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Abstract

In this thesis, the tbermo-fluid-dynamic field resulting from tIle coupling
of natural convection along and conduction inside a healed nat plate is
numerically studied by means of implicit finite difference method in the
entire region starting from the lower part of the plate to down ~trcam.
The results in terms of shear stress coefliClent and surface temperature
coefficient for different Pnmdtl numbers arc compared with the
perturbation solution ncar the lower part of the plate and asymptotic
solution in the down stream region and found an excellent agreement for
flat plate. In second pari unsteady laminar natural convectlOll flow has
been considered in an inclined square cavity. The lop horizontal wall, the
right vertical wall, the bottom wall of the cavity arc cool and the \ell
vertical wall is heated. The equations arc non-dimensional and solved
numerically by an upwind finite difference method together with a
successive over-relaxation (SOR) technique. Results are shown on the
streamlines configuration as well as the isolines of temperatures, The
fluid has Prandtl number Pr =7.0 while the value of the Rayleigh
numbc~, Ra varies from [03 to 10' and coupling parameter,p varies from
(l.O to 1.0 and angle inclination <jl, varies from 0° to 90° for cavity,

"'
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Chapter 1

Introduction
II is well established thai when convedive heal transfer results arc strongly

dependent on thermal boundary condItions, consideration of convective heat

transfer problems as conjugated problems is necessary to obtain physically more

stnct results. Many research efforts have been given to the conjugate problems of

forced convection heat transfer both experimental and theoretical but few works

have been devoted 10 the conjugate problem of frec convection. Gdalevich and

Fcrtman [1] ~tatcd conclusively that the usc of numerical method for sohing the

initial system of governing partial differential equation such as Ilnite difference

methods, is evidently the most promising in studies of conjugate free convection.~-
Aeeordulg to Kelleher and Yang [2] the analytical treatments used extensively III

conjugate forced convection problems are dirlieult due to matehing a non-linear

solution of free convection in a fluid with linear conduction solution in a solid

hody at the solid fluid interface. Successful analytical solution for the problem of

cunjugate free convection about tapered, downward projection fin of a simple

power low form is obtained by Lock and Gunn [31. Chida and Katto [4] &tlldiesthe. .
conjugate problems in this direction by the usc of the vertienl dimensional

analysIs. They applied their method to the interpretation of previo\l&ly studied

conjugate heat transfer problems. When convective heat transfer depellds strongly

on the thermal boundary eondi'tions, natural convection must be studied as a mixed

problem if one needs accurate analysis of the thermo-fluid-dynamic field that

pointed by Miyamoto et-al [5]. They analY7.ed the relative importance of the

parameters of the problem with reference with axial heat conduction, Timma and

Pade! [6) by extending the analysis of Gosse [7] havc developed a tcehniquc

which improves the results given by tbe first tenn of a&ymptotie solution uf the

problem. In the &ame work a new correlatiun fur the evaluallon of heat transfer
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coefficient had also been presented. This analySIS holds for high villue of the

absclssa x, the value of the point Xo from which (he expansion is valid depends on

the parameters that govern the problem.

Coupled natural conVCc/H)nevaluatmg by the region which the point Xufalls

In, bas been made by Pozzi and Lupu fill improving the results concerning the

asymptotic expansion by adding krms of higher order with respect to the tirs! one

discussed the general form of the asymptotic expansions which is singular for the

presence of eigen solutions and determined the expansion holding for small values

of x in an accurate way, by taking into account many terms of the senes by means

of Pade approximant techniques.

Less work has been cilTTieJ out for more complex Iherm~1 bO(1J1dnry

conditlOns. such as an imposed thermal gradient that is neither purely horizOlltnl

nor purely verticaL Shiralknr and Tien [16] investigutcd numerically nalurul

~onvection m an enclosure with temperaltlre gradients imposed 111 both tbe

honzontal and vertical directions simultaneously_ Chno and Owc [16] invcstigated

the problem of natural convection in an inclined box with half the bottom surface

heated and half insulated, while the top surface was cooled. Anderson and Lauriat

[1S] analyzed experimentaJJy ~s well as theoretically the natural convcction due to

one isothennal cold vertical wall and a bot bottom wall. Kimura and Bejan 119)

studied numerically the convection flow in a rcctangul~r cnclosure with the entire

I<)\vcrsurfacc cooled and one of the vertical walls heated. !':ovember and !':ansteel

[201 and Nicolas and Nansteel [21] performed experiments and numcrical

investigations on convection in a w~ter tilled enclosure with a single cold

lsothcnnal vertical wall and a partially hcated boltom waiL Gmlzarolli and

Milanez [22] eomputcd the case of a heated bottom wall and isothermally cooled

vertical walls. Recently, Velusamy et aL [2:3] investigated the steady two-

dImensional natural convection flow in a rectangular enclosure with a linearly-

varying surface temperature on the left vertical wall, cooled right vertical and top

walls and u uniformly-heated botlom 'Wull.in this latter investigation, mild n~tural



convection was found to reducc thc heat load to the cold walls and Corany value of

aspect ratio it was also found that there exists a critical Rayleigh numher for \\,hich

heat load ISa minImum.

In early works 011flow in porous medm, the Darcy la\\' has been used which

is applicable to slow flows and docs not m;collnt for inertial and boundnry effects

(1crmed ns non-Darcy effecls). These e(fccls arc important when the Ilow velocity

is relatively high and in the presence of a boundary, as reported first by Vafai and

Tien [24]. Recently, Khanafer and Chamkha [25] 1l1veshgatcd numerically the

Brinkman-extended Darcy unsteady mixed convcclion t10w in llil endosure, with

internal heat generation and with inclusion of the cOllveclive knns in the

governing equattons, using the control volume method by Patankar [261.

In the present work we have used to give ti.lrther contnbution to the study

of coupled natural convection by introducing new transfonnation to the problem

posed by P07J.1 et a1. [8] that leads the solution for x raising between 0 to OC) that is

solution near the leading edgc to down stream region at the vertical surface in

Chapter 2. Lastly unsteady laminar natural convection flow has been considered in

an inclined square cavity in Chapter 3. The equations arc non-dimensionaJtzed and

solved numerica1!y by an upwind finite difference method together with a

successive over relaxation (SOR) technique developed by Hossain and Recs [27].



