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Abstract

in this thesis, the thermo-tluid-dynamic field resulting from the coupling
of natural convection along and conduction inside a heated flat plate is
numerically studied by means of implicit finite difference method in the
entire region starting from the lower part of the plate 1o down stream,
The results in terms ol shear stress coelficient and surface temperature
coefMcient for different Prandtl numbers are compared with the
perturbation solution ncar the lower part of the platc and asymptotic
solution in the down stream region and found an excellent agreement for
flat plate. In second part unsteady Jaminar natural convection flow has
been considered in an inclined square cavity. The top horizontal wal, the
right vertical wall , the bottom wall of (he cavity arc cool and the lefl
vertical wall is heated. The equalions arc non-dimensional and solved
numerically by an upwind [inite diffcrence method together with a
successive over-relaxation {SOR) technique. Results are shown on the
streamlines configuration as well as the isolines of temperatures. The
uid has Prandtl number Pr =7.0 while the value of the Rayleigh
number, Ra varies rom 10° to 107 and coupling parameter, p varies from
0.0 to 1.0 and angle inclination ¢, varies fromn 0” to 90" for cavily.

L



CANDIDATE’S DECLARATION

I hercby declare that the work which is boing presented in the thesis entitled
"Conjugale e¢ffect of conduciion and convection with natural convection flow from a
vertical flat plate and in an inclined squarc cavily” submitted in partial fulfillment of
the requirements for the award of the deprec of Master of Philosophy in
Mathematics, in the department of Mathematics, Bangladesh  University of
Engineening and Technology, Dhaka is an authentic record of my own work.

The matter presented 1 this thesis has nol heen submitied by me for the award of
uny olher degree in this or any other University.

Dalc: September 30, 2002 ' (M. Zafar igbal Khan)

vl



Acknowledgement

I take this great opportunity lo express my profound gratitude and appreciation
lo my supervisor A. K. Hazra and co-supervisor Prof, M. A. Hossain. Their
gcncrous help, guidance, constant encouragement and indefatigable assistance
were available to me at all stages of my rescarch work. Tam highly gratetul to
them for their camest feeling and help 1n mallers concerning my research
aflarrs.

I express my deep regards to my respectable teacher, Dr, Md. Mustafa Kamal
Chowdlury, Professor & Head, Department of Mathematics, BUET for
providing me help, advice and nceessary rescarch fucilitics.

I also express my gratitude to my teachers Dr. Md. Zakerullah, Dr. N. F.
Hossain, Dr. Md. Abdul Hakim Khan, Md. [sa, Md. Abdul Quddus Mean, Md.
Obayedullah, Abdul Maleque, depariment of mathematics, Bangladesh
University of Engincering & Technology, for their cooperation and help
duting my research work.

L



Nomenclature

Streamwise coordinale
Transverse coondhnale
Velocity component in the

x-threction

Velocity component in the

y-direchion

Dimensionless stream funcltion
Acceleration due to gravity
Temperature of the fuid

Temperature al outside of the plale
Temperature of the ambient fluid
Solid temperature

Specific heat

Prandil number
Rayleigh number

i
'.l'
2
Il

h
o

Ay

Ky

{

Stream (unction
Kinemalic viscosily
Flund densily

Viscosily of the {luid

Male thickness

(=T} T,

Length ol the plate

Thermal conductivity of the ambient
sohd

Thermaul conductivity of the anilnent
fuid

Dimensionless temperalure

(T-T T Ta)

Reference length , v /g

Coupling parameter



List of tables

2.1 Imtial expansion : values (:-fﬁ,”(ﬂ] for comparison

2.2 Tmtial expansion: values of @, (0} for comparison

2.3 Asymptotic cxpansion : values of _f}#(ﬂ} lor comparison
2.4 Asymplohc expansion : values of g, {0) for COMPpAnson

3.1 Comparison of numerical values of stream function againsi

different meshes for Ra= 10°, Pr= 7.0 and pr= (0

15

[ £y

16

27

;



List of Figures

2.2 Skin fniction against axial distance x for different Pr.

2.3 Non dimensional lemperature against axial distance x for

diflerent Pr.
2.4 Velocty profile against n for different Pr
2.5 Temperature profile against i {or different Pr
3.2 (a) Streamlines for different p while Ra= 10", Pr=70and ¢ =0°
3.2 (b) Isotherms for different p while Ra = 10°, Pr=7.00and ¢ = 0"
3.3 (a)Streamiines for different ¢ while Ra= 10", Pr="7.0and p = 0.25
3.3 (b) isotherms for different & while Ra = 10*, Pr=70 and p=0.25
3.4 (a) Streamlines for different Ra while Pr= 7.0, ¢ = 0% and pp — .25
3.4 (b} Isothcrms for different Ra while Pr=7.0, ¢ = 0" and p=0.25

3.5 Ralc of heal iransier for Pr= 7.0, Ra = 1{]‘1, g = 0.0 and diflerent value
ol p

¥l

b7

P7

28

28

30

32

1l
L

34



s BTV
/:hf?yo 63 ’:

"“\ xr -
N oA d,

Chapter 1

Introduction

It 15 well established thal when conveclive heat trunsfer results are strongly
dependent on thermal boundary conditions, consideration of convective heat
transfer problems as conjugated problems 1s necessary to obtain physically more
strict resulls. Many research efforts have been given to the conjugate problems of
forced convection heat transfor both expernimental and theoretical but few works
have been devoted 1o the comjugate problem of free convection. Gdalevich and
Feriman [1] stated conclusively that the use of numencal method for solving the

initial system of governing parhial differential equation such as Minde dilfercnce
At qlere

methods, is evidently the most pramising in studics of conjugate free convection.
‘I_.—-—'_'W

Accarding to Kellcher and Yang [2] the analytical treatments used extensively in
conjugate forced convection problems are dilficult due to matching a4 non-hinear
solution of free convection in a fluid with lincar conduction solution in a solid
body at the solid {luid interface. Successful analyiical solution for the problemn of
cunjugate free convection about tapered, downward projection fin of a simple
power low form is obtained by Lock and Gunn [3]. Chida and Katto [4] studies the
conjugate problems in this dircction by the use of the verical dimensional
analysis. They applied their method to the interpretation of previously studied
conjugate heat transler pml:'-lems. When convective heat transfer depends strongly
on the thermal boundary conditions, natural convection must be studicd as a mixed
problem if onc neceds accurate analysis of the thermo-NMuid-dynamic Geld that
pointed by Miyamoto ct-al [5]. They analyzed the relative importance of the
parameters of the problem with reference with axial heat conduction. Timma and
Padel [6] by extending the analysis of Gosse [7] have developed a tochnigue
which improves the results given by the [irst lenm of asyinplotic solution of the

problem. in the same work a new cormrelation for the evaluation of heat transfer



coeflicient had also been presented. This analysis holds for high valuc of the
ahscissa x, the value of the point xy from which the expansion 1s valid depends on
the parameters that govern the problem.

