
AN ALTERNATIVE APPROACH ON

MINIMIZATION PROBLEM BY GRAPH

THEORY

By

REHANA SULTANA BJPASHA

Student No, 100009003 P

Registration No. 0010243, Session: October-ZOaO

Department of Mathematics

BANGLADESH UNIVERSTTY OF ENGINEERING AND

TECHNOLOGY, DHAKA-1000

SEPTEMBER - 2006

The th~sis titled

AI\' ALTERNATIVE APPROACH OK MINIMIZATION PROBU:M

BY CU.APH THEORY

Submillcd by

Rchal1tl Sultal1a Hipasha

Roll No 100009003P, Registration No.OO]rl243, Se"ion: Odober -2000, a part-timc
M, PhIL student in Mathematic, ha, been a~c~ptcd as satisfactory in partiol fulfi Ihnenl for

the degree of
MASTER OF PHILOSOPHY

in Mathematics
on September 19, 200!,

Board Of ~:xaminers

1. Dr. Md.Elias
Associate Professor
Department ofMalheJl1allC~,BUET, Dhaka-IOOO

\jjLO~~
2, Or. Md. ,\Iustafa Kamal Chowdhury

l'r"fes,",r and Head
Department of Mathematics, BUET. Dhaka-IOOO

Chairman
(SnpervisOJr)

Member
(Ex-officio)

3.

4.

Dr. Md .. \bdul Mall'llue
Associate Professor
Departmenl ofMathm1allL~. BUET, Dhaka-1000

DC"d~~m""
As,",cillte Prufes",r
Department ofComl'uter Science & fingineering
BUET. Dhaka-IOOO

"

Member

Member
(External)

•

Contents:
Abstract

Declaration

Acknowledgement

Chapter-l

Introduction

Chaptcr-2

Linear And Nonlinear Programming on Graph

Chapter-3

Path Algurithms And Spanning Trees

Chaptcr-4

Shortest Paths Algorithm respect to Non-linear
Complementarity Problem

References

v,
vn

01-17

18-27

28-46

47-61

62-64

.,

Abstract

A randomized parallel linked residual network Gr =(V'£j) is presented.

Algorithmically the residual network, which produces successive shortest

path distances and the original graph G=(V,E) is solved. This result is

optimum with respect to both addition of flow and transferring of flow in

path flow of the residual net\ ••..ork. Depth First Search (DFS) techniques can

calculate both the shortest path distances and time stamps. Thus non-linear

complementarity problcm can be reformulated as a shortest path distances.

Candidate's Declaration

r hereby declare that the work which is being presented in this dissertation. .
entitled "An Alternative Approach on Minimization Problem by Graph

Theory" suhmitted in partial fulfillment of the requirements for the award

of tbc degree of Master of Pbilosophy in Mathematics in the Department of

Mathematics, Bangladesh University of Engineering and technology

(BUET), Dhaka-l 000 is an authentic record of my own work.

1t has not been submitted elsewhere (Universities or Institutions) for the

award of any other degrec.

RSJ,~
(Rehana Sultana Bipasha)

Acknowledgement

1 am vcry much indebted to my supervisor Dr. Md, Elias, Associate

Professor, Department of Mathematics, Bangladesh University of

Engineering tmd Technology, Dhaka fOT suggesting me the research topic. I

would also like to extend my heartiest gratitude and thanks to him for his

continuous encouragement and valuable suggestions during the period of

this research work of my M. Phil program.

I express my deep regards to my respectable teacher Professor Dr. Md.

Mustafa Kamal Chowdhul)", Head of the Department of Mathematics,

Bangladesh University of Engineering and Technology, Dhaka for providing

me with all necessary research facilities and helpful advice during my study

in this department.

I also express my gratitude to my teacher Mr. Md. A. K. Hazra, Mr.

Md. Ohayedullah and Dr. Md. Abdul Malcque of the Department of

Mathematics, Banglade~h University of Engineering & Technology for their

kind cooperation and help during my M. Phil program.

Finally, I would like to express my special thanks to my husband Dr.

Md. Abu Nairn Sheikh, son Sheikh Ayman Shouki and daughter Sheikh

11ridula Koyshi for their constant encouragement, patience and moral

support, which makes this work possible.

Chapter One

Introduction

1.1 Introduction

The problem of computing shortest paths is indisputably one ofthc

most well studied problc:ms in graph theory. Saunders et al. [18] introduced

a fastcr algorithm for the shortest path problem (lnd showed their various

applications in graph theory. It is thoroughly surprising that in the setting of

real-wcightcd graphs, many optimization problems have seen a great

progress since the early work by Bellman-Ford, floyd and others. Blasum et

al. [3J introduced a net\vork How technique of optimization problem and

solved it using shortest path distances. KorIlis et al. [S] proposed that if

flows sent from source vertex to the destination by shortest distances it

would be efficient and optimum.

There are a lot of techniques to solve minimization problem usmg

shortest distances. The shortest path problems. mainly, work between pairs

of vertices in a weightcd graph for the exploration of distances, time delay,

cost and others that may be optimized. Christos lOta1. [5J have discussed the

simplex method and the ellipsoid algorithm as well as other algorithms

related to non-linear programming.

It is of our great interest to dctermine the shortest distance for a

gradient bastOd approach and it cannot yield the shortest distance only

besides giving the time delay for general, real weighted inputs. flertsekas [2]

measured the path flow with two quantities.

a) The total cost with time delay and

b) Individually estimate each edges cost with' respect to the minimal

path flow i.e. the single source shortest path will minimize the total

flow cost.

From this idea it Gm be modelled a residual network Gf = (V.E') which is

induced by flo\',' 'j' in the NCP constraint graphG = (V, E). The residual

net\vork is an optimization problem in view of non linear complementarity

problem and defined as follows:

Where

F;'= l(u, l'j E V x V;t(Cu. ") > 0 f and Cf is residual capacity,

cf = C(4.")- f(u, l'j,

c(u, l'j > flu, v),

and j(v,u»O

and G(is a directed weighted graph in order to rind the shortest path from

the source ,< to the destination I, This network is modeled by weights with

the addition of now to any links and transferring flow from vertex 10another

vertex. For a comprehensive discussion of such problems we refer to

Caccetta et a!. [4] and Ahuia ct al. [1'I.. .

2

,

The residual network, which is capable of executing almost parallt:l

edges algorithms and deducted the shortest path in terms of algorithm

defined in equation (4.2). is proposed. The interconnection between the

vertices in one direction connected only to vertices in the previous one and

the next vertex.

A rnlnlffiUm cost tlow is found as they converge and solves the

problem in equation (4.2), there after also solves the problem in equation

(4.\) and this shortest path is derivative free and actually act as a merit

function.

1.2 An onn-iew

There are four chapters in this dissertation. In the first chapter, some

definitions in graph theory have bcc:n given. In the second chapter, some

optimization problems in linear and non-linear programming and a graphical

model of some optimization probkm have been discussed. In the third

chapter. some search algorithms from finding distance from one vertex to all

other vertex in the graph have been considered. Especially it has bccn found

decompo~ition with depth first search method with examples. Also it has

been solved the traveling ~alesman problem using closest insertion

algorithm. In the final chapter, a residual net\vork problem, which is a new

approach for finding a minimum cost flow has been considered.

3

"

,

1.3 The Definitions

Some definitions and examples III graph theories that have been

diseu~sed for our study.

Definition 1.3.1 (Graph):

A graph r; consists of a pair (j = (V(G). ;;;(C»), where V(C} is a non-empty

finite sel whose elements are called nodes or vertices and E(G) is a set of

unordered pairs of distincl elements of V(G). The vertices v" V,I E V(G}

associated with edge e,,! E ;;;(17) are called the end vertices of e, j'

Observe that this definition permits an edge to he associated with a vertex

pair (v,.v,).

Definition 1.3.2 (Directed graph) :

A directed graph G is a pair (V, c), where V is a finite set and E is an

associated relation of V. The set V Is called the vertex set of G and Its

elements are called vertices. The set E is called the edge set of G and Its

elements lire called edges. Figure 1.1(a) is a pictorial representation of a

directed graph on the vertex sel {I, 2, 3, 4}.

Definition 1.3.3 (Undirected graph) :

In an undirected graph G = (V, 10), the edge sel Ii: consists of unordered pairs

of vertIces. rather than ordered pairs. That is, an edge is a set (u, v), where 11,

vEVand u;t v. (u, v) and (v, u) are cunsidered to be the same edge In the

undirected graph. Figure 1.1(b) is an undirected graph on the vertex set {l,

2,3,4}.

