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Abstract

A randomized parallel linked residual network G, =(F.E,} is presented.

Algorithmically the residual network, which produces successive shorlest
path distances and the original graph G =(V, £} is solved. This result is
optimum with respect to both addition of flow and transferring of flow in
path flow of the residual network. Depth First Search (DFS) techmiques can
calculate hoth the shortest path distances and time stamps. Thus non-linear

complementarity problem can be reformulated as a shortest path distances.
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Introduction

1.1 Introduction

The problem of computing shortest paths is indisputably one of the
most well studied problems in graph theory. Saunders et al. [18] introduced
a taster alporithm for the shorest path problem and showed their various
applications in graph theory. It is thoroughly surprising that in the setting of
real-weighted graphs, many optimization problems have seen a great
progress since the early work by Belilman-Ford, I'loyd and others. Blasum et
al. [3] introduced a network flow technique of optimization problem and
solved it using shortest path distances. Korilis et al. [8] proposcd that if
flows sent from source vertex to the destinalion by shortest distances it

would be efficient and optimum.

There are a lot of lechniques to selve minimization problem using
shortest distances. The shortest path problems, mainly, work between pairs
of vertices in a weighted graph for the exploration of distances, time delay,
cost and others that may be optimized. Christos ct al. | 5] have discussed the
simplex method and the ellipsoid algorithm as well as other algorithms

relaled to non-linear programmine.

It is of our great interest to dectermine the shortest distance for a

gradient based approach and il cannot yield the shortest distance omnly



besides giving the time delay for general, rcal weighted inputs. Bertsekas [2]

measured the path flow with two quaniities.

a) The total cost with time delay and
b) Individually estimate each edges cost with respect to the minimal
path flow i.e. the single source shortest path will minimize the total

Now cost.

From this idea it can be modelled a residual nctwork G, =(V.E") which is

induced by flow * f° in the NC‘:P constraint graphG = (¥, £). The residual
network is an optimizalion problem in view of non linear complementarity
problem and defined as follows: ‘
G, =(V.EY.

Where

E'= {(u;v) eV xVic (uvy>0 \ and ¢, 1s Tesidual capacity,

¢; =cl{u.vl- fwv),

cfu, 1) > f{u,v).

and fi{v,i)=0

and G, is a directed weighted graph in order to ind the shortest path from

the source s 1o Lhe destination ¢. This network is modeled by weights with
the addition of flow to any links and transferring flow from verlex to another
vertex. For a comprehensive discussion of such problems we refer to

Caccetta et al. [4] and Ahujactal. [1].



The residual network, which is capable of executing almost parallel
edges alporithms and deducted the shortest path in terms of algorithm
defined in eguation (4.2). is proposed. The intcrconnection between the
vertices in one direction connected only to vertices in the previous one and

the next vertex.

A minimum cost flow is found as they converge and solves the
problem in cquation {4.2), there after also solves the problem in cquation
{4.1} and this shortest path is derivative frce and actually act as a merit

function.

1.2 An overview

There are Tour chapters in this dissertation. In the first chapter, some
definitions in graph thcory have been given. In the second chapter, some
optimization problems in linear and non-linear programming and a graphical
model of some optimization problem have been discussed. In the third
chapter, some search algorithms from finding distance from one vertex to all
other vertex in the graph have been considered. Especially it has been found
decomposition wilth depth irst search method with examples. Also it has
been solved the traveling salesman problem using closest insertion
algorithm. In the final chapter, a residual network problem, which is a new

approach for finding a minimum cost flow has been considered.
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1.3 The Deninitions

Some definitions and examples in graph theories thal have been

discussed for our study.

Delinition 1.3.1 {{;raph):
A graph ¢ consists of a pair ¢ =(F(G)LE({G), where F(G) i3 a non-empty

finite set whose elements are called nodes or vertices and E(G) is a set of

unordered pairs of distinet elements of ¥(G). The vertices w,v, e¥V(G)
associated with edge e,, e E(G) are called the end vertices of ¢,

Observe that this deflinition permits an edge to be associated with a vertex

pair (v.v,).

Deflinition 1.3.2 (Directed graph) :

A dirccted graph & is a pair (¥, £), where ¥ is a finite set and E is an
associated relation of V. The set ' is called the vertex sct of & and iis
elements are called vertices. The sct £ is called the edge set of & and its
elements are called edges. Figure 1.1(a) is a pictorial representation of a

direcied graph on the vertex set {1, 2, 3, 4}.

Definition 1.3.3 (Undirecled graph) :

In an undirceted eraph G = {F, £), the edpe set £ consists of unordered pairs
of vertices. rather than ordered pairs. That is, an cdge is a set (. v), where u,
veV and w = v. {a, v} and (v. &) are considered to be the same edge in the
undirccted graph. Figure 1.1(b) is an undirected graph on the vertex set {1,

2,3,4%.
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Firpre 1.1{#). Directed graph Figure 1.1(b} Undirected graph
Delinition 1.3.4 (Walk) :

A walk in a graph ¢ is a tinitc sequence B = voey ey e Vi gy
whose terms are alternatively vertices and edges such thai, for 1 < < & the
edge ¢, has ends v,_, and v,. Thus each edge e, is immediately preceded and

succeeded by the two vertices with which it is incident. We say that the

above W is a v, —v, walk or a walk from v, to v,. The vertex v, is called
the origin of the walk # , while v, is called the terminus of ¥ .

¥2

Figure 1.2

In figure 1.2, W =v e v, esvse, vsecvse; v, and W, =v e v, e v, ¢ v, are bolh
walks, of lenpth 5 and 3 respectively, from v, to v, and from v 1o v,

respectively.



Definition 1.3.5 (Trail) :

If the edges e,.¢,,-- ,e, of the walk W =vyeve,v, e, v, are distinct then ¥ is

called a trail.

Definition 1.3.6 {(Complete Graph) :

A simple graph & in which each pair of distinct vertices is joined by an edge

is catled a complete graph of <. Thus, a graph ¢ with pvertices is

complete if it has as many cdges as possible provided that thete are oo loops

and no parallel edges. 17 a complete graph ¢ has p vertices v.v,,-,v,, then
G={{v,.v, )iy, 2v;ii =12 . p}.

The complete graph of »vertices is denoted by X .

Ks 3 cdges 6 cdges

1} cdpes

Figure 1.3 The complete graphs on at most 5 vertices

Definition 1.3.7 (Null Graph} :

A graph of order » and size zero 1s called a null graph of totally

disconnected graph, and is denoted by X, . Thus E(K,)=¢.

The following are the examples of null graph up to the order five:

) K (DKl () kL () Kol (Kl



Every vertex of a null graph is an isolated vertex. Further a graph of order »

is a null graph if and only if it 15 a regular graph of regularity zero.

Delinition 1.3.8 (Paths and lengths) :

A path of length k from a verlex u 1o a verlex &' in a graph G = (¥, £) is a
sequence of vertices such that w=v,, &' =v, and (v _,.v)e & for i=12,---, k.

The length of the path 1s the number of edges in the path. The path contains

the vertices v,. v, .. v, and the edpes (v,, v,). (v, v2 ) (v v, ). [T there is
a path p from # to «', we say that ¥’ is reachable from » via p., which we

sometimes write as a—Z " i ¢ is directed.