Coupled natural convection cvaluating by the region which the point x falls
in, has been made by Pozzi and Lupo {¥] improving the results concerning the
asymptotic expansion by adding lerms of higher order with respect to the first onc
discussed the gencral form of the asymptotic expansions which 1s singular for the
presence of eigen solutions and determined the expansion holding for small values
of x in an accuratc way, by taking inlo a#ccount many terms of the serics by means
of Pad¢ approximant techniques,

Less work has been camed out for more complex thermal boundary
conditions. such as an imposed thermal gradient that is neither purcly horizental
nor purely veriical. Shiralkar and Tien [16] investigaled numerically natural
convection in an enclosure with temperalure pradients imposed 1 both the
horizontal and vertical directions simultancously. Chao and Ozoe [16] investigated
the problem of nalural convection in an inclined box with half the bottom surface
heated and half insulated, while the top surlace was cooled. Anderson and Lauriat
| 18] analyzed experimentally as well as theoretically the natural convection due o
one isothermal cold vertical wall and a hot bottom wall. Kimura and Bejan [19]
studicd numerically the convection Mow in a rectangular enclosure with the entire
lower surface cooled and onc of the vertical walls heated. November and Nanstecl
(201 and Nicolas and Nansteel [21] performed experiments and numerical
Investigations on convection in a water filled cnclosure with a single coid
isothermal vernical wall and a partially hcated bollom wall. Ganzarolli and
Milanez [22] computed the case of a heated bottom wall and {sothermally cooled
vertical walls. Recently, Velusamy ct al. [2?;] invesligated (he steady two-
dimensional natural convection flow in a rectangular enclosure with a lincarly-
varying surface temperature on the left vertical wall, cooled right vertical and top

walls and 1 uniformly-heated bottom wall. In this latter investigation, mild natural



convection was found to reduce the heat load to the cold walls and or any valuc of
aspect ratio it was also found that there exists a critical Rayleigh number for which
heat load 15 2 mintmum.

Inn carly works on flow in porous media, the Darcy law has been used which
15 applicable o slow Mows and does not account lor inertial and boundary eftects
(termed as non-Darcy effects). These cffects arc important when the llow velocity
is relatively high and in the presence of a boundary, as reported first by Vafal and
Ticn [24]. Recently, Khanafer and Chamkha [25] investigated numerically the
Brinkman-cxtended Darcy unsteady mixed convection flow in an enclosure, with
internal heat generation and with inclusion of the convective tenms in the
goveming cquations, using the control volume method by Patankar [26].

In the present work wc have used to give further contribution to the study
of coupled natural convection by introducing new transforination to the problem
posed by Porzzi et al. [8] that lcads the solution for x raising between 0 to oo that 15
solution near the lcading edge to down strcam region at the vertical surface in
Chapter 2. Lastly unsteady laminar natural convection Mow has been considered in
an inclincd square cavity in Chapter 3. The equations are non-dimensionalized and
solved numerically by an upwind finite difference method topether with a

successive over relaxation (SOR) technique developed by Hossain and Rees [27].



Chapter 2

Coupling of conduction with natural convection flow trom a

vertical flat platc

2.1 Introduction

In this chapter the thennoe-fluid-dynamic field resulting from the coupling of
natural convection along and conduction nside & healed [lat plate 1s studicd by
means of implicit finitc difference method in the entire region starting from ihe
lower parl of the plate o downstrecam. The results i terms ol shear stress
coeflicient and surface temperature cocflicient for different Prandl numbers are
compared with the perturbation solulion near the lower part of the plale and

asymptotic solution in the down stream region and found an excellent agreement.

2.2 Governing equations of the flow

We deseribe the steady two-dimensional [low due o free convection flow along a
side of a vertical {lal plate of thickness & insulated on the edges with a temperalure
T, mamntained on the other side (Thg 2.1).

The thermo-{luid-dynamic field in the {luid is governed by the boundary layer

cquations are

h 1 A 0

e rji-_ (2.1}

W T T 2.2)
A gr e T (“

u£+v£—“—’ﬁr 73
‘ Z (2.3)
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Fig. 2.3: A vertical {lat plate and the coordinate system
where w and v are the velocity components along the x and 3 directlions
respectively, I is the temperature of the Muid, 7. and T, are the temperature of the
ambicnt fluid and outside the plate respectively, g 1s the pravitational acceleration,
/3 15 the volumetric cocfficient of thermal expansion, v is the kinematic viscosity,
¢ 15 Lhe densily , & is the thermal conductivity of the ambicnt fluid, ¢, is the
specilic heat at constant pressure.

The boundary conditions to be satisficd by the above equations are
wn=0p=0 aty=0

w=07F="Taty=0w (2.44)

The coupling conditions requite that temperature and heat Mux be continuous at

the interface. At the interface

or. [ar} (2.41)
N, =K — .

Ty Sy

where &, and ap is the thermal conductivity of the solid and (luid respectively. 7,

the lemperature in the solid as given by Miyamoto ¢f. al {5] 1s

T, =TFx0-[T, - T{.rjﬂ)]% (2.4¢)



where T{x,(1) is the unknown temperalure at the interface to be determined from

the solutions of cquations.
2.3 Transformation of the governing equation

We introduce the following dimensionless dependent and independent varables:

1 . - ;F_T
F=2 FoZam w=Xavim n=lavs, 2 =),
P 7 i 7, - T,
- (2.5}
L
L= ol d=pT, -T.)

Using the above dimensionicss vanables inta the equations (2.13-(2 3) we get the

following dimensionless equalions:

il + X U (2.6
o 6)
wn + T?ﬂ{r = i—i + i

G (2.7

L R W
H—— b Ve = ———

&3 P (2.8)
where Pr =gc,/x, (he Prandil numbet.
The corresponding boundary conditions {2.4a,b,c) tuke the form
'H=1.J:'[‘],!’)‘—]=ﬂE at y=1

g (2.9

p==0} aty=w

where p = (x/)BIL)Y | the coupling parameter .

The problem described here is governed by the coupling paramcter p, the order of
magnitude of which depends essentially on &/ and & /&, d"= O(1). As L is
small, b/L is very large. When the Huid is air &y /xg=<1 il this plate is highly
gonductive Le., x~=] and reach the order of 0.1 for matcrials such as plass.
Therefore g7 1s in many cases, but not always, a small number. Bric(ly in the

present investigation we have considercd p =1 which 1s accepted lor #/L of

O ay &y ).

