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ABSTRACT

In this thesis, we study the established methods of Chames & Cooper, Biman &
Novacs and Swarup’s prima! & dual simplex type for solving linear fractional
programming problem, Suggest a modification for Swarup’s simplex type method
and compare the methods among themselves. To apply these methods on large-
scale linear fractional programming problem, we need compuier-onented program
of these methods. To fulfill this purpose, we develop computer program
(FORTRAN) of these methods and apply on 8 sizable large-scale linear fractional
programming problem of an agricultural farm. Finally, conclusion is drawn in

favour of our modified approach of Swarup’s primal simplex method.
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CHAPTER -1

Introduction:
In this thesis, we study the established methods of Charnes-Cooper’s[1962], Bitran-Novaes

[1 972] and Swarup[1964 & 1965) for solving Lincar Fractionzl Programming (LFP) problem ,
suggest & modification for Swarup[1964] primal simplex type method and compare the rethods
among themselves. Dut & large scale LFP problem, which involves a numerous amount of dala,
constraints and variablés , cannot be handled analytically with pencil and paper. To overcome the
complexities of larpe-scale Linear Programming (LP) problem William et al. [1 991] and Gitlet
[19'98] developed computer program (FORTRAN) . Here, we also generalize computer program
( FORTRAN) William et at. {1992] for the methods of Chames-Cooper’s{1962], Bitran-
Novaes f1972] and Swarup[1964 & 1965] to solve all types of LFP problems, whatever the size

of data involve in it. To illustrate the purpose, we solve a sizable large-scale LFP on retum fo
investment prablem of an agricultural farm, which is formulated in section 1.5. To present our

study, we require the following prerequisites:
1.1 Mathematical Programming problem or Mathematical Program (MP) deals with the
oplimization (maxjmization or minimization) of a function of several variables subject to a set of

constraints (incqualities or equalities) imposed ‘on the values of vaniables.

The general MP in n-dimensional Eucliadean space R” can be stated as follows:

(MP) Maximize  f{x)
Subject to
g(r)s0 ,i=12, _.m (1.1)
h)=0 ,j=12..p (1.2)

xed {1.3)



™

Where x =(x),%2,.. ... % ' is the vector of unknown decision variables and fir) , Ei(x),

i=12. .m) hx}(f=12.. .. .p)arcthe real valued functions

‘I'he function ffx} is known as objective function , and incqualities (1.1), equation (1.2) and the
restriction {1.3) are referred 1o as the constraints We have starled the MT as maximization one
This has been done without any loss of generality, since a minimizalion problem can always be
converted into a maximization problem using the 1dentity

man fx)—maxf-flo (.4

i ¢, the minimization of ffx} is equivaient 10 the maximization of {-ffic)}.

The sel § is normally taken as a connected subset of R”  Here the sct S is taken as the entire
space R* Theset X={x eS8, &i{x) £ 0:hi{x}=0. i=t.2. ..m, j=1.2,.. .p} is known as the
feasible region, feasible set or constraint set of the program MP and any point x< X is a feasible
solution or feasible point of the program M which satistics all the constraints of MP _ If the
constraint set X is empty (i e X=6¢ ). then there is no feasible soluticn | in this case the program
MP is inconsistent

A feasible pomt x°€X is known as a global optimal solution to the program MP if

Sl < fix") xc X (1.5)

A, global optimal solution x" of MP program is indecd a glebal maximam point of the program
MP. A point x" is said to be a strict global masimum peint of ffx} over X if the strict inequality
(<) in (1.5 holds for all x & X apd » = <"
A point x*c X is a local or relative maximum poimt of f{xj over X il there enists
some € >0 such that

fixy< f (x ). ¥re XN ("),
Where No(x"} is the neighborhood of x” having radius € . Similacly , global minimum and local

minimum can be detined by changing the sensc of inequality.



The MP can be broadly classilied Lo two categories, unconsirained optimization problem and
constrained optimization problem. i the constrainl set X is the whole space R”, program MP is
then known as an unconsirained optimization problem. in Lhis case, we are interested in finding &
pomt of R" at which the objective function has an optimum value . On the contrary, if X 1s a

proper subsat of R”

10 both the objective function and the constraint set arc linear, then MP

is called a linear programming problem (L¥F) or a linear progrim (LT}

On the other hand, non-lincarity of the objective function or consl raints gives rise to non-linear
programming problem or a non-linear program {NLP) Several algorithms have been

developed to solve cerlain NLP

1. 2 General Linear Program {GLP)
The GLP is to optimize a linear (unction subject 1o linear cqualily and inequality constraints. In

olher words, we need to determine the value of xy.xs.. . ,Xqthat solve the program

(GIP)  Mexinuze (or Mipmmize ) /= i“u 1o

i

Subject to

A
E{JU.TJ{5;=3:}f1J (=12, .m

¥ R {17

v, =0

; (1.8}
in which ¢, (j=1,2,.....n) be the profit {or cost) coelficient , az (i =1.2, ...m, F1.2,... ..} be the

coelTicicnts matrix A=(a;} and x, be the decision variabtes

The lincar function { 1.6} which is to be optimized {maximized or minimized) i8 known as the
objective function of the GLIP The inequation {1 7) are constraints ot the GLP An n-tuple

(%1.%2. - Y & R which satisfies the constramis of the is known as a solulion to the GLP.



Feasible solution: Any solution n, (7 =1,2 .n}to the GLP is called a [easible sclution il it

satisfies equations {1.7) and the non-negative restrictions {1.8} .

Optimal solution: A lcasible solution x ;.G =1.2 .n) is said o be an optumal solution to the

GLP il it gives the maximum {or minimum} valuc of the objective function {1.6}

Constraint sct * The sct of feasible solution to the GLP is called a constraint set if

N={(x).%z.....% n}T TR I ,,}' eR" and (1.7} holds at {x).%3,.... .x .,]1}_

Standard Linear Program {LP1): Lvery GI P can be reduced to an equivalent LPT as

cxplained below

{ i) Conversion of right hand side consiraint (v non-negative : If a right hand side constant of
4 constraint is negative , it can be made nun-negative by multiplying both sides of the constraints

by —1{if necessary).
{ ii) Conversion of inequality constraint to equality @

(a} Slack Variable: For an ineguality constraind of the fonm

fa,}xf«_ih (e=12,.... .. b =00,

adding a non-negative variable x,,; can be made equation

n

v . -
Tt X, kX, = b
i

r=12.....m)

and the nun-negative variable x..1 15 called the slack variabte

(b) Surplus Variable : For an inequality constraint of the form

a

EaﬁxJ =h, =12 . gnh =20,

subtracting a non-ncgative vanables x,.; can be made equation

I
}“1”" X =%, =h (=12, )
J’:



and the non-negalive variable X, is called the surplus variable .

So. without any loss of generality a standard lingar program can be writtcn as foflows

(1.P1) Meacimize Z =0 x (1.9
Sulyeut to Ar=~h {113
xz0 (1.11)

Where ¢, x=R", A is an mxn matrix. b 2 0 & heR".

in LPL the mxn matnix A =(a;) (=12, ..o, F1.2. ...y is the coetlicicnt matrix of the
cquality constraints b = {b1,by, b3t is the vector of right hand side constraints, the
component of ¢ are the profit factors , x = (X1, X2,- X J'eR" is the vector of variables called the
decision variables and constraint {1 1) are known 4§ non-negative CONStraints . The ¢alumn

vector of the matrix A referred (o as aclivity vectars
Now we present the following definitions for standard tinear program LFP1:

Feasible sokution: A vector X ={x.%,.. - . x..}'r is a feasible solution of the LPT il 1t satisfics

condition (1 10 yand (1.11).

Basic solution: A basic solution x = (X, Xz, . %) toa Ll is 2 selution cbtained by sctting {n-

m) variables equal (o zero and solving the remaining m variables, provided that the determinant

of the coefficients of these m variables are non-zero . The 1 variables are called basic variables.

Dasic feasible solution: A basic feasible solution x = {x1.%2, ..,x.,]' to the LPL is a basic

colutian which also satisfies {1,114} thal is al! basic variables are noN-TIEEAtIve .
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Non-degenerate basic feasible solution: A basic feasibic solution X = (X %2,.. X} 15 said 10
be non-degencrate if it has exactly m posiiive (non zera ) vanables x;, {j =12....,n), that is, al}
basic variables are  positive On the other hand | the solution is degenerate il one or more of the

m basic variablos are zerd

Optimal solution: A basic fcasible solution ¥ = {x1.X2, %) is said to be an optimal solution
or optimum 1f i maximize the objective function while satisfying the condition (1.10} and (1.11}

hatis, Ax™) 2 /0.7 x eX

Basic solution and some Notations

Basic solution: Consider the constraints {1 0) Le, Ax=b, are-constraints and rank {A)=m (<n}.
Let B be any non-singular mxm sub matrix made up of the columns of A and R be the remaining
poriion of matrix A Further, suppose that x 3 is the vector of variables associated with the

columns of B Then (1 16} can be wrillen as-

o] |=o

or Bx, + fx,, =0
That is . the general solution of (1 10) is given by
x, = Bh- BT R,

or Xy + B Re,, =B R (112)

Where the (n-im) variables swi can be assigned aibitrary values .The particular solution of (1.10)
is wiven by

x,=Rh x, =0 (1.13)
i< called the basic solution to the system Ax =b with respect to the basic matrix B, The variables
sy are known as the vector of non-basic variables and the variables ¥y are said to be the vecior

of basic variables.



It should be noted that ihe column of A assoctal

ad with the basic matriy B are linearly
independent and all non-basic variables of X xn are zero in a basic solution The equation (1.13)
s known as feasible canonical fo

yin, 1 the basic solution given by il
Suppose Lhere cxists a basic feasible selution to the co

nsteaints (1.10)y and (1.1 1) The cocficient
of the variables in (he objective function Z . alter the basic variables b
, arc called relative profit factors

is feasible, that ig, xg = 0.

om it have been climinated
[In a minimizanon problem,
relative profit factors].

we calt cost factors in place of

1 order to find the relative profit fact

ors corresponding Lo the basic matrix B, we partition the
profit vector ¢ as

N | 0
. —lc.'r 1¢.\'H1~
Where ¢y and cxnare the profit veciars carrespondin

@ to the variables xis and Xup respectively.
The objective function then i5

=t x=olx, FC (1.14}
Subtracting in this equation (1 14) the values of x i3 from (1,12}, we get,

gyl T gy
Z=o, B h-—cy B fagg el X
7 | T -
=7 +[LKH —cyu 8 R]-‘ Mot
- Tt =T .
=2 A0y Xy H U Yan
= 24—:.—'} X
Where
— {"H }
L =
Loy
oy =0
—r -l
ﬁ T =1 -\'.Ili _'l: H'IH .Ir'{
= 1 gl
2= B0

Here 7 is the vector of relative profit (actors cotresponding to the b
value of the objective function at the basic solution is given by (1.

components of T corresponding to the basic va
fram the definition of ©

asic matrix B and Z is the
I3} Qbserve that the

riables are zero, which ought to be as 15 evident



1.3 Simplex method

The simplex method is an iterative procedure for sulving a lincar program in a finiie number of
steps and provides all the : tormation about the program. Also it ndicates whether or not the
progratn is leasible If the program 1 feasihie, il cither finds an optimal soluiion or indicates that
an unbounded solution exists At {ust G B. [‘.‘lm_':}zi i developed this method in 1950 Following
Dantzig [ 963], Gillet i 988] described the simplex method as below:,

Dasically the simplex method 15 an iterative procedure that can be used to solve any linear
programiming model if' the necded computcr time and storage are available 1t is assumed that the
original linear programming model

Maxfmmze 7 = Zf‘, Y {1.13}

2=l
Swubject to

E(:UII{E =zyh i=12..m {1.16)
|

x,.h 20 (117

has been converted to the cquivalent standard LP madel.

F

Mexinnze £ = ch By

r (1.18}
Subject (o
Sax, =b =12 .m
7l (trlg)

which includes slach variables that have been added to the lefl side ol cach less than or equal to
constraint, surplus variables that have been sublracted from the lelt side of cach greater than or
equal to constraint, and artificial variables that have been added to the lefi side of each greater

than or equal to constraint and each equality. 1t is assummed that the profit coefficients for Lhe

-



slack and surplus variables ale zero wiule the coelticients for the artificial variables are arbitrary
small negative numbers (algebraically), say — M. The equivalent model necessarily assures us
that each equalion contains a vaniable with a coelficient of 1 in thal equation and a coelTicient
zero in each of the ather equations. {f the original constramt was less than or equal to constraint,
the slack variable in the corresponding equation will satis(y the condition just staled. Likewise,
the artificial variables that have been added 1o the greater than or equal to constraint and each
equality satisfy the condition for cach of the remaining equations in the equivalent model. These
slack and antificial variables are the basic variables in the imitial basic solution of the equivalent
problem.
The equivalent model is now rewritten as

Mavimize 4 (1.21)

Subject fo

£ - ; cx =1 (1.22)
~ i

Tl
Zhlljx_f =1 r=12 m {1.23 )
l
o (1.24)

Smee ¢, = - M for each artificial variable, we must multiply by ~ M each equation represented by
{ 1. 23) that contains an artificial variabte and add the resulting equations 1o equation (1.23) to
give

Maximize 2 (1.25)

Siehyect fo

- B _ (1.26)

(1.27)
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x, =0 {1.2%)

Wherch, = =M Ebt and * represent the egjuations containing artificial variables. This assures

us that each equation in {1.27) contains a stack or artificial varable that has a coefficient of 11n
that equation and a coelicient of zero in each of the other equations in (1 27} as weli as in
equation {1 26) Equation {1.26) will be referred to as the objective function equation.

We will now present the general simplex method. A compuier —oriented algorithm will be

followed to carTy out this method

Stepl: Obiain an initial basic leasible solution of the equivalent model; that is, let Xis.
=12

e the initial basic leasible solution where xyy, denotes the i™ basic variable and corresponds to

Jn

pomrara-

the slack or arlificial variable in the i* equation.