(2. l)

Chapter 2
Coupling of conduction with natural convection flow from a

vertical flat plate

2.1 Introduction
In this chapter the thwno-l1uid-dynamic field rC$ultil1g from the coupling of

natural convection along anct conduction IIlsidc a healed nat plate is studied by

means of implicit 11nite difference method in the entire region starting from the

lower part of the plate (0 downstream. The results \Il terms of shear stress

coefficient and &urfm:e tcmpcratl.1re coefficient for different Pramhl numbers arc

compared with the perturbation solution ncar the lower part of the plate and

asymptotic solution in the down stream region and found an excellent agreement.

2.2 Governing equations of the flow
We describe the steady two-dimensional now due to free convection flow along a

side of a ver1i"al flal plate of thickness b insulated on the edges wIth a temperalure

Th maintained on the other side (F\g 2.1).

The thermo-fluid-dynamic field in the fluid is governed by the bOllndar)' layer

equations arc

,J, r1'
_., -=()
dr ,}

(2.2)

(2.3)



(2.4a)

"le'j(I('(' IUI'I"'"
,w/ile

'j "
T=T, L. ,

1.lilL'<''' Tlx,l))
w,-(,,(C

" •
Fig. 2.1: A vertical nat plate and 1hecoordinate system

where 1/ and v are the velocity components along the x and )' dir~~tions

respectively, r is the temperature of the nuid, Tue and Tr, are the temperature of the

ambient fluid and outside the plate respectively, g is the gnlvitational acceleration,

II is the volumetric coefficient of thermal expansion. v i, the kinematic viscosity,

p is the density, Kr is the 1hemml conductivity of the ambient fluid, c" is the

specific heat at cons1an1pressure.

The boundary conditions to be satisfied by the above equations arc

11=0,1'=0 a1.,=O
II = OJ = T~aty= C1J

The coupling conditions require that temperature and heat nux be continuous at

the interface. At the interface

h' 01;" = K (or]
'OJ' f OV "_0

(2Ab)

where '<:, and hI is the thermal conductivity of the solid and lluid respectively. T,"

1he temperature in the solid as given by Miyamoto et. al [5] is

,.
= T(x,O) -[Tf! - T(x,O)J-'--

h
(2Ae)



whcre T(x,O) is the unknown temperature nt the interfnee to be determined from

the solutions of equations.

2.3 Transformation of the governing equation

Wc introduce the following dimensionless dependcnt and indcpcndcnt variables:

_ .r _ v I'" V 1''"'-
X=-. \'=-( > U=~( II.r 'I. f.

1"'" "
L=-,-", d=fJ(T" -T~J

g

I'=~d"'ft,
I>

T-T~ =0,
r - T,> ,

(2,5)

Using the abovc dimensiunlcs& variabks into the equnlioils (2 \)-(21) we gel the

following dimensionle&s equations:

ii, r1, d'u,,-H-~-->'0
,1\ ')' r:y

m dO ] iJ'O
,,-H-~---
,"}( 0' Pr,1"

whcre Pr =pc!,! K, the Prandtl number.

The corresponding boundary conditions (2.4a,b,e) take the form

'0u=l'=O,O-i=p- aly=O
0'

(2.6)

(2.7)

(2,8)

(2.9)
u=O=() aty=Cf)

where p = (KII K,)(btL)ii4 , thc coupling paramctcr .

The problem described here is governed by the coupling parameter fI, the ordcr of

magnitude of which depends essentially on biL and K! h-" d\i4= 0(1). As L is

small, blL is very large, \Vhen the fluid is air K! /K,«\ if this plate is highly

conductive i.e., K,,»] and reach the order of 0.1 for materials sueh as glass.

Therefore p is in many cases, but not always, a small numbcr. Brieny in the

presel1t lllvcstigatlon we have considered p =1 which is accepted for btL of

D( "j / h', ).

"



According to Pozzi and Lupo [8], for the downstream and upstream regimes, we

introduced the foHowing transformations:

'f=xJ."J(X,'I), 'I=)f',", fJ=g

and

l{I=x"'F(Ull 'I='YX-"S, B=x'l<e;

(2.10)

(2. 1 I)

respectively. Here !filS tbe stream function that satisfies the equation of continuity

und 'I is pseudo-similarity variab1c and

J\V 0'11
1/=-,1'=--

Dy Jx

Combining the transformations given by (2.10) and (2.11) following generalized

transformation for the flow region starting from upstream to downstream can he

determmed. 'I'he new transfOmlations arc as follows:

Here II is the dimension1css temperature.

Using transfoffimtions (2,12) in (2,7)-(2.8) we get

r+16+15x /J'- 6+5x J"+b=x[r(T-r/l)
20(1+ x)" lO(I+x) 8," de

_1/1"+ 16+15x j1/_ I rll=x[riJl_h,rT]
Pr 20(1+ x) 5(1+ x) OX OX

In the above equations the primes denote dl!!erentiation WIthrespect to If

I:\oundary conditions (2,9) then take the following form

f (x ,0) = f' (x ,0) = 0, Ii'(x,O) = -(1 + x)'" + x" '(1 + x)' ,'" h( x,O)

f'(x,"'l = (),h(x,"') =' ()

2.4 Methods of Solution

(2.12)

(2.13 )

(2.14 )

(2.15)

To find the solutions of the equations (2.13) and (2.14) along with the boundary

condition (2.15) we consider three different cases namely (i) senes solution for

small x; (ii) series solution for large x; (iii) llnite difference technique(see



appendix) for all x for different values of I'mndll number Pr .••..hile Ihe coupling

parameter p=I.ln orJerto compare the present results with Pozzi and I,upo [8] for

small and large values of x. we discuss Ihe mclhod of solutions in detaib.