]



According to Pozzi and Lupo [8], for the downstream and upstrcam regimes, we

introduced the following transformations :

w=x""fxm), pg=yw'" #=pg (2.1
and
y=x"Flegy p=w, #=x"C (2.11)

respectively. Here wis the stream function that satishies the equation of continuily
and 15 pscudo-sinilarity variable and

iy ey
W= U= ——=
oy ay

Combining the transtformations given by (2.10) and (2.11) following gencralized
transformation for the flow region starting from upstrcam to downstream can he
determined. The new transformations arc as [ollows:

=L L), =P e @ =y (2.12)
Here /1 is the dimensionless temperatore,

Using transformations (2.12) in (2.7)-(2.8) we pot

w NG+ 15x 6+5ry ., X s
— fi=x —_—— _
o 2001+ x3° Warnt 1101 +x]|f i l[f e / (::‘f]

d g Joxisx o f,h”[f,.::ﬁ_h,g]
Pro 2001+x)7  5(1+x) & X

(2.13)

(2.14)
In the above equations the primes denote differcntiation with respeet to 5
Boundary conditions (2.9) then take the following form

Flx=Fx0=0x0)=—(1+)""+ 1+ 0" W
f'{x,e0) = 0,h{x,0)=0 (2.15)

2.4 Methods of Solution
To find the solutions of the equations (2.13) and (2.14} along with the boundary
condition {2.13) we consider three different cases namely (i) scries solution for

small a; {i1) series solution for large x; (i) finite difference techriquelsee



appendix) for all x for different values of Prandl number Pr while the coupling
parameter p=1. In order to compare the present results with Pozzi and Lupo [8] for

small and large values of x. we discuss the meihod of solutions in details.

2.4.1 Solution for small x

For small x, we obtained

(IO+15x)/ 2000+ x) = 4/5 {0+ 5x)/1000+ )2 3/5, 1/5(1+ )= 1/5
and — 14+ )" 4 T e

Then equations (2.13) and (2.14) reduces 1o

w 4.3, 7 A
O —_—— +h=x L —
frg s l[f o ! a,m-] (2.16)
5 2
]—h" “+ iﬂr’—lf'ff = X f'%h—h'@
Pr 3 5 iix €x (2.17)
and houndary conditions reduces to
flxy= f’{x;[l) =00 x,0=~1+x""h,
[,y = h{x,mw}=0 (2.18)
Since x is small, we may expand the functions ffx.zy and hifx. 1) in powers of x™*
as given below:
Han)=3 2 plm) and A(x.g) = 3 x i) (2.19)
i=n i=n

Now, substituling the expansions (2.19) into cquations (2.16)-(2.17) and boundary

condition {2.18) and taking the terms O (x") and O (x™) respectively we gel

m 4 L 3 F
JIIr:P+_r5' wfa _Efﬂz + Ry =10

(2.20)
L, 4 1

— WA= Lk == [k =0

A ' (2.21)

AH0)= f0)=04{0)=-1

Sileo)=0, b, () =0 2.22)



and

3 ” . .
erx S _Ez.ﬂf;-x +h, = %(f;-}ftr '_r"r:—ﬁﬁ]

e b (2.23)
M k
u_;; +=Y fih Lo —{f k=0 f)
kzuﬂ . ;Z” o §5 R (2.24)
£0)= £ [0)=04" =h_ (0>
Sile)= 0k, (0)=0 (225)

Equations (2.20)-(2.21) with boundary condition (2.22) arc coupled and nonlinear
that had already been integrated by Sparrow and Gregg |10] for the natural
convection flow from vertical flat plate with uniform surface heat Mux with hLittle
differenee 1n the cocfTicicnts. We oblain the solutions using the method of
itcration developed by Nachtsheim and Swigert [14] for differcnt values of the
Prandtl number, Subsequent equations for # = 1, 2, 3, ... are coupled and with
non-homogeneous boundary condilions nontrivial solutions of which can be
oblained casily using the aforementioncd method. Here we have obtained the
solutions for s = 10, Numerical values of £ (0) and @, (0} thus obtaincd are
compared with Pozzi and Lupo [8] side by side in Table 2.1 and Tablc 2.2
respeciively. The carcful observation shows cxcellent agreement beiween these
iwa results, '

After knowing the values of the functions f{#,x), A(x,x) and their derivatives we
can calculate the values of the skin friction cocfficient /* (0,x) and the surface
temperature co-cfficient &(0, x) 1n the region near the point of leading edge from
the following relations:

S0 =0+ X 0+ T O+ T RO+ L) (2.206a)

0, Y =x"* (A, {0 + X" F R (0 + 2B (0 + ¥ A, (0) + ) (2.26b)

Numerical values obtained from the above expression for £%(0,x) and ¢ (0,x) are
shown graphically m Fig. 2.2 and Fig. 2.3 respectively for different values of x as

well as Pr. The broken curves for smaller values of x are the representations of



these solutions. The comparison of these curves with the solids that arc obtamed

by the finite difference are found in excellent agreement.

2.4.2 Solutions for large x

For large x, we get

(6 +15x) 72001+ x) = 3/4  (0+5x 100+ ) =172, 151+ x) -t
and F{x M =~(1+2)"" 2 e O ) e A0y =140y

Then cquations (2.13) and (2.14) reduces 1o

—ﬁ' ——f +h_1[}r,5-'f' f"ﬂ]

x ax {2.27)
]—f:"+iﬂr': (f Eﬁ—h 2
Pr 4 &x ax (2.28)
Corresponding haﬁndary conditions then take the form
Fled= fx0=0,hx,0=1+x""1 (2.0
F'(x,%) = h(x, @) = 0 (2.29)

Since x 1s large, solutions of the equations (2.27)-(2.28) with boundary condition
(2.29) may bc obtaincd by using the perlurbation method. We expand the
functions ffx, myand ¢k, 1) in powers of X' as given below:

Sxn)=>" a7 £ () and Kx, )= ZI-"?_ML‘J ()
= = (2.30)

Now substituting the expansions (2.30) in cquations (2.27)-(2.28) with boundary

condition and (aking the terms O (x") and € (x™"*} we get

w, 3 -
fe 2 ot —*z-fu’ +h, =0 (2.31)

PLI:{{ +E Wy =1
roo4 (2.32)

Ju(0)= £3(0) = 0,7 (0} =1
Solee)=0, hy(=)=0 (2.33)



and

k . C
Z)‘kf“-k ‘—Zf&fn p 0 —Z—(ﬁ?’_m —fai £i)

o 4 (2.34)
k
—h 2N =S S - Sk
E'k X ;4( ik ) (239)
7, 0)= £,0)=0h, =k, (n>0)
Sileo)= 0,5, ()= 10 (2.36)

Equations (2.31)-(2.32) along with the boundary conditions (2.33) rcpresent the
similarity equations governing the natural convection flow from a vertical heated
surface maintained at uniform temperature that had first been investigated by
Pohlhausen and Schmidt [11,12]. As before, these equations also differ only wiih
the coclficients with those deduced by the aforcmentioned authors. However for
comparison purpese herc also we implement the Nachisheim and Swigerl |14]
iteration lechnique 1n finding the solutions lor different values of the Prandt!
number. As before, here also we apply the same method, unlike the eigenvalue
solution obtained by Pozzi and Lupo [8], in finding the solutions of the subsequent
scts of equations for 7 =1, 2, 3, ... ; since the boundary condition of the above
equations arc non-homogeneous and we obtained non-trivial solutions easily. In
Table 2.3 and Tablc 2.4 numerical values of the functions £, (0 and (0} {for i=1,2
and 3) arc shown for dillerent valucs of the Prandtl number along with thosc
obtained by P'ozzi and and Lupo [8]. Here also the comparison between these two
results arc found an excelleni agreement.