Step2: Sclect the non-basic vanable with the most negative coefficient in the equation (1 26} as
the variable 10 enter as a basic variable in the new basic feasible solution, 1 all coefficients in
equation (1.26) are non-negative, an optimal salutian of the original model only if the basic
vanables are void of any artificial variables with a positive value. That is to say, if at least one
hasic variable is an artilicial variable with a positive value 1n the optimal solution of equivalent

model then there arc no feasible solutions of the original model.

Step3: Sclect a basic variable to leave the sct of variables that are present in the current basic
feasible solution. The basic variable in the equation corresponding to the minimum ratios of the
b,’s to the corresponding positive coetTicient of entering variable in each equation represented by
(1.27) will leave and not be a part of the next basic feasible solulion. Let equation r contains the
leaving variable. If there are no Ron-negative ratios, then the objective function is unbounded

above (That is no finitc optimat sotution exists)
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Step 4: Perform elementary transformations on equation { .26} and (1.27) until the coelficient of
the entering variable from step 2 is ong m equation 1 and zcro in every other equation including
cquation (! 26). This can be accomplished by the Gauss-Jordan climination method for solving a
system of lincar equations The new basic feasible solution is Xp=bi, 1= L2,..... .

Where xi, (i # ) corresponds to the same basic variables in the previous basic feasible solution

and x;; corresponds 1o the new basic variable that just entered the basic solution.

Step 5¢ Let cquation {1.26) and {1 27) now represent the transformed sysiem of linear equations
from Step 5 Return to step 2. -
Properties of the Simplex Method:

The important properfies of the simplex method are summarized here for convenient ready
refevence.

1) The simplex method for maximizing the objective function stars al a basic {easible
solution for the equivalent model and moves to an adjacent basic feasible solution that
does not decrease the valuc of the objective function. I such a solution does not exisl, an
optimal solution {or the equivalent model has been rcached That is. if ali of the
coelTicients of the non-basic variables in the abjective function equation are greater that
ar equal to zero at some point, then an optimal solution for the equivalent model has been
reached.

2) 1ran artificial variable is in an oplimal salution ol the equivalent model al a non-zero
level then na feastble solution for the original model exists. On the contrary, if the
optimal solution of the equivalent model does not contain an artiticial variable al a non-
zero level. the solution is also optimat for the original model

3) I all of the slack, surplus. and artificial variables arc zero when an optimal solution of the
equivalent model! is 1cached, then a1l of the constraints in the original modet are strict
“equalities” for the values of the variables that optimize the objective function

4) If a non-basic variable has scro coeflicients in the objective lunction equation when an
optimal solution is reached, there arc multiple optimal solutions. In fact, there is infinity
of optimal sotutions The simplex methad finds only one optimal solution and stops.

5) Once an artificial variable lcaves the set af basic variables {the basic), it will never enter

the basis again. $o all calculations for that variable can be ignored n [uture steps.
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6) When selecling the variable {o leave the current basis
2) If two ar more ratio i1» smallest, choose one arbitranly,
b} If a positive ratio does nol exist, the objective function in Lhe original mode! is not
bounded by the constraints. Thus, a finite optimal solution for the original model
does not exist

7) 1f a basis has a varable ai the zero fevel, it is called a degeneraie basis.

8) Although cycling is possible, there have never been any practical problems for which the

simplex method failed to converge.

Linear Fractional Program (LFP) :

Recently various optimization problems, involving the optimization of the ratio of functions, e.
g, time/cost, volume/cost, profit/cust, loss/cost or other quantities measuring the efTiciency of the
sysiem have been the subject of wide interest in not-linear programming problem. Such

problems are known as LFP,

If' the objective function of a mathematical programming problem is the ratio of two linear
functions and the constraints are lingar, it is called a lincar fractional programming problem, or

LFP. Likewisc LP, a standard LFP can be expressed as follows

A 1.29
(LI Mexmmze  [{x)= -L-I ra (1:29)
dxr+ 7
Stehject i
xeX={re R Ax=h xz0] (1.30)

Where %, ¢, d € R™ beR™ a. f =R, Ais an m»n matrix and superscript T

denotes transpose

For simplicity of notation, throughout this chapter and hence forth, we can omit the lranspase
sign T aver vectors In an inner product of two veclors, one can assume that the left hand side

viectors be a row veclor and right side vector be a column vector,
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Now a day, linear fraction criteria arc trequently encountered in business and cconomics such as

-

Corporate Planning

Min [ debt —to-cquity ratie]
Max |return on investment]
Max [oul put per employee]

Min {actual cost Ho-standard cost]

Bank Balance Shect Management

Min [risk assels —to-capital]
Max [actual capital —to-required capital)
Mn [foreign Joans —to-lotal foans]

Min {residential morigages —to-total mortgages)

Linear fractional objective also occur in other areas of science, enginecring and social sciences

Now we consider a real hfe problem

1.5 A Production Problem of a certain agricultural farm:

Suppose a farmer has 1000000/= taka by which hc can cultivate maximum 30 hectors ol land,
The farmer wishes to cultivate different crops (Rice, Wheat, Jute, Potatoes, Pulse, Maize,
Muslard seed, Tomatoes, Brinjal , onion, Caulifiower , Cabbages and Beans). He has the

followang data for per hector



Name of Cost of | Ferlilizer | lrngation | Pest Cultivation | Labour { Retum
Crops seeds cost st ranapement | cost cost
Rice 375 4260 4500 500 1500 | 500 25200
Wheat [500 4660 1500 400 2000 1500 23000
Jute 210 15807 700 800 2000 1800 | 14000
Potatoes 22500 | 6050 1500 600 1506 1260 66000
Pulse 1000 1780 F00 300 1200 1500 13800
Maize 400 5960 1500 400 1200 1500 21700
Mustard sced | 500 5840 700 400 1200 1300 20100
Tomatoes 500 11870 3000 800 2000 1500 39220
Brimjal 500 6§30 3500 1000 1500 1508 28000
Onion FO00 6825 1600 200 1500 18300 36350
Caulitlower 1006 0550 4000 600 1500 2000 31180
Cabbage 100G 7445 3500 500 1500 2000 30000
Beans 200 4025 1000 200 1500 1500 16500

In addition the larmer has the foliowing limitations of expendilures:

Maximum m;fcstmunt tor seeds 15 taka 135000/=

Maximum investment for fertilizer i taka 236000/=

Maximum investment for urigation s taka 1 15000/=

Maximum investment for pest management 1s taka 30000/~

hbaximum investment for caltevatoon is taka 95000/=

Maximum investment for labor 1s taka 100000/=

And the farmer has a fixed expenditure laka 5000/=.

The objective is to maximize the ratio of return {o investment. This Teads 1o a LFP,

Formulation:
The three bastc steps in constructing a LFP model are as follows:
Stepl: Identily the unhnown variables to be determined (decision variables) and represent them

in terms of algcbraic symbals.

14
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Step 2: ldeatify all the restrictions ot constraints in the problem and cxpress them as lincar
cyuations or inequalities, which arc linear functions of the unknown variables.
Step 3: (dentify the objective or criterion and represent it as a ratio of two lincar unctions of the

decision variables, which is 1o be maximized {or minimized)

Now, we shall formulate above problem as follows:!

Step 1: (Identily the Decision variables)
For this problem the unknown variables arc the hectors of tands planted for ditferent crops. So,
et s, =The hectors of land planted for Rice
x3 = The hectors of land planted tor Wheat
x, = The heetors of land planted {or Jute
x4 = The hectors of land planted for Potatoes
%+ = The hectors of land planted for Pulse
xs = The hectors of land planted for Maize
%7 = The hectors of tand planted for Mustard seed
xy = The hectors of land planted for Tomatocs’
xs = The hectors of land planted for Brinjal
x;ju = The hectors of land planted far Omon
x1; = The hectors of land planted for Cauliflower
%73 = The hectors of Tand planted for Cabbage
and %13 = The hectors of land planied for Beans
Step 2: {ldentify the Constraint)
In this problem canstraints are the limited avaifability of fund for different purposcs as follows:,
| Since the lanmer wishes to cultivate maximum 30 hectors of land, so we have

Ny Xy F X Ny X X Ny X A Xy Xy F Xy Py H X S 5

2 Qince the farmer has Maximum investment for seeds is taka 135000/=, 50 we havc

375x, +1500x, + 210x, + 22300x, + 10005, +400x, + 500x; + 300x, +500x, -+ 7000r ,
+1000x,, + 1000x,, -+ 200x,; 5135000
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3 Since maximum investment for fertilizer is taka 286000/=, so we have

4260, + 4660, + | 580x; +6050x, + 1780, + 5060x, + 5840x, +11870x, +6130x,
4 68251, + 03501, +T445x,, + 4025, < 286000

4 Since the fumer has Maximum investment for irrigation is taka 115000/=, 50 we have

4500x, +1500x. +700x; +1500x, +700x, +1500x, + T00x, +3000x, +3500x,
+1000x,, +4000x, +3500x, ., +1000x,, = 115000

3 Since the farmer has Maximum investment for Pest management is taka 30000/=, so we have
500x, + 400x, +800x, +600x, +800x; + 400x, + 400x, +800x; +1000x,

+200x,, +600x;, +300x,, +200x,, < 30000
6 Rince the Farmer has Maximum investment for Cultivation cost is taka 95000/=, 5o we have

1500x, +2000x, - 2000x, +1500x, +1200x, +1200x, +1200x, +2000x +1500x,
+1500x,, +1500x,, + 1500x,; +1500x,, < 95000

7 Since the farmer has Maximum investment for labour is taka 100000/=, so we have

1500x, + 1500x, + 1800%, +1200x, +1500x5 +1500%, +1500x; + [308xg +1500x,
+ 800X, + 2000x,, + 2000x,; + 1500k ; = 100000
We must assume that the variables x, . i=1,2, . . .13 are not allowed to be ncgative. That is,
we do not make negative quantities of any proeduct.
Step 3: (Identily the objective)
i this case, the objective is to maximize the ratio of total return and investment by different

crops. That is,

25200, + 23000x, +14000x, + 66000x, +13800x, + 21700x, +20100x,
+39220x, + 28000x, 4 36350x,, +31180x,; + 30000x,, +16800x,,
5000 + 12635, + 11560x, + 7090x, 4 33350x, + 6980x, +10960x, +10140x,
+19670x, +14130x, + 18325x,, + 15650x, +15045x,, +8425x,,

Mar I'{(x} =
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Now, we liave cxpressed our problem as a mathemalical model. Since the objective function is
the ratio of return 1o investment and all of the constraints functions are linear . (he problem can

be madeled as the following LFP modet:

25200x, +23000x. + 14000y, +66000x, +13800x, +21700x, +20100x,
+39220x, +28000x, + 36350x,, +31180x,, +30000x,, + 16800x;,
SO00 + 12635x, + 1 1560x, + 7090x, + 33350x, + 6980x, +10960x, +10140x,
+19670x, +14130x, + 18325x,, +15650x,, +15945x,, +8425x,,

Maxl{x)=

Subfect fo

£ F X, X X RN R X X X X X R X g+, 550

375x, +1500x, +210x, +22500x, + 10005, +400x, + 500x, + 500x, + 500x,
+ 7000x,, + 1000x,, +10x,, + 200x,, = 135000

4260, + 4660x, +1580x, +6050x, +1780x, + 5960x, +5840x, +11870x,
+6130x, +6825x,, +6550x,, +7445x,, + 4025x,, < 286000

4500x, +1500x. + 700x, +1500x, + 700x, +1500x, + 700x, + 3000k,
+3500x, +1000x,, + 4000x,, 4-3500x,, +1000x,; = 115000

500x, +400x, +800x, +600x, +800x, +400x, +400x, +800x;
+1000x, + 200x,, + 600x,, +500x,, + 200x , = 30000

1500x, +2000x, +2000x, +1500x, +1200x, 4 1200x, + 1200x, +2000x,
+1500x, +1500x,, + 1500x,, + 1500y, +1500x,, < 95000

11

1500, «+ 1500 +1800x, +1200x, 4 1500x, +1500x, +1500x, + 15004,
+1500x, +1800x,, + 2000x,, +2000x, +1500x,, £ 100000

Xy Ko Xy K X K XXX XX K, Xy 2 0

Thus the given problem has been fermulated as a LFP We will solve (his forimulated problem

by using diffcrent methods
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1.6 Summary of the thesis

In this thesis, we study the established melhods of Chamﬂs—Cmper’s[l 962], Bitran-Novaes

[19?2] and Swarup [I 91‘;4&]965] for solving LFP problem , supgest a maodification for

Swarup[l 964] simplex type method and  compare the methods among themselves. But to apply

these methods on large- scale LIFP problem. we need computer- eriented program of these
methods. To fulfill this purpose. we deveiop cnmpﬁtcr programs ([{ORTRAN) of thesc methods

and solve a sizable large-seale retum (o investment problem, which is tormulated in scction 1.5.

The method of Chamcsufjnnpcr's[l 962], Bitran-Novacs [l 9?2] and Swarup [1%4& 1965] arc
briefly presented in chapler- 2, chapier- 3 and chapler- 4 respectively, Further m section 4.3, we
sugpesl a modilicd approach of Swarup[1964] simplex type method. In chapter-5, a comparalive
study 15 made of the above methods on the base ol Islam & Nath |_[ ‘)‘JZ] imvestigations. Finally,
conclusion is drawn in favour of cur modificd approach of Swarup’s primal simplex type

method.



CHAPTER- 2
CHARNES & COOPER METHOD

In this chapter, we shal! discuss briefly the method of Charnes & Cooper [! 962] for solving LFP

problem defincd by {1.29) and {1.30) and develop computer program (FORTRAN) for this

method.

Considering all possible cases relating to the sign of denominaior of objective function of LEP

problens, [slam & Nath 11992] obtained some independent results to investigate how Charnes &

Cooper {1%2] metihod can be applied for solving LFP problem

The Summary of the Method

Charnes & Cooper [1 Gﬁz]cnnsidcmd the LFP problem defined by (1.2%9) and (1 30). They also

assumed that-
1) The feasible region X is non-empty and bounded,

2Yex1 aand of x¢ £ do not vanish simultaneously in X

Introducing the variable transformation y =7 x, Where ( 20 Charnes & Cooper h '1)62] proved that

LFP problem is reduced to cither of the following two Equivalent Linear Programs {(ELPs)y



2)

EP) Maximize £, ey al
Suhject to
Ay bt -
dyife=1{
v, =0
And
(EN) Muximize  Z> - -oy-ff
Subject ta
Ap-bf — !
dy fe--{
L)
Then they used the well-known Dantzig [1 %U] simplex method to solve either Equivalent

Positive {(EP) or Equivalent Negative (EN) pml-a']cm.

