving the values
ol Nuxes at cach CV face. with @ as unknown, Since we want to calculate the variable al
gach orid point. it is requuired to write @ at face location in termy of thelr values at the
grid points. Thus. we have toimteipolate ¢ between grid points. here are many schemes
avaulable for approdimation Two basic schemes are lhe Central Dillerencing Scheme
(CI¥S) or | inear Interpolation. and Upwind Differencing Scheme {UDS). Dilfusive term
is wenerally discretized using CI3% approsdmation whereas convection werm can he
discretized by any schemea depending on the strength of the conveclion (Verstecg and

MWalalasekera, F9U435).

In the present study, the conveclive wenm is diseretized by upwind ditferencing scheme.
In the npwind method the variation ol g belween two grid points is approximated by a
zeroth order polynomial. i.e., o constant value from the grid node in upstream dircetion.
as for caample for a flow (o positive ¥ dircetion we take @, is equal to the value of ¢ in

upstream dircetion which is @

” =0 1. 8, e

P, = [0, o T > o, =17 i " (3.12)
]qp, e, ol liz, if F, <t}
J.;p,, if F, >0 (@, i F 0

@, = - @,= .
e, o F, <0 {ﬁ?,. i F o=

Flux approximation for /7

Fo =max(F Ok, + min(ﬁ.ﬂ]@,

F o =max(F,.0)e, +min{ £, Ok, (3,13}

F o, :11111}\{leljga“, - mian" .I:I)rpl..
# o, =max(# Oks, +min{# ks,

Equations (3,12 and (3. 13} are identical. bath of them give the same intormation, it
[or pencraligation Equation (2.13) is used here, For implementation inie the computer

code. the cxpressions in Equation (3137 arc applicd.

24



Chapter 30 1heorctical Baclkprouosd

Figure 3.2: The Upwind Differencing scheme.

[ ke the convective Hlux. the dufusive flus mtegral 15 approxunated by midpont rule.

Tl derivatives ol g are penerally approsimated by the COD5 as follows:

£ ™
ki e 73 fﬁ_ﬁ‘“ B P (3.14)
y O T, X, 72 S A
£ £
|££2J Po ~ @ apl @ =,
Lok ), v:“\. _y.l’ K 5T J\ .-l"ll' _.-u\

125 Linear equation system

It may be possible that sometimes source 1enn 15 a non=lincar luncoon ol uiknown o 1o

improve convergence it can be linea red as:

SAvAr =5, +Ypa,
Where, 5, = conslant erm
Sp= 15 a funetion of .

Using the above schemes for the ditfusive and convective fluacs and souree toem

lincarization the discretzation Equation (3,117 can be rearranged to:
G, S g, Tty He g, T nr (215

I". &

B

Where, e, ==-min{# 0)+

]
L]
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. T Ay .
a, =max{F, .G}+¢ (3.16)
X =X,
a, ==min{F 0} LA
SO
i, :lnatr.[ﬁ.ﬂ}—bﬁu
M=

=, e, to, Ta, -5,

e,

Equation (3.15) can be wrilten in the geneeal [orm,

a:'wﬂ = Eam"';'gn.‘- +h [Sl?}

lere, *nb’ represents neighboring points.

I}scretized equation of the form {3.17) must be set up at each of the nodal points in
order 1o solve a problem  For contral volumes that are adiacent 1o the domain
boundaries the general discretized Lguation (3 17) is modified to incorpoate boundary
cemditions, ‘T he resulting svstem of linear algebraic equations iz then solved te oblain

the distribution of the property at nadal points,

Lquation (3.19) 15 a lincar algebraic cquation which can be solved by applying several
alpehraic solvers e, Gaoss climination, L1 decomposition. TDMA using boundars
condilions, lerations should be done until o comverged solution is achieved [Veraleeg

and Malalosckera, [905]

J.2.6 Finite volume meihod Gor unstewxdy Dow

The first term ol Egualion (3.6) 1epmesent the rate of change term which is considered
sera Tor sleady flows o predict tansient prohlem we must retain this term in the
diseretization process. "The finite yolume integration of transpon equation aver a conbal
volume (CV) must be augmented with a turther integration over a finite me step A

Fhiz vield the most general nleprated torn of tansport cquaton:

AL



Claptar 3 [heoreliesl Dackground

- LR,

ﬂi L=t

L- L; .{l" el u;p}:"fi o + L. L SV d

1 j pdl ]rff+J Jn | g:w |de fﬁ]
{3.1%)

[ hat can be written ax,

G f= ﬂ_
A . | | L <" LJ‘H.LHdezﬂff =

42 {3,147

L [ n I"grad qo‘,la’&rja’r+ I J S Wl

-l hi'.r

The discretizanon of convection, diffiession and source term are same as discussed in the
previous scctions. Here we tecus ow aulention on muothods necessary for time
integration. ‘Lhe implicit methed 5 used W this study fon discretization of unsteady
canvection-diffusion equation [see Versteeg and Malalasekera, 1995 [or detatled
description]. I'he implicit method 35 recommended  for general purposc CFD
computations on the ground of ils superior statulity, The implicit discrelization two-

dimensional cquation 13
Auit, = U@, =ip@y +0,0, Sa.@ - el + b {320
where @, =, +a, +a, +a, +a, +AF -8,

kil
with ¢ = par
A7

the ather cocflicicnr are same as lsquation (3 16}

3.2.7 Solutian algorithm for pressore-velocity coupling

The solution procedure of the gencralized transpor! equations discussed in Section 3.2

can be summarizod s

. Define the geomctey of the case
2. Split the region of Mow Inwe cells (CV)

3 Integrate the equations ol interesl over cach cell (Discretization)

27




Chapter 3, Theoretiend Back grinmd

4 Invert the resulling matris
3. Repeat for as many times sleps as necsssary

Navier-Stokes Fguations [3.] o 3.3] lor two dimensional flow of incompruessible fuid

can be wrillen in voolor notation as,

—

V=1 (f}
LA - .

(2”+?.[un |=—lii’+uv*u Y (3.21)
it 5 L ox

i L | &
ﬂ+"--_“'. T H = L (AN
o ) oo

)

Where, 1+ = #
'.f.F

Forimomentumn, iznore 1st equation and concenlrae on the momentun equation{s} (/7 &
. i ) | dp
1), These are transport equation orm. with a source term ie., ———— and a difTusien
£ AT,

tertn on the RHS. Tlowever there are twa main probloms:

=3
o lhe equation is nen-lincar that needs fo e knewn y o evaluale the transport of

(i, v} into the domain
»  The source term wvalves 7 which is one ol the variables we want to solve for

Raoth of these problems relate Ly the wngled noture of the NSE, Of the four equatione
mahing up the NSI: {continuity and the three components of velogity) all companents of
velocity appears in all the equalions. and the pressure appears in the three svelocity
equarions, It 13 not possible to evaluate the velocils until to know the pressure. and vice-
versa. [p order to find both, one value should be puessed and solve tor the other, then go
tack and correct the first. It might start by gucssing the pressure. and use this o get a

berer estimate of the velocity and then correet the pressure, etc,
In CHU there are two basic algorithins Tor doing this:

o PISO - Pressure Implicit splitting of Cperatens - for time dependent ows

28
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=  SIMPLE - Scimu-Imphcit Method tor Pressurs [.imked Lguations - used for steady

state problems

[is noted that from Cauauon () 1t g and the fhue (x ). are known then w, can be Tound.

Also, Equations {H-211y and (N can be combined to aive an equation fom p given the {lus,

?[ll ‘?p} —{ fux teerery that has to <atisty the continuity Equation ().

Niart
R

l

Guess P, flus (values
from previous Lme step)

r

Lise Lguation {3 21} 1o
find w, v

¥

Solve pressure cyuation
oy gt 1

r

Correal Nux Lo satisly
comtinuity

hJ

Yes

MNent time
step?

Figure 3.3: Flow Chart for PIS0 Algorithm
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The IS algorithm s as follows,

v Guess g, flux (use values from the previous time step}
e Lise Lquation {7} to find i, v gtc.

»  Solve the pressure equation for p

+ Correct the flux to satisty continuity

Steps 3 and 4 can be iterated if necessary. but this is usually not necessary. This
advances the solutiom one Lme step - the whaole procedure is then repeated from 1 to 4

Toor the next time step. The Mow charl ol PISO algorthm s gven in Figaes 3.2,

In this study PISO algorithm is waed as velocits pressure coupling for all unsteady
simulations. As it is vseful for unsteady Mow and allow Taster converpence than

SIMPLE and is useful for irregular cells.

3.2.8 Implementation of boundary condition

I'he present section describes the implementanon of boundary conditiens in the
discretized cquations o the finte volume mothod, [n constructing a staggered grid
Carrangement we sel oup additiomal nodes surrounding  (he physical boundary, as
ilustrated in Figwe 3.4, The caleulations are performed at inlernal nodes only (/=2 and
J=2 onwards), Two notable Tealures ol the arrangement are 8 the pliysical boendarcs
coincide with the scalar contral velume houndaries and (i) the netes just outsides the
indet of the domain (along f=1 in Figure 3.4) are available 1o swore the inlel conditions.
I'his enables the introduction of boundary conditions to he achieved wilh small

modificationy to the discretized equatioms for near-boundary internal nodes.

The boundary conditions entcr the discrctized couations by suppression of the link w the
boundary side and modification of the source terms. "The appropriate coefficient of the
divereticed equation is set to rero and the boundary side tlux — exact or lincarly
approxinated — is introduced through source twerms S, and 5, We shall fequently mahe
usc ol this device w hiy the Bus of g vanable at 4 cell tace. but we also nced a technigue
Lo cope with situation where we need wosel the value ol a variable at 4 node, This can be

done by introducing two overwhelmingly large souree terms into the relesant disereiized
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equation. For cxample 1o set the variable g a1 node p 1o & value g . the [ollowing source

term modificalion Is vsed in its diserelized cqualion:

S, =- 157 and S, = 10 6

With these sources added Lo the discrctized equation we have

(”.-> + H]m};pr =Y a.e: 10",

The actual magnitude ol the number 107 is arbiiary as long as it is very large compared
with the coctficients in the originad diseretized equation. Thus (f @, and gy are all

neulizible the discretized equation cifectively states that

T

Which fines the value ol ¢ at P

Comtrol volume ot
a houndary

R
J=s —4 : : 5 i
B
7= i s‘ 5 e é
T SR — S frmeen-
4=3 : : i 5 ; :
[nlet \ ' : ! : : '
e i -‘ 5 i ':
J=2 n t ' * T
(TTT7Ty 777 H:'f;'b\fffif_fa’fife’fr’a;’f
I i : A N i 5
=] =2 =3 =4 =5 =t

Physical boundary

Figure 3.4 The Grid Arrangement at Boundaries of Finite Volume Mechod
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In addition 1o set the value ol 4 vanable at internal nodes this (reatment 15 also useful for
dealing with solid obstacles within o domain by taking @ s = 0 (0r any other desired

value) at nodes wilhin g solid region,

I'he system of discretized Mow cquations can be sulved as normal without having 1o deal
with the nhstacles separalcly, Details of the modifications needed o implement the

boundary conditions are explaincd by Versteeg and Malalasekera. 1993,

The boundary conditions applied in this study are:

velocity inlet

o outllow

s il
+ periodic
s

Veloeity inlet: The distribution of all flow variables needs 1o be specified al inlel
boundaries. The velocity  inlet boundary condiden i inlended for use with
incompressible Nows where the magenitude and direction of the inlet veloeiy s known.
This boundary condition allows the stagnation, or total. properties of the Tow o rise 10
whatever value is necessary to generale the preseribed velocity distribution. The
velocitics are 50 to a given value, and the Mst derivative of the pressure with respeet Lo

the axial direction is taken equal Lo zero,
3
(w.v)=(u.v),,, and —=1

Ootflow: The outllew boundary condinon is used to model Mow exits where the delarls
ol the flow velociy and pressure are not knowen prior 1o the solution ol the problem, As
long as the flow at the exit is cxpected w be well-devetoped and incompressible.
application of the outlow boundary condition to the exit boundary is a rcasonable
choice. In this case, the denvatives of all the velocin compenents and the pressure with

respect to the axial direction are taken cqual fo zero.

i

]
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e,
(v p) o

dy
Wall: the wall boundary condition is used 1o separate fluid and solid regions. In viscous
flows tsuch as in this study), the no=ship (= v = 1), or zere wngential velocity boundary
condition. is enforced when the wall boundare condition is inposed; the shear stress and

assaciared friction drag is compuled based on the Mow details in the local flaw [ield.