2.4.1 Solution for small x
For small x, we ohtained

(1(, + 15x)120(1 + x) -Jo 4/ 5 . (6 + 5x)1I0{1 + x) -Jo 3/5, 1/5(1 + t) -Jo 1/5

and - (1+ x)'" " x"-'(1 +x}"'" -Jo -1 + x'"

Theil equations (2.13) and (2, (4) reduces to

4 1 ('f' 'I]j" 'f"' '" / - . f,ll. f"-'-+--)" --) -+- '-A -- -
5' 5 ox ox

_1""+~}],'-~I'h=X(f'(~"-h,,!lJ
PI' 5 5 (It Ox

and boundary conditions reduces to

(2.16)

(2.17)

f(x.O) = f'(x,O) = O. /i'(x,O) = -I + x" \h.
f'(x,,,,)=h(x,"'}=O (2.18)

Sillce x is small, we may expand the t!metlOll<;[(x.'IJ and h(x. 1/) in powers of /'

as given below:
m .,

f(x, I))= :~>/.',/'(1/) and h( t.I/) =I x' "h,(I/)
;.0 i~,

(2.19)

(2.20)

Now. substituting the expansions (2.19) into equations (2,16)-(2.17) and boundary

condition (2,18) and taking the tenns 0 (xo) ami 0 (xnl,l) respectively we gel

t:,~+~/'J;-%f;'+"" =0

'f,4,/,lr,/-1"+-)0'0--)0'0 =0
Pr 5 . 5

,(,,(0)= 1;(0)= 0,11:,(0)=-)
};;("')= 0, hu ("') = 0

(2.21 )

(2,22)



"od
.r"~+ -54 "[.1,/:., - -53 tf,'f:-, + Ir, =t~(f:_,);' - J~._J,)

'.0 '-0 hl

/,,(0) = 1;(0) = 0,1'; = h._1(II > 0)

1,;(00)= 0,". (co)= 0

(2.23)

(2.24)

(2.25)

Equations (2.20)-(2.21) With boundary ~onditi011(2.22) arc coupled and nonlincur

that had already been integrated by Sparrow and Gregg [10] for the nntuml

convection flow from vertical flat plate with unifon11 surface hc~t flux with Iltt1c

difference in the cocmcicnl~_ We obtain the solutions using the method of

iteratiun developed by Naehtsheim and Swigert [\4] for different \.,ilues of th..,

Prandll number. Subsequent equations for 11 "" 1, 2, 3, ... are coupled and with

non-homogeneous boundary conditions nontrivial solutions of which can be

obtllined eaSily using the aforementioned method. Here we have ohtained the

solutions for 11 '" 10, Numerical vallI'Cs of.h (0) and 0 r (0) thus ohtained arc

compared with Pozzi and Lupo [8J side by side in Table 2.1 and Table 2.2

respectively. The careful observation shows excellent agreement between these

two results.

Arter knowing the values of the functiol1s!{IJ,x), h(lp::) and their derivatives we

can calculate the values of the skin friction coefficient (" (O,x) and the surface

temperature co-efficient e(O, x) in the region ncar the point uf leading edge from

the following relatiuns:

F(O,.\) = .Iv, (f,,'(O) + x".11,10)+ X'" .r;(0) + x'" [;(0) + ...)

O(O,x) = x'" (ho(O) + x'" h, (0) + xu, II, (0) + x'-" il, (0) + ...)

(2.26a)

(2.26b)

Numerical values obtained from the above expression for ("(O,r) and 0 (O,x) arc

shown graphically in Fig, 2.2 and fig. 2.3 respectively for different values of x as

well ,,~ Pr, The broken eurve& for smaller values of x are the representations of

"

,,



these solutions. The comparison of these curves with the solids thm arc obtained

by the finite di/Terenee arc found in excellent agreement.

2.4.2 Solutions for large x

For large x. we get

(l6+1S.,)/2U(l +x)-c> 3/4 ,(6+5x)/I0(1+.c)--->I/2, 115(1+ x)---> II

and Ir'{x,D)= -(I +X)' " + x' ,',(I + x)"" h(x ,0) -) h(x.O} = 1.•.X -,,' Ii( xJ))

Then equations (2.13) and (2.14) reduces to

r +2 fl" -~ r +!I '" x( to!,- ("r7f]
. 4' 2 . (]x . rlX

1 " 3 • [,011 ,OJ)-I>+-jll =x j--I-
Pr 4 ex (/X

Corresponding boundary conditions then take the foml

f( x,O)= !'(x,O) = 0, "(x,D) = 1+ X-I, < Ii' (.\,0)

j'(x,w) = h(x,w) = 0

(2.27)

(2.2S)

(2.29)

Since x is large, solutions of the equations (2.27)-(2.2S) with boundary condition

(2.29) may be obtained by using the perturbation method. We expand the

funetionsj(x, lJ)and h(x, lJ) in powers of ['.'4 as giv~n below:

- ,
f(x"I)= L'\ -,.,(,('I) and h(x,,,)=L"-"''',('')

,_0 H (2.30)

(2.31)

Now substituting the expansions (2.30) in equations (2.27)-(2.28) with boundary

condition and taking the terms 0 (xu) and () (x-"14) we get

g+%f"f""-~f;' +", =0

'"3,,,-Ill+-J"I,,=Op, 4

fll(O) = r,;(o) = O,ho(O)= \
/1;(00) = 0, hll (00) = 0

(2.32)

(2.33)



ami
3" I" "k

g+"4 LJr.J,,'_k -"2 LI"I,:-. + /ill = L 4(Jr~-kJr.- 1,:_.1,,)
•• 0 .~o .~I

/.(0) = 1:(0)= O,h, = h:_,(11 > 0)

I:("')= 0, h,("')= 0

(2.34)

(2.35)

(2.36)

Equations (2.31)-(2.32) along with the boundary conditions (2.33) represent the

&imilarity equations governing the natural eonv~dion flow from a vertical heated

surface maintained at unifonn temperature thaI had first been investigated by

Pohlhausen and Schmidt [11,12J. As before, lliese e4uations abo diner only with

the coefficients with those deduced by the aforementioned authors. However for

comparison purpose here also we implement the Naehtsheim and SWIgert 1141

iteration technique m finding the solutions For different values of the Prandtl

number. As before, here also we apply the same method, unlik~ th~ eigenvalue

solution obtained by P07:7:iand Lupo [8], in finding the solutions of the subsequent

sets of equations for /I = 1, 2. 3,. ; sinee th~ boundary condition of the above

equations arc non-homogeneous and \'{e obtained non-trivial solutions easily. In

Table 2.3 and Tablc 2.4 numerical values of the functionsj,'(O) and 0,(0) (for ;=1,2

and 3) are shown for different values of the Prandtl number along with those

obtained by l'oui and and Lupo [8]..Here also the comparison between these two

results arc found an excellent agreement.