,

•

Fign•• l.l("). Dicoclodgmph

Definition 1.3.4 (Walk) :

A walk in a graph (J is a finite sequence

Henre 1.1(b). Vndiro<tcd g,gph

whose terms are alternatively vertices and edges such lhat, for 1 ::;;i S; k the

edge e, has ends ",_. and v,. Thus each edge e, is immediately preceded and

succeeded by the hvo vertices with which it is incident. We say that the

above w is a "0 -v, walk or a walk from 1'0 10 ",. The vertex 1'0 is called

the origin oflhe walk W, while v, is called the terminus of w.

"

I'igurc 1.2

In figure 1.2, IV ,= ", e, v, es 1', e,o "J e, ", e, v, and IV2= v, e, "2 e, v, e, 1'2 are both

walks, of length 5 and 3 respectively, from V, to ", and from ", 10 ",

respectively.

5

•

Delinilion 1.3.5 (frail) :

Tfthe edges C].C2," ,Ct of the walk w ~"Oe,v,e2v, "'e,", are distinct then w is

called a trail.

Definition 1.3.6 (Complete Graph) :

A simple graph G in which each pair of distinct vertices is joined by an edge

is called a complete graph of G. Thus, a graph G with p vertices is

complete if it has as many edges as possible provided that there are no loops

and no parallel cdges.] f a complete graph G has p vertices V,, v2,' " V p' then

The complete graph of n vertices is denoted by K".

6 cdgcs:; cdgc~

00-----00•

10 edges

Figur< 1.3 The complelo groph. on.1 u,o.1 5 ,'e"tic«

Definition 1.3.7 (Nnll Craph):

A graph of order nand sizc 7£ro IS called a null graph of totally

disconnected graph, and is denoted by K". Thus F.(K"l ~ ~.

The following are the examples of null graph up to the order five:

(i) (ii) K,:: (iii) K
•

] .. . (0)-"
)v K,: ••

•
(V)K,:::

6

Every vertex of a null graph is an isolated vertex. Further a graph of order n

is a null graph if and only if it is a regular graph of regularity zero.

Definition 1.3.8 (Paths and lengths) :

A path of length k from a vertex 11 to a vertex u' in a graph G = (V, E) is a

sequence of vertices such that 1/= "0' u' = v! and (",.,. v,) E~' for i= I.2,"',k.

The length of the path is the ntlmber of edg<:sin the path. The path contains

the vertices v". v" ... , "k and the edges (v", ",). (v" v,) •.... (vk_'. "k)' If there is

a path p from 11 to 1/', we say that u' is reachable from 1/ via p, which we

sometimes write as 1/---l:.....o,u' if G is directed.

Definition 1.3.9 (Simple path) :

A path is simple if all vertices in the path arc distinct. In figure 1.4, the path

<I. 2, 3, 4> is a simple path of length 3.

,

,
Figuro 1.4

Definition 1.3.10 (Cvc1e) :

In a directed graph, a path < "0" V,,'-, "j > tbrms a cycle jf Va=v, and the

path contains at least one edge. In an undirected graph, a path

< Veo' v" --- --, ", > forms a cycle if Vo = v, and v" v,.' v, are distinct. For

example in figure 1.5, the path <1 23 1> is a cycle.

7

2

Definition 1.3.11 (Cnnnected graph) :

An undirected graph is connected if a path connects every pair of vertices.

"[he connected components of a graph are the equivalence classes of vertices

under the "is reachable from" relation. The graph in tigure 1.5 has connected

components {l, 2, 3}.

Definition 1.3.12 (Strongly connected graph) :

A dircctcd graph is strongly connected if every two vertices are reachable

from each other. The graph in tigurc 1.6 has a strongly connected

component {I, 2, 3. 4},

4
Figuro 1.(,

"

3

Definition 1.3.13 (Sub graph):

A graph G' '" (V', E') is a sub graph of G'" (V, E) if v' f: V and E' f: E. Giwn

a ~el V' f: V, the sub graph of G induced by V' is the graph G' '" (1". E')

where

F' "'{(u. V)E E cu. vEl').

The 5ub graph induced by the vertex set {I, 2, 4, 5} in figure 1.7(a) appears

in figure 1.7(b) and has the edge set {(1,2),(2,4),(2,5),(1,5)}.

4
lIigun'1.7(b)

j

3

5 4

}';gun'1.7(a)

Definition 1.3.14 (Parallel edges):

Let G be a graph. If two (or more) edges of G have the same end vertices

then these edges are called parallel. In the figure 1.8 the edges e] and e2 are

parallel.

"

Figuro 1.8

<,

Definition 1.3.15 (Subgraph obtained bv the removal of the vertex Vi..t

Let G == (V. E) be a graph. Let ", E V. The subgraph of G obtained by

removing the point and vertex V, and all the lines incident with V, is called

tJ:e subgraph obtained by the removal of the vertex v, and is denoted by

(~-v,.

Thus if (j-v,~(V"t:,), then V,~v-{",} and E,~{e/fEE and v, 1S not

incident with cJ, and G - Vi is an induced subgraph of G.

Delinition 1.3.16 (Complement of a granh):

The complement G of a graph G is the graph with vertex set V (G) such that

any two vertices arc adjacent in (j jf and only if they are not adjacent in G,

G is said to be self complementary graph if G is isomorphic to G.

Definition 1.3.17 (The incidence matrix):

'I'he incidence matrix of a directed graph G == "(v, E) is a IVi x lEi matrix
B ~ (b,!) such that

1
-1 if edge j leaves vertex i

h'i == J if edge j enters vertex i

o otherwise

Definition 1.3.18(Transpose ofa graph):

The transpose of a directed graph G == (V, to) is the graph 01 ~ (V, 1'."1) where

r,.T ~ {(I', uj E V" V:(u. v) EEl. rhus, 0' is 0 with all its edges reversed.

10

Definition 1.3.19 (Neighhorhood Sets):

Two vertices joined by an edge are said (0 be adjacent or neighbors. The set

of all neighbors of a flow vertex u of a graph G is called the neighborhood

set of u and is defined by il/(u). The open neighborhood of u is

}\'(u) _ Iv E v: u. v E II}

and the closed neighborhood of u is,
,vr1/1- {u} U .I\'(u).

Definition 1.3.20 (Adjacency -matrix representation) :

For the adjacency-matrix representation of a graph G "" (V, E). WI; assume

(hat the vertices are nl~mbered I, 2, ,.. I VI in some arbitrary manner. The

adjacency-matrix representation of a graph G then consists of I VI x I VI
matrix A ""(a,J such that

JI if(i, j)EE
aij =10 othenvise

Definition 1.3.21 (Single connected graph) :

A directed graph G ""(V, f!.) is singly connected if !/--H implies that there

is at most one simple path from u to v for all vertices 11, VE V.

Definition 1.3.22 (Fusion) :

Let 11 and v be distinct vertices of a graph G. We can construct a new graph

(;, by fusing (or identifYing) the two vertices, namely by replacing them by

a single new vertex x such that !:,veryedge that w.as incident with either 11 or

v in G is now incident with x, ie., the end 11 and the end v become end x.

Thus (he new graph G] has one less vertex than G but the same number of

edges as G and the degree of the new vertex x is the sum of the degrees ofu

and v.

We illustrate the process in figure 1.9 and 1.10

II

•

"

e, d
Fi~urc 1.10

Definition 1.3.23 (Acyclic graph) :

A graph G is called acyclic iCit has no cycle.

1,
Fig"r•..].]l

5 vertices

4 vertices3 vertices

5 verliccs

•
1 vertex

Definition 1.3.24(Trcc of graph) :

Let G be a graph.lf G is a connected acyclic graph. then it is called a tree.

• • •2 vert ice"

Definition 1.3.25 (Root) :

A di~tinguishcd vertex and for a branching the vertex from which every

other is reachable is called the root of graph G. In the figure 1.13, ., is the

root oCthe tree.

12

Definition 1.3.26 (Network) :

A ndwork .71'is a weakly connected ~il1lpledigraph in which every link 1 of

N has been assigned a nonnegative integer c(l), called the capacity of I.

For a general network, a vertex s is called a source if it has in degree 0

v,chilea vertex I of N is ealled a sink if it has out degree D.Any other vertex

of N is called an intermediate vertex.

