# AN ALTERNATIVE APPROACH ON MINIMIZATION PROBLEM BY GRAPH THEORY 

By

REHANA SULTANA BIPASHA
Student No. 100009003 P
Registration No. 0010243, Session: October-2000


Department of Mathematics
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA-1000 SEPTEMBER - 2006

The thesis titled

# AN ALTERNATIVE APPROACH ON MRNMIZATION PROBLEM BY GRAPh THEORY 

Submited by
Rchana Sultana Bipasha
Roll No 100009003 P , Registration No.0010243, Session: October-2000, a part-time M. Phil. student in Mathematics has been accepted as satisfactory in partial fulfillment for the degree of
MASTER OF PHILOSOPHY
in Mathematics
on September 19, 2006

## Board Of Examiners

Md. Elias

1. Dr. Md. Elias

## Chairman

Associate Professor (Supervisor)
Department of Mathematics, BUET, Dhaka-1000

2. Dr. Md. Mustafa Kama Chowdhury

Professor and Head
Member
(Ex-officio)
Department of Mathematics, BUET. Dhaki-1000

## 

3. Dr. Md. . Abdul Maleque

Member
Associate Professor
Department of Mathematics, BUET, Dhaká-1000

4. Dr. Md. Saidur Rahman

Member
Associate Professor
(External)
Department of Computer Science \& Engineering BUET, Dhaka-1000

## Contents:

Abstract ..... v
Declaration ..... vi
Acknowledgement ..... vii
Chapter-1
Introduction ..... 01-17
Chapter-2
Linear And Nonlinear Programming on Graph ..... 18-27
Chapter-3
Path Algorithms And Spanning Trees ..... 28-46
Chapter-4
Shortest Paths Algorithm respect to Non-linear ..... 47-61
Complementarity Problem
References ..... 62-64

## Abstract

A randomized parallel linked residual network $G_{f}=\left(V, E_{f}\right)$ is presented. Algorithmically the residual network, which produces successive shorlest path distances and the original graph $G=(V, E)$ is solved. This result is optimum with respect to both addition of flow and transferring of flow in path flow of the residual network. Depth First Search (DFS) techniques can calculate both the shortest path distances and time stamps. Thus non-linear complementarity problem can be reformulated as a shortest path distances.

## Candidate's Declaration

I hereby declare that the work which is being presented in this dissertation entitled "An Alternative Approach on Minimization Problem by Graph Theory" submitted in partial fulfilment of the requirements for the award of the degree of Master of Philosophy in Mathematics in the Departinent of Mathernatics, Bangladesh University of Engineering and technology (BUET), Dhaka-1000 is an authentic record of my own work.

It has not been submitted elsewhere (Universities or Institutions) for the award of any other degree.

RSultana
(Rehana Sultana Bipasha)

## Acknowledgement

1 am very much indebted to my supervisor Dr. Md. Elias, Associate Professor, Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka for suggesting me the rescarch topic. I would also like to extend my heartiest gratitude and thanks to him for his continuous encouragement and valuable suggestions during the period of this research work of my M. Phil program.

I express my deep regards to my respectable teacher Professor Dr. Md. Mustafa Kamal Chowdhury, Head of the Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka for providing me with all necessary research facilities and helpful advice during my study in this department.

I also express my gratitude to my teacher Mr. Md. A. K. Hazra, Mr. Md. Obayedullah and Dr. Md. Abdul Malcque of the Department of Mathenatics, Bangladesh University of Engineering \& Technology for their kind cooperation and help during iny M. Phil program.

Finally, I would like to express my special thanks to my husband Dr. Md. Abu Naim Sheikh, son Sheikh Ayman Shouki and daughter Sheikh Mridnla Koyshi for their constant encouragement, patience and moral support, which makes this work possible.

## Chapter One

## Introduction

### 1.1 Introduction



The problem of computing shortest paths is indisputably one of the most well studied problems in graph theory. Saunders et al. [18] introduced a faster algorithm for the shortest path problem and showed their various applications in graph theory. It is thoroughly surprising that in the setting of real-weighted graphs, many optimization problems have seen a great progress since the early work by Bellman-Ford, Floyd and others. Blasum et al. [3] introduced a network flow technique of optimization problem and solved it using shortest path distances. Korilis et al. [8] proposed that if flows sent from source vertex to the destination by shortest distances it would be efficient and optimum.

There are a lot of techniques to solve minimization problem using shortest distances. The shortest path problems, mainly, work between pairs of vertices in a weighted graph for the exploration of distances, time delay, cost and others that may be optimized. Christos at al. [5] have discussed the simplex method and the ellipsoid algorithm as well as other algorithms related to non-linear programming.

It is of our great interest to determime the shortest distance for a gradient based approach and it cannot yield the shortest distance only
besides giving the time delay for general, real weighted inputs. Bertsekas [2] measured the path flow with two quantities.
a) The total cost with time delay and
b) Individually estimate each edges cost with respect to the minimal path flow i.e. the single source shortest path will minimize the total flow cost.

From this idea it can be modelled a residual network $G_{f}=\left(V, E^{\prime}\right)$ which is induced by flow ' $f$ ' in the NCP constraint graph $G=(V, E)$. The residual network is an optimizalion problem in view of non linear complementarity problem and defined as follows:

$$
G_{f}=\left(V, E^{\prime}\right)
$$

Where

$$
\begin{aligned}
& E^{\prime}=\left\{(u, v) \in V \times V ; c_{f}(u, v)>0\right\} \text { and } c_{\rho} \text { is residual capacity, } \\
& c_{j}=c(u, v)-f(u, v), \\
& c(u, v)>f(u, v) . \\
& \text { and } f(v, u)>0
\end{aligned}
$$

and $G_{\neq}$is a directed weighted graph in order to find the shortest path from the source $s$ to the destination $t$. This network is modeled by weights with the addition of flow to any links and transferring flow from vertex to another vertex. For a comprehensive discussion of such problems we refer to Caccetta et al. [4] and Ahuja et al. [1].

The residual network, which is capable of executing almost parallel edges algorithms and deducted the shortest path in terms of algorithm defined in equation (4.2), is proposed. The interconnection between the vertices in one direction connected only to vertices in the previous one and the next vertex.

A minimum cost flow is found as they converge and solves the problem in equation (4.2), there after also solves the problem in equation ( 4,1 ) and this shortest path is derivative free and actually act as a merit function.

### 1.2 An overyiew

There are four chapters in this dissertation. In the first chapter, some definitions in graph theory have been given. In the second chapter, some optimization problems in linear and non-linear programming and a graphical model of some optimization problem have been discussed. In the third chapter, some search algorithms from finding distance from one vertex to all other vertex in the graph have been considered. Especially it has been found decomposition with depth first search method with examples. Also it has been solved the traveling salesman problem using closest insertion algorithm. In the final chapter, a residual network problem, which is a new approach for finding a minimum cost flow has been considered.

### 1.3 The Definitions

Some definitions and examples in graph theories that have been discussed for our study.

## Definition 1.3.1 (Graph):

A graph $G$ consists of a pair $G=(V(G), E(G))$, where $V(G)$ is a non-empty finite set whose elements are called nodes or vertices and $E(G)$ is a set of unordered pairs of distinct elements of $V(G)$. The vertices $v_{t}, v_{f} \in V(G)$ associated with edge $e_{i, j} \in E(G)$ are called the end vertices of $e_{i j}$,

Observe that this definition permits an edge to be associated with a vertex pair ( $v_{\mathrm{r}}, w_{j}$ ).

## Definition 1.3.2 (Directed graph):

$A$ directed graph $G$ is a pair $(V, E)$, where $V$ is a finite set and $E$ is an associated relation of $V$. The set $V$ is called the vertex sect of $G$ and its elements are called vertices. The set $E$ is called the edge set of $G$ and its elements are called edges. Figure $1.1(a)$ is a pictorial representation of a directed graph on the vertex set $\{1,2,3,4\}$.

## Definition 1.3.3 (Undirected graph):

In an undirected graph $G=(V, E)$, the edge set $E$ consists of unordered pairs of vertices. rather than ordered pairs. That is, an edge is a set $(u, v)$, where $u$, $v \in V$ and $u \neq v .(u, v)$ and $(v, u)$ are considered to be the same edge in the undirected graph. Figure $1.1(b)$ is an undirected graph on the vertex set $\{1$, $2,3,4\}$.


Figure 1.1(a). Direcied graph


Ifigure 1.1(b). Undirested graph

## De厄inition 1.3.4 (Walk):

A walk in a graph $G$ is a finite sequence $\quad W=v_{6} e_{1} v_{1} e_{2} v_{2} \cdots v_{k-1} e_{k} v_{k}$
whose terms are alternatively vertices and edges such that, for $1 \leq i \leq k$ the edge $e_{i}$ has ends $v_{i-1}$ and $v_{r}$. Thus each edge $e_{i}$ is immediately preceded and succeeded by the two vortices with which it is incident. We say that the above $W$ is a $v_{0}-v_{k}$ walk or a walk from $v_{0}$ to $v_{k}$. The vertex $v_{0}$ is called the origin of the walk $W$, while $v_{k}$ is called the terminus of $W$.


Pigure 1.2
$\ln$ figure 1.2, $W_{1}=v_{1} e_{1} v_{2} e_{5} v_{3} e_{10} v_{3} e_{5} v_{2} e_{3} v_{5}$ and $W_{2}=v_{1} e_{1} v_{2} e_{1} v_{1} e_{6} v_{2}$ are both walks, of length 5 and 3 respectively, from $v_{1}$ to $v_{5}$ and from $v_{1}$ to $v_{2}$ respectively.

## Dedinition 1.3.5 (T'rail) :

If the edges $e_{1}, e_{2}, \cdots, e_{k}$ of the walk $W=v_{0} e_{1} v_{1} e_{2} v_{2} \cdots e_{k} v_{k}$ are distinct then $W$ is calted a trail.

## Definition 1.3.6 (Complete Graph):

A simple graph $G$ in which each pair of distinct vertices is joined by an edge is called a complete graph of $G$. Thus, a graph $G$ with $p$ vertices is complete if it has as many edges as possible provided that there are 00 loops and no parallel edges. If a complete graph $G$ has $p$ vertices $v_{1}, v_{2}, \cdots, v_{p}$, then

$$
G=\left\{\left(v_{1}, v_{l}\right): v_{i} \neq v_{j} ; i, j=1,2, \cdots, p\right\} .
$$

'The complete graph of $n$ verrices is denoted by $K_{n}$.