Dedinition 1.3.9 {(Simple path) :

A path is simple if all vertices in the path arc distinct. In figure 1.4, the path

<1, 2, 3, 4> is a simple path ol length 3.

L]

q = B

Figure 1.4

Definition 1.3.10 {Cvyele) :

In a directed graph, a path <v,. v,--, v, > forms a cycle if v, =v, and the
path contains at lcast onc edge. In an undirected praph, a path
< Ve ¥y, e, v > Torms acyele if vy =v, and v, v . v, are distinet. For

example in figure 1.5, the path <1 23 1> is a cvcle.



Figure 1.5

Delnition 1.3.11 (Connected graph) :

An undirceted graph is connected il a path connects every pair of vertices.
'The connected components of a graph are the equivalence classes of vertices
under the "is reachable from" relation. The graph in figure 1.5 has connected

componenis {1, 2, 3}.

Deflinition 1.3.12 {Strongly connected graph) :

A dirceted graph is strongly connected if every two vertices are reachable
[rom each other. The graph in figurc 1.6 has a strongly connected

companent {1, 2, 3, 4},

il
.

9
Lo W

Figure 1.0



Definition 1.3.13 {Sub graph) :
Apraph ' =(i", £y isasubgraph of G=(F, F) il PV and £'c £. Given

a sel V' <, the sub graph of G induced by V' is the graph &'=(¥' £7}
where

E={(uvieE:uvell

The sub praph induced by the vertex set {1, 2, 4, 5} in figure 1.7(a) appears
in figure 1.7(b) and has the cdge st {{1,2).(2,4),(2,5),01,33}.

I

ly 2
6( / 3
| ]
5 4 5 4
Figure 1,7(a) Yigure 1.7(h)

Dehnition 1.3.14 (Paralle] edoes) :

Let (4 be a graph. If two (or more) edges of & have the same end vertices
then these edges are called parallel. In the fApure 1.8 the edpes e; and e; are
parallel.

=

£z

Figure 1.8

9



Definition 1.3.15 {Subgraph obtained by the removal of the vertex v; ):
Let &G = (¥, E) be a graph. Let v, e¥. The subgraph of G obtained by

removing the point and vertex v, and all the lines incident with v, is called
the subgraph obtained by the removal of the vertcx v, and is denoted by
Gv,.

Thus if G-» =(V,£), then ¥ =v—{v} and £ ={c/cet and v, is not
incident with ¢}, and & — v; is an induced subgraph of G.

Definition 1.3.16 [CnmplEment of a graph):

The complement G of a graph G is the graph with vertex set ¥ () such that
any two vertices arc adjacent in ¢ if and only if they are not adjacent in G,

( is said to be sell complementary graph if & is isomorphic to G.

Delnition 1.3.17 (The incidence matrix) :

The incidence matrix of a dirccted graph G ={(V, E) is a |V} = |E| matrix

B ={5, ) such that

- 1if edge jleaves verlex{
h ;=41 if cdge fenters vertex !
0 otherwise

Definition 1.3.18(Transpose of a graph) :

The transpose of a dirccted graph G = (V, E) is the graph ¢/ =¥, #') where

ET = {(v, myeV xViw vy e F}. Thus, G'is ¢ with all its edges reversed.

10



Definition 1.3.19 (Neighborhood Sets) :

Two vertices joined by an edge are said o be adjacent or neighbors. The set
of all nelghbors of a flow vertex » of a graph & is called the neighborhood
set of » and is defined by ¥(w). The open neighborhood of « is
Niwy=ivelV uve k)
and the closed ncighbﬂrf]mod of u is
Nak = {a} 0 N(u).

Definition 1.3.20 (Adjaceocy -malrix represeniation) :

For the adjacency-matrix representation of a graph & = (¥, ). we assume
that the vertices are nwnbered 1, 2, ... [F] m some arbitrary munner, The
adjacency-matrix representation of a graph G then consists of |F] x |V]
mairix 4 = (a,;) such that
- :{1 if (i, ek
I/ |0 otherwise

Delnition 1.3.21 {Sinvle connected oraph) :

A directed graph G = (¥, £) is singly connecled il #——v implies that there
is at most one simple path from u to v for all verlices u, ve V.

DeNnition 1.3.22 (Fusioo) :

Let # and v be distinct verlices ol a graph &. We can construct a new graph
7, by fusing (or identifying) the two vertices, namely by replacing them by
a single new vertex x such that cvery edge that was incident with either u or
v in G iIs now incident with x, { ¢., the end % and the end v become end x.
Thus the new graph G, has one less vertex than & but the same number of
edges as (r and the degree of the new vertex x is the sum of the degrees of
and v.

We illustrate the process in figure 1.9 and 1.10



Figure 1,10

Figurg 1.9

Definition 1.3.23 {Acvelic graph) :

A praph & is called acyelic 1 1t has no cycle.

'|'|I '
ue 3

Figure-1.11
Definition 1.3.24{Trce of graph):

Let G be a graph. If ¢ is a connecied acyclic graph. then it is called a tree.

" — o
2 vertices
| verles
»
[ : & . ]
3 verlices 4 veniccs
' -
) . 5 vertices
2 verlices

Figure 1.12: Tree with at most fivg veriices.

Definition 1.3.25 {Root) ;

A distinguished vertex and for a branching the verlex from which every
other is reachable is called the root of graph G. In the figure 1.13, s is the

root of Lthe tree.

12



Deflinition 1.3.26 (Nehvork) :

A network & 1s a weakly connecled simple digraph in which every link ¢ of
N has been assipned a nonnepative integer ¢/}, cailed the capacity of /.

For a general network, a vertex s is called a source if it has in degrec 0
while a vertex ¢ of & 1s called a sink if 1t has oul degree 0. Any ather vertex
of N is called an intermediate vertex.

i 1

¥

Fignree 113, A Network

Definition 1.3.27 (Flow) :

A flow in a network & from the source s to the sink ¢ is a function f
which assigns a non-negative integer to cach of the ares 1 in & such that
1. (Capacity constraint) £/} < «{y for each arc 1,
2.. The total flow into the sink ¢ equals the total flow out of the source s
and
3. {Flow conservation) for any intermediate vertex x, the total flow into
x equals the total flow out of x.

Definition 1.3.28 (Saturated and Unsaturated Flow) :

The walk W 1s said to be f saturated if %) =10.  denote the increment of

flow, and if i(#7 > 0. then the Now is called unsaturated Aow.

Delinition 1.3.29 (Labeling) :

Assignment of integers to vertices is called labeling of a praph.



Definition 1.3.30 {Ar¢) :

Directed edge (ordered pair of vertices) 1s called an are.

Definititn_1.3.31 {Convex sct of graph) : The flows in a nctwork form a

convex set so that if £, and £5 are flows, then so is f, +{1-a)/, for all o in the

range 0 < = 1.

Delinition 1.3.32 {(Shortest-Paths Tree) :

A shortest -paths tree rooted al s is a directed subgraph &' ={F". £y, wherc
V' oV and £ < £ such that

1. ¥ 15 the set of vertices reachable from 5 1n (.

2. ' forms a rooted tree with roots and

3. for all v eV’ the unique simple path from s to v in &’ is a shortest

path from s o v in (7.

r

Delinition 1.3.33 (Shortest Path Weight) :

The shortest path weight from # to v is delined by

S(u,v) = {min wip) u 2,y ifthereisa path from u to v
|20 otherwise

Delinition 1.3.34 (Ancestor) :

In a rooted tree, a vertex » along the path to the root is called an ancestor.