Finally knowing the values of the functions f{ n,x) and A{ n,x) and their denvatives
we can calculate the valucs of the skin [riclion cocfficient and surface lemperature
for Targe values of x in the region where the Nlow is dominated only by the
buoyancy force:

L1003y = £10)+ 57 L10p+ 270 LT 4 27 L0+ (2.37a)

and



G0, xy= A (03 + 17 A (0 + X7 (0) + 1B () + (2.37b)

In Fig. 2.2 and Fig. 2.3 numerical values of £ {x, 0) and @ {x, 0) arc depicted and
compared with the fimite ditfference solutions. {t can be scen that the curves shown
[rom these solutions are over lapping with those of the fintte difference al larpe

valucs of x that implies that both the solutions are in excellent agreement. Velocity

and temperature profiles are shown in Fig 2.3 and Fig 2.4,

2.5 Results and discussion

If we know the valucs of the functions fina), A(npxy and their devivatives for
different valucs of the Prandtl number Pr, we may caleulate the numerical valucs
of the surface temperature 7 (0, x} and the velocity gradient £ (@2, x) at the surface
that arc important from the physical pdint of view. Numerical valucs of {0, x) are
obtained from the following rclations,

00, x3=x" 1+ b (x, 0)

Numerical valuc ol the velooily gradient 70, x) and the surface
temperature { (0, x) arc depicted graphically in Fig. 2.2 and Fig. 2.3 against the
axial distance x in the interval [0, 10] for the values the Prandtl number Pr= (173,
1.97 and 2.97 that had been taken inlo account by Porset and Lupo [8] in their
analyses. Fig. 2.2 shows that an increase of Prandtl number lcads to decrease of
the value of shear stress coefficient /0, x) as well as the surface temperature
(0, x).

In Thg. 2.4 and Fig. 2.5 numerical value of velocity profile f{n, x) and
temperature profile @ (7, x) arc depicted against the similarity variable # in [0,8]
are shown graphicaliy for valucs of the Prandtl number Pr = 0.73, 1.97 and 2.97.
In the above Migures effect of the axial distance are also shown. To show its effect
on the velocily and the temperature profiles in the boundary layer regimes value of
x arc chosen to be 1.05 and 3.33 which are represented by solid and broken curves

respectively. From  Fig2.4 and Fig.2.5 we obscrve that  both  velocity and



temperaturc profiles decrease owing 1o increase in the value of the Prandt]
numbcr, We may also observe that an increase tn the value of the axial distance x

leads to decrease in both the velocily and the temperature profiics.

2.6 Conclusions:

We have studied (o the study of coupled natural convection and conduction in a
Mat plate introducing a new class of transformation that leads the solution to the
regime near the leading edge to down stream regime along the verlical surlace.
The coupling of conduction required that the temperature and the heat flux be
continuous at the interface. The equations arc integrated using the implicit [inite
difTerence method and the results are found 10 be an excellent agreement with the
cormesponding  asymptotic solulion. We may thus conclude thal the present
strained coordinate transformations vicld appropriate cquations which provide

more accurate result than the perturbation solutions.



Table 2.1 Initial expansion : valucs of £, (1) for comparison

Pr= 01733 Pr =297

Prescnt Pozzi ct al Present ozt el al
0 1,537 1.540 9.190x 107" | 9.197x10"
I ~1.646 —1.041 —6.822x107" | —-6.799x10"!
2 1.624 1.624 4.704x 10" | 4.008<10°
3 1-1.370 ~1.371 ~2.787x 107 | -2.787x 10
4 9.445x 107 | 9.453x107" | 1.350x10" | 1.360x107
5 | -4.834007 | -4.840x107 | -4.981x107% | -4.992x107
6 1.200x10" | 1.210x107 | 6.43x10° 9.470x107
7 7.296x 107 | 7.296x107 | 3.30x107 3.295% 107
8 [ -L091x107" | —1.095x107 | -3.88x107 | -3.895x10°
9 56752107 | 5.690x107 | 156107 1.570x10
10 { 7.51x107 7.548x107 | 3.0%107 3,10x10°




Table 2.2 Initial expansion: valucs of &, {0) for companison

Pr=0.733 Pr=2.07
! Present Pozzi ct al Present Poszi et al
0 | 2042 2.042 1.412 1411
I | -3.085 —3.083 —1.483 ~1.481
2 3.791 1.789 1.271 §.271
3 1-3.887 —3.886 —9.153x107" | -9.347x10"
4 3.323 3.322 5513107 | 5.512x10"
~2.296 —2.298 27032107 | —2.704x10"
6 1.170 1.172 9.8760x107 | 9.896x107"
7| -2.848x1070 | -2.853x107 | 1817107 | —1.827x10
8 [ -1.838x10" | -1.84dx10" | —6.96x107" | -6.959x107
9 2671107 | 2.681x10" | 7.84x107 7.875%10™
10 | -1.356x107 | —1.362x107" | =3.07x107 | =3.093x107




Tahlc 2.3, Asymptotic expansion : values of £ (1) for comparison

Pr=0.733 Pr=2.97
! Present Pozz ct al Present Pozea et al
0 9.532x 107" | 9.532x107" | 7.528x10° | 7.522% 10"
|| =2.940%107 | —2.908x107 | -3.705<107 | -3.693x107 |
2 Li4axiat | 14307 | 2.301x10" | 2.302x 107
3|4 121x107" {—4.128x10" | -1.504%107 [ =1.515x10"

Table 2.4. Asymptotic expansion : values of ¢, (0} for comparison

Pr=0.733 PI=2.97
" Prcsent Pozzi et al Present Pozzi ¢t al
0 [ =3.610x10" | -3.591x10" | -5.745%107" | —5.749x10°"
1 L31Sx107 | 1315107 | 34142107 | 3.414x10°
20 L3616x107 | -3.5032107 | —1.547x10°0 | —1.545x10"
3 3.847x10° | 3.845x<10° | 8481x107 | R482x107