Figure 1.3 The complete graphs on at most 5 vertices

## Definition 1.3.7 (Null Graph):

A graph of order $n$ and size zero is called a null graph of totally disconnected graph, and is denoted by $\overline{K_{n}}$. Thus $E\left(\overline{K_{n}}\right)=\phi$.

The following are the examples of null graph up to the order five:
(i) $\overline{k_{1}}:$ '
(ii) $\overline{K_{2}}:$ :
(iii) $\overline{k_{3}}: \bullet$
(iv) $\overline{K_{4}}::$ :
(v) $\overline{k_{5}} \therefore$ :

Every vertex of a null graph is an isolated vertex. Further a graph of order $n$ is a null graph if and only if it is a regular graph of regularity zero.

## Delinition 1.3.8 (Paths and lengths):

A path of length k from a verlex $u$ to a verlex $u^{\prime}$ in a graph $G=(V, E)$ is a sequence of vertices such that $u=v_{n}, u^{\prime}=v_{k}$ and $\left(v_{1-1}, v_{k}\right) \in E$ for $i=\mathrm{I}, 2, \cdots, k$. The length of the path is the number of edges in the path. The path conlains the vertices $v_{0}, v_{1}, \cdots, v_{k}$ and the edges $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \cdots,\left(v_{k-1}, v_{k}\right)$. If there is a path $p$ from $u$ to $u^{\prime}$, we say that $u^{\prime}$ is reachable from $u$ via $p$, which we sometimes write as $u \xrightarrow{B} u^{\prime}$ if $G$ is directed.

## Delinition 1.3.9 (Simple path):

A path is simple if all vertices in the path are distinct. In figure 1.4, the path $<1,2,3,4>$ is a simple path of length 3.


Figure 1.4

## Definition 1.3.10 (Cucle):

In a directed graph, a path $\left\langle v_{n}, v_{1}, \cdots, v_{k}>\right.$ forms a cycle if $v_{0}=v_{k}$ and the path contains at least onc edge. In an undirected graph, a path $\left\langle v_{0}, v_{1}, \cdots \cdots, v_{k}>\right.$ forms a cycle if $v_{0}=v_{k}$ and $v_{1}, v_{2}, \cdots \cdots, v_{k}$ are distinct. For example in figure 1.5 , the path $<1231\rangle$ is a cycle.


Figure 1.5

## De「inition 1.3.11 (Connected graph) :

An undirected graph is connected if a path connects every pair of vertices. The connected components of a graph are the equivalence classes of vertices under the "is reachable from" relation. The graph in figure 1.5 has connected components $\{1,2,3\}$.

## Definition 1.3.12 (Strongly connected graph):

A directed graph is strongly connected if every two vertices are reachable from each other. The graph in figure 1.6 has a strongly connected component $\{1,2,3,4\}$.


Figure 1.6

## Definition 1.3.13 (Sub graph):

A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a sub graph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. Given a set $V^{\prime} \subseteq V$, the sub graph of $G$ induced by $V^{\prime}$ is the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where

$$
E^{\prime}=\{(u, v) \in E: u, v \in V\} .
$$

The sub graph induced by the vertex set $\{1,2,4,5\}$ in tigure $1.7($ a) appears in figure 1.7 (b) and has the edge set $\{(1,2),(2,4),(2,5),(1,5)\}$.


Figure 1,7(a)


Figure 1.7(b)

## De[inition 1.3.14 (Parallel edges) :

Let $G$ be a graph. If two (or more) edges of $G$ have the same end vertices then these edges are called parallel. In the figure 1.8 the edges $e_{1}$ and $c_{2}$ are parallel.


Figure 1.8

## Delinition 1.3.15 (Subgraph obtained by the removal of the vertex $v_{i j}$ ):

Let $G=(V, E)$ be a graph. Let $v_{i} \in V$. The subgraph of $G$ obtained by removing the point and vertex $v_{2}$ and all the lines incident with $v_{i}$ is called the subgraph obtained by the removal of the vertex $v_{\text {r }}$ and is denoted by $\bar{q}-v_{r}$.

Thus if $G-v_{1}=\left(V_{1}, E_{i}\right)$, then $V_{\mathrm{r}}=v-\left\{v_{i}\right\}$ and $E_{i}=\left\{e / e \in E\right.$ and $v_{t}$ is not incident with $e$, and $G-v_{i}$ is an induced subgraph of $G$.

## Delinition 1.3.16 (Cnmplement of a graph):

The complement $\bar{G}$ of a graph $G$ is the graph with vertex set $V(G)$ such that any two vertices are adjacent in $\bar{G}$ if and only if they are not adjacent in $G$, $G$ is said to be self complementary graph if $\bar{G}$ is isomorphic to $G$.

## De「inition 1.3.17 (The incidence matrix) :

The incidence matrix of a directed graph $G=(V, E)$ is a $|V| \times \mid E j$ matrix $B=\left(b_{1,}\right)$ such that

$$
b_{i j}= \begin{cases}-1 & \text { if edge } j \text { leaves vertex } i \\ 1 & \text { if cdge } j \text { enters vertex } i \\ 0 & \text { otherwise }\end{cases}
$$

## Definition 1.3.18(Transpose of agraph):

The transpose of a directed graph $G=(V, E)$ is the graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $E^{T}=\{(v, u) \in V \times V:(u, v) \in E\}$. Ihus, $G^{\prime}$ is $G$ with all its edges reversed.

## De厄inition 1.3.19 (Neighborhood Scts) :

Two vertices joined by an edge are said to be adjacent or neighbors. The set of all neighbors of a flow vertex $u$ of a graph $G$ is called the neighborhood set $o f u$ and is defined by $N(u)$. The open neighborhood of $u$ is

$$
N(u)=\{v \in V: u, v \in E\}
$$

and the closed neighborhood of $u$ is

$$
N[u\}=\{u\} \cup N(u) .
$$

## Definition 1.3.20 (Adiaceocy-matrix representation) :

For the adjacency-matrix representation of a graph $G=(V, E)$. we assume that the vertices are numbered $1,2, \ldots|V|$ in some arbitrary manner. The adjacency-matrix representation of a graph $G$ then consists of $|Y| \times|V|$ matrix $A=\left(a_{i j}\right)$ such that

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

## Definition 1.3.21 (Single connected graph):

A directed graph $G=(V, E)$ is singly connected if $u \longrightarrow v$ implies that there is at most one simple path from $u$ to $v$ for all vertices $\pi, v \in V$.

## De「inition 1.3.22 (Fusioo):

Let $u$ and $v$ be distinct vertices of a graph $G$. We can construct a new graph $G_{1}$ by fusing (or identifying) the two vertices, namely by teplacing them by a single new vertex $x$ such that every edge that was incident with either $u$ or $v$ in $G$ is now incident with $x, i e$, the end $u$ and the end $v$ become end $x$.

Thus the new graph $G_{1}$ has one less vertex than $G$ but the same number of edges as $G$ and the degree of the new vertex $x$ is the sum of the degrees of $u$ and $v$.

We illustrate the process in figure 1.9 and 1.10


Figure 1.9
Figure 1.10

## Definition 1.3.23 (Acyclic graph):

A graph $G$ is called acyclic if it has no cycle.


Figure-1.11

## Definition 1.3.24(Tree of graph):

Let $G$ be a graph. If $G$ is a connected acyclic graph. then it is called a tree.


Figure 1.12: Tree with at nost five vertices.

## Definition 1.3.25 (Root) :

A distinguished vertex and for a branching the verlex from which every other is reachable is called the root of graph $G$. In the figure $1.13, s$ is the root of the tree.

## Definition 1.3 .26 (Network):

A network $N$ is a weakly connected simple digraph in which every link $l$ of $N$ has been assigned a nonnegative integer $c(l)$, called the capacity of $l$.

For a general network, a vertex $s$ is called a source if it has in degrec 0 while a vertex $t$ of $N$ is called a sink if it has out degree 0 . Any other vertex of $N$ is called an intermediate vertex.

ligure 1.13. A .Network

## Definition 1.3.27 (Flow):

A flow in a network $N$ from the source $s$ to the sink $t$ is a function $f$ which assigns a non-negative integer to each of the ares $/$ in $N$ such that

1. (Capacity constraint) $f(l) \leq c(l)$ for each are $l$,
2. The total flow into the sink $t$ equals the total flow out of the source $s$ and
3. (Flow conscrvation) for any intermediate vertex $x$, the total flow into $x$ equals the total flow out of $x$.

## Delinition 1.3.28 (Saturated and Unsaturated Flow):

The walk $W$ is said to be $f$ saturated if $i(W)=0$. $t$ denote the increment of flow, and if $i(W)>0$, then the low is called unsaturated flow.

## Delinition 1.3.29 (Labeling):

Assignment of integers to vertices is called labeling of a graph.

## Definition 1.3.30 (Are):

Directed edge (ordered pair of vertices) is called an arc.

Definition 1.3.31 (Convex set of graph): The flows in a network form a convex set so that if $f_{1}$ and $f_{2}$ are flows, then so is $f_{1}+(1-\alpha) f_{2}$ for all $\alpha$ in the range $0 \leq \alpha \leq 1$.

## Delinition 1.3.32 (Shortest-Paths Tree) :

A shortest -paths tree rooted at $s$ is a directed subgraph $G^{\prime}=\left(V^{\prime} . E^{\prime}\right)$, where $V^{\prime} \subseteq V$ and $E^{\prime \prime} \subseteq E$ such that

1. $V^{\prime}$ is the set of verlices reachable from $s$ in $G$.
2. $G^{\prime}$ forms a rooted tree with roots and
3. for all $v \in V^{\prime}$ the unique simple path from $s$ to $v$ in $G^{\prime}$ is a shortest path from $s$ to $v$ in $G$.

## Definition 1.3.33 (Shortest Path Weight) :

The shortest path weight from $u$ to $v$ is delined by

$$
\delta(u, v)=\left\{\begin{array}{ll}
\min \{(w(p): & u \xrightarrow{P} v \text { if there is a path from } u \text { to } v \\
\text { otherwise }
\end{array}\right\}
$$

## Delinition 1.3.34 (Ancestor):

In a rooted tree, a vertex $u$ along the path to the root is called an ancestor.

## Definition 1.3.35 (Cost):

The name of the objective function for many weighted minimization problem is called cost function.

## Definition 1.3.36 (Connectivity of a graph) :

The connectivity $k$ of a graph $G$ is the minimum number of vertices whose removal results is disconnected or trivial graph. A graph $G$ is said to be $n$ connected if $k \geq n$. Two points $u$ and $v$ of a graph are said to be connceted if there exists a $u-v$ path in $G$.