Il onc of the problems EP and EN has an optimal solution (¥, f¥) and the other is inconsistent,
then the LIFP problem also has an optimal solution x* = y*/¢* If any one of the two prublems

is unbounded, then the LFP problem is unbounded. Thercfore. if the problem first 15 found

unbounded, one can avoid solving the ather

Remark 2.1

[t should be observed that the same reduction can be made using the numerator instead of

denominalor

. .7_ , Ifn' ¥
Kinge, max ‘*Ir-iﬁ = tnax {—l}f-ii—"kﬁ

d x+ dx+e
Remark 2.2

Thus, if one knows the sign of either the numerator or Lhe denominator of the objective {unction,

one need only solve a single ordinary lincar programming problem.
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Though Chames & Cooper [1962]discussed some cases relating to the sign of denomanator of
objective function . it seems that they did not exhaust all cases . Wext Islam & Nath [] 992]

considered the following six cases covering afl possibilities of the sign of denorminator dx+ £ of
LEP problem over the feasible region X and obtained some indcpendent results to investigate
how Charnes & Cooper [1%2] method can be applied for solving LFP problem

Then they discussed from CASE 1to CASE Vlindetails refating o the sign of the denominator

dxt 1 of the objective {unction LFP probiem and obtained the following results

CASE L Jdx-fi=80 Fxelk
Theorem:2.3.1: Ifdx' >0 for all x belongs to X, then
1) EI has an optimal solution (v*. ¥} ared EN 15 inconsistent |

2} LFP has an optimal solution x® - y* 4% .
CASE II; dx: <0, forall ¥ belongs to X

Theovem 2.3.2; i x+ 7 <0 for all x belongs to X', then

1} EN hasan optimal selution (3*, ¥} and EP is inconsistent ;

2} LFP has an optimal solution x* = y*/¢*,

CASE NIT: x4 =0 forall x belongsto .\

'y
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Theorem 2.3.3: 3y + 4 = 0,V x = X | then -

13 Both EP and EN are inconsistent,
2) LEI problem is undefined.

In this case the abjective function of LFP problem becomes undelined and thus the question of

salving a problem does not anse Z

CASE 1V: dx+ff =0 {orail x belongs to Y,

Theorem 2.3.4: Let 7 be a non-empty sub set of X such that dv+ f=0,¥xe P and

dr+ 0 Wre X -7
a) er+o>0¥xel , ihen

1} EPis unbounded and EN is inconsistent;

2) LFP is unbounded

Mex+a <0 ¥xes X, then

1) EP has a fimite optimal solution {v*, #*) and EN is inconsislent,

2} LEP problem has a linile optimal solution x* = y*/¢*

CASEV: dox+fs0 forall ¥ belongs to Y.

Theorem 2.3.5: Let £be a non-empty sub set of A such thal dx+ J=0,¥xeF and
det 0 ¥Vre X¥-F I j

-
1t



al ex+a <0, Vx e then

1} EN has an optitual solution (3*./%) and EP is nconsistent
2) LFP problem has an oplimal solution x* = p*/¢%,

by ex+a <0, ¥xe X, then

1 EN is unbounded and EP is inconsistent,

2} LEP problem 15 unbounded

CASEVI: o x1 fchanges sign over X,

Theorem 2.3.5: IF dr + S changes sign over X, then
1y Either EP or EN i5 unbounded and other has optimal solution;
2) LFP problem is unbounded.

The solution procedure for LFP problem applving Charnes & Cooper [1 962] technique can be

suimmarized in the lotlowing diagram

23



LEP

Solve EP or EN

¥

N 25 \
Unbounded salution ? ¥ X LFP is
r unbournded

NG

L 4

Solve the other
i ",;_ Y ey
Unbounded soiution ? . LFP is unbounded

Mo

¥

h J

h

If one of Ei* and EN has an
optimal solution and other 15
inconsistent, then LFP has an

optimal seluticn

If bath P and EN are
tnconsistent, then d x+p =0 v
xe=X and LEP 15 undelined over
X

e

If the sipn of the denominator ox + 15 known over X, the above discussion shows that one can

solve LFP problem by solving cither CP or EN But in reality, it is rather impossible to know the

sign of the denominator & x+ Jover X' Since LEP problem can be solved by solving at most two

lincar programs |-P & EMN. So for solving L.FP problem one must proceed in reverse order. If one

of the problems EN & EM has an optimal solution and other is inconsisient. then LFF problem

also has an optimal solution. If anyene of the two



Problems EP & EN is unbounded. and then LFP problem is also unbounded. Thus if the
probtein solved first is unbounded. one need not to solve (he other.

We now wish (o present Fortran compuler program of the method as follows:

Fortran Program for Charnes & Cooper [l %2] transformation technique.

T T TR P R T T Y S Y RIS TR YRS A AR E RS RS R SRR R L L T L L

PROGRAM FOR Charnes & Coopor TECHNIQUE

M WOMBELR OF CONSTRAINTES

N WUMBER CF VARTABLLES

ml MNUMEBER CF LESS THAN OR EQUAL TYPE CONSTRAINTS
m? HNUMBER OF GREATER THAN OR EQUEL TYPE CONSTRAINTS
m3 HIMEBER O EQUAL TYPE CCHSTRAIMNTS

ICASE 0O QPTIMAT SCTUTION IS FOURD

ICASE —1 THCOMSISTENT SOLUTICN 15 IMCUMND

ICASE 1 UNRBCQUNDED SCLUTION IS FCUND
A{i,FICOECEICIENT MATRIX OF EP.

* B{i,3)COEFFICIENT MATRIX OF NI*.

*hF ok EEE bkt d kbbb b b L bk L aFEAF A FETE AR bk AR

T S R T T

Ea i T T T - T B I D I O I

Farameter (M=3,MN=3!
Feal aiM+2, N41), BiM+2, N+1)
Integer np,mp,ml,n2,m3, icase, izrov (N}, iposv M}, x (N+1)
Cpen(l, f1le="Cl4,dak')
Open (2, file="C13,dat"}
Eead(l,*) ml,mz2,m3
mp=M+2
np=H+1

Fead{l,*) (falr,3),3=1,H+1;,i=1,M+2)
Read(l,*) (ib(i,79),3=1,H41),1i=1,M+2}

Cail simplxi{a,™, N, np,np,ml,n2,n3, icase, izrov, ipocsv}

Write(2,*) " The left hand wvariables are:"
Write(2,*) (ipocsvi(3),3=1,H)

CWrite(2,*) " The right hand variables are:"
Write(Z,*1" (izrowv[i),i=1,H)

Write(Z2,*] ™ The wvalue cf the jcasce™
write {2, %) Jcasc
if{icase.eqg.l) then

GO TO 3



EKDIF _
Write(Z2,88) ((ali,7),7=1,npl,1=1,m2)
g5 Format (ix,1(6x, f8.51)

Call simplxtb,M, ¥, np, np,mi,me,m3, icase, 1zrov, 1pcsv]

Writei(s,*) " The lcft hand variables are:™
Wrile(2,*) (ipcsv(]l),31=1,¥)
Write(2,*} " The right hand variables are:"

Wribte{2,*) {1zrowvi{i},i=1,N}

WrikefZ2,*) " The wvalue ol thea icasc:"
write{?,*) icasze

Write(2,78) ((b(i,3),3=1,0p),1=1,mp!

T8 Yormat (ix, 4 (éx,fc.5))
3 Slop
End

Subroutine simplxia,m, n,mp,np,nl,nd,n3d, icase, izrov, ipesv]
Integer icase.m,ml,m2,m3, o, n, np, izroving,
iposvim) , MMEX, NMIK
Beal almp,np!, EPS5
Parameter (MMAX=100, WMLX=I100, EBS=_0001}
Integer i, ip,is.k,khk,kp,nLl, L1 (HMBX}, L3 {(MMAX)
Ecal bmax,ql
Lf{m.ne.ml+m2+4m3} pause ‘bad inpul constraint counts in
simplox’
nll=n
do 11 k=1,r5

bl Ll1{k:=k
lzravik)=k
11 continue
do 12 i=1,m
iffafi+l, 1) . 1800 patise ‘bad input constraint counts in
simplex’
iposv (i)=n+i
1% cantinue

iF{m?+m3.eg.0}) go to 30
de 13 i=1,mZ

L3[Li=1
13 continue
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do 15 k=l,n+1

ql=0

do 14 j=ml+l,m

gi=gl+ali+l,
14 continue

afmts, ky=—gl
15 contilinue

14 call simpl{a,mp,op,0+l,L1, 0Ll 0, kp, bmax]
1fpmax.le.EPS.and.a{m12,1;.lae.- EPS5)then

igase=-1

return
clse 1f{bmax.le.EPS5.and.a{m+2,1}.1t.EP5)then
de 16 ip-=ml+mZ2+1,m

1f(iposvip) .eq.ip+n) then

call simplla,wp,ne, ip,bl,ntl, 1, kp, brnax)
if(hmax.gt.EP3) go to 1

andif
16 continue

o 18 i=mi1+1,ml4m?, 1
ifi{L3(i-ml}).eqg.l} then

do 17 k=t,n+l

afitl, ki==al(l+l,k;
17 continue

alse

erndif
13 continue

go Lo 30

endif

call simpZia.m,n.mp,op,ip, kpl
if {ip.eq.9) then

icase=-1
return
encli T

1 call simp3ia,mp,np,m+1,n, 10, kpl
1f{iposv{ipi.ge.ntml+m2+41) then

da 19 k=1,nLl
1Ll (k) .egq.hkp! go Lo 2

21



19 conkinge

2 nLl=nLl-1
da 21 1s=k,nLl
Lltis)=H1{iis+1)
21 continue

glsa
kh=iposv(1p)-ml-n
1f(kh.ge.l) then

if (L3 (kh).ne.0)then

L3 i kh) =0
atm+2, kptll=aim+2, kp+ii+l
do 22 1=1, m+Z
ati,kp+lj= -afi,kpt+l]
23 continae

cndif

endif

cndif -
is=irrovikp)
izrovikpi=iposvi{lip;}
iposvi{ipi=1s

o to 10

30 call simpl (a,mp, ap, 9, bl 0wl 0, kp, bmax)
ifibmax.le.EB3) bthen

1case=0
return
encii f

call simp2ia,m, o, onp, ng, ip, kpd
ifiip.eq.9) then

locaso=1
roefturi
endis

call simpdta,mp, np,m, o0, L, k)
is=rzrovikp)
izrov(kpl=1ipocsviip)
iposviipj=1is
go to 30
end

28
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C**itti***i**#}t**+****#***********ﬂ*******tkk*********i***

Subroultine =impi (a,m, np, e, LL, nLL, iahf, kp, bmax)
C Determines the pivoet column
C*******ttt***+*kik++#+**ki*ikt+++**k***t#********ii*******

Integer iabf, kp, mm, mp, L, np, LL {LE;

Teal bmax, airp,np!

Integer k

Real test

if{nbLL.le.0)thecn .

binax==0

etse

kp=LILi11]

brmax=a (mm+1, kp+1)
do 11 k=Z,nLL
if{iabf.eq.0}then

test=a{mmtl, I Lix)+1)-bmax

alse

tesk=absia(mm+l,LL [(k)+1))-abs (bmax)
andilf

ifi{tesk.gt.0tthen

bmax=a {mm+1, LL{k;+11}
kp=LL (k)
endif

il continue

endil
return
end

C+*+******k*#**#+*********Qk*i*im***********i*i********

Subroutine simp2{a,mn,nH, g, ng, 16, KR
o Determines pivot element
C**k**i**ii*ri**i*&k**kkktb*****++k*++****+****kk*tt#i*
Integer  ip, kp,m,.mp, 1, N0 -
Raal a{mp,np), EF3
Faramcter {EB5=.0001}

Inbteger i,k

Real g,q0,q9l,49p
ip=0
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12

13

do 11 i=1,m
iffa{i+l,kp+l! . 10.-EP5) go to l
continue

refurn
gl=-a{i+l,1)/a{i+l,kp+1]
1p=1i

do 13 1=ip+l, m

ifiali+l, kp+1) .1t . -EFS)then .
g=—afi+l,l) ali+l, kpt+tl}

ifig.lt.ql) Lhen

ip=1

ql=g

elseif (g.eq.gl) then

do 12 k=1,n
gp=-al{ip+l, k+1;/alip+l, kp+l}
gi=-a{1+l,k+]1}/a{i+l, kp+l;}
L1f{gl.ne.gplua to Z

continue
if(1qt.xt.gplip=i

endif
endif
conblinue
return
end

C*i—**t*i-i-**i********************Jr**i’*k*#**###***k*****

c
C

Subroutine simpl(a,mp,np,11,x1,ip, kpl
Matrix operations to exchange a left-hand and
right-handg variable

C****i*******kJ--I-.Jv:ir!-.k*'\ki’\k}'*k-ki-'wk*'ﬂ..'\l.1********************

Inbteger mwp,np,il, k1, ip, kp
Beal aimp,np)
Integer 11, kK
Eeal v

v=1./a{1ptl,kp+1}
da 12 ii=1, 11+]1
1£{1i-1.ne.ip)then

3n
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afil,kpsli=alii, kp+l) *v
da 11 kk=1,kl1+1
if{kk-1.ne.kp!then

alii,kki=alii,kk)-a(ip+l, kKk)*a (11, kp+d]

endiF
11 continue
endif
iz conbinue

do 13 Yk=1,kl+1
iflkk=1.ne.kpjaliptl,kki=-alip+l, kkl*v

13 cantinue
aiipt+l, kp+li=v

return
end

Now, we solve the following aumerical examples of by usiny the above program

Exampie 2.1
. ~24r -7
(LFP) Maximize 7= ———
Sry vy, +17
Subject to
—x +x, =1
v, -r. =1
X +tx, =2
x, xz0

The equivalent linear program {ELPs) of the above LFP problem is obtained by setting
Y, = X

where 1=1,2 , 1 = 0 as [ollows,



{EP) Maximize 7, =—24v =7
Subject Lo
Yty —1s0
¥ —¥.—i =0
My =250
Spory,Ar=1
S =

(EN}) Maximize Z, =24y, + 7!
Subject 10

- ¥ t+y,—{=0
g "'.]":.r_‘r <0
¥ Ay -0
Sy, +)y.+r=—1

Via Vo =0

Now, applying the above program to solve EP & EN, we have abtained the following data:

For EI:

The lel hand variables arc (basic variabic)

2 3 6 3
The right hand variables are (non-basic variable):
4 | ¥

The value of the icase 0 (Optimal solution is found)

-3.50000100 -3.50000100 -9.99999700 350000100
50000010 - 50000000 -3 00000000 - 50000010
100006000 00000007 -6 00000000 -1 000G000N
50000010 1.50000000  -2.00000000  -500600010
S0GO0010 50000010 -2.00000006 - 30000010
00000000 .0Q000060 00000000 -1.00000000

12



For EN: .
The lefi hand vaniables are
4 5 6 7
The right hand variables are
I Z 3
The valuc of the icase; -1 (Inconsistent solution s found)

00000000 24.00000000 00000000 00000000
00000000 1.00000000 -1 Q0000000 1 HOUR0NN0
00000000 -1.00000000  1.000006000 00000000
00000000 -1.00000000 -1.00000000 A00GN0000
1 Q0G00G00  5.06000000 | 00000000 1.000006G00
-1.00000000  -5.00000000 -1 00000000 ~1.00000000

The solution of the above Example 2.1 is’
yi=0,v1=035 1=0.5 and this unplies

x1=00 =10 with Zmax =-3.5

Example 2.2

{LFP) Maximize £ = oA
—x,—x. +|
Subject 1o
-5 +2x =
X, +3r. =1
X, x.z0

Similarly, applving the above program, we have obtlained the following data

For EP:

The left hand vanables (kasic vanable) are’
4 2 3

The right hand variables (non-basic variable) arc:
! 5 6

The value of the wase | (unbounded solution)

For EP.
Since EP s unhounded, we need nol 1o sofve EN.