H~" r. 1.13.A -,".(work

Definition 1.3.27 (Flow) :

A flow in a network N from the source s to the sink I is a function /

which assigns a non-negatiVI; intcgl;r to each of the arcs 1 in N such that

1. (Capacity constraint) /(1) ~ c(l) for each arc I,

2.. The total flow into the sink I equals the total flow out of the source s

eod

3. (flow conservation) for any intermediate vertex ", the total flow into

" eqllals the total flow out of x.

Definition 1.3.28 (Saturated and Unsatu rated Flow) :

The walk IV is said to bl; J saturated if i(W) = o. I denote the increment of

flow, and if i(IV) > o. then the Ilow is called unsaturated flow.

Definition 1.3.29 (Labeliug) :

Assignment of integer~ to vertil:es is called labeling of a graph.

Definition 1.3.30 (Arc) :

Directed edge (ordered pair of vcrtice~) is called an arc.

Definitinn 1.3.31 (Convex sct of graph) : The flows in a network form a

convex ~d~o thal jrJl and); are flows, then so is f, +(l-a)f, for all a in the

range 0:0; a S L

Definition 1.3.32 (Shortest-Paths Tree) :

A shortest -paths tree rooted at ,I" is a directed subgraph (i' = (V'. E'), where

v' <;;; v and t," <;;; I,' such that

1. V' I,; the set of vertices reachahle from s in G.

2. C' [OnTIS a rooled tree with roots and

3. for all VE V' the unique simple path from s to v in G' is a shortest

path from ,I" to v in G.

Definition 1.3.33 (Shortest Path Weight):

The shortest path weight from 11 to v is defined by

5(u,v)= rmin{w(p): U-.£-H ifth~reisapathfromutov)
100 otherWIse

Definition 1.3.34 (Ancestor) :

In a rooted tree, a vertex u along the path to the root is called an ancestor.

Definition 1.3.35 (Cost) :

Thc name of the objective function for many weighted minimization

problem is called cost function.

14

o
!

Definition 1.3.36 (Connectivity ofa graph):

The connectivity k or a graph G is the minimum number of vertices whose

removal results is disconnected or trivial graph. A graph G is said to be n

connected if k 2;n. Two points u and v of a graph are said to be counce/cd if

there exists a u - v path in G.

Definition 1.3.37 (Cut point and bridge) :

A cut point or a graph C is a point whose removal increases the number of

components. A bridge of a graph G is a line whose removal increases the

number or components.

Definition 1.3.38 (Minimal spanning tree) :

A spanning tree with the smallest weight in 11 weighted graph is called

shortest spanning tree or shortest distance spanning Iree or minimal spanning

(ree.

Definition 1.3.39(Cut-Sets) :

In a connected graph C. a cut-set is a set of edges whose removal from G

leaves G disconnected, provided removal of no proper subset of these edges

disconnects G. For instance, in fig 1.14 the set of edges {a, c, d,J} is a cut -

set.

15

••

g

a \

h

Figu,e 1.14

k

h

Definition 1.3.40 (lndegree and oo.degree) :

Let v be a vertex in the digraph D. The indegree ;d(,,) or LV(V) of" is the

number of ares of D that have v as its head, i.e., the number of ares that "go

to" ".

Similarly. the outdegree ode") or 0(/1'(1') of v is (he number or arcs of D

that have ,- as its tail i.e., that "go out" of ".

Thus in the digraph of figure 1.15, we have

Id(s) = O.;d(v]} = 2. ,,/("2) = 1

where

odes) = 2,0<1("1) = 1,0d(I',) = J
od(v,) = 2,od(v,,} = 1.0<1(1) = 0

16

Definition 1.3.41 (Separating Sets) :

Let u and v be two distinct vertices of a graph G. A set S of vertices of G.

containing neither u nor v, is said to be u-v separating if the vertex deleted

subgraph G-S is disconnected with u and v lying in different l:omponents. Tn

this case. S is also said to separa!e u and v.

Similarly. a sd F of eJge~ of G is said 10 be u-v separating if the edge

deleted subgraph G-F is disconnected with u and v lying in ditTerent

components. In this l:ase, F is said to separate /I and v.

17

II

Chapter Two

Linear And Nonlinear Programming On Graph

2.1 Introduction

In this chapter some relations on linear and nonlinear programming

and reduced form of optimIzation problems into Graph model arc gIven.

Various models about these relations have been proposed in Cotle et al. [7J,

MangasarIan et a1.[9J, Newman [12J, Saunders et aJ. [20] and Yamada et al.

[22].

The general problem of linear programming is to optimi;-:ca linear functjon

subject to linear equality and inequality constraints. In other words, it is need

to determine the values of XI' Xl' """, Xn that solves the program.

"'minimize z= LC,x,
,~I

"subject to I;a"xj <;;h,.
1=1

Here C" h, and a'i are known as real numbers.

Definition 2.1.1

A vector (XI' x,, ,x"l' E R" is called a feasible solution if the vectors

satj~fy the constraints. Here (.,-r denotes thc transpose.

Definition 2.1.2

A feasible solution is said to be an optimal solution ifi! gives the minimum

value of the objective function provided the minimum value exists.

Lemma 2.1.3

The constraint set T is convex.

Proof:

Letfbc a convex function on a con,;!raint set T E R" . Then for every k € R

we can define the sets.

r _ {x :xE T, j(x) s; k}

To show r is convex, let

x,ET.x2ET

Let T is convex. Then

hl+(!-l)x,ET for OS;A51

j(x,)S;k, j(x,)s:k

by the cQIlvexityproperty.

Now, using the convexity of r un T, we get

f(..lx, + (1- A)x)) s; A/(x,) + (I - A)f(x,) s; k

Hence,

That is, T is a convex set. This completes the proof of Lemma 2.1.3.

Definition 2.1.4

A vector x' E X is global minimum of f over the set X if it is no worse

(han other feasible vectors that is

f(x'}5,f(x) XEX.

A vector x. E X is a local minimum off over the setX if it is no worse than

its feasibk neighbors; that is, if there exists an e> 0 such that

f(x')'S.f(x) XEX

with Ilx-x'II<E.
If both f and X are convex, local minimum is also global.

f(x)

-.i,-,- -,

Figure 2.1 : 1,0f.1 and global n,inima nf/o\'er X

2.2 Necessary and Sufficient Conditions for Optimality

At a local minimum .t', the tirst order variation is considered

V'f(x.)'AY due to a small feasible variation &- is nonnegative. Because X

is convex, (he feasible variations are of the form ,\1;,. x- x', where x E X.

Thus the conditiun V}(,')'Ax",O translates into the necessary condition

Vf(x ')'(x -x') '" 0

for all x E X. When f is convex the following proposition hold.

Proposition 2.2.1 (Optimality condition)

a) If x' is a 10(;(1[minimum of f over X, thtm

vf(x')'(x-x')~O, XEX.

b) If / is convex over X, then the condition of part (a) is also sufficient

for x' to minimize f over X.

2.3 Descent directions and stcpsiLe Rules of minimization problem

Consider the unconstrained minimization problem of a continuously

differentiable function I :R" --l- 1/.

Most of the interesting algorithms for this problcm rely on an

important idca, called iterative descent that works as follows:

We start at some point x' (an initial guess) and successively gencrates

XL, x", -.. such that f is decreased at each iteration, that is,

((x"') <; I(x'), k =0.1,

In doing so, one can do successively improve solution and may decrease I

all the way to its minimum. In this regards we define a general class

algorithm'; based on iterative descent method. Mangasarian et a!. [6]
proposed an algorithm.

X
hl =x' +a'd'. k =0. I.(2.3.1)

where, if 'V.{(x')' ~ 0, the direction d' is chosen so that v/ (x' J' '" < ° and the
stepsize a' are chosen ~obe positive. If Ilf(x') = 0, then method stops, that

In this respect the improvement cost functions takes the fonn

I(x' +a'd'j < I(x'). k = 0,1,

"

Fig"r< 2.2 Uerd,i,'. descent fot rni"irnjzin~" fnnction f
Each vector in thl; generated sequence has a lower cost than its predecessor.

2.4 Systems of difference constraint into graph model

It is easy to interpret the systems of difference cunstraints of linear or

non-linear programming from a graph theoretic viewpoint. By using

Bellman-Ford idea in a system, Ax:;;b ofdifJerence constraints, the nXm

linear-programming matrix A can be viewed as an incidence matrix for a

graph with n vertices and m edges. Each vertex v, in the graph, for

i~J,2,"'.n corresponds to one of the n unknown variable X" Each directed

edge in the graph corresponds to one of the m inequalities involving two
unknowns.