## Definition 1.3.37 (Cut point and bridge):

A cut point of a graph $G$ is a point whose removal increases the number of components. A bridge of a graph $G$ is a line whose removal increases the number of components.

## Definition 1.3.38 (Minimal spanning tree) :

A spaning tree with the smallest weight in a weighted graph is called shortest spanning tree or shortest distance spanning tree or minimal spanning tree.

## Definition 1.3.39(Cut-Sets):

In a connected graph $G$, a cut-set is a set of edges whose removal from $G$ leaves $G$ disconnected, provided removal of no proper subset of these edges disconnects $G$. For instance, in fig 1.14 the set of edges $\{a, c, d, f\}$ is a cut set.


Fïgure I. 14

## Dclinition 1.3.40 (Indegree and outdegree) :

Let $v$ be a vertex in the digraph $D$. The indegree $i d(v)$ or $N N(V)$ of $v$ is the number of arcs of $D$ that have $v$ as its head, i.e., the number of ares that "go to ${ }^{\prime \prime} v$.

Similarly, the outdegree od(v) or $O U T(v)$ of $v$ is the number of arcs of $D$ that have $v$ as its tail i.c., that "go out" of $v$.


Figure 1.15
Thus in the digraph of figure 1.15 , we have

$$
\begin{aligned}
& d(s)=0 . i d\left(v_{1}\right)=2 \cdot d\left(v_{2}\right)=1 \\
& i d\left(v_{3}\right)=2 \cdot i d\left(v_{4}\right)=2 \cdot i d(t)=2
\end{aligned}
$$

where

$$
\begin{aligned}
& o d(s)=2, o d\left(v_{1}\right)=1, o d\left(v_{2}\right)=3 \\
& o d\left(v_{3}\right)=2, o d\left(v_{1}\right)=1 . o d(t)=0^{\circ}
\end{aligned}
$$

## Definition 1.3.41 (Separating Sets) :

Let $u$ and $v$ be two distinct vertices of a graph $G$. A set $S$ of vertices of $G$. containing neither $u$ nor $v$, is said to be $u-v$ separating if the vertex deleted subgraph $G-S$ is disconnected with $u$ and $v$ lying in different components. In this case, $S$ is also said to separate $u$ and $v$.

Similarly, a set $F$ of edges of $G$ is said to be $u-v$ separating if the edge deleted subgraph $G-F$ is disconnected with $u$ and $v$ lying in different components. In this case, $F$ is said to separate $u$ and $v$.

# Chapter Two <br> Lincar And Nonlinear Programming On Graph 

### 2.1 Introduction

In this chapter some relations on linear and nonlinear programming and reduced form of optimization problems into Graph model arc given. Various models about these relations have been proposed in Cotle et al. [7], Mangasarian et al. [9], Newman [12], Saunders et al. [20] and Yamada et al. [22].

The general problem of lincar programming is to optimize a linear function subject to linear equality and inequality constraints. In other words, it is need to detcrmine the values of $x_{1}, x_{2}, \cdots \cdots, x_{n}$ that solves the program.

$$
\begin{aligned}
& \operatorname{minimize} z=\sum_{i=1}^{m} c_{i} x_{r} \\
& \text { subject to } \sum_{i=1}^{n} a_{i j} x_{j} \leq b_{r} .
\end{aligned}
$$

Here $c, b$, and $a_{y}$ are known as real numbers.

## Definition 2.1.1

A vector $\left(x_{1}, x_{2}, \cdots \cdots, x_{n}\right)^{\prime} \in R^{n}$ is called a feasible solution if the vectors satisfy the constraints. Here ( $\cdots)^{\prime}$ denotes the transpose.

## Definition 2.1.2

A feasible solution is said to be an optimal solution if it gives the minimum value of the objective function provided the minimum value exists.

## Lemma 2.1.3

The constraint set $T$ is convex.

## Proof:

Let $f$ be a convex function on a constraint set $T \in R^{n}$. Then for every $k \in R$ we can definc the sets.

$$
T=\{x: x \in T, f(x) \leq k\}
$$

To show $I$ is convex, let

$$
x_{1} \in T, x_{2} \in T
$$

Let $T$ is convex. Then

$$
\begin{gathered}
\lambda x_{1}+(1-\lambda) x_{2} \in T \quad \text { for } \quad 0 \leq \lambda \leq 1 \\
f\left(x_{1}\right) \leq k, f\left(x_{2}\right) \leq k
\end{gathered}
$$

by the convexity property.

Now, using the convexity of $f$ on $T$, we get

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda /\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq k
$$

Hence,

$$
\lambda x_{1}+(1-\hat{\lambda}) x_{2} \in T \text { for } 0 \leq \hat{\lambda} \leq 1
$$

That is, $T$ is a convex set. This completes the proof of Lemma 2.1.3.

## Definition 2.1.4

A vector $x^{*} \in X$ is global minimum of $f$ over the set $X$ if it is no worse than other feasible vectors that is

$$
f\left(x^{*}\right) \leq f(x) \quad x \in X .
$$

A vector $x^{*} \in X$ is a local minimum of $f$ over the set $X$ if it is no worse than its feasible ncighbors; that is, if there exists an $\varepsilon>0$ such that

$$
\begin{gathered}
f\left(x^{*}\right) \leq f(x) \quad x \in X \\
\text { with }\left\|x-x^{*}\right\|<\varepsilon .
\end{gathered}
$$

If both $f$ and $X$ are convex, local minimurn is also global.


Figure 2.1 : l.ocal and global ninima of fover $X$

## 2. 2 Necessary and Sufficient Conditions for Optimality

- A1 a local minimurn $x^{\prime}$, the first order variation is considered $\nabla f\left(x^{*}\right)^{x} \Delta x$ duc to a small feasible variation $\Delta x$ is nonnegative. Because $X$ is convex, the feasible variations are of the form $t x=x-x^{*}$, where $x \in X$. Thus the condition $\nabla f\left(x^{*}\right)^{*} x x \geq 0$ translates into the necessary condition

$$
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0
$$

for all $x \in X$. When $f$ is convex the following proposition hold.

## Proposition 2.2.1 (Optimality condition)

a) If $x^{*}$ is a local minimum of $f$ over $X$, then

$$
\stackrel{\vee}{ } f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad x \in X .
$$

b) If $f$ is convex over $x$, then the condition of part (a) is also sufficient for $x$ to minimize $f$ over $X$.

### 2.3 Descent directions and stepsize Rules of minimization problem

Consider the unconstrained minimization problem of a continuously differentiable function $f: R^{\pi} \rightarrow R$.

Most of the interesting algorithms for this problem rely on an important idea, called iterative descent that works as follows:
We start at some point $x^{n}$ (an initial guess) and successively gencrates $x^{1}, x^{2}, \cdots$ such that $f$ is decreased at each itcration, that is,

$$
f\left(x^{k+1}\right)<f\left(x^{k}\right), k=0.1, \cdots \cdots
$$

In doing so, one can do successively improve solution and may decrease $f$ all the way to its minimum. In this regards we define a general class algorithms based on iterative descent method. Mangasarian et al. [6] proposed an algorithm.

$$
x^{k+1}=x^{k}+a^{k} d^{k}, k=0.1 . \cdots \ldots \ldots \ldots .(2.3 .1)
$$

where, if $\nabla f\left(x^{k}\right)^{t} \neq 0$, the direction $d^{k}$ is chosen so that $\nabla f\left(x^{k}\right)^{\prime} d^{k}<0$ and the stepsize $\alpha^{k}$ are chosen to be positive. If $\vee f\left(x^{k}\right)=0$, then method stops, that is,

$$
x^{k+1}=x^{t}
$$

In this respect the improvement cost functions takes the form

$$
f\left(x^{k}+x^{k} d^{k}\right)<f\left(x^{k}\right) \cdot k=0,1, \cdots \cdots
$$



Figure 2.2 Iterative descent for mizimizing a function $f$
Each vector in the generated sequence has a lower cost than its predecessor.

### 2.4 Systems of difference constraint into graph model

It is easy to interpret the systems of difference constraints of linear or non-linear programuning from a graph theoretic viewpoint. By using Belhman-Ford idea in a system, $A x \leq b$ of difference constraints, the $n \times m$ linear-programming matrix $A$ can be viewed as an incidence inatrix for a graph with $n$ verlices and $m$ edges. Each vertex $r$, in the graph, for $i=1,2, \cdots, n$ corresponds to one of the $n$ unknown variable $x_{1}$. Each directed cdge in the graph corresponds to one of the $m$ inequalities involving two unknowns.

In the following way Bellman-Ford converted the linear functions into graph method.

For a given system $A x \leq b$ of difference constraints, the corresponding constraint graph is a weighted, directed graph $G=(V . E)$ where

$$
V=\left\{v_{1}, v_{1}, \cdots, v_{n}\right\}
$$

and

$$
\begin{aligned}
& E=\left\{\left(v_{1}, v_{1}\right): x_{3}-x_{1} \leq b_{k} \text { is a constraint }\right\} \\
& U\left\{\left(v_{0}, v_{1}\right),\left(v_{0}, v_{2}\right),\left(v_{0}, v_{3}\right), \cdots,\left(v_{0}, v_{n}\right)\right\}
\end{aligned}
$$

Some important theorerns, lemma \& definitions are given in the following, which already have formulated as graph model from the linear and nonlinear programming of minimization problem.

## Theorem 2.4.1

Let $f: R^{n} \rightarrow R$ be a function defined over the graph $G$. Let $P=\{X, \gg\}$ denote a partial order, where $X=\left\{x_{1} ; \cdots, x_{n}\right\}$ is the set of variables. Then $f(A) \geq f(B)$, for all $A=\left\{a_{1}, \cdots, a_{n}\right\}$ majorizing $B=\left\{b_{1}, \cdots, b_{n}\right\}$ on $P$ if and only if $f$ is a function such that for every $t, \rho$ with $x_{r} \gg x_{j}$,

$$
\frac{\partial f}{\partial x_{1}} \geq \frac{\partial f}{\partial x_{i}}
$$

over all $X \in G$.

## Lemma 2.4.2

If $A$ is submajorized by $B$ on $P$, there exists a set $C=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$, where $c, \geq 0$ for all $A$. such that $A+C$ is majorized by $B$ on $P$.