N



Fig. 2.2: Skin [riclion against axial Tig. 2.3: Non dimensional
distance x for different Pr, temperalure against axial distance
for dilferent Pr.
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Fig. 2.4: Vclocity profile against #  Fig. 2.5: Temperature profile against 7
for diffcrent Pr for diffcrent Pr
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Chapter 3

Coupling of conduction with natural convection flow ol a fluid

in an inclined square cavity

3.1 Introduction

in this chapter unsteady laminar natural convection flow has been considered in an
inclined sguare cavity (led with a fluid. The top horizental wall | the right vertical
wall , the bottom wall of the cavity are cooled and the left vertical wall 1s heated,
The cquations are made non-dimensional and solved numertcally by an upwind
[mte difference method topether with o successive over-relaxation (SOR)
icchnigue. The streamlines and isotherms arc presented as well as the rate of heat
transler from walls of the cavity. The fluid has Prandtl number, Pr =7.0 while the
value of the Rayleigh number, Ra is from 10" to 107, angle of inclination, ¢ 15 from

0" 1o 90" and coupling parameter p varics from 0 1o 1.

3.2 Governing equations of the flow
we consider an inclined square cavity of height I1 filed with a fluid as shown in
IFig 3.1a. The right, the boltomn and the top walls arc maintained at a constant cool
temperalure 7o and the temperature of the left vertical wall s T (T, = 7 of
thickness & and wilh a temperature 7, maintained on the other side(Fig 3.1a). Onc
must solved the coupled thermal ficlds in the sohd and the fluid.

We {urther assume unsteady laminar flow of a viscous incompressible fluid
having constant properties. The effect ol buoyancy is included through the well-

known Boussinesq approximation. Finally, the direction of the gravitational force

is as inchcated in Fig 3.1a

14



} u -‘-'VEG.T=T|,.

L,

Th Tuly) u=v |{
T=T

r:r T T =1 PR
Fig 3.1a: The Mow conliguration and coordinate system
Under the above assumptions, the conscrvation equations for mass,

momentum and energy n a two- dimensional Cargcsian coordinate system are

o ov
ax oy
A CTRY u & :
i-"-+u(—+?=rﬂ :—l—+u ff+{) {: + g0t =1 )sing (3.2)
c T S Fallv:: 2
A v 1 e A%
AL =——i+u %-1”(3—; -f-gﬁ{T—?;)C{JSﬁ'-' (3.3)
a a » pa \a &
&1 & aF T &
F it — =¥ R {5.4}
a 753 'k &dx° dy

where w and v are the flmd velocity components in the x and y dircetion
respectively. {7 the temperature, p 15 the fluid pressure, fis the volumetric thermal
expansion coefficient, ¢ is the angle and g, @ and v are respectively the density of
the Nuid, the thermal diffusivity and the kincmatic viscosity.

The boundary conditions 1o be satishied by the above cquations arc
u=0p=01=7  atyv=H y=0r=H {3.5a)

w=v=0 at x=10

Coupling condition required thal the lemperature and the heat flux be continuous

at the sohd [hid interface 1.c.



e, Lor [EJ 3.5h
o N\ - (3.3b)

where &, and &y are the thermal conductivity of solid and fluid. The temperature

. In the solid as given by Miyamolo et al |5} is
t,=1, -7, - TH(.V}]% {3.5¢)

where 7iy) is the unknown temperaiure al the interface to be deternined from the

solutions of equations.

3.3 Transformation of the governing equation

The following dimensionless vanable are introduced

¥ g T T-T i P
—, = L= . g = - S = - -
L (e i L) (/L) £, - T (3 /e (pa* /L7y (3.0)

1—'? yo=
. E

Using the above dimensionless dependent and independent variabies in the

governing cquations (3.13-(3.4}) the following equations are obtained

TRIL
—+—=10 {1.7)
ox v
2l 1 " 7 RTINS )
(—+u£+vﬂt=—@—+?r —2+u + RaPritsing (3.5)
-_5? 14 G?I’ (,:_i' {%}1 '
&v & v b Jv  Fhy
— U=+ Pr| ——+ ! + RaPrt/cosg (3.9
0 %% Sl 1
%, M w0 (30 5% 1o
‘ % & Ldxt )yt —
and boundary condition (3.5a,b,¢) transfonm into
i=v=~0=0al y=H
u=sv=f=0a p=0 {3.11)

wn=v=f=0al y=H

M}

el



w=1v=1 |5'~l:|,r:|E at x =0
o

where B=HiL, I1=H /L, p={kk)HIL)
where L is reference length and A 15 the height of the cavity, p 15 the coupling
parameter.

Again equaitions {3.8) —(3.10) transform into

A u)  F00 C
+ (u }+U{v ) =PrvVIQ +RaPr cns;ﬁﬁ—sm;ﬁﬂ (3.12)
A & v O Ay
X7 A7 iz :
b H— e — =T
1 ! Fx { A o
where
-2 & :
“lad Tl G

ts the vorticity function and 4 i5 the stream function defined by

Ay il
' p:-——._.ljl!i (3.15)

"= .
3 £

In the equation (3.12)

HT, — T )
= &7y~ Tn) and Pr=2 (3.10)

o €

Ra

arc Rayleigh number and Prandil number rospectively.

Onece we know the numerical values of the temperatwe function we may
obtain the rate of heat flux of the walls.
A grid dependence study has been carried out for a thermally driven cavity Mow
lor the above mentioned parameter values wilh meshes of 31x31, 4ix4l, 51x5] and
Olx0l pomts and resulting flow quantities arc listed in Table 3.1, Tor
computational cconomy, a 41x4l mesh has been used throughout for the
simulations process. With this mesh for the case with Pr= 7.0, p= 0.0 and

Ra =10" the maximum valucs of w arc obtained.

2t



3.4 Method of solution

An upwind [inite-difference method, topether with successive over relaxaion
iteration technique has been employed to integrate the model equations

f=n
|
| ]
- r’l’
jzlr L X = H'x
(=1 i =

Fig 3.1b. Schematic representation of the cavily depicting the mesh used in the
numerical simulations .