In the following way Bellman-Ford converted the linear functions into graph
method.

For a gIven system Ax:;; b or difference eonstraint~, the corresponding

constraint graph is a weighted, directed graph G == (V. E) where

V ~ {"t,. v] ," .', v.}

F.={(v"l',):Xj-X, S;h, ;SUCOnSlmint}

Some important theorems, lemma & definitions are givcn in the following,

which already have formulated as graph model from the linear and non-

linear programming of minimization problem.

Theorem 2.4.1

Let f: R" --j. R be a function defined over the graph G. Let p = {X, »}

dcnote a partial ordl:r, where X = {x,',", xnJ is the set of variables. Then

f(A)? f(B), for all A = (a". " a,,} majorizing B = {hi' ''', h..l on P if and

only if f is a function such that for every I, J with x, »X
j
,

ar fJj_._~-
Ox, ax I

over all X E (J.

Lemma 2.4.2

If A is submajorized by Bon r, there exists a set C={c1, C1, "",cn)' where

c, ;;"0 for all j. such that A+C is majorb:ed by H on P.

Theorem 2.4.3

Let I: R" --j. 1/ be a monotone non-increasing function in each variable, with

the Graph G. Denote by l' = {X, »} a partial order 011the set of variables

X = {x, ... J,.}. Then the following relations are equivalent

(i) for every A. H ~ R" such that H submajorizes A on P , we have

f(A)? I(B).

(ii) for ever) i,j sueh that x, »x
J

we have that

over all X E (j,

Proof.

To prove that (i) implies (ii), assume:that I(A)?:.I (R) for all A submajorized

by 1J on J'. Then, in particular,

I(A) ?: 1(11),

or equivalently,

- f(A)~-f(R)

for all A submajori7'ed by R OIl P, from rheorem 2.4.3, it follows that for'

all J,j sueh that x, »x
l

we have

or equivalently

foral! XEG.

1n order to prove thaI (ii) implies (i), assume that (ii) holds and A is

sllbmajorized by Bon i'. From Lemma 2.4.2, there exists nOll-negative C

such lhat A +Cis mojorized by BOllI' . From Theorem 2.4,3, it follows that

-/(A+C)~-f(fi).

But I is monotolle non-increasing for all x,, so we can eondude that

I(A)?: I(A +C)?: I(E).

This completes the proof

2.5 Optimal Routing ofsimple~method in a communication

Network using graph model

Consider the case where the constraint set is a simplex

X 0 {Xi x '?utx, == r,,,'
where r> 0 is a given scalar.

There is a straightforward generalization of this problem in graph model

which has been investigated by Bertsckas [8].

It is i lJustraled the graph representation of path flow of the simplex method

with Figure 2.3.

Consider a directcd graph, whkh is viewed as a model of a data

communication network. It is also given a set ttl of ordered node pairs

@=(i,j). "rhe nodes i and .i an; referred to as the origin and the destination

(OD) of OJ respectively, and", is referred 10 as an OD pair. For cacha>,

given a scalar r~refereed to as the input data of ttl. In the context of routing

of data in a communication network. r" is the rate of data entering and

leaving the network at the origin and the destination of w. respectively. The

communication configuration is to divide each r '" into the paths from origin

to destination in a way that the resulting total are tlow pattern minimizes a

suitable cost function, we denote

D" : A given set of paths that stmts at the origin and ends at the

destination of (~. All arcs .< on each of these paths are oriented in

the destination from the origin to the destination.

v~ : The portion of r", assigned to path P, also the flow of path P.

The collection of all path flow

{vpIW"W,PED~J

must 5atisfy the constraints

L LVp "'r., \1WEW
peD,

The total flow f~of an; (i, j) is the sum of all path flows traversing the arc:

j~ L
•,11ra'h I'
w","""n~\i,jl

,,..
Consider a cost function of the form

LJ'IUI)'

The problem is to find a set of path flow {vp } that mllllmize this cost

function subject to the constraints of the simplex. This is the minimization

over a simplex.

Origin af
OD p." t"

Figuro 2.J Comtrnin(, for U•• now, of 011OD p.ir (J).

LleS[;na(ion of

OD pair W

The path flows vI' of the paths l' E /)ee should be nonnegative and add up to

the given input r" of the 0)) pair.

r\

from A to A' , when:

•

Definition 2.5.1

For P = IS,»~} and A = {a,,' ".an}, a set of weights for S = {;,. "', '<nJ, choose

8"S} 'Os such that S, »8," Then a flow from ", to ilj is a transformation f
t"

a''''a-Ii
•• •• •

a;=a,+Ii,forsome ;;>0

ai=uk' Vk'l-i,j.

The following corollary is important for network flow problem.

Corollary 2.5.2

Assume that p is a linearly ordered set. Then, A majorizes R on p if and

only if there exists an "X II triangular matrix Ai = [m,,] such that

••
mil;:: 0, m,! = 0 for all i < j, I m,} = 1 and B = MA,.

)=1

Matrix lvf can be viewed as a flow malrix where m,p, is the amount of flow

from p, to I:.

f\

Chapter Three

Path Algorithms And Spanning Trees

3.1 Introduction

In this chapter most fundamental graph algorithms conccrnmg

distances are those dealing with shortest path in a graph. In fact most

algorithms involving distances and carrying flow over distance use basic

search techniques of graph theory. Many typical rouling algorithms send

flows through shortest path without accounting for derivatives and thus

bifurcating t10ws.We have discussed some standard shortest path algorithms

using some methods. We have solved the traveling salesman problem using

closest insertion algorithm and dcscribed elaborately the minimum spanning

tree with an example. First of all we have defined shortest path.

3.2 Shortest path

Suppo~e every arc Ul' has been assigned a certain length I(uv). Then

the length of u-v path with edge sequence e],e,,'" is the sum

/(e,)+/{cl)+ .,+l{e,)of thc lengths of all edges of that path. If the source

vertex ,< and v is any arbitrary vertex then we define the shortest path

distance d{s. v) from s to v as the minimum number of edges in any path

from vertex s to vertex v, or else 01;. if there is no path fi'orn s to v. A path

of length 6(,'.v) from s to l' is said to be a shortest path from s to v and

there arc many methods or techniques in graph theory to calculate or to

obtain shortest path~. Before showing that search method actually computes

shortest path distances, we investigate some important pr()periy of shortest

path distanl:es.

Lemma 3.2.1

I,et G~ (V, nbe a directed or undirected graph and let; E V be an arbitrary

vertex, then for any edge (U.V)Et:, ,j"(s,v)~6(.I',u)+w(".v), where w is a

weight function.

Proof. If "is reachable from .1', then so is v. In this case the shortest path

from ., to v cannot be longer than the shortest path from sto" followed

by the weighted edge (".v) and thus tbe inequality holds.

3.3 Weighted shortest path

In a shortest path problem, we arc given a weighted directed graph

G~ (V.E) with weight function w: £ --4 R mapping edges to real valued

weights. The weight of path I' ~<1'0' VI " ", v. > is the sum of the weights of its

constituent edges:

•
,,'(P)~L"'(V,~I'V,).

1=1

By definition, we define the shortest path weight from" to v by

1
'" : if there is no path fmlll" to v

O(u,v)~minw(P):,,~v ifthcrcisapathfromutor
o : othc1"\"isc

,"

•

A shortest path from vertex II to vertex v i~ then defined as any path P

v.'ith weight and written as

w(P)= S(u,v).

Edge weights can be interpreted as matrices other than dIstances. They are

often used to reprc~ent time, cost, penaltie~, or another quantity that

accumulates linearly along a path, which is shortest distance.

The following lemma and corollary states the optimal-substructure property

of shortest paths more precisely.

Lemma 3.3.1

Sub paths of shortest path~ are shortcst paths.

t

Proof. If we decompose path !' into vl-'-'-' ~l", P")V , " h' l"" t en

to vj "'11thweight w(F;',J<w(p,,).Then ", P") v,
r ,
",vI "lV, is a path

from v, to ",whose weight w(p],)+w(F;',l+w(P
j
,) is less than w(P) which

contradicts the premise that I' is a shortest path from v, to v,.

Curulla'1" 3.3.2

Let (j = (V,E) be a weighted, directed graph with weight function w: E -) R .

Suppose that a shortest path p from a source s to a vertex l' can be

decomposed into s-'-.u -) v for some vertex v and path P'. Then the

weight of a shortest path from .I to V is "(.1', v) = 5(s, u) + w(1I, v).