## Theorem 2.4.3

Let $f: R^{n} \rightarrow R$ be a monotone non-increasing function in each variable, with the Graph $G$. Denote by $P=\{X, \gg\}$ a partial order on the set of variables $X=\left\{x_{1} \ldots, x_{n}\right\}$. Then the following relations are cquivalent
(i) for every $A, B \subseteq R^{n}$ such that $B$ submajorizes $A$ on $P$, we have

$$
f(A) \geq f(B) .
$$

(ii) for every $i, j$ such that $x, \gg x$, we have that

$$
\frac{\partial f}{\partial x_{1}} \leq \frac{\partial f}{\partial x_{j}}
$$

over all $X \in G$.

## Proof.

To prove that (i) implies (ii), assume that $f(A) \geq f(B)$ for all $A$ submajorized by $B$ on $P$. Then, in particular,

$$
f(A) \geq f(B),
$$

or equivalently,

$$
-f(f) \leq-f(B)
$$

for all $A$ submajorized by $B$ on $P$. From lheorem 2.4.3, it follows that for all $t, j$ such that $x_{1} \gg x_{j}$ we have

$$
\frac{\partial(-f)}{\partial x_{1}} \geq \frac{\partial(-f)}{\partial x_{j}}
$$

or equivalently

$$
\frac{\partial f}{\partial x_{1}} \leqslant \frac{\partial f}{\partial x_{j}}
$$

for all $X \in G$.
In order to prove that (ii) implies (i), assume that (ii) holds and $A$ is submajorized by $B$ on ${ }^{\prime}$. From Lemma 2.4.2, there exists non-negative $C$ such that $A+C$ is mojorized by $B$ on $P$. From Theorenn 2.4.3, it follows that

$$
-f(A+C) \leq-f(H) .
$$

But $f$ is monotone non-increasing for all $x_{i}$, so we can conclude that

$$
f(A) \geq f(A+C) \geq f(B) .
$$

This completes the proof.

### 2.5 Optimal Routing of simplex method in a conmmunication

## Network trsing graph model

Consider the case where the constraint set is a simplex

$$
x=\left\{x / x \geq 0 \sum_{i-1}^{n} x_{i}=r\right.
$$

where $r>0$ is a given scalar.

There is a straightforward generalization of this problem in graph model which has been investigated by Bertsckas [8].

It is illustrated the graph representation of path flow of the simplex method with Figure 2.3.

Consider a directed graph, which is viewed as a model of a data communication network. It is also given a set $\omega$ of ordered node pairs $\omega=(i, j)$. The nodes $i$ and $j$ are referred to as the origin and the destination $(O D)$ of $\omega$ respectively, and $\omega$ is referred 10 as an $O D$ pair, For each $\omega$, given a scalar $r_{0}$ referced to as the input data of $\omega$. In the context of routing of data in a communication network, $r_{0}$ is the rate of data entering and leaving the network at the origin and the destination of $\omega$. respectively. The communication configuration is to divide cach $r_{\text {t }}$ into the paths from origin to destination in a way that the resulting total are flow pattern minimizes a suitable cosi function, we denote
$D_{\omega}$ : A given set of paths that starts at the origin and ends at the destination of $a$. All arcs $s$ on each of these paths are oriented in the destination from the origin to the destination.
$v_{p}$ : The portion of $r_{p,}$ assigned to path $P$, also the flow of path $P$.
The collection of all path flow

$$
\left\{v_{p} \mid \omega \in W, p \in D_{p}\right\}
$$

must satisfy the constraints

$$
\sum_{p \in D_{n}} \sum v_{p}=r_{n}, \forall \omega \in W
$$

The total flow $f_{y}$ of are $(i, j)$ is the sum of all path flows traversing the arc:

$$
f_{y}=\sum_{\substack{\text { ill motin } p \\ \text { convarning }(i, s)}} v_{p} .
$$

Consider a cost function of the form

$$
\sum \cdot f_{v}\left(f_{v}\right)
$$

The problem is to find a set of path How $\left\{v_{p}\right\}$ that winimize this cost function subject to the constraints of the simplex. This is the minimization over a simplex.


Figure 2] Constraints fior die flows of an $O D$ pair $\alpha$.

The path flows $v_{p}$ of the paths $p \in D_{\text {b }}$, should be nonnegative and add $u p$ to the given input $r_{w}$ of the $O D$ pair.

## Definition 2.5.1

For $P=\{S, \gg\}$ and $A=\left\{a_{1}, \cdots, a_{n}\right\}$, a sel of weights for $S=\left\{s_{1}, \cdots, s_{n}\right\}$, choose $S_{1}, S_{,} \in S$ such that $S_{1} \gg S_{r}$. Then a flow from $a_{1}$ to $a$ is a transformation from $A$ to $A^{\prime}$, where

$$
\begin{gathered}
a_{1}^{\prime}=a_{r}-\delta, \\
a_{j}^{\prime}=a_{1}+\delta, \text { for some } \delta>0 \\
a_{k}^{\prime}=a_{k}, \quad \forall k \neq i, f .
\end{gathered}
$$

The following corollary is important for network flow problem.

## Corollary 2.5.2

Assume that $P$ is a linearly ordered set. Then, $A$ majorizes $B$ on $P$ if and only if there exists an $n \times n$ triangular matrix $M=\left[/ n_{t}\right]$ such that $m_{b} \geq 0, m_{i j}=0$ for all $i<j, \sum_{j=1}^{n} m_{y j}=1$ and $B=M A .$.

Matrix $M$ can be viewed as a flow matrix where $m_{y} a_{3}$ is the anount of flow from $P_{1}$ to $F_{j}$.

# Chapter Three <br> Path Algorithms And Spanning Trees 

### 3.1 Introduction

In this chapter most fundamental graph algorithms concerning distances are those dealing with shortest path in a graph. In fact most algorithms involving distances and carrying flow over distance use basic scarch technigues of graph theory. Many typical rouling algorithms send flows through shortest path without accounting for derivatives and thus bifurcating flows. We have discussed some standard shorrest path algorithms using some methods. We have solved the traveling salesman problem using closest insertion algorithm and described elaborately the minimum spanning tree with an example. First of all we have defined shoriest path.

### 3.2 Shortest path

Suppose every arc $u v$ has been assigned a cerlain length $l(w w)$. Then the length of $u-v$ path with edge sequence $e_{1}, e_{2}, \cdots$ is the sum $l\left(e_{1}\right)+l\left(e_{2}\right)+\cdots+l\left(e_{k}\right)$ of the lengths of all edges of that path. If the source vertex $s$ and $v$ is any arbitrary vertex then we define the shorlest path distance $\delta(s . v)$ from $s$ to $v$ as the minimum number of edges in any path from vertex $s$ to vertex $v$, or else $\propto$, if there is no path from $s$ to $v$. A path of length $\delta(s, v)$ from $s$ to $v$ is said to be a shortest path from $s$ to $v$ and there are many methods or techniques in graph theory to calculate or to
obtain shortest paths. Before showing that search method actually computes shorlest path distances, we investigate some important properly of shortest path distances.

## Lemma 3.2.1

1,et $G=(V, F)$ be a directed or undirected graph and let $s \in V$ be an arbitrary vertex, then for any edge $(u, v) \in E, \delta(s, v) \leq \delta(s, u)+w(u, v)$, where $w$ is a weight function.

Proof. If $u$ is reachable from $s$, then so is $v$. In this case the shortest path from $s$ to $v$ cannot be longer than the shortest path from $s$ to $u$ followed by the weighted edge ( $u, v$ ) and thus the inequality holds.

### 3.3 Weighted shortest path

In a shortest path problem, we are given a weighted directed graph $G=(V, E)$ with weight function $w: E \rightarrow R$ mapping edges to real valued weights. The weight of path $P=<v_{0}, v_{1}, \cdots, v_{k}>$ is the sum of the weights of its constituent edges:

$$
w(P)=\sum_{i=1}^{k} w\left(v_{\mathrm{t}-1} \cdot v_{1}\right) .
$$

By definition, we define the shortest path weight from $u$ to $v$ by

$$
\partial(u, v)=\min \begin{cases}\infty & : \text { if there is no path from } u \text { to } v \\ u \cdot(P): u \xrightarrow{D} v \\ 0 & \text { if otherwise }\end{cases}
$$

$A$ shortest path from verlex $a$ to verlex $v$ is then defined as any path $P$ with weight and written as

$$
w(P)=\delta(u, v) .
$$

Edge weights can be interpreted as matrices other than distances. They are often used to represent time, cost, penalties, or another quantity that accumulates linearly along a path, which is shortest distance.

The following lemma and corollary states the optimal-substructure property of shortest paths more precisely.

## Lemma 3.3.1

Sub paths of shorlest paths are shortest paths.
Proof. If we decompose palh $p$ into $v_{1} \xrightarrow{P_{13}} v_{1} \xrightarrow{p_{11}} v_{j} \xrightarrow{p_{i k}} v_{k}$, then $n(P)=u\left(P_{6}\right)+n\left(P_{2 j}\right)+n\left(P_{J k}\right)$. Now, assume that there is a path $P_{i j}$ from $r_{j}$ to $v_{j}$ with weight $w\left(P_{i,}^{\prime}\right)<v\left(P_{1}\right)$. Then $v_{1} \xrightarrow{P_{1 r}} v_{i} \xrightarrow{P_{1, \prime}} v_{j} \xrightarrow{\rho_{r t}} v_{k}$ is a path from $v_{1}$ to $v_{k}$ whose weight $w\left(P_{1_{2}}\right)+w\left(P_{1,}^{\prime}\right)+w\left(P_{j k}\right)$ is less than $w(P)$ which contradicts the premise that $I$ is a shortest path from $y_{1}$ to $v_{k}$.

## Corollary 3.3.2

Let $G=(V, E)$ be a weighled, directed graph with weight function $w: E \rightarrow R$. Suppose that a shortest path $P$ from a source $s$ to a vertex $r$ can be decomposed into $s \xrightarrow{p} u \rightarrow v$ for some vertex $v$ and path $P^{\prime}$. Then the weight of a shortest path from $s$ to $v$ is $\delta(s, v)=\delta(s, u)+w(u, v)$.

Proof. By Lemma 3.3.1, it can be proved that sub path $P^{\prime}$ is a shortest path from source $s$ to vertex $a$.