Perindie: Periodic or evelic boundary conditions are ariscd from a dilfercnt type of
sylunetry in a problem. To apply periodic boundary conditions we need o st the flux
of all Mow variables leaving the outfut cyelic boundary equal Lo the flux of entering the
inlet cyvelie boundary, This is achicved by equation the values of cach variahle al the
nedes just upstream and downstream of the uet plane to the nodal values just upstream

and downstream of the outlet plane.

Axis: In the present study. the axis boundary condilion is applied for the simulation of
How around fow asissmmetrie badies of ievolution. Since the geometry ol an
anivvmmetrie bodies are. in effect. a semncuwele rotated about an axis parailel to the free
stream sclocity. the bottom boundar of the domait is modeled as an axis boundary.
I'he axiv boundary type must be used ay the centerline of an axisymmelric geometry
(Fluent [ne. 20033, To determing the physical values for a parlicular variable at a point
on the axis. FLUENT uses the cell value in the adjacent cell, For the asisvmmetriv
solver, the first derivative of the axial velocity and the pressure along the radial direction

iv taken wqual o zern. The radial velocily is taken equal to zero.

m.r:ﬂ
g
2,
bl
=0

3.3 Turbulence Modeling

Turbulence modeling is a key issuc in most CFD simulations Sinee most ol the flows of
enginecring interest are turbulent, the appropriate lreatment of turbulence will be crueial

1o the success of CFND Turbulence could be thuawght of ay instability of laminar flow that

4
a2
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seeurs at high Revnolds numbers, Whenever turbulence is present in a certain Now 1
appeirs o be the dominsnl over all other flow phenomena. The flow ficld of @
Newtonian [Tuid 15 tully deseribed by the Navier-Siokes equation. However, tnhulent
Mows contatn small fluctuations. The resalution of such small inotions requires line
arids and time steps. such that a Jirect simulation becomes unleasible for high Reynolds
numbers. ‘Lhat is why successful modeling of wrbulence greatly increases the quality of

numerical simulations,

Nowadays turbulent Tows may be computed using scveral different approaches. hres
common  ccomputational methods are used for the simulation of tucbulent flows

(Turbulence-Modeling Wik, 2007):

s Dircct ssumerical Simukation (DNS)
+ [Laree Fddy Simulation {L1:%)
+ Reynolds-Averaged Navier-5tokes [(RANS)

In the present study, Revnoelds-Averaged Navier-Stokes (RANS) is uscd for the
simulation of turbulent flow. The RANS equalions arc time-averaged cyuations of
motion for fuid flow. They are prinarily vsed while dealing with tibulent Mows, These
cguations can he used with approximations based on knowledge of the properties of
How wrbulence to give appioximate averaged solutions to the Navier-Stokes equations,
o ilustrate the influence of turbulent Nuetuations on the mean fow we re-write the
instantaneous continuity and Navier-Stokes equutions for tao dimensional Now ot an

incompressiblc Newtanian fluid.

(3.22}
—

diva =0 {er)

) o 1 dp

— +div| wu |:——-—‘F+1‘(.".'L"1:rm4'u (h)

£t J pix

che ) - 1 3 .

— tdiv|vu |: - j + 1 dliv greeed v ()

i / J2 o

Sinee div and grad are both differentiations then for a 1luctuating vector & = A+ and

=0+ {g"

its combinations with a fluctuating scalar wi have the following relations

| versteey and Malalasckera, 1993]:
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diva = div A div grad @ = div grod o
— ey ¢ ™ - ".\'
cﬁv[m ¢t ] = d.f1'| R el |=d.!'|.e[ dJAJ-baTw LA l (3.23)
/ . i N
A

I'o investigate the effects of [uctuations we replace in Equation (3.22) the flow

-
varinhles 1 (hence also u, v and w) and p by the sum of a mean and fluctuating

components, Thus

R

w=ltu's p=U+u’ vl et p=rap

‘Then the time average is taken applying the rules slaed in {3.23). Considenog the

continuity equation {irst we nate that dive = L7, This yield the continuity equalion

tor the mean Mow

Al =0 (3.244)

A similar process is now carried oul on the x-momentum equation. The time average of

the individual terms inthis equation can be wruten as follows:

0 — ¢
w o ol S S =
H_f = oﬁ : a".e'vE ou: .‘1’1’1‘[{;’!3 |-|-n’w ' J
) o L K
- b (3 24b}
1é | &F _
——i—ﬁ =-—-C;—; voliv grod wo=1 diy grod U
0o 5

Substitution of these resulls nives the fime-aye1ame v=-1momentuim equatian
g B q

-
i £ T | &F
vl UL | + ity u u’} = —-—-—E;—} + v et grad &7 {3.25a)
& i, J L dr
aF £o=n L 1 &f° .
ﬁ—+fﬁ1JLV £ |+a’ﬁ| viu'|= ——;+ vooffe gred V {3.25]%
Bt S p o

el
bl



Chapter 3+ 1 heoetical Gackground

1L i important o noie that the 17 2" 47 and 37 rerms in Laquations {3.25a & b)Y also
dppedr in eslantancous Bquations (3.22a-c) but the process of time averaging has
introduced new 3" tenms in the resulting time-average momentum equations. The erms
involve products of Tluctuating velocities and constitute convective mowmenlum transter
due 10 the velocity tluctuations. It is customany to place these terms on the right hand
sides of the Pquations (3 254 & b 1o reflect their role as additional turbulent stresses on

the mean velocity components 7and ¢

aolf £t | &r , = IRE NN WO -
—_—+ f.l’fv| L |= ——— v div grad {4 - — - {3.26u)
il ' £ O iy ay =

gv =N ap s’y At avw

— e VU | =———— v grod bl 4| -————-——— = {3.26b)
it Vo £y ox Fi et

The cxtra stress terms have been written out in lemghand o clarily ther structure, The

result [rom sin additional siresses, three normal stresses and three share siresses:

“‘_:r'. = _pufz‘ T = _.ﬁ” & L] rl.'p = r‘-.-'r = __.lljlll'II |:'II - [‘3‘.2?]

L

‘| hese extra turbulent stresses are lermed Lhe Revnolds stresses, o tucbulent flaws the

T —_—

a3 -
normil stresses — o 2 and — oy are alwars non-sero because they contatn sguared

" " ¢ . - I
welocits Duetuations. The share stresses —;_:ru'fr arg associated with correlalions

between ditfercnt velacity components. I, for instance, o' and v arc statistically

independent Auctualions, the dme-average ol their product o'v’ would be zero.
However, the turhulent share stresses are also non-zero and usually very large compared
1o the viscous stresses in a turbulent How, The sct of Equations (3.26a & b) is called
Reynolds equatiens  Similar exlra twrbulent transport werms arise when we derive a
ranspor equation for an arbitrary scalar quanticy. The time average transporl eguation

[t wealar o 18

T fu'e’ e’
3 id OL | = dls (T grad )| -0 g (3.28)
i t J i £

Some models are used ta selve the RANS equations [n this stady the following models
are used Tor the investizarion of the incompressible tnhulent flow over the underwater

bods .

G
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=  The Spalarti-Allmaras
«  The -2 model
o The ke model

Bath are the mast common type of trbulence model and well-known as “twuo cquation
turbulence models’. Maodels like the A-r and the &« have bocome industry standard
models and are commonly used for most of the fluid-engingering problems. I'wo
aquation furbulence models are also very much an active arca of resgarch and new

refined two-equation models are sull being developed.

3.2.1 The Spalart-Allmaras (5-A)

The Spalant-Allmaras turbulence mode]l that is used In this swidy is 2 simple one-
coyuation model that selves a modeled tansport equation for the turbulent s tscosity. This
maodel is designed for wall-bounded Mows and gives good results for boundary layers
subjected to adverse pressure gradients. much like the Mow fields encovuntered in this
study. Although the original Spalart-Allmaras modsl requires that the viscous-affected
resicn of the houndary layver be peoperly resolvad through the use of a [ing mesh nside
the boundary laver, the model has been modilicd lor its implementation in FI UENT w0
that wall functions are used when the mesh resolution s not suMiciently fine near ohjeel
surfuces. The fact that the 5-A maodel is a one-pquation model with relatively lax and
density 1equirements further enhances its suitability for this panlicular study since. for

the computer platform used. maximum computational cificiency s critical. The

transparted variable in the Spalart-Allmaras modelov, is ddentical (o the wrbulent

kinemaiie viseosity exeepl in the near-wall (viscous-a[tected) region (Fluent Inc. 2005}
I'he transpor cquation tor v 15

. . Lz

b

- N G TP N Y -8 v |
i[p1"]+—ﬂn(,rwnlJ=(fs +—| = (.u—!-,.o-.:J?—l+(_,'mpfﬂ —¥ +8(329)
o3t flr, L oo | dr, |L .".'J.J - LE:"J, \ "

k r

Where, &) 15 the production of turbulemt viscosity and ¥ is the destruction of rurbulent
viscosily that occurs in Lthe near-wall region due to wall blocking and viscous damping

o and Coz are conslanls and v iy the molecular kinematic viscosity, S is a user-
bl
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defined source erm. Note that since the wrbulence Kinctic cnerey & ts oot caleulated in

the Spafart-Allmaras model.

T obtain the modified turbulent viscosily. v, fin the Spalart-Allmaras medel from the

turbulence intensity. Fand length scale. £ the following equation can be used:

-
. Hﬁ&i‘.’;’wﬂ (3.30)

Where, =007« [,

|
and f = 16(Re) 3

[n this modc] the constants are considered as:

€, =0.1355, (,, =062, =70, €,=003 C,.=2 P =0667

3.3.2 The A= modeld

The -5 modet is one ol the most common webulenee models, M s a lwo cquation madel
that means, it includes bwo extra transpon equations to represent the turbulent propemies
of the flow Thiv allows a twno eguation model to account tor history effects like
convection and diffusion of turbulent encrgy. The ficst transported variable s turbulenr
kinetic energy, (&) The sccond transported varable in this case s the turbulent
dissipation, (&), 1014 the varable that determines the scale of the wrbulence, whercas the

flest variable. & determines the coorey in the trbulence (Fluent lue, 20§005).