Finally knowing the values of the functions jt 1/,.\:)and II(Ip:) and their denvatives

we can calculate the values of the skin friction coefficient and surface temperature

for large values of x in the region where the /low is dominated only by the

buoyancy force:

(2.37a)

and

"



(2.37b)

In Pig, 2.2 and Pig. 2.3 numerical values of/ "(x, 0) and 0 (x, 0) arc depicted and

compared with the finite difference solutions. It can be seen that the curves shown

from these solutions arc over lapping with those of the finite di flcrence at large

values of x that implies that both the solutions arc in excellent agreement. Velocity

and temperdture profile~ arc shown in Fig 2,3 and Fig 2.4,

2,5 Results and discussion

If we know the values of the functions f(lp), 1I(",x) and their derivatives for

different values of the Prand!1 numbcr Pr, wc may calculate the Iluillerieal values

of the surface temperature () (0, x) and the velocity gradient /"(0, x) at the surface

that arc important from the physical p0int of view. Numerical values of 0(0, x) arc

obtained from the followmg relations,

0(0, x) = xl/5 (1+xr11j Ii (x, 0)

Numerical valUe of the velocity gradient /"(0, x) and the surface

temperature 0 (0, x) arc depicted graphically in Fig. 2.2 and Fig. 2.3 against the

axial distance x in the interval [0, 10] for the values the Prandtl number Pr = 0.73,

1.97 and 2.97 that had been taken into account by PO/Ii and Lupo [81 in their

analyses. FIg. 2.2 shows that an increase of Prandtl number leads to decrease of

the value of shear stress eoeffieient/"{O, x) as well as the surface temperature

({O, x).

In Fig. 2,4 and Fig. 2.5 numerical value of velocity profile It '],x) al"ld

temperature profile 0 (1], x) arc depicted against the similarity variable ,] in [0,8]

arc ~hown graphically for values of the Prandtl number Pr = 0.73, 1.97 and 2.97.

In the above figures effect of the axial distam:e are also shown. To show its effect

on the velocity and the temperature profiles in the boundary layer regimes value of

x arc chosen to be 1.05 and 3.33 which are rcpre~enled by solid and broken curves

respectively. From Fig.2.4 and Fig.2.5 we obsen'e that both velocity nnd



temperature profiles decrease owing to increase in the value of the f>randtl

number. We may also observe that an increase in the value of the axial distance x

leads to decrease in both the velocity and the temperature profiles.

2.6 Conclusions:

We have stl.ldied to the study of coupled natural convection and conduction in a

flat plate introducing a new class of transformation that leads the solution to the

regime ncar the leading edge to down stream regime along the vertical surfacc.

The coupling of conduction required that the temperature and the hcat flux bc

continuous at the interface. The equations arc integrated using the implicit finite

difference method and the results arc found to be an exeellellt agreement with the

corresponding asymptotic solution. \\fe may thus conclude that the present

strained coordinate transformations yield appropriate equations which provide

more accurate result than the pCliurbation solutions.



Tabk 2, I Initial expansion: values of I" "(0) for comparison
Pr-O,7JJ Pr-- 2.97

Present Pozzi et al Present I'oui el 'II

0 1.537 1.540 9.J90xIO" 9,I'.l7x[(rl

I -1.646 -1.641 -6.822x 10.1 -(,.799xlO.1

2 1.624 1,624 4.704xUj"1 4.(,98x 10.1

3 -J.370 -1.371 -2.787x j{rl -2.787xl0.1.
4 9.445xl0.1 'J.453xJO'1 l.J59x]0.1 1.360x 10.1

5 -4.834x I0.1 -4.840xI0"] -4.9111xl0.i -4.992x 10.1

6 1.209xlO" J.210xI0"1 9.43xlO.J 9.470x 10'.'

7 7.296x 10.2 7.29Gx10.1 3JOxlO.J 3.295x [0".'

R -J.09Jxl0.1 -1.095xl0.1 -3,88xJO") -3.895xIO.J

9 5,675x10.2 5.699xlO.2 1.56x 10"J I .570x 10'.1

10 7.51xlO.J 7.548xIO'.' 3.0x\(r" 3.10xl0'S



Table 2,2 Initial expansion: values of 8" (0) for comparison

Pr=O.733 l'r-2.97

" Present Pozzi ct al ['resent Poa.i ct al

0 2.042 2,042 1.412 1.411

I -3.085 -3.083 -1.483 -1.481

2 3.791 3.71)9 1.271 1,271

3 -3.887 -3,88(, -9.153xlU.1 -9.147xl()'1

4 3.323 3.322 5.513xl0" 5.512xl0"

5 -2.296 -2.298 -2.703xIO.1 -2.704xIO'1

6 1.170 1.172 9.876xHr1 9.896x1O'1.

7 -2.848xI0.1 -2.853xl0.1 -1.817xIO.l -1.827xI0.1

" -1.838xl0.1 -1.844x10.1 -o.96x 10'" -6.959x 10.3

9 2.67IxIO'1 2.(,81x10.1 7.84x 10.1 7,875xIO.J

10 -1.356xI0'1 -1.302x10'1 - 3.07x I0'.1 -3.093xl0')



Table 2,3. Asymptotic expansion: values of ,{(OJ for companson

1'.-0,733 Pr=2.97

" Present P07J.l ct al Present Poai ct al

0 9.532xl0.1 9.532xlO'1 7.528x 10.1 7.522xlO.1

-2.949xlO" -2.908xl0" -3.705xl0.1
-,-

I -3.693xl0"

2 1,143xl0.1 1.143xlO" 2.391xlO.1 2.392x 1rrl

3 -4,121xl0'1 -4.128xl0.1 -1.504xl(r' -1.515xl(r'

Table 2.4. Asymptotic expansion: values of U" (0) for comparison

Pr=0.733 p, 2.97

" Present Pozzi et al Present Pozzi ct al

0 -3.610xl0'1 -J.591xlO.1 -5.745x1O" -5,749xl0"

I l.315xlO.1 l.315xlO.1 J.414xl0" 3.414xl0"