(3.12) to (3.14) governing the [low. For computational purposes we first write
cquations (3.12)-(3.14) to the general form as given below:

Ia a(t/F - ; ' 3] i ’
G‘_ -_ c"(UF) - Q(V!“ ) + A«[ﬁcns;ﬁ —£5i11 ;ﬁ} + .’J[b—:+ E“r]f {3.17)

at y Ay ax Ay oxt vt

Here, & represents either the function £ or ¢ and the cocfficients A4 and D are
given as follows

R: A=Ra Pr, D="Pr

0 A=00, D= (3.18)
Except for the non-lincar terms, all spatial dervalives in the governing differential
equation (3.17) arc approximated at the interior grid points using second order
central difference approximations. Thus we make the following approximations

1 l
UI I E[WFJH “WJ,J'—I)’ V!,_f = -ﬂ(wﬁl.,f _{f‘f!-f.f) {319]
and eqnation (3.15) may also be expressed as

| 1
Wiy = 1 (WF—L;' T Wi, YW MG )+ E'{flﬂ;,; (3.20)

The succcssive over-rclaxation method represenied by the iterative scheme is
given below

i o
!f‘r;,; = UIJ,_;' +I(W!+],j +W:'—I,J +'|"I;r,,r+| +wr:'._,r'-—1 _4!JU!,_,I _hzﬂr’,_.l) (321)
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where & is the iteration number, was used to find the siream function from the

cuerent vorlicity distribution. We used the well-known optimum value of w given
by

o §—aya— g2

52

. whered = cns(i] + cn:{zr—) {3.22)

m N

i otder to minimize the computational time. In the present computations
convergence was assumed when the maximum absolutc pointwise change over
one itcratiou was less than (.0001.

Before we present the discretisation of the nonlincar terms of equation
(3.17}, we frst define Uy and U, as the average axial velocilics cvaluated
respectively at half a grid forward and backward from point (x,, ¥;) in the x-
direction |

Ul,f =_;(UI-|1,} +Uﬁ.j U.h :%(brfhf +'L'r.u—|~;') {323}

simnilarly, we define Frand ¥,

: I 1 :

IrI, = E(Vr,_,r'ﬂ'+ V:‘._;)! Vb = E(Vi,j + V:._.r—l J (3.24)
As the vertical velocilies arc averaged half a grid spacing both forward and
backward from point (x,, y,} in the y-direction respeetively. il can casily be verified

that the upwind differencing form is automnatically preserved when the following
numerical formulac are used:

[a{;ml; ) ﬁ (U"r _‘UII]F"”‘!' " (Uf * ‘UI‘ B Uﬁl+ |Ub|)Ffl,f

~{U, +|U!;|)FI—IJ:|
A
[G(;;f‘)],; =2+’1[(Vf _nyl)FI.HI +(Vf +|VJ,,|—V¢, +|Vh ]!]),

_(Vh + |blf:|)f':',_f—i]
The remaiming terms in (3.17) arc approaimated by using forward differences in
time and central differences in space. The individual cxpressions follow.

o F -
a ], At

(3.25)

(3.26)

(2.27)

where Af is the size of time increment and superscript ‘new’ and *old” denote the
value at the new time #+:A¢ and the earlier time 7. Furiher we have

AiF  OrF 1 '
+ =— Vv FL A E L+ A 3.28
[sz ayg lJ !.12 ( f+1, 7 =1 g+ -l ,_,r) { ]
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w/ 1 A3 ]
— | ==0., -0 ) | = ==0 .-t ) ¢
(6',\: ].«',,«' ZIF[ i i=l,7 ) [5}"1) 2."1( g+ i} !) (3,2))

On introducing (3.213-(3.30) into (3 18) and rearranging the lerms we obtain

rm - Fﬂld +- 2&—;[ -8 +Ad(pycosp—p.sing}+ ZU?] (3.30)
! i

where
P_'( ) 1+|; Uf +|Ufl_Ub [Uhl) (Uh |Uh|) -, (3.3
= (V —1V; |) NE) +(V|,.- +lV|,r‘ V, + |Vbl) (I’,r; +|Vh|) ry-l (3.32)
12“”” gy + Fon +F o —4F (3.33)
{i =(Hf+| I a 1 ,'J {3.34)
e =10, ;1 =6, 1) (3.35)

Equation (3.30) 15 usced to integrale equation {3.13) at any intcrior point by
replacing the function £ by £2and 7 by tuking the appropriate cocfTicients given
in (3.18}. Atany time slep the values of £2and G are obtained [rom their respective
values at the previous lime slep, however at the nitial instant they are preseribed

by the initial condifions.  Stream function  is calculated based on the vorticity
disinbution by solving equation {3.15) using the successive over relaxation (SOQR)
method.

Finally solutions obtained are presented below 1n terms of sircamlines and
isotherms, We have allowed the Rayleigh number, Ra o vary from 107 to 107 the
Prandtl number, Pr =7.0, anglc of inclination, ¢ is from 0" to 90" and coupling

parameter, g varics from 0 to 1.

3.5 Results and discussion
Numerical results for natural convection heat transfer for a [luid in an inclined
squdre cavity are studied. As mentioned above, the non-dimensional controlling
paramcters are the Rayleigh number Ra, the Prandtl number Pr, coupling
parameter p and dl'l.blt- of inclination ¢. Io table 3.1 it is scen that the value y,,,,
gCts more accurate as the number of meshes increasces,

In Fig. 3.2 we have o first show the strcamlines and isotherms for values of

p equal to 0.0, .25, 0.50, 0.75 and 1.00 for the fixed valves of Ra = 10%, Pr= 7.0

i . . .
and ¢ = 0" . Shape of strcamlines are almost same and center of cavity changes for
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increase of p. The isotherms are clustered at the bottom comer opposite to hot
wall of the cavity. Isotherms concentrate hot wall to boltom wall as p increases
from 0.0 to 1.0, Tendency to form boundary layer at p = 1.0 with bottom ¢old side
of the cavity,

In Fig. 3.3 the calculated flow fields arc plotted for angles of inclination ¢
equal to 0°, 22.50°, 45% 67.50° and 90° while Ra=10", Pr=7.0 and p=0.25. The
flow fields are visualized by few stream lines, the associated temperature
distnibution is piotted for isotherms of &(x, y). Streamlines are circular and
unicellular in shape. Tendency to form boundary layer from ¢p=67.50" to $=90" in
the bottom cold side of the cavity. Flow is concentrated at the right most bottom
comner and spreads diagonally to the top most comer in Fig.3.3(b). Isotherms are
denser and tendency to form boundary layer at the bottom cold side of the cavity.

. The square cavity shown in Fig. 3.4 is important starting point in the study
of flow and heat transfer. The analysis is based on numerical results obtained for
values of the Rayleigh numbers in the range from 107 to 107 while the values of
Prandt] number, Pr = 7.0, coupling parameter, p = 0.25 and angle of inclination,
$=0°. With the increase of Rayleigh number Ra the streamlines shape changes,
This phenomena is pronounced at Ra=1(’, in main cell the center of which located
near lower lefl comer, the retarded flow form a pocket like structure at Ra=10° to
10°. Isotherms flow condensing from right most cold comer and gradually spreads
towards diagoually opposite left most corner as Ra increases from 10° 10 107 and
form boundary layer at the bottom and right side of the cavity as Ra increases
from 10° 1o 107. Also at Ra=10 an isolated curve is created in upper side.

in Fig. 3.5 increase of p lecads to decrease of heat transfer with the fixed

value of Rayleigh number, Ra = 10* and Prandtl number, Pr=7.0.
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3.6 Conclusions

Using the Boussinesq approximation and considering buoyancy effcets, implicit
finite difference technique has been employed. The study have been carried out for
a fuid having Prandtl number, Pr =7.0 while the value of the Rayleigh number,
Ra varies from 107 to 107, angle of inclinaliou, ¢ varies from 0" to 90" and
coupling parameitct, p varies {from 0 to 1. It is observed that the value i, gets

more accurate as the vumber of meshes, 1acreasc.
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Table 3.1; Comparison of numcrical values of stream function against different

meshes for Ra = 10", Pr=7.0 and p = 0.0.