Ia this study, Standard &-¢ model and Realizable &-r model are used to simulate the flow
over circular cylinder. The standard A-. moded 15 o scmid-ecmpincal wode] based on
maodel transport equations tor the turbulence kuinctic enerpy k) and its dissipation rate
() T'he model transport equation tor & s derived Trom the exact equalion, while the
mode! transport equation for ¢ is obtained using physical reasoning and bears little
resemhlance to its mathematically exact counterpart. In the dervation of the A-¢ madel.
it is assurncd that the tlow s fully arbulent and the effcets of molecular viscosily are

negligible, The standard &-¢ mode! 13 therelore valid valy for [ully turbulent flows,

Franspon Equations for the Standard &-2 Maodel lor turbulence Kinene encrey, &, and 115

rate of dissipation & are:
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- [ N -
& a ; i ik
= o)+ (ke )= || 2 |G, 4Gy - pe =Xy + S, (3.31]
&t i, G| £, Vo
r \
and
ol i ¥ A, Y Ge
LG | e ot
L] [ ..'l = A ). i L [3-32}
. Eg - .ot
(‘Ia E({";‘. +( 31,("{'}_[2&-'0 +S{,

In thuse cguations, G represents e gencranen of turbulence Kinetic energy due to the
mean velocily sradienls, Ge is w generalion of twrbulence Knetie cocrey dug to
busvancy, Far represents the contribution of the Nuctuating dilatation i compressible
turbulence to the overall dissipation rate. O C2and e are conslants, aand o, are the
turbulent Prandt] numbers for & and ¢, respectively, Sr and S; are user-defined source

erms,

On the other hand the tertm “Realizable" mcans that the mmodel satisties cenain
mathematical constraints on the normal stiesses, consistent with the physics of wrbalent
Newws. The mest straightforsard way Lo ensure the realizability is to make O variable by
sensitizing it to the mean flow {mean deformation) and the turbulence (& £). The
maodeled transpart equations for & is similar o Eguation {3.31) and ¢ in the realizahle &«

model are

.o, B Al Y 3
ilpﬁ')*l —{psu )= - I;E+£ o8
fit i, ax |\ @, )

L
2z

i . g . =

P Y Y Gl

Eedre Ok

5 k —

Where, £, = may| .43, —— —
o+a &
In these equations, Ge represents the generation of tirbulence kinetic enerygy due o the
mean velociny gradients. Cmn is the generation of turbulence kinetic energy due to
buovancy Vi represents the contribution of the fluctuating dilatation in compressible

turbulence to the overall dissipation rate. > and (i ane constants. @ and o, are the
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wrbulent Prandtl numbers for & and ¢ respectively. St and S are user defined source

lerms.

The turbulence kinetic enerpy is £ is given by
k=2, 1Y (3.34)
—E "r.u.l._' .

Where, [, is the mean flow velocity.

The turbulence inlensity F and is the turbulence lenoth / can be found from the

fullowing equations:

|
[=0.07x1 and [ =0.16{Re) 2

Also. ihe turbulence dissipation rate ¢ defined as

i

5
i

o
I
=
e |

(3.35)

izl

The constants in Standand &-2 modcl are considered as:

Cie=144, C2:=192, Cu=00% m=10 &=13

And the constants in Realizable &+ model are considered as:

gr=1.0, .= 12. C2=19, 4e=4.04,

3.3.53 The k-t modcl

The k-0 model is another common turbulence models and is used to analvze the
turbulent Tlow over the axisymmetric bodies. This also allows a two equation model to
account for history effects like convection and diffusion of turbulent energy. The first
transpored variable is turbulent Kinetic energy &. The second transported variable in this
casc is the specific dissipation m which is the variable that determines the scale of the
turbulence, whereas the first variable &, determines the energy in the turbulcnce. k-w
model are two types; standard £-0 and Shear-Stress Transpor (S8T) A-e» (Fluent Inc.

2005). The 55T k-te is useful for the calculation of shear stress so this model is

' 40



Chaplur 3 Thenrelical Background

considercd for the simulation of submarine, pod and axisymmetric body based on

Gerller” geometry,

Transport equations for the S5T 4«3 model are given by:

o 5 _

O oy Lprey = 1, 2L LG -7, 4 s, (3.36)
ct ax, fix, ox,

& a £ Am
—lpe)t —{pwu)=— Tm_—J4G”—Yw +0 +5 (3.37)
i3 &x, v, fx,

o, represents the generation of turbulence kinetic encrgy duc to

[n these equations,
mean velocity gradicnts. (Feo represents the peneration of o, Iy and [Ne represent the
citective diffusivity of k and e, respectively. ¥, and ¥, represent the dissipation of & and
o due W wrbulence, I, represents the cross-diftusion term. 8, and 5, are user-defined

SOLITCE 18MTN.

It is »o named because the definition of the turbulent viscosity is moedified to account for
the transport of the principal turbulent shear stress. §t is such a feature that gives the 8871
k-co model an advanwge in terms of performance over both the standard &-¢ and
realizahle &+ model. Other modification includes the addition ol a cross-diffusion term
in the w-equation and a blending function to ensure that the model equations behave
appropriately in both the near-wall and far-field zones. In 851 f- model the specific

dissipation rate r can be found by

= —— (3.38)

The constants in 85T &-ww model are considered as:

aer= 1176, da=20, s2= 1.0, gez=1.168. /=031, £i=0.075 f4:=00828,
k=041, =104,

4]
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3.4 Grid Considerations for Turbulent Flow Simulations (Y")

Successful computations of urbulent tlows require some consideration during the mesh
peneration. Since turbulence (through the spatially-varying effective viscosity) plays a
doeminant role in the transport of mean momentum and other patamelers, ong must
ascertain that turbulence quantities in complex turbulert Mows are properly resolved if
high aceuracy is required. Due to the strong interaction of the mean Hew and turbulence,
the numerical results for turbulent tlows tend to be maore susceptible to grid dependency
than those for laminar Mows. Tt is therelore recommended that, one resclve with
sufficicntly fine meshes. the regions where the mean Mow changes rapidly and there arc

shear layers with a larpe mean rate of strain.

Three parameters are signiticant for a compumational grid: total number of grid points,
location of outer computational boundaries, and minimum spacing (inilial spacing
normal to body surface). A RANS computation on similar geemetry usually guides the
determinalion of minimum spacing of prid from wall. The minimum spacing is
generally based on 3", a dimensionless parameter representing a loeal Reynold's numbcer

in the near-wall region. I'his parameter is defined as:
yt e (3.39)

Where, » = distance from wall surface,
#+ = frictional velocity.
1, = shear ~tress at the wall,
;= density, and
v = kinematic viscosity.

It is recommended that. for standard wall function in  &-¢ model or when transitional
flows oplion is ot active in k- model the y-plus vatue should be 30 <" < 300, (A v

value close to the lower bound v~ = 30 is most desirable)

On the other hand., for enhanced wall treatment in k- model or when transitional flows

option is enabled in 88T &-rv mode] the ' at the wall-adjacent cell should be en the
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order of ¥' = |. However, a higher »* is acceptable as long as it is well inside the

viscous sublayer (' < ).

It should be noted here that the 3™ value from Equation (3.39) is bascd on a turbulent
boundary layer on a tlat plate. Therefore, it is used only as an estimate in the present
case as the geometry is not actually a {law plate. The »' values are also solution-
dependant, The actual value of 37 for the hull form is oblained with the viscous flow
solution, Furthermore. the real »7 is not a constant but varies over the wall surface

according o the flow in the boundary layer.

3.5 2D Axisymmetric Model

In this study, axisvmmelric model is used o0 simulate the wrbulent flow over four
axisymmetric bodies of revolution is such as: sphere. submarine (DRLEA) bare hull, pod.,
and under-water vehicle hull based on Gerler's peometry. Computer pilatform
limitations necessitated the use of 2D axisymmotric model instead of full three-
dimensional model. The usc of fully 3D model is very complicated and the problems
would no longer be solvable in reasonable amounts of time, As for example, the
axisymmetric grids used in case of the simulation of sphere containg 17,000 cells,
Assuming a similar node density in three-dimensional space, a minimum of one million
cells would be needed for 3D grids of equal resoltution. Also assuming that an increase
in CPU time is proportional to an increase in cell counl. simulations that ok two o
three hours in the axisymmetric cascs could take 200 to 300 hours using 30 model
(Gregory, 2000} This estimated increase in solution time is quite conservative — ol docs
not consider computer platform memory limitations, additional terms required in the
governing 3D Muid dynamics equations, or the additional faces added to each cell when
moving from 21> to 30D, Though out-of-planc flow and complex 3D interactions (like
vorex mixing) would not be modeled wsing axisymmetric simulations, enough
similaritics remained between the 30 experimenial modcts and the axisymmetric
numerical models uscd in this study. This necessary simplification would still allow the
numerical solutions Ly capture the majority of the physics taking place in these complex
Mow Meids.

Axisymmelric indicates that the domain is axisymmetric about the x-axis. When

axisymmetric modcl is enabled, the 2D axisymmetric form of the governing equation is
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solved instead of 213 Cartesian form. For 2D axisymmetric geomelrics, the continuity

cquation for incompressible flow in cylindrical co-ordimate is given by (Fluent Inc.,

2005):

] Ll Ll
p[ﬂ N L] _5 (3.40)

dy  &r  r

Where, x iv the axial coordinate, # is the radial coordinate, & is the axial velocity and v
is the radial velacity. The source term 5, is the mass added to the continuous phase from

ihe dispersed second phase and any wser-delined sources,

Also, the axial and radial momentum equations are given by:

& 1
ﬂ[ﬂ"'l'f—( i1)+——{rw}J=
o rex (341)
. - 2
—E‘p+li EE-E[‘E’.u] +~I-i r,u[ﬂ+ﬂ] =F,
it »i% w3 LY & i
i F [l
Lian li—'fr'uv]+lil[rv1} =
oF Fox "o (3.47)
. . e o - .
—£+lilm[ﬂ+ﬂ q -'r-li r;:[zﬁﬂ—:fv,u)ﬂ—iﬁ V +—£{‘F M]+.’"r
ar Fix tx  dv | ordr| g 3 g r r

Where. p = static pressure. ¢ = maolecular viscosity, p = density, £, & F, are external

body forces and

v
+—1_
a

¥

-
W=

ol
a
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CHAPTER 4

4. NUMERICAL SIMULATION

The numerical simulation is conducted in two distingt stages. Firstly, computational
models are created and simulations are run on 2D laminar and turbutent models of a
circular cylinder. The computed results are comparcd to experimental and other
numerical resubts to validate the computatiomal models. Secondlv, the main
conceniration is carried out for the simulation of axisymmetric turbulent models of
under-water fuid structures. Shear Stress Transport (SS 1) k- model is used te simulate
the flow over some marine structures such as sphere, pod, submarine {Defence Research
Establishment Atlantic, DREA) hull and axisvmmetric under-water vehicle hull. All of
the investigations are carried out using very cificient commercial soltware FLUEN
6.2,

4,1 Simulation Using FLUENT 6.2 Based on Finite YVolume
Method

FLUENT 6.2 uses a finite volumnc-based algorithm 1o transform the governing physical
equations to algcbraic equations that can be solved numerically. In such an approach,
the computational domain is subdivided inte individual, discrete control volumes, or
cells. The governing cquations about each cell are then integrated, yielding discrete
cquations Lhat conserve each quantity on a control-volume basis. Consider the following
steady-slale conservation equation for ranspor of a sealar quantity o written in integral

form for an arbitrany control volume ¥ (Fluent Tne., 2005

[pov.di=[1,¥e.ds+ [s.av (4.1)
¥
where Y = demnsity

v = velocity vector (= wi + v/ in 2D}
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A = surface area vector

e = ditfusion coeMicient for ¢

-

v = gradient of

Sp = vource of ¢ per unit volume

This equation is applied to each cell in the computational domain. FLUENT discretizes

this integral equation as:

e, Foes F
Zv_, w A, = ): rﬂlwlﬁf +8.V {4.2)
Where, N, .. =numberof faces enclosing cell
» = value of ¢ convecied through face f
v_: = mass {lux through the face
4y =areaoffacef, |4

= N -
("Frp | = magnitude of ¥ normal to face
An

¥ = cell volume
The equations solved by FLUENT that lead (o a tull description of the Mow field around

a given object take the same form as the discretized cquation above {Fluent Ine., 2005).