Definition 1.3.35 (Cost) :

The name of the objective function for many weighted minimization

problem is called cosl function.

~ 53



Definition 1.3.36 {(Conncctivity of a graph) :

The conncctivity & of a graph & is the minimum number of vertices whose
temoval results is disconnected or tnivial graph. A graph & is said to be a
connected if % z#. Two points « and v of a graph are said to be connccted if

there exisis a w—v pathin &

Definition 1.3.37 (Cut point and bridee) :

A cut point of a graph (7 is a point whose removal increases thc number of
components. A bridge of a graph G is a line whose removal increases the

number of components.

Definition 1.3.38 (Minimal spanning tree) :

A spanning tree with the smallest weight in a weighted graph is called
shortcst spanning frec or shortest distance spanning tree or minimal spanning

lreea.

Defition 1.3.3%{Cut-Sets) :

In a connected graph . a cut-set is a set of edges whose removal from &

leaves (& disconnected, provided removal of no proper subset of these edges
disconnects G. For instance, in fig 1.14 the set of edges {a, ¢, d, /] is a cut -

sef,

15
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V6

2

Figure I.14

Delinition 1.3.40 (Indegree and outdegree) :

Let v be a vertex in the digraph D, The indegree id(v) or IN() of v is the
number of arcs of £ that have v as ils head, i.e., the number of arcs that "po
to" v.

Similarly, the outdegree od(vy or OUT(w) of v 13 the number ol ares of D

that have v as its tail i.c., that "go out" of v.

Y1 ‘l."z

¥ ¥d
Figure 115

Thus in the digraph of figure 1.15, we have
s} = ity ) = 2ord{vy ) =1
id(vy) =2.id(vy) = 2id(r) = 2,
where

od(s) = 2,0d{v}=Lod(v,)=3
od(vi}=2,0d(v, )= Lod{)=0"

16



Definition 1.3.41 {(Separating Sets) :

Let u and v be two distinct vertices of a graph G. A set § of vertices of G,
coniaining neither ¥ nor v, is said to be 4—v scparating if the vertex deleted
subgraph -5 is disconnected with & and v lying in different components. [n
this case, S is also said to separaie & and v.

Similarly. a sct £ of edges of (7 is said to be w—v separating it the edge
deleted subgraph G—F is disconnected with # and v lying in different

components, [n this case, £ is said to separate » and v.

17



Chapter Two

Lincar And Nonlinear Programming On Graph
2.1 Introduction

In this chapter some relations on linear and nonlinear programming
and reduced form of optimization problems into Graph mode] arc given.
Various models about these relations have been proposed in Cotle et al. [7],
Mangasarian et al. [9]. Newman [12], Saunders et al. [20] and Yamada et al.

r22].

The general problem of lincar programming is to optimize a linear function
subject to linear equality and incquality constraints. In other words, it is need

to determine the values of x;. x,. ., x, that solves the program.

minimize z= ) ¢x,
1=|
TR

subjectto ¥ a,x, <4, .
=1

Here ¢,, 4, and a_ are known as real numbers,

Definition 2.1.1

A vector (xy, xg, .- , xR 1s called a leasible solution if the veclors

satisfy the constraints. Here ()" denotes the transpose,



Definition 2.1.2
A feasible solution is said to be an opiimal solution if it gives the minimum

value of the objective function provided the minimum valuc exists.

Lemma 2.1.3

The constraint sel 7 is convex.

Proof:
Lel f'bc a convex [unction on a conslraint set 7 e R", Then for every ke R
we can define the sets.

'=s{x:xel, fixysi}
To show ¥ is convex, let

xyel.xef
Let 7 is convex. Then
A +(l-x,eT for 0=A%)

S )2k, flx)<k

by the convexity property.

Now, using the convexity of /7 on T, we get
SO+ (=) A (x)+(1-A) f ()< k
Hence,

A, +{(1-Ax, eT for 0 ix=l.

That is. T is a convex sct. This completes the proof of Lemma 2.1.3.



Definition 2.1.4
A veetor @' e X is global minimum of 7 over the set x if it is no worse
than other feasible vectors that is
Fix' e f{x) xelX.
A vector 1 e X is a local minimum of fover ihe set Y if it is no worse than

its feasible ncighbors; that is, if there exists an £ > 0 such that
FE)2fix) xeX
with "r -x || <f.

If both fand X are convex, local minimum is also global.

Sx)
4

minimanm

ol
afinumum

Ll ¥

Figure 2.1 : Local and global minima of £ over X

2. 2 Necessary and Sulficient Conditions for Optimality

Al a local minimum ', the first order variation is considered
V/(x"¥YAr duc to a small feasible variation Ar is nonnegative. Because x
is convex, the feasible variations are of the form Ar=x—zx, where reJy,
Thus ihe condition ¥/({z"YAx=¢ translafes into the necessary condition

Vi Yix-x 120

forall xe X. When fis convex the following proposition hold,

20



Proposition 2.2.1 (Optimality condition)
a) If x" is a local minimum of 7 over X, then
Vix Yix—x)20, xeX,.
b) If / is convex over X, then the condition of part (a) is also sufficient

for x” to minimize 5 over X .

2.3 Descent directions and stepsize Rules of minimization problem
Consider the unconstrained minimization problem of a continuously
differentiable function /2" - &,
Most of the inleresting algorithms for this problem rely on an
important idca, called iterative descent that works as follows:
We start at some point +" (an injtial guess} and successively gencrates

x', x*, - such that 7 is decrcased at each itcration, that is,

Y < f(x®), k=001 e
In doing so. one can do successively improve solution and may decrease f

all the way to its minimum. In this regards we define a peneral class
algorithms based on iterative descent method, Mangasarian ct al. [6]
proposed an algorithm.

et aatdt k=0l (2.3.1)
where, If V/(x*) = 0, the direction @* is chosen so that V/(x*Yd* <0 and the
stepsize o are chosen to be positive. IT V¥(x*)=0, then method stops, that
is,
oo
In this respect the improvement cost functions takes the form

SOt vt dY e FR) k=01,

21



Figure 2.2 lterative descent for minimizing a function I

Lach vector in the generated sequence has a lower cost than jts predecessor.

2.4 Systems of difference constraint into graph maodel

It is easy to interpret the systems of differcnce constraints of linear or
non-linear programning from a graph theoretic viewpoint. By using
Bellman-Ford idea in a systemn, 4r<b of difference consiraints, the #xm
lincar-programming matrix A can be viewed as an incidence natrix for a
graph with » verlices and m edges. Bach vertex v, in the graph, for
f=12,---.n corrcsponds to one of the » unknown variable x,. Each directed
cdge in the graph corresponds to one of the m inequaliiies involving two

unknowns.

In the following way Bellman-Ford converted the linear functions into graph

mecthod.