Thus

$$
\begin{aligned}
\delta(s, v) & =w(f) \\
& =w\left(p^{\prime}\right)+w(u, v) \\
& =\delta(s \cdot u)+w(u \cdot v) .
\end{aligned}
$$

### 3.4 The structure of a shortest path with examples

Shortest paths are not necessarily unique. Using adjacency matrix $W=\left(w_{14}\right)$ we characterize the structure of an optimal solution. A natural combinatorial optimization problem is the shortest path problem and it has an input dircetcd graph, each edge with a given length. Now to consiruct a shortest path $P$ from vertex ; to vertex $;$ and suppose that $P$ contains at most $m$ edges. Assuming that there are no negative-weight cycles, $m$ is rinite, If $i=j$, then $P$ has weight $O$ and no edges. If vertices $t$ and $j$ are distinct, then we can decompose path $P$ into $i \xrightarrow{P^{\prime}} k \rightarrow j$, where path $P^{\prime}$ now contains at most $m$-ledges. $P^{\prime}$ is a shortest path from $i$ to $k$ and from lemma 3.3.1 and Corollary 3.3.2, we have

$$
\delta(i, j)=\delta(i, k) \div w_{k, l} .
$$

Figure 3.1 illustrates a directed shorest path with positive weights and computing not only shortest path weights, but the vertices on the shortest paths as well.


Figure 3.1 (n). A weighted, directed graph with shortest path weights from source $s$

3.1 (b). The shatded edges form shortest paths distances

## Calculation of the shortest path weight of ligure 3.1 :

From the definition of weighed shortest path, we get

$$
\delta(s, u)=w(s, u)=3
$$

and $\delta(s . x)=\delta(s, u)+w(u, x)=3+2=5$ (using corollary 3.3.2)

Thus $\delta(s, v)=\delta(s, x)+n(x, v)=5 \div 4=9$
and $\delta(s, y)=\delta(s, v)+w(v, y)=9+2=1 \mathrm{I}$
Thus the shorlest path from \& to $y$ is $\langle s . u, x . v . y\rangle$ with weight 11 .

In most cases when describing algorithms we shall assume that adjacency lists are used to describe any graph as an input to an algorithm. When using such an algorithm, if the graph is not already labeled, simply label the nodes and record the adjacency list for input.

An example of a graph and its adjacency lists is given below in the figure 3.2 and the table.


Figure 3.2

A graph and its adjacency lists

| $\frac{\text { Node }}{}$ |  | Adjacency list |
| :---: | :---: | :---: |
| $a$ | b. c, $d$ |  |
| $b$ |  | $a$ |
| c |  | a, d, e, f |
| $d$ |  | $a, c, f$ |
| e |  | $c, f$ |
| $f$ |  | $c, d, e$ |

### 3.5 Breadth-First Search (BFS)

Thomas'ct al. [21] discovered breadth-first search in the context of finding paths through mazes. DFS is a fundamental search technique that traces a rooted spanning tree in a connected graph so that the distance from the root to each node in the tree corresponds to its distance in the original graph. The basic idea is to begin at the root and find its neighbors and then neighbors, and ${ }^{\prime}$ son, until one has spanned throughout the graph and reached all nodes. since in most applications where $B F S$ is used, one wants to know the distance from the root to each other node, we present a form of the algorithm. which records the distances. The input to the algorithm is the list of nodes, their adjacency lists, and the label of the root. Assume that the distance $\delta\left(s, v_{k}\right)$, from the root $s$ to node $v_{h}$ is stored in array $d[v]$. Let $N[v]$ denote the adjacency list of node $v$.

### 3.6 The Breadth First Search (BFS) Algorithm

Let $G$ be a graph and let $s, t$ be two specified vertices of $G$. We will now describe a method of finding a path from $s$ to $t$, if there is any, which uses the least number of edges. Such a path, if it exists, is called a shortest path from $s$ to $t$.
The method assigns labels $0,1,2,3, \ldots . . . . . . .10$ vertices of $G$ and is called the Breadth First Search technique. In Clark et al. [6], the following algorithm is given below:

Step 1. Label vertex a with 0. Set $t=0$.
Step 2. Find all unlabelled vertices in $G$, which are adjacent to vertices labeled $i$. If there are no such vertices then $t$ is not connected to $s$ (by a path). If there are such vertices, label them $i+1$.
Step 3. If $t$ is labeled, go to step 4. If not, increase $i$ to $i+1$ then go to step 2.
Step 4. The length of a shortest path from $s$ to $t$ is $i+1$ stop.


Figure 3.3

First $s$ is labeled 0 . The $a$ and $b$ are labeled 1. Then $c, d$ are labeled 2 and $t$ is labeled 3, the level of a shortest path from $s$ to $t$ is 3 .

### 3.7 Complexity of BFS

The complexity of BFS on $G=(m, n)$ graph, where $m=|V|$ and $n=|E|$ is $O(m+n)$. The $B F S$ runs in time linear in the size of the adjacency list representation of $G$.

We now discuss the Depth first search and its properties. DFS is a powerful technique to obtain shortest path.

## Depth first search

Depth first search (DFS) begins at the root and trace out a path from the root until one can go no fariher without revisiting a node. Then backtrack along the path until reaching the first node with an alternate route available and proceed forward again. Repeat this until one can go no farther. Like BFS, a depth-first scarch traces a spanning tree in a connected graph, but in a different manner. One might think of $D F S$ as the way an intelligent but determined mouse might find its way through a search.

The following DFS algorithm is the basic depth-first search algorithm.

## DFS(G) Algorithm

Procedure DFS( (י)
begin
$I(v)=1 \quad$ (tracks the order in which nodes are visited)
$i=i+1$
while $N(v) \neq \phi$ do

$$
\begin{aligned}
& \text { for } u s N(v) \text { do } \\
& \text { bcgin } \\
& \quad T=T U\{u \cdot v\} \\
& \text { remove } u \text { from all adjacency lists } \\
& \quad D F S(u)
\end{aligned}
$$

end DES
begin (driver algorithm)
input adjacency lists and root
$T=\phi$ (stores edges of the tree as they are selected)
for veg do
$f(v)=0$
$($ (root $)=1$
$i=2$
while there exist some $u$ for which $l(u)=0$ do
for highest labeled node $v$ with $N(v) \neq \phi$ do
begin remove $v$ from all adjacency lists $D P S(v)$
end

The backtracking along a path in the tree cach time control and is returned to the driver progran and one looks for the highost labeled node that has unvisited neighbors. Note as with $B F S$, removing a node $W$ from all adjacency lists in this algorithm is easy because $N(w)$ tells which lists are involved. Algorithon can easily be modified to determinc whether $G$ is connected simply by testing for nodes $v$ that still have $l(v)=0$ when the algorithm terminates.
Besides creating a depth first tree $D F S$ also timestamps for each vertex. Fach vertex $v$ has two timestamps: the first timestamp $a[v]$ records when $v$ is first discovered and the second timestamp $f[v]$ records when the search fimishes examining $v$ 'r adjacency list.

## Corollary 3.7.1 (nesting of descendants' intervals)

Vertex $v$ is a proper descendant of verlex $u$ in the depth-first forest for a (directed or undirected) graph $G$ if and only if $d(u)<d(v)<f(v)<f(u)$.

The proof has been illustrated in Thomas et al.[21].
The bFS algorithm is illustrated by an example in Figure 3.5. In the given graph $G$ of five vertices and scven edges, the starting vertex $s$ is specified. The order in which the edges are explored is given in Figure 3.5 (b) and for this order of traversal $\vec{G}$ is given in figure 3.5 (c)


Figure $\mathbf{3 . 5 ( a )}$ Graph $G$ hefore DFS
( $\mathrm{s}, \mathrm{a}$ ) : branch
(a, b) : branch
(c. s) : frond
(d, b) : frond
(c, d) : branch
(b. c) : branch
(d, a) : frond

## Figure 3.5 (b) Order in which edge were scanned



Higure 3.5(c) Gruph $\ddot{G}$ after DIS

We now describe the closest insertion algorithın. The description gives the idea of the distance of a vertex $v$ from a walk $W$. This is defined to be

$$
d(v, W)=\min \{d(v, u): u \text { is a vertex of } W\}
$$

The vertex $v$, not in $W^{T}$, is then said to be closest to $W$
if $d(\nu, W) \leq d(\boldsymbol{r}, W)$ for any other vertex $x$ not in $W$.
We describe the way in which a new vertex is inserted into a cycle by using bold type. We also sotve the Traveling salesman problem for the complete weighted graph using closest insertion algorithm.

## The closest Insertion Algorithm:

Step 1. Choose any vertex $v_{1}$ as a starting vertex.
Step 2. From among the $n-I$ vertices chosen so far, find one, say $v_{2}$, which is closest to $v_{1}$. Let $W_{2}$ denote the walk $\nu_{1} \nu_{2} \nu_{1}$,
Step 3 From among the $n-2$ vertices not chosen so far, find one, say $v_{3}$, which is closest to the walk $W_{2}=v_{1} v_{2} v_{1}$. Let $w_{3}$ be the walk $v_{1} v_{2} v_{1} v_{1}$.

Step 4 From among the $n-3$ vertices not chosen so far, find one, say $v_{4}$, which is closest to the walk $W_{3}$. Determine which of the walks (cycles) $v_{1} v_{2} v_{3} v_{4} v_{1}, v_{1} v_{2} v_{4} v_{3} v_{1}$. $v_{1} v_{4} v_{2} v_{3} v_{1}$ is the shortest. Let $W_{4}$ denote the shortest one and relabeled it. if necessary, as $v_{1} v_{2} v_{3} v_{4} v_{1}$.

Step 5 From among the $n-4$ vertices not chosen so far, find one, say $v_{s}$ which is closest to the walk $W_{4}$.

Determine which of the cycles $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}, v_{1} v_{2} v_{3} v_{5} v_{4} v_{1 .} v_{1} v_{2} v_{5} v_{3} v_{4} v_{1}$, $v_{1} v_{5} v_{2} v_{3} v_{4} v_{1}$ is shartest.

Let $W_{5}$ denote the shortest onc and relabeled it, if necessary, as $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ continue in this way to eventually arrive at.

Step $n$ Denote the remaining unclosen vertex by $v_{n}$ and determine which of the cycles $v_{1} v_{2} \cdots v_{n-k} v_{n} v_{1}$, $v_{1} v_{n} \cdots v_{\pi-1} v_{i}$ is shortest.

Let $W_{n}$ denote the shortest of these cycles.

Since our target is to solve the Traveling Salesman Problem of the complete weighted graph. For this purpose we first define the Traveling salesman problem. Details on TSP have been described in Narsingh [11].