4.2 Laminar and Turbulent Flow over Circular Cylinder

4.2.1 Model geometry and boundary condition

The flow field around the cylinder is modeled in two dimensions with the axes of the

cylinder pempendicular to the direction of flow. The cylinder is modeicd as a circle and a
squarc Tlow domain is created surrounding the eylinder. The flow fram lefi w right with

the cylinder of diameter o submersed in an incompressible fluid is considered. The

46
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computalional domain consists of an upsiream 23 times the radivs o downstream 40

times the radius and the width of the domain is 30 times the radius of the cylinder.

The wall boundary conditions used in this study are those of impermeability and non-
slip condition. te., ¥ = f, v = . In the physical domain the Mow is not confined.
Nevertheless. a fictitious external rectanglular boundary is needed at a large distance
from the cylinder in order to solve the governing equations numerically. Uniform free
stream condition with velocity is applied at the inlet boundary. The periodic condition is
considered at the lateral boundarics. Also the Mow at exit is treated as a pressure outlet,

The problem sctup together with the important dimensions is shown in Figure 4.1,

Periodic

||

E —tr —
£ I —;
= - =)
g — 2
» z
- R E

|«

——-
Pernodic
fe——23 R— = 4R ——=

Figure 4.1: Schematic Diagram of the Flow Field around Circular Cylinder
with Houndary Condition

4.2.2 Grid Generation

GAMBIT. the preprocessor of FLUENT 6.2 is used W generate the two dimensional
rid around a circular cylinder in this study. A typical computational mesh is used for
simulation shown in Figure 4.2, I'his pamicular mesh has approximately 15659 nodes.
30924 faces and 13380 quadrilateral cells with considerable mesh concentration both
around the cylinder and in the wake. To facililate meshing, a square with side lenpth of

three times diameler of the cylinder is created around the cylinder.
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4.3 Axisymmetric Model Geometry and Grid Generation

GAMBIT is used to create the geometry for each of the axisymmetric models. First, it is
necessary to determine the vize of the numerical domain that is used for the models.
Although multiple models are built with different grids in erder w analyze its eflects on

the solution, only the eptimum domain is discussed here.

4.3.1 Axisymmetric grid around sphere

The computational domain is extended ten times the sphere diameter in fore and afi of
the sphere respectively. The region also extended (o ten Llimes the sphere diameter in the
vertical direction from the edge shown in Figure 4.3 (). 1t is ensured that in the sclected
madel, the numerical results would be accurate and that the problem would be solvable

in a reasonable amournt of time.

GAMBIT is used to creale an axisymmetric grid based on the sphere™s geometry
described above. For the pumposes of grid construction, the computational domain for
sphere model] is divided into two regions: the boundary layer region and the free stream
region. Dividing the domain in this fashion is a common practice in problems where the
elfects of the viscous boundary layer that forms on the body are expected to
significantly affect the flow feld and where enhanced grid resolution in the vicinity of
the houndary layer is important. ‘T he boundary layers are attached to the spheres and the
direction of the boundary layer grids is defined such that the grids extended into the
interior of the domains, Based on prior experience with numerical simulations involying
boundary layers and (he expected growth of the boundary layer meridionally along the
sphere, both boundary layer meshes are approximately 3 ¢m in height. Increasing the
number of rows in the bnun-ﬁar} layer meshes enly served to vary cell density, and did
not change the total height of the mesh. Finally, the growth facters are chosen to
increase the resolution of the meshes at the base of the boundary layers (where flow
parameter gradicnts are fargesty while stifl maintaining high grid resolution, low cell
skewress at the top of the boundary layers, and a totl boundary layer mesh thickness of
approximately 3 cm. Low skewness is important to ensure similar cell proportions
between outer boundary layer cells and neighboring free stream region cells. ‘The
boundary layer grid paramciers for the axisymmetric sphere models are shown in ‘I'able

4.1, if the growth factor is not listed in the table, it is cqual o unity.
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Table 4.1: Houndary Layer Parameters of Axisymmeiric Sphere Grids

Meridional node First row thickness | Boundary layer Wumber of rows in
count on sphere i boundary layer rrowlh lactor boundary layer
120 0.0001 1.24 20

Meshing of the free stream regions took place in iwo steps. First, the edges of (he
regions arc meshed. and then, using the edge meshes, the interiars of the regions (or
faces) are meshed. Since boundary layer meshing has alrcady been performed, only the
axis boundary, inlet. outlel, and top edges has to be meshed. Comparatively course
meshes are speeiticd on the exterior {inlet, outlet, and top) boundarics due to the
expected lack of large Mow property fluctuations (and thus low grid densities) in those
regions. For better control of edge node spacing, the botlom boundary is constructed in
multiple sections. Grading is necessary to ensure a smooth transition between the
relativcly small cell sizes near the houndary layer grids and the relatively large ccll sizes
on the outer edges of the domains, Table 4.2 shows the node spacing on the edges of the

domains for each cdge node distribution.

Table 4.2: The Node Spacing of Sphere on the Edges of the Domains for Each Edge
Naode Distribution

Node on | Grewth | Nodeon | Nodeon | Growth | Node on | Growth | Node
Tront factoron | fromt rear {actor on | rear faclor om | count on
section 1| front sgction 2| section | | rear section 2 | rear wp
section | section 1 section 2 | boundary
50 0.9 12 50 1.111 12 20 40

For the purpose of grid construction, the computational domain is divided into three
faces: Middlc face. Front face and Rear face. At first the edges of the faces are meshed,
and then, using the edge meshes. the interiors of the faces are meshed. The node spacing

on the edges of the domain for each node distribution is given in the Table 4.3,

Table 4.3: Axisymmetric Sphere Boundary Node Spacing Distributions

Front face Middle lace Rear face MNormal to the axis
No. ol | Growth | No.of Growth No.of | Growth | No. ol | Growth
Nodes factor Nodes | facton(both | Nodes factor Nodes factor
dirzetion)
45 1.04 50 1.02 75 1.05 all 1.05
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(nce the cdges arc meshed, 1he interior of the domains need to be meshed using
oulomatic face mesh genemtion scheme of GAMBIT, The meshing scheme Lhat is
chasen is pave meshing scheme. The pave scheme creates an unstructured grid of mesh
elements. which is panicularly desirable for its nppli:nbilit'}* 10 a wide mnge of [ace
geametries. ils ability to deal with imegularly shaped interiors, and its case of use. There

is mo restriction on mesh node spacing imposed by the pave scheme since only

3l 1
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triangular face elements are used. More cells arc constructed near the surface of the
sphere to tackic the high velocity gradient in the boundary layer region of the viscous
flow. Figure 4.3(a) shows the grid for the axisymmetric sphere, which is symmetric
about the axis of rotation. Also, Figure 4.3{b) shows the close up view that visualises

the boundary layer clearly.

4.3.2 Axisymmetric grid around DREA submarine bare hull

For this stage of the study. the compurational domains are created around the DREA
(Defence Rescarch Establishment Atlantic) standard submarine bare hull as used by
Depariment of Besearch and Development Canada, 1988, The peomeiry of the hull is
considered to slay consistent with the experimental result. A numerical investigation has
also been carried out by Baker (2004) to caleulate the drag force on DREA hull using
CFX. Figure 4.4 shows the surface of bare submarine (DREA) hull.

In this study. only the 2D axisymmetric geometry is considered, the verices arc created
using formulas given in Appendix A, ‘The computational domain extends one body
length upstream of the leading cdge of the pod, one body length above the body surface
and two body lengths from the trailing edgc as shown in Figure 4.5. The solution
domain is ensured large enough to capilure the entire viscous interaction and the wake

development.

Figure 4.4: DREA Submarine Bare Hull
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The mesh generation procedure [or this work is based on (rial and error. This needs 1o be
fine enough to produee grid indcpendent solutions but coarse enough o have a
reasonable computation time. Figure 4.5 shows the grid for the axisymmetric model of
submarine hull, which is symmetric about the axis of romtion. More cells are
concentrated near the leading edge and trailing edge of the hull to capture the stagnation
points. Since the fine resolution of grid points is not required ncar the inflow and
outflew boundaries, an expansion ratio is used from the leading edge ol the body to the
inflow boundary and from the trailing edge to the cutflow houndary, The node

distribution with the expansion ratio of submarine bare hull is given in Table 4.4

Table 4.4: Axisymmetric Sebmarine Boundary Node Spacing Distributions

| Front face Middlc face Rear face Normal 1o the axis

Mool | Growth | No.of Growlh No.of | Growth | No.of | Growth
Nodcs factor Nodes | factor{both | Nodes factor Nodes factor
dircetion)

45 1.0 &0 1.02 75 1.04 70 1.05

Figure 4.5: Girid on DREA Bare Submarine Huoll

4.3.3 Axisymmetric grid around pod

Now a computational domain is created around an axisymmetric pod. The eeometry of
the pod is considered for being consistent with the numerical work of Gupta (2004) (sec
Appendix B). The compurational domain extend 1.5 body lengths upstream of the
teading edge o the pod, 1.5 body length above the body surface and two body lengths
from the traiting edge as shown Figure 4.6. The solution domain is ensured large enough
to capture the entire viscous interaction and the wake development. The compurational
domain and mesh generation are more or less identical with that of submarine (DREA)
discussed Int section 4.3.1.1, The node distribution with the expansion ratio of pod is

given in l'able 4.5
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Table 4.5: Axisymmetric Pod Boundary Node Spacing Distributions

Front face Middle face Ecar {ace Normal o the axis
No. of | Growth Mo, of Orowth No. of | Growth No. ol | Growth
Nodes factar Nodes | factor(both | Nodes lactor Nodes factor
direction)
| 30 1.04 a0 1.02 Eil) 1.04 70 1.05 |

Figure 4.6: 2D- Axisymmetric Pod Corid

4.3.4 Axisymmetric grid areund underwater vehicle hull based on Gertler’s

geometry

Finally, six axisymmetric underwater bodies are creatcd with length-to-diameter (£/0)

ratio ranging from four to ten. In this study. the geometries of the axisymmetric

underwater bodies are constructed to be consistent with the experimental work of

Genler (1950) and the numerical work of Cheng er af {1995} Cach body is defined by a

sixth-degree polynomial derived by Gertler as shown in Appendix €. The compulational

domain is identical with that of submarine and pod discussed above, The boundary node

spacing distributions for L/} = 6 is shown in Table 4.6. Also, Figure 4.7 shows the grid

and beundary cendition around the underwater body for L/D = 6. The grid generation

and boundary condition of olher bodies are identical to the body having L/\D= 6.