For a given sysiem Arxr<d of difference constraints, the corresponding
constraint graph is a weighled, directed graph G = (v E) where

V ={vge vaeiv, )



, .
and E={(v,,vr}:_rj —x, b, isaconstraint |

U{{"o- ¥) ), ("’w “’:)s {“01 VJ-)" {Vnn Vi }
Some important theorems, lemma & definitions are given in the following,
which already have formulated as graph model from the linear and non-

linear programming of minimization problem,

Theorem 2.4.1
Let f:R" > R be a lunction defincd over the graph G. Let P={X, >»}

denote a partial order, where X ={x -, x,} is the sct of variables. Then
HA)z f(B), for all A={a,, a,} majorizing B={, -, 6, on P if and

only if f is a function such that for every ., ; with x, > X,

FLY
x,  ox,

over all ¥ =¢7.

Lemma 2.4.2

If 4 is submajorized by Bon P, thete exists a set =1, ¢5.000,c,}, where

¢, 20 forall .. such that 4+ is majorized by son P.

Theorem 2.4.3

Let f:R8" - R be a monotone non-increasing function in each variable, with
the Graph . Denote by #={X,»>} a partial order on the set of variables
X =4%.....x,}. Then the following relations are cquivalent

(1) forevery 4.#c R" suchthat # submajorizes 4 on P . we have

Sz 1.

-2
[



(il} for every i,; suchthat x, > x, we have that

i _ &

L

ar _E‘xJ

¢

overall X e,

Proof.
To prove that (i} implies (ii), assume that f(4) > J{mfor all 4 submajorized
by # on P, Then, in particular,
f4)2 f(h),
or equivalently,
- () £-f(B)
. for all 4 submajorized by B on P. From I'hcorem 2.4.3, it follows that for

all +, j such that x, => x, we have

2-/), A=)

2, o |

ar equivalently

forall ¥ e,
In order to prove that {ii) implies (i), assumc that (ii} holds and A is
submajorized by Zon . From Lemma 2.4.2, there exists non-negative ¢
such that 4+ Cis mojorized by 5onp . From Theorem 2.4.3, it foilows that
—FlA+YE—F(HY.
But f1s monotone non-increasing for all x,, 30 we can conclude that
JA) 2 flA+ Oy 2 f(B).

This completes the proof.
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2.5 Optimal Routing of simplex method in 2 communication
Network using graph model

Consider the case where the constraint set is a simplex

X :{xx'xi_*uz:cr =,
1=l

where » > 0 is a given scalar.

There is a straighiforward generalization of this problem in graph model

which has been investigated by Bertsckas [8].

it is itlustrated the graph rcpresentation of path flow of the simplex method

with Figure 2.3,

Consider a directed graph, which is viewed as a model of a data
communicatton network. It is  also given a set » of ordered node pairs
@=(f /). The nodes 7 and ; arc referred to as the origin and the destination
(D) of « respectively, and o is referred 10 as an Op pair, For eachw,
given a scalar r, referced to as the input data of . In the context of routing
of data in a communication network, r, is the rale of data cntering and
leaving the network at the origin and the destination of «. respectively. The
communication configuration is {o divide cach », into the paths from origin

to destination in a way that the resulting total arc flow pattern minimizes a
suitable cost function, we denote

D, + A given set of paths that starts at the origin and ends at the

destination of @. All arcs 5 on each of these paths are oriented in

the destination from the origin to the destination.
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v, The portion of », assigned to path P, also the flow of path P,

The collection of all path {low
{vp |, pe DP}

must satisty the constrainis

2. v, =k, Yol

Feliy

The total flow 7, ol arc (/, j} is the sum of afl path flows traversing the arc:

./’( [T E 11:.P )
ol i g
COMIEITRE 1, f ]

Consider a cost function of the form
PRI
The problem is to find a set of path flow {v,} that winimize this cost

function subject to the constraints of the simplex. This is the minimization

over a simplex.

Crigin of Lrestination of
O pair e (D paic @
F ¥

lr

Figure 2.3 Constraints for the flows of an 25 pair 4.

The path flows v, of the paths p e », should be nonnegative and add up 1o

the given input », of the 0 pair.
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Definition 2.5.1
For P={S.>>} and 4={a,.---.a,}, a sel of weights lor §={s,. -, 5,1, choose

§,.8, €8 such that § >>8,. Then a flow from 4, to «, is a transformation

!
from 4 to 4", where
| a =a —a,
a =a +3, for some &> 0

a, =d..  YE#i, .

The following corollary is important for network flow problem.

Corollary 2.5.2
Assuine that P is a linearly ordered set. Then, 4 majorizes & on P if and

only if there exists an wxs triangular matrix M=[m,] such that

m, 20, m =0forall i<j, 3 m =1and H=M4.

4=
Matrix M can be viewed as a flow matrix where m @ is the ainount of flow

from £, 1o 7,
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Chapter Three
Path Algorithms And Spanning Trees

3.1 Introduction

In this chapter most fundamental graph algorithms concerning
distances are those dealing with shortest path in a graph. In fact most
algorithms involving distances and carrying {low over distance use basic
scarch techniques of graph theory. Many typical rouling algorithms send
flows through shortest path without accounting for derivatives and thus
bifurcating flows. We have discussed some standard shortest path algorithms
using some methods. We have solved the traveling salesman problem using
closest insertion algorithm and described elaborately the minimum spanning

tree with an example. First of all we have defined shoricst path.

3.2 Shortest path

Suppose every arc v has been assigned a certain length #uv). Then
the length of x-v path with edge sequence g,e..-- i3 the sum
He )+ ey ) +---+ i{e, yof the lengths of all edpes of that path. If the source
vertex s and v is any arbitrary vertex then we define the shortest path
distance &{s.v) from s to » as thc minimum number of edpes in any path
from vertex s to vertex v, or else «, if therc is no path from s 1o v. A path
of lenpth &(s,v) from s to v is said to be a shortest path from 5 to v and

there arc many methods or techniques in graph theory to calculate or to
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obtain shortest paths. Before showing that search method actually computes
shortest path distances, we investigate some important property ol shortest

path distunces.

Lemma 3.2.1

let G=(¥,Fybe a directed or undirected graph and let s ¥ be an arbitrary
vertex, then for any edge (o) e £, S(s.v) < S w)+w(mv), where w is a
weight function.

Proof, TIf & is reachable rom s, then so is v. [n this case the shortest path

[rom s to v cannot be longer than the shortest path from sto » followed

by the welghied edge (n.v) and thus the inequality holds.

1.3 Weighted shortest path

In a shortest path problem, we arc given a weighted directed praph
G=(V. £y with weighl function w:£— R mapping edges (o real valued
weiglits. The weight of path # =<v,,v,,-+-, v, »is the sum of the weights of its

constituent edges:

w(P) =

i

k
Wiy, .¥ .

=)

By definition, we define the shortest path weight from » to v by

e if there is no path from « v

Sfuv) = ming wiPyiu —L 4% if thereisa path from « to v
0 : otherwise
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A shortest path from veriex o o verlex v is then deflined as any path P
with weight and writtcn as

wi Py = &, v,
Edge weights can be interpreted as matrices other than distances. They are
often used to represent time, cost, penalties, or another quantity that

accumulates linearly along a path, which 1s shortest distance.

The following lemma and corollary states the optimal-substructure property

of shortest paths more precisely.

Lemma 3.3.1
Sub paths of shortest paths are shortest paths.

. F F P
Proof. If we decompose path £ info vy —2ov —touy —H

yv,, then

w(Py=w(P  J+u(F )+ nu(F,) Now, assume that there is a path 7, from »,

.