Therefore, the solution of the above Example 2.2 is unbounded
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CHAPTER -3
BITRAN & NOVAES METHOD

In this chapter, we discuss briefly the method developed by Bitran & Novaes [1 9?2] for solving
LFP problem defined by .

(LFP) Muxrmize F{x)= rta (3.1)
de+ [

Subject to Ax=0b (3.2)

20 (3.3)

wherex, ¢c.d eR";beR™ ;& [} R 1 A is an mxn matrix , and ueneralize computer
program (FORTRAN} of the method

Assuming the constraint set non —empty and bounded and the denontinator of the
objective function of LT'P problen is positive for all feasible solutions, Bitran & Novaes [19?2]

method with validity of their results with an ilustrative example is presented next section

Bitran & Novaes Method

Bitran & Novaes [I 972]c011sidercd LFP problem defined by (3 1) to 3.3} assuming the
positivity of the denominator of the objeclive sunction

They developed the method that can be stated as follows

14
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Step 1 : First they introduced a new objective function as follows:
Meenmize L={».x}

Sulycct to Ax=h

In which v= ¢ =[e.d) /{chd) |/

And hence they solved the LPP problem applying simplex method which yields a sub optimal

solulion x' .

Step 11 ¢ Again , they introduced another new linear objective function £ as follows:

(LP) Maximize L={]e - F(<'}d 15 (3.4)

Subject to the same set of constraints and hence then solve as belore. This lcads to  another

new sub optimal leasible solution x''

Step H1 2 Compare X' with <! ;if x'=x' ', then x* is the gobal optimal solution , otherwise
o to step 11, making x'= x*"! and repeating the process until the vector x' remains unchanged.

Next, they discussed they validity of the methad as lollows:
Validity of the Method

Property 3.1: {u~ 1 J+l{c—F+d )5 =0
represents a family of hyperplancs of order n that have a common subset ol order

n-1.

Properiy 3.2 : The hyperplane & +<c,x} =0 contains § the sub sot of order n-1 common

to all hyperplaners that satisfy the relation defined by (3.1)t0(3.2).

Property 3. 3 : The hyperplane £ +{¢/,x} =0 contains S the sub set of order n-1 common

to atl liyperpianes that satisfy the relation defined by (3.1) to (3 2}
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Property 3.4 : The hyperplane £+ {d, x) = 0 does not intercept the positive orthant.

Property 3.5 : Ifxyis a point that belongs to a particular hyperplane of the family given by
(3.1} and such that -+, x) = 0, then the gradient of F(xq) 13 orthowonal to this hyperplane at

point xg._

Property 3.6: Since for all feasible solutions, the relation x = 0 must always hold ,it has already

heen shown in property- 4 thal [,d? +id, X} ] >0 therefore the gradient {W"L has the same sign

as vector [c - F{x, ]']

Property 3,7; Vector [c -Fx, }] has the same directtons as (V{7 _ tor any point x such that

Fi{x}=I"{xy) .

Property 3.8 ; Forany x z Oand x, 2 0 necessary and sufTicient condition for having
F(x)=Fixgy) is given by Z > 0, where
Z=le-Fix,)8]= e - 1(x )y d]. v (3.5)

The selution obtained with the method presented in this section is optimal,
One gets a solution when, in Step 11, the simplex lcads to a sub optimat point tdentical to the

initial one x',
‘The objective function for the simplex in Step {1 is

Max (o~ 1(x )], v (3.6)

with the same set of constraints as in Step |
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Suppose now there is a point X such that (s y=F(x"). If this is the case, then Property 3.8
yields .
7=l - 1Bl e - Fled oo (37)

such that Z >0,

On the other hand, relations {3.1) 0 (3.3} yields

e - 26V Bl+ ([ - Fia st x y =0 . (3.8)
Subtracting {38} from (3 7), one gels,
Mo~ Foeyd] oy = e - riew] o} (3.9)

But, il rejation (3 9) holds, one can see by looking at the objective function (3.6} that x"'is a
better feasible solution than x' 1f this had been happened, one would go back to

Step L1 again until the convergence is attained

Convergence

The simplex used in Step 1! guarantees that the sotution 1s a vertex of the convex  set, Further,
Property 3 6 also guarantees that, whenever in Step L1 the process gocs from a vertex Xtoa
vertex x| . one always has F(x''') > F(x'). This happens because the gradient of (¥F)x has
same sign as the objective [unction wiven by (3.4). Since we maximize (3 4) , the process moves
along in the dircction of the gradient . This means that the feasible solutions arc always upgraded

as long as one applics Step il

On the other hand, the number of verlexcs is finite, which means that one reached the optimal
solution (point) within a {inite number of sieps. Here we develop the computer progran
(FORTRAN) of Bitran &Novaes [1972] method is as follows,
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Fortran Program for Bitran &Novaes [IG?E] method.

P SRR R g gnp e e P P T P LI P AT I S LT

# PROGRAM FOR BITRAN & NOVAES METHOD

M NUMBER ©CF CONSTRAINTS

N NIMDBER CF VARIAELLS

ml NUMBER QF LESS THAN OR EQUAL TYPE CONSTRAINTS
mZ2 NUMBER OF GRZATER THAN OR EQUAL TYPE CONSTRAINTS
m3 NUMBEER OF DQUAI TYPE CCONSTEAINTS

IZASE 0 QPTIMAL SOLUTION IS5 #OUND

ICASE -1 INCONSLSTENT SOLUTION 15 FCOUND

ICASE i "RWBOTWDEL SOLUTION IS FOUND
AL, ]I COEFFTCIENT MATEIX

Bti, jyCOEFFICIENT MATRIX AFTER AN ITERATION
C{N+1} WUMERATOL CF TEE OBJECTIVE FUNCTION
DIiN41l} DENOMTNATGOR OF THE CBJECTIVE FUNCTION

£ 4 % o+ F o+ & A 4 *

s RN vErEsRt RaN N NS e!

*

C+ o I R A TP R O PRI T2 T B SRS R T S A A I A R AR R R R R R R R

Paramcter (M=3,H=2, Lol=.0001}
Real ga M+2,N+1) ,bBi{M+2, HN+1), ciH+1),d{N+1)
T, x (H+M+2), 21, z2, suml, sum?2, sumd, sumd, sumi3, sumd4
Integer np,mp,ml,m2, w3, icase, izrosv(N), 1posv (M)
Open(i,fiie="'0lz.cat™)
Cpen (2, file="bl17.dat’)
Readil,*) ml,mZ,m3
Read({l,*] al,aZ
Readil,*} (c{l],1=2,M+i)]
Bead{l,*} {d{j},J=2,N+1]
suml=._.1{
samZ=.1f
Do 47 1=2,HN+1
suml=suml4c{i) *d{1}
47 sumZ=sumZ+3 {1} *+2
T==wmnl/sumsz
aail,ly=0.0
Do 22 1=Z,HN11

22 aaf{l,Ly=ci{1y-T*d{i
mp=M1 2
np=H+1
Reacdii,*) ((aali,]!,7=1,H+11,1=2,M+1}
Wrike(2,23) flaali,3i1,3=1,n111,1i=1,m+1}
33 Format (1x, 14 (6%, F8.5)] '

©all simplxi{za,™M,N,anp,np,ml,m2,m3, lcase, izrov, tposv)}
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471

43

21

o1

32

37

ol

7l

46

Write{*,#*) " The lell hand variables are;"
Write(*,*) (iposv{jl,i=1,M]
Write{*,*) "™ The righl hand wvariables are:"
Write(*,*} ililzrovii),i=1,®)
Write(*,*! ™ The wvalue of the icase:™
writel{*,*] 1case
Write(*,78) ({aail,]),1=r,nn), i=1,mp)
Format (1x,3(6x, [8.5))

Do 21 j=1,M™
X{iposvig)l=aa(j+l, L)
Do 41 k=1,
¥ilzrovik) =010

Do 43 i=2,N+1
sum3=sum3+c (L) *=(0-1]
sumd=sumd1d{1) *x{i=-1}
zl=(sum341al)/ {sumd+a2}
BLil,1y=0.0
Do 51 k=N+1,2,-1
Bil, ky=cik}-{(z1*d{k}}
Do 32 1=2,Mt1l
o bi{i,l}=aai{i,l]
Continue
Do 37 1i=2,Ma1
Do 3¢ §=2,HN+1
bhia,N+3-Ji=aali,]]

Continue
call simplxib,M,HN,mp,np,nl, n, n3, icase, izrov, 1posv)
Write(*,*] " The left hand wvariablies are:"
Write(*, %) (ipocsvia),3=1,M)

Wraite{*,*) " The right hand wvariables arc:"

Writef*,*y {izroviil,i1=1,H}
Do 61 1i=1,™
Aliposviili=k{i4l, 1}
Do 71 5-1,N
x{izrovi{i)=0.0

Do A6 L=2,N4+]

sumId=sunIdici{il+x{i=-11
sumdd=sumdd+d {1t *=x{i-1]
22={sumi3i3+al}/ (sumdd+a?)

Writei{Z,*) 22 ,z21

34
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w3=abs(z1-22)

Ifiz3.gt.tollithen

zl=z2

Do 34 i=2,M+1

Do 34 71=1,NM+]

aali,|1=b{i, 1)

34 Continue

go to 21

endl f

Writei2,88) ((bi{i,]),]1=1,no),1i=1,mp]
g3 Format (1x, 3i6x,f8,5))

stop
End

Subroutine simplxi{a,m,n,np,npo,mt,mn2,m3, icase, izrov, 1pasv)
Integer icase,m,ml,m?,m3,mD,n,np,anrovin, iposy (m)
MMEX , NMAX
Real aimp,nupl. EPS
Parameter [(MMRX=3i00G, WNMIX=100G, EPS=.0001}
Inteqer 1,ip,a3,k,kh, kp,nT1, L1 (NMAK), L3 (MMAX)
Feal bmax, gl
ifim.ne.mi+m2+m3) paase ‘bad input constraint
counts in simplex’
nbLi=n
de 11 k=il.,n

Li(k!=k
jorovik)=k
i1 conbinue
de 12 1i=1,m
iftad{i+l, 1) .lt.0)pause 'bad input comstraint
counts in simplex’
iposvii)=n+i
1z centinue

1f{m2+m3.eg.0) go to 30
do 13 i=1,m2

L3i{1;=1
13 contimae

do 15 k=1,n+1

ql=0

Ao 14 i=ml+l,m
ql=gl+aii+l, K}




i4

10

16

1B

19

41

conbina

gilm+z2, Ki=—rl
Continie

call =igmlla,mp,np,m+l,Ll, nli, 0, kp, bmax;
ifibmax.le.BPS.and.aln+t2, 1) .1e.- EPS) then

icanse=-1
return
clse ifi{bmax.lc.EPS.and.a{m+Z,1;.1C.EPS)then
der 16 ip=ml+mZ+1,m

iflipepsv (i) .eq, ip+s) then

call simpila,wp,np,ip,It,nki, 1, ko, bmax]

1f (bmax.gt.EPS) go to i

E[‘ldif
continue

do 18 i=ml+l,ml+mZ,1
ifil2(i-mt) .eq.1) then

do 17 k=1,n+1

afirl, k,=-ali+l, ki
continue

elso

endit
continue

go te 30

endif

call simp2ia,nm, n,mo,ne, iR, ko)
if (ip.eq.0) then

icase=-1
raeturn
endil £

call simp3{a,np,np,m+l,n, ip, kp)
ifliposviip) .ge.ndtml+mZ2+1) Lhen

do 1% k=1,nLl
if{L1{k;.eq.kpr go to 2
continue

nLl=nLl~-1
do 21 is=sk, nll



Li{1s)=L1i{is+1)
21 continue

elge
rh=iposviip)-ml-n
ifikh.ge.l) then

AE L3 (kh) .ne.0) then

L3 {kh}=0
aim+z, kptli=a(mi2, kp+ll+l
do 22 1=1, m+Z
alil,kp+tli= —aiil, kptl]
22 continueg

crndil f

endif

cndlf

is=izrovikp]
izrovikpl=iposviip)
ipoav{ipl=is

go bLa 10

an call simpl‘a,mp,np, 0, L1, nLl, 9, kp, bmax)
il (wmax.le EFE) then

icase=0
return
ondl £

call simp2{a,m,n, g, np, ip, Kp)
if{ip.eg.0! then

icage=1
return
andif

call simp3{a,mp,np,mn,n, 1p, ke)
1s5=17rovikp)

irrovixp) siposv {ip;
ipoaviipl=is

g0 Lo 30

el

42



ct********ﬂ*********ﬂ*******AJ*+*+****kk*********k**t******

C

Suproutine simpl (2, mp,ng,mm, 1L, nLL, iabl, kp,bmax}
Determines the pivet column