Meshies ' asd
31x31 0.963177
4141 0.962254
51x51 0.962085
Gix61 0.962079
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p=1.0
Fig.3.2 (a) Streamlines for different p while Ra=10", Pr=7.0 and
$=0"
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10", P=7.0 and

a:

Fig.3.2 (b) Isotherms for different p while R
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Fig.3.3 (a) Streamlines for different & while Ra=10*, Pr=7.0 and
=0.25
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p=00"
Fig.3.3 (b} Isotherms for different § while Ra=10", Pr=7.0 and
~0.25
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Ra=lO
Fig.3.4 (a) Streamlines for different Ra while Pr=7.0, $=0° and
p=025
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Ra=18"
Fig.3.4 (b) Isotherms for different Ra while Pr=7.0, $=0° and p=0.25
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Fig. 3.5 Rate of heat transfer for Pr= 7.0, Ra = 10°, ¢=0.0 and diTerent
value of p
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Chapter 4

Conclusions

In this thesis, conjugale effect of conduction and convection with natural convection fow
from a veriical fat plale and in an inclined squarc cavity have been investigated. The

coupling of conduction required that the temperature and the heat flux be continuous at

the interface.

To establish the accuracy of the solution of the present problem two methods,
namely the extended series solution and the implicit fnite dilference method together

wilh Keller-box scheme are employed in Chapter 2.
In Chapter 3, equations are solved numerically by an upwind finite diffcrence

method logether with a successive over-relaxation {SOR) techmique.

The results thus obiained are presented in labular form {in chapters 2 and 3 ) for
comparnison and aiso graphically in figures (in chapter 2, 3).

From the above observation one can conclude that

1. In Chapter 2 the solutions obtained from the labular form shows a good agreement.
The skin-friclion and non-dimensional temperature decreascs monotonically as the value

of the Prandil number increases and same as for velocily and temperature profiles.

2. In Chapter 3 numerical resulis for natural convection hcat transfer for & [uid in
an inclined square cavity are shown graphically. The sireamlines and isotherms for
values of p equal to 0.0, 0.25, 0.50, {].:JI'S and 1.00 for the fixed values of Ra=10",
Pr=7.0 are shown. It may bc scen that the value ., gets more accurate as the
number of meshes increases. The region of clustered isotherms moves to the left of
the cavity. Shape of streamlines arc almost samc for increase of p. The calculated
flow ficlds are plotted for angles of inclination of 0° to 90°. The flow fields are

visnalized by few streamlines, the associated temperature distribntion is ploted
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for isotherms of B(x, y). With the increase of Rayleigh number Ra the streamline
shape changes and isotherms lines closed to the right, the relarded flow form a
pocket like structure at Ra=10° to 107 and form boundary layer at the bottom and
right side of the cavity. Also at Ra=107 an isolated curve is created in upper side.

Here increase of p leads to decrease of heat transfer with the fixed value Rayleigh

number Ra = 10*, Pr=17.0.
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Appendix

Finite difference method

in our analysis, we have employcd a number of methods for the numerical solution
of the differcntial cquations. Of them the most practical, efficient and accurate
solution technique is implicit finitc difference method togelher with Keller-box
elimination technique, which is weli-documented and widcly uscd by Keller-box
and Cebeci [13] and recently by Hossain {§].

Now [rom equations (2.13)-{2.15) we get

S -y g = ff[f';%'— f”E’iJ

AE {Al)
LY B
o8 +p fg-p g = é[ 2E fagj (A2)

To apply the aforcmentioned method, we first convert the equatiens (A1)-(A2)

into the following system of first order equations with dependent variables,

”{é:?q}'r V{é",?:.'), P("::r?) a5

f'=u (A3)
W=V and g'=p (A4)
5 (AS)
Vi p fu - pon’ +g 5[::;—2-—1:%]
1 k¥ (A6)
o P+p fp— pyug = -f[ 5¢ pag]

wherex =& k=g and (16+152}/20(1+x) = p;, {(6+5x)/10{1 +x)= p,,
1/5(1+ x) =

and the boundary conditions are
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FED =0, w(E0) =0, p(&,0) = -(1+ & +5'7(1+ 8" g(£,0) (A7)
(&, ) = 0,2(8,») =0,

We now consider the net rectangle on the {£,1)  planc and denote the net points

by
qﬂ = D'! ?;'lj =??j—! +h_; 1_ni =112:”':—J
E=0, &" =& vk, ,n=1,2,,N (al)
ke
D - —— P Y AN
n) ' A
'_
_ | L
L P Q- orereeees O ‘
|
-1 i '
C 0
E_,'H éﬂ-"."E {m;!"l

Fig.A Net rectangle of the dilTercnee approximation

Here s and / are just sequence of numbers on the (£,7) plane, k, and by, be the
variablc mesh widths.

We approximate the quantities f,u,v, g at the point (£",7,} of the net by

S}V, g}, which we call net function. We also employed the notation g} for

the quantitics midway between nct points shown in Fig.A and for any net function

s

uﬂ—l."2 [é: +§u 1 (HQ)
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1 {A1D)
iz = —(;+7,0)

2
= L, n n- (A1)
9,7 =549," +9,")
n ]- H -] [A 1 2]
g_f-f.n"? =E(g}' +gj-'.f }
Now we write the difference equations that arc to approximate equations i

{A3)-{A6) by comsidering one mesh rectangle for the mid point (ﬁ”:’?,-uz] to

obtain
S Sr

i 172 (A13)
Y (A14)
5 =Vi-ir2

li
8f ~&i1 (Al3)
——“}1““‘“‘“— Pz

g

Similarly cquations (A5)-( A6} are approximated by centering about the mid point

(:f""”,r;.lj_m). ‘Centering the equations (A9) about the point (.;f""”,r;) without

specifving # to obtain the algebraic cquations. The difference approximation to

equations {A3)- (A6) become

ey é"'%[“”‘%—“” =LA TS At )]

k k (A16)

k

H L]

l # o 1'1—2l u—zlg"——g“'] B ”_% fﬂ_—fn-1
R {u EE - p"i )} -

where

1= fo-p gl 17 =g - puit +gf”

aud

P



tr—1

, 1 " e 1 l
M" = [— ppfp- Psﬂg} and M = [—P tefe - P3“§}
Pr Pr

V] +a(H) —az(uz}" +o:[v""f” —v"f""]+ g" =R

n_ -l

1 [ 1] Ll it n— r
F;[p] +a]()’}r.1} —a3(ug} —a[u e —u'g
+f”_lﬂn _fnpu-I]= T”_I

where

R S +a{(ﬁ,)n—| _(Hg]rr—l}

o e s 1]