Proof. By Lemma 3.3.1, it can be proved that sub path P' is a shortest path

from source s to vertex ".

Thus

()(s.v) ~ ••.(1')

=w(p')+w{u,v)

= 8(s. u) +w{u. v).

3.4 The structure of a shortest path with examples

Shortest paths are not necessarily umque. Using adjacency matrix

W = (w'l) we characteri:r;e the structure of an optimal solution. A natural

combinatorial optimization problem is the shortest path problem and it has

an input directed graph, each edge with a given length. Now 10 construct a

shurtest path f' from vertex i to vertex I and suppose that f' contains at

most III lOdges. Assuming that there are no negative-weight cycles, III is

finile, [f i = j, then l' has weight 0 and no edges. If vertices , and j are

distinct, then we can decompose path P into i~k --4 j. where path r'

now contains at most m -I edges. P' is a shol"test path rrom ; to Ie and from

lemma 3.3.1 and Corollary 3.3.2, we have

S(i,j) = S(i,k) + W
kl
•

rigure 3.1 illustrates a directed shorte5t path with positive weights and

computing not only shortest path weights, but the vertice~ on the shortest

path5 a5 well.

I

",

Fi~"TC3,1 (nj, A wci~htcd, dir<C1OOgropll with ,horlest poth weights froln sOllr« S

o

",

J.t (b). Th. ,h"ded odge>form ,hort.,t poth, di,t""co,

Calculation of the shortest path weight of ligure 3.1

From the definitIon of weighed shortest path, we gel

ci(.,-,u) = w(.u'l = 3

and 6(s.x) '" h'(s, u) +w(u,x) = 3+2= 5(u~ing corollary 3.3.2)

Thus <i(s, r) = d(s,x) + H(X, v) = 5+4 = 9

and (~(s,y) = .J(.\', v) + ••.(v, y) =9+ 2= II

Thus the:shortest path from \' to y is < ,I". u,x. V. Y > with weight 11.

In most cases when describing algorithms we shall assume that

adjacency lisb are used to describe any grapb as an input to an algorithm.

When using such an algorithm, if the graph is not already labeled, simply

label the nodes and record thc adjacency list for input.

An example of a graph and its adjacency lists is given below in the

figure 3.2 and the table.

b

d

f

Figurd.2

,

A grliph lind its adjacency lists

Node Adjacency list
, b.c,d

b ,
, a.d,e,r

d a,c,f
, I " f
f I c,d,e

,

3.5 Breadth-.'irst Search (BFS)

Thomas'ct al. [21] discovered breadth-first search in the context of

finding paths through mazes. BFS is a fundamental search technique that

traces a rootcd spanning tree in Ii connected graph so that the distance from- - . .
the root to each node in the tree corresponds to its distance in the original

".'<C" ,
graph, Thc basic id;a~is to begin at thc root and find its neighbors and then, • ,L'.. ~,. ," '

neighbors, and'.S9.on, until one has spanned throughout the graph and•
reached all noc!es.',Since in most applications where BFS is used, one wants, , .
to know'the distane.c from the root to each other node, we present a form of

I I' •

the algorithm. which record~ the distances. The input to the algorithm is the, ,
li~tof nodes, their adjacency lists, and the label of the root. Assume that the

distance S(s,v,l, from the root s to nodc I'~is stored in array <i[v].Let N[v]

denote the adjacency list of node v,

I

3.6 The Breadth First Search (BFS) Algorithm

Let G be a graph and let ',I be two spl;eified vertices of G. We will

now describe a method of finding a path from s 10 I, if there is any, which

uses the least number of edges. Such a path, if it exists, is called a shortest

path from s to I.

The method assiglls labels 0, 1, 2, 3, 10 vertices of G and is called

the Breadth Fir.,t Search tedmique. In Clark et al. [6], the following

algorithm is given bdow:

Step 1. Label vertex .\ with O. Set 1= O.

Step 2. rind all unlabelled vertices in G, which arc adjacent to

vertices labeled i.Ifthere are no such wrtices then t is

not connected to s (by a path). If then; are such vertices,

label them i+1.

Step 3. If t is labeled, go to step 4. If not, increase I to i+ I the:ngo

to step 2.

Step 4. The length of a shortest path from ,. to 1 is i+ 1 stop.

0, ,

I.b

Figure 3.3

2 ,,

2,d

3, t

,

First s is labeled o. The a am! h are labeled I. Then c,d are labeled 2 and t

is labeled 3. the level ofa shortest path from s to I is 3.

3.7 Complexity ofBFS

The complexity ofBFS on G= (m,n)graph. where m=1V 1and n =1t.'1

IS O(m+n). The BFS runs in time linear in the size of the adjacency list,

representation of (J .

We now discuss the Depth first search and its properties. DrS IS a

po\verful technique to obtain shortest path,

Depth first search

Depth first search (DFS) begins at the root and trace out a path from

the root until one can go no farther without revisiting a node. Then backtrack

along the path lllltil reaching the first node with an alternate route available

and proceed forward again. Repeat this until one can go no farther. Like

BFS, a depth-first scarch traces a sp(lnning tree in a conneetcd graph, but in

a different manner. One might think of DFS as the wayan intel1igcllI but

determincd mouse might find its way through a search.

The following DFS algorithm is the basic depth-first search algorithm.

DFS(G) Algorithm

Procedurc !JFS(v)

begin

1(1')=1

i = i+ 1

(tracks the order in which nodes are visited)

while .1""(1')'" ~ do

for Uf.N(V)do

begin

r = TU{u. v}

remove u from all adjaclOncy lists

Df:s'(u)

end Df~5

begin (dri vel' algorithm)

input adjacency lists and root

T = f/; (stores edges of the tree as thcy lire selectlOd)

for vlG do

l(v)=O

I(root) = 1

i = 2

while there exist some" for which i(u) =0 do

for highest labeled node v ",..-ithN(,,) '" if> do

begin remove v from all adjacency lists

DFS(v)•

I

The backtracking along a path in the tree cach time control and is returned to

the driver program and one looks for the highest labeled node that has

unvisited neighbors. Note as with fJFS, removing a node W from all

adjacency lists in this algorithm is easy because N(w) tells which lists are

involved. Algorithm can easily be modified to determine whether (J is

connected simply by testing for nodes v that still have I(v) = 0 when the

algorithm terminates.

Besides creating a depth first tree jJFS also timestamps for each vertex.

Each vertex " has two timestamps: the first timestamp dlv] records when v

is tir:,t discovered and the second timestamp (Lv] records when the search

finishes examining l' '.\"adjacency list.

Corollary 3.7.1 (nesting of descendants' intenals)

Vertex" is a proper descendant of vertex u in the depth-first forest for a

(directed or undirected) graph (J ifand only if d(u) < de,,) < j(v) < ((u).

The proof has been illustrated in Thomas et al.[21].

The DrS algorithm is illustrated by an example in Figure 3.5. [n the given

graph G of five vertices and scven edges, the starting vertex s is specified.

T11eorder in 'A'hichthe edges are explored is given in Figure 3.5 (b) and for

this order of traversal D is given in figure 3.5 (e)

FigureJ,S(.) G'"l'b G b.for. DFS

I

(s, a) :hranch

(a, b) :branch

(e, s): frond

(d. b): frond

(e, d) :brdlleh

(b. c): hraneh

(d, a): frond

Fi~"TO3.5(1))Order ill "hkh edge ",ere sc.""ed

5

3

~i~"",3.5(e)Gr"ph G "ner lli'''

We now de~cribe the closest insertion algorithm. The description

gives the idea ofthc distance ora vertex v from a walk 11". This is defined to

be

d(v,Wi =min {d{v,u): u is a vertex of W}

•

The vertex 1', not in W, is then said to be closest to W

if d(vJY}":; d(x,W) for any other vertex x not in W,

We describe the way in .•.••.hich a new vertex is inserted into a cycle by

using bold type. We also solve the Traveling salesman problem for the

complete weighted graph using elose~t insertion algorithm.

The closest Insertion Algorithm:

Step 1.

Step 2.

Choose any vertex VL as a starting vertex.

From among the 11 -[vertices chosen so far, find one,

say 1'1' which is closest to v, . Let W1denote the walk

Step 4

Step 3 From among the 11- 2 vertices not chosen so far, find

one, say,,), which is closest to the walk W,= V,VIVI'

Let w] be the walk 1'11')",1',.