Table 4,6: Distributions of Boundary Node Spacing of Axisymmetric Underwater
Body Based on Gertler’s GGenmetry,

Fromt face ¥iddle face Rear lace MNarmal to the axis

Mo, af | Growth | No. of | Growth Mo, of | Growih | No.  of Gmﬁ'th

Modes | factor Nodes | factor{both | Nodes | factor Nodes | factor
direction)

45 1.04 g0 1.02 75 1.04 70 1.05




Chapter 4: Numerical sirmulatwm

- T
R o o e ol B
ol o

Figure 4.7; Grid of the Axisymmetric Underwater Body Based on Gertler's
Geometry (L/D=6)

4.4 Solver Initialization and Flow Solution

Afier the grids are constructed, the next step is 1o import them into FLUENT 6.2, the
numetical solver, Since each prid is exported from GAMBIL in FLUENT 6.2°s native
format, the impor process 1slsnraightfem-ard. Afer the grids are imported, the solver is

initialized. This procedure involved several steps, such as:
-Selecting the solver fonnulation

-Defining physical modeis

-Specilying Muid properties

-Specifying bourdary conditions

-Adjusling solution controls

-Initializing the fow flield

-lierating

For all of the grids gencrated in this study, the sepregated solver formulation is used.
This approach solves the conlinuity, momentum, and cncrey equations sequentially as
opposed 1o simultanecusly. Because the segregated solver is traditionally used for
incompressible and mildly compressible flows, given the [low conditions being

investigated, this study is well-tailored for its use. Also, the solution controls {under-
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relaxation parameters, etc) are left at the defauli settings lor all cases. Next, the [lows
around all of the geometries modeled in this study are approximated as steady-slate
condition. Although this cheice precluded the ability to capture vortex shedding and
other time-dependent clfects, the majority of pertinent flow features and their associated
drag effects {like separation point, pressure drag, and skin friction drag) could still be

accurately modeled. One reason for choosing steady-state simulations is because of the

reduced compurtational load they placed on the computer — given the lofal number of

simulations needed, run time is 8 majer limiting factor. The other, more compelling
reasen for choosing a steady-slate modeling approach is that the properties of interest in
this study are all steady state values. Although, in reality, separation point, skin friclion,
pressure, and drag all vary with respect to time on a microscopic scalg, their net values
and net effects can usually be considered steady properties and can accurately he
modeled as such. The user interface updates based upon whether the steady or unsteady
solver is selected. The time step size, the number of iterations per time step, the total
iwumber of time steps. and the converecnce limit for cach time step necds be specificd
when the unsteady solver is used. On the other hand, the wolal number of terations and

the convergence limit needs be specified for steady solver,

For all geometries modeled in this thesis, definition of the physical models simply
involvs specifving whether a laminar or turbulent simulation is desired in the solution

computation. Laminar solutions are sought to compars with data in the open literature,

so laminar models are specilied in case of circular cylinder only. A turbulent model of

circular cviinder is also simulaled to compare with experimental results. Then the
axisymmetric turbulent models are simulated for four axisymmetric fluid structures such
as sphere. submarine {DERA) hull, pod, and axisymmetric underwater body based on
Gertler’s geometry. In this slape. Shear Stress Transporl &-e0 model is used in all of the
cascs, For velocity- pressure coupling the PISO algorithm (discussed in scction 3.4) is
used tor unstcady case. The second-order discretization scheme for the momcentum

equation is used throughout this study,

Specifving the fluid propertics and the boundary conditions is very straightforward. For
every computational model in the study. the default fluid properties for water-liquid
(water-liquid at standard conditions} are used. ‘| he flow velocity is used for the sclection

ol Reynolds numbers in all of the cases except the laminar model. In case of laminar
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simulation of cylinder the density is used in this regards. Also. the boundary condition
types are all specified during the grid generation siep. so the only addition needed is to

specily the inlet velocity,

For all flow cases. the Mow Neld is milialized from the inlet boundary condition. This
proccss is necessary Lo provide a starting point for the evolution of the iterative solution
pruocess. In every case, after the flow is successfully initialized, the solution is iterated
until one of the following three conditions is aitained: convergence, divergence, or non-
decaying oscillation of the residuals. Convergence is declared if the x-velocity, y-

velocity, and continuity residuals all dropped below 0.001.
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CHAPTER 5

5. RESULT AND DISCUSSION

5.1 Delinitions

The majur benelit of CFD analysis is its abilily to compute the values of cvery tlow
parameter at each grid point in the domain studied, giving a very descriptive picture of
the entire Now field. The present study can be classified to in two main pars: Firstly, the
213 laminar and turbulent [ows over circular cvlinder and then the axisymimetric

turbulent tlows over axisymmetric under-water bodies of revolution are simulated.
'The drag coefticient (s computed as

D (5.1)

Cr =7 :
Epﬁ'f'bm_,f N

Where Li=drag torce
& = appropriawe reference area

As cxplained earlier, the drag force £ consisted of two parts: the pressure drag and the
skin friction drag. Pressure drag is <imply the component of the pressure force acting in
the axial direction. Skin friction drag is a function of the Muid viscosity and the velocity
profile at the surface of the body. FLUENT 6.2 directly compuled both pressure drag
and skin friction drag by numerically integrating the incremenial value of each at every
node point along the body surface, The pressure coefficient is calculated wying the

formula:

= p"ﬁlh’
£ :% {5.2)
— U I:4

2 1y LY

where P omupe = BAURC pressure = p—p .
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2., —reference density

L/ =reference velocily

f

For this study. reterence conditions are taken as those values for water liquid at standard

lemperature and pressure; in other words,

P, =101325 Nn2
Prot = 9882 kg/m3

4, =0.001003 kg/m-s

The location of the reference pressure is alwavs given as on the lefl edge of the inlet
boundary. The reference velocity (s used to choose the Reynolds number for different

fTows,

The skin friction coefficient is calculated as:

¢, =— _ fRe (5.3)

B 2
r
Pﬂ’." L L
where Toar = wall shear stress

Re = Reynolds number based on body  diameter/length.
Revnolds number Tor this study is compuled as
v L
Re,, _ Pt T & (5.4)
Hoot
Where, £ is the characteristic length. The boundary laver separation point oceurs when
skin friction on a body surface goes to zero. 'Thus, it is simple to determine the boundary

layer scparation point for each computational model by analyzing plots of O versus
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axial position. Also. the dimensiontess frequency of vomex shedding is the Strouhal

number, expressed as St = % (5.5

Where, fis the frequency of the vortex shedding ¢—1/T},  is the diameier of the circular
body and £ the free stream velocin, And the dimensionless wall vomicity defined

s, = oR /L {5.6)

Finally, the difference of the computed result from experimental result is calculated

using the formula:

I?—I’m.l B ¢ﬂp

ap

Sadiffercnced = x 100 {(3.7)

Where, ¢ is the required parameter.

5.2 Flow over Circular Cylinder
5.2.1 The laminar flow

The steady laminar flow around 2D circular cylinder is reported first to allow
comparison with experimenmal results. For Reynolds numbers = 20, the flow reaches a
stcady state at L = Tsec whereas for Re=40, it takes t = 13scc to reach sicady state (Braya
1986). The stream functions for these Revnolds numbers are shown in Figure 5.1, [ wo
symmetric vortices are ¢lcarly observed behind the cylinder. The velocity vectors in the
wake of the cylinder are also shown in Figure 5. 2(a) for Re = 20 & 40 respectively. The
boundary layer profile is clearly observed at several rays extending from the cylinder.
namely at angles of 0%, 30°, 60°, 90°, 120", 150°, and 180" from the front stagnation
puoint as shown in Figure 5.2(b). As Reynolds number becomes higher than 40 the flow
reports a loss of symmetry in the wake and alternating eddies are formed and convected
in the wake, This generates the alternating scparation of vortices, which arc convected
and diflused away from the cylinder. fonming the well-known Karman vorlex streets,
Such destabilizing effects always occur during any physical experimeni on the flow
around a circular ¢y linder. The Strouhal number as defined by Equation (5.5} is found to
be 0.164 for Re=100. T'his result agrees well with the experimental valuc (0.164-0.165)
reported by Tritton (1959).
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Figure 5.1: Stream functions for (a) Re = 20 and (b) Re = 40

The results of unstcady laminar flow for Re = 100 are presented in Figures 5.3-3. The

instantaneous stream lines for Re = 100 are shown in Figure 5.3 at the four phascs

during one cycle of vorea shedding. In Figure 5.4 & Figure 5.5 the directions of the

veloeity vectors and corresponding contours of pressure are ploted respoctively at those

phascs for the samc Rewnolds number. The alternating formation, convection and

diftusion of the vortices are clearly shown,
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Figure 5.2; (a)Velosity Vectors for Re = 20 & 40
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5
(©)1=542s & (d) t =57.25 for Re=100

5.2.2 The Turbulent Flow
The experimental work of Roshko (1954) locates the bepinning of the lzminar-to-
lurbulent transition at Reynolds numbers 200 — 300. Heyond this Reynolds number but

less than 3% 107 the wake of the cylinder is completely turbulent and the boundary layer
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separation is laminar {Sumer, 1997). 1t is known that the [low around the cylinder is two

dimensional only when Re < 200,
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Figure 5.5: Contours

ol Static 'ressure of {u) t = 48.25, (h) 1= 5125, (¢} t= 54,22
& (d)i=57.2s fur Re=10)

For larger Reynolds number, the vortex shedding occurs in eefls and therefore the flow
ts generlly simulated in 3-D. Bui the 3-D simutation is very muth complicated and
computetional cost is very high. Therefore, the wrbulent Naw over » circular cylinder

|
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for Reynolds numbers 1000 & 3900 is investigated here using 2-D (inite volume

method.

In this research, the turbulent flow for both Reynolds numbers is simulated using three
turbulence models namely, 4-¢ Siandard, 4-z Realizable and Shear-Stress Transport
(55T) A-tv model. The vorex shedding is observed and the drag and il forces are also
calculated using these methods. For unsieady casc, lime interval has been chosen small
encugh to capture the vorex shedding. The easiest way to set up the right time step size
is one that ensures the maximum Courant number very near to unity. To avoid running
the case for very long time. a small perturbation has been introduced in the domain, This
periurbation is generally in the lormm of very small velocity in perpendicular direction to
the Mow direction. This assists the solver to start voriex shedding quickly. Since there is
nothing to sustain this perturbation in the domain for very long time, it dics out and did
not atfeet the caleulation of €, and Cp. The dimensionless frequency of vortex shedding
is the Strouhal numbers tound by dilTerent methods are shown in Figure 5.6, 'he vorex
shedding is visualized by means of the contours of stream Function. velocity veetors and
slatic pressure. Figure 3.7 shows the stream function during one cyvele of 1ifl cocMicient
al Re = 1000, At the same time the velocity veetor and pressure lields arc also shown in

Figure 5.8 and 5.9 respeetively.