-1
H=3

,(I1 = pl +a,(11 = .PZ +(I,{I1J = .Us + (¥

r =

k

n

Now taking position at n =7 , then cquation {Al)-{ AZ) become
)L
2 1
— X, (" )j “1/2

-1 L H A= _
+{I 1"1 1 ._I_—V._l_f.__i_ +g _I__RI__]_
=g Ty Iy 173 173 173

[""r]”, T al(ﬁ’)

H
_1 b
) 173

4

(A18)

{A19)

(AZ20)



i
L
"r2

(A21)
n- n " R
+ a {“ !1g  — W, 8, T
Ty 4Ty 73 4Ty
f"-|]Pn, - J |Pn,_l1
A N e S
where
Al n-1 -1 2 ja-l
R =-L", +a[(fv) _l_( ) l}
2 2 3 2
=1 ~tf n-1 _m-t -1 2 -1 n-1
L _lzh_; (‘r’__; _”’;—1)+P1(ﬁ’)_ 1““P2(” )'I 1 T8 1
-1 -1 -1 a-1
Tf_l :‘"M?f_l ta (fP) 1 _(“g),_i
g 2 J 5 !—E g E
1 - _
=1 =1{. n-1 =1 1 n—1
M7 =‘“—h,-' ("j _Vj—1)+ Pl(fp), 1 “Pa(”g) 1
j—> Pr j -
2 2 2
Equation (A20) and (A21) become
b -v ey -ale) | e,
!—3 I~ I3
' {A22}
+{I(Vn_1]fn . V" IfnTl] - Rn Lt
-5 _!—Ji | 13
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| _1[ n H H
Fr—hj P -p +ﬂ|(ﬁ?)j_% “ﬂfa(ﬂg)J_

{A23)
A=l _n H H— =1 _+ n- -
+ﬂ.’[ﬂ Ig_]_”_IgrIl_i_f.llalljl__)lal_-)1-1'1“]9 llJ =Tn|

] =3 13 T feg i3
The boundary conditions become

no_ no_ no_ L/4 1/5 1/20 _» (A24)
fo =0, 45 =0, py=—(1+&)""+&7(1+5) g

Finally we get

h;! (fx" - f,au—l )

il

i
ul

(A25)
J'—E -
h—l (un _un ): U.la (AZﬁ]
i i £l j—%
-1, .~ " " 3 #
h; (vj _vjl)+a]:(ﬁ") l_az(u ) Sl *
Iz ¥ A ST
2 2
{A27)
+a 1"Jn—ll nl _vn Ifu—lI — Rn-ll
J—E J—E I—E I*E I-E

1 -—1[ n 1]
Eh!’ Py =P +a'(ﬁj)};— - aslug) l

oM
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|

|

We define the iterates

N 0 m] _
[ﬁ, u', v, g') j=L2.
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with initial values equal to thosc at the previous £ station (which is usually the

best inttial gucss variables). For higher itcrates we get

f}“”] =me +8 f;_{:} (A20)
W = 3 5 (A3
i ; §
CEI N 3 > {1} ) (A3])
v, = v+ 0 v,
g{H‘I] _g{” +5 g{I I {A32}
p{;+t} - pEf}+5 pl[!} (A33)

Now we insert the right hand side of the cxpression in place of f; t, V, g, in

L
equations {A25)-{ A28) and drop the tcrms that are quadratic in
(f} (il {ri (E]
510, su?, vV, g

to yicld the following linear system (for simplicity, the subscript i in § quantities is

dropped)

A {A34)
é(‘ @FJI_EJ( +§’:“';—l):(r|);
a (A35)
i, iy~ oo, +8v, )={r), .
(A3G6)

B
53; — 0y ——é—’-((‘fg} +f%j—|)=(r5);

(Sl )J"Evf +(52)j5"j—1 "‘(53);-‘5(} +(Sn' )jéf_;'—l +(Ss)j5”; (A37)
+(Sﬁ]j5“j—1 +(S?)_j'§gj +(Ss)3-591-1 =("’2);

and
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() dp, +(r) 0, a+{6), 4, +(*:4)-£?-_a+(fs]j&i;
+(tﬁ) du; . +{t,) . 5%, +(5),89,, =(n), (A38)

where

(R), = 10 £ b

(.?'4 )_; = uj_’_}l — {“J + A 'Ir*';-

0s), =g g+, p?,

_ pn-l -1 : i 2 ¥ ;
(rz)j. *Rr_1—-f1}- (vj—vj_] )—m(ﬁ*} : +a2(u } : _3}._1
J 3 _lr_E J"E I 3
-1 ,f ; -
““["f_i amvS -"_‘_J
I S
( ) _Tn—l _ 1 h—](pf i ) ( )f- H i
Ty PR P_ K _‘,r"_p_,r-l +a| fp 1 “a:ﬂ(ug)‘ ¥ ‘—H{Hg) 1
i—y Fr i3 i I~
2 2
_ﬂ[“ F_1§ R ‘”I_lg’tliJrfn o " "_]1J
TR : Tz Ty T 4y ity

The caefﬁﬁcients of momentum equation are:
&

(), =k +20 70 -2 1,
]
(S,), =—h/, += T8-S
27
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The coefficients of energy equation are;

X
2 fj-l

Voo oay g
)y =g+ -
2

_ ! f 2y ) @ 4
(fz)j = _F;hj—1 "'Ef,r-l _Ef;—%

2 P

Ay () & ;i A,
! , = — F e T
(5); 2&_; 2(‘3_; Zg;-—
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2 2 275
Ay () @, @ ,_
2}, =——uy’ ——u, ——
( ?).f 2 ! f 2 J——;'
a; y a a -
(fﬂ), = _—2115;]1 E“;—l ‘Euf_ll

The system of linear equations (A34)-(A38) can be solved in a very clficient
manner by using the block-elimination method. Numerical values are obtained
from the above technique, results are shown in tabular and graphical form. In table
2.1 and Lable 2.4, results compare with Pozzi et al [8]. In Fig 2.2 and Fig 2.3,

£7(0, x) and B(0, x) arc shown graphically for comparison with small and large
values of x, velocity and temperature profiles are depicted in Fig 2.4 and Fig 2.5

respectively.
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