From among the 11-3 vertices not chosen so far, find

one, say v," which is closest to the walk W). Determine

which of the walks (cycles) 1',1',VJV4V[, 1',1'21'4Vl VI"

1',1',1', Vl", is the ~hortest. Let W,denote the ~hortest one
and relabeled it. if necessary, as v,V2v,v, VI'

Step 5 From among the 11-4 vertices not chosen so far, 'find

one, say v, which is closest to the walk W,.

Determine which of the cycles v,v)~\V,Vsv,. VLV1VJI'JV,V,_, v,VlVS")V,v!,

Let W
j
denote rhe shortest one and relabeled it, if necessary, as v1v2".,v,v,v1

continue in this way to eventually arrive at.

Step n Denote the remaining unclosen vertex by VIT and

determine which of the cycles v,v2'" v"_,v,,v1'

vv ... V v is shortest1 no-I I • - .

Let IVn denote the ~hortest of these cycle~.

Since our target is to solve the Traveling Salesman Problem of the complete

weighted graph. For this purpose we first define the Traveling salesman

problem. Details on TSP have been described in Narsingh [11].

Traveling Salesman Problem (TSP)

We can represent the sa1c~man's territory by a weighted graph

G(V,E). The vertices correspond to the towns and two vertices are joined by

a weight cdge if therc is a road connecting the corresponding towns, which

does not pa% through any of the other towns, the edges weight representing

the lengths of the road between the towns. The sales man finds his optimal

distance from a starting vertex and visits each vertex and again comeback to

his first starting vertex. He continues this process until every vertex visited.

And this system is known as traveling salesmml problem.

We illustratl; Traveling Sabman problem with an c~ample and solve it

using closcst insertion Algorithm.

Let a traveling salesman's territory includes five cities A,B,C,D and E

which corresponding to thc vertices. Each road connecting a pairs of vertices

with v,'cights w. His job requires him to visit I;ach city. So, it is required for

him to plan a round trip by car enabling him to visit each of the cities exactly

once and minimize the total distance traveled. We wish to find an ordcring

of the five cities starting wilh vertex A so that if he visils five vertices only

once in this optimal order, thl;n the lolal distance is smallest possible.

The following figurc 3.5 is a complete weighted graph and A denotes the

starting vertex.

A 5

E

Algorithm (using closest Insertion Algorithm)

Stcp 1.

Step 2.

Step 3.

Step 4.

Let ,'1 = 4

v,=Bisclo~esttoA soW,=v,v,v,=ABA

"J = c is closest to W, (It ha~ distance 10 from A) W) is

the cycle v,v),,)v] =ABCA and has length 5+35+10=50.

V4 = D is closest to Wj (It ha.~distance 15from A) to W].

We find the length of the cycles 1'1"',Vjv. V], V,V, V,V)"" V'V4V)V, vI:

VIV'V'V4V' =ABCDA has length 5+35+25+15=80

v,v2v,v-,", =ABDCA has length 5+40-'-25+10=80

",","Jl'lVI = ADeBA has length 15+25+35+5=80

We choose W, = ABCDA as the shortest one.

Step 5. Vl=1:.:is closest to W, (It has distance 20 from A)

We find the lengths of the cycles V,V,V11'4"51'1' V'V''''V5V4VI,

V,"2", V,V,", = ABCDEA has length 5+35 + 25+ 50+ 20= 135

"'''2'",V'"-I"' =ABCEDA has length 5+35+30+50+15=135

\"11',",",V,v, = AHI,,'CTJA has length 5+ 45+ 30+ 25+ 15= 120

V'V5\',I') ",", = AEBCDA has length 20+ 45+ 35+ 25+ 15= 140

We can therefore conclude that a reasonably efficient shortest path distance

3.8 Minimum spanning tree

Minimum spanning tree IS important m Graph theory, rinding a

spanning tree in a weighted graph such that the sum of the weights of the

edges in the tree is minimum and solves a wide variety of problem.

Definition:

A minimum spanning tree in a eonneded weighted graph is a spanning tree

that has the smalkst possible sum of weights of its edges.

Consider a connected graph each edge of which has a positive length.

A connected subset M of edges is called a tree if there is no cycle in this

subset. A tree is a spanning tree if it connects all the nodes, i.e. there is a

path between any pair of nodb.]t is required to find a spanning tree sum Qf

whose edge lengths i~ the minimum; such a spanning tree is called a

minimum spanning tree. Hence fQrth, we assume that the edge lengths are

distinct.

Fi~lT. 3.6 Example graph for minimnm 'pannin~ tr«

A minimum spanning tree for a connected graph and the weights on

edges arc shown, and the edges in a minimum spanning tree are shaded. The

total weight ofth<: tree is 37. The tree is not unique: removing the edge (6, c)

and replacing it with the edge (a, h) yield another spanning tree with weight

37.

Properties ofMinimum Spanning Tree

Let At be a minimum spanning tree.

• (~) There are n -1 edges in a spanning tree.

• (1'2) There is exactly one path connecting a pair of nodes in

a spanning tree

• (~,) Adding an edge to a spanning tree creates a cycle.

• (P,) Removing any edge from a cycle as in (~,) creates

a spanning tree.

• (P,) Let e be any edge outside the minimum spanning tree.

The edges on the cycle created by adding e have lower

length~ Ihan that of e.

Prim's Algorithm

Prim's algorithm is more efficient to construct a minimum spanning

tree. U~ing prim's algorithm we construct a minimum spanning tree.

Step 4.

Due to Clark et at. [6], we have the following Prim's Algorithm:

Step 1. Choose any vertex v, of G.

Step 2. Choose an edge e, = ",V, of G weh that VI '" ", and C, has

smallest weight among the edges of G incident with "I'

Step 3. Ifedgcs e,.e,."'.C, have been chosen involving

end points v,. V2 ,"', v, ,I' choose an edge e,+, = v] v!

with v; F.{l"" ... ,v"d and v! ~(vl .. _.. v,+,}suchthat

e
i
+

1
has smallest weight among the edges of G

with precisely one end in {VI ,"', v,+,).

Stop after n -1 edges have been chosen otherwise repeat

Step 3.

Chapter Four

Shortest Paths Algorithm respect to Non-Linear
Complementarity Problem

4.1 Introduction

This chapter deals with nonlinear programmmg (minimi;>:ation

problem) with the graph model. The nonlinear complementarity problem

(NCP) is to find a point x E X such that

xTF(x)=O

x;:: O.F(x);:: 0, (4.1)

where "I'denotes the transpose and F: R" --+ R" is a given function (Cotle et

al. [7]. Mangasarian et al. [9J and Yamada et a1.[22]).

Recently thi~ problem has been reformulated as a minimization

problem in order to apply well-developed optimization methods (Cotle et al.

[7] and Yamada et al. [22]). We have shown the equation (4.1) can be

formulated as a graph model and rerormulated as a residual flow problem. In

residual network both the cost and price are effident (Mangasarian et a1. [9J

and Thomas et al. [21]).

4.2 Flow properties in Network

Let G=(V.E) be a flow network, where flow based edges are

connected by weight function W. A weight runction dellned as

o ir I = I

Wj = the weight of directed edge (i. j) E E

"'" ir i7'j andU,j)<lE

In a given network, a flow f is an assignment of a nonnegative

number f'J to every directed edge (i,j) such that the following conditions

arc satisfied,

I. For every directed edge (i,j) E G

f'J :;;:c'f' where e'i i~ the capacity or edges i,j EG

2. There is a specified vertex Ii in G called the souree for which,

'f -'f oJ£.. " £.. ",

Where the summations are taken over all vertices in G. Quantity d is called

the value of the flow.

3. There is another specified vertex t 111 G, called the destination

for whieh

4. All other vertices are ealled intermediate vertices. For' eaeh

intermediate vertex j

LJ;,-LJ'I=O., ,

We are glvmg a general statement about optimal routes with regard to

network topology.

4.3 The optimality principle

,
The optimality principle staIb that if router f is on the uptimal path

from s to t. then the optimal path from any J to K in between sand t

also falls along the same route.

Graph representation of the equation (4.1):

Consider the variables that the flows through I:aeh of edges in G(V,E).

1'1" is a weight function. Let the flow pattern be denoted by a wlumn vector

rand f' = 2..Ii = w, denote the variable vector, where ./' is the derivative,,'
of {. Also let d denote the row vector. Then the problem is to find a flow

that minimize J l'.