2 -3.616xl0.1 - 3.59Jx 10,2 -1.547xl0'1 -1.545xlO.1

3 3.S47xlO'. J.845x 10's 8.481xl0.7 S.482xl0.7

u,
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Chapter 3

Coupling of conduction with natural convection flow of a fluid

in an inclined square ca\"ity

3.1 Introduction

In this chapter unsteady laminar natural convection flow has been considered in an

inclined square cavily filled with u fluid. The top horizontal wall, tIle right vCI1icai

w,11I, the bottom wall of the cavill' ilfCwulcd and the len vertical w,1I1is heated,

The equations <1ft'm,ld.., non-dimensional and solved numerically by an upwmd

finite difference method together with iI SUl:ccssive u\'er.rela!l.atiun (SOR)

technique. The streamlines and isotherms arc presented as well as the rate of heat

tnmsfcr from walls of the cavity. The fluid has ('rundtl number. Pr =7,0 ".hile the

value of the Rayleigh number, Ra is from 10J to 107,angle of mclinatlon, <jlISfrOIll

0° Ie 90Hand coupling parameter p varies from 0 to I,

3.2 Governing equations of the flow
we consider an inclined square cavity of height 1-1filed with a fluid as shown in

rig 3.b. The righI, the bellom and the top walls arc maintained at a constant cool

temperature To and the temperature of the len vel1ical wall is TII( T" :> T,) of

thieklles~ band \vilh a temperature T, maintall1ed on the other sidc(Fig 3 la). One

must solved the coupled thermal ficlds in the solid and the fluid.

We further assume unsteady laminar flow of a viscous incompressible t1uid

having constant properties. The effect of buoyancy is included through the well-

known Boussinesq approximation. Finally, the direction of the gravitational force

is as indicated in Fig 3.1'1



,

'I

Tlr()' )
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rig 3.1 a: The flow configuration and coordinate system

Under the above assumptions, the conservation equations for mass,

momentum and energy in a two- dimcll<;iOllulCartesian coordinate system arc

VII 0('-+-00
UX oy
d, (11 (11 1q, [J2

1i {J'u] ._._'
-+«-+1'--;;:-=---+« --, +-- +fifJ(I-l,)SII1Q1
d iIx ('J' P dt d-- (Y

';\' ("I' Dr 1 /]' [rJ'V o'vJ ( )-H-H-=---;:-+u -:;-7+-, +gIIT-~C051'a r2r iJ' PC}' 0.:1-- 0'-

or (Jr (JT ({J'T (J2TJ
-+«-H-=(L --+--
rJ i1t ()' ox' oy'

(3, I)

(3.2)

(3.3 )

(3.4)

where II and v are the t1md velocity components in the x and y direction

respectively. r the temperature, P IS the' fluid pressure, fJ is the volumetric thennal

expansion coefficient, $ is the angle and p. a and v are respectively the density of

the fluid, the thermal diffusivity and the kinematIC viscosity.

The boundary conditions to be satisfied by the above equations arc

u=O,p=O,T=T, aly=H,y=O,x=H
!i=V=O at .• =0

(3.5a)

Coupling condition required that the temperature and the heat nux be continuous

at the solid fluid interl~\ce i.e.

"",



<1T (aT]~-, u.;" '" K f ,1~ ,_0 (3.5b)

where ", and Kf arc the thermal conductivity of solid and fluid. The temperature

7~oin the solid as gIVen by Miyamoto c1. a1 [5'1is

(3.5e)

where T(y) is the unknown tempenl[urc at the interface to be dctcrmll1cd from the

solutiuns of equations.

3.3 Transformation of the governing e{luatioll
The following dimcn~ionlcs& variable arc imfO,luccd

.l' v 11 l' T-7~ I I'
\=- y='- U'" T'- ' '=(11= I'=-~--
. ,-' L' (on)' (aIL)'l;j-l; . (e/a)' (pa'/L'j (3.6)

Using the abov~ dimension1css dependent and indcpentkn! variabl~s in the

g;ovcrnillg equations (3.1 )-(3.4) the following equations arc ubtained

<!u UU
-+-~O
Dx Dr

and boundary condition (35a,b,c) transfOllll into

11=1'=&=0 al y=/I

lI=l'=()=Oaly=O

II=l'=(i=Oaty=H

(3,7)

(3.8)

(3.9)

(3.10)

(3, 11)



11=\'=0,
au

0-1=I'-atx=0ax

(J.12)

where B=lJIL, lI=H/L, p=(klk,)(h/L)

where L is reference length and H is the height of the cavity, p \s the coupling

parameter.

Again equations (3.8) -(3.10) transform mto

en 0(1./.0) 8(v.o) 2 (JB ae]-+---+ -Pr'V D+RaPr cosifi--smifi-
iJrA8v Jx oy

i/O ,)] r)(J ,
-+11-+('-=11 0a (;'" ,1,

where

is the vorticity function and IjI is the stream function defined by

rVI a'll
11= ay ,v=- (Ix

(J.1J )

(3.15)

(3.1(,)

In the equation (3.12)

gfl(Tb-T",)r" I'Ra=. .. . andPr=-

"' "
arc Rayleigh number and Prandtl number respectively.

Once we know the numerical values of the temperature function wc may

obtain the rate of heat flux of the walk

A grid dependence study has been carried out for a thermally drivcn cavity flow

fur the above mentioned parameter vall.les with meshes of 31x31, 41x41. 51x51and

61x(,1 pomts and resulting flow quantities are listed in Table 3.1. ror

computational economy, a 4lx41 mesh has been lIsed throughout for the

simulations process. With this mesh for the case with l'r = 7.0, P = 0.0 and

Ra = 104 the maximum values of !If are obtained.



3.4 Method of solution
An upwind finite-difference metbod, together witb successive over relaxaion
iteration tecbnique has been employed to integrate tbe model equations

"
} ~n

j =\
i = \

ft
tl

x H

i=1!I

(3.\7)

(3.20)

(3.21)

Fig Jib. Schematic rcpresentalJonoflbc cavity ucpic'llngthe mesh useu in the
numerical simulatIons.