C*&*tktt++*+}k**********##**i*i****k?*#t+++*k*iktt*********

11

Integer ilabl, kp,mm,mp, nLL, np, LLing}
Eaeal bmax, &0, DR

Integor ®

Real tesnl

if(nLL.Je.0) then

bmax=0

else

kp=LL{1}

bmax=a (mmil, kp+1}
ao 11 k=Z,nlLL
if{iabf.eq.C)then

tesrt=a{mm+1,LL(k1+1] -bmax

else
test=abs{aimm+1l,LL{k:+1}}-abs {bmax)
endl £

if({test.gl.0) then

bmarx=a (mm+l,LL{kKI+1]
kp=LL{k}

endif

continue

end: f
return
enqd -

Ckii*i*#****}*#***kkk*******}k+#+kk+***++k***i*k+******

C

Subroutine simplia, m, n, oo, np, 1p, kpl
Determines pivel slement

(v-\b-i.*-k******ikl*kikkkt+*+****++i#ikk*kt*+++**!****k****+

Integer ip,Xp,m,mp,n,nc
Feal alwo,npl, LFS3
Parameter (KEsS=.0001)

Integer 1,k
Real ¢,g0,q1,9p
ip=0

43
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12

13

do 11 i=1,m
if{a{i+l,kpt+l}.1t.-EP5) go to 1
continue

return

gl=-a{i+l,1}/af{i+l, kp+l}
ip=i
de 13 i=ip+l,m

iflali+l, kp+l).1t.-EPS) then
g=-a(i+1,1)/ali+l, kp+l]

if{g.1t.ql)then

ip=1i

ql=q

elseif{g.eq.qglt then
do 12 k=1,n

gp=-af{iptl,k+l}/alip+l, kptl}
gO==a{i+l,k+1}i/a(i+1,kp+1}
if{g0.ne.gplgo to 27

conkinue
if{q0.1lt.gp)ip~i
endif
endil

continua

return
end

C***i*4:Jr+4r4rJrJrJr**JrJrJr**errJrJr*wkJr.Jr**********************tt*

e
C

Subroutine simp3i{a,mp,hp, 11, k], ip, kp)
Matrix operations to exchangce a left-hand and
right-hand variable

C**-k-k-k-k-k-ki:-k-k-ktt*t*t*-kiJr-k*-lr*-k-k-k-_k-k-k*-k-k*-k************* L

Integer mp,np,il,kl,1p, kp
Beal aimp,np)
Integer 1i,kk
Eeal w

44
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v=1./a{ipi1l, kp+l}
do 12 ii=1, il+1
ifiii~l.ne.ip)then

alii, kp+tli=aiii,kpt+tl) *v
do 11 kk=1,ki+1
if{kk-1.ne.kp)then

a{ii,kki=a{1i, kky~al{iptl, kk}*a{ii, kp+1]

endif
11 continue
endl®
12 continue

do 13 kk=1,ki+l
if(kk-1.ne.kplaiip+i, kk)l=-alip+l,kk}*v

13 continug

aliptl, kptl)=v
return
end

Now, applying the above program to solve the Production Problem formed in section 1.5 of
Chapter-1, we obtain the following data:

The left hand variables arc {basic variables)
2 14 8 b 15 20 18
The right hand variables are (Non-basic vartables):

17 4 3 13 =
6 ki 11 12 13
16 3 1.0

The value af the icase:

0
129663000000 -1.93697 43305.37000
-1762.,65800 -5.74450 2263.61000
Bod, 01930 1066.10300 -1,84668
1283.69000 ©13192.63000 27149.5970C
555.30640 -1256.62300



G56070.90000
-§51.32430
521.28380
732,.52560
1332.48400

32.46644
-1.45907
~,17283
-.01876
. 10885

.14448
-.01233
-.40453
-.107%8
-.12525

1.96701
42193
-.44076
~. 30513
-.4%660

9.4:2207
04951
01811
~.26806
-. 48223

T8783.53000
174%.06500
T2.829238
~-106.23910
-733.84600

25216.72000
-318.56700
-606,79270
-161.976490
-693.87820

S028.T7E100
-578.67430
12.6790E8

-, 96538

-2.90308
584.46430

6698, 80300 -~

-614.04010

00020

.00088
34465
.4518%8
LT23680

Loooos
LOoo4E

L4647
31357
L2EB29

LO0o03
00031

L4808
LAd884
.08127

.00031

LO0008
25912
. 25430
07316

144,
-61/3.
8948,

L2023
L2627

Bh4d20
11600
539700

.116861
L 11307

-6397.
=770,
-402.

16960
36220
43410

L4890
S05774

-31.

g G QD

21957 .20000
L175.84200
-. 02398
1381.76200

—-.42688
-.73864
L00010
L12211

-.26217
-.39212
-.00002
-.07551

~, 355853

.14128
-.00015
-.34983

L4868
—. 00359
L0006
-.69637

-21698.02000
38.64083
-.08704

-747.10530

-93.25553
~-295.67360

-. 02426
-613.86040

-165.92260
- €15,80800
.G4529
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-464.310770) 24467630 -20.79352
95.23967 117.87700

The maximum value is:

1.87636

Hence solving the problem, we have obtained the following results.

To cbtain maximum return on investmeni,
the farmer has to plant rice in 9 422207 hectors of land , wheat in 32.46644 hectors of land,

tomatocs in 7.9670) hectors of land, and the maximum return on investment is 197636,
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CHAPTER- 4
SWARUP'S METHODS

In this chapter, we discuss briefly the methods devecloped by Swarup [1964 &1965) and we
develop compuler program (FORTRAN) of these methods, We also suguest a modified approach

of Swarup[1964] primal simpiex type method for selving LFP problem defined as:

4.
(L¥P) Mexinnze F(x) = tda {4.1)
de+
Subiect W0
Axr=~F (42)
rz 4.3

Wherex,c,d eR" . beR" ;a & f cR; Aisan mxn matrix
We assume the constraint set non-empty and bounded and the denominator of objective function

of LFP problem is positive lor all feasible solutions.

4.1, Swarup’s Primal simplex type method

IT the constraint sct in the canonical form one can proceed to the initial simplex type table for
solving the LTP problem,
Let x;; be the initial basic feasible solulion such that

Bxy=b

or, xu=D" b
where B=(bpba.... .bw)

xp = O
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Further let lmex, e
and
=dyx,+ f
where ¢, and o, are the vestors having their componcits as the coeflicients associated with the

basic variables in the numerator and the denominater of the objective function respectively

-l
Then the value of the objective function for this inilial basic feasible solation is £ = —

[+ ]

In addition, one can assume that for this basic solution

_ -l
a, =f a,

+I—-
D, =g
o

z, =d; a,

Are known for every column «, ol A not in B.

One can now wish (o examine the possibility of finding another basic sclution with improved

|
value of F = i,;, he shail confine his attention to those basic feasible solutions in which only

_
r

one column of B is changed Let x;, be the new such basic feasible solution and the new value of

ihe objective function is

Then
x, =HB"h
where B ={8".b, .. .5)
i & anew non singular matrix B* obtained from B by removing &, and replacing it by

a,belongs to A notin B The column of the new matrix B¥ are given by

b'=b‘ , (i2¥)



He obtained values of the new basic variables in terms of the original ones and the @, are

+

Xy =Xp, —rHr[ﬂua’aH] AEY

X ={x, fa, =0 (sar)
where a, = ia b

|
re|

2]

= ‘E‘icﬂlr;,l +a
e
= gcﬁ‘ NEPREE S ,f'lﬁl;‘.)"‘cu;(rsy ,faﬂ}ﬂ
Again = %cmxm —(%cmau )Xy, fa, vex, a,, (rey =c)
=z +lc, -2y r, fa, = +00e, - 2)
Similarly. Pz, -1)
Where =} & z7 refer ta the original basic feasible solution.

The value of the objective function will be improved if
Fro g
or, f0(cn Ol 00z

or, f='+ 8 (e 1] L')+H(d;—zf)j- Pl 1

or 2 Oferz ) ]- 2 @ drz )] - 0

['& 2" are positive , since Lhe denominator of the objective finction is positive for ail feasible

soluiton |
or, Zfeqz’ )2 {drs )0
[0 being positive in the non- degenerale case ; if 0=0, F=F]

Let A,= Zfepz )2 td~z)

Mow | -
A =01f

34



51

Case I : (d-2")>0
(-2 f(dyzY) = 242

Case il : (dz») <0

(-7 Mdz) < 22

Casc H1: (d4-z") =0

'CJ-'ZJI :} D

Swarup|i 964} deduced that given a basic feasible solution xg= B'b . if for any column ain A
but not in B, A, > ¢ holds and if at lcast one a, > 0 (i=1,2,....,m}, then il is possible to find a

new basic feasible solution by replacing one of the column in B by a, and new value ol the

objective function satislies

F =y
One can show that for any a, in A not in B af least one a,; 2 0. If possible, let ail ajj
<0(i=12,...m)
The basic feasible solution is given by
" 4.4
Yxp b =h (44
1=1
Where Y x,, is a component of basic vector. Now adding and subtracting 07a;
1=l
{El*being any scalar } ta {4 3}, one obtains .
Yx, b -0 a +0a =k (“3)
=1
Since,
{4.6)

-6y, = —H'Ea”b,

Then
i(-’fn. —E"'a” 1 +i_’:"'4f1J =bh
r=h

wiere 8 >0



Therefore xp - & tcnj =M
Since by assumption , g;=0 (i=1,2, . .m)

Theretore, {xp, -E‘i'aﬂ, ....... s Xlim - Eﬁ':a.mJ yand 8" is a feasible solution for all ® "> 0 .
Thus the feasible set X is unbounded contrary to ones hypothesis of regularity. So for basic
feasible solulion 1 Lhere is vector a, nat in basis having
A, >0 (4.7)
Then there exists another basic feasible solution with improved value of the objective function
such that
E'> ¥

For non-degenerate casc

F>F
Thus gne ¢an move {rom one hasis to another changing one vector at a time so long as there is
some a, oot in basis with condition {4.7} and a. each step F is improved.
This process can nol confinue infinitely, since there is only & fintte number of basis and in non-

degenerate case, no basis can cver be repeated, since F 15 increased at every step and the same

32

basis can not yields two dillerent values of F While at the same time the maximum value of the

objective {unction oceurs at of the basic [zasible solution.

The process will terminate only one-way, that is, when all 4, <0 {j=1.2...n) for the column g; of

A not in the basts,
Mow for those colurmms of A which are in the basis

. = . Ay
£ =ecpa=cB =B =g

and
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2 =dpa;= dnB a=dyB'b,=d,
So, & = 26,7, 1+2'(d-2) = 0
Le,d=10
Hence the summaries of the results are as loliows:

Given a basic [casible solution

xz=B"b
with
g Ce¥p T
dyky -+ f

to the problem (4 1) ~(4.3) such that all 4 < { for every column a;in A . Then F * s the

maximum valuc of I and the corresponding basic feasiblc solution s an optimal solution.

Iterative procedure of Swarup’s primal simplex type method
For Swarup [1 964] primal simplex type algorithm are as lollows;

Step I: First one has to converl (he LFP problem to its standard form by inserling slack and

surplus variables to the constraints. If the constraint sct is in a canomical form, go to  Step IT. If

the constraint set is not in a canonical form, go to Step TV,

Step 15 : Now one has to compute z', 2%, relative cost factor ¢i-z;', relative prolit [actor

di-z" and the ratio A,
where z'= cpNp o
I
Z=dgxy + P

1
Zj =0 :’lj



L

ij =d 04
and
A =2{62,") - 207

Step 111: One has 1o choose max A, > o for covering optimality condition and to improve the
basic solution. The minimum ratio test is to be applied to determine the new basic variable to

enter the basic and the departing variable to leave the basis.

Step 1V: If all A; < 0 one has reached io the optimal selution, other wise go to previous step.

Step V: 1 the constraint set 1s not in a canenical form, introduce artificial variables wherever

it required and form an artificial linear objective function, In phase I, solve the problem as a LP.
Ifit is feasible, go to phase I1 of the LFP problem and selve LFP problem using Step I to Step
V.

Here we develop the computer program (FORTRAN) of the above method is as follows:

Fortran Program for Swarup’s primal simpiex type method.