T VT TRV
v, —or, —Hoy, 15 a path

to v, with weight wl#, J<w(P,). Then
from v, to w, whose weight wif ) +w(E ) +w(P,) is less than w(F} which

contradicis the premise that # is a shortest path from v, to v, .

Corollary 3.1.2
Let G=(V.E) be a weighied, directed graph with weight function w: £ —» &.
Suppose that a shortest path P from a source s to a vertex v can be

decomposed into s—=

»u —» v for some vertex v and path P'. Then the

weight of a shorlest path from s to v I8 &y, v) = 5{5. 1) + wiaw,v).
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Prnof. By [.emma 3.3.1, il can be proved that sub path P* is a shortest path

from source s to vertex .
Thusg
S(s.vy = w(P)
= w(p')+wlav)
=d(aul+wu v

3.4 The structure of a shortest path with examples

Shortest paths are not neccssarily unique. Using adjaccncy matrix

W =(w,we characterize the structure of an optimal solution. A natural

combinatorial optimization problem is the shortest path problem and it has
an inmput directed graph, each edge with a given length. Now to consiruct a
shortest path P from vertex / to vertex ; and suppose that £ conlains at
most m cdges. Assuming that there are no negative-weight cycles, m s
finite, [f i=j, then £ has weight ¢+ and no edges. [f vertices : and 7 are
distinct, then we can decompose path 2 into i——k — i, where path P

now contains at most m —ledges. P is a shortest path [rom ¢ to ¥ and from

lemima 3.3.1 and Corollary 3.3.2, we have
i j)=8(L.k)+w,,.
Figure 3.1 Nustrates a directed shorest path with positive weights and

computing not only shortest path weighits, but the vertices on the shortest

paths as well,
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Fignre 3.1 {a). & weighued, dirceted graph with shortest path weights from source

3.1 (k). The shaded edyes form shortest paths distanees

Calculation of the shortest path weight of ligure 3.1 :

I'romn the definition of weighed shortest path, we get

Hlruy=wisu)=3

and &(s.x) = (s, w)+w(w,x) = 3+ 2 = 5{using corollary 3.3.2)
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Thus s vy=dis,x)+uix,vi=53+4=9
and S(s. Vi=8s )+ wirv p)=0+2=11|

Thus the shortest path rom < to ¥ 18 <suxv > with weight 11.

In most cascs when deseribing algorithms we shall assume that
adjacency lists are used to describe any graph as an input to an algorithm.
When using such an algorithm, if the graph is not alrcady labeled, simply

label the nodes and record the adjacency list {for input.

An cxample of a graph and its adjacency lists is given below in the

fipure 3.2 and the table.

Fipure 3.2



A graph and its adjacency lists

Node Adjacency list
a b.¢c, d
b a
¢ a.d.e, I
d a, ¢, f
e ¢, T
f ¢, d, e )

3.5 Breadth-First Search (BFS)

Thomas’ct al. [21] discovered breadth-first search in the context of
finding paths through mazes. BFS is a fundamental search iechnique that
fraces a rooted spanning iree In a connected graph so that the distance from
the root to eafh nnde In the tree corresponds to its d1stance in the original
graph. The bésn: n:le*t Js b begin at the root and ﬁnd 1ts neighbors and then
neighbors, and ]iv.n _nnj until one has spanned throughout the graph and
reached all nndeq*waince in 1nost applications where BFS is used, one wants
to knnu; Fthe dﬁl‘-.tdﬂﬂﬂ 1rnm the root to cach other node, we present a form of
the a lgnrnhm Whlch recnrda the distances. The input to the algorithm is the
list of nodes, thmr adjaceney lists, and the label of the root. Asswne that the

distance &(s.v,), from the root s to node v, is stored in array d[v]. Let &[v]

denote the adjacency list of node +,
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3.6 The Breadth First Scearch (BFS) Algorithm

Let G be a graph and let s,¢ be two specified vertices of G. We will
now describe a method of finding a path from s 1o ¢, if there is any, which
uses the least number of edges. Such a path, if it exists. is called a shortest
path from s 10 ¢.

The methed assigns labels 0, 1, 2, 3. ........... 1o vertices of ¢ and is called
the Breadth Fimsl Search technique. In Clark et al. [6], the following

algorithm is given below:

Step 1. Label vertex s with ¢, Set +=0.

Step 2. ['ind all unlabelled vertices in ¢, which arc adjacent to
vettices labeled . If there are no such verlices then f is
not connected to s (by a path). If there are such vertices,
label them i+1.

Step 3. If t is labeled, go to step 4. If not, increase « to i+1 then go
to step 2.

Step 4. The length of a shortest path from s to ¢is i +1 stop,

1,(]' 2,C

1.5 2. d

Figure 3.3



First s is labeled 0. The ¢ and b are labeled 1. Then ¢,d are labeled 2 and 1

is labeled 3. the level of a shorlest path from s to ¢ 18 3.
3.7 Complexity of BIFS

The complexity of BFS on G = (a,m) graph, where m=| ¥ | and n= L]
is {m+n)y. The BrS runs in time linear in the size of the adjaccncy list .

representation of G .
We now discuss the Depth first search and its properties. DFS is a

powerful technique to obtain shortest path,
Depth first search

Depth first search (DFS) begins at the root and trace out a path from
the root until one can go no farther without revisiting a node. ‘Then backtrack
along the path until reaching the first node with an alternate route available
and proceed forward again. Repeat this until one can go no farther. Like
BFS , a depth-first scarch traces a spanning tree in a connected graph, but in
2 different manner. One might think of DFS as the way an intelligent but

determincd mouse might ind its way through a search.

The following DFS algorithm is the basic depth-first search alporithm.
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DFs$(;) Algorithm
Procedurc DFES(v)
begin
Hvy=1 (tracks the order in which nodes are visited)
F=i+1
while N(») =4 do
for #sN{v)do
begin
1 =TUu.v}
remove u from all adjacency lists
DES
end DFS
begin {driver algorithm)
input adjacency hsts and root
T=¢ (stores edges of the tree as they are selected)
for veG do
Hvy=0
ffroot) =1
i=12
while there exist some « for which {x)=0 do
for highest labeled node v with A{v)= ¢ do
begin remove v [rom all adjacency lists
DFS()

end
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The backiracking along a path in the tree cach time control and is returned to
the driver program and one looks for the highcst labeled node that has
unvisited neiphbors, Note as with BFS, removing a node W from all
adjacency lists in this algorithm is easy because N(w) tells which lists are
involved. Algorithin can easily be modified to determinc whether & is
connected simply by testing for nodes v that still have /(v)=0 when the
algorithm terminates.

Besides creating a depth first trec OFS also timestamps for cach vertex.
Fach vertex v has two timestamps: the first timestamp «|v] records when v
is first discovered and the second thnestamp f|v] records when the search

finishes examining v 's adjacency list.

Corollary 3.7.1 (nesting of descendants’ intervals)

Vertex v is a proper descendant of vertex « in the depth-first forest for a
(directed or undirecied) graph G if and only if d(u) < d{¥) < f{v) < flu).

The proof has been illustrated in Thomas et al.[21].

The £#§ algorithm is illustrated by an example in Figurc 3.5. [n the given
graph G of five vertices and scven edges, the starting vertex s is specified.