(3.12) to (3.14) governing tbe flow. For computational purposes wc first write
equations (3,12)-(3.14) to the general form as given belmv:

OF"=_3(UF")_ O(VF)+)~O cO~rjJ_DOsinrjJ)+IJ[ 8
2
, + ,)2,]F

ill rJv ~r lox rJy ox. Dr~

Here, F represents either the function n or O. and the wefficicnts 11 and IJ arc
given as follows
n: A = Ra. Pr, D = J'r
(): 11=0.0, /)=1 (3.18)
Except for tbe non-lillear term~, all spatial dervatives in the governing differentHlI
equation (3.17) arc approximated at the interior grid points lIsing second order
central difference approximations. Thus we make the following approximations

U, J = 2
1
h(lI'i.j+1 -1fI',j-11 v"j = - 2

1
11(1fI,+I.,i - ~f'_I.j) (3.\9)

and equation (3.15) may also be expressed as
II ) I ,

1I';,j = "4\lI'i-l,j +11';+1,; +lI'i,j_1 +lfIf,J+1 +"411 n;.!

The successive over-relaxation method represented by the iterative scheme is
given below

11'.'; "!fI,,) + : (11'1+1,1+ 11';-1,) + V",/+I + 1I';.j_l -411",1 _!lIn;,})

n



(3.22)

where k is the iteration number, wa~ used to find the stream fUllction from the
current vorticity distribution. We used the well-known optimum valuc of ill given
by

.-.J.-.' " [""J ["J(/) == --~---, where (j '" cos - + cos -
,52 In Ii

In order to minimize the computational time. In the pre&enl computatlOns
convergence was assumed when the maximum absolUle pointwi~e change over
one iteration was less than 0.0001.

Before we present the diseretisation of the nonlinear tenns of equation
(3.17), we first define Vf and Vb as the average axial velocities evaluated
respectively at half a grid forward and backward from point (Xi, )j) in the x-
direction,

(2.27)

(3.23)

(3.26)

(3.25)

Ur =~(Vi<l.j +V,J VI>== ~(V,,! +VI-I,i)

similarly, we define V(and Vb

I ( ) 1 ( .V, ==- V. ,.+v. V, ==- V. .+v ,i (3.24)2 r,j+ '.j ) 2 ',J 1./-

As the vertICal velocities are averaged half a grid spacing both forward and
haekward from point (x" }j) in the y-direction respectively, it can easily be verified
that the upwind differencing form is automatically preserved when the following
numerical fonnulae are used:

[a(UFI] ~_' [(u, -iUIIV",.! +(U! +IUJi-Uf +lu,I)F!.,fu r.f 2h ,

-(U, +lu,IlFHj]

[awF
)] =_1 [(vI -iV/li"", +(v! +lv!l-v,+IV,I}'~!':::v 211
'I

- (V" +hl)c;.,,']
The remaining terms in (3.17) arc appro .•..imaled hy using forward differences III
time and central differences in space. The individual expressions follow.

[ j- F"r", _ Fo1,1
(~;. '/ '" ',j tJ.1 '/

where tJ.1is the size of time increment and superscript 'new' and 'old'
value at the new time t+tJ.t and the earlier time I. Further we have

[
a2F l2Fj 1 .--+-'- =-F .+F +F-. +F -4F..~.2 a 2 12 ('+1.1 I-I.... ',j+1 r,I-1 ',J)
Wi: y .. l

'I

denote the

(3.28)



(3,31 )

(3.30)

(3.29)(ao) =_1 (0-0 ) ('OJ =_1 (II _() )Dx i,1 211 ,+I.j ,-I,J' GV ',j 2/1 !.j+1 ',}-I'

On introducing (3.21)-(3.30) Into (3 18) nnd rcmrunging the terms we obtain

P"OIl' FOlel !It( , P AI do .' "J 2"PJ]i' = Ii +- -1,- 2+ fl4COS'l'-P)~tnl" + v--, '. 2h - 11
where

Ii = (v, -Iv, I)/~", ., (v I + Iv/1- U, + Iv,lip" - (v" + lv, Il/e., ,
P2 = (Vi -IVil)F;.i+1 + (Vr +IVrl- V;, + IV~I)r:,i- (Vb + Ivhl)F,.I_1 (3.32)

Pl = (F;<l,i+ r~_I,i + 1-;,;+1+ F, I-I -4/\ ,) (3.33)

/'4 "" (61,+1./ - 61,_1.1 ) (3.34)

l~, = (O"j+1 - O',J_I) (3.35)
Equation (3.30) is used to integrate equation (3.\3) at any interior point hy

replacing the function F by n nnd 0 by laking the appropriate coefficients given
in (3.1 B). At any lime ~lcp the values of nand 0 nrc obtained from their rcspccti\'c
,allies at the previous til1l~step, however at the milia] inst~nt they arc pre~cribed
hy the initial eonditi011S. Stream function VI is eakulated based on thc vorticity
distnbution by solving equation (3.15) uSing thc succcssiv,-, oyer rehi.\ation (SOR)
mdhod,

Finally solutions obtained are presented bclow In terms of slreamlin,-,~ ,lnd

isothcl'ms. We have allowed the Rayleigh number, Ra 10 vary from 10' to 10'. til<;

Pmndtl number, Pr =7.0, angle of indination, ~ is hom 0" to ~)(/' <lnd coupling

parameter, p varies from 0 to I.

3.5 Results and discussion

Numerical results for natural convectIOn heat transfer for a fluid in an inclined

square cavity are studied. As mentioned above, the non-dimensionnl controlling

parameters are the Rayleigh number Ra, the Prandtl number Pr, coupling

parameter p and angle of inelination~. In table 3.1 it is seen that the value \1'1",,,

gets more accurate as the number of meshes increases,

In rig. 3.2 we have 10 first show the streamlines and isotherms for values of

p equal to 0.0. 0.25, 0.50, 0.75 and 1,00 for the fixed values of Ra = 104, Pr = 7.0

and ~ = On , Shape of streamlines arc almost same and center of cavity changes for



increase of p. Thc isotherms arc clustered at the bottom comer opposite to hot

wall of thc cavity. Isotherms concentrate hot wall to bottom wall as p increases

from 0.0 to 1.0. Tendency to form boundary layer at p = 1.0 with bottom cold side

of the cavity.