## Traveling Salesman Problem (TSP)

We can represent the salesman's terriory by a weighted graph $G(V, E)$. The vertices correspond to the towns and two verlices are joined by a weight edge if there is a road connecting the comesponding towns, which does not pass through any of the other towns, the edges weight representing the lengths of the road between the towns. The sales man finds his optimal distance from a starting vertex and visits each vertex and again comeback to his first starting vertex. He continues this process until every vertex visited. And this syslem is known as traveling salesman problem.

We illustrate Traveling Salesman problem with an example and solve it using closest insertion Algorithm .

Let a traveling salesman's territory includes five cities $A, B, C, D$ and $E$ which corresponding to the vertices. Each road connecting a pairs of vertices with weights $w^{\prime}$. His job requires him to visit each city. So, it is required for him to plan a round trip by car enabling him to visit each of the cities exactly once and minimize the total distance traveled. We wish to find an ordcring of the five cities starting with vertex $\Lambda$ so that if he visits five vertices only once in this optinal order, then the total distance is smallest possible.

The following figure 3.5 is a complete weighted graph and $A$ denotes the starting vertex.


Figure: 3.5 4 weighted graph

## Algorithm (using closest Insertion Algorithnt)

Step 1. Let $v_{1}=A$
Step 2. $v_{2}=B$ is closest to $A$ so $W_{2}=v_{1} v_{2} v_{1}=A B A$
Step 3. $v_{3}=C$ is closest to $W_{2}$ (It has distance 10 from $A$ ) $W_{3}$ is the cycle $v_{1} v_{2} v_{3} v_{1}=A B C A$ and has length $5+35 \cdot+10=50$.
Step 4. $\quad v_{4}=D$ is closest to $W_{3}$ (It has distance 15 from $A$ ) to $W_{3}$.

We find the length of the cycles $v_{1} v_{2} v_{3} v_{4} v_{1}, v_{1} v_{2} v_{4} v_{3} v_{1}, v_{1} v_{4} v_{3} v_{2} v_{1}$ :

$$
\begin{array}{lll}
v_{1} v_{2} v_{3} v_{4} v_{1}=A B C D A & \text { has length } & 5+35+25+15=80 \\
v_{1} v_{2} v_{4} v_{3} v_{1}=A B D C A & \text { has length } & 5+40 \div 25+10=80 \\
v_{1} v_{1} v_{3} v_{2} v_{1}=A D C B A & \text { has length } & 15+25+35+5=80
\end{array}
$$

We choose $W_{4}=A B C D A$ as the shortest one.
Step 5. $\quad V_{S}=E$ is closest to $W_{4}$ (It has distance 20 from $A$ )
We find the lengths of the cycles $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}, v_{1} v_{2} v_{3} v_{5} v_{4} v_{1}$,

$$
\begin{aligned}
& v_{1} v_{2} v_{5} v_{3} v_{4} v_{1} \text { and } v_{1} v_{5} v_{2} v_{3} v_{4} v_{1} \\
& v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}=A B C D E A \text { has length } 5+35+25+50+20=135 \\
& v_{1} v_{2} v_{3} v_{5} v_{4} v_{1}=A B C E D A \text { has length } 5+35+30+50+15=135 \\
& v_{1} v_{2} v_{5} v_{3} v_{4} v_{4}=A B E C D A \text { has length } 5+45+30+25+15=120 \\
& v_{1} v_{5} v_{2} v_{3} v_{4} v_{4}=A E B C D A \text { has length } 20+45+35+25+15=140
\end{aligned}
$$

We can therefore conclude that a reasonably efficient shorest path distance is $v_{1} v_{2} v_{5} v_{3} v_{4} v_{1}=120$.

### 3.8 Minimum spanning tree

Minimum spanning tree is important in Graph theory. Finding a spanning trec in a weighted graph such that the sum of the weights of the edges in the tree is minimum and solves a wide variety of problem.

## Definition:

A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Consider a connected graph each edge of which has a positive length. A connected subset $M$ of edges is called a tree if there is no cycle in this subset. A tree is a spanning trec if it connects all the nodes, i.e. there is a path between any pair of nodes. It is required to find a spanning tree sum of whose edge lengths is the minimum; such a spanning tree is called a minimum spanning tree. Hence forth, we assume that the edge lengths are distinet.


Figure 3.6 Example graph for minimum spanning tree

A minimum spanning tree for a connected graph and the weights on edges are shown, and the edges in a minimum spanning tree are shaded. The total weight of the tree is 37 . The tree is not unique: removing the edge ( $b, c$ ) and replacing it with the edge $(a, h)$ yield another spanning tree with weight 37.

## Propertics of Minimum Spanning Tree

l.et $M$ be a minimum spanning tree.

- $\quad\left(P_{1}\right)$ There are $n-1$ edges in a spanning tree.
- ( $P_{2}$ ) There is exactly one path connecting a pair of nodes in a spanning tree
- $\quad\left(P_{3}\right)$ Adding an edge to a spanning tree creates a cycle.
- ( $P_{4}$ ) Removing any edge from a cycle as in $\left(P_{3}\right)$ creates a spanning tree.
- $\quad\left(P_{5}\right)$ Let e be any edge outside the minimum spanning tree. The edges on the cycle created by adding e have lower lengths than that of $e$.


## Prin's Algorithm

Prim's algorithm is more efficient to construct a minimum spanning trec. Using prim's algorithm we construct a minimum spanning tree.

Duc to Clark et al. [6], we have the following Prim's Algorithm :
Step 1. Choose any vertex $v_{1}$ of $G$.
Step 2. Choose an edge $e_{1}=v_{1} v_{2}$ of $G$ such that $v_{2} \neq v_{1}$ and $e_{1}$ has smallest weight among the edges of $G$ incident with $v_{1}$.

Step 3. If edges $e_{1}, e_{2}, \cdots, e_{\text {, }}$ have been chosen involving end points $v_{1}, v_{2}, \cdots, v_{1,1}$, choose an edge $e_{j+1}=v_{j} v_{k}$ with $v_{j} \in\left\{v_{1}, \cdots, v_{11}\right\}$ and $v_{k} \notin\left\{v_{1}, \cdots, v_{l+1}\right\}$ such that $e_{i+1}$ has smallest weight among the edges of $G$ with precisely one end in $\left\{v_{1}, \cdots, v_{1+1}\right\}$.

Step 4. Stop after $n-1$ edges have been chosen otherwisc repeat Step 3.

## Chapter Four

## Shortest Paths Algarithm respect to Non-Linear Complementarity Problem

### 4.1 Introduction

This chapter deals with nonlinear programming (minimization problem) with the graph model. The nonlinear complementarity problem (NCP) is to find a point $x \in X$ such that

$$
\begin{gather*}
x^{T} F(x)=0 \\
x \geq 0, F(x) \geq 0, \tag{4.1}
\end{gather*}
$$

where $I$ denotes the transpose and $F: R^{*} \rightarrow R^{*}$ is a given function (Cotle et al. [7], Mangasarian et al. [9] and Yamada et al. [22]).

Recently this problem has been reformulated as a minimization problem in order to apply well-developed optimization methods (Cotle et al. [7] and Yamada et al. [22]). We have shown the equation (4.1) can be formulated as a graph model and reformulated as a residual flow problen. In residual network both the cost and price are efficient (Mangasarian ct al. [9] and Thomas et al. [2I]).

### 4.2 Flow properties in Network

Let $G=(V, E)$ be a flow network, where flow based edges are connected by weight function $W$. A weight function defined as

$$
W_{i j}=\left\{\begin{array}{l}
0 \quad \text { if } \quad i=j \\
\text { the weight of directed edge }(i, j) \in E \\
\infty \quad \text { if } \quad i \neq j \text { and }(i, j) \notin E
\end{array}\right.
$$

In a given network, a flow $f$ is an assignment of a nonnegative number $f_{t}$, to every directed edge (i,j) such that the following conditions are satisfied.

1. For every directed edge $(i, j) \in G$

$$
f_{1 j} \leq c_{1 j} \text {, where } c_{1 j} \text { is the capacity of edges } i, j \in C
$$

2. There is a specified vertex $s$ in $G$ called the source for which,

$$
\sum_{1} f_{n}-\sum f_{n}=d .
$$

Where the summations are taken over all vertices in $G$. Quantity $d$ is called the value of the flow.
3. There is another specified vertex $t$ in $G$, called the destination for which

$$
\sum_{1} f_{n}-\sum_{1} f_{u}=-d .
$$

4. All other vertices are called intermediate vertices. For each intermediate vertex $j$

$$
\sum_{i} f_{n}-\sum_{i} f_{y}=0 .
$$

We are giving a general statement about optimal routes with regard to network topology.

### 4.3 The optimality principle

The optimality principle states that if router $/$ is on the optimal path from $s$ to $t$. then the optimal path from any $J$ to $K$ in between $s$ and $t$ also falls along the same route.

## Graph representation of the equation (4.1) :

Consider the variables that the flows through each of edges in $G(V, E)$. $W$ is a weight function. Let the flow patern be denoted by a column vector $f$ and $f^{\prime}=\sum_{l \in I} f_{l}^{\prime}=w_{r}$ denote the variable vector, where $f^{\prime}$ is the derivative of $f$. Also let $d$ denote the row vector. Then the problem is to find a flow that ininimize $d f^{\prime \prime}$.

Subject to the constraints $A^{\prime} \cdot f^{\prime}=0$

$$
f \leq c, \text { for } c>0
$$

$$
\text { and } f \geq 0, \ldots \ldots \ldots \ldots . . .(4.2)
$$

where $A^{\prime}$ is the incidence matrix obtained by adding an edge from $t$ to $s$ (Narsingh [11]). Clearly there exists a parallel edge in the graph model in equation (4.2). Also the edges in $f, c$ and $A^{\prime}$ must appear in the same order (Clark et al. [6]).

We shall show that the equation (4.2) can be reformulated as a residual network to obtain a minimal flow cost. The author in Yamada et al. [22] has shown that residual function solves the nonlinear complementarity problem.

To construct a residual network as an optimization problem we give some preliminaries on optimal routing residual network.