Subject to the constraints A' f' = 0

{:<>c,forc>O

and ./2:0, : (4.2)

where A' is the incidence matrix obtained by adding an edge from I to ,,"

(Narsingh [11]). Clearly there exists a parallel edge in the graph model in

equation (4.2). Also the edges in j. c and A' must appear in the samtOorder

(Clark et al. [6]).

We shall show that the equation (4.2) can be reformulated as a

residual network to obtain a minimal flow cost. The author in Yamada tOtal.

[22] has shown that residual function ';olves the nonlinear complementarity

problem.

To construct a residual network as an optimization problem we give

some preliminaries on optimal routing residual network.

4.4 Model and Preliminaries of Residual Network

We consider a flow constraint network G= (V, T:.), whl:re V is a finite

set of vertices and E = I(u.v), E E V xV is a ~et of directed links. A set

1= {I.2,"', n of users which is used as vertices that share the network in the

wa)' that all users ship flow from a common source s to the common

destination I, for each user iE 1 there has some throughput demand WI in

the network referred to as the input traffic of W (W =I 11',). In the context

of routing of data in communication network lV,.' E 1, is the arrival rate of

traffic entering and existing the network from the origin to the destination of

w, Routing objective is to divide each lV" lEI,. among the many path~ from

origin to destination so as to optimize its performance objective. Without

loss of generality we assume that w, > w) > ... > w{ which do users control

(Hlasum et aL [24]), We dl;notc the terms of user flows fi where lEE, uSlOr

routing strategy fi, user stratl;gy space F' and system flow configuration f.

such that strategy space F' should account for the (;Onservation property of

flow at all nodes, that is, for alll EE, we get

Ifi= Ifi+w,.,1'EV
1.''''1'') I,ml")

wherl;

w: = -,,-' w; = ",' and w;. = 0 for l' "- <, I,

The system of flow configuration aims to find a strategy I' E F', which

minimizes its cost. Suppose that associ,tted with I;ach edges of the residual

nel\vork there exists a number d;, I E Ii." and i E 1 which quantified as a cost

variable in the network. The minimum cost depends on the routing decisions

of the other users, described by the strategy profile

l' =(f',. ..p-',. ..,j')

and d' is a function of the system of tlow configuration I. By the

constraint set property, the collection of all path flow Ii must satisfy the

constraint set

H,I "'lV_, I,i ?-O, ,. '" j•......•..•... (4.3)_. ,
Thus nonlinear complementarity prohlem u~ing the equation (4.2) is to find

a strategy profile such that

l' '"arg min d' U:' /').

Definition 4.1

x' E F', a real number (4.4)

User are said to be identical if their demands are eqtlal, i.e., 11" = ",J, i, i E1 .
Definition 4.2

A user is said to be simple if its flows are rouled through links (or paths) of

minimal delay.

4.5 Minimization model of residual network

Let Gr is the resIdual oetwork. Consider the cost function in the form

d:Ii (4.5)

associated with edge 1=(11,1') in the residual nern'Ofk Gj.1t is desired to

construct a flow pattern sending a speeitied value "'" ,.E 1 from source s to

sink t, satbfying the Ilow constraints defined in (4.2) which minimize the

lotal {low cost

"id;/:, ViE-f, lEE

in overall flows that send W units frOlll s to t.

The author in Bertsekas [21 showed that the problem is to find a set of path

t10ws {j;} that minimizes this cost Iimetion subject to the constraints

equation (4.2). We assume that d; is a convex and continuously

differentiable f,metioll.

Now by expressing the total flow ill terms of the path flows in the

cost function in equation (4.5) with constraint sets, the minimization

problem can be fonnulated in terms of the path flow variables Vi}, i E f, I E F

minimize D(f)

subject to Iii' ~"'I' ':II E E

Ii >0,

c;>o,

where e; is the residual capacity and

4.6 Structure of the residual network

Consider the residual network Gf in a system of parallel links with

capacity configuration C. A number of intuitive monotonicity properties of

this network have been established in Korilis et al. [8J and arc summarized

in the following:

Lemma 4.3

Let 1 be the umque flow m the network of parallel links with capacity

configuration C. Then

l. The expected flow of any user i E I decreases in the link number, i.e.,

fl' ::f{ ?;.,.:: fl. In particular, for Ii > 0, Wi; have f,' = I~if and

2. For any link IE H, the nows decrease in the user number, i.e.,

Ii ;:;:f,' ;:;:...;:;:1/ . In particular for j/ > 0, we have j;' = f/ if and

only if ",' = Wi.

3. The residual capacity is decreasing in (he link number, i,e"

c,-f,2C2-j~2 ... 2CIi-I£. In particular /'=1.. if and only if

4. For every user iEJ , the residual capacity c! = c, - fi , seen by the user

on link! is decreasing in the link number, I.e.. c{ ?c; ? ... ?.c~. In

particular, c; = c~ ifand only if c, = Cm'

in a gradient mdhod (for minimization) cach vector in the generated

sequence has a lower cost than its predecessors. Similar to the gradient

method, we decompose the input graph G = (V,E) using DFS technique.

I

4.7 Acyclic decomposition of the graph G == (V,E)

We have decomposed the input graph G==(V,E) similar to the

gradient method. Thomas et al. [21] have considered the gradient method

such as edge set E into T and T, where

and deJined G! == (v,T) and Gb == (V,T) in the residual network and showed

that Gj and G[o are acyclic. In our decomposition we assumed that the set of

increment or now, 'Vf(x), correspond to the addition offiow in the forward

edges and (he set of flow direction d corresponds to the transferring of flow

in the backward edges.

To reduced (his dewmposition into NCP form, consider a node v E V

such that ll'l(v) == {leu, I.")} and (JUT(1') == (lev, w)} of an instance requesting

a spannmg u, It" path via l' in G. We now ~how that the following lemma is

acyclic,

Lemma 4.4

The decomposition of the graph G == (V ,E) is acyclic.

Proof:

Consider an instance that requests a II.w path vIa v III P. Form G by

splitting each vertex x into a path x- _x" ,x+, with x- inheriting all cdges

with heads at x and x' inheriting all edges with tails at x. A spanning 1I,"It"

path in P becomes a 1<, w path in G by replacing each x by the sequence

x- ,xu ,x+ (Narsingh [11l). ConVl:rscly,since a spanning u, \1-' path in G must

visit each xo, it must visit traverse all sequences of the form x- ,XO ,Xi

forwards or backwards. Since no vcrticcs of thc samc sing arc adjacent,

these traversals must all be in the same direction and then they collapse to

the desired u.H' path in P which is acyclic.

In gcncral an acyclic decomposition consists of a sel of trigger

vertices T and a set of vertices T == V - T that forms a subgraph constituting

a large acyclic region with G. This differcnt acyclic decomposition by

trigger vertices is equivalent to that of the feedback vertcx sct, that is, the

graph is decomposed into a feedback set T and its associated acyclic region

T. The successive shortest path algorithms are able to reduce the cost

function. The cost d:(r:) of an cdgc u -> v in P is defined as the cost of

the shortest path of the form II -~ v' for 11E T in the forward edges and

v --+ w in P when WET in the backward edges. In path P, let ['; be the

minimum of all differences [c:(u. v) - f(lI, v)J in for,vard edges and also let

/ ; be the minimum of flows in backward edges. Let J; = mill J ;. Then thc

flow in the nctwork G can be increased by increasing thc flow in each

forward edges and decreasing the flow in cach backward edges by an

amount J;, which satisfy thc optimality conditions defined in Korilis ct al.

[8] and Thomas et al. [21J, i.e., for a flow vector f> 0, we find minCj (P)

which reduced the cost d;U;) with respect to non-linear complementarity

problem when the path is shortest.

From the following algorithm we solve the successive shortest path

distanccs from a sourclO s to destination fusing DFS tlOchnique.

4.8 Successive shortest paths Algorithm

Step I. Initialize pre flow ([;,.1")

Step 2. A linked Iist,L+- V[GJ- {s,l} in any order

Step 3. Let SET be the set of links Ill' In Gr such that

c(u. v) > j (u, v). (T consists of forward links).

Let lET be the set oflinb uw such that ltv, w) > O,(T consists

of reverse links).

Step 4. For such

uEIN(v) with excess e(u»O

doc! = c(u,v)- f(II,") inGr

d 'o f I = mm c.-, i E V,I E E.

Step 5. Using a backtracking procedure, identifying the incrementing

path trom s to 1 in GI.

Stcp 6. Pull (w ET)

transfer j": =mill ('; in the backwards direction,

do b"(s,l) = b"/(u,v) + 0r(v,w) with rcdulOedcost d;U/l.