In Fig. 3.3 the calculated flow fields arc plotted for angles of inclination ~

equal to 0°, 22.50°, 45°, 67.500 and 900 while Ra=104
, Pr=7.0 and p=O.25. The

flow fields are visualized by few stream lines, the associated temperature

distribution is plotted for isotherms of Sex, y). Streamlines are circular and

unicellular in shape. Tendency to form boundary layer from ~'=67.500 to ~=90u in

the bottom cold side of the cavity. FIow is concentrated at thc right most bottom

comer and spreads diagonally to thc top most comer in Fig.3.3(b). Isotherms are

denser and tcndency to form boundary layer at the bottom cold side of the cavity .

• The square cavity shown in Fig. 3.4 is important starting point in the study

of flow and heat transfer. The analysis is based on numerical results obtained for

values of the Rayleigh numbers in thc range from IOJ to 10' while the values of

Prandtl number, Pr '= 7.0, coupling parameter, p '= 0.25 and angle of inclination,

~'=Oo.With thc increase of Rayleigh number Ra the streamlines shape changes.

This phenomena is pronounced at Ra'=107, in main ccllthe center of which located

near lower left comer, the retarded flow fonn a pocket like structure at Ra=105 to

107
. Isotherms flow condensing from right most cold comer and gradually spreads

towards diagonally opposite left most corncr as Ra increases from 103 to 107 and

form boundary layer at the bottom and right side of the cavity as Ra increases

from 105to 107
. Also at RFI07 an isolated curve is crcated in upper side.

In Fig. 3.5 increase of p leads to decrease of heat transfer with the fixed

value of Rayleigh number, Ra '= 104 llnd Prandtl number, Pr = 7.0.



3.6 Conclusions
Using the Boussinesq approximation and considering buoyancy effects, implicit

finite difference technique has been employed. The study have been carried out for

a fluid having Prandtl number, Pr ""7.0 while the value of the Rayleigh number,

Ra varies from 103 to J07, angle of inclination, ~ varies from 0° to 90u and

coupling parameter, p varies from 0 to I. It is observed that thc value V'",", gets

more accurate as the number of meshes. increasc.



Table 3.1: Comparison of Ilumerieal val lies of stream function against different

meshes for Ra = 104 , Pr = 7,0 andp = 0,0.

Meshes 1'1'"",,1
31x31 0.963177

41x41 0.9(,2284

51x5l 0.962085

61x61 0.962079.
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Chapter 4

Conclusions

In this thesis, conjugate effect of conduction and convection with nalUra! convection flow

from a vertical flat plate and in an inclined square cavity have been investigated. The

coupling of conductIon required thaI the temperature and the heat flux be continuous at

the interface.

To establish the accuracy of the solution of the present problem two methods,

namely the extended series solution and the implicit finite difference method together

with Keller.box scheme are employed in Chapter 2.

In Chapter 3, equations are solved numerically by an upwind finite difference

method together with a successive over-relaxation (SOR) technique.

The results thus obtained are presented in tabular fonn (in chapters 2 and 3 ) for

comparison and also graphically in figures (in chapter 2, 3),

From the above observation one can conclude that

1. In Chapter 2 the solutions obtained flom the tabular forrn shows a good agreement.

The skin-friction and non-dimensional temperatul"Cdecreases monotonically as the value

oflhe PrandUnumber increases and same as for velocity and temperature proliles.

2. In Chapter 3 numerical results for natural convcctlOn heat transfer tor a fluid in

an mclined square cavity are shown graphically. The streamlines and isotherms for

values of p equal to 0.0, 0.25, 0.50, 0.75 and 1.00 for the fixed values of Ra"'I04
,,

Pr=7.0 arc shown. It may be seen that the value If",'" gets more accurate as the

number of meshes increases, The region of clustered isotherms moves to the left of

the cavity. Shape of streamlines arc almost same for increase of p. The calculated

flow ficlds arc plotted for ang1cs of inclination of 0° to 90°. The flow fields are

visualized by few streamlines, the associated temperature distribution is plotted



for isotherms of 8(x, y). With the increase of Rayleigh number Ra the streamline

shape changes and isotherms lines closed to the right, the retarded flow form a

pocket like struetuf(: at Ra=10' to 107 and form boundary laycr at the bottom and

right side of the cavity. Also at Ra=107 an isolated curve is created in upper side.

Here increase of p leads to decrease of heat transfer with the fixed value Rayleigh

number Ra = 104
, Pr = 7.0.



(AI)

(A2)

Appendix
Finite difference method

In our analysis, we have employed a number of methods for the numerical solution

of the differential equations. Of them the most practical, efficient and accurate

solution technique is implicit finite difference method together with Keller-box

elimination technique, which is well-documented and widely used by Keller-box

and Ccbeci [13] and recently by Hossain [9].

Now from equations (2.13)-(2.15) we get

f"'+plff'-pJi,2+g = .;(f'~' - f" Z J

~l "+ "_ f' _'[f,af'_f"af]Pr g Pug P3 g - ., DC; as

To apply the aforementioned method, we first convert the equations (Al)-(A2)

into the following system of first order equations with dependent variables,

11(';,1/), v{';,1]~ P(';,I7) as

f'= /I

, ,
!/=vand g=p

I , [Og 8f]-p+p,/p-p)ug""gu--p-
Pr Bq Bg

(A3)

(M)

(AS)

(A6)

whcrcx""g,h""g and (l6+15x)/20(1+x)""Pt> (6+5x)110(1+x)=P2'

1/5(l+x)=P3

and the boundary conditions are



f(E"O) = 0, u(,; ,0) = 0, p(E"O) = -(I + E,)1/4 + ,;115 (I + ,;)1121) geE,,0)

u(E"ce) =- O,g(,;,ro) = 0,

(A7)

We now consider the net rectangle on the (~,I/) plane and denote the net points

by

'7" == 0, 1]J == 'lj_l + hi ,j == 1,2"",J
,;0 == 0, E," == E,"-'+k, ,n == 1,2,.- ',N

D
-

"'

~
................_...

•
I

(AI)

'11-112 !----------0- ..

'11-1 _+-__ -' 1-.'--
B

Fig.A Nct rectangle of the difTercnecapproximation

Here nand j are just sequence of numbers on the (';,17) planc, k" and h] be the

variable mcsh widths.