0385 i
W {Laminar)
= (Standard k-epsilon)
U 30 4 4 (Realizable k-epsilan}
+ (55T K-omega)
B (Experimental)
0,25+ *»
i L
—m
nely &
£ .
% 015 < - »
010 =
005 : . : i . , .
Q 10080 2000 3000 4000

Reynolds Mumber

Figure 5.6: Stroubhal Number ¥s Reynolds Number
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1 2fim+04
1 25e=04
v 2he+-04
T.250+04

(d}
Figure 5.7: Strcam Function {a) T=120.12s,(b) T=121.80 (c)T=123.48s, (i)
T=125.16s for Re=1000

The alternating vortex shedding clearly observed in these figures. Figure 5.10 shows the
contours of velocity magnitude around circular cvlinder at Re = 3900, Figure 511
shows the stream function & Figure 5.12 vorlicily magnitude during one cycle of it

coefficient at Re = 39010,

‘The alternating formation, conveetion and diffusion of the vortices are clearly shown

again. The results in this section show that the vortex shedding is an intrinsic
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Chaptzr 53¢ Kesult and Discussion

phenomenon of the tlow. well predicted by the solution of the Navier- Stokes equations.
‘The vorex shedding is pencrated by a loss of symmetry of the two dimensional

symmetric structures in the wake of the circular eylinder.

AFAAARSIITISEESoSad T2 Es3ds
GErrihbiafiribbiaanaanicod
= w vt o w =t w = ww e w wow o w W W e W w oW oW —

Figure5.11: Stream Function {a)T=62.8s, (b) T=64.25, {¢)T=65.55 and
{)T=66.95 for Re=3900

5.2.3 Forces on the cylinder

The drag force is a result of the convective motion of the cyiinder through the fluid.
Because of this motion and of the no-stip condition of the wall, a ngential velocity
gradient is created in the dircetion normal to the wall. The mean value of the drag

coclTicient caleulated by the present method for different Reynolds numbers is very
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Chapter 5+ Result and Discussion

¢lose to the experimental results of Tritton (1259 and Anderson {2003). The lolal drag

consist of two components: the pressure forec (C) and the viscous foree (C) caleulaied

by Equations (5.1-3).

LD-2g7 T
bD-30. T
Lo=3g2. T
bedlas
LO+3ET T
LD-30wZ @
LDe30z T

T=62.8s, {b) T=64.25, (¢)

65.55 and {d)T=66.9s for Re=3900

Contours of Vorticity Magnitude at (a)

»
.

Figure 5.12

1=
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Chaper 3: Kesulc and Diseesion

For Re = 100, the mean value of the pressure drag, C, is 0.917. which comesponds 1o
75% of the total drag. This value is closer to the experimental result (€.995) of Roshko
(1954} than that (1,02) of Braza ¢f of.{1986). In this casc. the lift foree is 7ero as it

considered only the vertical component of force.

Figure 511 shows the distribution of the wall vorlicity (Equation 5.6) with respect o
angular positions and the comparison with the numerical results of Brara ¢ f/{1985)
for Re = 20, 40 & 100. The computed results are in good agreement with those o Braza.
In Figure 5.12. the distribution ol wall pressure at Re = 20, 40 and 100 arc compared
with numerical resutts of Braza ef af (1986). The predicted wall pressure by this method
agrees well with the results computed by Braza ef of (1986). Numerical values of the

compoenents of total drag coefficient arc shown in Table 5.1,

—o— {Re 20)
—— {Red(}
— — (Re100)
—#— (Braza

Wall Vorticity . We

: . . , :
4] 45 o 135 180
Theta (5)

Figore 5.13: Wall Vorticity ¥s Angular Position

The drag cocfMicients of the trbulent flow at Re = 1000 & 3900 have alsa been

calcubated using three turbulennce models. The predicted €7 values by standard k-
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Chapter 3 Result and Dhscussion

cpsilon model are quite closely o the experimental values shown in Table 5.2, It is
observed that. for the visualization of vomex shedding the Realizable k& turbulence

model is more effective, as this model captlures the separating flow betrer than standard

k- ¢ model,
Table 5.1: Components of Tatal Drag Coelficient
Re Pressure Coefficient Viscous coctficient Total Drag Coefficient
104} I {1,324 1.245
10040 0.876 0.11% (,9005
3900 0R77 .12 0.097
1.2
10 -'K —+— {Re 20}
08 ' '{ —— {Re 40}
06 ] —— {Re 100}
—e&— {Braza)

Pressure Coefficient L
&
%]
i

Theta ()

Figure 5.14: Pressure Coeflicient ¥s Anguolar Position

C the other hand, the 55T £ model is much more recommendabie for high Reynolds
numbers. The global periodic character of the tlow is found to be essentially the same as

the Reynolds number increases. For the Reynolds numbers of 1000 and 3900 it should
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be recalled that the unsteady lift and drag coefficient oscitlates periodically. Figure 5.15

and Figure 5.16 show the lill and drag coefficient for Re=1001) respectively.
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Figure 5.15: Time History of Lift coefficient at Re = 1000
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Figure 5.16: Time History of Drag cocfficient at Re = 1000
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Chapler 3: Result and Discussion

‘I'he drag coctficients as & function of differem Reynolds numbers ane compared with
experimental and other numerical results in Figure 5.17 and in Table 3.2. In most of the
cases, the computed results show better agreement with experimental data compared to

other predicted valucs.

m  (Experimsntal)
140 * (Martinexelah [
135 1 & {Log)
. v (Braza af af}
130 + {Jordan & Fromm)
125 A (Mittal)
o I * (Lakshmpathy)
t'_‘_". e v > {Breuet)
E 1,15 = ¥ *  {Present)
E 104 - “
i >
E 105 4
g‘ 140 = T
fr 05 |
C 8a —- ||
T L
.85 o
0 B ~leg . r r T v T r T T
Q |ao 1840 2404 3240 4000

Reynalds Mumber

Figure 5.17: Drag Ceclticient Vs Reynolds Number

Table 5.2: Comparison of Drag Coefficient at Different Reynolds Numbers

Re 104 1000 3500

Experimental 1.24-1.26 0.9 {98103
fTriton. 1959 {Anderson, 200051 | [ ourenco & Shih (1993)

Tuann & Olson (1978) 1.25 - -

Martinez e ol (1978) 1.1 - _

I oc {1980} .15 -- --
Braza ef al. {1984) 1.17 1.15 --
Jordon & Fromm(1972) - 1.2 -
Beaudan & Moin (1994) -- -- 1.74
Lakshmipathy -- - 0.87
Breuer { 1998) - -- 1.08
Present 1.245 (.995 0,997
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{hapter 5 Resoltand Discussion

5.3 Flow Around Axisymmetric Body of Revolution

In this part two dimensional axisymmetric model is used to simulate the low around
four under-water anisymmetric bodies such as, sphere, DREA submarine bare hull, pod

and axisvmmetric underwater body basced on Gertler’s geometry.

5.3.1 Flow around sphere

I the case of axisymmetric turbulent flow around sphere, the computed results are
compared 1o Achenbach’s (1972} experimental data for transcitical fiow at Re = 5x10%.
According 10 the cxperimental ebservation of Achenbach’s (1972) the flow around
sphere can be classified into four regions depending on the Reynolds number. In the
subcritical region (Re< 3x10°) the drag coefficient is namely independent of Reynolds
numbcr. The critical region (3x10° < Re < 4x10%) is characterized by a rapid drop of the
drag coellicient. The minimum being reached at the critical Re — 3.7x10°, with further
increase in Reynolds number. Cp slightly inercases again which is known as
supercritical low (4107 <Re< Exmﬁj and it seems that the curve is going to reach
another maximum,. The transition from supercritical to transcritical (Re= 2x10% s

rather floating.

1 508400 —

1. 2594+00

1.00e+H

T S0m-011

1Lp)

30001 -

3 Efta01

0 Ode-+0

“ressure L ocThcieni

Fr
n
o
=
&

2

-7 50a-01 3

1 O0a+0 Sfrs reie| v PSR PR ST YN RSNV PR R R

0125 00 0075 005 D025 0 QU28 005 0075 01 0425
Fosition {m)

Figure 5.18: Plot of Pressure Coefficient on the surface of Sphere at
Re = 5x10°
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Chaper 5: Kesult and Diseyssion

Achenbach’s experiment is performed at a transcritical Revoolds number where the flow
15 considered {ully turbulent and thus can be directly compared to the turbulent
computational models. In the present study, the turbulent flow simulated using Spalart-

Allmaras ($-A) and shear stress transpor k-2 turbulence model at Re = 5x 10"

The predicted pressure coefficient over the surface of the sphere is compared with
Achenbach’s eaperimental data in Figure 5.18. The computed results are very close to
the experimental ones. Figure 5.19 shows the comparisen between computed values of
skin friction cociTicient over the spherc and Achenbach’s experimental results. In this
case. the computed skin friction coefficient curves does not track well with Achenbach's
data forward of the separation point. However, the general trends of the curves are the
same. The accuracy of skin (riction coefficient prediction in numerical simulations is
highly dependent on the accurate resolution of the iurbulent boundary layer near the
surface of the body. Accurate calculation of near-wall effects requires an extremely fine
mesh in that region. Since boundary layer separation arises duc to pressure variations,
accurate scparation point predictions are dependent on accurate pressure calculations,

which require a less finc mesh than skin friction calculations,

T.00w-03

6. e-0}

3.00e3

LT
= 4 00=-03 ]

3.009-0%

B 100803 -

-0.125 D1 0075 -005 0025 O 0025 Q05 0DOFS Q1 0.125
Position (m)

Figure 5.19: Plot of Skin Friction Coefficient on the surface of Sphere at
Re = §x10°
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However. the discrepancies between actual and computed C; curves are nol expected Lo
greatly affect the reliability of the total drag prediction since skin friction drag accounts

only Tor 10 w0 20 percent of the total drag in this case.

Figure 5.20{a) shows the velocity veclors arcund sphere. The separated repion and
vortex shedding are clearly visible in the close up view near wall as shown in Figure
5.200b). Table 5.3 shows the angular position o separation points as well as the
percentage of difference (calculated by Equation 5.7} from experimental values. The

numerical predictions of separation point matched Achenbach’s experimental data well.

Table 5.3: Angle of Separation for Axisymmetric Turbulent Flow around Sphere

Separation points Percent difference
{in degrees }
Present 126
6.8 %
Achenbach™s (1972} exp. 118
resuit

Table 5.4 shows values of drag coefficient predicted by two turbulence models and also
experimental values measurcd by Achenbach. Pereenlage of difference (caleulated by

Lquation 5.7} between the numerical and experimental values are also included.