\\

j

Step 7. do fru.v]<- Jru.v]+ f

Step 8. Repeat until

Cj(U,v) == min cj(u,v), 'df/ >0.

Theorem 4.5

Given a system Axsb of diJTerence constraints, let G=(V.£) be the

corresponding constraint graph. If G contains no negative-weight cycles.

then

x = (S(I'" \',),S(I'" v,)'<'("0' ".,)." ., .,S(l'o' v,))

is a feasible solu!ion for the system. If (j eontaim a negative-weight cycle,

then there is no feasible solution for the system.

Before gomg proof we will introduce a cOn~traint graph with

examples.

In a system of the difference constrain! matrix A where each row of A

contains one I and one -I and all olhers entries are O.Thus the eomtraints

given by Ax" b are a sel of m difference constraints involving 11 unknowns,

in which each constraint is a simple linear inequality of the form

where I",. f"nandlsksm.

Now consider the problem of 5-vector x ~(x,) that satisfics, -, 0 0 0 4
0 , 0 -, 0 " -6
0 -, , 0 0 " ,
-, 0 0 , 0 ,. ,)(I)•
0 0 -, , 0 " 5

0 0 0 , -, x5 '0
0 0 -, 0 ,, -4

Now writing thc above matrix in the in<:ljLlalitie5form

x4 - x, ~ 3 (2)

x, -x, :::--4.

One solution to the difference constraint in equation (2) lS x~(8,4,5,IO,O),

where we have a55L1111edthat Xl ~ o.

We set up a constraint graph with the inequalities (2). The value of

<1(v",v,) is ~hown in e<[(;hvertex"" i=I,2.3.4,5, and 5(1',,1',) denotes the

shortcst distanccs bctwcen pairs of vertices.

Hgure I shows the constraint graph for the sy~telll (2) of difference

constraint (using Bellman-Ford idca)

.'igure I. A feasible solulioll to tbe system is): = (8, 4, 5, 10, 0)

Proof(first part of the thenrem 4.5)

We know

Now let,

"d

6(v,), vi) - 6(V'J' v,) ~ w(vi, v])

6(v".vj)=x/

So Xi -x, ~W("I'V]) •..•..•..•..•........ (3)

which corresponds to the constraint matrix Ax ~ h from the above example

in equation (1) and (2) and also corresponds to the edge ('-"v,J. Thus

is a feasible solution of the theorem 4.5. Now we

show that (second part of the theorem) for the negative weight cycle of the

constraint graph.

For the purpose of negative weight cycles, let the negative weight

cycle be c = {v" "2' l'J"v.J where VL = "k'

•

"roof(seeond part of the theorem 4.5)

Again we consider the equation (3)

[since vi =V1].

Now wc sum the inequalities we get

O:>w(c).

But we have cOllsidered the weight cycle is llegative i.e.

Thus solution for the x must satisfy

0:0:w(c):O: 0,

which is impossible. This completes the proof of theorem 4.5.

4.9 Mathematical form of shortest path distance by Nonlinear
complementarity problem

In Bertsekas [2] the author have been illustrated that optimal routing

directs trame exclusively along paths that are shortest with respect to arc

lengths that depend on the flows carried by the ares. In contrast to the

equation (4.2), we shall show that,

NC? can f()rmulateJ to the shortest path distances which solves the residual

networks.

Poof: From equation (2.3.1) we get

d'=~~~k""_xll Va:CO and k:ct,2),. ..

"
Using Theorem 4.5, letting

x' =0"(1.'.,,",) and x,,1 =S(v,),vJl

which satisfies the differen~e constraint that corresponds to edge (v" v) In

the descent direction of NC?

Thus

=;oJ' =~[o(vu'''Jl-c;(vo,l',l]
a

=~[W(",."J ll=~[w(Pll.
a a

Here we have used Corollary 3.2.3 and Chapter 3(scction 3.3), which proves

that the weighted shortest path b m()n()t()nical1ydecreasing when a -} ce

and has a lower bound. This shows that the shortest path is monotonically

decreasing.

,

References

[1J R. K. Ahuja, T. L. Magnanli ,md J. 11. arlin. Network Flows: rheory,

Algorithm., and Applications, Prentice-Hal!, Englewood Cliffs, NJ, 1993.

[2J D. P. Hcrt,ekas, Nonlinear Programming, Athena Scientitic-1995.

[3J lI. Blasum, W. Hochstattlcr, C. Moll and H. Ricger, Using Network-Flow

Techniques To Solvc An Optimi7ation Problcm From Surface-Physics, J.

Phy, A: Math. Gen. Vol. 29 (1996), pp-459-463.

[4J L. Caccetta and M. Kraetzl, Blocking Prubabilitie, or Certain Classes Of

Channel Groups, Vishwa International Publications, 1.1.No. 10-3.'79, N. V.

Layout Gulbagra 585103, India, pp-69.

[5] H. P, Chri,tos and S. Kenneth, Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall. 1982.

[6J 1. Clark ,md D. A. HOltOll.A First Look at Graph Theory, Allied Ltd" 1995.

[7] R. W. Cotle, .I. S. Pang and R. E. Stone, The Lincar Complementarity

Problem, Academic Press, New York, 1992.

181 Y. A, Korilis, A. A. LaLar, and A. Orda, Capaclt) Allocation Under NOll-

Cooperative Routing. lFFE Transactions on Automatic Control. Vol. 42, n03

(1997), pp-309-325,

[9J O. L. Mangasarian and M. V. Solodou. A Linearly Convergent Descent

Method For Strongly Monotone Complementarily Problems. Computational

optimization and application" Vol. 14, PP. 5-16, 1999.

62

rlO1 M, Molloy and 8. Reed. Random Stmct And Algorithms 6. 161(1995):

Combinatorics. Prob. Comput. 7. 295(1998).

[II] 0, Narsingh. Graph Theory with .applications to engineering and computer

science, Prcntice Hall of India, New DeIhi. 200 I.

[12J M. E. J. ,Newman. Scientific Collaboration Networks. 11. Shortest 1'aths,

Wcighted Networks And Centrality, Cornell University, Rhodes Hall. Ithaca,

New York 14853, Puhlishcd 28 June 2001.

[13] S. Pettie and Ramachandran, A Shortestl'ath Algorithm For Real-Weighted

Undirected Graph SIMi J. CUMrUT. Vol. 34, no. 6(2005). 1'1'-1398-1431.

1141 S. Pettie. A New Approach To All-Pairs Shortest Paths On Real-Weighted

Graphs. Theoretical Computer Science 312. I (2004), 47-74.

[15J S, Pcttie and Ramachandran. An Optimal Minimum Spanning Tree

Algorithm, 1. ofthc ACM, VoL 4<,l,no.l (2002), pp-16-34.

[16J S. Pettie and Ramachandran. A Randomized Timework Optimal Parallel

Algorithm For Finding A Minimum Spanning Forest, SIAM J. COMPUT.

Vol. 31, NO.6 (2002), PI'. 1879-1895.

l17] S. Saunders and T. Taboka, Efficient Algorithm, For Solving Shortest Paths

On Nearly Acyclic Directed Graphs, Proceedings of the 2005 Australasillll

symposium on Theory of computing. Vol. 41. pp 127 - 131.

[18] S, Saunders and T. Takaoka, Improvcd Shortc,t Path Algoritluns for Near!)

Acyclic Graphs. Theoretical Computer Science 293. 3 (2003), 535-556.

63

[19] T. Takaoka, A Fa~tcr Algorithm For The All-Pairs Shortestl'ath Problem and

Its Application. 1n Proc. COCOON (2004), Vol. 3106 of Lccture Notes in

Compukr Science, pp-278-289.

120] T. Takaoka. Shortest Path Algorithms For Nearly Acyclic Dircctcd Graphs.

'lheoretical Computer Science 203, 1 (1998), 143-150.

[21"1 H. C. Thomas, E. L. Charles and L. R. Ronald, 1ntroduction to Algorithms,

Prenticc-Hall of India j'rivate Limited, Ne\\' De1hi-11001, 200 I.

[221 K. Yamada, N. Yama,hita and M. Fuku'ihima, A New Derivative-Free

Descent Method For The Nonlinear Complimcntarily Problem, Nonlinear

Optimization and Relakd Topics, Edited by G. Di Pillo and F. Giannessi,

Kluwer Academic Publishers, Boston, Massachusctts (2000), pp-463-487.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070