We approximate the quantities f,u, v,g at the point (,;" ,1]) of the net by

Ii ,u; ,v; ,g;, which we call net function. We also employed thc notation g; for

the quantities midway betwcen nct points shown in Fig,A and for any net function

as

(A9)

.0,
I .•



._112_I(g" gil-I)g- -- +.
J 2 J J

(AIO)

(All)

(A12), 1 (" "_I)
gJ.ll2 ='2 gj +gj-l

Now we write the difference equations that arc to approximate equations

(A3)-(A6) by considering one mesh rectangle fOf the mid point (~",'I,_II')to
obtai!1

f" f"j - J-I

IIj

"-vj_112

(A13)

(A14)

(AI5)

Similarly equations (A5)-( A6) are approximated by centering about the mid point

(.;"-''','I,-lIJ 'Centering the equations (A9) about the point (;"_]",'1) without

specifying 'I to obtain the algebraic equations. The difference approximation 10

equations (A5)- (A6) become

(AI6)

(AI7)

where

Ln =[v'+P,[V-P2U2+gf, L,,-I =[V'+Plft-P2112+gr-'

and

, ".,



(v']" +al(jv)" -al~ll}"+a[vn-lf" -V"r-1j+g" ""R"-I

1 ['1"+ ")" ()" 1 ..-1 •••••• -IPr p alVP -a) ug -au g -u g

+ ["-I p" _ I"p"-I]= T,,-I

where

R••-1 ~-L ••-I +a[UC)"-' -~it']
T••-I~-M ••-I+a[(jp)"-I_(ag t']

~"-1 .
a ~ -,-,0:1'" PI +0:,(12 == PI +0:,0:, == Pl +a

••

Now taking position at 1/ ""} 1 then equation (A 1)-( Al) become,.-
-

(AtS)

(AI9) ,

R II-I. ,,--. ,
(A20)



_I_[p']" ,+ a,Up)' ,-a,(ug)" ,
Pr j-- 1-- }--, , ,

where

L'-' h-'( ,-, '-') (ji )'-' ( 2 "-, ,-,1= j Vj -Vj_I+Pl V.1-P2U),I+g,1
J.-- )-- )-- j--

2 2 2 2

M'-' __I h-'( ,-, _ '-') (jj )'-' _ ( )'-'j._l. - Pr j Vj Vj_l + PI P j_.!.. P3 ug ]_l
2 2 2

Equation (A20) and (A2l) become

(A21)

hj-I(v: -v:J+al(jV)';_t -a2(u2J:_t
+a(v~~~fJ~l - V:'_l fJ'~~l)

" "

+ g",~
(A22)



,
The boundary conditions become

,

(A23)

Finallywc get

h-'{ r" -/" )=u"
J V! )-1 , I"--,
I-,(" ,,) "lj Uj -U

J
_1 =V, I

r-,

1 h -I [" ,,] ()" ()"Pr i Pj -Pj_1 +aj jjJ }_1 -a) ug )_1, ,
+ a(un-l n _ Un II-I + /11-1 II _ flO n-t)

)_!. gj_1 j~l gj_1 J~l P j_l . 1_1P j_1
2 1 1 2 2 2 '2 I

We define the iterates

(~{J u(iJ v(1) g(I)) , \2Vi, J' )' ) ) = ...

(A25)

(A26)

(1\27)

(A28)

,



' .. -

•
with initial values equal to those at the previous s station (which is usually the

best initial guess variables). For higher iterates we get

fU>') = f(l) +0 P'), , ,

gj'+1) = g)') +b gji)

py+l) == pjil + t5 Py)

(A29)

(A30)

(A31)

(A32)

(A33)

Now we insert the right hand side of the expression in place of fj, up VJ' gp m

equations (A25)-( A28) and drop the tcnns that are quadratic in

SfU) bU(i), bV(I) og(:)
j' j J' J

to yicld the following linear system (for simplicity, the subscript i in 15quantities is

dropped)

Og,-OgJ-'- ;(Og,+OgJ-,)~h)j

(SI)jb'vj +(S2)jb'vj_1 + (S3)jt5fj + (SJjlfj_1 + (SS)jOUj
+(S{,)JOUj_i + (S7 \ t5gj +(Sg)jt'igj_l ==(rJJ

and

."

•

(A34)

(A35)

(A36)

(A37)



(tl)jOpj +(t2)jOpj_i + (t3)/lj + ((4)jqj-1 + (tS)jOuj
+ (t6)jOuj_i +{t7)jOgj + (tg)jOgj-I = (rJ

j

where

(r) =f('l_f.(J)+h.u(')
I j J-l j j I

J-I.

(r) =U(,) _UU) +h Vi')
• J ,-I j i, I,--,

(r) =g(.i)_g(i)+hp(')
5j .1-1 .I ) ,I,--,

The coefficients of momentum equation are:

(S) =h:'+"'-f',)-Uf'-'
1) j 21 21-2-,

•

(A38)

(S,),



(s) =:;; a, V(i) + a V"-I
J J 2 i 2 J-~

(s ) == -a u(,)
(, J J I-I

1(S,) =-, 2

The coefficients of energy equation are:

(t ). = __1 hj +alf(,) _ Gf"-l" P ,-, 2 ,-, 2 'r 1--
, ,

() _u, i,1 u ,,_,
13'--Pj +-P ,

I 2 2 {__
- 2'

(t,),' u, i'l a ; a, n-l
J =--g --g.+-g

2 J 2) 2 j_1.,



() 0" (.) a , a 11-)
" =--"u'--/J.--u,} 21212j __

2

a, a II-I--u,]--u,2.1- 2 j-_
7

The system of linear equations (A34)-(A38) can be solved in a very efficient

manner by using the block-elimination method. Numerical values arc nbtaincd

frOill the above technique, results arc shown in tabular and graphic;}] form. In table

2.1 and table 2.4, results compare with Pazz,; cl al [8].ln Fig 2.2 and Fig 2.3,

/"(0, _t) and 0(0. x) arc shown graphically for comparison with small and large

values of x, velocity and temperature profiles arc depicted in Fig 2.4 and Fig 2.5
respectively.

•
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