T T T L T e e e PP P PR PP R ITE TE LTS RIS TR AT S L

* PROGREM FOR SWARUP SIMPLEX TYPE METHOD

* M HUMBEER OF CONSTRAINTS

N NUMBER OF VARIABLES

ml NUMBEER OF LESS THAN OR EQUAL TYFEZ CONSTRAINTS
m2 HNUMBER OF GREATER THAN OR EQUAL TYPE CONSTRAINTS
m3 NUMBER OF £QUAL TYFE CONSTRAINTS

ICASE 0 QPTIMAL SOLUTION IS FOUND

ICASE -1 THOQOMSISTEWNT SOLUTION IS FOUND

ICASE 1 UNBOUWDED SOLUTION IS FOUND

A{i, jICOEFFICIENT MATRIX WITH NUMERATQR AND
DEHOMINATOR OF THE OBJECTIVE FUMCTICON

R A R L T R Y AR R R R R R R AR R

*

+ + o= & o+ o+ 2

O oo 00O sn o

Parameter (M=7,N=13]

Real a(M+3,N+1)]

Integer np,mp,ml,m2,m3, icase, izvoviN], iposv (M)
Open{l,tile='sf.dat'}

Opani2, filc="s59.dat"'} -
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Read{l,*) ml,mZ, m3
mp=M+3
np=H+1

Read (1, *) [{a{i,j},j=l,np},i=l,M+2}

Call simpl=x{a,M,N,np, np,ml,n, 3, icase, izrov, ipasv)

Write{Z,*) " The left hand wvariables are:"
Writei2,*) [iposvi{ji,3i=1,M}

Write(Z2,*) " The right hand variables arz:"
Write[Z2,*) (izrov{i),i=1,H)

Write(2;*) " The value of the icase:"
write(Z,*) icase

Write{2,88){{a{1,3),j=1,N+1},1=1,M+2)
BB Format (3=, 14{5x,tz0.10}}
Write{Z,*) "™ The maximum wvalue is:
Write(2,33) a{l,1)/az, 1)
33 Format (2x, £20.10)
Stop
End

subroutine simplx{a,m.n,mnp,np,ml,m2,m3, icase, izrov, iposv)
Integer 1case,m,ml,m2,m3,np,n,np, izrovin},iposvim)
MMAN , NMAX
Feal afmp,np), EPS
Parameter (MMAX=100, WMAX=100, EPF5=.0001}
Integer i,ip,3is, %, kh, ko, nll, LY (HHMAX) , L3 (MMAEX)
Feal bmax,qgl
if im.ne.ml+m2+m3) pause ‘bad inpuf ceonstraint ceounts in
simplex’

nil=n
do 11 k=1,n -

Ll1i{ki=k
lzravi{kl=k
11 continne
do 12 i=1,m
ifiafi42, 1} .1t.0} pause ‘bad input ceonstraint counts in
simplex’
iposv(il=n+i
12 continue
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30 call simplia,mp,np, 0,L1,nLl,0, kp, kmax;
if (bmax.le.EP5) then

icase={
refurn
endif

call sinpZila,m,n,mp,np, ip, kpl
if{ip.eq.0) then

icase=1
refturn
endif

call simp3ia,mp,np,m,n,ip, kp}
is=izrovikp)
izrovikpl=iposviip}
iposvi{ipl=1s

go ta 30

znd

,a******k'kir'k'ktt******Jr'k-k-k-k-ki:**JrJrJr***k***tt**********kii*i***
-

subroutine simpl{a,mp,np,mm, LL,nLL, iabl,kp,bmax]

C Detocrmines the pivob row
C*****ii’ii‘i—*i***k*****tt*****JrJr-Jr'k*'k'k***#*******************

Integer iabf, kp,mm,mp,nLL, ne, LL{DE)
Real omax, al(mp,np!

Integer k

Feal tast

ifinLL.le.0) then

biax=0

alsc

kp=LL{1}

bmax= {a{Z,l}*a(mm+l,kp+l))-(ail, 1] *a{mn+Z, kp+l))
do 11 k=2,nLL

if{iakbf.eq.0}then

test=lai?, 1) *a(mm+l, LL{X +1}-a{l,ly*a{imm+2, LL (k)1 +1}}
—“hmax
else
test=abs{a{?,1t*a(mm+l,LL(kI+}1-a(l, 1) *a(mm+2,LL{k}+1))
-abs (bmax}

andifl

-
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ifi{test.gt. 0} then

bmax= [(a{2,Ll)*a{mm+l, LL{k}+1;}
- ti,l)*a(mm+2, LL{k)+1))
kp=LL (k]
endif
11 continue

endif
return
end

C******i****i*k************* I EEEEEEE R EERE R R EEEEEIE LSS

Subroutine simp2{a,m,n,mg,np.ip, kp)
C Determines pivot element
C**-k-k*-kt*t*****Jr-k-k***-i*******k**i—*i—***********ti-*******
Integer ip,kp,m, g0, nE
Real a(mp,npl, LES
Parameter (EPS=.0001)

Integer i,k

Real q,q0,ql,qp
ip=0

do 11 i=1,m
iftati+v2, kptl] .1t.-EP3) go to i
11 cantinue

return

1 gl=-ali+Z, 1)/ ali+i, kp+l)
Lp=i
do 13 i=ip+l,m

iffali+Z, kp+11 .10, -EP3) then
ge=—af(i+2,1)/ali+t2, kp+l)

if{g.lt.qgl) then

ip=i

al=q

elsecifig.eq.ql) then

do 12 k=1,n
gp=-af{ip+2,ktl)/alipt2, kptl)
gi=-a{i+2, k+l]l/ali+z, kp+l)
if{gf.ne.gpigo to 2
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12 continue

2 ifi{g0.lt.gpiip=1i
endif
endlif

13 continue

refturn
end

c*****************k**************k***************k*tt*
Ssubroutine simp3{a,mp,np,il,X1l,1ip, kpi

C Matrix cperations to exchange a left-hand and

c right-hand variable

Ctt***##*****'k-k-k-kt*****4:4:'kk-k-k*t-k-k*.-***k*k**************

Integer mp,.np,il.kl.ip,kp
Real a{mp,ng

Integer ii,kk

Real ¥

v=1l./alip1 2, kpt1}

do 55 ii=1, 11+2
ifi{ii~-1l.ne.ipt1i)then

aflil,kp+li=alii,kpti)*v
do 11 kk=1,kl1+1
ifi{kk~1.ne.kplthen

alii,kki=a{ii,kk)-a{1p+2,kk)*afii, kp+1)

endif

11 continue
endif

55 continue

do 13 kk=1,ki+1
iftkk=1.ne.kpla({ipt+t2, kkl=-a(i1ptd, kk) *v

13 continue
af{ip+2,kp+l)=v

return
2nd




Now, applying the above program ta solve the Production Problen formed in section 1.5 of
Chapter-1, we obtain the following data:

The leit hand variables are (basic vanables).
2 14 8 | 18 15 20
The right hand variables arc {(Non-basic vaniables):

17 ' 4 3 19 5

iz 13

The value of the icase: U

1236630.00000 -1.83627 43305,37000
-1762,65800 ~5.74450 2263.61000
§94.91930 1066.103040 -1.84668
1283.62000 13152.60G00 27158.58700
855.30640 -1256.62300

B56070.90000 -. 96538 21957,200400
-831.82430 -2.90308 1175.84200
521.28380 584.46430 —.892299
Y32.52560 66598, 80300 1381.76200
1332.45400 —614,04010

32.46644 L0020 —.4264%8
-1.45907 —.0onee —-.73864
-.17283 —-.34465 LOGEILI0
-.018%6 -.4518¢8 L1221
10885 -. 72360

.14448 .0004a8 —.26217
-.01238 .00048 . ~,3991¢
—. 40453 -.46478 —-. 000Gz
-.10798 -.31357 -. 07591
-.12925 -.26829
T.96701 L0003 -.35953
.42193 LOG031 14129

-.4407& -.44%68 -, 00015
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-.30519 - . 48884 —. 34983
-, 49660 -. 08127

9.42207 -, 00031 04868
04951 o008 -.00354
01811 ' L25912 .0000s
~,a6806 .25430 -. 69637
-_ 48299 07316

5825.78100 .048949 -165,92260
-578,674920 05774 - 515.30900
12.687998 -31.,94%%0 .04523
-464.31670 244 87630 —20.,79352
65.23867 117.87700

TH783.55000 —-.20023 -216%8.02000
1748.06500 1.12627 38.64083
72.,82928 144,65420 -. 02704
-106.23%10 -6173.11600 =747.10830
-733.84600 88.39700

25216,72000 ' .1leal -93,25553
=318.56700 L7190 -528.67360
—-606,72270 -637 16860 —.0c428
-161.97640 -370.36220 -613.86040
-693.87820 —-402.43410

The maximum value is:

1.97636

Hence solving Lhe problemn, we have oblained the following resuits:

To obtain maximum return on investment,
the farmer has to plant rice in 9422207 hectors of land , wheat in 32,46644 hectors of land,

tomatoes in 7.926701 heciors of land, and the maximum return on investnicnt 15 1 97636,
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4.2, Swarup's dual simplex type method

In this section, we briefly prescnt the dual simplex type method of Swarup {l 965] assuming the

positivity of the denorminator of the abjective funcuon of LEP problem defined by {4.7) —{4.3}.

In section 4.1 Swarup{1964] showed that any basic feasible solution will be optimal if
Ay=fez')-2'd 27} j=12 .
The above observation presents Lhe lollowing interesting possibility, if one can start with some
basic but not feasible solution 10 a given LFP problem with all A; < 0 and remove from this basic
solution to another by changing ong vector at a time 1n such a way that he keeps all A; <0
provided no basic 1s to be repeated, an optimal solution to LFP problem will be obtained in a
linile number ol iterations Thal is, the fact that he maintains all  &; £ 0 at each iteration and
is not concerned about the feasibility of the basic solution that the dual simplex method should

be great  help in developing such a method.

Swarup [] 965] assumed that the given LFP problem with additional restrictions as follows:

Denominalor ol the objective (unction of LEFP problem is positive for all basic solutions into the
standard form for the application of simpiex method.
Now it

KH=A.] i =0
And

AsO =12, ... JL )
then he obtained an optimal solution to the LFP probiem . He studied the case where one or more
<0 (iel, [ is the set of subscripts tor basic variables).

The algorithm (or the change of basis in LFP problem is

Siep I: Vanahle Lo lease the basis sel is obtained as:
e = min Xy, _ {orall iel [x5<0|

Soin LEP | xp will be driven to zero That 18 | X, will teave the basis set

Stepll: Variable enter to the basis set 1s determined from
Mfag=min Apfa, , forallj |, {a, <0
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Then one obtains AvZ [xuddi-Z ¥Z tae] = min AYZ*{xp{d-Z YZ +ad}
j

Where the cocfficient of Z* in the denominater on the right is ncgative.
Then one assumes,
5, = anddi-ZYZ ey
Therefore, the variable xp, to enter the basis set in the LFP problem is determined {rom

."}.k.l"ak =min ﬂ\j.l"ﬁ,
]
By adopting this procedure, Swamp[l Qﬁilmairft'ain A, < 0 at each iteration
Moreover, this method for selving LFP problem. one first determines the vector to leave the
basis and then the vector to enter the basis This is reverse of what is done in simplex procedure
for solving LEP problem

Our computer program (FORTRAN) of the Swarup dual type method is as follow:

Foriran Program for Swarup [1965] dual simplex type method.

P P P T T TR L R R R R R AL S R A R LR L R A R L L L

PROGRAM FOR SWARUP DUARL SIMPLEX TYPE METHOD

M NUMEER OF CONSTRAINTS

N NUMBEL OF VARIABLES

ml NUMBER ©F LES5 THEN OR EQUARL TYPE CONSTRAINTS
m2 NUMBER QF GREATER TIIAWN CR EQUAL TYPFE CONSTEAINTS
m3 NUMBER OF EQUAL TYPR COM3TRAINTS

ICASE 0 OPTIMAL SOLUTION TS FQUND

ICASE -1 INCONSISTENT SQOLUTION IS FOUND

ICASE 1 UNDOUNDED SOLUTION IS FOUND
A{l,7)ICOEFFICIENT MATRIX WITH NUMERATOR AND
DENQOMINATCOR OF THE OBJECTIVE FUNCTION

C*t***************JrJr'k*-k-k***-.lr*:k-:l-Jr:#:Jr*‘.k**************t********

+F £ o+ & o+ o+ o % %

OO0 oaoandn

Farameter [(M=B,HN=13}

Feal a(M+%,H+1)

Integer np, mp, ml, mZ, m3, ilcase, izrov (N},iposvi{M)
Openil,file="s5s51.dat")

Cpen (2,file='ss2.dat’]

Fead {(1,*} ml,m2,m3

mp=M+h ;

np=N+1

Fead{l,*) {{afi,3),3=1,npl, =1,M+2}
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33

Call simplxi{a,M,N,mp,np,mi,m2,m3, icase,lzrov, iposv)

Writei(2,*} ™ The left hand wariablces are:”
Write(2,*) (iposvi(i),7=1,H] ,
Write(2,*} "™ The righi. hand wariables are:"
Write(z,*} tizrovii),i=1,H)

Write{2,*} "™ The walue of the icasc:"
Write(2,*} 1casc

Write(2,88) ((afi,]),1=1,N+1),1i=1,M+2}
Format {1x,7{5x, £20.10)]

Write{2,*} " The maximum value is: "
Write(2,33) a{l,1l}/a{2,1;
Format {3x, £20.10;

stop

end

Subroutine simplxi{a,m,n,ne,np,ml,mZ,m3, icase, izrov, iposv;

Integer icase,m,ml,m?,m3,mp,n,np,lzrovin}, ipesvim)

pbAR , WA
Real a{mp,np!, EPFS
Parameter (MMAX=100, NMRX=100, EPS=.00d1}
Integer i,I1p,is,k:kp,nlL], L1 (NMRX) , D11 {(MMMAX) , mL2
Feal bmin, bratio

if{m.ne.ml+m2+m3} paunse ‘bad input constraint counts in

77

11

iz

30

gimplex’
mL1=m
Do 77 i=1,m
Lll{i)= 1
Continue

nlLl=n
do 11 k=1,n

Ll1{k)=k

izroviky=k
continue

do 12 i=1,m

iposvill=n+i
continue

call simpl{a,wp,np,®,L11,mLl,0,ip, hmin)
iffbhmin.gt .EPF5) then
write(*,*|"]line &2"

a3



icase=0
return
cndif
wrile(*,*]"1line -66"
call simp2{a,m,0,L1,nlLl, mp, 0, 0,0, kp!

if{kp.eaq.0.0) then

icase=1
returti
endl £

call simp3{a,mpe,np,mn, n, ip, kp)

is=izroviip)
1LZTOv4{1p) =1posvikp)
iposvikpl=is

ge to 30

end

C*Jr*'k'k*'k'k'k'Jr*'k*ﬂr'\lr'Jr'ir'Jr'\k*'Jr'Jr'!r'Jr'.ﬂr'.irﬂr:‘r*'Jr*'.!lr'.ir'Jr****i‘**********t‘k*t******

Subroutine simpl (a3, mp,nop,mm, LL1,mLL, iabf, ip, bmin}

C Determines the pivat row
.C-*-t-t-t************-l-********i*i*i*i***************i*t*#*****i—