The order in which the edges are explored is given in Figure 3.5 (#) and for

this order of traversal  is given in figure 3.5 (¢)

5

d

Fipure 3.5(a} Graph O before DFS



(s, ) ; branch
{a, b} : branch
{c.s): frond
{d.b): frond
(¢, d} : branch
{b. ¢} : branch

{d, a) : frond

Fignre 3.5(1) Order in which edye were seanned

3

Figure Y.5(c) CGraph (3 after DI'S

We now describe the closest insertion algorithin, The description
gives the idea of the distance of a vertex v from a walk % . This is defined to
be

d{v,WY=min {d({v,u):uis a vertex of ¥}



The vertex v, not in ¥, is then said to be closest to W

if d(v,iF} < (e, ) lor any other vertex x notin W,

We describe the way in which a new vertex Is inserted into a cycle by
using bold type. We also solve the Traveling salesman problem for the

complete weighted graph using closest insertion algorithm.

The closest Insertion Algorithm:

Step 1. Choose any verlex v as a starting vertex.

Step 1. From among the »—1 veriices choscn so far, find one,

say v,, which is closcst 1o v,. Let ¥, denote the walk
UIUEVI .

Step 3 From among the »-2 vertices nol chosen so far, find
one, say v,, which is closcst to the walk W, =v v, v,
Let W, be the walk vpryvw,.

Step 4 From among the »-3 vertices not chosen so far, find
one, say v,, which is closcst lo the walk ¥, . Determine
which of the walks (cycles) vivovvyy, vV 0v .
v,vy¥o¥yv, is the shortest. Let W, denote the shortest one
and relabeled it. if necessary, as wv,v;vey.

Step 5 From among the »-4 vertices not chosen so far, find
ong, say v. which is closest to the walk .
Determine which of the cycles vy vy,wey, vpipevsigly . Wil

17273747571,

v vevy vy 18 shortest.
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Let W. denote the shortest one and relabeled it, if necessary, as vy yyv,vsy
5 (BB LR |

continue in this way to cventually arrive at.

Step n Denote the remaining unclosen vertex by v, and

determine which of the cycles vy, ---v,_ v, v,

n=t"n

'1_!] vn .

-y ¥, 15 shortest.

Let #_ denote the shortest of these cycles.

Since our larget is to solve the Traveling Salesman Problem of the complete
weighted graph. For this purpose we first define the Traveling salesman

problem. Details on TSP have been described in Narsingh [11].

Traveling Salesman Problem (75P)

We can represenl the salesman’s territory by a weighted graph
(v, E}. The vertices correspond to the towns and two verlices are joined by
a weight edge if therc is a road connecting the corresponding towns, which
does not pass through any of the other towns, the edges weight representing
the lengths of the road between the towns. The sales man finds his optimal
distance from a starting vertex and visits each vertex and again comeback to
his first starling vertex. He continues this process until every vertex visited.

And this system is known as traveling salesman probleni.
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We illustrate Traveling Salesman problem with an c¢xample and solve it
using closest insertion Algorithm.

Let a traveling salcsman's territory includes five cities 4,8,C.D and F
which corresponding to the vertices. Each road connecting a pairs of vertices
with weights . His job requires him to visit cach city. So, 1t is required for
him to plan a round trip by car enabling him to visit each of the cities exactly
once and minimize the total distance traveled. We wish to find an ordering
of the five cilies starting with vertex A so that if he visits five vertices only
onece ir; this optiinal order, then the total distance is smallest possible.

The fcsllulwing fipurc 3.5 is a complete weighted graph Iand 4 denotes the

siarting vertex.

E
35

Figure: 3.5 4 weighted graph
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Algorithm {using closest Insertion Algorithm)

Step 1. Let w=4

Step 2. v, =B isclosestto A so W =vpyy = AB4

Step 3. v, =C is closest to W, (It has distance 10 from 4) W, is
the cycle vv,v,¥, = ABCA and has length 5+35+10=50.

Step 4. v, = D is closest to W, (It has distance 15 from 4 ) to W,.

We find the length of the cycles vy vavgvy, vivvavves Wrabavy)!
vy, vy = ABCD4  haslength 5+35425+15=80
vipavaviy, = ABDCA  haslength  5+40+25+10=380
vy vy = ADCBA  has length 15+25+35+5=80
We choose W, = 4BCD4 as the shortest one.
Step 5. V, = £ is closest to W, (It has distance 20 from A)
We [ind the ICI]gthS of the E}’C]t:f-‘. VWV Py VeV MWV ey
P Pa He ¥yl and VPV VY
v vav vk = ABCDEA has length 5435425+ 50+ 20 =135
vvavavevy v, = ABCEDA has length 5+35+30+50+15=135
¥V, = ABECTH4 has length 5+45+30+25+15=120
¥ vyt = AERCDA has lengih 20+ 45435 +25415=140

We can therefore conclude that a reasonably efficient shortest path distance

15 vy vsv vy = 120
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3.8 Minimum spanning trce
Minimum spanning tree is important in Graph theory, Tinding a
spanning trec in a weighted graph such that the sum of the weights of the

edges in the tree is minimum and solves a wide variety of problem.

Drefinition:
A minimum spanning tree in a connected weighted graph is a spanning tree

that has the smaltest possible sum of weights of ils edges.

Consider a connected graph each edge of which has a positive length.
A connceted subset M of cdges is called a tree if there is no cycle in this
subset. A tree is a spanning trec if it connects all the nodes, i.c. there is a
path between any pair of nodes. 1t is required to find a spanning tree sum of
whose edge lengths is the minimum; such a spapning tree is called a
minimum spanning tree. Hence forth, we assume that the edge lengths are

distinct.

10

Figmre 3.6 Example graph for minimem spanning tree
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A minimum spanning lree for a connected graph and the weights on

edges arc shown, and the edges in a minimum spanning tree are shaded. The

total weipght of the tree is 37, The tree is not unique; removing the edge {f ¢)

and replacing it with the edge (@, A) yield another spanning tree with weight

37.

Properties of Minimum Spanning Tree

l.et &/ be a minimum spanning tree.

(P) Therc are n—1 edges in a spanning tree.

() There is exactly one path connecting a pair of nodcs in
a spanning tree

(P,) Adding an edge to a spanning tree creates a cycle.
(P,) Removing any edge from a cycle as in (7 ) creates

a spanning tree.
(£) Let e be any edye outside the minimum spanping tree.

The edges on the cycle created by adding ¢ have lower

lengths than that of e.

Prim’s Algorithm

Prim’s algorithm is more efficient to construct a minimum spanning

trec. Using prim’s algorithm we construct a minimum spanning tree.
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Duc to Clark et al. 6], we have the following Prim’s Algorithm :

Slep
Step

Step

Step

L.
2.

Choose any vertex v, of G.

Choose an edge e, = vy, of G such that v, = v, and ¢ has
smallest weight among the edges of G incident with v,.
If edges ¢.e,.--.¢, have been chosen involving

end points v,.v,,--.v,,. choose an edge e, =v;¥,

with v, efvy.v, ) and v, # [v.--.v,,, } such that

¢ has smallest weight among the edges of G

i+l
with precisely one end in {w,---, v}
Stop after »-1 edges have been chosen otherwisc repeat

Step 3.
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Chapter Four

Shortest Paths Algorithm respect to Non-Linear
Complementarity Problem

4.1 Introduction
This chapter deals with nonlinear programming {mimimization
problem) with the graph model. The nonlinear complementarity problem
(NCP) is to find a point x € X such that
=0
xz20F{)120, (401
where + denotes the transposc and #: 8" —» 8" is a given function (Cotle et

al. [7]. Mangasarian et al. [%] and Yamada et al. [22]).