### 4.4 Model and Preliminaries of Residual Network

We consider a flow constraint network $G=(V, E)$, where $V$ is a finite set of verlices and $E=f(u, v), E \in V \times V$ is al set of directed links. A set
$I=\left\{1.2, \cdots, S_{\}}\right.$of users which is uscd as vertices that share the network in the way that all uscrs ship flow from a common source $s$ to the common destination $t$. For each user ie $I$ there has some throughput demand $w_{j}$ in the network referred to as the input traffic of $W$ ( $W=\sum w_{2}$ ). In the context of routing of data in communication network $w_{1}, t \in I$, is the arrival rate of traffic entering and existing the network from the origin to the destination of $w$. Routing objective is to divide each $w_{2}, t \in I$; among the many paths from origin to destination so as to oplimize its performance objective. Without loss of generality we assume that $w_{1}>w_{2}>\cdots>w_{j}$ which do users control (Blasum et al, [24]). We denote the terms of user flows $f_{i}^{\prime}$ where $l \in E$, user routing strategy $f^{i}$, user strategy space $F^{\prime}$ and system flow configuration $f$. such that strategy space $r^{i}$ should account for the conservation property of flow at all nodes, that is, for all $l \in E$, we get

$$
\sum_{t \in \operatorname{win}(v)} f_{i}=\sum_{t \in \min (t)} f_{i}^{\prime}+w_{r}, v \in V
$$

where

$$
w_{t}^{\prime}=-w^{\prime}, w_{s}^{\prime}=w^{\prime} \text { and } w_{v}^{\prime}=0 \text { for } v \neq \varepsilon, t,
$$

The system of flow configuration aims to find a strategy $f^{\prime} \in F^{\prime}$, which minimizes its cost. Suppose that associated with cach edges of the residual network there exists a number $d_{l}, l \in E$ and $i \in I$ which quantified as a cost variable in the network. The minimum cosi depends on the routing decisions of the other users, described by the strategy profile

$$
f^{2}=\left(f^{\prime}, \cdots f^{i-1}, \cdots, f^{\prime}\right)
$$

and $d^{\prime}$ is a function of the system of flow configuration $f$. By the constraint set property, the collection of all path flow $f_{i}^{i}$ must satisfy the constraint set

$$
\begin{equation*}
\Sigma f_{l}^{i}=w_{i}, \quad f_{l}^{i} \geq 0, i \in l . \tag{4.3}
\end{equation*}
$$

Thus nonlinear complementarity problem using the equation (4.2) is to find a strategy profile such that

$$
\begin{equation*}
f^{\prime} \in \arg \min d^{\prime}\left(g^{\prime} f^{\prime}\right) . \quad g^{\prime} \in F^{\prime}, \text { a real number. } \tag{4.4}
\end{equation*}
$$

## De「inition 4.1

User are said to be identical if their demands are equal, i.e., $w^{\prime}=w^{\prime}, i, j \in I$.

## Definition 4.2

A user is said to be simple if its flows are routed through links (or paths) of minimal delay.

### 4.5 Minimization model of residual network

Let $G_{f}$ is the residual network. Consider the cost function in the form

$$
\begin{equation*}
d_{l}^{i} f_{i}^{\prime} \tag{4.5}
\end{equation*}
$$

associated with edge $l=(u, v)$ in the residual network $G_{f}$. It is desired to construct a flow pattern sending a specified value $w_{r}, i \in I$ from source $s$ to sink $t$, satisfying the flow constraints defined in (4.2) which minimize the total flow cost

$$
\sum d_{i}^{\prime} f_{i}^{\prime}, \quad \forall i \in I, \quad l \in E
$$

in overall flows that send $W$ units from $s$ to $t$.

The author in Bertsckas [2] showed that the problem is to find a set of path flows $\left\{f_{j}\right\}$ that minimizes this cost function subject to the constraints equation (4.2). We assume that $d_{i}^{\prime}$ is a convex and contimuously differentiable function.

Now by expressing the total flow in terms of the path flows in the cost function in equation (4.5) with constraint sets, the minimization problem can be fonnulated in terms of the path flow variables $\left\{V_{i}\right\}_{, i \in I, l \in E}$ as

$$
\begin{gathered}
\operatorname{minimize} D(f) \\
\text { subject to } \sum f_{l}^{\prime}=w_{f}, \forall f \in E \\
f_{l}^{\prime}>0, \\
c_{l}^{\prime}>0,
\end{gathered}
$$

where $c_{1}^{\prime}$ is the residual capacity and

$$
D(f)=\sum d_{i}\left(\sum f_{i}^{i}\right)
$$

### 4.6 Structure of the residual network

Consider the residual network $G_{f}$ in a system of parallel tinks with capacity configuration $C$. A number of intuitive monotoniciry properties of this network have been established in Korilis et al. [8] and are summarized in the following:

## Lemma 4.3

Let $f$ be the unique flow in the network of parallel links with capacity configuration $C$. Then

1. The expected flow of any user $i \in I$ decreases in the link number, i.e., $f_{1}^{\prime} \geq f_{2}^{\prime} \geq \cdots \geq f_{E}^{\prime}$. In particular, for $f_{l}^{\prime}>0$, we have $f_{i}^{\prime}=f_{m}^{\prime}$ if and only if $c_{j}=c_{m}$.
2. For any link $l \in E$, the flows decrease in the user number, i.e, $f_{i}^{\prime} \geq f_{i}^{2} \geq \cdots \geq f_{i}^{\prime}$. In particular for $f_{i}^{\prime}>0$, we have $f_{i}^{\prime}=f_{i}^{j}$ if and only if $w^{\prime}=w^{\prime}$,
3. The residual capacity is decreasing in the link number, i.e., $c_{1}-f_{1} \geq c_{2}-f_{2} \geq \cdots \geq c_{E}-f_{E}$. In particular $f_{7}=f_{m}$ if and only if $c_{l}=c_{m}$.
4. For cvery user $i \in I$, the residual capacity $c_{i}^{i}=c_{t}-f_{f}^{\prime}$, seen by the user on link $/$ is decreasing in the link number, i.e., $c_{1}^{\prime} \geq c_{2}^{\prime} \geq \cdots \geq c_{k}^{\prime}$. In particular, $c_{l}^{\prime}=c_{m}^{\prime}$ if and only if $c_{l}=c_{m}$.

In a gradient method (for minimization) cach vector in the generated sequence has a lower cost than its predecessors. Similar to the gradient method, we decompose the input graph $G=(V, E)$ using $D F S$ technique.

### 4.7 Acyclic decomposition of the graph $G=(V, E)$

We have decomposed the input graph $G=(V, E)$ similar to the gradient method. Thomas et al. [21] have considered the gradient method such as edge set $E$ into $T$ and $\bar{T}$, where

$$
T=\left\{\left(v_{1}, v_{j}\right) \in E \cdot j<j\right\}
$$

and

$$
\bar{T}=\left\{\left(v_{r}, v_{r}\right) \in E \cdot i>j\right\}
$$

and delined $G_{f}=(V, T)$ and $G_{b}=(V, \bar{T})$ in the residual network and showed that $G_{j}$ and $G_{b}$ are acyclic. In our decomposition we assumed that the set of increment of flow, $\nabla f(x)$, correspond to the addition of flow in the forward edges and the set of flow dircction $d$ corresponds to the transferring of flow in the backward edges.

To reduced this decomposition into NCP form, consider a node $v \in V$ such that $I N(v)=\{l(v, v)\}$ and $O U T(v)=\{l(v, w)\}$ of an instance requesting a spanning $u, w$ path via $v$ in $G$. We now show that the following lemma is acyclic.

## Lemma 4.4

The decomposition of the graph $G=(V, E)$ is acyclic.

## Proof:

Consider an instance that requests a $u, w$ path via $v$ in $P$. Form $G$ by splitting cach vertex $x$ into a path $x^{-} \cdot x^{0}, x^{+}$, with $x^{-}$inheriting all cdges
with heads at $x$ and $x^{\prime}$ inheriting all edges with tails al $x$. A spanning $u, w$ path in $P$ becomes a $w$ wath in $G$ by replacing cach $x$ by the sequence $x^{-}, x^{0}, x^{+}$(Narsingh [11]). Conversely, since a spanning $u, w$ path in $G$ must visit each $x^{0}$, it must visit traverse all sequenees of the form $x^{-}, x^{0}, x^{2}$ forwards or backwards. Since no vertices of the same sing are adjacent, these traversals must all be in the same direction and then they collapse to the desired $u$.w path in $P$ which is acyclic.

In general an acyelic decomposition consists of a set of trigger vertices $T$ and a sct of vertices $\bar{T}=V-T$ that forms a subgraph constituting a large acyclic region with $G$. This different acyclic decomposition by trigger vertices is equivalent to that of the feedback vortex sct, that is, the graph is decomposed into a feedback set $T$ and its associated acyclic region $\bar{T}$. The successive shortest path algorithms are able to reduce the cost function. The cost $d^{\prime}\left(f_{i}^{\prime}\right)$ of an edge $u \rightarrow v$ in $P$ is defined as the cost of the shortest path of the form $u \rightarrow v$ for $u \in T$ in the forward edges and $v \rightarrow w^{\prime}$ in $P$ when $w \in \bar{T}$ in the backward edges. In path $P$, let $f^{\prime} ;$ be the minimum of all differences $[c(u, v)-f(u, v)]$ in forward edges and also let $f^{\prime}$ : be the minimum of flows in backward edges. Let $f_{i}^{i}=\min f_{i}^{\prime}$. Then the flow in the network $G$ can be increased by increasing the flow in each forward edges and decreasing the flow in cach backward edges by an amount $f_{i}$, which satisfy the optimality conditions delined in Korilis et al. [8] and Thomas et al. [21], i.e., for a ftow vector $f_{i}^{i}>0$, we find $m i n C_{f}(P)$
which reduced the cost $d_{j}^{\prime}\left(f_{l}^{\prime}\right)$ with respect to non-linear complementarity problem when the path is shortest.

From the following algorithm we solve the successive shortest path ; distances from a source $s$ to destination $t$ using DFS technique.

### 4.8 Successive shortest paths Algorithm

Step 1. Initialize pre flow ( $G, s$ )
Step 2. A linked list, $L \leftarrow V[G]-\{s, t\}$ in any order
Step 3. Let $s \in T$ be the sel of links $w$ in $G_{f}$ such that $c(u, v)>f(u, v) \quad$ ( $T$ consists of forward links).
Let $t \in \bar{T}$ be the set of links $u w$ such that $f(v, w)>0,(\bar{T}$ consists of reverse links).
Step 4. For such $u \in I N(v)$ with excess $c(u)>0$
do $c_{f}=c(u, v)-f(u, v)$ in $G_{f}$ do $f^{\prime \prime}:=\min c_{;}, i \in V, l \in E$.
Step 5. Using a backiracking procedurc, identifying the incrementing path from $s$ to $t$ in $G_{f}$.

Step 6. Pull $(w \in \bar{T})$ transfer $f^{\prime \prime} i=\min f^{\prime \prime \prime}$, in the backwards direction. do $\delta(s, t)=\delta_{l}(u, v)+\delta_{l}(v, w)$ with reduced cost $d_{l}\left(f_{t}^{\prime}\right)$.