Integer iabkf,ip,mm,np,nLL, ng, LL1 {mg)
Real bmin, a{mp,np}

Integer k

Beal test

if{mLL.le. Q) then

bmin=0

glze
ip=LL1{]}

buin= afip+?,mm+1)
do 11 k=2,mLL
if{iabf.eqg.0} then

test=a (LL1{K}+2,mu+l) -bmin

else
test=abs{a(LL1 {K}+2, mm+1}}-abs (bmin;

endi £
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if{test.l1lt.l) then

bmin= a({LL1{K]+2,mm+1)
ip=LL1{k}
endif
11 continue
endif

return
end

C*****************i****************************‘********

Subroutine s;mpz{a,m,nn,LL,nLL,mp,iabfl,np,lp,kp]

C Determines pivalb element
[:***4:ir*ic-k-k-k+++****++++*++**+*****-’r*********************

Integer ip,¥p,m,np,np.on,LLinpd, nLL,dabfL, ik, ]
Real aimp,np),test
if{nLL.le.0)then

glse

de 11 i=1,nLL
alm+3,1)=al2,l)*ainn4l,i4ly-a{l,l)*a{nnrd, i+1)
aimtd, il={a{ipt+Z,li*ainnt2,i+1} /a2, 1)
+a{ip+2,141}
11 continue

D 3t 1i=1,nlLL
Ifjfaim+td,ii) . 2t.0.0)ge fo 1

31 cantinuc
return

1 gl=a{m+3, ii}/afm+4,ii}
kp=ii

do 100 ii=kpt+l, nLL
If{ai{m+d,11}.1t.0.0} then
g= afm+3, 1i}/af{m+d,ii]
if{g.eq.qgl)then
kp=i1
gql=qg
endif
cndi £

100 cantinue




refturn
endili
end

C***********i***i**********kJv:J:**k**k***ﬁ**************

Subroutine simp3(a,mp,np,il, ki, ip, kpl
C Matrix operaticns to exchange a Ieft-hand and
C right-hand wvariliable
C*****#***********tkk'ﬁ:'k'k'k'k'k'k'k*k*k*k**#*****i**********
Integqeyr mp.tp,il,kl,ip, kp
Eeal aimp,np] -
Integer ii,kk
Real
v=1l./alipt2, kptli
wWrite (*,*) v
de 55 ii=1, 1142
Lf{1i-l.ne.ip+l}Lhen

a{li,kp+li=a{ii, kp+li*v
do 11 kk=1,kl+1
1f{kk-1.nc.kpl then

alili,kki=afii, kki-a(ip+2,kk]*a(ii, kpt1)

endif
11 continue
endif
L3 continue

do 13 kKk—1,k1+1
if{kk-1l.ne.kpla{ip+2, kki=-a{ip+2, kk}*v

i3 coentinue
a{ipt2, kp+l)=v

refturn
end

Now, we consider a numerical example of Swarup dual type method and solve it by the above
program,
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Example 4.2.1

(LFP) Maximize 7= SitXt2
X, +2
Subject to
4x,—3x, =2
X £5
x=z2
X, x =20

Now, applying the above program, we have obtained the following data:

The Jelt hand variables are {basic variable):
i 5 2
The right hand variables are (non-basic variabley
4 3
The value of the icase' 0 {Optimal solution is found }

2 4000000000 3333334000 -.3333333000
40003000000 1.3333330000 3333333000
2000003600060 1.3333330000 -.3333333000
3 00006000000 -1 0000000000 0000000000
2,0000800000 1.0030000000 0000000000

The maximum value 13
- 5000000000

Thus applying Swarup dual type method, one can obtain the following results.
x=(2,2) and Zmax=10.5

4.3. The modified approach of Swarup's primal simplex type method

Tn this section, we sugpest a modification based on primal simplex type method, which extends
the scope of Swarup [I964] method discussed in section 4.1 of this chapter. Assuming the
positivity of the denominator ol the objective funclion of LFP problem defined by



cr e

dr+ f (4 8)

(LEP) Mavimize t{x)=

Subject to
Ar=254 (4.9
x20 (4.10)
Where x, ¢, d cR ™ beR™ a & B eR; A is an mxn matrix.

Swarup[l 964] first developed a method for solving LFP problem. However, this method can be
applicd only when the system Ax = b is tn a canonical form, that is, all constraints are less than
ar equal form (= ). The problem that is not in canonical form, one can solve by using dual
simplex type method developed by Swztrup[t 965]. Likewise, LP problem, dual simplex type
method also cannot be applied in the case where the dual feasible basis is not obtained. Let us
constder the following numcrical example

Example 4.3.1
L. X, —5
{LFP) Maximize £ = ————
-X -1, +9
Subject to
2x, +5x, 210
4x, +3x, 520
-x, +x, £2
X, x z0

1.
Now, introducing surpius and slack variables s; and s; |, 53 t0 1™ and 2™ & 3™ constraints
respectively to make the LEFT* problem in the standard form as follows:

LIPI } Maximize Z = J::—_Sg
. —x - X, +

Subject {o
2y, +5x, 5, =10
4x, +3x, +5, =20
— -7
X tx.+s, =2
xooor, s x5 20.

Thus the initial basic solutton
8 =-10, 52=20, -2 and x;=x; =0

it
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Now proceed to construct simplex fable as (ollows:

Initial Table

Co dn ¢ —» | O I 0 W] 0

l l dy— |1 -] 0

X x| X7 &1 52 53

0 0 $1=-10 2 -5 1 ¢ 0

0 0 5= 20 4 3 0 l 0

0 0 5302 -1 1 0 0 !
z =5 = Z=-9/5

G-z, G 1 Q0 0 0

di-zj’ -1 - 0 0 0

A, —=[-5 |4 0O 0 0

8j -319* -35/9 1 0 0

Ay B 45/% -36/35 0 - -

To obtain optimal solution we must maintain all A < 0 at each optimization siage. But in the
initial table, we observed that Ay = 4 > 0 | which indicates failure of Swarup{1965] dual type
methad

To overcome the above linmtation of Swarup {1964 dl 965] mecthod we suggest a modification
based on Dantiz [1 Qﬁf}] twa phase method for solving LP problems.

4.3.1. Solution procedure of modified approach of Swarup [] 964]

Afler introducing slack variables or surplus variables if the constraints sct

Ax=b (4.11)
Is in a canonical form, i indicates that some ol the constraints are greater than or equal
form and one can not find lcading mitial basic feasible solution In that case one has to

follow the procedure-described bellow

Step I: First, one has to find 4 initial basic leasible solution of LFP problem. Since, PHASE I of

simplex method concerned with finding initial basic feasible solution with respect to
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artificial objective function and not relevant to original objective function of LFP problem, one

can find an initial basic solution as follows

Sub-step 1: We augment the system (4 11} (o include a basic set of artificial variables

w,=0{1=1,2,....,m) so that we have augmented the system

Ax+Tw=b

Sub-step 2: Solve the artificial linear program (ALP)

3 4.12
(ALP) Minimize w =" w, (4.12)
1=[
Subject to
Ax+lwsh 4 13)
x =1 (4.14)

Sub-step 3: Since w = 0, this problem can not have an unbound solution, Moreover this
problem is feasible, since w = b, x' = 0, is a basic feasible solution in which arificial
variables w, (i =1,2,.. .. .,m)are basic. Writing the systemn {4.13) wilh using the
variable coefTicient of (4.12), we obtain inilial tableau of PHASE 1 1t should be noted
that the initial 1ableau contains rows corresponding to the original objeclive function F of
LFP problem (te be maximized in PHASE II ) and PHASE 1 objective function w. The
Simplex method can now be applicd to this tableau to minimize w. 1t would be
terminated an optimal bastc solution (x",w") to this PHASE | problemn has been found |
end in this situation, nun w = . This is the end oF PHASE I.

Two cases may hold now:

CASE A: min w={
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Here ALP has no solution, since if there is x > 0 satisfying (4.11), then (x',0) is a feasible
solution wilth w =0 to {4.11}-{4 14) and this viotets the assumption w>0 Thus the simplex
method terminates wilh the conclusion that ALP has no feasible solution.

CASE B: minw=20

Here all the artificial variables have been zero, i.e, w, = 0 Thus ALP has a feasible solution X,
¥rom the final simplex tableau of PHASE [, one can now delete the objective row comresponding
to w, since it has served its purpose with this as the siarling basic feasible solution, one proceeds
to PHASE II in the next step.

Step 1} If PHASE 1 yiclds an optimal solution not invalving positive artificial variables, one can
start PHASE Ll with criginal objective function of LFP problem and initial basic feasible
solution, which is optimal sotution of PHASE L. Then onc has to apply the primal simpiex type
method of Swarup [1964] to maximize F, which {erminates as soon as either an optimal solution
or an unbounded one. ln an unbounded solution, all entries in the pivot column are non-positive
corresponding to the greatest opposiie relative profit factor,

Step III: Now one has to compute z', z°, relative cost factor o-z,', relative profit Factor
di-z;” and the ratio A,
where z'= cpxp + @
Zz=d3 Xp Tt I]
Zj]=!:]3 4
zf =dya
and

A = 24erz'y - 2N

Step IV: One has to choose max A = 0 for covering the optimality condition and to improve Lhe
basic solution and the minimum ratio test is to be app[lied to determine the new basic variable to
enter the basis and the departing vanable to leave the basis,

Step V: Tfall 4; < 0 in the previous step, then one has reached to the optimal solution. Otherwise
one has 1o go to Step 11

Mow, we solve the above Example 4.3.1 applying our modified approach of Swarup [1964] as
follows: .

Step 1: We have to first find a initial basic leasible solution of the given LFP problem. To do
this, we consider the following ALP-



(ALP} Minimize L' =w
Subject to _
2x, +5x, -5 +w=10
4x, +3x, +5, =20
-X +x, s, =2
X, X, 8,5,5,wz0

Now we construct the sunplex table for PHASE-I as lollows,

PHASE-1
Cy l g —* |0 0 0 0 0 1 |B
Basisi, q X2 8 Sz S3 w
1 W 2 5 -] 0 0 1 10
0 53 4 3 o 1 0 0 20
Y] S -1 1 0 0 1 0 2
Cj=cCpzj 2 51 | 0 0 0[-10
0 X3 245 ] -1/5 0 0 1/5 pA
0 51 14/3 0 3/5 1 0 -3/5 14
0 53 =TS 0 175 0 1 -1/5 0
Ci=c¢c,z, 0 0 0 0 0 1 |0

Since all cj* = 0 and there is no artificial variable in the last table, it yiclds a primal
feasible sofution., this table gives another sub optimal point

§1=0, 8= 14, §v=0 and x;= 0, x; =20
Step TI: Now the initial basic feasible solution is

5= 14, 5:=0 and x; =20
with A =-23/5 &:=4/5and d= Ay=As=10

71



MNow, we construct initial table as follows:

INITIAL TABLE
i d Gj { 1 { 0 0
e
dj—| -l -1 0 0 0
X1 i X X1 8 5z 51 Xn fa,
1 ! Xz =2 |2/5 1 -1/5 0 o [-10
0 0 s =14 | 14/5 0 3/5 1 0 | 70/3
0 0 s5=0 | -75 0 145 0 1 |0
(=3 | = Z=-3/7 |- - - - -
¢z, 215 0 1S 0 0
dj-z 35 0 -1/5 0 0
1%—+-rﬂﬁ 0 P R 0 |

Step IIL: Since max A = A3=4/5 > 0 and min x /a,; = 0. Thus s, enter to the basis and 55 leave

to the basis,
FIRST ITERATION
c Ii d nl “ { 1 0 0 0
dj—»|-1 -1 0 0 0
T l X X2 51 57 53 Xp iy,
1 -1 xy =2 | -] I 0 0 0 -2/1
0 0 ;=14 |7 0 0 I -3 14/7
0 0 5 = -7 0 | 0 3 047
2 =23 |Z'= 2=-37 |- - - - -
-2y 1 0 0 0 -1
dy-7,” 0 0 0 1
A — |71 5 0 0 4
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Step IV: Since max A;= Ay =7 > 0 and min xu/a, = 2. Thus x; enter to the basis and s; leave to

the basis.
FIRST ITERATION
¢ Hl d nl Cj _rf 0 | { 0 G
dy—»|-1 -1 0 0 0
LN l X X2 5 52 &3 X5 /i
S Xx3=4 10 | 0 1/7 4/7
{ 0 =2 [ 0 0 1/7 =37
0 0 5p=14 |0 0 1 | 2
z=-1|z'= =-1/3 |- - - - -
¢rzj) 0 0 0 ST AT
dyz)’ 0 0 0 277
A —» |0 0 0 U717

Since all A) <0 in the above table, this table yields an optimal selution,

Thus tie selution of the Example 4.3 1 is:

Similarly, by using Charned & Cooper method and Bitran- Novaes metliod one can also
obtain the same result
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CHAPTER -5
COMPERATIVE STUDY OF THE METHODS

5.1 Introduction

In this chapter, we discuss the comparative analysis on the Method of Bitran & Novaes [1972],
Swarup {1964 & 1965] and Charnes & Cooper [1962] transformation technique considering the
sign of the numerator & denominator of the objective function of LFP problem Islam &Nath
[1992] investigated on Charnes & Cooper [1962] transformation method and they considcred the
followiny six cascs:

CASE [: dx+pB=0, ¥xeX

CASE Il dx + <0, WxeX

CASETIT - dx + B =0, ¥xeX

CASE iV :dx 3 p =0, ¥xeX

CASE ¥V : dx+B<0, ¥xeX

CASE VI: dx + p changes sign over Lhe feasible region X

Bitran & Novaes [1972] and Swarup [19648&1965] considered only the case where the
denominator: dx + f of objective function of LFP problem is strictly positive (i.e, CASE T of
Charnes & Cooper [1962] ).

if we multiply the CASE 11and CASE V¥ by -1, they reduced to CASE [ and CASE 1Y
respectively Therefore, we may reduce the above six cases investigated by Islam &Nath
[1992] into the following four cases:

CASET : dx+[>0 VxeX

CASE Nl dx+p=0 ¥xeX

CASL I : dx + p 20, ¥xeX

CASE 1V: dx + B changes sign over the feasible region X

Tt is further noted that CASE 111 consists of the [oilowing two sub cases’
{a) dx< + p 20 & cx+a >0, ¥xeX
(b) dx + P =0 & cxta <0, VxeX

We can also observe the following:



T

I IMdx+ B =0, ¥xeX, the objective function of LFP problem is undefined and thus the question
of solving the LFP problem is meaning less

2 1fdx + P 20 & exta -0, ¥xe X, the objective function {cxta) )/ (dx + B) tends to infinite,
where dx 4§ tends to zero for some & X and conscquently the problem has no finite solution.