Table 5.4: Drag Coeflicient for Axisymmetric Turbulent Flow around Sphere

Ypalart-Allmaras 55T k-v model Achenbace’s exp.
Turbulent model {Cu)
Drag cocicient, {p 1,163 0.154
- 0.18
Percent difference 9% 14 %

Achenbach measured drag coefficients from 0.09 to 0.18 as Reynolds number varied

f
. This implies that drag is Reynolds number-dependent in the

from 4x1 [}5 to 5x10
supercritical lo transcritival range, and that the small descrepancy between Achenbach’s
drag coelficient and the numerically computed drag coefficient may be due to Reynolds
number mismatch mere than inaccuracies in the numerical methad. Achenbach also

prescnts other drag coefficient results in his paper that are obtzined through integration
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rether than direci megzsurement; those results predict en even larger mnge of dmp
coc(Ticient varistion (from 0.07 to 0.24 within the same Re mnge). Further, the pressure
coc{Ticient plot shows that more pressure recovery occurred on the il region of the
sphere using two wrbulence madels then that accurred on Achenbach's measurement.
The higher pressure meovery of the numericol models explains Lthe reduced drog
cocfTicients prediction compared 1o Achenbach™s result,
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5.3.2 Flow arvund DREA submarine hare hull

One of the greatest advantages ol CFD over eaperimentation is the ease and availability
of flow visualization. This section shows some of the more relevant flow parameters.
Generally, with a reasonable grid and a reasonable level of converpence, the resulis
obtained from these simulations will not look much different from one that is fully
conyerged and deemed mesh inscnsitive. Moreover. it 1% ensured that the computational
domain and the prid number of the lollowing cases is suflicient enough to compute the

drag forees and the flow visualizations.

Here. turbulent Mow is simulated past axisymmetric underwater vehicle hull form. The
submerged body used in this research s a standard DRLA (Detence Rescarch
Establishment Atlantic) bare submarine hull as shown in Figurc 4.4, Shear Stress
Transport (55T} k- mode| is used for capturing turbulent Mow. For comparison of the
computed result with experimental value, the flow is simulated at Re = 23003039 (23
million). A numerical investigation for estimating drag force on submarine hull has also
been dane using CFX by Baker {2004). The computed result with the experimental and

Baker’s nuomerical resuit is shown in Table 5.5,

Tahle 5.5: Drag coeflicient with it’s components for DREA submarine bare hull

Pressure Frictional Drag Experimental Baker’'s CFX
Ex;l‘ﬁcnent Coeflicicnt (C) | Coefficient{Cr) | value {('n) result (C'n)
P
0.000213 0.000827 0.00] 04 000123 0.00167
(+-0.000314)

The above table shows that the present result is more accurate than that of Baker's. The
diftercnce between the computed and the experimental result is 15% where as it is 33%

tor Baker’s CFX result (the percentage of dilTerence is calculated using Equation 3.7).

Another remarkable marter observed in Table 3.5 is that. in case of submaring hull ihe
frictional coefficient dominales the pressure drag coclficient bur the opposite
phenamenon occurs in case of sphere. Here the frictional coefficicnt is 79.5% of the
lotal drag coctficient, whereas it is only 10% in case of sphere. This is expected because

the DREA submaring hull is a long body having a large length-diameter ratio. In this
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Chapter 3: Result and Dhugussign

case. the arbitrary arca L is used to be consistent with experimental data from the wind

tunnel test. {Depanment of Research and Development Canada -1984)

Figures 5.21-24 show the dilferent flow visualization over the submarine. As
axisymmetric model is used in this study, all of the figures show only half scction of the

body.

The contour of the pressure coelficient around the submarine hull is shown in Figure
5.21(a) at Re = 23 million {velocihy of 3.422 m/s). The stagnation point of high pressure
at the front tip of the hull, the favorable pressure pradient at the front section and the
adverse pressure gradient at the rear section of the hull are clearly shown. Since ihe
rcference pressure is set to zero the pressures shown are relative. Figure 5.21 (b) shows
a close up of the front scetion of the hull, Here the stagnation poini and the favorable

pressure gradient arc cven more visible (red color).

Figure 5.22{a) shows the contour ol velocity magnitude for the submarine hull at Re =
23 million. When compared to the pressure plot it can be seen that the stagnation point
ofl high pressure corresponds to the low velocity point at the [rond, the favorable pressurc
gradient in the front section corresponds 1o a high velocity and the adverse pressure
gradicnt at the rear corresponds to a lower velocits. Figure 5.22(b} shows a close up
view ol the front section ol the velocity profile. Here it is apparent by the colors close to
the whape that the no slip boundary condition set for the surface of the hull is in effect. It
is also mere apparcnt thal the stagnation point is aclually a stagnation point with zero

velocity (the blue region).

The wall shear plots are a good indication of the viscous drag over the hull surface.
They can also be used to cheek if' there is any separation because the wall shear pocs Lo
zero where the boundary layer separates. Viscous effect occurred only on the boundary
surface of the budy shown in Figure 5.23(a). It shows a large wall shear affcet in the
lavorabie pressure gradient area at the front section of the hull. The very peak of the
front section has a reduced wall shear. which makes sense physically because there Is a
reduced Mow velocity in this region due to the stagnation point. This illustrates how this
region larpely affects the viscous losses (blue color). This figure also shows the

boundary surface region closer, which indicates a high shear stress (red color).
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13272
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Figure 5.24: (2} Contours of Turbulence kinetic Energy for DREA Submarine Hull
at Re =23 Million
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Figure 5.24: (b) Close op View of Rear Section of the Contoury of Turbulence
Kinctic Encrgy for DREA Snbmarine Hull

Figure 5.23(b) shows the tail section of the submarine hull. This is where the wali shear
plot is beneftcial in determining if there is any scparation. The wall shear poes nearly to
zero hut then increases again. This is happened because, in this part of the body (he
boundary layer may have separated and then reartached, which is a common

phenomenon.
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Finally, turbulence kinelic energy is related to the torbulence model used in this
simulation. Turbulence originates from the boundaries of a domain, so in thiv case the
anly place for turbulence to be cenerated is from the bhody, since it is the only region
with a no slip condition. Turbulence Kinetic enerey is a measure of the cnergy built up
as turbulence. [n Figure 5.24(a) the kinetic energy is shown o build up as flow passes
along the hull and then propagate from the rear. Figure 5.24(b) shows a close up view of

this turbulent energy being dissipated to the free stream.

5.3.3 Flow arpund axisymmetric pod

Podded propulsion systems are becoming increasingly popular in modern commercial
marine vessels on account of the increase of their cHficiency. The study of ow around

pod is of increasing imponance due to extensive use of podded propulsors.

Tahle 5.6: Run parameters for Axisymmetric Yiscous Model

Solver 2DBP
Modei S5T f-eor
Density 1000
Viscosily 0.001
Inlleorw u=1.v=0
Reynolds Number 3= 10"
Turbulcnce Kinetic Energy, & 9227 = 1™
Specific Dissipation Rate, 0.2641

Cu 0.09
Turbulence Length, 02!

In this study, only the pod (without strut) is considered. The geometry of the pod is
discussed In Section 4.3.1.2, Though. the shape of the pod bady is more or less similar
to submarine hull discussed in the previous section, the concentration is given here on
the investigation of force acting on the body instead of Mow visualization. The shear
stress ‘| ransport (S5T) ke model is used to simulate the turbulent flow at Re = 3x](°
on the axisymmetric pod geometry, ‘The parameters uscd for the axisymmetric Now

solver are given in Table 5.6.
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I'he grid generation is (discussed in section 4.3.1.2) ensured the optimal result of
calculating drag force on pod body. The time step size is selecled so that the maximum
cell Courant number is very near to unity. In Figure 5.25, the result of Cp versus time
shows the convergence of the solution. The minimum spacing is generally based on
Y {discussed in scotion 3.3.3). a dimensionless parameter representing a local Revnolds
number in the necar wall region. It is important for the near wall treatment for turbeleni
Now. Figure 5.26 shows the maximum value of ¥* =25 obtained using $81" #-w model.
which is acceptable when disabling transient flow. Surface pressure coefficient,
frictional coeiticient and overall volumetric drag coefficients are important quantities
for assessing the hydrodynamic efMiciency of podded propulsor system, ‘| he main focus
of this study is 1o caleulate these forces. ‘The computed total drag coefficient with its

component at Re = 3% 10° is given in Table 5.7,

Table 5.7: Total Drug Coclficient with its Component at Re = 3x10° Computed on

Fod Hull
pressure coefficicnt () frictional coeflicient () drag coefticient (Cp)
2199107 3.89x10” 6.09x10™

IFrom this table. it {s observed that. in case of pod the frictional coefficient is also the
major portion of tolal dryg like submarine hull due to its long body surface. However. in
this case, frictional coefficient is 64% of tolal drag coefMicient whereas it is 79.5% in
¢asc of submarine. This is happened due to the fact that the pod body has lower £./D
ratio {3.6) than submarine body (£.D=8.75). Small dilTcrence in shape at the nose and

tail section of the bodics may also be responsible for this,

Surface area is onc of the important parameters for caleulation of skin friction

coeflicicnt. In this case, following formula is used Lo calculate the pod surface area.

Area = E(J[}EM ~R) +(e_, —x VxR, +R)x HJ (5.1}

Where, &, are the radii at corresponding axial location x,.
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Chapter 5. Besult angd Disiiase

Table 5.8 shows the comparison of the computed frictional cocMicient with rosults of
Gupta (2004) and Blasius {1908}, [t 15 obscrved from the above table that the computed

tesult shows better agreement than thatl of Gupla.

Tahle 5.8: The Frictional Coclficicni of Pod

Present Result (L) Gupla’s resull (Cy Blasius theoretical result {C)
{Calculated by RSM model}
3.89%10% 5.0838=10" 3.207<10°

Figure 5.27 and Figure 5.28 show the pressure coctlicient and axial velocity on the pod
respectively and both of them agree well with that of Gupta (2004). In this case, the
radial velocity is 7ero every where as the flow is simulated at a zero angle of attack. It
i known that the easiest way of ealculating the scparation poinl is from its wall shear
siress. At the scparated point the wall Shear stress become zero. From Figure 5.29 it is
observed that the wall shear goes to zero but then increase again. This phenomenon

demuonstrates that boundary layer may have separated and then reatrached.
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Figure 5.25: Time History of Drag Coefficient for Pod
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5.3.4 Flow around woderwater vehicle hull based on Gertler’s geometry

‘The focus of this study is to examing the drag force on seven bodies with length-10-
diameter ratios (£/D) ranging from four to ten. Each body is deflined by a sixth-degres
polvnomial based on Gerler (1950, Systematic model test tor streamlined axisymmetric
bodies performed in the David Taylor Model Rasin in Washington, Gertler (1950) gave
some guidelines for design of deeply submerged bodies. Axisymmetric model is used
as it is an ideal candidate for a parametric study with their easily defined peometry,
straightforward grid generation. and available experimental data. It is ensured that tolal
number of grid points, location of outer computational boundaries, and minimum
spacing (initial spacing normal to body surface) (discussed scotion 4.3.1.4) are sulTicient
enough for the prediclion of drag force on the body. It is also seen that extending the

outer boundary has a lesser effect on the result.

In this study. the investigation of turbulent flow is conlined only to zero degree angle, as
a non-zerp angle of attack in beyond the capacity of axisymmatric model. Different
turbulent models are used for the simulation of flow around axisymmctric underwater

body based on Gertler's geometry,

Table 3.9 Computed Drag Coelficient using DifTerent Turbulence Model for
Axisymmetric Hody with L/D=4

Turbulence model | Drag  coetficient, | Experiment, % difference
Crlx 107 (x107)

Sparat Allmaras 5.50) F1%
(h-A)

4-¢ (standard) f1.4) &7
&-z (relizable} 4.23 2%

3208

k-cu (standard) 6.01 a8y
(SSTY ket 3435 7.1%

From the compuied result it is observed that the shear stress transport (551) A-m

turbulence model gives better result for the bodies where skin-friction coefTicicnt
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dominates the drag pressurc coctlicient. Table 5.9 shows the compuled drag coeMicient
and ditterences from the experimental value using different turbulent modes in case of

axisymmetric body with L/D=4,

Then the investigation is extended for other bodies with different length-diameter ratio.
The calculations and experiments are performed for a Reynold's number of 2x10".
Table 5.10 shows the computed drag coefficient using shear stress transporl k-w
lurbulence model. It also percentage of ditference from experimental results calculated
by Fquation (5.7). The table shows best performance of the present 2-1) axisymmetric

881 k- turbulence model compared o other turbulence madels.