Step 7. do $/[u, v]<-f[u, v]+f^{\prime \prime \prime}$.
Step 8. Repeat until

$$
c_{f}(u, v)=\min c_{f}(u, v), \forall f_{i}^{\prime}>0
$$

## Theorem 4.5

Given a system $A x \leq b$ of difference constraints, let $G=(V, E)$ be the corresponding constraint graph. If $G$ contains no negative-weight cycles. then

$$
x=\left(\delta\left(v_{0}, v_{1}\right), \delta\left(v_{0}, v_{2}\right), \delta\left(v_{0}, v_{3}\right), \cdots \cdots, \delta\left(v_{0}, v_{n}\right)\right)
$$

is a feasible solution for the system. If $;$ contains a negative-weight cycle, then there is no feasible solution for the system.

Before going proof we will introduce a constraint graph with examples.

In a system of the difference constraint matrix A where each row of $A$ contains one 1 and one -1 and all others entries are 0 . Thus the constraints given by $A x \leq b$ are a set of $m$ difference constraints involving $n$ unknowns, in which each constraint is a simple lincar inequality of the form

$$
x_{j}-x_{1} \leq b_{k},
$$

where

$$
1 \leq l_{1} \quad j \leq n \text { and } 1 \leq k \leq m .
$$

Now consider the problem of 5 -vector $r=\left(x_{i}\right)$ that satisfies

$$
\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0  \tag{1}\\
0 & 1 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & -1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \leq\left(\begin{array}{r}
4 \\
-6 \\
1 \\
3 \\
5 \\
10 \\
-4
\end{array}\right) .
$$

Now writing the above matrix in the inequalities form

$$
\begin{align*}
& x_{1}-x_{2} \leq 4 \\
& x_{2}-x_{4} \leq-6 \\
& x_{3}-x_{2} \leq 1 \\
& x_{4}-x_{1} \leq 3 \quad .  \tag{2}\\
& x_{4}-x_{3} \leq 5 \\
& x_{4}-x_{5} \leq 10 \\
& x_{5}-x_{3} \leq-4 .
\end{align*}
$$

One solution to the difference constraint in equation (2) is $x=(8,4,5,10,0)$, where we have assumed that $x_{5}=0$.

We set up a constraint graph with the inequalities (2). The value of $\delta\left(v_{11}, v_{i}\right)$ is shown in each vertex $v_{1}, \quad i=1,2.3 .4,5$, and $\delta\left(v_{0}, v_{1}\right)$ denotes the shortest distances between pairs of vertices.

Higure 1 shows the constraint graph for the system (2) of difference constraint (using Bellman-Ford idea)


Figure 1. A feasible solution to the system is $\boldsymbol{x}=(8,4,5,10,0)$

## Proof (First part of the theorem 4.5)

We know

Now let,

$$
\begin{aligned}
& \delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{t}\right) \leq w\left(v_{i}, v_{j}\right) \\
& \delta\left(v_{0}, v_{j}\right)=x \\
& \delta\left(v_{0}, v_{i}\right)=x_{i}
\end{aligned}
$$

and
So

$$
\begin{equation*}
x_{j}-x_{t} \leq w\left(v_{n}, v_{j}\right) \tag{3}
\end{equation*}
$$

which corresponds to the constraint matrix $A x \leq b$ from the above example in equation (1) and (2) and also corresponds to the edge ( $v_{r}, v_{j}$ ). Thus $\partial\left(v_{1}, v_{k}\right), \quad k=1,2, \cdots \cdots$ is a feasible solution of the theorem 4.5. Now we show that (second part of the theorem) for the negative weight cycle of the constraint graph.

For the purpose of negative weight cycles, let the negative weight cycle be $\mathrm{C}=\left(v_{1}, v_{2}, v_{3} \cdots \cdots v_{k}\right)$ where $v_{1}=v_{k}$.

## Proof (second part of the theorem 4.5)

Again we consider the equation (3)

$$
\begin{aligned}
& x_{2}-x_{1} \leq w\left(v_{1}, v_{2}\right) \\
& x_{3}-x_{2} \leq w\left(v_{2}, v_{3}\right)
\end{aligned}
$$

$$
x_{k}-x_{k-1} \leq w\left(v_{k-1}, v_{k}\right)
$$

$$
\boldsymbol{r}_{\mathbf{1}}-\boldsymbol{r}_{k} \leq H^{\prime}\left(v_{k}, v_{1}\right) \quad\left[\text { since } v_{k}=v_{1}\right] .
$$

Now we sum the inequalitics we get

$$
0 \leq w^{\prime}(c)
$$

But we have considered the weight cycle is negative i.e.

$$
x(c) \leq 0
$$

Thus solution for the $x$ must satisfy

$$
0 \leq w(c) \leq 0
$$

which is impossible. This completes the proof of theorem 4.5.

### 4.9 Mathematical form of shortest path distance by Nonlinear complementarity problem

In Bertsekas [2] the author have been illustrated that optimal routing directs traffic exclusively along paths that are shorest with respect to arc lengths that depend on the flows carricd by the arcs. In contrast to the equation (4.2), we shall show that,
$N C P$ can formulated to the shortest path distances which solves the residual networks.

Poof: From equation (2.3.1) we get

$$
d^{k}=\frac{1}{\alpha^{k}}\left[x^{k+1}-x^{k}\right], \forall a \geq 0 \quad \text { and } k \geq 1,2,3, \cdots
$$

Using Theorem 4.5, letting

$$
x^{k}=\delta\left(v_{0}, v_{t}\right) \quad \text { and } \quad x^{k+1}=\delta\left(v_{n}, v_{j}\right)
$$

which satisfies the difference constraint that corresponds to edge ( $v_{i}, v_{j}$ ) in the descent direction of $N C P$.

Thus

$$
\begin{gathered}
\delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{1}\right)=z^{k} d^{k} \\
\Rightarrow d^{k}=\frac{1}{\alpha^{h}}\left[\delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{1}\right)\right] \\
=\frac{1}{\alpha^{k}}\left[w\left(v_{r}, v_{j}\right)\right]=\frac{1}{\alpha^{k}}[w(P)] .
\end{gathered}
$$

Here we have used Corollary 3.2 .3 and Chapter 3 (scetion 3.3), which proves that the weighted shortest path is monotonically decreasing when $\alpha \rightarrow \infty$ and has a lower bound. This shows that the shortest path is monotonically decreasing.

## References

[1] R. K. Ahuja, T. L. Magnanti and J. I. Orlin. Network Flows: Cheory, Algorithons and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[2] D. P. Bertsckas, Nonlinear Programming, Athena Scientitic-1995.
[3] U. Blasum, W. Hochstatuler, C. Moll and H. Ricger, Using Network-Flow Techniqnes To Solve An Optimization Problem From Surface-Physics, J. Phy, A: Math. Gen. Vol. 29 (1996), pp-459-463.
[4] L. Caccetta and M. Kraetzl, Blocking Probabilities Of Cerain Classes Of Channel Groups, Vishwa International Publications, I.I. No. 10-3:79, N. V. Layout Gulbagra 585103 , India, pp-69.
[5] H. P. Christos and S. Kenncth, Combinatorial Optimization: Algorithms and Complexily, Prenlice-Fall. 1982.
[6] J. Clark and D. A. Flohton. A First Look at Graph Theory, Allied Ltd., 1995.
[7] R. W. Cotle, J. S. Pang and R. [. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
|8| Y. A. Korilis. A. A. Lacar, and A. Orda, Capacity Allocation Under NonCooperative Routing. JFEE Transactions on Automatic Control. Vol. 42, no. 3 (1997). pp-309-325.
[9] O. L. Mangasarian and M. V. Solodou. A Linearly Convergent Descent Mcthod For Strongly Monotone Complementarily l'roblems. Computational optimization and applications, Vol, 14. PP. 5-16. 1999.
[10] M. Molloy and B. Reed, Random Struct And Algonithms 6. 161(1995): Combinatorics. Prob. Comput. 7, 295(1998).
[11] D. Narsingh. Graph 'lheory with applications to engineering and computer science, Prentice Hall of India, New Delhi. 2001.
[12] M. E. J. Newinan, Scientific Collaboration Networks, II. Shortest Paths, Weighted Networks And Centrality, Cornell University, Rhodes Hall. Ithaca, New York 14853, Published 28 Jnne 2001.
[13] S. Pettie and Ramachandran, A Shortest I'ath Algorithm For Real-Weighted Unditected Graphs, SIAM J. COMPUT. Vol. 34, no. 6(2005), pp-1398-1431.
[14] S. Pettie, A New Approach Io All-Pairs Shortest Paths On Real-Weighted Graphs. Theoretical Computer Science 312, 1 (2004), 47-74.
[15] S. Pettic and Ramachandran. An Optimal Minimum Spanning Tree Algorithm, J, of the ACM, Vol, 44, no. (2002), pp-16-34.
[16] S. Pettie and Ramachandran, A Randomized Timework Optimal Parallel Algorithm For Finding A Miuimun Spanning Forest, SIAM J. COMPUI. Vol. 31, No. 6 (2002), pp. 1879-1895.
[17] S. Saunders and T. Takaoka, Efficient Algorithms For Solving Shortest Paths On Nearly Acyclic Directed Graphs, Proceedings of the 2005 Australasian symposium on Theory of computing. Vol. 41. pp 127-131.
[18] S. Sauuders and T. Takaoka, Improved Shortest Path Algorithms For Nearly Acyclic Graphs. 'Theoretical Compuler Science 293, 3 (2003), 535-556.
[19] T. Takaoka, A Faster Algorithm For The All-P'airs Shortest Path Problem and Its Application. In Proc. COCOON (2004), Vol. 3106 of Lecture Notes in Computer Science, pp-278-289.
[20] T. Takaoka, Shorlest Path Algorithms For Nearly Acyclic Directed Graphs. 'l heoretical Computer Science 203, l (1998), 143-150.
[21] H. C. Thomas, E. L. Charles and L. R. Ronald, Introduction to Algorithms. Prentice-Hall of India Private Limiled, New Delhi-11001, 200I.
[22] K. Yanada, N. Yanashita and M. Tukushima, A New Derivative-Free Descent Mehod For The Nonlinear Complimentarily Problem, Nonlinear Optimization and Related Topics, Edited by G. Di Pillo and F. Giannessi, Kluwer Academic Publishers, Boston, Massachusctts (2000), pp-463-487.