3. i dx + B changes sign over X | the abjective function {cx+c) )/ (dx + B) becomes undefined at
which dx + [§ equals to zero and it tends to infinite al which dx + P tends to zcro for some xeX
and consequently the problem becomes unbounded.

4. The remaining only case where dx + 20 & exta <0, ¥xeX lhrough in this case the
ohiective funciion of LIP problem tends to infinite at which dx * b tends to zero for some
¥xeX, the problem may have finite solution, as it is maximizaiion one So, finally it is enough
ta consider the following two cases instead of six cases considered by lslam &Nath [1992].

CASEA:dx+ [0, VxeX
CASC B, dx + 0 20 & cxta <0, ¥xeX

5.2. If the denominator is strictly positive (dx + B > §, VxeX)

1 the denominator the objective function is strictly positive the Method of Bitran & Movaes
[1972], Swarup [1964 & 1965), our modilied method of Swarup [1964 Jand Chames &
Cooper {1962] transformation (echnique solve the LFP problem successfully. We now illustrate
this by simple numerical examples.

Example 5.1:

- 7
{LFP) Maximize # :w

-xr +2

Subject 1o

Now. we solve the above problem by using Bitian- Novacs method as follows:
Here ¢ =f~{f} a2
and

o <00 F=2



T

ey =Y ed, = (=100 =1

qd,d}:idﬁ = {0101 = |
rl

Thus fe.d) =
{d.d)
Step [ : The linear objective function 1. 15 given by

et edle- Sy ]
W,

={[ -1.h-101 Lo

= —:{'I
Now we maximize /. subject to the same canstraints as follows:

Maximize £ = —x,

LP)
Subject to
4x, ~3x, =2
x, €5
x, =2
yoox =0

Inscrting surplus variables s, & s; and slack variable sy to the 1%, 3™ & 2™ constraints

respectively to make the LP problem to its standard torm as follows
{L.LP1) Maximize £ = ¥,

Subject to
4y, —3r.—», =2

Xy +a. =5
X, -y, =2
X N 3,58, 20

b
Adding artificial varigbles wy |, wa 10 the ™ and 3" constraints and assign profit =1 to cach of the

artilicial variables and profit zero to afl other variables i the objective function, then PHASE —

1ofthe LP s



{ALP} Maximize f.=—w, —n.
Subject {0

4y

S

— 3, =5+ =
+4.=5

¥ =8, bW, =2

L

X, .rn}:l,x“.s:,‘u', '

Now .we construct simplex table of the PHASL-] as follows :

PHASE-1
P oo c —® 0 0 0 0 0 -1 - B
l Basis¢ X e 5| 52 53 W1 Wi

-1 Wy 4 3 -1 0 {3 b0 |2

0 52 0 Q [ 0 0 0 |5

-1 wy I 0 0 0 -1 0 1 {2

¢ =¢z, 54 -3 1 0 10 04
0 box) | -3/ - 144 i 0 174 0 1/2
0 2 |0 34 4 | 0 -1/ 0 9/2
-1 wy |0 344 14 0 1 14 ] 32
cj=c;Z, 0 3 A 0 A -4 o |32
0 w, 11D 0 0 43 0 -1 2
0 52 |0 0 0 ] 43 0 -1 3
0 A {01 113 0 Vs SV B 2

C, =¢,-2; 0 0 i ) 0 - -1 o

Since atl ¢,"< Oand there is no artificial variables in the basis this last table gives an

optimal solution tor PHASE-1 and we construet the simplex table for PHASL-1L.
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PHASE-II
Ci c, —* -1 {} 0 0 0 B3
l Basis] | x, X2 5 82 54
-1 X I 0 {+ 0 443 2
0 53 0 0 0 1 4/3 5
0 X 0 1 173 { - 443 2
G =c, 7, 0 0 0. 0 443 2
Since all ¢ "< 0. this table gives a sub optimal pount x'={2, 2} with Z(x'} =-1/2 |
Step 11 ¢ Again, the new objective funetion L7 is given by
1= e— 70 )d 1o
=(J-Lh- 2 ]
=—x +1/2x.
Now, we maximize L' subject 10 the same set of constraints and hence applying
twao phase simplex method | PHASE-LL of the problem 15 given by
PHASE-II
i l ¢ —*| -l 172 ¥ £ ] B
Bams}v X Xz Y 82 53
-1 X1 1 0 0 0 413 2
0 51 0 0 0 i 413 5
142 Xz it | 13 §] -4/3 2
g =C, %, | 0 TSI 0 -243 ]

Smee all ¢ 50, this table gives another sub optimal paint

x*=1(2.2) with Z(x*)= 1/2

Now, sinccx' = X = (2.2}, therefore. we bave reached to the optimal solution x = {2.2}
with £ = 142



Now, we solve the above problem by vsing our modified approach as follows:
(ALP) Minimize L = w, +w,
Subject to
dr, —3x, —5 +w, =12
X +s,=3
n—s, +w, = 2
x

L X 8,8, W, W, 20

Now, we construct simplex table of the PHASE-T as follows:

PHASE-]
Cr e 0 o 0 1 1 IB
l Basislv A X2 LY 57 83 W] Wi
1 Wi 4 3 -1 0 0 1 0 |2
0 sz t 0 0 ] 0 0 0
1 Wi 1 © 0 0 -1 0 1 |2
g =cj-z, FST 3 1 0 1 9 0 |4
0 xt |1 -3/4 -1/4 0 0 14 0 1/2
0 2 |0 34 |FZ RN 0 -l/4 0 | 92
1 wy |0 344 1/4 0 -1 -1/ 1| 372
¢, =cjpz, 5% T 0 I % 0 -312
0 x |1 O 0 0 43 0 - 2
0 s [0 0 0 1 a3 0 -
0 x; |0 1 1/3 0 ~4/3 -3 a3 2
C;=cZ; 0 0 0 0 0 1 1 0

Since all ¢; < 0 and there is no arificial variables in the basis this fast table, it yields a
basic {easible solution.

X =%=7 and 5;=3




51

Thus initial basic selution of LEP problem.
x1=%:=2 and 3:=3

with Aj= Az=Ay= 0 and A= -2/3 | As=-4/3

Initial Table
cR dn g —» |-l 1 0 0 0
i i d 0 1 0 0 o
X X1 Xz 4 51 hxl
-1 X=2 1 0 0 0 -1
0 5= 3 0 0 0 I 1
i 1 X2 =2 0 1 113 0 —43
z'=2 =4 Z=1/2 B
ez 0 0 -3 0 13
d-z’ 0 0 -173 0 43
A, — w0 0 273 0 473

Since all xp; >0 & all 4; < 0, we have reached to the optimal solution and the optimal solution is :
%= 2 and x» = 2 with Zpa = 172,

Similarly, by using Swarup dual type method and Charnes & Cooper method, one can obtain
the following results :
%1% %z = 2 with Zpax = 1/2.

5.). if the denominator dx + [} 20 and the numerator cx+a < 0, VxeX.

If the denominator dx + =0 and the numerator cuta < 6, ¥xe X, the method of Bitran-Novaes
may fail, whereas our modified approach of Swarup simplex type method, Swarup dual type
method & Charnes-Cooper transformation technique witl always recognize and stop at an
optimal point | if such a point is reached . We now illustrate this difference by following simple
example.

Example 5.2;

(LFP) Maximize Z = —od 2%z
2-x -1,

Subject to



Now, introducing slack and surplus variables s; and 82 to 1 and 2™ constraints tespectively to

r+x, 52

x +x, 2|
x. 20

I

make the LFP in the standard form.

Thus the initial basic solution
51=2, z=-land x;= x;=0
with &= -4 | Ay=-6, A= A=0

Now proceed to construct simpiex table as follows

Initial Table
Cp dp ¢ ~—» |-2 -3 0
d—— | -1 -1 0 0
Xa X) X2 5 52
0 0 §=2 1 1 1 0
0 0 5= -1 -1 -1 0 1
z'=0 z'=2 Z=0
oz; -2 -3 0 0
d-z* -1 -1 0 0
A ——» 4 -6 0 0
3] -2 12 o 1
Ay i st 12 - -
0 0 s=1 0 0 1 1
-2 -1 xi=1 1 1 0 -1
Z=2 7%=t Z=-2
ozy -1 0 -2
di-z’ 0 0 -1
N 0 4

B2

Since sl xp; >0 & all A, <0, we have reached to the optimal solution and the optimal solution is :
X = 1 ﬂ.l'ld Xz=ﬂWithzmxI-2



Now, we solve the above problem by using our modified approach as follows:

(AL Minimize L =w
Subject 1o
r+x,+85 =2
Nn+x, -5 +w=l

x, x, 8,5,wz20

Now, we construct simplex Lable of the PHASE-I as follows:

PHASE-]
Cu g —*|0 0 0 0 ] B
l Baais* x| X3 51 32 W
0 5 1 1 | 0 0 2
1 w 11 0 -1 1 1
G =Ci2j B 0 1 0 N
0 5 0 0 | 1 -1 1
0 x |1} 0 -1 ! 1
¢, =CjZ, 0 G 0 0 1 0

Since all l:._i‘ﬂ 0 and there is no artificial variables in the basis this last table, it vields a
hasic feasible solution

x=1 and 5;=1
Thus initial basic solution of LFP problem’
%=1 and 5=1

with A= &= 0 and A= -1, A= wn

#3



Initial Table
B dn 5 — |-2 -3 0 0
l l & —— | -1 -1 0 0

Xpi X Xz 5] 7

0 0 s=1 0 0 1 1

2 -1 xr=1 1 1 0 -1

Z=2 |zZ%= 7=2
P 0 -l 0 )
di-zi’ 0 0 0 -1
8 __, 10 -1 0 -4

Since 8lf xgi >0 & alt A; <0, we have reached to the optimal solution snd the oplimal solution is :
¥1=1and x;=0 with Z g =-2.

Similarly, by using Charmes & Cooper transformnation technique, one can obiain the
following results:

On the ather hand if we apply Bitran-Novacs method to solve example 3.2; we obtain
Here c¢=(-2-3) ,a=10
and

d=(-1-1) , p=2

s d)y= i":d: =(-2,-3-1-1)=5

{d,dy= idrz ={-1~-{-1~1)=2

e.d) _

Thus
{d )

542



Step I:  The linear objective function L is given by

L=t =([e=S0d |y
= {[ {(—2,-3)-5/2(-1-1} ],.r}
=x/2-x,12
Now we maximize £ subject to the same constraints as follows:
¥ +x, 22
x +x, 2]
o oxzh

Therefore, inserting slack, surplus and arificial variables we obtain:

{ALP) Minimize L* = w
Subject 1o
X +x,+5 =2
ntr -5 +w=l1

X

X 5,8, WD

Now ,we construct simplex table of PHASE-I 23 follows :
PHASE-I

on q—*| 0 0 0 0 1B
l Basisl, X1 X2 5 $2 w
0 51 1 1 1 0 0 |2
-] w 1 1 0 -1 1
¢ =Cj Z, N 0 1 0 |-
0 81 0 0 1 1 -1 1
0 X | 1 0 -1 1 1
C,=CjZ, 0 0 0 0 1 |0

Since all ¢, 2 0 and the artificial variable w is oul of basis, it yields an optimal solution

for PHASE-L

85



PHASE-]I

Co ¢ —*} 12 -1/2 G 0 B
l Basis¢ X, o 51 57
0 1 0 0 1 | 1
‘A X 1 1 0 -1 i
ci' =¢j2, ¥ —lf 0 1/2 -1/2
0 g 0 0 1 i 1
L4 X 1 1 1 1] 2
¢ =Cj2] 0 -] -1/2 0 -1

Since all ::;2 0 and the last table yields a sub-optimal solution x'={2,0).

But Z(x') = -4/0, that is, the maximum value is undefined.

Conclusion:

If the constraint set or the feasible region X is bounded and the denominator ts strictly
positive for all xeX |, each of the four algonthm can successfutly solve the LFP probiem
(see also Example 5.1 of this chapter). The method of Bitran-Novaes [19?’2] and Swarup
[1964] are algonithmicaliy cquivalent in the sense that two algonthns select the same
non-basic variebles to enter the next tdal solution and remove the same basic

variable from the current solution . One can also observed that the technique of Bitean-
Novaes [} 5}?’2]1 which is the solution of a sequence of linear programs, only checks for
optimality of the fractional programs at points that are optimal solution of intermediary
fingar programs . 1t is also observed that primal Simplex type method of Charnes &
Cooper, Swarup or Bitran —Novacs are not applicable if the constrains fail the
fensibility; whereas Swarup [1965]'s dual type method is not applicable if the constraints

fail the optimality

If the denominator dx + f 20 and the numerator cxta < 0, ¥xeX, the methed of Bitran-

Novaes may fail (see also Example 5.2 of this chapter); whereas our modified approach

of Swarup simplex type method, Swarup dual type method & Charnes-Cooper




transformation technigue will alwsys recognize and stop at an optimal point , if such a

point is reached {sec also Example 5.2 of this chapter).

Finally, we conctude that without considering the restrictions on the sign of the
denominator of the objective function of LFP problem Charnes-Cooper [I 962]
transformation technique is more applicable . If he constraint set or the fcasible region X
is bounded and the denormnator is sirictly positive for all xX Bitran-Novaes [19?2]
method which involves a sequence of linear psograms , to solve a LFP problem it takes
more time and labor ; but in the same case Swarup simplex type method solve only a
single LFP problem. Sa, Swanup [I 95-4] simplex type method with our modified

approach 1s best one.

Since large-scale real life LFP problem cannot be sclved by hand calculations, it requires
computer- oriented solution, Hence, here we generalize computer program {FORTRAN)

of all these methods for solving LFP problem. So we may conclude that linear fractional

programming mcthod and roguired computer program a mighty method for large scale

cplimization problem, where it can be applicd.

B7
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