Table 5.10: Computational versus Experimental Results for Axisymmetric Bodies
of Revolution nsing 88T k- Turbulence Macdel

LD Present result Experiment Yo
(=10 {x107%) difference
C, | <y Chn Cp
4 0.600 2,833 1433 1208 7.1%
] 410 2730 J.140 2.088 5.1%
& 1.300 2720 1.0 2848 6.0%;
7 (0.293 2.66035 2.058 2758 7.2%
] r {4.209 24H84 2.893 2718 6.4%
g9 0.187 2,635 2,822 - -
10 0.182 r 2.633 2815 2.703 4.1%

From Table 5.10 it is also observed that drag cocfficient is decreasing with the increase
of length-diameter ratio. In other wards, the drag force is inversely proportional Lo 70
ratio of the body. It happened because the shape of the body is transforming from thick
t0 slender with the increase of /D as the bady length is fixed. The finencss ratio LD
influences substantialiy the resistnce of submarines, since the wetted surface depends
strongly on it for a given volume, Therefore reducing the wetted surface reduces the

reslstance.

It is customary 1o decompose the resistance of the naked hull of a deeply submereed
submaring into skin friction resistance and form resistance. The skin friction resistance
1§ due to the viscous shear of water flowing over the hull. 1t is essentially related to the

length-diameler ratio of the body. YFor a given volume. a sphere (7/£7=1) has the smallest
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skin friction resistanec whercas for a flat plate (Z/0=w0) it is the highest. Table 5.11
shows the percentage of skin friction coeMMicient on drag coefficient for lengrh-diameier

ratio from 4 to 10 al Re = 2107,

Table 5.11: Skin-friction Coelficient as Percentage of Total Drag Coefficient for

LD=4-10
L8 Frictional coeMicient, Oy I>rag coetficient, Cp %ol C; inCp
(<107 (=107
4 2.835 3.435 82.5%
5 2730 3.140 86.9%
6 2.720 3.020 90.1%
7 2.665 2.958 0. 1%
8 2.684 2.893 92.7%
9 2.635 | 2.822 93.4%
10 2.633 r 2815 93.5%

Several prediction methods have been investigaled to calculale the drag for this scrics of
bodies. Table 5.12 provides a comparison of the current results with the experimental
and other three methods; one. based on a differential boundary iayer formulation (theory
of Cebeci and Smiih). another based on a simpie drag Formula by White (1977) and the
olher computed numerically using 1ISFLOW by Lin ef af {1993). The computed resuits

are in good agreement with the experimental measurcments and other results,

Table 5.12: Drag Coeflicient (Cp, » l_i]'l] from Different Prediction Methods at Re =
=10 for LD =4 -10

£/ White™s Boundary Lin et al. Present | Experimentat
tormula(1977) | iaver theory (1995}
{[SFLOW)

4 3.108 3.028 3.213 3.435 3.208

5 2,968 2.958 2.948 3.140 2988

G 2928 2.898 2.858 3.020 2.843

7 2,858 2.858 2.761 2958 2.758

% 2.308 2818 2,691 2.893 2718

4 - - - 2.822 --

15 2738 2.778 2.629 28135 2.703
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Chapter 3. Result and Discussion

It is known that the total drag coefficient ({05} i» composed of pressure coefticient {Cp)
and frictional coeMicient {€f) (Table 5.10). whick are obtained by integrating ihe
pressure distribution and wiscous shear stress, respectively, over the body surface.
Figure 5.30 shows the plol of skin frictional coetficient for LD = 4-10 serially. The
separation of flow goes away with the increase of length-diameter ratio. Finally, the
plots of pressure coelMicient are shown in Figure 5.31 or LD = 4-10 ol ihe axisymmetric

underwater body based on Gertler's geometry,
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CHAPTER 6

6. CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Two dimensional fnite volume method has been applied to solve fluid struciure
instruction problems. Firstly laminar and turbulent Mows avound circular cylinder are
studied and then turbulent Mow around axisymmetric bodies of revolution. such as,
sphere, DREA standard bare submatine hull, pod and underwater vehicle hull based

om Gettler's pepometry. From above studies, following conclusion can be drawn:

(i} Flow around Cylinder: Flow around circular cylinder is studied at
Reynold™s numbers of 20, 40, 100, 1000 and 3200, At low Reynold’s numbers
{Re=20, 40 and 100), Mow remains laminar but at Re=100. the flow in the
wake of the cylinder becomes asymmetric and Karman vorlex stregrs ame
found. At Roynold’s number larger than 49, unsteady solver is needed W
model vorrex shedding in the wake of the cylinder. Drag coetficients, Strouhal
numbers, wall vorticity, pressure coelMicient computed by unsteady laminar
flow solver at Re=100 agrees well with experimental/numerical resulis
obtained by other researchers. Although most of the researchers prefer three
dimensional solver o model warbulent Now at higher Reynold®s number, two
dimensional finite volume method as computationally cost effective s
successiully applied here ar Re=1000 & 3900, Three turbulence maodels, such
as, -¢ standard, k-& Realizablc and shear stress transport (85T &-m models are
used with unstcady viscous Mow solver. I is also obsenved that standard £-c
model computes drag cocificients accuralely, where the realizable k-
turbulence model is more cileclive for visualization of vorex shedding. The

55T k- model is much more ecommendable for high Reynolds numbers.,

{ii} Flow around sphere: Two dimensional axisymmetric Now solver is used to
simulate turbulent Mow around sphere at Reynold’s number of 5x10°. Two

turbulence models, such as, Spalarat-Allmaras (S-A) model and shear stress
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(1i1)

{iv}

(v)

transport (S8T) k-w model are used. Drag eoctlticients and separation angle
computed by the implicit pressure based unsteady axisymmetric flow solver
agrees well with experimental results. However, Spalarat-Allmaras {5-4)
turbulence model show better performance than shear stress transport (S5 1) 4-
w mode] for the bodies where pressure coelTicient is the major (in this case

(%% portion of telal drag coclticient

Flow around DREA standard submarine bare hull: Turbulent flow around
DREA standard submarine bare hull is analyzed by two dimensional
axisymmetric solver at Re = 23003039 using shear stress transport (S5T) &-w
turbulence model, The computed value of drag coeflicient aprees satistactorily
with experimental results. In this case, the frictional coelficient is 79.5% of the
total drag cocfficient of the hull. This may be attributed due to the fact that the

legth-diameter mtio of the hull is very high (8.75).

Flow arpund axisymmetric pod: The shcar stress transporl (55T 4-o
turbulence model is incorporated into axisvmmetric solver for simulation of
turbulent flow around pod surface at Re=3x10°. The shear stress transport
(58T 4w turbulenee model computes the value of drag coefficient maore
accurately than Reynold's stress model (RSM).  In the present case, the

frictional coefficient is 64%s of the total drag coelficient of the pod.

Flow around underwater wvchicle hull based on Gertler’s geometry:
Axisymmetric low solver incorporating shear stress transport (551) 4-u
turbulence model is uscd to analyze the turbuicnt flow around underwatcr
wehicle hull form having different £/ ratios ranging from 4 to 10 at Re =
2x10°, Computed values of drag coefficients agree satisfactority with
experimental valucs, The drag cocflicient decrcascs with increase in L70
ratios. Also. the frictional coeflicient in percentage of total drag coeflicient is

proportional w length-diameter ratio of axisymmetric body.

In general it can be coneluded that. the shear stress transport &-r model shiws better

performance than other turbulence model for bodics where the (rictional fTorce

dominates the pressure drag torce.
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6.2 Recommendations for further study

There are many scopes lor Turther study in this area. Some of those are:
s Free surlace effects may be investipated
*  The flow may be modeled for non-zere angle of atlack

«  More study may be done o model the laminar-to-turbulent flow transition.
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APPENDICES

Appendix A:

DREA Standard Model:
Parcnt axisymmctric hall T length L maximum diameter &, &4d = 8.75
radii are specified in three regtons as shown in Figure Al:

Kegion 1: nose, length: 0.2/

Fond 3
)45 <603 E—3.43055f+ 049848 = | +3.40732 2
j H Vi / A {

Where, 0 < % <02

Region 2: mid body. circular cylinder:

w=£* where. G.EEEEI—E
/ 2 ! {
Region 3: tail. length: 3d
. B 2
Bl 41 f—L[-E] . where, I—Eiiil
! 2 18d| ] { P
= —

region | region 3

region 2

Figure Al: DREA Standard Bare Submarine Hull

Hull Volume = 0.00816191 £
Hull Centee of Buovancy at x/1 = (. 444842 }

. Prohle



Appendises

Appendix B:

Yertices of the pod with LD = 4 used in 2D- axisymmetric run,

X R ory
1.4 0.00E+00
-] 7388889 01017843
SQATTYITTE 0.1855307
-0 DGEE6656 0 255554
0.04444444 0 3082671
0.15555558 0.3507178
0.26666662 0 3811607
QA7TIITTITE 04008887
04883889 Ga122172
0.6 0.415965
0.62227RBE 0.416
06873106 0418
0. 78882663 0416
082152184 418
1.071728%8 {1.416
12282733 4B
13784784 0416
15101736 0.416
1 6195085 0416
1.72584 0416
1 8381736 0416
1.540684 04186
2 006721 D416
2.028 0 4159998
2127862 04127183
2227324 04019396
2 326085 03824254
2 426648 0.3527355
2.526309 g 311508
2 525971 0.2573541
2 7256831 0.18883498
2 825205 01048245
2.9244951 3 3BE-03
2,928 0

(R



Appendixcs

Appendix C:

Axisymmetric underwater body bascd on Gertler’s geometry

1 K 4 &
Formula: ' =@, X+a,x" +a,x" +a,x* +ax” +a,x°

a, =+1.000000
a, =+2.149633
o, =—17.773496
Where ay =+36.716580
a,=—33.511285
a,=+11.418548

Model Particulars:
MLDh=4

Length (m)

Diamctee (m)

Wetted surface area (m?)

{(inf/p=5

Length (m}

Diametler (m)

Wered surface arga {mz}

{iip LD =6

Length {m)

Diameter (im)

Wetted surface area {mz}

{0v) LAD=7

[engih {m)

Diamcler (m)

Welled surface area {mzj

ivifD=8§

Length (im)

Diameter {m)

Welted surface area (m”)

(vi) LD =9

Length (m)

Diameter {m)

Werled surtace arca (m™)

iviiy LD =11)

Length (m)

Diameter (m}

Weltted surface area {m°)

Q.000
2.250
5018

2.000
1.8}
3075

9.000
1.500
32.94

9.000
1.286
28.15

0.000
1.125
24.58

9.000
100}
21.78

9.000
0.500
19.64

in

L

;
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