Recently ihis problem has been reformulated as a minimization
problem in order to apply weli-developed optimization methods {Cotle et al.
{7] and Yamada et al. [22]). We have shown the equation {4.1) can be
formulated as a graph model and reformulated as a residual flow problen. In
residual network both the cost and price are efficient (Mangasarian ct al. [%]

and Thomas et al. [21]}.

4.2 Flow properties in Network
Let G=(F.E) be a flow network, where flow based cdges are
connected by weight function . A weight lunction delned as
0 it i=j
W= the weight of directed edge (7. j) e £
o if iz and (i e E
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In a given network, a flow f is an assignment of a nonnegative
number £, to cvery directed edge (2. /) such that the following conditions
arc satisfled,

1.  Forevery directed edge (i, /)G
i, S¢,,, where ¢, is the capacity of edges /. je G
2.  There is a specified verlex s in & called the source for which,
Sf.-X/.=d-
Where the summations are taken over all vertices in . Quantity 4 is called

the vatue of the Tow.

3. There 1s another specilied vertex ¢ in (', called the destination
for which
}::f" —; - =—d.
4, All other vertices are called intermediate vertices. For each

intcrmediate vertex f
Ef;r - Efr; =0.
We are giving a peneral statement about optimal routes with regard to

network topology.

4.3 The optimality principle

|
The optimality principle states that il router / s on the optimal path
from 5 to ¢. then the optimal path from any J to £ in between s and ¢

also falls along the same route.

48



Graph representation of the equation (4.1) :
Consider the variables that the flows through cach of edges in G{V,E).
H is a weight function. Let the flow pattern be denoted by a column vector

{and f'=3 f/ =w, dcnote the variable vector, where /' is the derivative
1=

of 7. Also let & denote the row veclor. Then the problem is to find a flow
that tninimize o f£°.
Subject 1o the constraits 4" /=0

fe, fore>0

and /20, ... n(412)
where 4" is the incidence matrix obtained by adding an edge from ¢ to s
(Narsingh [11]). Clearly there exists a parallel edge in the graph model in
equation (4.2). Also the edges in f, ¢ and A" must appear in the same order
[Clark et al. [6]).

We shall show that the equation (4.2) can be rcformulated as a
residual network to obtain a minimal flow cost. The author in Yamada et al.
[22] has shown that residual function solves the nonlinear complementarity
mroblem.

To construct a residual nctwork as an optimization problem we give

some preliminaries on optimal routing residual network.

4.4 Model and Preliminaries of Residual Network

We consider a flow constraint network ¢ =, E), where ¥ is a finite

sel of verlices and £={fu), EeFxl is a set of directed links. A set
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F={12 ... Nolusers which 1s vscd as vertices that share the network in the
way that all uscrs ship flow from a common source s to the common
destination ¢, For each user i e/ there has some throughput demand w, in
the network referred to as the inpul traffic of W (W =3 w ). In the context
of routing of data in communication network w,.:= 71, is the amrival rate of
traffic entering and existing the network from the origin to the destination of
w. Routing objective s to divide each w,, e 7 among the many paths fromn
origin to destination so as to oplimize its performance objective. Without
loss of generality we assume thal w, > w, > »w, which do users control

(Blasum et al, [241}, Wc denote the terms of user flows ) where /e £, user

routing strategy /', uscr strategy space ' and system flow conli guration 5.

such that stratcgy space /' should account for the conservation property of
EY 5p prop

flow at all nodes. that is, for all e £, we get

Y= Y v, veV

le G v) fe )
where
Y, owl=w and wl =0 for ves, ¢,
The system of flow configuration aims to find a strategy /' e F', which
minimizes its cost. Suppose thatl associated with cach edges of the residual
network there exists a number o, /& £ and i e / which quantified as a cost

variable in the network. The minimum cost depends on the routing decisions

of the other users, described by the strategy profile

f! :(JFI:'"J-F!_I!"':JFI}
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and &' is a function of the systcm of flow configuration /. By the
constraint setl property, the collection of all path flow £ must satisfy the

constraint sct

S ewp f120, 081 v, (43)

Thus nonlinear complementarity problemm using the equation {4.2) is to find
a strategy profile such that
Seargmin e’ f'y g e F',areal number............(4.4)

Dehinition 4.1
User are said to be identical if their demands are equal, fe, w' =w/, i, /€.
Delinition 4.2
A user is said to be simple if its [lows are routed through links (or paths) of

minimat delay.

4.5 Minimization model of restdual network

Lt G, is the residval network. Consider the cost function in the form
d;f,’ SSTURURPRRRORURON (- %53
associated with edge /=(w,v} m the rcsidual network G,. It is desired to

construct a flow pattern sending a specified value w,, ie/ from source s to

sink ¢, satislying the tlow constraints defined in (4.2) which minimize the

total {low cost
dif, Yiel, leE

in overall lows that send ¥ units from s to 7.
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The author in Bertsckas [2] showed that the problem is to find a set of path
flows {j }} that minimizes this cost function subject (o ihe constraints
equation {4.2). We assume thal 4 s a convex and continuously

differentiable function.

Now by expressing the total flow in terms of the path flows in the
cost function in cquation (4.5) with constraint sets, the minimization

problem can be fonnulated in terms of the path flow variables {;‘f } ielickE

as

minimize D} [}
subjectto 3/ =w, . VieE
£ =0,
¢ =0,
where ¢, s the residual capacity and

D=L 1),
4.6 Structure of the residual network

Consider the residual nctwork G, in a system of parallel links with

capacity configuration €. A number of intuitive monotonicity properties of
this network have been established in Korilis et al. [8] and arc summartized

in the folliowing:



Lemma 4.3

Let f be the umigue flow in the network of parallel links with capacity

configuration . Then

l. The expected flow of any user /i =/ decreases in the link number, i.e.,
filzfyz-zf; In particular, for f/ >0, we have f' =/ if and
onlyif ¢, =¢_.

2. For any link /e £, the Mows decrease in the user number, i.e.,
£z fPz-=f. In particular for f'>0, we have f,;= 7/ if and
only il w' =,

3. The residual capacity is decreasing in the link number, 1.e.

e, =-hHze,=fiz-ze. - f;. In patticular f, =/ if and only if
o =C,.
4. For cvery user / € f, the residual capacity ¢f =¢, - f/, seen by the user

on link / is deercasing in the link mumber, ie. ¢ =&l z.-2cl. In

particular, ¢; =¢. ifand onlyif ¢, =¢,,.

In a pradieni method (for minimization) cach vector in the generated
sequence has a lowcer cost than its predecessors. Similar to the gradient

method, we decompose ihe input graph G ={V, E) using DFS tcchnique.
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4.7 Acyclic decomposition of the graph G=({V . £)

We have decomposed the input graph G =(V,E) similar to the
gradient method. Thomas et al. [21] have considered the gradient method

such as edge set £ into T and T, where

reltmwyeRiics)
and

T=|(v,v)eF i>j]|
and defined G, =(¥».T) and G, = (v, T) in the residual network and showed
that &G, and &, are acyclic. In our decomposition we assumed that the set of

increment of Mow, V/(x), correspond to the addition of flow in the forward
edges and ihe set of Mow dircction & corresponds to the transferring of Mow
in the backward cdges.

To reduced this decomposition into NCP form, consider a node ve ¥
such that JA{v) = {E(n, 1:)} and OUT(v)={{(v.w)} of an instance requesting
4 spanning «,w path via v in 7. We now show that the following lemma is

acyclic.

Lemm: 4.4
The decompasition of the graph G =(V,£) is acyclic.
Proof:

Consider an instance that requesis a «.w path via v in P. Form G by

]

splitting cach vertex x into a path »_x".x*, with x~ inheriting all cdges

54



with heads at x and x' inheriting all edges with 1ails at x. A spanning #,w
path in £ becomes & w«,w path in & by replacing cach x by the sequence
x~,x", x* (Narsingh [11]}. Conversely, since a spanning #,w path in G must
visit cach x, it must visit traverse all sequences of the form x,x%, %"

forwards or backwards. Since no vertices of the same sing arc adjacent,
these (raversals must all be in the same direction and then they collapse to

the desired w.w path in P which is acyclic.

In general an acyclic decomposition consists of a set of trigger
vertices T and a sot of vertices 7=V =7 that forms a subgraph constituting
a larpe acyelic region with . This different acvclic decomposition by
tripger vertices is equivalent to that of the feedback vertex sct, that is, the

graph is dccomposed into a feedback set 7 and its associated acyclic region
T. The successive shortest path algorithms are able to reduce the cost
function. The cost & () of an edge 4 — v in P is defined as the cost of
the shortest path of the form «— v for #<T in the forward edges and
v—w in P when weT in the backward edges. In path P, let /' be the
minimum of all differences [c(a.v) - f{u,v)] in forward edges and also let
S 1 be the minimum of flows in backward edges. Lel /7 = min f-;. Then the

Tlow in the network < can be increased by increasing the ftow in each
forward edges and decreasing the flow in cach backward edges by an

amouni J ;, which satisfy the optimality conditions defined in Korilis et al.

[8] and Thomas et al. [21], i.e., for a flow vector f > 0, we find min C(P)
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which reduced the cost (/) with respect to non-linear complementanty

problem when the path is shortest.

From the following algorithm we solve theé successive shoriest path !

distances from a source s to destination ¢ using DFS technique.

4.8 Successive shortest paths Algorithm

Step 1. Initialize pre flow ({7, )

Step 2. A linked list, L «~ ¥[G] - {s,¢} in any order

Step3. Let seT be the set of links w=v in G, such that
cluv) > f(uv). (T consists of forward links).
Let teT be (he sel of links ww such that Fly.w) > 0,(T consists

of reverse links).
Step 4. For such

u = IN(v) with excess e(u) >0
do ¢ = clu,v)— flu,v) in G.f
do £ =mn ¢ ieVickE.

Step 5. Using a backtracking procedure, identifying the incrementing

path from £ to 7 in G,.
Step 6. Pull (weT)
transfer ') =min 7'/ in the backwards direction.

do &(s.1) =& (u.v} + &,(v,w) with reduced cost &/ (f)).

S



Lt

Step 7. do fTu.v]e= fluv]+ f 0.
Step 8. Repeat until

¢ (w,v)=minc,(u,v}, ¥ >0.

Theorem 4.5

Given a system Ax <3 ol difference constraints, let G=(F.E) be Lhe
corresponding constraint graph. 1If ¢ contains no negative-weight cycles.
then

IR N Y R TSN RSN PN

is a feasible solution for the system, If < contains a negative-weight cycle,

then there is no feasible solution for the system.

Before going proof we will introduce a constraint graph with

cxamples.

In a system of the difference consiraint mairix A where each row of A
contains onc 1 and one —1 and all others entries are 0. Thus the constraints
given by .x =pare a set of m dilference constraints involving »unknowns,

in which each consiraint ts a simple lincar incquality of the form

X, = =h,.

where L= j2rand 18k sm,
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Now consider the probiem of 5-vector x ={x,) that satisfics

-1 0 0 0 {4
1 0 -1 0|fx —6
0 -1 1 0 0||x 1
100 010 x| €] 3 e (1)
0 -1 1 0 ]|% 3
0 0 1 —1|ix; 10
0 -1 0 1, —4

Now writing the above matrix in the ingqualities form

n—x =4

Xy —H E 3 e (2

One solution to the difference constraint in equation {2) is x=(84,510.0),

where we have assulued that x, =0.

We set up a constraint graph with the inequalities (2). The value of
vy, v} 1% shown in each vertex v, 7=1,2.3.4,5, and &(»,,») dcnotcs the
shortest distances between pairs of vertices.

Figure 1 shows the constraint graph for the system (2) of dillerence

constraint {using Bellman-Ford idea)
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Figure 1. A feasihle solution to the system is x = (&, 4, 5,10, ()

Proof {first part of the thenrem 4,5)

We know
J{VL];I’J}H(F(VU,VJ = W{'L"-,VJ-}
Now let, Fvy.v,)=x,
and vV ) =x,.
S0 X, =% w1 e (3)

which corresponds to the constraint matrix 4x <» from the above example

in cquation {1) and (2) and also bﬂrrespands to the edee (v.,v,). Thus
Ilvgardy k=12, is a feasible salution of the theorem 4.5. Now we

show that (second part of the theorem} for the negative weight cycle ol the

constraint graph.

For the purpose of nepative weight cycles, lel the nepalive weight

cycle be C={v, vy, vy~ v} where v, =v,.
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Proof (second part of the theorem 4.5)

Again we consider the equation (3)
Xo —xp = wivy, vy )

,1'3 _x?‘_ = H"{Uz,v})

X, =X, Ewlv,.v,)

= xS, ) [sinee v, =1 ].

Now wc sum the inequalitics we get
0= wicy.
But we have considered the weight cycle is negative i.e.
wich=0,,
Thus solution for the x must satisfy
d=wiel=0,

which is impossible. This campletes the proof of theorem 4.5.

4.9 Mathematical form of shortest path distance by Nonlinear
complementarity problem

In Bertsekas [2] the author have been illustrated that optimal routing
directs traffic cxclusively along paths that are shoriest with respect to arc
lengths that depend on the {lows carricd by the arcs. In contrast to the

equation (4.2}, we shall show that,

|



NCP can {ormulaled (o the shortest path distances which selves the residual

networks.

Poof: From equation (2.3.1) we get

d =Ll ] was0 and k2123
14

Using Theorem 4.5, letting
x* = &iv,.v,}) and P = vy, 7,)

which satisfies the difference constraint that corresponds to edge {v,v,) in

the descent direction of NCFP.

Thus

- - k gk
vy v =00, v = d

— ,[f& :ﬁ[ﬁ{'l*’g-vj)_ﬁ(vﬂ’v:}]

1 1
=—|wiv..v )= —[w(P].
= v, )] = [wi )]

Here we have used Corollary 3.2.3 and Chapter 3(scction 3.3), which proves
that the weighted shortest path is monotonically decreasing when @ — o
and has a lower bound. This shows that the shortest path is monotonically

decreasing.
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